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Books

1. Kane, G: The Particle Garden, Addison Wesley, 1995

[Not a textbook, just a good read without any maths]

2. Williams, W S C: Nuclear and Particle Physics, Clarendon Press, 1991

[Good level, good coverage, but certain things missing (accelerators, experimental
methods, some theoretical/mathematical details)]

3. Griffiths, D: Introduction to Elementary Particles, John Wiley & Sons, 1987

[Again, good level, good coverage, but accelerators and experimental methods are not
covered]

4. Martin, B R and Shaw, G: Particle Physics, John Wiley &

[Slightly more theoretically-biased than previous ones]

5. Perkins, D H: Introduction to High Energy Physics, Cambridge University Press

[Most comprehensive coverage of topics, including accelerators and experimental
methods, but sometimes requires some previous knowledge]

6. Seiden, A: Particle Physics, A Comprehensive Introduction, Addison Wesley,

[The best coverage of underlying maths, including basics of QFT and Group Theory]

7. Thomson, M: Modern Particle Physics, Cambridge University Press [The most
up-to-date in the list]
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Web Resources

1. Lancaster Particle Physics Package for A-level students:

http://www.hep.lancs.ac.uk/package/

Some basic stuff - worth a look or two (feedback welcome)

2. Paricle Physics in the UK website, plenty of info and links:

http://hepweb.rl.ac.uk/ppUK/

3. FNAL (Fermi National Accelerator Laboratory), home of the Tevatron:

http://www.fnal.gov/

4. CERN (European Centre for Nuclear Research), home of LEP and LHC:

http://public.web.cern.ch/public/

5. The ultimate resource: Particle Data Group website

http://pdg.lbl.gov

The official reference for all particle data. Many useful review articles, too
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Particle Physics — What’s This About?

‘Elementary’ Particles — e, p, n, ν, µ, τ, γ,W,Z . . . and their interactions with each other.

You should already know a few things about them.

Would you expect Particle Physics to be a hard subject?

Compared to other areas of physics (nuclear, solid state, bio-. . . ) and other sciences
(botany, chemistry, zoology, medicine) I believe PP is actually very simple:

✦ Particles have (relatively) few properties (‘quantum numbers’).

✦ These properties usually have few discrete values.

✦ Particles obey very simple, relatively few, well-defined laws.

✦ All elementary particles of the same type are absolutely identical.
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Why does PP Seem So Hard Then?

✦ The world of particles is so far from our everyday experience, that all these simple
properties and simple laws may look and seem unnatural and weird;

What can we do?

‘Friendly’ names: strangeness, charm, colour, top, bottom. . . Find analogies and
simple rules

✦ Many mathematical methods used to describe the world of particles are quite
advanced (Group Theory, Quantum Field Theory, Advanced Statistical Methods . . . )

What can we do?

Use simplified maths, skip derivations. . .

✦ Your intuition fails to work

What can we do?

Help you build your intuition by giving you lots of various problems to solve!
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What’s the Scale?

‘Elementary’ Particles:

the smallest constituents

of matter (known so far):

leptons and quarks, and also

the interaction carriers:

photons γ, gluons g,

W± and Z0 bosons.

Well-established models and theories at present exclude gravitational interactions:

1. quantum theory of gravity has not been built yet;

2. may (should!) be tied to properties of space-time at tiny scales;

3. too weak to matter for particles under ‘usual’ circumstances.

However, weak, electromagnetic and strong interactions are understood and described
reasonably well. In this course we will concentrate on these three.
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Is SI System Useful in Particle Physics?

Main properties of particles: mass m, charge e, spin s.

For an electron in SI system:

me = 9.109× 10−31 kg

e = −1.602× 10−19 C

sz = ±~/2 = ±(1/2)× 1.055× 10−34 J · s
Particle physicists do not use SI system. Instead, a particle physicist would write:

me = 0.51 MeV/c2

e = −1 proton charge

sz = ±1/2

The last equation suggests: in particle physics

~ = 1.055× 10−34 J · s = 1

which, for one thing, states that in particle physics the product of units of [energy] and
[time] is dimensionless.
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Can we Make it Even Simpler?

So, it’s natural to choose units such that ~ = 1. This means that

[energy] × [time] =1 and also [momentum] × [distance] =1

Now, remember the relativistic relation between Energy E, momentum p and mass m:

E2 = p2 c2 +m2 c4

Relativistic particles move with speeds close to speed of light. Carrying all these huge
factors like (300000000 m/s)2 around will be avoided in a system of units where c = 1,
which simply means that [new unit of time] is [old unit of time]/c.

The choice ~ = 1 and c = 1 would mean that

✦ Energy, momentum and mass are measured in the same units

✦ Angular momentum is dimensionless

✦ Time and distance are measured in the same units

✦ Energy is inverse of time

✦ One needs just one dimesional unit, which is usually chosen as the unit of energy

✦ In Particle Physics this is 1 GeV
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Natural System of Units

The system of units with ~ = 1 and c = 1 is called the Natural system:

1 unit of length = 1 GeV−1 ≃ 0.1978 fm

1 unit of time = 1 GeV−1 ≃ 0.6588 · 10−24 s

1 unit of energy = 1 GeV

1 unit of momentum = 1 GeV sometimes GeV/c

1 unit of mass = 1 GeV sometimes GeV/c2

Note: 1 GeV = 1000 MeV and (1 GeV)−1 = (1000 MeV)−1, but 1000 GeV−1 = 1 MeV−1

One more unit: barn b for cross section: 1 b = 10−24 cm2.

One barn is far too big a unit for particle physics:

1 b = 103 mb = 106 µb = 109 nb = 1012 pb = 1015 fb

The cross sections of most interesting processes in particle physics are usually measured
in femtobarns fb.

Here is a useful relation:

1 GeV−2 = 0.389 mbarn
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How About Electric Charge?

The fine structure constant α is a dimensionless constant. In SI system:

α =
e2

4πε0~c
=

1

137.036
≃ 1

137

In natural units it still has the same numerical value:

α =
e2

4π
=

1

137.036
≃ 1

137

This relation can be used to determine the electron charge e in the natural system, as
electric charge here is dimensionless.

The numerical value of e is not used much. However, α is one of the most well-measured
constants in physics.

There are two things which are very interesting here:

✦ the fact that α is a very small number, α ≪ 1 (allows use of perturbation theory)

✦ the fact that the charge is quantised. The smallest non-zero charge we know of is
exactly e/3 (more about this later).
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A Bit of Quantum Mechanics

Remember the Heisenberg Uncertainty Principle?

Uncertainty in momentum times uncertainty in coordinate cannot be smaller than ~:

∆px ∆x & ~/2

and similarly for y and z directions.

Uncertainty in energy times uncertainty in time cannot be smaller than ~:

∆E ∆t & ~/2

Think about it:

the energy of a system can be measured with high precision only if it lives long enough.

If the system is unstable, its energy (and hence its mass) is not defined precisely.

Of course, in natural units ~ = 1 and the uncertainty relations above, when used for
order-of-manitude estimates, usually read

∆p ∆x ∼ 1 ∆E ∆t ∼ 1
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Relativistic Notation

For a free particle of mass m, energy E and momentum p

E2 − p2 = m2

Introducing 4-vectors: p1 = (E1,p1), p2 = (E2,p2), with the dot product defined as:

p1 · p2 ≡ E1E2 − p1 · p2 ≡ p1µp2νg
µν ≡ p1µp

µ
2

Important:

✦ 4-vectors are usually written as pµ or simply p (no arrows, no bold fonts)

✦ The 4-indices µ, ν . . . have values 0,1,2,3 or t, x, y, z.

✦ gµν is the “metric tensor”, gµν = diag(1,−1,−1,−1)

✦ p0 ≡ E is energy, p1,2,3 ≡ px,y,z are the components of the ‘good old’ 3-momentum

✦ Hence, in the dot product, the product of energies enters with a plus sign, while the dot product of
3-momenta enters with a minus sign

So, in this notation, for a free particle of mass m and 4-momentum p = (E,p) one has

p2 = m2 where p2 ≡ E2 − |p|2

Of course, |p| is the length (module) of the 3-momentum.
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Lorentz Transformation

As you know, energies and momenta of particles depend on the system of reference.

Lorentz transformation governs the way energies and momenta are transformed from one
reference system to another.

✦ Particle in system one has 4-momentum p = (E, px, py, pz)

✦ Same particle in system two has 4-momentum p′ = (E ′, p′x, p
′
y, p

′
z)

✦ System two is moving with velocity v m/s with respect to system one in the direction
of their common z axis

✦ Calculate β = v/c and γ = 1/
√

1− β2

E ′ = γE + βγpz

p′x = px

p′y = py

p′z = βγE + γpz

Particle mass m remains invariant under Lorentz transformation:

E2 − p2x − p2y − p2z = m2 = E
′2 − p

′2
x − p

′2
y − p

′2
z
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Useful relations

Let the particle of mass m be at rest in frame one. If we know the modulus of particle’s
momentum p ≡ |p| in frame two (and hence its energy E =

√

p2 +m2):

✦ The easiest way of calculating the speed β is:

β = p/E

✦ Similarly, the easiest way of calculating the γ-factor is:

γ = E/m

✦ Once again, the easiest way of calculating the product βγ is:

βγ = p/m

It’s worth checking, that when calculated this way, we still have

γ =
1

√

1− β2

Usually this is the easiest way of determining the parameters of Lorentz transform: you
have to find (or “create”) a particle which is at rest in that frame!
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Decay Length

Decay length l is the distance travelled by an unstable particle during its lifetime t.

Obviously, if the particle is at rest, l = 0 no matter how long it lives. For

a particle moving with velocity v in the lab frame, the observed lifetime

t is different from the ‘proper’ lifetime in the particle’s own rest frame

t∗, following the Lorentz transformation (in the rest frame z∗ = 0):

t = γt∗ + βγz∗ = γt∗

l = vt = cβt = cβγt∗

Hence, the mean decay length in the lab frame is 〈l〉 = βγcτ .

For a particle with 3-momentum modulus p ≡ |p| its energy is

E =
√

p2 +m2. Hence:
β =

p

E
, γ =

E

m
, βγ =

p

m

With τ in seconds and c in m/s, 〈l〉 will be in meters. Example:

K0
S → π+π− decay has mean life ∼ 10−10 s with cτ = 2.7 cm.

However, 10 GeV kaons will travel on average ∼ 2.7 · 10/0.5 = 54 cm.
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Invariant Mass

The dot product of any two 4-vectors is invariant under Lorentz transformations.

Consider a system of two particles: p1 = (E1,p1) with mass m1 and p2 = (E2,p2) with
mass m2.

Calculate the sum of the two 4-vectors: P = (E1 + E2,p1 + p2).

The quantity M is called the invariant mass (sometimes effective mass) of our two
particles, if

M2 ≡ P 2 = P · P = (E1 + E2)
2 − (p1 + p2) · (p1 + p2)

Let’s do the maths:

M2 = (p1 + p2) · (p1 + p2) = p21 + p22 + 2p1 · p2
= m2

1 +m2
2 + 2E1E2 − 2p1 · p2

= m2
1 +m2

2 + 2E1E2 − 2|p1||p2| cos θ
where θ is the angle between the two 3-vectors p1 and p2.

The invariant mass is — surprise, surprise! — invariant under Lorentz transformations:
the result of this calculation will be the same in any reference frame.

But remember: all involved quatities (energies, momenta, angles) must be calculated in
the same frame!
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More Useful Relations

Let’s to solve a little problem:

We have a system of two particles (produced, say, as a result of another particle’s decay,
e.g. ∆0 → pπ−). We have identified the two particles (i.e. know which is p and which is
π−) and we have measured their momenta, p1 and p2. We know the masses, so we can
calculate the energies E1 and E2.

The question is: can we figure out the speed β (and hence the γ-factor) of the the (p, π)
system in the lab frame?

The answer is very simple:

β =
|p1 + p2|
E1 + E2

γ =
E1 + E2

M

where M is the invariant mass of the (p, π) system (which should be equal to the mass
of the “parent” ∆ - see later).

This calculation will be valid for any system of particles, even if they are not the decay
products of a single particle.
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More Quantum Mechanics

Remember how Shrödinger’s equation was obtained? Started from the classical relation
for energy, and replaced physical quantities with corresponding operators, acting upon the
wave function ψ

E =
p2

2m
+ V p ⇒ −i∇

− 1

2m
∇

2ψ + V ψ = Eψ

For a free particle V = 0, and the solution of the remaining equation is the plane wave

ψ = C eip·x, E = p2/2m

Time-dependence of the free particle wave function is also easy to obtain:

i
∂

∂t
ψ = Eψ, ψ ∼ e−iEt

So the full wave function of a free particle is ψ(x, t) ∼ e−iEt+ip·x.
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Relativistic Quantum Mechanics

In relativistic quantum theory, the base equation for a free particle is the familiar

E2 − p2 = m2 or p2 −m2 = 0

Rewritten with quantum-mechanical operators, it’s called Klein-Gordon equation:
{

− ∂2

∂t2
+∇

2

}

φ = m2φ or

{

− ∂2

∂xµ∂xµ
−m2

}

φ = 0

which is satisfied by the wave function

φ(x) ≡ φ(t,x) ∼ e−ip·x, p · x = Et− p · x
That is, the wave function of a free particle in the relativistic quantum theory is still a
plane wave.

A free particle is clearly an idealisation. It fills the whole of space-time with equal
probability and thus its x and t are undetermined; hence, its energy-momentum is well
defined and can be measured. However, a free particle is free as long as it does not
interact with anything, hence it is unobservable. . .
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What Do We Observe?

Observing a stable system is not much fun: nothing happens ⇒ nothing to observe.

1) An unstable system may undergo some kind of decay process, with stable decay
products that can be observed one way or another.

✦ Radioactive decay of an unstable nucleus; decay products are a lighter nucleus, α, β
and γ ‘rays’.

✦ A charged pion from a cosmic ray shower decays into a muon and a neutrino:
π± → µ± + ν.

2) Something interesting may happen if two (stable) objects are made to interact with
each other in some kind of a collision. This collision may occur naturally, or could be
organised artificially as a result of a huge design and engineering effort.

✦ Light radiation by a hot object — mechanical collisions between atoms cause some
electrons to move to higher energy orbits; subsequently they return to the stable orbit
by radiating photons. The energy level structure of the atoms can be studied by
measuring the energies (frequencies) of these photons.

✦ Two protons of 7000 GeV energy each are collided head-to-head; each collision
produces on average a few hundred particles, and particle physicists spend their time
trying to make sense of this.
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Decays

N(t) — number of (unstable) objects of the same type, still intact at moment t.

If the objects decay spontaneously and independently of each other, the number of
objects decayed, dN , during the small time interval dt must be proportional to the
number of objects still present at the start of the interval, N(t):

dN = −ΓN dt ⇒ N(t) = N0e
−Γt

where Γ is a constant, which determines

the rate of the decay. It has dimension

[1/time] and hence [energy] or [mass],

and is equal to the decay probability

per unit time.

Quantity τ = 1/Γ has the dimension of [time], and is called ‘mean life’. It is closely
related to another measure of decay rate, half-life t1/2.

After t = τ only the fraction 1/e of the initial sample is left undecayed.

After t = t1/2 half of the initial sample has decayed; t1/2 = τ log 2 = 0.693 τ .
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Decays in Quantum Theory

For a free particle with mass m, at rest, one has p = 0 ⇒ E = m and the plane wave
wavefunction reads

φ(t,x) ∼ e−iEt+ip·x = e−imt

So that the probability density of finding the particle, |φ|2 = φ∗φ = const is independent
of time. Hence, plane waves only describe stable free particles which populate all
space-time uniformly.

For an unstable particle with mean life τ = 1/Γ, the mass is complex:

m ⇒ m− iΓ/2 and |φ|2 = φ∗φ ∼ eimt−Γt/2e−imt−Γt/2 = e−Γt

We see that the introduction of a (negative) imaginary part Γ/2 to the mass of a particle
causes its probability density to decay with time, with mean life τ = 1/Γ.

So, the life time of an unstable particle is finite, ∆t ≃ τ . The uncertainty relation now
tells us that the energy of this particle can only be determined with some finite accuracy:

∆E∆t ∼ 1 hence ∆E ∼ 1/τ = Γ

Hence, whenever the mass of an unstable particle is being measured, the result will be a
distribution of masses with the width of order Γ, rather than a fixed number every time.
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Mean Life and Width

So, an unstable particle is characterised by its mean life τ , or its inverse Γ = 1/τ , decay
probability per unit time.

Usually, for ‘long-lived’ particles with τ & 10−20 s, the numbers quoted in the tables are
for τ in seconds and/or cτ in centimetres.

For particles with shorter lifetimes, the number used to describe the decay rate is
Γ = 1/τ , measured in units of energy:

✦ τ = 0.66 · 10−21 seconds corresponds to Γ = 1 MeV

✦ τ = 0.66 · 10−22 seconds corresponds to Γ = 10 MeV

✦ τ = 0.66 · 10−23 seconds corresponds to Γ = 100 MeV

✦ τ = 0.66 · 10−24 seconds corresponds to Γ = 1 GeV

Often Γ is referred to as the width of a particle (we sill soon see why).
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Several Decay Channels?

If a particle has more than one decay channel, partial decay probabilities Γi should be
added up to calculate the total decay probability Γtot:

Γtot = Γ1 + Γ2 + . . . , τ = 1/Γtot

Mean life is calculated as the inverse of the total decay probability. It is not correct to
add up ‘partial lifetimes’ !

The Branching Fraction

BR(i) for a particular

decay channel with

partial width Γi is

BR(i) =
Γi

Γtot

The lifetimes, full widths and branching fractions of various decay modes are listed in the
Tables of Particle Properties. Some particles have many tens of different decay modes.

A charged pion has mass mπ = 140 MeV, mean life τ = 2.6 · 10−8 s, and cτ = 7.8 m.
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What’s That p in the Last Column?

p is the 3-momentum available for the decay products, in the initial particle rest frame.

In two-particle decays, p is the momentum of each or the two decay products. In
multi-particle decays, p shows the maximum momentum for each particle.

For a two-particle decay M → m1 +m2, the value of p ≡ |p| can be easily calulated
using Lorentz-invariance and energy-momentum conservation:

In its own rest frame, the 4-momentum of the decaying particle is q = (M,0).

The decay products have 4-momenta p1 = (E1,p1) and p2 = (E2,p2), with

E1 =
√

m2
1 + p2

1, E2 =
√

m2
2 + p2

2; energy conservation gives E1 + E2 = M .

Momentum conservation yields p1 + p2 = 0 ⇒ |p1| = |p2| ≡ p. Let’s calculate p22:

m2
2 = p22 = (q − p1)

2 = q2 + p21 − 2qp1 = M2 +m2
1 − 2ME1 + 2× 0 · p1

m2
2 = M2 +m2

1 − 2ME1

E1 =
M2 +m2

1 −m2
2

2M
p =

√

E2
1 −m2

1 = |p1| = |p2|

It should be easy to calculate E2, either from energy conservation or simply by symmetry.
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Describing Collisions

Decays provide lots of useful information, but you have to find a way of producing the
unstable particles first. Those which are produced ‘naturally’ (Big Bang, cosmic rays)
tend to decay without being detected by physicists, for various reasons).

First experiments used natural radioactive sources. Now giant accelerator complexes are
being built, thanks to huge international efforts.

Until 1970’s, experiments usually had a ‘fixed target’:

a beam of particles (ne per unit time)

hits a (solid, liquid or gaseous)

target (np protons per unit area).

Some of the projectile particles (ns per

unit time) get scattered, some just go through the

target unperturbed. The cross section

σ =
ns

ne · np

[

dimension
T−1

T−1L−2
= L2

]

represents an effective area per target particle such that an incident particle hitting that
area will be scattered.
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More Cross Sections

The cross section describes the probability of scattering: the cross section times the
number of target particles per unit area gives the fraction of incident particles which will
be scattered.

The cross section depends on the enrgy of the collision and on the types of colliding
particles.

A beam of point-like particles falling on a target full of a gas consisting of small hard
spheres of radius R will have a cross section σ = πR2.

Particles do not behave like hard spheres, maybe more like slightly opaque objects with
soft edges.

In general, the weaker the interaction between the beam and the target particles, and/or
the shorter the range of the interaction, the smaller the cross section.

If the detector is capable of measuring the scattering angles θ, ϕ one can talk about
differential cross section

dσ

dΩ
≡ dσ

sin θdθdϕ

which represents the fraction of scattered particles per solid angle interval
dΩ = sin θdθdϕ, per target particle.
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Proton-Proton Total and Elastic Cross Sections from PDG

Log-log? Elastic? Total? Tevatron? LHC? Highest energy points? Plab?
√
s? Threshold?
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Q & A

✦ Log-log: hard to plot otherwise: y range ∼ 100, x range is 1010.

✦ Elastic: no change in (kinetic) energy, i.e. p+ p → p+ p

✦ Total: all possible processes summed over: elastic, p+ p → p/n+ p/n+Nπ,
resonance production, jet production. . .

✦ Tevatron: ∼ 2 TeV — but not on the plot, since it’s a p̄p collider

✦ LHC ∼ 14 TeV: it’s a pp collider – not on the plot either, sorry. . .

✦ Highest energy points: not accelerator, but cosmic ray measurement. Huge energies,
unaccessible in man-made accelerators. . .Where do they come from?

✦ Plab: beam momentum in the target frame. In colliders, target frame 6= lab frame.

✦
√
s ≡ Ecm: collision energy in the centre-of-mass frame of the colliding particles.

✦ Threshold: at small Plab values, only elastic scattering is possible. The two curves
start separating at the point where the processes p+ p → p+ p+ π0 and
p+ p → p+ n+ π+ become possible.
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Ecm versus Plab

The kinematic variable s is one of three Mandesltam variables (see later). s in nothing
else but the invariant mass of the colliding particles squared.

s ≡ (p1 + p2)
2 = (E1 + E2)

2 − (p1 + p2)
2

In c.m. frame p1 + p2 = 0, and hence s = (E1 + E2)
2 = E2

cm.

In symmetric high energy colliders (LEP, Tevatron, LHC) c.m.frame is the lab frame,
Pbeam1 = −Pbeam2, Ebeam1 = Ebeam2 ≡ Ebeam and

√
s = Ecm = 2Ebeam.

In a fixed target experiment,

Plab ≡ |p1|, E1 =
√

p2
1 +m2

1, p2 = 0, E2 = m2,

E2
cm = s = (p1 + p2)

2 = (E1 +m2)
2 − (p1 + 0)2 = m2

1 +m2
2 + 2E1m2

At high energies one can neglect masses and E1 ≈ Plab, hence
√
s = Ecm ≃

√

2m2Plab

Now you know why particle physicists prefer to build colliders!
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Luminosity

Let’s define the cross section in terms appropriate for both fixed target and collider
experiments.

Luminosity L is the number of colliding particles per unit time per unit area, and is
measured in cm−2s−1.

Modern accelerators may have luminosity as high as 1034 cm−2s−1.

The number of particles dN per unit time, passing through area dσ, is

dN = Ldσ ⇒ dσ

dΩ
=

1

L
dN

dΩ

The differential cross section is the number of particles per unit time scattered into solid
angle dΩ, divided by dΩ and by the luminosity.

event rate = cross section × luminosity

The luminosity characterises the frequency of collisions (i.e. the capabilities of the
accelerator), while the cross section describes the nature and properties of the collisons.
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Fermi’s Golden Rules

So, there are two kinds of processes to be studied and described:

✦ Decays, described by the decay rate (width) Γ

✦ Scattering, described by the cross section σ

Quantum Field Theory provides us with recipes to calculate both of these, in terms of two
ingredients:

1. The quantum-mechanical amplitude (‘matrix element’) for the process M.

2. The phase space available for the final state of the process.

The Golden Rule for decays states:

Decay Rate dΓ ∼ |M(1 → N)|2 × (Phase Space of N)

while the Golden Rule for scattering says:

Cross Section dσ ∼ 1

Flux Factor
|M(1 + 2 → N)|2 × (Phase Space of N)

where I have ignored some constant factors for the moment.
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Quantum Field Theory

Here come several slides just to show you how a physical theory is built from scratch.

The aim is to convince you that a few basic principles may be enough to build a theory
capable of describing and explaining most known phenomena in the world.

In non-relativistic quantum mechanics, physical quantities become operators acting upon
the wave functions, which describe the particles.

In quantum field theory, wave functions themselves become operators, which can create
or annihilate quanta of fields which represent particles: ψ = ψ+ + ψ−.

For example, an electron-creation operator ψ+(p), acting on vacuum |0〉, will create an
electron with 4-momentum p:

ψ(p)+|0〉 = |u(p)〉

A physical theory in QFT is defined by a Lagrangian density L, which is constructed
from those creation and annihilation operators.
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Crash course on Quantum Field Theory

Modern view of the world (in Physics!) relies on the assumption that all fundamental interactions are
described by a Quantum Filed Theory (QFT).

A physical system is described by a Lagrangian (density) L, with is a function of various “generalised
coordinates” and their first-order derivatives. In QFT, these generalised coordinates are in fact the field
operators, representing various particles (which, in turn, depend on space-time coordinates).

Action S is defined as a space-time integral of L:

S =

∫

Ldtdxdydz

Action must be a Lorentz invariant, which makes L Lorentz invariant too.

Clearly, S depends on L, the configuration of the fields and their space-time evolution.

The Action principle states, that the space-time evolution of the fileds, which actually takes place, must
correspond to a minimum of S.

So, the condition δS = 0 can be used to find out the equations of motion which the fields must satisfy.
This is in fact a generalisation of the classical Euler-Lagrange formalism.
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QED Lagrangian

The Lagrangian of Quantum Electrodynamics (QED), which describes a world consisting
of charged fermions of one type (say, electrons, operator ψ) and bosons carrying the
interaction (photons, operator A) looks like this:

L = Lfermion + Lboson + Linteraction

Lfermion = iψ̄γµ∂
µψ −mψ̄ψ

Lboson = − 1

16π
FµνF

µν , Fµν ≡ ∂µAν − ∂νAµ

Linteraction = −eψ̄γµψA
µ

where m and e are electron mass and charge, γµ are Dirac’s matrices, and the summation
over repeated indices µ, ν = 0, 1, 2, 3 is understood.

Starting from this Lagrangian, by applying the well known (Euler-Lagrange) formalism
from classical mechanics, one can derive the equations which describe much of the
dynamics of this world: Dirac’s equation and Maxwell’s equations.

This ambitious programme is beyond the Particle Physics course, but it is not as hard as
it may seem. Finding solutions to those equations is a lot harder.
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Noether’s Theorem

The Lagrangian is said to be invariant against some transformation, if it remains
unchanged when this transformation is performed.

If the Lagrangian is invariant, so are the laws of physics derived from it.

Noether’s theorem:

Every symmetry of nature yields a conservation law

m
Every conservation law reveals an underlying symmetry

Assuming that the nature is described by a Lagrangian, this theorem can be proven
mathematically (again, not as hard as it seems).

Example:

Laws of nature are the same today as they were yesterday ⇒
⇒ Lagrangian of the system is invariant under translations in time ⇒

⇒ the energy of the system is conserved
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Symmetries of the Lagrangian

Several invariances and corresponding conservation laws are especially important:

Symmetry Conserved Quantity

Translations in time ⇔ Energy
Translations in space ⇔ Momentum
Rotations in space ⇔ Angular momentum

Gauge transformations ⇔ Electric charge (current)
Spatial reflections ⇔ Parity
Charge conjugation ⇔ C-parity

Kinetic terms in the Lagrangian, describing free fermionic and bosonic fields Lfermion,
Lboson are as symmetric and hence as invariant as they can possibly be, hence

the symmetry properties of the Lagrangian are determined by the interaction term.

Example: in weak interactions parity is not conserved, because the weak interaction
Lagrangian term is not invariant under spatial reflections.
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Phase Space

Phase space is another name for momentum space. All phase space matters are referred
to as particle kinematics, as opposed to dynamics, which is governed by interactions
and is decribed by the amplitude M.

The differential volume element of the phase space of a particle with 4-momentum p is

d4p ≡ dEdpxdpydpz

However, the four components are not independent: for any real particle E2 = m2 + |p|2.
After applying this condition, the phase space element per each final particle i becomes

dpixdpiydpiz
2Ei

≡ d3pi

2Ei

, Ei =
√

m2
i + |pi|2

In addition, each component of the final 4-momenta must satisfy the energy-momentum
conservation:

(Pinitial)µ =
N
∑

i=final

(pi)µ µ = 0, 1, 2, 3

where the total initial 4-momentum Pinitial is usually well-known: for decays, it’s the
4-momentum of the decaying particle; for collisions it’s the sum of the 4-momenta of the
two colliding particles.
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Threshold

One interesting consequence of energy conservation is immediately obvious. For a decay
of a particle of mass M at rest, into two particles with masses m1 and m2, we have

M = E1 + E2

However, E1 =
√

m2
1 + |p1|2 ≥ m1 and E1 =

√

m2
2 + |p2|2 ≥ m2, hence this condition

will never be met if m1 +m2 > M . In order for the decay to proceed, some (whatever
small) amount of energy should be left over to create some 3-momentum: a particle
cannot decay if the sum of final masses exceeds or is equal to the initial mass.

A similar analysis can be performed for collisions, but M should be replaced with
Ecm =

√
s. This quantity should exceed the sum of the masses of final particles,

otherwise the process cannot go ahead.

The minimum c.m. energy at which a particular reaction is kinematically allowed is called
the threshold of this reaction:

(Ecm)threshold = sum of masses of final particles

At energies just above threshold the final particles will be almost at rest in c.m.s.
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Generic Process 2 → 2

p1, m1

p2, m2

p3, m3

p4, m4

Two particles with masses m1,m2 and

momenta p1,p2 collide.

Two particles with masses m3,m4 and

momenta p3,p4 are produced.

In general, all masses can be different. Calculate energies:

E1 =
√

p2
1 +m2

1, E2 =
√

p2
2 +m2

2, E3 =
√

p2
3 +m2

3, E4 =
√

p2
4 +m2

4

Energy and momentum conservation states:

E1 + E2 = E3 + E4 p1 + p2 = p3 + p4

Let’s see how far we can go with this information alone (and a bit of common sense).
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How Many Variables?

So, we have 4× 4 = 16 quantities describing this collision: 4 energies and 3× 4
components of momenta. How many free, interesting and non-trivial variables do we
actually have?

In 1 → 2 decay, M → m1 +m2, we ended up with no free variables at all: after fixing
the reference frame, all components of both final momenta, as well as both final energies,
were uniquely calculated through the three masses.

Start with 16 variables.

✦ 4 energies are calculated from momenta and masses.

✦ two initial momenta (i.e. 6 components) are fixed: we know what we are colliding!

✦ the sum of the two final energies is fixed by the energy conservation (one equation).

✦ the sum of the two final momenta is fixed by the momentum conservation (three
equations).

✦ If the initial particles are spinless (or in fact are unpolarised) there must be azimuthal
symmetry around the collision axis, i.e. one variable, the azimuthal angle φ, is trivial
⇒ easily “integrated out”.

How many “true” variables are we left with? Do the maths. . .
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Mandelstam Variables s, t, u

p1, m1

p2, m2

p3, m3

p4, m4

Define three invariant kinematic variables:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p2 − p4)

2

u = (p2 − p3)
2 = (p1 − p4)

2

Note: p1, p2, p3, p4 are all 4-vectors here!

Using 4-momentum conservation, one can immediately show that

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4

So, one of the three (usually u) is obsolete: knowing masses, s and t one can calculate u.

s is the invariant mass squared of the two initial (or two final) particles. Show that
√
s is

equal to the centre-of-mass energy of the collision:
√
s ≡ Ecm

Momenta of initial and final particles can be calculated with the formulae used in the
M → m1 +m2 decay, by replacing M with

√
s.
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Momentum Transfer

t is the square of the 4-momentum transfer from particle 1 in the initial state to particle 3
in the final state.

If all masses are equal, m1 = m2 = m3 = m4 ≡ m, then

|p1| = |p2| = |p3| = |p4| ≡ P

E1 = E2 = E3 = E4 ≡ E =
√
P 2 +m2 =

√
s

2

It’s easy to show that in this case

t = −2P 2(1− cos θ) = −4P 2 sin2 θ

2
, u = −2P 2(1 + cos θ) = −4P 2 cos2

θ

2
,

where θ is the scattering angle of particle 3. Note: both t and u are (usually) negative!

At very high energies, s ≫ m2
1 +m2

2 +m3
3 +m2

4, with p1 along +z axis, one has:

t ≈ −s

2
(1− cos θ), u ≈ −s

2
(1 + cos θ),
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Elastic Cross Section

Either θ, the c.m.s. scattering angle of particle 3, or t, the 4-momentum transfer squared,
may be chosen as our only independent variable used to describe the collision 2 → 2.

One can derive simple relations between

various differential cross sections:

dσ

d cos θ
= 2π

dσ

dΩ
=

s

2

dσ

d|t|
Of course, in a symmetric collider, θ is the

angle measured directly. But the above formula is

only true if θ is the scattering angle in c.m.s.

However, t is invariant, and is thus a convenient

way of comparing various experiments.

Differential elastic cross sections usually have a huge peak near θ = 0 which also
corresponds to t = 0.
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Electron-Muon Scattering

Consider elastic electron-muon scattering, i.e. the reaction

e− + µ− → e− + µ−

To keep things simple, let’s neglect all masses, i.e. consider the high energy limit: in
c.m.s. all four particles have momenta with magnitudes P , and θ is the scattering angle.

The differential cross section describing electron-muon scattering:

dσ

dΩ
=

α2

8P 2

1 + cos4 θ
2

sin4 θ
2

where α is the fine structure constant, α = e2

4π
= 1

137
.

Show that it can be re-written in terms of s, t, u like this:

dσ

dt
(e−µ− → e−µ−) =

2πα2

s2
s2 + u2

t2

Do charges matter? What’s the difference between e−µ− and, say, e−µ+ cross sections?
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Golden Rules Re-visited

Armed with all the knowledge about true free variables, one can show that Fermi Golden
Rules for processes involving just two final particles look actually quite simple:

Γ(1 → 2) =
pf

8πM2
|M1→2|2

dσ(2 → 2)

dΩ
=

1

64π2s

pf
pi

|M2→2(s, cos θ)|2

dσ(2 → 2)

dt
=

1

64πs

1

p2i
|M2→2(s, t)|2

Quantities pi, pf are the moduli of the 3-momenta of initial and final particles,
respectively, in the c.m.s.:

pi =
1

2
√
s

√

[s− (m1 +m2)2][s− (m1 −m2)2]

pf =
1

2
√
s

√

[s− (m3 +m4)2][s− (m3 −m4)2]

These are obtained from E1 and E2 calculated before. For decays, s should be replaced
by M2. Obviously, at high energies one neglects masses and pi = pf =

√
s/2.
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Electron-Muon scattering: the Matrix Element

Comparing the Golden Rule with the expression for the cross section

dσ

dt
=

2πα2

s2
s2 + u2

t2

we can separate the kinematical factor and the matrix element squared to obtain

|Meµ→eµ(s, t)|2 = 32π2 α2 s
2 + u2

t2

Given this matrix element, one can immediately find the matrix element describing
another related process:

e+ + e− → µ+ + µ−

This is accomplished using cross-symmetry.
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Cross-symmetry

Here is the recipe:

✦ Take the reaction e− + µ− → e− + µ−.

✦ Replace initial µ− with its antiparticle µ+ and change the sign of its 4-momentum p2.
Now the µ− in the in itial state is transformed into a µ+ in the final state.

✦ Replace final e− with its antiparticle e+ and change the sign of its 4-momentum p3.
Now the e− in the final state is transformed into a e+ in the initial state.

✦ Now we have the reaction e+ + e− → µ+ + µ−.

The interesting thing is that this new process is still described by the same matrix
element, with the momenta changed accordingly:

Me−µ−→e−µ−(p1, p2, p3, p4) = Me+e−→µ+µ−(p1,−p3,−p2, p4)

But this change of momenta is equivalent to swapping s and t. Hence

|Me+e−→µ+µ−(s, t)|2 = 32π2 α2 t
2 + u2

s2

dσ

dt
(e+e− → µ+µ−) =

2πα2

s2
t2 + u2

s2
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Physical theories: how things work

The development cycle of a physical theory:

1. Find (or create!) a mathematical concept/model/theory which has the appropriate structure and
properties relevant to your area of physics.

2. Formulate your problem in terms of this mathematical theory.

3. Solve the mathematical problem (nothing to do with physics whatsoever!)

4. Try to understand and interpret the solution.

5. If/when this solution becomes unsatisfactory (new data, higher precision), go to 1.

History of physics knows many examples illustrating this cycle (Newton, Shrödinger, Bohr, Heisenberg,
Einstein, Dirac, Feynman. . . )
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Symmetries and Groups

✦ Symmetry is our main (if not the only!) weapon in the quest for understanding fundamental laws of
Nature.

✦ This is especially true for areas of physics which are so far away from our every-day experience, that
our intuition is often misleading.

✦ Relies on the existence of mathematical concepts and methods (some already existed, some needed
to be deveopled by physicists!)

✦ Most of the symmetries in Particle Physics are described by various kinds of groups of matrices.

✦ Still ‘not entirely clear’ why these methods have anything to do with nature — but this is not our
main worry right now. . .
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Symmetries and transformations

Transformation ⇒ invariance (or covariance) ≡ symmetry

Invariance: no change!

Covariance: there are changes which happen in a very particular way

Clearly, invariance is a special case of covariance

Examples:

✦ Mirror (reflection, left-right)

✦ Rotations in 2D and 3D spaces – scalars, vectors etc.

✦ Car → traffic → spontaneous breaking (Britain vs Europe)

✦ Isospin (p ↔ n, pions, hadronic amplitudes)

✦ Quark model (hadron classification, magnetic moments)

✦ Special theory of relativity (c = const with boosts, relativistic kinematics)

✦ Dirac’s equation (Lorentz covariance → bi-spinors)

✦ . . .
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Definition of a group

A collection of elements Ti is a group if the following four group axioms are satisfied:

1. Every pair of elements Ti, Tj is associated to an element Tk from the same collection, by an
operation (called ‘group multiplication’):

TiTj = Tk

2. This “group multiplication operation” is associative, i.e. for any three elements

(TkTm)Tn = Tk(TmTn)

3. There exists an identity element E such that for any element Tk

ETk = TkE = Tk

4. For each Tk there is an inverse T−1
k such that

TkT
−1
k = T−1

k Tk = E
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Some general remarks

The definition looks simple enough — but has far-reaching concequenses. . .

Group theory is the basis of a big area of modern maths called ‘algebra’.

Mathematicians (and some theoretical physicists) are very good at operating with abstract concepts.

More complex mathematical structures exist: sets with two group operations (‘rings’) or three group
operations (‘fields’).

Fortunately, these are well outside our course. We particle physicists try to remain in touch with
experimental reality. So far no burning need to go into these.

On the other hand: Group theory proved itself to be very useful in many areas of (particle)
physics.

Please make sure you understand the difference between associative and commutative operations:

Associativity (AB)C = A(BC) is about the sequence the operation is applied to the operands (you
need at least three of them). A group operation must be associative!

Commutativity AB = BA is about the sequence of the operands (two at a time). A group operation
may or may not be commutative – more about this later.
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Examples

✦ Two numbers: 1 and -1, under regular multiplication

✦ Two numbers: 0 and 1, under ‘modulo-2 addition’

✦ Rotations of a regular hexagon by n× 60◦, n = 0, 1, 2, 3, . . .

✦ Rotations of a circle by an arbitrary angle φ

✦ Others?. . .

THINK! For each of these:

What are the elements of the group? How many elements does the group have?

What is the group multiplication operation? Is it associative?

What is the identity element?

Can you find the inverse of each element?
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Multiplication table of a discrete group

Example: Cyclic group with 3 elements, C3:

Elements: 0, 1, 2; group multiplication: addition modulo 3.

Group multiplication table:

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Check that all products belong to the original set 0, 1, 2

Check that each row (or column) contains identity element “0” (i.e. there is an inverse).

Find the inverse for each element!

Addition is associative, so all four group axioms are satisfied, and hence this is indeed a group.
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Cyclic group Cn

Cyclic group Cn consists of n elements a1, a2, . . . , an, which have the following properties:

a1 ≡ b

a2 = a1b = b2

a3 = a2b = b3

. . .

an−1 = an−2b = bn−1

an = an−1b = bn = E (Identity element)

I.e. all elements of the group are “powers” of one element, whose n-th power is the identity element.

In general, from the group theory point of view, we do not have (or need) to know what kind of object
this b is, or what “real-world” mathematical operation the group multiplication corresponds to, as long
as the above propereties are satisfied.

E.g. it could be a set of unimodular complex numbers under multiplication, or integers under
addition-modulo-n, or something else.

All these would be equivalent from group-theoretical point of view.
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Isomorphism

If there is a one-to-one correspondence between the elements of two groups GA and GB (in both
directions), then the two groups are isomorphic (i.e. equivalent) to each other.

This would imply that:

✦ the identity elements are mapped onto each other;

✦ if elements A1 and A2 are mapped onto B1 and B2, respectively, then the product A3 = A1A2 is
mapped onto B3 = B1B2, and vice versa.

So, the group of n integers under addition-modulo-n is isomoprphic to the cyclic group Cn.

Similarly, the grouop of dicrete rotations of unimodular numbers on complex plane, which consists of n
elements

exp

(

2πik

n

)

, k = 0, 1 . . . n− 1

under normal multiplication, is also isomorphic to Cn — in fact, here b simply is b = exp
(

2πi
n

)

.

For discrete groups, isomorphism can be established by comparing that the multiplication tables are
equivalent.

From group-theoretical point of view, all isomorphic groups are equivalent. Any group G may
have many different explicit realisations (“representations”), but these will be equally applicable
to any other group which is isomorphic to G.
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Types of groups. Subgroups

✦ If a group has a finite number of elements, it is a finite group; otherwise it is infinite.

✦ The trasformations — and hence the groups — can be discrete or continuous.

All continuous groups are infinite.

✦ If the group operation is commutative, i.e. TiTj = TjTi for all elements of the group, the group is
Abelian, otherwise it is non-Abelian.

Abelian groups usually have a fairly simple structure.

Non-Abelian groups are much more interesting/useful, but can be very complicated.

✦ A subset of a group which itself is a group, with the same group multiplication operation and the
same identity element, is called a subgroup of the original group.

✦ Identity alone and the group itself are the two trivial subgroups, others are non-trivial.

✦ A continuous group can have discrete subgroups. In fact, any cyclic group is a subgroup of the group
of continuous rotations on a plane.
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Continuous groups

In continuous groups, group elements can be labelled by a number r of continuous real parameters,
denoted collectively by, say, α ≡ (α1, α2, . . . , αr):

Ti → T (α)

A very simple example: group of complex numbers with unit modulus, eiφ w.r.t. multiplication:

eiφ1eiφ2 = eiφ3 where φ3 = φ1 + φ2

Here, the “set” of parameters α is just a single parameter φ (which can be restricted to the range
−π < φ ≤ π).

Elements of this group represent rotations of the unit circle by angle φ on a complex plane.

Note that the inverse of each element is its complex conjugate:

(eiφ)−1 = e−iφ = (eiφ)∗

which makes eiφ a unitary matrix of dimension 1× 1. Hence, this group is called U(1).

U(1) looks almost trivial, but it forms the basis of Quantum Electrodynamics (among other things), so
treat it with respect!
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Lie groups – I

For a continuous group, by convention, T (0) = E, i.e. the identity element corresponds to all parameters
set to zero.

identity element ⇒ no transformation ⇒ all parameters= 0

Group multiplication now implies that

T (α)T (β) = T (γ(α, β))

i.e. the product of T (α) and T (β) is another element of the same group T (γ), where parameters
γ = γ(α, β) are continuous functions of parameters α and β.

Now, if γ(α, β) are not just continuous, but analytic functions of α and β, at and around the “origin”
α = 0, β = 0 then the group is a Lie group.

A function is analytic at some point if it is infinitely differentiable at that point, and hence can be locally
represented by a convergent infinite power series within a certain area around that point.
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Lie groups – II

So analyticity means that you can move from one group element to a ‘neighbouring’ element by analytic
continuation in the parameter space, hence we can reach any element within the ‘continuously
connected’ area of the parameter space, starting from the original element.

In particular, Lie proved that the properties of all the elements of a Lie group — which are
continuously reachable from the identity element — are determined by the immediate
neighbourhood of the identity element.

This means that the generators of a Lie group — the derivatives of a general group element with
respect to a parameter, near the identity element — acquire a very important, if not definitive, role in the
properties of the group. More about them later.

All continuous groups considered in this course will be Lie groups.

In particular, U(1) is a Lie group, as

φ3 = φ3(φ1, φ2) = φ1 + φ2

is an analytic function of φ1 and φ2.
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2D rotations

Another example of a Lie group: 2D rotations, one parameter φ:

x′ = cosφ x+ sinφ y

y′ = − sinφ x+ cosφ y

or, in matrix form
(

x′

y′

)

=

(

cosφ sinφ
− sinφ cosφ

)(

x
y

)

Or, equivalently

x′ = R(φ)x x′ =

(

x′

y′

)

x =

(

x
y

)

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

It’s not too hard to check that matrices R(φ) form a group under matrix multiplication.

In particular, R(φ1)R(φ2) = R(φ3) with φ3 = φ1 + φ2.

This group is called SO(2) - a “special” (with detR = +1) group of real orthogonal 2× 2 matrices.
More about these later.
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Isomorphism of SO(2) and U(1)

There is, quite obviously, a bi-directional one-to-one correspondence between the elements of the group
U(1), given by eiφ, and the elements of the group SO(2), as represented by the matrix R(φ):

eiφ ⇔ R(φ)

eiφ1eiφ2 = ei(φ1+φ2) ⇔ R(φ1)R(φ2) = R(φ1 + φ2)

This is indeed a one-to-one mapping – i.e. isomorphism – of two groups.

From the group-theoretical point of view, isomorphic groups are identical

It’s the group structure that matters, not the particular implementation.

Either set of objects –

– complex numbers of unit modulus eiφ or 2× 2 matrices R(φ) –

– can be used to represent either of the groups U(1) and SO(2).
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Group representations

In general, any group G can be mapped, element by element, onto a group of matrices which has
the identical group structure as the group G, with respect to the matrix multiplication as the group
operation.

This group of matrices is said to be a representation of the original group G.

So, 1× 1 unitary matrices form a representation of group U(1). Of course, we used 1× 1 unitary
matrices with respect to (matrix) multiplication to define the group U(1), so this is trivial.

Similarly, 2× 2 orthogonal matrices R(φ) obviously form a 2× 2 representation of the group SO(2).

However, it’s much more interesting that, because the groups U(1) and SO(2) are isomorphic to each
other, both sets represent both groups:

✦ 1× 1 unitary matrices form a 1× 1 complex representation of group SO(2), while

✦ matrices R(φ) form a 2× 2 real representation of the group U(1).

In fact, any group has an infinite number of different matrix representations.

Also: the same group can be represented by matrices of different dimensions.
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Group representations — scalars

So, matrices R(φ) form a 2-dimensional representation of SO(2).

We have seen that these describe the transformation of 2D vectors {x, y} under the rotation of the
coordinate system by the angle φ.

However, there are other types of objects, which may require larger or smaller matrices to describe
(“represent”) their transformation under SO(2).

In particular, a scalar object is invariant under rotations, and hence the corresponding transformation is

s′ = s

This, in fact, is the definition of a scalar. Hence, the matrices from the scalar representation of
SO(2) are rather trivial: they have dimension 1× 1 and are equal to 1.

So, there are (at least) two 1× 1 representations of SO(2):

✦ scalar, 1

✦ unitary, eiφ

There are, of course, many other (and larger) representations as well.
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Isomorphism and Homomorphism

Apart from isomorphism (one-to-one mapping), there may be another type of relation between two
groups:

one element in one group is mapped to 2 or more elements in the other. This is called homomorphism.

The relationship between the two 1× 1 representations of SU(2), scalar (1) and unitary (eiφ) is a rather
extreme example of homomorphism: All elements from the unitary representation are mapped onto the
only element, identity, in the scalar representation.

Can we find other 1× 1 representations of SO(2) (or, equivalently, of U(1))?

Of course: e−iφ is a wonderful example. e2iφ is another.

How about 2× 2 representations other than the familiar R(φ) from page 62? Here are a few:
(

1 0
0 eiφ

) (

eiφ 0
0 e2iφ

) (

e−iφ 0
0 eiφ

)

Any of these form a full isomorphic representation: as the matrices are diagonal, different rows and
columns do not mix. So it’s easy to spot the 1× 1 “fundamental” representations inside these
“composite” ones.

But are these new 2× 2 representations related to the “good old” 2× 2 representation R(φ)?
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Equivalent representations

So, in general, the same group can be represented by matrices of different sizes, but they
all must be square matrices — the type of the object under transformation must remain
the same! I.e. for an object x with n components, the matrix Rn needs to be n× n:

x′ = Rnx ⇒





x′
1

. . .
x′
n



 =





r11 . . . r1n
. . . . . . . . .
rn1 . . . rnn









x1

. . .
xn





Let Rn be a representation of group G of dimension n× n, and S be a non-singular
constant n× n matrix (i.e. the inverse S−1 exists). Then, the set of matrices

R̃n = S−1RnS

also forms a representation of the same group G. The sets Rn and R̃n are related
through the equivalence transformation, and are equivalent representations.

So, if, for example, S is not a diagonal matrix, the equivalent representation to any of the
three 2× 2 representations in page 66 will not, in general, be diagonal.
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Reducible and irreducible representations

Now, here comes the important part: if you can find S such that some particular matrix
representation of a group takes a block-diagonal form (with the rest filled with zeroes),
then this representation is deemed reducible. If there is no such S, then the
representation is irreducible.

Irreducible representations play the role similar to that of the basis vectors in some space,
or of the eigenfunctions of an operator:

you can, in general, expand any representation into a superposition of
irreducible representations.

Try applying the equivalence transformation on R(φ) from p.62 using the following choice
of matrix S:

S =
1√
2

(

1 −i
−i 1

)

(need to find S−1 first of course...)

More about irreducible representations later. . .
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Generators of a Lie group

A generator J of a Lie group is an operator performing an infinitesimal (infinitely small) transformation
near the identity element of the group (which stands for ‘no transformation’).

E.g. a finite transformation by angle φ can be accomplished by applying a large number n of successive
transformations by small angles δφ = φ/n, where n → ∞.

R(φ) = R(δφ)R(δφ)R(δφ) . . . R(δφ) (n times)

= [R(δφ)]
n |n→∞

= (1 + iδφJ)n |n→∞

= exp(iφJ)

This is called exponentiation of the infinitesimal transformation generated by the operator (matrix) J .

Factor i was introduced for convenience. Use familiar techniques to find the only generator of SO(2):

J =
1

i

dR(φ)

dφ
|φ=0 =

(

0 −i
i 0

)

This is illustrated here for SO(2) and its 2× 2 representation R(φ), but is rather general.

A Lie group with k continuous parameters will have k generators.

All properties of a Lie group are determined by its generators.
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Exponentiation of a Generator

Look what we have got:

R(φ) = exp(iφJ), J =

(

0 −i
i 0

)

But we know that

R(φ) =

(

cosφ sinφ
− sinφ cosφ

)

What does this mean?!

In order to understand this better, let’s do a harmless exercise:

Calculate Jn for any n:

J2 =

(

0 −i
i 0

)(

0 −i
i 0

)

=

(

1 0
0 1

)

≡ I J3 = J2J = J etc.

Any even power of J is the identity matrix; any odd power of J equals J .
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Exponentiation of a Generator - II
Remember that

exp(z) = 1 + z +
1

2
z2 +

1

6
z3 + . . .

For our matrix this means:

R(φ) = exp(iφJ) = I + iφJ − φ2

2
J2 − i

φ3

6
J3 . . .

Let’s collect even powers of J first:

I − φ2

2
I + . . . = (1− φ2

2
+ . . .)I = I cosφ

Now let’s collect odd powers of J :

iφJ − i
φ3

6
J + . . . = i(φ− φ3

6
+ . . .)J = iJ sinφ

Finally

R(φ) = I cosφ+ iJ sinφ = cosφ

(

1 0
0 1

)

+ i sinφ

(

0 −i
i 0

)

=

(

cosφ sinφ
− sinφ cosφ

)

So, indeed, exponentiation of a generator yields a full finite transformation!
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Coordinate Transformations: active and passive

Consider transformation of coordinates (e.g. translation by ax), from reference system Σ to system Σ′:

x → x′ = F(x)

Solid line: passive interpretation, same physical wave function in both frames Σ and Σ′:

ψ′(x′) = ψ(x)

This is more mathematical (“change description”).

Dashed line: active interpretation, a new wave function in the old frame Σ:

ψ′(x) = ψ(F−1(x))

This is more physical (“change object”).
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Coordinate Transformations: active and passive — II

The wavefunction of a QM state at any given physical point should have the same physical value in both
Σ and Σ′:

ψ′(x′) = ψ(x) (passive interpretation) (1)

Now, let’s solve F(x) for x:

x = F−1(x′)

Equation (1) can now be re-written like this:

ψ′(x′) = ψ(F−1(x′))

Since x is nowhere to be seen any more, we can rename x′ as x:

ψ′(x) = ψ(F−1(x)) (active interpretation)

So, the two interpretations lead to two different treatments.

At the end of the day, these two treatments are equivalent, but one may be preferred to the
other in various circumstances.

In particular, the active picture is very useful when calculating generators etc.
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Translations in space

Consider coordinate transformation such that

x′ = x+ δa x = x′ − δa

This is a translation of the coordinate frame by a (small) vector δa.

What happens to the wave function under such transformation?

ψ′(x) = U(δa)ψ(x) = ψ(x− δa)

[We have used active interpretation here]

For simplicity, assume δax = δa, δay = 0, δaz = 0.

Then, we only consider x-dependence, and we can expand:

U(δa)ψ(x) = ψ(x− δa) = ψ(x)− δa
∂ψ(x)

∂x

= ψ(x)− iδa

(

−i
∂ψ(x)

∂x

)

=

[

1− iδa

(

−i
∂

∂x

)]

ψ(x)

The operator Px ≡ −i ∂
∂x

is the generator of translation operation along x-axis.

At the same time, this is the quantum-mechanical operator of the x-component of momentum.
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Rotations in 3D: around z axis

Let’s identify the generators of rotations in 3D, starting with rotations around z.




x′

y′

z′



 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









x
y
z





Rz =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 ⇒ R−1
z =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1





If θ is small, then cos θ = 1 and sin θ = θ, hence

ψ′(x) = U(Rz)ψ(x) = ψ(R−1
z x) = ψ(x− θy, y + θx, z)

= ψ(x, y, z) + θ

(

x
∂ψ(x, y, z)

∂y
− y

∂ψ(x, y, z)

∂x

)

=

[

1 + θ

(

x
∂

∂y
− y

∂

∂x

)]

ψ(x, y, z)

Hence:

U(Rz) = (1 + iθJz + . . .) ⇒ Jz = −i

(

x
∂

∂y
− y

∂

∂x

)

which you may recongnise as the z component of the angular momentum operator.
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More 3D rotations: around x, y axes

Derivation for rotations around x and y axes is very similar. Starting from respective rotations (through
angle φ around x, and angle ψ around y) we have:

Rx =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 Ry =





cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ





one easily gets expressions for the generators acting upon the wave function:

U(Rx) = (1 + iφJx + . . .) U(Ry) = (1 + iψJy + . . .)

Jx = −i

(

y
∂

∂z
− z

∂

∂y

)

Jy = −i

(

z
∂

∂x
− x

∂

∂z

)

which are x and y components of the angular momentum operator.
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Groups SO(3) and O(3)

A general 3D rotation is defined by the product of matrices Rx, Ry, Rz defined in pp. 75 and 76:

R(φ, ψ, θ) = Rx(φ)Ry(ψ)Rz(θ)

The matrices R(φ, ψ, θ) describing 3D rortations form a group:

1. Rotations are matrix multiplications, hence operation is associative.

2. A combination of two rotations is another rotation;

3. There is an identity element (no rotation);

4. Any rotation can be “undone” by rotating back, hence the inverse.

Rotations conserve distance, hence R are orthogonal, RTR = I.

It’s easy to show that detR = ±1.

Orthogonal matrices of size 3× 3 form the group O(3). These, in general, include reflections.

Those matrices that correspond to proper rotations – i.e. no reflections – form the “special” group
SO(3) with detR = +1 (similarly to the 2D case).

However, in contrary to 2D case, even SO(3) is a non-Abelian group, as its generators do not
commute with each other. This is understandable: Rx, Ry, Rz do not commute, so e.g.
Rx(φ)Ry(ψ)Rz(θ) and Rz(θ)Ry(ψ)Rx(φ) are different rotations!
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Matrix form of generators Jx, Jy, Jz

From the expressions of matrices Rx, Ry, Rz, one can easily derive the matrix form of the generators
Jx, Jy, Jz:

Jx =
1

i

dRx

dφ
|φ=0 =





0 0 0
0 0 −i
0 i 0





Jy =
1

i

dRy

dψ
|ψ=0 =





0 0 i
0 0 0
−i 0 0





Jz =
1

i

dRz

dθ
|θ=0 =





0 −i 0
i 0 0
0 0 0





Using this form, one can easily prove the commutation relations, and find the corresponding expression
for the matrix describing J2.
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A general rotation in terms of Jx, Jy, Jz

Based on our previous experience in 2D case, and properties of generators, it should be fairly
straightforward to obtain a general expression for a matrix describing a rotation through a vector of
angles a = {ax, ay, az}:

R(a) = exp (ia · J)

This describes a generic element of the group SO(3) (same as the product of three rotations in page 39,
but in a different parameterisation).

Note the dot product of two 3D vectors in the exponential.

The length a of vector a is the rotation angle around the direction of vector a

This means that a = ana where na is a unit vector in direction of vector a.

One can express the angles θ, φ, ψ in terms of the components of vector a, but this is not a trivial task
due to non-Abelianity of the group.
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Algebra of SO(3) generators

Just to summarize:

✦ Group SO(3) is defined as a group formed by “special” orthogonal matrices of size 3× 3 under
matrix multiplication.

✦ “Special” refers to the property that the determinant of those matrices is +1 (rather than −1).

✦ The group describes transformations of cartesian coordinates of a point in 3D space under various
rotations of the coordindate system.

✦ Although actual parameterisations may vary, a generic group element of SO(3) has three angles as
the parameters describing the rotation.

✦ Hence, the group has three generators, Jx, Jy, Jz. These generators do not commute, hence the
group is non-Abelian.

The algebra of a group is defined as the full set of commutation relations of its generators.

For SO(3) the algebra is given by the equations

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy

This set of commutators determines all the properties of the group SO(3):

everything else can be derived from here.
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Representations and Commutators

It is the structure of the commutation relations between the generators of a Lie group which determines
the structure and properties of the group, not the size of matrices representing it for a particular type of
objects, or even the size and type of matrices used to define the group!

As mentioned before, all properties of a Lie group are defined by the algebra of its generators, i.e. the
collection of their commutators.

Commutation relations between generators of the group — i.e. the group algebra — must be
the same for all representations of the same group.

A scalar representation is the obvious exception of this rule: being invariant, scalars do not depend on
any group parameters, and hence all generators are zero.

So far, all our Lie groups were Abelian — except SO(3), where we only saw one non-trivial
representation — so all this talk seems pointless.

But very soon we will see that irreducible representations of SO(3) come in all sizes.
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More representations of SO(3)?

So far, we have considered two irreducible representations of SO(3): 1-component (scalar) given by 1× 1
matrix, and 3-component (vector) given by the “founding fathers” of the group, 3× 3 orthogonal
matrices.

Is there a 2× 2 representation of SO(3)?

Yes, there is! But it is not by orthogonal 2× 2 matrices: these do not have enough variety:

✦ They are only “good enough” for 2D rotations,

✦ Just one-parameter freedom,

✦ Have to be abelian.

How about 2× 2 unitary matrices, U †U = UU † = I, are these any good?
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Matching with SO(3) rotations

Basic rotations on 3D vectors in 3D space, around each of the three axes x, y, z, were performed by the
three matrices

Rx =





1 0 0

0 cosφ sinφ

0 − sinφ cosφ



 Ry =





cosψ 0 − sinψ

0 1 0

sinψ 0 cosψ



 Rz =





cos θ sin θ 0

− sin θ cos θ 0

0 0 1





We should try to find such three choices of our complex a and b, that there is a one-to-one
correspondence between Rx, Ry, Rz and the 2× 2 unitary Ux, Uy, Uz.

Most importantly, their properties under commutation should be the same.

Now, only one of these can be diagonal (two diagonal matrices would commute) and only one can be real
(“real unitary” matrices are orthogonal matrices and would also commute). So, here is a reasonable
choice:

Ux =

(

cosAx i sinAx

i sinAx cosAx

)

Uy =

(

cosAy sinAy

− sinAy cosAy

)

Uz =

(

eiAz 0
0 e−iAz

)

where Ax, Ay, Az are three parameters (angles), related to the three angles φ, θ, ψ in the Rx, Ry, Rz.

To do the matching, we need to find the generators of matrices Ux, Uy, Uz, calculate their commutators
and make sure these are the same as for matching Jx, Jy, Jz.
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Matching with SO(3) generators

From the expressions of Ux, Uy, Uz one can easily calculate the generators of respective infinitesimal
transformations, treating Ax, Ay, Az as parameters:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

These are, of course, Pauli matrices, which have non-trivial commutation relations:

[σx, σy] = 2iσz [σy, σz] = 2iσx [σz, σx] = 2iσy

These are similar, but different from what we need, by a factor of 2. But there is a simple way of making
the commutators match exactly: introduce a factor of 1/2 between the angles Ax, Ay, Az and φ, ψ, θ:

Ax =
φ

2
, Ay =

θ

2
, Az =

ψ

2
,

Then, the generators of Ux, Uy, Uz, calculated with respect to the angles φ, ψ, θ, will be sj =
σj

2
(j = x, y, z) which will have the correct commutation relations. Hence, such matrices will form a valid
2× 2 complex representation of the group SO(3).

This means that there are 2-component (complex) objects which form a basis for this representation of
SO(3). Under arbitrary rotations of 3D space, these 2-component objects are “rotated” by 2× 2 unitary
matrices Ux, Uy, Uz. The additional factors of 1/2 mean, that these 2-component objects will be rotated
by half-angles, compared to SO(3) vectors. These 2-component objects are called spinors.
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Matching with SO(3) rotations

So, going back to the general parameterisation of U in page 83, one can do the following matching.

The choice Az = θ
2 can be matched to Rz:

Uz =

(

ei
θ
2 0

0 e−i θ
2

)

↔ Rz =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





The choice Ay = ψ
2 corresponds to Ry, while Az = φ

2 corresponds to Rx:

Uy =

(

cos ψ
2 sin ψ

2

− sin ψ
2 cos ψ

2

)

↔ Ry =





cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ





Ux =

(

cos φ
2 i sin φ

2

i sin φ
2 cos φ

2

)

↔ Rx =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ





The resulting matrices Ux, Uy, Uz perform basic rotations around x, y, z axes, by angles φ, ψ, θ
respectively, on spinors.
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Representations of SO(3) so far

✦ Scalars are the lowest order representation of SO(3). These are objects with 1 component, which
remain invariant under rotations.

✦ Vectors have 3 components, transform under rotations according to the matrices
Rx(φ), Ry(ψ), Rz(θ). The properties of these matrices are fully determined by their respective
generators Jx, Jy, Jz.

In other words, for an arbitrary vector v, the rotated vector is v′ = Rv, where R can be
parameterised in various ways, e.g.

R = R(φ, ψ, θ) = Rx(φ)Ry(ψ)Rz(θ) or R = R(a) = exp(ia · J)

✦ Spinors have 2 (complex) components, and transform under rotations according to the matrices
Ux(φ), Uy(ψ), Uz(θ). The properties of these matrices are fully determined by their respective
generators sx, sy, sz.

In other words, for an arbitrary 2-component spinor b ≡
(

b1
b2

)

, the rotated spinor b′ is b′ = Ub,

where U can be parameterised in various ways, e.g.

U = U(φ, ψ, θ) = Ux(φ)Uy(ψ)Uz(θ) or U = U(a) = exp(ia · s)

Here a is the same vector as in page 79: its direction defines the axis of rotation, while its magnitude
defines the angle of rotation around that axis.
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Casimir operator and Schur’s Lemma

The operator J2 commutes with all generators of SO(3). This can be shown in general, using operators,
so should be true in any representation of the group.

An operator which commutes with all generators of a Lie group is called a Casimir operator of
the group. J2 is the only Casimir operator of SO(3).

Schur’s lemma: a matrix which commutes with all matrices that form an irreducible
representation of a group must be proportional to the unit matrix.

Thus, for any irreducible representation of SO(3), the representation of operator J2 = λjI.

For any such matrix, any state (“object of rotation”, e.g. a vector) must be an eigenstate, corresponding
to that eigenvalue λj :

J2|state〉 = λj |state〉
where the eigenvalue λj is the same for any element belonging to the same irreducible representation.

For a different irreducible representation, λj must be different, otherwise Schur’s lemma is violated,
i.e. the Casimir operator in a composite (reducible) representation will then be proportional to I.

Hence, the eigenvalues of Casimir operators can be used to classify irreducible representations.
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Classification for SO(3)

So, irreducible representations of SO(3) are classified by λj , the eigenvalue of J2. Various distinct
separate states within each irreducible representation should belong to the category of eigenstates of
another conserved operator, which commutes with J2. Any — but only one — of the three J ’s can be
chosen to do this job. Usually it’s J3.

Hence, the states which define an irreducible representation of SO(3) can be classified by two numbers:
λj , for the representation, and m, for individual states within the representation.

Let’s call them

|state〉 ≡ |j,m〉

As a starting point, we have

J2|j,m〉 = λj |j,m〉
J3|j,m〉 = m|j,m〉

where we really want to know the values of λj ,m as well as the number of independent states in each
representation, i.e. the dimension of the respective ‘vector space’.
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Classification for SO(3) – II

Define two new operators J±, with some useful properties:

J+ ≡ J1 + iJ2, J− ≡ J1 − iJ2

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3, J2 = J2
3 + J3 + J−J+

Let’s see what happens, when J3 acts upon a state given by J+|j,m〉:

J3J+|j,m〉 = J+J3|j,m〉+ [J3, J+]|j,m〉
= J+m|j,m〉+ J+|j,m〉
= (m+ 1)J+|j,m〉

Hence, J+|j,m〉 — if it exists! — is an eigenstate of J3, with eigenvalue (m+ 1).

Similarly, it can be shown that J−|j,m〉, when it exists, is an eigenstate of J3 with eigenvalue (m− 1).
J+ and J− are called raising and lowering operators, respectively.
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Classification for SO(3) – III

So, J+|j,m〉 = const |j,m+ 1〉 — or, if that state does not exist, J+|j,m〉 = 0.

Let’s continue the process:

J+|j,m+ 1〉 = const |j,m+ 2〉, or 0, if the new state does not exist.

We are after finite-dimensional representations, so let us assume that after k steps like this, we get

J+|j,m+ k〉 = 0 J+|j, j〉 = 0 J3|j, j〉 = j|j, j〉

where we assumed m+ k = j, the largest eigenvalue of J3 for this representation.

Let’s now calculate λj for J2|j, j〉:

J2|j, j〉 = (J2
3 + J3 + J−J+)|j, j〉 = (j · j + j + 0)|j, j〉 = j(j + 1)|j, j〉

Hence λj = j(j + 1). As the eigenvalue of J2 must be the same within an irreducible representation, this
holds for any m.

Half-way there. . .
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Classification for SO(3) – IV

Let’s now start repeatedly applying J− on |j, j〉. We will get a sequence of states
|j, j − 1〉, |j, j − 2〉, . . . , |j, l〉 until for some l we get J−|j, l〉 = 0. So, we have

J−|j, l〉 = 0 ⇒ 〈j, l|J†
− = 0 ⇒ 〈j, l|J†

−J−|j, l〉 = 0

But J†
− = J+, and J+J− = J−J+ + 2J3 = J2 − J2

3 + J3, hence

0 = 〈j, l|J+J−|j, l〉 = j(j + 1)− l2 + l = j(j + 1)− l(l − 1).

This equation is only satisfied if l = −j. Hence, the whole “spectrum” of eigenstates of J3 consists of
2j + 1 discrete states, corresponding to eigenvalues

m = j, j − 1, . . . ,−j + 1,−j

Hence, 2j + 1 must be a positive integer or zero, meaning that only the following values for j are
allowed:

j = 0,
1

2
, 1,

3

2
, 2, . . .

Correspondingly, the dimensions of irreducible representations of SO(3) are

2j + 1 = 1, 2, 3, 4, . . .
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Basis for irreducible representations of SO(3)

Let’s summarise what we have achieved. Based on commutation relations between the three generators
of SO(3), we have found that:

✦ Irreducible representations of SO(3) can be classified by the eigenvalues of the Casimir operator, the
angular-momentum-square J2, which are equal to j(j + 1). Index j can take values 0, 1

2 , 1,
3
2 , 2, . . .

✦ The (orthogonal and normalised) basis of the j-th irreducible representation consists of 2j + 1 states
|j,m〉, which are eigenfunctions of operators J2 and J3 with the following eigenvalues:

J2|j,m〉 = j(j + 1)|j,m〉
J3|j,m〉 = m|j,m〉

In addition to the above, one can show that J± operators in any representation have the following
properties:

J+|j,m〉 =
√

j(j + 1)−m(m+ 1)|j,m+ 1〉
J−|j,m〉 =

√

j(j + 1)−m(m− 1)|j,m− 1〉
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Physics behind representations

An irreducible representation of SO(3) labelled j is defined on the space describing quantum-mechanical
states with a particular value j of angular momentum.

For single-particle states, in an appropriately chosen coordinate frame, this would mean that j is the
particle’s own intrinsic angular momentum, i.e. spin:

✦ j = 0 corresponds to scalars, particles/states with spin zero.

✦ j = 1
2 corresponds to spinors, particles/states with spin 1/2, with 2 components.

✦ j = 1 corresponds to vectors, particles/states with spin 1, with 3 components.

✦ j = 3
2 corresponds to particles/states with spin 3/2, with 4 components.

✦ j = 2 corresponds to tensor particles, with spin 2, with 5 components.

✦ . . .

=====
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Rotating Spinors

In particular, the basic space on which the 2× 2 representation of SO(3) operates is the space of
2-component complex spinors, with the basis

∣

∣

∣

∣

1

2
,
1

2

〉

=

(

1
0

) ∣

∣

∣

∣

1

2
,−1

2

〉

=

(

0
1

)

A general rotation is given by

U(n, θ) = exp(iθ1σ1/2 + iθ2σ2/2 + iθ3σ3/2)

= exp(iθ(n · σ)/2)
= exp(i(θ · σ)/2)

= I cos(
θ

2
) + i(n · σ) sin(θ

2
)

All above expressions are equivalent (just differ by notation and/or parameterisation) and define what
happens to spinors under SO(3) rotations. Here θi = niθ, hence

θ · σ = θ1σ1 + θ2σ2 + θ3σ3 = θ(n1σ1 + n2σ2 + n3σ3) = θ(n · σ)

and n = (n1, n2, n3) is a unit vector defining the direction of the rotation axis.

Any spinor state can be obtained by rotating the base spinors, with the help of matrix U .
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Group SU(2)

Unitary matrices U of size 2× 2 with detU = 1 form a group called SU(2).

Strictly speaking, the generators of the group SU(2) in its fundamental representation 2× 2 are Pauli
matrices σi, i = 1, 2, 3 which satisfy the commutation relations

[σk, σl] = 2 i ǫklmσm

This representation was used to define the group, and can also be used to build all other representations
as well.

As with SO(3), the general element of SU(2) can be obtained by multiplying the three basic “rotations”:

U(φ, ψ, θ) = Ux(φ)Uy(ψ)Uz(θ)

Ux(φ) =

(

cosφ i sinφ
i sinφ cosφ

)

Uy(ψ) =

(

cosψ sinψ
− sinψ cosψ

)

Uz(θ) =

(

eiθ 0
0 e−iθ

)

Note that we wrote full angles here. We only needed to work with half-angles if/when we
wanted to have the matching between the commutators of SU(2) and SO(3) generators.

But maybe it is a good idea to keep that matching, and hence keep those 1/2 in the angles?
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Relation between SU(2) and SO(3)

Group SU(2) is very similar to SO(3). The only difference is in that factor of 2 in their respective sets of
commutators (i.e. group algebras):

SU(2) with full angles : [σk, σl] = 2iǫklmσm

SU(2) with half angles : [sk, sl] = iǫklmsm

SO(3) : [Jk, Jl] = iǫklmJm

All the properties of these groups and their representations can be derived from these basic relations (as
we indeed have done for SO(3)).

With the choice of basic matrices Ux, Uy, Uz from p. 95, one gets the Pauli matrices σk as the generators
of SU(2), with that extra “2” in the commutators. So we will need to go through the process of
determining the eigenvalues, eigenfunctions and representations for SU(2) in a process similar, but not
identical to what we did with SO(3). That factor of 2 will show up in various places in various powers.

Alternatively, we could keep the 1/2 in the angles for the three basic 2× 2 U -matrices, i.e. have them
defined as in p. 85.

Then, the generators of SU(2) would be sk = 1
2σk, whose algebra is exactly the same as for the

generators of SO(3). Hence, we can directly reuse all results from SO(3) to SU(2).

In this case, the two groups are effectively isomorphic for most, if not all, intents and purposes, although
some irreducible representations – the unitary ones, with half-integer spin – retain that ambiguity we
discussed earlier (for both groups).
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Relation between SU(2) and SO(3) — II

So, if that factor of 1
2 is included into the definitions of the angles in the unitary representations, then all

the representations, their classification and properties for SU(2) are identical with those of SO(3): we
will have scalars, spinors, vectors etc. in both, classified through their total angular momentum (“spin”)
j and its projection m.

There are some residual differences between integer-j (hence real orthogonal) and half-integer-j (hence
complex unitary) representations:

✦ If any of the angles φ, ψ, θ is increased by 2π, then the real “SO(3)” matrices Rx,y,z do not change,
while the unitary “SU(2)” matrices Ux,y,z (with the 1

2 in place) gain an overall minus sign.

✦ Hence, when mapping R to U , both U and −U correspond to the same R, i.e. there is a two-to-one
mapping of the elements of SU(2) onto the elements of SO(3).

✦ You need two full rotations in real representations to complete one full rotation in unitary ones.

✦ Strictly speaking, the relation between SU(2) and SO(3) is a 2 → 1 homomorphism, but it
becomes an isomorphism if we limit ourselves to the compact area around the identity element.

✦ Despite these differences, all representations of SU(2) are also valid representations of SO(3), and
vice-versa. Nature does not seem to care about these differences.

✦ The differences disappear once one realises that in the unitary representations, usually it’s the
modulus squared which is the quantity carrying any physical meaning.

✦ All our results obtained for SO(3) are fully applicable to SU(2), as they only used commutators,
which, with 1

2 in place, are the same for both.
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Representation matters

Why do we care about representations?

The logic is simple:

✦ Physics is invariant under 3D rotations

✦ Any physical object has some transformation properties under rotations

✦ Fundamental objects tend to have simple transformation properties, hence belong to separate
irreducible representations

✦ In general, a combination of two irreducible representations forms a reducible representation

✦ The latter can be decomposed into a sum of states belonging to various irreducible representations

We will look at these matters next, before considering bigger – and arguably more important – groups.
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Spin and particle properties

Spin is the intrinsic angular momentum of the particle, and is quantised as such. The spin of a particle
can be 0, 1/2, 1, 3/2, 2. . .We will soon see how and why this happens.

Particles with whole spins are called bosons; they obey Bose-Einstein statistics, their number is not
conserved, and the wave function of a state describing two identical bosons must be symmetric.

Particles with spins 1/2, 3/2 etc. are called fermions; they obey Fermi-Dirac statistics, they can only be
produced in pairs, and the wave function of a state describing two identical fermions must be
antisymmetric.

All particles which are usually associated with matter are fermions: electrons, protons and neutrons are
all fermions, as are their antiparticles positrons, antiprotons and antineutrons. So are other charged
leptons µ±, τ± and all neutrinos. All six quarks and their antiquarks are fermions too.

All fundamental fermions e, µ, τ, νe, νµ, ντ , u, d, s, c, b, t and their antiparticles have spin 1/2.

On the other side, particles describing classical fields, i.e. the interaction carriers, are bosons:

photons γ, gluons g, weak inetraction carriers W±, Z0 all have spin 1.

One Standard Model particle — the Higgs boson H0— has spin zero.
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Conservation of Angular Momentum

A particle with spin S has 2S + 1 different components (projections, polarisations).

Apart from the intrinsic angular momentum — spin S — particles can have “good old” orbital angular
momentum L relative to each other.

Two-particle system: spins S1, S2, orbital momentum L. Total spin S is the vector sum of the two
spins, calculated according to quantum-mechanical rules:

S = S1 + S2

E.g. the total spin of the hydrogen atom can be either 0 or 1, with the matching number of components:

2⊗ 2 = 1⊕ 3

Total angular momentum J of the system is the vector sum of the total spin S and the orbital
momentum L:

J = S+ L

✦ A combination of two fermions is a boson, because the orbital momentum must be a whole
number.

✦ Angular momentum conservation means that the total angular momentum |J| must be
conserved, as well as its projection Jz — but not spin or orbital momentum separately.
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Some “simple” examples

Hydrogen atom consists of an electron (spin 1/2) and a proton (spin 1/2).

Each of these belong to an irreducible 2-component spinor representation of SO(3).

What are the transformation properties of the hydrogen atom, as a whole? I.e. is it a scalar (with total
momentum 0) or a vector (total momentum 1) or maybe something else?

The actual answer is fairly complicated, as apart from spins, there is also the orbital momentum involved,
and the momentum addition rules can be tricky, especially if you don’t know what you are doing. . .

Very similar rules exist within the quark model, where the isospin symmetry in a two-quark-flavour world
is governed by SU(2).

We are now talking about the spectroscopy of mesons (i.e. quark-antiquark systems) and baryons (three
quark systems).
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Parity

Parity is a very useful quantum number, characterising a certain property of any system of
particles.

Parity operator P changes the directions of all three spatial coordiante axes (x, y, z) to
opposite, thus transforming a right-handed coordinate system into a left-hand coordinate
systemed.

This is equivalent to looking at the mirror image of the system.

When operator P acts on a wave function Ψ(x, y, z), you get

PΨ(x, y, z) = Ψ(−x,−y,−z)

If we do this twice, space returns to its original state, and hence the wave function should
remain the same:

P2Ψ(x, y, z) = Ψ(x, y, z)

Particle Physics (page 102) V. Kartvelishvili (Lancaster U)



Parity Eigenvalues and Eigenstates

Hence, if Ψ(x, y, z) is an eigenfunction of the P operator with eigenvalue P , one has:

PΨ(x, y, z) = Ψ(−x,−y,−z) = PΨ(x, y, z)

P2Ψ(x, y, z) = Ψ(x, y, z) = P 2Ψ(x, y, z)

This means that P 2 = 1 and hence P = ±1, i.e there are two types of eigenstates:

✦ Those that do not change sign under parity transformation are parity-even.

✦ Those that change sign under parity transformation are parity-odd.

Even a single particle has some (intrinsic) parity. Parities of bosons are well defined.
However, fermions and their antifermions must have opposite parities. By agreement, a
proton is assigned parity of +1, hence an antiproton has parity −1.

Parity is a multiplicative quantum number: the parity of a two-particle state is the
product of the parities of each state, times the parity of the wavefunction describing their
relative motion.

The latter is (−1)L where L is the orbital momentum of the system: L = 0, 1, 2 . . ..
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Full wave function of a composite system

Hadrons are particles that participate in strong interactions.

All hadrons consist of quarks, antiquarks and gluons.

Quarks carry various quantum numbers: position/momentum, spin, colour. The full wave
function of a hadron is a product of three wave functions, each defined in its own space.
E.g., for a meson one has

Ψ(r,S) = ΨSpace(r)×ΨSpin(S1,S2)×ΨColour(C1, C̄2)

where r is the relative position of the quark and antiquark, S1,2 are their spins and C1,2

are their colours.

Colour wave function of a meson is symmetric (see QCD later).

For baryons there will be three constituents, all quarks:

Ψ(r,S) = ΨSpace(r12, r13)×ΨSpin(S1,S2,S3)×ΨColour(C1, C2, C3)

Very similarly, there will be three antiquarks in an antibaryon.

Colour wave function of a baryon or an antibaryon is fully antisymmetric (see QCD later).
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Example of the Spin wave Functions

✦ Spin-0 state has just one projection, Sz = 0.

✦ Spin-1 state has three projections: Sz = +1, 0,−1

✦ Spin-1/2 state has two projections: Sz = +1/2,−1/2, or ↑ and ↓.

Two spin-1/2 partcles can be in four different states:

↑↑, ↑↓, ↓↑, ↓↓
First and last obviously form the two extreme projections of a spin-1 state. They are
clearly symmetric, hence the symmetric combination of the two middle ones should form
the zero-projection of the spin-1 state. This leaves the antisymmetric combination as the
spin-0 state:

ΨSpin(0) =
1√
2
(↑↓ − ↓↑); ΨSpin(1) =↑↑, 1√

2
(↑↓ + ↓↑), ↓↓ .

Spin-0 wave function is antisymmetric (i.e. changes sign when swapping 1 and 2), while
spin-1 wavefunction is symmetric. Here is a good way of remembering this: the parity of
the spin wave function is (−1)S+1, where S is the total spin of the two-fermion state.
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Space Part of the Wave Function

✦ Space part depends on relative coordinate(s) between quarks and antiquarks inside
hadrons, and hence their relative orbital angular momenta L.

✦ The lowest-energy states (ground states) will have spherically symmetric wave
functions, corresponding to zero orbital momenta, L = 0.

✦ Thus, lowest-mass mesons and baryons have symmetric space wave functions.

✦ “Excited” mesons and baryons may have L = 1 or higher.

✦ In general, a wave function corresponding to orbital momentum L has parity (−1)L.

✦ Total angular momentum of the bound state J — the spin of the hadron as a whole
— is calculated as a vector sum of L and S, J = L+ S.
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Spins of Mesons and Baryons

✦ Ground state mesons will have L = 0 and hence J = S, i.e. 0 or 1, depednig on the
value of the total spin:

● Antisymmetric spin wave function corresponds to total spin zero, hence with L = 0
total momentum (i.e. spin of the meson) will be zero.

● Symmetric spin wave function corresponds to total spin one, hence with L = 0 total
momentum (i.e. spin of the meson) will be one.

✦ Ground state baryons will have J = 1/2 or 3/2, depending on the spin wave function.

● If the first two quarks formed a spin-0 state, adding the third will give a spin-1/2
baryon. This spin state has mixed symmetry properties: antisymmetric between 1
and 2, symmetric between 13 and 23.

● If the first two quarks formed a spin-1 state, adding the third will give a spin-3/2
baryon. This spin state is fully symmetric for all three permutations: 12, 13, 23.
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Parities of Mesons

A fermion has no definite intrinsic parity, but the instrinsic parities of fermions and
antifermions are opposite. Parity of the proton is taken as +1.

When all three spatial dimensions are inverted, r → −r, all ground state meson wave
functions will change sign. This is because they all consist of a fermion and an
antifermion, while there is no additional contribution coming from the space part of the
wave function as L = 0.

In general, for any meson, parity is P = (−1)L+1.

Now let’s try charge conjugation, for those mesons which are their own antiparticles.

Changing quark into an antiquark in a meson is the same as swapping them (i.e. space
inversion, introducing (−1)L+1) and simultaneously swapping their spins (thus
introducing (−1)S+1).

Colour wave function is symmetric and remains unaffected.

Hence, C-parity of a meson is C = (−1)L+S+2 = (−1)L+S.

For spin-0 mesons, JPC = 0−+. They are C-even pseudoscalars.

For spin-1 mesons, JPC = 1−−. They are C-odd (true) vectors.
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Two-quark World: Mesons

Two light quarks u and d are usually considered as two states of the same quark. Similarly
to two spin states — projections — of a fermion, they are said to have isospin projection
Iz = +1/2, i.e. up (for u) and −1/2, i.e. down (for d) (hence the names of the quarks!)

For antiquarks, it’s the other way around: ū has Iz = −1/2, d̄ has Iz = +1/2.

In a two-quark world, there will be four possible mesonic spin-0 states (pseudoscalars):

ud̄, uū, dd̄, dū

Similarly to the spin case, the first and the last have isospin projections +1 and −1
respectively, and can be considered as two extremes of an isotriplet state with I = 1.
These can be identified as π+ and π−.

The “middle” projection of this state, π0, will be the mixture (uū− dd̄)/
√
2, while the

other mixture (uū+ dd̄)/
√
2 is the isosinglet (I = 0). Let’s tentatively call it η̃.

Four more mesons will exist with identical quark content, but spin 1 (i.e. vector).

The isotriplet states are ρ+, ρ0, ρ−, and the isosinglet state is called ω.
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Two-quark World: Baryons

Let’s start with spin 3/2 baryons, which have fully symmetric spin wave function, and
fully antisymmetric colour wave function. As lowest-energy states in their sector, they are
supposed to have lowest possible angular momentum too, which means the spatial part of
the wave function is also fully symmetric. This makes the full wave function
antisymmetric, and hence will allow all quarks to have the same type (flavour).

Remember — identical fermions must have antisymmetric wave functions!

Hence, we have four possible spin-3/2 baryons:

uuu (∆++), uud (∆+), udd (∆0), ddd (∆−)

However, the spin wavefunction of the two quarks in a spin-0 state is antisymmetric, and
combined with the antisymmetric colour wave function and a symmetric spatial wave
function, yield a symmetric state for those two quarks. Hence, in spin-1/2 baryons, those
two quarks which have zero combined spin cannot have identical flavour! They must be
different, and hence in a two-quark world we only have two possible spin-1/2 baryons:

udu (proton), udd (neutron)

where the first two quarks ud are in a spin-0 state, (↑↓ − ↓↑)/
√
2.

In fact, these symmetry properties of baryonic wave functions were one of the reasons of
introducing the concept of colour in the first place!
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Magnetic moments of nucleons

The magnetic moment µ of a pointlike particle with charge e, spin s and mass m is

µ =
se

m

For electrons this formula works fine, but it does NOT work for protons and neutrons.

In units of nuclear magneton µN = e
2mN

, the proton and the neutron have magnetic moments

µp = +2.793 . . . , µn = −1.913 . . .

instead of +1 and 0 respectively.

Charge, mass and spin values are all correct. Where is the problem?

Protons and neutrons are NOT pointlike particles, they have structure, i.e. they consist of other, “more
fundamental” particles.

The proton magnetic moment was measured by Otto Stern in 1933 (Nobel Prise in 1943).

It took a couple of decades to develop the quark model, which explained this fact (and many others as
well!)
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Decomposition of reducible representations

A composite system formed from two systems A and B with angular momenta jA and jB can be
described in two ways, in terms of either

✦ the basis of its constituents, |jA, jB ,mA,mB〉 ≡ |jA,mA〉|jB ,mB〉
✦ or of the eigenfunctions |J,M〉 of the combined angular momentum J = jA + jB .

These are two alternative descriptions of the same system, hence we should be able to relate them to
each other.

States |jA,mA〉 and |jB ,mB〉 contain (2jA + 1) and (2jB + 1) states respectively, so there are
(2jA + 1)(2jB + 1) states in the composite “space”, which is the product of two irreducible
representations.

Our aim is to decompose this product into a sum of irreducible representations of dimensions (2J + 1),
where J takes all allowed values. The set of allowed values of J can be easily identified: the eigenvalues
M of the operator J3 = JA3 + JB3 are

M = mA +mB , mA = −jA, . . . , jA, mB = −jB , . . . , jB ,

Hence any value of J which has a 3-projection from the above set will be allowed:

J = |jA − jB |, |jA − jB |+ 1, . . . , jA + jB − 1, jA + jB .
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Clebsch-Gordan coefficients

So, in general we have the following decomposition of an irreducible representation into a sum of
combinations:

|J,M〉 =
∑

mA,mB

C(mA,mB ; J,M)|jA,mA〉 |jB ,mB〉, mB = M −mA

where the sum runs over those mA,mB which satisfy the condition mA +mB = M

(so it’s a single sum, not a double sum!)

This answers the question: What are the different ways to construct a state with total angular
momentum J (and its projection M) out of two states with angular momenta jA and jB ?

Conversely, a combination |jA,mA〉 |jB ,mB〉 can be decomposed into a sum of irreducible
representations:

|jA,mA〉 |jB ,mB〉 =
∑

J

G(J,M ;mA,mB)|J,M〉

This answers a different question: When two states with angular momenta jA and jB are combined
together, which irreducible representations (with total angular momentum J) can they end up in?

Here C(mA,mB ; J,M) and G(J,M ;mA,mB) are Clebsch-Gordan coefficients.

In general, they also depend on jA, jB , but I did not show this dependence explicitly.
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Clebsch-Gordan coefficients — II

One can use orthogonality and completeness of the basis “vectors” (wavefunctions) to calculate these
coefficients:

〈jA,mA|〈jB ,mB |J,M〉 = C(mA,mB ; J,M)

〈J,M |jA,mA〉|jB ,mB〉 = G(J,M ;mA,mB)

from where it is obvious that C∗ = G.

Even better, under “Condon and Shortley phase convention” both can be made real, so

C(mA,mB ; J,M) = G(J,M ;mA,mB)

which clearly makes our lives easier.

The values of C-G coefficients are tabulated for all important groups (and some other ones too). But
they are not that hard to calculate, once you get hold of the procedure.
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Clebsch-Gordan coefficients — III

The C-G coefficients must satisfy lots of various symmetry normalisation conditions.

In particular:
∑

J

|C|2 = 1 for any jA,mA; jB ,mB

∑

mA

|C|2 = 1 for any jA, jB , J,M (mB = M −mA)

A very simple example: jB = 0, J = jA; i.e. what happens to the angular momentum of a system if
we add to it another sytem with total momentum zero?

Clearly, mB = 0 and hence M = mA and there is only one term in the sum. Then, simply out of
mormalisation condition, we get that the corresponding C = 1.

Hence, adding a zero angular momentum does not change the system’s angular momentum (surprise,
surprise!)
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Clebsch-Gordan coefficients — IV

So, we have the definition:

|J,M〉 =
∑

mA,mB

C(mA,mB ; J,M)|jA,mA〉|jB ,mB〉

In order to determine the values for C-G coefficients, once and for all, one can use our old friend, the
lowering operator

J− = JA− + JB−

We also need a good starting point. This is usually chosen as the largest possible M = J for the state
J = jA + jB, which means mA = jA,mB = jB . Clearly, there is only one term contributing to the sum:

|jA + jB , jA + jB〉 = C(jA, jB ; jA + jB , jA + jB)|jA, jA〉|jB , jB〉

hence C(jA, jB ; jA + jB , jA + jB) = 1.

Now remember the general formula:

J−|j,m〉 =
√

j(j + 1)−m(m− 1)|j,m− 1〉
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Calculating Clebsch-Gordan coefficients

Act with J− = JA− + JB− on both sides of the equation

|jA + jB , jA + jB〉 = |jA, jA〉|jB , jB〉

In the l.h.s., we get
√

J(J + 1)− J(J − 1)|J, J − 1〉 =
√
2J |J, J − 1〉

where J = jA + jB .

In the r.h.s., we should remember that all J operators are group generators, i.e. perform infinitesimally
small transformations, and hence behave like differentiation operators. This means that whenever the
sum JA− + JB− acts upon a product of states |jA,mA; jB ,mB〉 ≡ |jA,mA〉|jB ,mB〉, each generator
only “sees” its own state, leaving the other one intact:

(JA− + JB−)|jA, jA〉|jB , jB〉 =
√

2jA|jA, jA − 1〉|jB , jB〉+
√

2jB |jA, jA〉|jB , jB − 1〉
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Calculating Clebsch-Gordan coefficients — II

Hence, the respective C-G coefficients are

C(jA − 1, jB ; jA + jB , jA + jB − 1) =

√

jA
jA + jB

,

C(jA, jB − 1; jA + jB , jA + jB − 1) =

√

jB
jA + jB

.

This process can be continued down the multiplet with J = jA + jB . In general, the number of
contributing terms will increase first, and then start decreasing, before reaching the bottom with
M = −J = −jA − jB , where the respective C will be equal to 1 again.

Of course, we could have started from that one, and moved step-by-step up, using J+.

But this is not the end of the job! There is the next multiplet waiting in the queue, with
J = jA + jB − 1, and for that one, we will need a new starting point!
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Calculating Clebsch-Gordan coefficients — III

The extreme M for the state J = jA+ jB −1 is jA+ jB −1, so it should be possible to express it through
a superposition of base functions |jA, jA − 1〉|jB , jB〉 and |jA, jA〉|jB , jB − 1〉. But this superposition
should be orthogonal to the one we found for (M − 1)-th component of J = jA + jB , hence

|jA + jB − 1, jA + jB − 1〉 =
√

jB
jA+jB

|jA, jA − 1〉|jB , jB〉 −
√

jA
jA+jB

|jA, jA〉|jB , jB − 1〉

Starting from this one, and applying J−, one can recover values for the second row of C-s.

We will not do this, I just reached this point to show you how you can calculate C-G coefficients if you
need to do it while stranded on a deserted island.

If you just need the coefficients for some practical purpose, some are shown on the next page. Also, here
is a link (one of many):

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-clebsch-gordan-coefs.pdf

But why would you possibly need them?!

=====
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Multi-fermion states

To simplify our formulae, let’s use the following notation:

∣

∣

1
2 ,+

1
2

〉

=

(

1
0

)

≡↑
∣

∣

1
2 ,− 1

2

〉

=

(

0
1

)

≡↓

Two spin- 12 particles can be in four different states: ↑↑, ↑↓, ↓↑, ↓↓

First and last obviously form the two extreme projections of a spin-1 state. They are clearly symmetric,
hence the symmetric combination of the two middle ones should form the zero-projection of the spin-1
state. This leaves the antisymmetric combination as the spin-0 state:

|1,+1〉 =↑↑, |1, 0〉 = 1√
2
(↑↓ + ↓↑), |1,−1〉 =↓↓,

|0, 0〉 = 1√
2
(↑↓ − ↓↑);

Symbolically, this is written as: 2⊗ 2 = 1⊕ 3
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Multi-fermion states — II

We just did the Clebsch-Gordan decomposition for a combination of two spin-1/2 states.

Here are all the non-trivial coefficients we have found, using notation C(mA,mB ; J,M):

C(+ 1
2 ,− 1

2 ; 1, 0) =
1√
2
, C(− 1

2 ,+
1
2 ; 1, 0) =

1√
2
, C(+ 1

2 ,− 1
2 ; 0, 0) =

1√
2
, C(− 1

2 ,+
1
2 ; 0, 0) = − 1√

2
.

The above is useful when forming Cooper pairs of electrons.

The spin-1 state is symmetric, hence the Pauli principle will forbid even orbital momenta.

The spin-0 state is anti-symmetric, hence the Pauli principle will forbid odd orbital momenta.

Similarly, this is the basis for forming mesons from a quark-antiquark pair in the quark model.

Both quarks and antiquarks are spinors (but are not identical spinors).

At ground states, with no orbital momentum between the quarks, one can only have spin-0 and spin-1
meson.
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SU(2) and isospin

Before we can construct hadrons from quarks, we need to figure out what the flavour symmetry and
colour symmetry look like.

All hadrons (strongly interactiong particles like pions, Kaons, protons, neutrons, hyperons, etc.) consist
of various quarks and antiquarks, following well-defined rules of the quark model and Quantum
ChromoDynamics (QCD).

Each quark exists in one of three colour states, which form a unitary symmetry described by group
SU(3), the gauge group of QCD. More about it later.

Here we only need to know, that the colour part of the wave function is symmetric for mesons, and fully
antisymmetric for baryons.

Quark model and QCD state that all quark flavours are identical from the point of view of strong
interactions, i.e. have the same colour “charges”. This implies a 6-dimensional unitary flavour symmetry,
(cf. 6 quark “flavours”).

However, most quark masses are so different from each other, that this 6-dimensional symmetry is badly
broken. Only the two lightest quarks have almost equal masses, and hence form the basis of a very useful
symmetry group.

Guess what? That group is another SU(2), this time describing rotations in some isotopic spin, or
simply isospin space.
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SU(2) and isospin — II

In a two-quark world of SU(2) isospin, the basis consists of up- and down- type quarks:

∣

∣

1
2 ,+

1
2

〉

=

(

1
0

)

≡ u
∣

∣

1
2 ,− 1

2

〉

=

(

0
1

)

≡ d

A general isospin spinor ξ is a mixture of these two (a “rotation” in isospin space), i.e. under a general
isospin rotation U

ξ ≡
(

ξ1
ξ2

)

→ Uξ

The hermitian conjugate spinor ξ† (a row (ξ∗1 , ξ
∗
2)) transforms as ξ† ≡ (ξ∗1 , ξ

∗
2) → ξ†U †.

Hence, ξ and (ξ†)T do not transform the same way, as (U †)T 6= U .

But for unitary U , it can be shown that the spinor
(

−ξ∗2
ξ∗1

)

=

(

0 −1
1 0

)(

ξ∗1
ξ∗2

)

transforms as needed, i.e. as the original ξ.

Complex conjugate of a particle’s wavefunction descrtibes its antiparticle, hence in the antiquark
iso-doublet it’s the d̄ which has isospin projection +1/2 (and a relative phase given by a minus sign),
while ū has the isospin projection −1/2.
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Some quark model applications

Hence, in a two-quark world, there will be an isovector, i.e. 3-component state:

|1,+1〉 = ud̄, |1, 0〉 = 1√
2
(uū− dd̄), |1,−1〉 = dū,

and an isosinglet state

|0, 0〉 = 1√
2
(uū+ dd̄)

If the two spins of the quarks combine into a singlet spin-0 state, then we have the isotriplet of pions
π+, π0, π− and isosinglet η. These have the spin wave function determined earlier: 1√

2
(↑↓ − ↓↑)

So the full flavour×spin wave function of a π0 looks like this:

|π0〉 = 1
2 (u ↑ ū ↓ −u ↓ ū ↑ −d ↑ d̄ ↓ +d ↓ d̄ ↑)

If the spins of the quarks combine into a triplet (spin 1) state, then we have the isotriplet of vector
mesons ρ+, ρ0, ρ− and isosinglet vector meson ω. Here the spin wave function is different, e.g. for
M = 0 one has: 1√

2
(↑↓ + ↓↑) and hence the full wave function for a ρ0 with spin projection 0 is

|ρ0〉M=0 = 1
2 (u ↑ ū ↓ +u ↓ ū ↑ −d ↑ d̄ ↓ −d ↓ d̄ ↑)
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Leptonic decays of ρ0 and ω

Electromagnetic decays of vector mesons happen through a virtual photon, decaying into a lepton pair:

ρ, ω → γ∗ → e+e− (µ+µ−)

The probability of such decays is proportional to the (square of the) effective coupling of ρ and ω to the
photon, i.e. to “average electric charge” of the respective quark-antiquark state. The latter is determined
by the wave functions we just derived. The spin wave function is the same (both ρ0 and ω are vector
particles) so it’s down to flavour wave function:

Γ(ρ → e+e−)

Γ(ω → e+e−)
=

∣

∣

∣

∣

uū− dd̄

uū+ dd̄

∣

∣

∣

∣

2

=

( 2
3 + 1

3
2
3 − 1

3

)2

= 9

with the experimental value being (11.7± 0.4).

Given the fact that the isospin SU(2) symmetry is not perfect (electroweak interactions, as well as quark
masses, cause violations) this is a very good result!
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Clebsch-Gordan in decays

Vector mesons K∗+ and K∗0 have the quark structures

K∗+ = (us̄), K∗0 = (ds̄)

They have dominant strong decay modes

K∗ → Kπ

This is exactly what PDG says, without specifying relative intensities of various possible charge
combinations:

K∗+ → K+π0, K∗+ → K0π+

K∗0 → K+π−, K∗0 → K0π0

This is the classic example of the use of Clebsch-Gordan coefficients: Relative probabilities of these
decays are in fact the values (squared) of respective C-G coefficients!

Clearly, what we have here is an isodoublet on the left (vector kaon) as a combination of an isodoublet
(kaon) and an isotriplet (pion):

| 12 ,+ 1
2 〉 = C1| 12 ,+ 1

2 〉|1, 0〉+ C2| 12 ,− 1
2 〉|1, 1〉
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Clebsch-Gordan in decays — II

Use the Tables I gave you to find out the relative branching fractions for the above decays, remembering
that C-G coefficients determine the wave functions, i.e. the amplitudes, while decay probabilities are
determined by | amplitude |2.

In both examples, the values of jA and jB are 1/2 (final kaon) and 1 (final pion).

K∗+ → K+π0, J = 1/2, M = 1/2, m1 = 0, m2 = +1/2 C = −
√

1

3

K∗+ → K0π+ J = 1/2, M = 1/2, m1 = +1, m2 = −1/2 C = +

√

2

3

K∗0 → K+π−, J = 1/2, M = −1/2, m1 = −1, m2 = +1/2 C = −
√

2

3

K∗0 → K0π0 J = 1/2, M = −1/2, m1 = 0, m2 = −1/2 C =

√

1

3

So, in both examples here, the decay channel containing a π0 has branching fraction 33.3%, while the
other one has 66.7%

This is all in fact quite simple, once you know what you are doing!
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Three-quark states: baryons

Baryons are composed of three quarks. Relevant decomposition looks like this:

2⊗ 2⊗ 2 = (1⊕ 3)⊗ 2 = (1⊗ 2)⊕ (3⊗ 2) = 2⊕ 2⊕ 4

I.e., without any orbital mexcitations, three spin-1/2 particles can combine into a quartet of spin-3/2 and
two doublets of spin-1/2. Here are some example wave functions:

| 32 ,+ 3
2 〉 = ↑↑↑

| 32 ,+ 1
2 〉 = 1√

3
(↑↑↓ + ↑↓↑ + ↓↑↑)

| 12 ,+ 1
2 〉S = 1√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓)

| 12 ,+ 1
2 〉A = 1√

2
(↑↓↑ − ↓↑↑)

The first one is clearly fully symmetric against all permutations of the three initial fermions. So is the
second one.

The last two have mixed symmetry against permutations. Indices S and A stand respectively for
symmetric and asymmetric wave functions w.r.t. permutations of particles 1 and 2.
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Wave function of the proton

Nucleons (protons and neutrons) are baryons and hence consist of three quarks.

Nucleons have spin 1/2 and isospin 1/2.

In particular, proton with spin up has sz = + 1
2 and Iz = + 1

2 .

The spin wave function may belong to either of the bottom two representations from p. 129:

|spin, S〉 ≡ | 12 ,+ 1
2 〉S = 1√

6
(↑↓↑ + ↓↑↑ −2 ↑↑↓)

|spin, A〉 ≡ | 12 ,+ 1
2 〉A = 1√

2
(↑↓↑ − ↓↑↑)

On the isospin side, things are very similar, just replace ↑ with u and ↓ with d:

|Isospin, S〉 ≡ |I = 1
2 , I3 = + 1

2 〉S = 1√
6
(udu+ duu− 2uud)

|Isospin, A〉 ≡ |I = 1
2 , I3 = + 1

2 〉A = 1√
2
(udu− duu)

In order to have correct symmetry properties, these need to be either both S or both A, equally and
symmetrically mixed with each other:

1√
2
|spin, S〉|Isospin, S〉+ 1√

2
|spin, A〉|Isospin, A〉

Want to see what the end result looks like, in terms of u ↑, u ↓, d ↑, d ↓ ?
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Wave function of the proton – II

Here it is, in all its glory, for a proton with spin up:

|p ↑〉 = 1√
18

[ 2(u ↑ u ↑ d ↓)− (u ↑ u ↓ d ↑)− (u ↓ u ↑ d ↑)
2(u ↑ d ↓ u ↑)− (u ↑ d ↑ u ↓)− (u ↓ d ↑ u ↑)
2(d ↓ u ↑ u ↑)− (d ↑ u ↑ u ↓)− (d ↑ u ↓ u ↑) ]

And here it is for a proton with spin down:

|p ↓〉 = 1√
18

[ 2(u ↓ u ↓ d ↑)− (u ↓ u ↑ d ↓)− (u ↑ u ↓ d ↓)
2(u ↓ d ↑ u ↓)− (u ↓ d ↓ u ↑)− (u ↑ d ↓ u ↓)
2(d ↑ u ↓ u ↓)− (d ↓ u ↓ u ↑)− (d ↓ u ↑ u ↓) ]

Now you know the answer to the question about the proton wave function in terms of quark fields.

(Well, almost: the colour part is still to be included. . . )

Can you work out wavefunctions for the neutron, with spin up and down?
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Magnetic moments of nucleons

The magnetic moment of a proton can be defined as

µp =
∑

quark i=1,2,3

〈p ↑ | µiσ3i |p ↑〉

where quark magnetic moments µi = (quark charge)i
(

e
2m

)

, are considered to be those of a point-like
(structureless) spin-1/2 particle (e is electric charge of the proton, and m is quark mass).

By carefully using these formulae, and remembering that each σ3i only acts on its own quark
wavefunction, one gets

µp =
1

3
(4µu − µd), µn =

1

3
(4µd − µu)

where, assuming equal masses to u and d quarks, we have µu = −2µd.

So, we get a very strong “prediction”:

µn

µp

= −2

3

to be compared with the experimental value

µn

µp

= −0.685 . . .

which is very impressive, as for point-like nucleons one gets µn = 0 as the neutron has no net charge.
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Lorentz group

You have shown in your homework, that the coordinate transformation
(

t′

z′

)

=

(

coshα sinhα
sinhα coshα

)(

t
z

)

describes a valid Lorentz boost, with α closely related to the Lorentz transformation parameters β and
hence γ.

Some of you may remember that this transformation keeps intact the space-time interval

s2 = t2 − z2 {−x2 − y2}

which hence is the kinematic invariant.

[To simplify notation, I will sometimes use x0, x1, x2, x3 instead of t, x, y, z and of course assume c = 1.]

If we write explicitly all 4 space-time coordinates, then the boost along the x3 ≡ z axis with parameter
α3 is described by

L3 =









coshα3 0 0 sinhα3

0 1 0 0
0 0 1 0

sinhα3 0 0 coshα3








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Lorentz group — II

Similarly the boosts along the axes 1 and 2, with parameters α1 and α2 respectively, are represented by

L1 =









coshα1 sinhα1 0 0
sinhα1 coshα1 0 0

0 0 1 0
0 0 0 1









L2 =









coshα2 0 sinhα2 0
0 1 0 0

sinhα2 0 coshα2 0
0 0 0 1









These are 4× 4 matrices representing 4-vector transformations, hence our former favourite SO(3) and
our current favourite SU(2) can both be represented by the right-bottom 3× 3 sub-matrices, describing
regular 3D rotations between axes 1,2,3 (i.e. x, y, z), with parameters θ, φ, ψ, from pages 40, 41.

By combining 3 rotations and 3 boosts, we get a single 6-parameter Lorentz group, a group which
covers all coordinate rotations and Lorentz boosts.

Clearly, it contains an SO(3) as a subgroup, which describes 3D rotations.
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Lorentz group — III

Back in “SO(3)” times, we have introduced the generators of the 3 rotations in 3D space. Re-written for
4D space-time, these three now gain an extra column and an extra row of zeroes, corresponding to the
0th, time-axis:

J1 = −i









0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0









J2 = −i









0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0









J3 = −i









0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0









As for the generators K1,K2,K3 describing the boosts, they are effectively infinitesimal “rotations” in
the planes 01, 02, 03, (otherwise known as tx, ty, tz) but this time both non-zero elements in each
generator have the same sign:

K1 = −i









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









K2 = −i









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









K3 = −i









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









These generators define the 4× 4 representation of the Lorentz group, which define the
transformation properties of Lorentz 4-vectors under rotations and boosts.
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Algebra of the Lorentz group generators

The algebra of a group is the same for any representation of the group. So we can use the 6 generators
above to establish the algebra of the Lorentz group.

First 3 generators of the Lorentz group are in essence 3 generators of SO(3) or SU(2), so we already
know that

[Ji, Jj ] = iǫijkJk

Once we include the other 3, after some matrix multiplication, we find out that

[Ji,Kj ] = iǫijkKk [Ki,Kj ] = −iǫijkJk

The commutator of a boost along one axis and a rotation ar ound another is equivalent to a boost along
the third axis, while the commutator of two boosts along two axes is equivalent to a rotation around the
third!

This means that while the three J ’s form a closed algebra, the three K’s do not, hence the three K’s
alone do not form a group of their own.
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Generators and representations of the Lorentz group

Let’s introduce a slightly different view of the generators J and K:

Ai =
1
2 (Ji + iKi), Bi =

1
2 (Ji − iKi),

Commutators of A and B now look like this:

[Ai, Aj ] = iǫijkAk [Bi, Bj ] = iǫijkBk [Ai, Bj ] = 0

A’s and B’s form two separate SU(2) groups, which commute with each other!

So the algebra of the Lorentz group coincides with the algebra of the outside product SU(2)⊗ SU(2).

Each SU(2) subgroup has its own Casimir operator, hence Lorentz group has two such operators,
A2 = A2

1 +A2
2 +A2

3 and B2 = B2
1 +B2

2 +B2
3 .

According to Schur’s lemma, these in each representation are proportional to unit matrices, hence we can
use the two eigenvalues to classify the representations of the Lorentz group by two numbers, two “spins”
j and j′, one for each SU(2) subgroup.

Note that neither of these SU(2) subgroups coincide with the “original” SO(3) which represented 3D
rotations.
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Generators and representations of the Lorentz group — II

The general matrix M representing the Lorentz group can be expressed through the generators Ai and
Bi is the usual way:

M = exp (ia ·A) exp (ib ·B)

= exp (ia ·A+ ib ·B)

since A and B commute. Substituting their definitions through J and K, one can relate the parameters
ai and bi to the original parameters θi and αi:

a = θ − iα

b = θ + iα

This will help to find out transformation properties of various irreducible representations of the Lorentz
group in terms of the original generators J and K.
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Simplest representations of the Lorentz group

So, since the Lorentz group is in fact an outside product of two SU(2) groups, its representations can be
classified by a pair of numbers (j, j′), either of which can be a zero, an integer, or a half-integer.

Clearly, the simplest one is (0, 0), representing a Lorentz-invariant, a full scalar.

The next simplest ones would be two different types of spinors, ξ ≡ ( 12 , 0) and η ≡ (0, 1
2 ). Under a

general Lorentz transformation, parameterised by 3 angles θi and three boosts αi, they transform as

ξ → exp
[

i
2 (σ · θ − iσ ·α)

]

ξ = exp
[σ

2
· (iθ +α)

]

ξ

η → exp
[

i
2 (σ · θ + iσ ·α)

]

η = exp
[σ

2
· (iθ −α)

]

η

Once again, ξ and η are two different, non-equivalent spinor representations of the Lorentz group:

✦ ξ is the right-handed spinor

✦ η is the left-handed spinor
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Representations of the Lorentz group — III

Here comes a secret: if we extend the Lorentz group to include spatial reflection, i.e. parity operation,
then generators J , which behave like a pseudo-vector (they correspond to angular momentum) remain
intact, while K’s behave like 3-velocity (a true vector) and hence change sign.

That is, under parity transformation, A and B swap places, and all representations behave accordingly:
(j, j′) ↔ (j′, j) under parity transformation

It follows then, that under parity ξ ↔ η, and these two are no longer independent! In order to create an
irreducible representation of the Lorentz group extended with parity, we need to combine them into a
single 4-spinor (sometimes called a Dirac bi-spinor).

ψ ≡
(

ξ
η

)

→
(

exp
[

i
2 (σ · θ − iσ · α)

]

0
0 exp

[

i
2 (σ · θ + iσ · α)

]

)(

ξ
η

)

This ψ is the object that shows up in the Dirac’s equation, which describes a free relativistic particle with
spin 1/2. Apparently, it needs to be a 4-component object simply to have meaningful transformation
properties under (parity-extended) Lorentz transformation.

In case you are wondering: 4-vectors are represented by (j = 1/2, j′ = 1/2), and their transformations
are (of course) governed by the generators shown in page 135.
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Poincaré group

There is a way of extending the Lorentz group — add translations: 3 along the three spatial axes, and
one translation in time.

We already know, that corresponding infinitesimal transformations can be represented by differential
operators:

Pi = −i
∂

∂xi

, i = 1, 2, 3, P0 = −i
∂

∂t

With this extension, the Lorentz transformation becomes inhomogeneous:

xµ → x′
µ =

3
∑

ν=0

Λµνxν + aµ, µ = 0, 1, 2, 3.

where Λµν stands for the 4× 4 matrix representing homogeneous Lorentz transformations, boosts and
rotations.

The inhomogeneous Lorentz group is called Poincaré group. In addition to old 6 parameters and 6
corresponding generators, it has 4 more, one for each translation.
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Algebra of the Poincaré group

Without going into too much detail of this group, let’s have a look at the group algebra.

The commutators between boosts and rotations remain the same as before:

[Ji, Jj ] = iǫijkJk [Ji,Kj ] = iǫijkKk [Ki,Kj ] = −iǫijkJk

The new operators Pi commute with each other, but do not commute with rotations and boosts:

[Ji, Pj ] = iǫijkPk [Ki, Pj ] = iδijP0

Finally, translation in time commutes with rotations, but gives a spatial translation when commuted with
a boost:

[Ji, P0] = 0, [Ki, P0] = iPi

For a free particle, P0 represents its energy and Pi its momentum components; J describes its angular
momentum (spin). Non-Hermitian generators Ki have no observable associated to them; they describe
boosts from one reference frame to another.
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Casimir operators of the Poincaré group

It can be shown, that the quadratic combination of the new operators

C1 = P 2
0 − P 2

i

commutes with all 10 generators, and hence it is one of two Casimir operators of the Poincaré group.

The other Casimir operator is not so straightforward to find. Define a 4-vector

w0 = P · J = PiJi,

wi = (P0J+P×K)i = P0Ji + ǫijkPjKk

Then, the combination

C2 = w2
0 − w2

i

also commutes with all 10 generators, and hence is the other Casimir operator of the Pioncaré group.
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Casimir operators of the Poincaré group — II

Poincaré group is the group representing the most general coordinate transformations, under which every
physical state has to have well-defined transformation properties.

Fundamental objects must belong to irreducible representations of the symmetry group.

Irreducible representations are classified according to the eigenvalues of the Casimir operators of the
group.

So, what are physical meanings of C1 and C2?

They are both invariants, and hence can be calculated in any reference frame of our choice.

Clearly, for a single free particle in its own frame, P = 0 and we have :

C1 = E2 −P2 = m2,

C2 = w2
0 −w2 = −m2J2 = −m2 s(s+ 1),

where s is the particle’s spin.

Now we know why particles in PDG book are classified according to their mass and spin!
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Fermions and Bosons

Poincare group of transformations includes Lorentz boosts, space rotations and
translations in space and time. Every quantity which claims that it describes something in
the real world must belong to some representation of this group.

Representations are classified according to the invariants of the group. Poincare group has
two invariants: mass (squared) and spin (squared).

At the moment we do not know much about the origins of particles’ masses. They are
considered as parameters of the theory and are measured experimentally.

Spin, on the other hand, is the intrinsic angular momentum of the particle, and is
quantised as such. The spin of a particle can be 0, 1/2, 1, 3/2, 2. . .

Particles with whole spins are called bosons; they obey Bose-Einstein statistics, their
number is not conserved, and the wave function of a state describing two identical bosons
must be symmetric.

Particles with spins 1/2, 3/2 etc. are called fermions; they obey Fermi-Dirac statistics,
they can only be produced in pairs, and the wave function of a state describing two
identical fermions must be antisymmetric.
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Fermions and Bosons – II

All particles which are usually associated with matter are fermions: electrons, protons and
neutrons are all refmions, as are their antiparticles positrons, antiprotons and
antineutrons. So are other charged leptons µ±, τ± and all neutrinos. All six quarks and
their antiquarks are fermions too.

✦ All fundamental fermions e, µ, τ, νe, νµ, ντ , u, d, s, c, b, t and their antiparticles have
spin 1/2.

✦ Mathematically, their wave function is described by Dirac’s (bi)spinors.

✦ Two components describe the particle, the other two describe the antiparticle.

On the other side, particles describing classical fields, i.e. the interaction carriers, are
bosons: photons γ, gluons g, weak inetraction carriers W±, Z0 all have spin 1. The
graviton, carrier of gravity, has spin 2.

One Standard Model particle — the Higgs boson H0— has spin zero.

✦ Spin 0 particles are described by a Lorentz-scalar field.

✦ Spin 1 particles have Lorentz-vector wave functions.

✦ Spin 2 bosons are described by rank 2 tensors.
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Boost for fermions

Under pure Lorentz boost, θ = 0, the general matrix looks much simpler, especially if we try to boost ξ
and η from rest to some momentum p:

(

ξ(p)
η(p)

)

=

(

exp(σ·α2 ) 0
0 exp(−σ·α

2 )

)(

ξ(0)
η(0)

)

At rest, the spinors ξ and η are indistinguishable, ξ(0) = η(0), and hence interchangeable. Swapping
them around, and then re-expressing through ξ(p) and η(p), we get

(

ξ(p)
η(p)

)

=

(

exp(σ·α2 ) 0
0 exp(−σ·α

2 )

)(

0 1
1 0

)(

exp(−σ·α
2 ) 0

0 exp(σ·α2 )

)(

ξ(p)
η(p)

)

The product of the three matrices is
(

0 exp(σ · α)
exp(−σ · α) 0

)

=

(

0 E+σ·p
m

E−σ·p
m

0

)

where α, the (3-vector) parameter of the boost, is replaced using

cosh |α| = γ =
E

m
, sinh |α| = βγ =

|p|
m

as well as the familiar formula (slightly modified for a real argument) with n = p

|p| :

exp(α · σ) = I coshα+ (n · σ) sinhα
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Dirac’s equation

So, based purely on the transformation properties of Lorentz spinors, we obtain an interesting equation:
(

−m E + σ · p
E − σ · p −m

)(

ξ(p)
η(p)

)

= 0

Re-introducing the 4-component spinor ψ, and introducing 4× 4 matrices

γ0 =

(

0 I
I 0

)

, γ1,2,3 =

(

0 −σ1,2,3

σ1,2,3 0

)

,

the above equation can be rewritten as

(γµp
µ −m)ψ = 0.

This is Dirac’s equation, describing a free relativistic fermionic field. The matrices γµ, µ = 0, 1, 2, 3 are
called Dirac’s matrices.

There is one more useful matrix, called γ5, which is equal to γ5 = iγ0 γ1 γ2 γ3.

We will obtain Dirac’s equation again, using the Euler-Lagrange formalism.
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Left-handed and right-handed ψ

Let’s study in detail transformation properties of the bi-spinor ψ and its conjugate ψ†.

Our main weapon is the transformation rule of the 4-spinor ψ under a general Lorentz transformation:

ψ ≡
(

ξ
η

)

→
(

exp
[

i
2 (σ · θ − iσ · α)

]

0
0 exp

[

i
2 (σ · θ + iσ · α)

]

)(

ξ
η

)

Before going any further, let’s remind ourselves that the 2-spinors ξ and η, introduced before, are in fact
right-handed and left-handed components of the 4-spinor ψ respectively:

ξ ≡ ψR, η ≡ ψL

Hence

ψ ≡
(

ξ
η

)

≡
(

ψR

ψL

)

In the following we will keep this new notation.
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Conjugate 4-spinor ψ̄

Re-writing the Lorentz transformation matrix in a more compact form:

ψ ≡
(

ψR

ψL

)

→ ψ′ ≡
(

ψ′
R

ψ′
L

)

=

(

e
σ
2
·(iθ+α) 0
0 e

σ
2
·(iθ−α)

)(

ψR

ψL

)

Here θ and α are the usual 3-vectors defining the rotations and boosts, respectively.

For the Hermitian conjugate (“row”) 4-spinor ψ† we then have (as σ† = σ):

ψ† ≡
(

ψ†
R ψ†

L

)

→ (ψ′)
† ≡

(

ψ′
R
†

ψ′
L
†
)

=
(

ψ†
R ψ†

L

)

(

e
σ
2
·(−iθ+α) 0
0 e

σ
2
·(−iθ−α)

)

It’s easy to verify, that a construct ψ†ψ = ψ†
RψR + ψ†

LψL is not an invariant, and hence is not a very
useful quantity. Instead, a “proper” Dirac-conjugate 4-spinor needs to be defined:

ψ̄ ≡ ψ†γ0 ≡
(

ψ†
R ψ†

L

)

(

0 1
1 0

)

≡
(

ψ†
L ψ†

R

)

which now inevitably has different transformation properties:

ψ̄ → ψ̄′ ≡
(

ψ′
R
†

ψ′
L
†
)

γ0 =
(

ψ†
R ψ†

L

)

(

e
σ
2
·(−iθ+α) 0
0 e

σ
2
·(−iθ−α)

)(

0 1
1 0

)

=

=
(

ψ†
L ψ†

R

)

(

0 1
1 0

)(

0 e
σ
2
·(−iθ+α)

e
σ
2
·(−iθ−α) 0

)

= ψ̄

(

e
σ
2
·(−iθ−α) 0
0 e

σ
2
·(−iθ+α)

)
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Invariance of ψ̄ψ

In other words, it’s straightforward to show that
(

e
σ
2
·(−iθ+α) 0
0 e

σ
2
·(−iθ−α)

)(

0 1
1 0

)(

e
σ
2
·(iθ+α) 0
0 e

σ
2
·(iθ−α)

)

=

(

0 1
1 0

)

which means that the construct ψ̄ψ is Lorentz invariant:

ψ̄ψ → ψ̄′ψ′ = ψ′†γ0ψ
′ = ψ†γ0ψ = ψ̄ψ

If ψ is a wavefunction, then ψ̄ψ describes the probability density.

From above, we have

ψ̄ψ = ψ†
RψL + ψ†

LψR

which, in fact, makes more sense. In addition, we know that under parity transformation ψR ↔ ψL,
hence ψ̄ψ is parity-invariant too, i.e. is a true scalar.

Using similar methods, one can show that ψ̄γ5ψ is indeed a pseudoscalar (i.e. a scalar that changes sign
under parity transformation), and that ψ̄γµψ and ψ̄γ5γµψ form a true- and a pseudo-vector, respectively.
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Lagrangian (density) for a scalar field

Lagrangian (density) defines the world (more about this later though. . . ). In Quantum Field Theory, the
generalised coordinates are the fields, while the generalised momenta are their derivatives.

The Lagrangian has to be Lorentz-invariant. It is also expected to depend on the fields themselves, and
their first derivatives. Terms containing first order (either of the field, or of its derivative) are pointless,
sice they will give constant terms in the equations of motion. This strongly restricts the variety of terms
that may show up in the Lagrangian.

In particular, for a scalar field, one possible term would be proportional to the field squared, and the
other – to the square of the derivative:

L = 1
2 (∂µφ)(∂

µφ)− 1
2m

2φ2

where the parameter m needs to have the dimension of energy/momentum (or mass).

The Euler-Lagrange equations, in covariant 3+1 D form, look like this:

∂L
∂φ

= ∂µ

(

∂L
∂(∂µφ)

)

This leads nicely to the equation of motion

(∂µ∂
µ +m2)φ = 0

This is called Klein-Gordon equation. It describes a free scalar field, with quanta of mass m.
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Covariant forms with ψ and ψ̄

Let’s try and classify some bi-linear forms with bi-spinors, some of which which may contribute to the
Lagrangian of a fermionic field.

✦ A combination ψ̄ψ is a scalar.

✦ A combination ψ̄γ5ψ is a pseudoscalar.

✦ A combination ψ̄γµψ is a 4-vector, µ = 0, 1, 2, 3.

✦ A combination ψ̄γµγ5ψ is an axial 4-vector (pseudo-vector), µ = 0, 1, 2, 3.

In order to build the Lagrangian for a free scalar field φ, we simply used φ2 with some coefficient for the
mass term, and ∂µφ twice for the kinetic term.

We simply had no other scalars or vectors to work with!

With fermions, described by 4-spinors ψ, one can build the kinetic term of the Lagrangian (which needs
to be a scalar!) using ψ̄γµψ to “neutralise” the vector index µ of the derivative.

I.e., we can build a kinetic term like this: ψ̄γµ∂
µψ

Clearly, ψ̄ψ is a good candidate for the mass term of the Lagrangian.
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Free fermionic field

From these two terms, one can build the Lagrangian of a free fermionic field:

L = iψ̄γµ∂
µψ −mψ̄ψ

Constants i and m are arbitrary to some extent, but this choice makes perfect sense.

E.g.: treating ψ and ψ̄ as separate classical fields, one can use E-L equation to obtain Dirac’s equation:

iγµ∂
µψ −mψ = 0

Squaring this equation, one should be able to recover Klein-Gordon, as fermions too must satisfy the
general relativistic relation p2 = m2 which it represents.

When squared, i2 takes care of the sign, and the mass term is correct, but the rest will only converge
into the expected ∂µ∂µ if

γµγν + γνγµ = 2gµν

which is the major defining property of the Dirac’s matrices γµ.

Coincidentally, one cannot find matrices with this property among 2× 2 or 3× 3, so these have to be at
least 4× 4. Hence, ψ has to have at least 4 components — which it has. . .
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Symmetry of the Lagrangian

Assume that there is some kind of transformation of ψ, and a matching transformation of ψ̄, which leave
the Lagrangian L(ψ, ψ̄, ∂µψ, ∂µψ̄) invariant.
An example would be an infinitesimally small transformation

ψ → (1 + iǫ)ψ, ψ̄ → (1− iǫ)ψ̄,

If, as we said, L is invariant under this transformation, then δL = 0, and we have:

0 = δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) + . . .

where “. . .” contain similar terms with ψ → ψ̄. Now, δ(∂µψ) = ∂µ(δψ), and the first term ∂L
∂ψ

can be

replaced by its equivalent from the equations of motion:

∂L
∂ψ

= ∂µ
∂L

∂(∂µψ)

Then the two terms form a derivative of the product:

∂µ

(

∂L
∂(∂µψ)

δψ

)
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Noether’s theorem

Very similar things happen to the terms containing derivatives w.r.t. ψ̄, and we have:

∂µ

(

∂L
∂(∂µψ)

δψ + δψ̄
∂L

∂(∂µψ̄)

)

= 0

So, we have a (Lorentz vector) object, in brackets, which forms a conserved “current”, associated with
this particular symmetry of the Lagrangian. In particular, if we integrate that current over the 3D space,
we get “something” conserved in time.

We just “proved” Noether’s theorem from classical field theory, stating that for any continuous
symmetry of a Lagrangian, there is an associated integral of motion (i.e. a conserved current).
And it even provides a recipe to calculate that current!

For the fermionic Lagrangian, this current can be shown to be (up to a constant)

ǫψ̄γµψ

which is usually (again, up to a constant) associated to the electromagnetic current of a charged
fermionic field.
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Gauge transformation

The symmetry we just looked at is not related to space-time transformations. It was an infinitesimal
version of the full gauge transformation, given by

ψ → ψ′ = exp(ieχ)ψ

where e is a constant introduced for “future convenience”, while χ is the parameter of the gauge
transformation. For the charge-conjugate wave function ψ̄, one has accordingly:

ψ̄ → ψ̄′ = ψ̄ exp(−ieχ)

The “operator” exp(ieχ) represents the group U(1), so this transformation has the gauge group U(1).

In a global gauge transformation, the parameter χ is the same for all space-time points, i.e. remains
constant, and hence its derivatives vanish.

In a local gauge transformation, the parameter χ may depend on space-time coordinates, hence its
derivatives may be non-zero.

Note: the parameter χ may depend on xµ, but this does not make this a space-time transformation, as
the space-time coordinates xµ are not being transformed.
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Global gauge invariance

Lagrangian of a free fermionic field

L = iψ̄γµ∂
µψ −mψ̄ψ

stays invariant under global gauge transformations:

γµ∂
µψ → γµ∂

µψ′ = exp[ieχ]γµ∂
µψ

So the exponent cancels with respective exponent from ψ̄.

For a local transformation

γµ∂
µψ → γµ∂

µψ′ = exp[ieχ]γµ(∂
µψ+ieψ∂µχ)

ψ̄′γµ∂
µψ′ = ψ̄γµ∂

µψ + (ie∂µχ)ψ̄γµψ

Where the existence of the extra term means that this Lagrangian is not locally gauge-invariant.
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Covariant derivative

Enter the gauge covariant derivative

Dµ ≡ ∂µ + ieAµ

where Aµ is a vector “gauge” field. Let’s see how this field can be used to restore the gauge invariance in
the case of local transformations.

With normal derivative ∂µ replaced by the covariant derivative, the local gauge transformation for the
above part of the lagragian now looks like

ψ̄′γµD′
µψ

′ = ψ̄γµ(∂µ + ieA′
µ + ie∂µχ)ψ

= ψ̄γµDµψ,

provided
A′

µ + ∂µχ = Aµ

which gives the transformation properties of field Aµ under local gauge transformations.

The field Aµ is the potential of the electromagnetic field.

A new term has emerged in the Lagrangian: −eψ̄γµAµψ

It corresponds to the interaction between the fermionic field ψ and the electromagnetic field Aµ.
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From gauge invariance to QED

The previous slide is one of the most important in this course.

It explains how the requirement of local gauge invariance shows the way to introduce an interaction into
the Lagrangian.

The introduction of the gauge field with the required transformation properties under local gauge
transformations leads to a new Lagrangian which is locally gauge invariant.

The covariant derivative was not used to actually replace the normal derivative, it just provided a recipe
how the gauge field can/should be introduced.

This method will be used to track down the effects of local gauge invariance on other terms containing
derivatives in the Lagrangians we will deal with in the future.

The gauge field Aµ will need its own kinetic term, which has to be added to the Lagrangian.

After this procedure — the introduction of covariant derivative and the kinetic term for the gauge field
— the free fermion Lagrangian becomes the Lagrangian of Quantum Electrodynamics.
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QED Lagrangian

The Lagrangian of Quantum Electrodynamics (QED), which describes a world consisting of charged
fermions of one type (say, electrons, operator ψ) and bosons carrying the interaction (photons, operator
A) looks like this:

L = Lfermion + Lboson + Linteraction

Lfermion = iψ̄γµ∂µψ −mψ̄ψ

Lboson = −1

4
FµνFµν , Fµν ≡ ∂µAν − ∂νAµ

Linteraction = −eψ̄γµψAµ

where m and e are electron mass and charge, γµ are Dirac’s matrices, and the summation over repeated
indices µ, ν = 0, 1, 2, 3 is understood.

Starting from this Lagrangian, by applying the Euler-Lagrange formalism, one can derive the equations
which describe a big part of the dynamics of this world: Dirac’s equation and Maxwell’s equations.

We have done some of this already, and you know by now that this is not as hard as it may seem.
Finding solutions to any of those equations is a lot harder. . .
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Maxwell’s equations: quick reference

Aµ is a 4-vector with components (V,A), i.e. unites the scalar and vector potentials into a single
quantity. It’s not surprising then, that the tensor Fµν contains the familiar fields:

Fµν =









0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









In the relativistic covariant form, Maxwell’s equations look like this:

∂µFµν = jν

εµνρσ∂νFρσ = 0

where jν is the electromagnetic current, and ε is the 4D analog of ǫijk.

The first equation replaces the “sourced” pair

∇ ·E = ρ ∇×B = j

while the second one replaces the homogeneous pair:

∇ ·B = 0 ∇×E =
∂B

∂t
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QED: brief summary so far

Let’s have another look at the QED Lagrangian:

L = iψ̄γµ∂µψ −mψ̄ψ − 1

4
FµνFµν − eψ̄γµψAµ, Fµν ≡ ∂µAν − ∂νAµ

This stays invariant under the following local gauge transformation:

ψ(x) → ψ′(x) = eieχ(x)ψ(x)

ψ̄(x) → ψ̄′(x) = ψ̄(x)e−ieχ(x)

Aµ(x) →A′
µ(x) = Aµ(x)− ∂µχ(x)

The symmetry group, corresponding to this transformation, is U(1): the simplest unitary group, which is
abelian. Its basic representation can be multiplicative (as with ψ, eiχ), or additive (as with Aµ). The
trick is that the function χ(x) is the same, otehrwise the Lagrangian will not be invariant!
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Side note: invariance of currents

We have seen, that the invariance of the Lagrangian is linked, through Noether’s theorem, to
conservation of the electromagnetic current of the fermionic field, given by

jµ = eψ̄γµψ

In addition, this current itself is gauge-invariant: as γ matrices are constants, the two conjugate
exponentials in the gauge transformation simply cancel:

j′µ = eψ̄′γµψ
′ = eψ̄γµψ = jµ
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Building QED: overview

Historically, the development of QED was very different from the view below, but here is how it could
have been derived:

✦ A minimal free fermion Lagrangian built from the two possible invariant quadratic forms, ψ̄γµ∂µψ
and ψ̄ψ.

✦ Postulating gauge invariance of the Lagrangian, and hence introducing a massless vector field
(photons) to keep the Lagrangian locally gauge-invariant.

✦ This introduces non-linearity into equations of motion, which means interaction between fields.

✦ At this point we already have a correct classical theory of electromagnetism, Maxwell’s equations and
all the rest. Dirac’s equation is recovered along the way.

✦ Quantisation of the free fermionic filed by Fourier-decomposition, and assigning creation- and
annihilation- operator powers to the coefficients of this decomposition (i.e. postulating their
commutation relations).

✦ Similarly, quantisation applied to the photon field. Things are rather complicated here, mostly due to
the fact that a massless vector filed does not need 4 degrees of freedom provided by a 4-vector, but
only needs 2. These difficulties have been sorted out (with gauge invariance playing an important
role), so we do not care about them here.

✦ Develop perturbation theory to be able to do meaningful calculations.

This last step was quite painful, and we have not touched it yet. Let’s have a brief look.
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Heisenberg and Schrödinger pictures

Without interactions, all fields in QFT satisfy some sort of a wave equation, with solutions described by a
combination of plane waves.

Time evolution of the states can be described in either of the well-established “pictures”:

✦ Heisenberg picture: operators are time-dependent, states are not. This is the picture used so far, in
particular, for scalar fields:

φ̂(x) =
1

(2π)3

∫

d3k√
2ω

[â(k)e−ikx + â†(k)eikx]

Very useful if the solution is known — which is (only?) the case for free fields.

✦ Schrödinger picture: all time dependence carried by the wave function of the state |s〉:

i
d

dt
|s〉 = Ĥ|s〉 = (Ĥfree + Ĥint)|s〉

Solution is obtained relative to time moment t = 0, at which the above Fourier expansion is
evaluated (at that moment, the two pictures match).
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Interaction picture

With interactions, which are (or can be made) limited to certain range in space and/or time, one can still
view the initial and final multi-particle states as plane waves, but in-between certain changes
(“scattering”) take place due to the interaction of those waves with each other. This is best done in the
interaction picture:

✦ operators have time dependence generated by the free Hamiltonian

✦ the interaction term in the Hamiltonian (or Lagrangian) is responsible for time dependence in the
state wave functions.

This way, the interaction is effectively considered as a perturbation to the free field case.
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S-matrix

This whole procedure is in general described by the elements of the scattering matrix, so called S-matrix,
which transforms an initial state |i〉 into a final state |f〉:

|f〉 = Ŝ|i〉 ⇒ Sfi = 〈f |Ŝ|i〉

S martix is unitary, Ŝ†Ŝ = 1.

At 0-th order there is no interaction at all, Ŝ = 1 and hence |f〉 = |i〉.
At the first order Ŝ ∼ 1 + iLint:

|f〉 = |i〉+
∫

dx

∫

dt1 iLint(t1)|i〉

And so on, one gets a perturbative expansion for the S operator:

Ŝ = 1 +

∫

d4x1 iLint(x1) +

∫

d4x1

∫

t1>t2

d4x2 (iLint(x1))( iLint(x2)) + . . .

=

∞
∑

n=0

in

n!

∫

. . .

∫

d4x1 . . . d
4xn T {Lint(x1) . . .Lint(xn)}

where T stands for time-ordering of the operators involved in Lint.
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Theory and practice

So, all we have to do is calculate as many terms as we can, right?

Following this recipe, even the very simplest cases appeared to be far too complicated to work with, until
Feynman came up with his diagrammatic technique.

But even armed with Feynman’s toolbox, things are not all good:

✦ There is no guarantee, that the series converges; on the contrary, it’s likely to be divergent.

✦ May still be useful, if the next few terms are smaller than the ones being calculated.

✦ So far, even in QED, hardly beyond 4th order. . .
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The Basic Vertex in QED

Here is the interaction term in Quantum Electro Dynamics again:

Lint = −eψ̄γµψAµ

According to Feynman Rules, this interaction term is represented graphically by the basic vertex of QED:

ψ

ψ̄

Aµ−ieγµ

The arrow on the solid line represents the

flow of the fermionic quantum numbers,

not the directions of momenta.

Every vertex must include the δ-function

guaranteeing 4-momentum conservation,

e.g. δ4(p1 + p2 + k) where p1, p2, k are

4-momenta flowing in the electron, positron and

photon lines into the vertex.

This vertex is the basic block in building matrix elememts of various processes in QED.
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One Diagram — Many Processes

So, the basic vertex of QED looks like this ⇒

Depending on the orientation of the lines, it can

represent a number of different processes, e.g.:

Neither of these can actually take place because of energy-momentum conservation, but they can be
valid parts of more complicated diagrams.
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Feynman rules!

1. Time flows from left to right: lines coming in from the left describe incoming particles, lines leaving
the picture at right describe outgoing particles.

2. Whenever the direction of the fermionic line coincides with the direction of momentum, the line
describes the fermion (e−, µ−).

3. Whenever the direction of the fermionic line is opposite to the direction of momentum, the line
describes the antifermion (e+, µ+).

4. The fermionic line should be continuous, i.e. no colliding arrows are allowed when joining vertices
together.

5. The coupling constant — electric charge e in QED — is present at each vertex.

6. Both energy and momentum (i.e. 4-momentum) must be conserved at each vertex.

7. External, initial-state and final-state lines represent “real” particles, for which p2i = m2
i . They are

described by the wave functions with appropriate spin (scalar for spin 0, spinor for spin 1/2, vector
for spin 1 etc.).

8. Internal lines connecting two vertices represent “virtual” particles, for which (4-momentum)2 6= m2.
They are said to be “off-mass-shell”. They are represented by special functions describing their
propagation from one vertex to the other - the propagators.
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Propagators

Propagation of a particle from one vertex to another is, according to Feynman rules, described by its
respective propagator:

Propagator of a photon with 4-momentum k:

i

∫

d4k
−gµν

k2

Propagator of an electron (positron) with 4-momentum p (−p)

i

∫

d4p
pµγ

µ +m

p2 −m2

Every propagator also includes the integration over all possible values of the momentum.
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Line ends: wave functions

An initial state electron with 4-momentum p and spin state s is described by a spinor u(p, s)

A final state electron with 4-momentum p and spin state s is described by a conjugate spinor ū(p, s)

An initial state positron with 4-momentum p and spin state s is described by a conjugate spinor v̄(p, s)

A final state positron with 4-momentum p and spin state s is described by a spinor v(p, s)

An initial state photon with 4-momentum k and polarisation λ is described by a polarisation vector
ǫµ(k, λ)

A final state photon with 4-momentum k and polarisation λ is described by a polarisation vector ǫ∗µ(k, λ)

When applying Feynman rules to a diagram, you should always start from the end of the fermionic line,
and move against the arrow.

If there is no end of fermionic line in the diagram, then start from any vertex and still move against the
arrow.
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Invariant amplitude

Rather than calculate the actual element of the S-matrix, it’s more convenient to obtain a closely related
quantity, the invariant amplitude M, which is more directly linked to measurable processes:

Sfi ∼ δfi +Mfi

Fermi’s “golden rules” show the formal way. For the two simplest types of processes,

Γ(1 → 2) =
pf

8πM2
|M1→2|2

dσ(2 → 2)

dt
=

1

64πs

1

p2i
|M2→2(s, t)|2

Quantities pi, pf are the moduli of the 3-momenta of initial and final particles, respectively, in the
c.m.s.:

pi =
1

2
√
s

√

[s− (m1 +m2)2][s− (m1 −m2)2]

pf =
1

2
√
s

√

[s− (m3 +m4)2][s− (m3 −m4)2]

For decays, s should be replaced by M2. Obviously, at high energies one neglects masses and
pi = pf =

√
s/2.
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Feynman Rules: Building Amplitudes

Once you figure out what reaction you want to study, the next step is to draw the corresponding
Feynman diagram(s). If the process is electromagnetic, the only type of vertex you have is the
photon-fermion-antifermion vertex shown above.

If the process is allowed, you should be able to draw a valid Feynman diagram. If you cannot, this means
the process is firbidden (usually because it violates one or more conservation laws).

The next step is to apply Feynman Rules to write down the amplitude(s) for the process in question.
Every external line, every internal line, and every vertex corresponds to a term (function) which should be
writted in the right sequence. For one, each vertex in QED contributes a constant factor e into the
amplitude.

Then the modulus squared of (the sum of) the amplitude(s) should be calculated.

(the most tedious part of the procedure, especially when fermions are involved).
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Electron-Muon scattering: the Matrix Element

Surprisingly enough, the simplest real process in QED involves two types of fermions, say electrons and
muons.

The Feynman graph for Electron-Muon scattering looks like this:

e−

µ−

e−

µ−

γ

µ

ν

p1

p2

p3

p4

. . . and the corresponding matrix element will look something like this:

Me−µ−→e−µ− = ū(p3) (−ieγµ) u(p1)
−igµν

k2
U(p4) (−ieγν) U(p2)

where the photon 4-momentum k = p1 − p3 = p4 − p2 if directed from top to bottom, spinors u, ū
describe electrons, while U,U describe muons.
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Squaring the Matrix Element

The next step involves writing out the conjugate matrix element M†:

M†
e−µ−→e−µ−

= ū(p1) (ieγµ′) u(p3)
igµ

′ν′

k2
U(p2) (ieγν′) U(p4)

and calculating |M|2 ≡ M†M, while summing over various spin states of electrons and muons with
∑

spin

u(p1)ū(p1) = pµ1γµ +m etc.

This stage ends up with a few traces of products of γ-matrices to be calculated, which is sometimes
quite tedious. The final expression will include invariant dot-products of 4-momenta like (p1p2) etc,
which can be related to Mandelstam variables

s = (p1 + p2)
2 = (p3 + p4)

2, t = (p1 − p3)
2 = (p4 − p2)

2, u = (p1 − p4)
2 = (p3 − p2)

2

which obey the wonderful relation s+ t+ u = 2m2
e + 2m2

µ.
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Electron-Muon scattering: the cross section

Here is the end result of these calculations:

∣

∣Me−µ−→e−µ−(s, t)
∣

∣

2
= 32π2 α2 s

2 + u2

t2
, α ≡ e2

4π

Now, using the golden rule, we have the differential cross section:

dσ

dt
=

2πα2

s2
s2 + u2

t2

The result looks remarkably simple. We could have guessed some gross features of it:

✦ α2 — the diagram is second-order, hence it must contain the coupling squared;

✦ 1/t2— the photon exchange happens in t-channel (i.e. k2 = t), hence the photon propagator in M
is ∼ 1/t, which should be squared in the cross section.

However, there is no way of obtaining the full result without completing the calculation outlined above.
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Cross-symmetry

Now we can immediately find the matrix element of a different, but related process: e+ + e− → µ+ + µ−

This is accomplished using cross-symmetry. Here is the recipe:

✦ Take the reaction e− + µ− → e− + µ−.

✦ Replace initial µ− with its antiparticle µ+ and change the sign of its 4-momentum p2. Now the µ−

in the in itial state is transformed into a µ+ in the final state.

✦ Replace final e− with its antiparticle e+ and change the sign of its 4-momentum p3. Now the e− in
the final state is transformed into a e+ in the initial state.

✦ Now we have the reaction e+ + e− → µ+ + µ−.

The interesting thing is that this new process is still described by the same matrix element, with the
momenta changed accordingly:

Me−µ−→e−µ−(p1, p2, p3, p4) = Me+e−→µ+µ−(p1,−p3,−p2, p4)

But this change of momenta is equivalent to swapping s and t. Hence

∣

∣Me+e−→µ+µ−(s, t)
∣

∣

2
= 32π2 α2 t2 + u2

s2

dσ

dt
(e+e− → µ+µ−) =

2πα2

s2
t2 + u2

s2
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One Process — Two Diagrams

Here is another example: the process of elastic electron-positron scattering (Bhabha scattering):

‘the t-channel exchange’ ‘the s-channel annihilation’.

For a calculation to be valid, one should calculate the square of the modulus of the sum of these two
matrix elements.

Particle Physics (page 181) V. Kartvelishvili (Lancaster U)



. . . and the cross section

Here is the square of the matrix element

|Me+e−→e+e− |2 = 32π2α2

[

s2 + u2

t2
+

t2 + u2

s2
+

2u2

st

]

✦ The first term is exactly the same as in eµ → eµ elastic scattering.

✦ The second term is exactly the same as in e+e− → µ+µ− annihilation.

✦ The last term is new. It is due to interference between the two amplitudes represented by the two
Feynman diagrams (it’s quantum mechanics!).

===============
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Feynman Diagram Construction Kit
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Higher Orders

The lowest order non-zero (and non-trivial) diagram is the leading order diagram, LO.
Then come next-to-leading order diagrams NLO, next-to-next-to-leading order NNLO etc.

At higher orders, number of diagrams increases substantially, and soon the calculations
become unmanageable. But we are happy as long as higher order corrections are “small”.

Note: at higher orders diagrams contain loops, and some integrals become divergent. A
procedure called ‘renormalisation’ is then in order, to fight those divergences.
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Convergence of the Perturbation Theory

So, every vertex used to draw the diagram introduces the factor e (charge of the fermion) which then
transforms into α = e2/4π in the square of the matrix element. But α = 1/137 = 0.0073 is a small
number. So the more vertices we use, the smaller the corresponding contribution.

The number of vertices used is called the order of the Feynman diagram.

If the same process can be described by two diagrams of different orders, the one with higher number of
vertices usually introduces a small (sometimes negligible) correction.

One might argue that the “true exact” amplitude should contain all orders, but that is beyond our reach
at the moment (and the series probably starts diverging after about ∼ 1/α = 137 terms anyway). I
believe the fourth order is as far as we’ve got so far. . .

In the leading order one should use as few vertices as possible. This is the basis of the perturbation
theory in QED.
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Loops and divergences

Some diagrams, especially at higher orders, will contain loops.

Now, remember Feynman rules?

✦ Every propagator contains an integration over the 4-momentum of that line, d4k

✦ Every vertex contains a δ-function of energy-momentum conservation at that vertex, e. g.
δ4(p1 − p3 − k).

✦ In a tree diagram, the number of δ-functions balances out the number of integrations (one
δ-function will be left to take care of the overall energy-momentum conservation).

✦ But if a diagram contains loops, the number of δ-functions is not enough, and one (or more)
integration is left “alive” and needs to be performed.

✦ These “loop integrals” are very dangerous: more often than not, they are divergent (i.e. give rise to
infinities).
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Infrared and ultraviolet divergences

In the process of calculating Feynman amplitudes, two types of divergences can take place.

✦ Some of the divergent integrals have the singularities at the low-end of the energy-momentum range,
i.e. in the area around zero momenta.

✦ These are called ‘infrared’ divergences. They often occur with photons (or other massless particles)
being present. If careful, these usually cancel out.

✦ In fact, one can show that IR divergences cancel once the amplitudes with real and virtual photons
are (carefully) added together.

✦ The divergences happening at high momentum limits of integration are called ‘ultraviolet’.
These are very persistent, and require a special procedure to deal with them. This
procedure is called renormalisation.
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Counting rules for ultraviolet divergences

The convergence of a generic integral over some 4-momentum k

I(a) =

∫ Λ d4k km

(a+ k)n

depends on the balance of powers m and n, i.e. on index ω = 4 +m− n

The integral will converge at high k, i.e. will stay finite when Λ → ∞, if ω < 0.

For ω = 0 it diverges logarithmically, e.g. I ∼ log(Λ/a).

For ω = 1 it diverges linearly (I ∼ Λ), for ω = 2 it diverges quadratically (I ∼ Λ2) etc.

For a given process in QED, described by a Feynman diagram with ne external fermionic lines and nγ

external photonic lines, once can, knowing the corresponding Feynman rules, calculate ω in advance:

ω = 4− 3
2ne − nγ

and hence identify potentially dangerous diagrams.
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Examples of divergent diagrams

Some of these vanish, or are irrelevant, or

happen to be finite after the renormalisation procedure.

The important ones in QED are the corrections to

✦ the electron propagator,

✦ the photon propagator,

✦ the electron-positron-photon vertex

The important thing is that at higher and higher orders in α, the divergences stay the same, i.e. no new
types of divergences appear.

This means that one can eliminate all divergences in all orders of perturbation theory in one go. Theories
like this are said to be renormalisable.
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Renormalisation

In order for any quantum field theory (QFT) to make sense, i.e. be viable as a fundamental theory, it
needs to be renormalisable.

This term means that there is a well-defined mathematical procedure to get rid of those ultraviolet
divergences.

This is usually done in two steps:

✦ At regularisation stage, the integrals are somehow made finite, e.g. by limiting the range of
integration to some (large) value, or, more recently, by pretending that the space has non-integer
number of dimensions d = 4− ǫ (the integrals in such space happen to be finite: the infinities show
up as singularities like Γ(d− 4) etc.)

This is called dimensional regularisation.

✦ Then, the “pure divergent part”, i.e. the singularity at ǫ = 0, is subtracted, and the remaining finite
part is calculated (back in d = 4 dimensions).
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Renormalisation —II

This looks rather arbitrary, but here is the difference between renormalisable and non-renormalisable
theories: in a good (renormalisable) theory, one only needs to regularise several (finite number) types of
integrals, to keep things divergence-free in all orders of perturbation theory. A bad (non-renormalisable)
theory needs one or more new “counter-terms” (i.e. subtractions) at each order.

In any case, even in good theories, after the regularisation, there is still some freedom left in the choice
of regularisation scale. This should not affect the results once “all orders” are included, but it sure can
change the result of a finite-order calcluation!

QED has a natural regularisation scale, corresponding to zero momenta (i.e. large distances), where the
classical limit should work, and the Coulomb’s law should be reproduced.

QED has been proven to be renormalisable. The facts that the photon is massless, and that the coupling
α is dimensionless, play an important role here — but the real big player is gauge invariance.
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Renormalisation and gauge invariance

QED has played a hugely important role as a test-bed, because it’s a well established theory with
extremely precise predictions, checked in great detail in various experimental measurements, and proven
to be successful. It is also shown to be a gauge theory.

Gauge-invariant theories are guaranteed to be renormalisable.

Gauge invariance is the guardian of renormalisability.

This can be shown through the use of “Ward identities”, which are based on the concept of the
gauge-invariant derivative we met before.

They essentially claim that multiplying the matrix element by a momentum kµ, which essentially means
taking a (spatial) derivative, is equivalent to adding a vertex with a photon of momentum kµ to the
diagram. So more divergent terms can be expressed through less divergent terms, with more vertices.

This paved the way for other successful gauge theories, including the quatum chromodynamics (QCD)
and the Electroweak theory.

However, if the bosonic fields are massive, adding an extra bosonic propagator to a loop would not in
general be “divergence-neutral”, but rather would make things more and more divergent at higher orders,
thus making the theory non-renormalisable.

We will see how this problem can be avoided, if the boson masses are introduced in the gauge-invariant
way, through spontaneous breaking of the gauge symmetry.
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Regularisation scale dependence

As mentioned above, a calculation to all orders should be independent of regularisation scale. However,
at a finite order of perturbation theory there is still some dependence on the regularisation scale —
which, in fact, can be exploited to achieve some useful results.

The three basic objects in QED, which are being renormalised/regularised, are electron mass, photon
mass, and the coupling. The latter is the most interesting.

At leading order, coupling is defined as the α in the scattereing cross section of two charged particles at
t → 0:

e−

µ−

e−

µ−

γ

µ

ν

p1

p2

p3

p4

[

dσ

dt

]

t→0

=
4π

t2
α2

At one-loop level this gets modified, most importantly

by the fermion-antifermion loop emerging in the middle of the photon propagator.

The contribution of this diagram can be calculated, regularised, renormalised, and fed back to the
expression defining the strength of the coupling. The interesting thing here is that the effective value of
α will depend on the regularisation scale µ2, i.e. the typical value of momenta of interacting particles at
which the regularisation (i.e. subtraction of infinities) took place. In this case µ2 ≃ |t|.
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Beta-function in QED

Evolution of the coupling α is given by the renormalisation group equation

µ2 ∂α

∂µ2
= β(α)

where µ is the regularisation scale, and α = α(µ2) is the QED coupling “constant”.

It now depends on µ2: the “real” fine structure constant we know and love is α(0).

β is the beta-function, which determines the behaviour of α at various scales.

In QED, calculations show that to the leading order, β(α) = 2
3πα

2. Thus we get a simple differential
equation to solve:

µ2 ∂α

∂µ2
=

2

3π
α2

3π

2

dα

α2
= d(log µ2)

−3π

2

(

1

α(q2)
− 1

α(µ2)

)

= log q2 − log µ2
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Regularisation scale dependence in QED

So, given the coupling constant α at some µ2, we can now estimate its value at some (say) higher value
q2:

α(q2) =
α(µ2)

1− 2
3πα(µ

2) log q2

µ2

✦ Because of that negative sign in the denominator, with q2 increasing, α(q2) also increases, maybe
even infinitely (Landau singularity).

✦ The log increases very slowly, and it’s likely that higher-order corrections will kick in before the
singularity is reached.

✦ In any case, the trend is clear: moving to higher q2, i.e. probing deeper into an electron, one sees a
larger charge.

✦ A useful interpretation is that the point-like electron charge, buried very deeply at very large q2, is
quite strong, but virtual e+e− dipoles are shielding it, effectively reducing it when viewed from larger
distances (smaller q2).

✦ What we see at “classical” distances is the fine structure constant, α = 1/137.

✦ I must add here that the q2-dependence of α has been measured: at q2 ≃ m2
W one has α ≃ 1/129.

==============
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Colour of quarks

Properties of hadrons imply that quarks and antiquarks have a special property (i.e. “quantum
number”), called colour, which leptons do not have.

✦ This means that the quark wave function ψn, apart from being a 4-spinor (like an electron), also has
an additional index n (and hence extra degrees of freedom).

✦ This index n can have one of three possible values, or “colours”, n = R,G,B.

✦ Antiqiarks, resepctively, carry anticolours, R̄, Ḡ, B̄.

✦ No quark or antiquark is colourless!

So, a free Lagrangian for one particular quark flavour (e.g. u, or d, etc.) will look like this:

L = iψ̄nγ
µ∂µψn −mψ̄nψn

where summation over the new indices is implied.

E.g., the mass term, when expanded, looks like this:

m ψ̄nψn ≡
∑

n=R,G,B

m ψ̄nψn

= m(ψ̄RψR + ψ̄GψG + ψ̄BψB)
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Electromagnetic interactions of quarks

Lagrangian for a free coloured quark field is invariant under 3 separate U(1) gauge transformations,
ψn → ψ′

n = exp(ieχn)ψn, where each colour n has its own phase χn.

If this transformation is made local, one can introduce three separate vector gauge fields (one for each
colour) to make the Lagrangian locally gauge invariant. This would mean that each quark colour has its
own photon-like field which only interacts with quarks of this particular colour. Note that such “photon”
would still be colourless, as it is not authorised to change the quark’s colour. Such theory would contain
three separate kinetic terms for the three types of “photons”, and three separate interaction terms. This
kind of interaction does not correspond to any known phenomenology.

Another possibility is to have a common phase for all three colours, and hence one common gauge field
for all three colours, ψn → ψ′

n = exp(ieχ)ψn. This is the right way to introduce the electromagnetic
interactions of quarks, with interaction vertex similar to QED with an added δmn (which forbids colour
change at the interaction vertex)

−ieψ̄n(δnmγµ)ψmAµ = −ieψ̄nγ
µψnAµ

and one common kinetic term for the photon.

However, the Lagrangian of a free 3-colour quark field also has a much bigger symmetry.
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Useful definitions

In a gereric SU(N) special unitary group, two of the lowest order irreducible representations play special
roles.

One is the “founding father” representation N ×N . This is called the fundamental representation.
These act on basic objects of dimension N . In SU(2) these are spinors with 2 (complex) components,
which are “rotated” by 2× 2 unitary matrices. In SU(3) these are columns with 3 components
(“3-spinors?”), “rotated” by 3× 3 matrices. In SU(N), the basic objects are columns with N
components.

The other important representation is the adjoint representation, which is represented by matrices of size
(N2 − 1)× (N2 − 1), i.e. 3× 3 for SU(2) and i.e. 8× 8 for SU(3).

In fact, the dimensions of adjoint representation are due to the number of parameters — and hence
number of generators — in the group:

There are 22 − 1 = 3 generators in SU(2) and 32 − 1 = 8 generators in SU(3).
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General element of SU(N)

A general element of the SU(N) group in any representation can be parameterised in the familiar form
of an exponentiated matrix: U(η) = e

i
2
ηaΛa

where η denotes the collection of group parameters ηa (“angles” ?), whose number is N2 − 1

(I.e. a = 1, . . . , N2 − 1), matched by the number of generators Λa.

There is no dependence on a in the l.h.s., because summation is implied over index a.

(There are 3 terms in the sum in SU(2), 8 terms for SU(3), (N2 − 1) terms for SU(N)).

The dimension of matrix U is the same as the dimension of the generators Λa.

Both dimensions depend on which representation we are in:

✦ N ×N in the fundamental representation

✦ (N2 − 1)× (N2 − 1) in the adjoint representation

✦ as appropriate in other representations

But: In any representation of the same group, the number of terms in the sum over a remains the
same. It’s the size of generator matrices Λa which changes from representation to representation, not
their number, which is always (N2 − 1) for any representation of SU(N).

And, of course, the commutation relations of the generators Λa stay the same for any
representation of the same group!
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Fundamentals of SU(3)

Here are the 8 generators of SU(3), in fundamental 3× 3 representation:

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 = 1√
3





1 0 0
0 1 0
0 0 −2





✦ All these are traceless.

✦ λ3 and λ8 are diagonal, representing two useful quantities: respectively ‘isospin’ and ‘hypercharge’,
which commute withe ach other.

✦ λ1, λ4, λ6 represent exchanges of initial quarks: 1 ↔ 2, 1 ↔ 3, 2 ↔ 3 resepectively.

✦ λ1, λ2, λ3 are Pauli matrices extended by zeroes, hence SU(3) has at least one SU(2) as a subgroup
(in fact, three of them!)
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Fundamentals of SU(3) — II

The algebra of SU(2) generators — commutation relations between its three generators — looked like
this:

[σk

2
,
σl

2

]

= iǫklm
σm

2

with k, l,m = 1, 2, 3.

The algebra of SU(3) generators looks similar, but is much more complicated:
[

λa

2
,
λb

2

]

= ifabc
λc

2

where a, b, c = 1, 2, . . . , 8.

The structure constants fabc are also fully antisymmetric, but some of them now have different
non-zero values:

f123 = 1, f458 = f678 =
√
3
2 , f147 = f165 = f246 = f257 = f345 = f376 = 1

2

Particle Physics (page 201) V. Kartvelishvili (Lancaster U)



Representations of SU(3)

The fundamental representation of SU(3) was already shown. Basic “3-spinors” — triplets of quarks —
transform according to these.

Antiquarks are described by conjugate anti-3-spinors.

Quark-antiquark states may belong to either singlet or octet:

3⊗ 3̄ = 1⊕ 8

Three-quark states things are obviously more involved:

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10

Note those “1” in the r.h.s. of both triplet-antitriplet and three-triplet states

(There is also a similar one with three antitriplets).

These – and their combinations – are the only possibilities to assemble an SU(3)-singlet (invariant) if
your basic components are all triplets and/or antitriplets.
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SU(3) as the colour symmetry: QCD

Historically, SU(3) was introduced into particle physics by Gell-Mann and Neeman as a flavour symmetry
of three types of quarks – u, d, s. It was exceptionally successful to explain the mass spectrum of hadrons
(more later).

But SU(3) has a second role in particle physics, as the gauge group for Quantum Chromodynamics
(QCD).

The important thing for us now is that the wave function ψ describing each quark flavour belongs to the
triplet representation of of the colour group SU(3), operating in some “colour space”.

This means that under the SU(3)-“rotations” in that space, each quark field ψ and the antiquark field ψ̄
transform as 3-component SU(3)-objects:

ψn → exp(iη · λnk/2)ψk ψ̄k → ψ̄n exp(−iη · λnk/2) n, k = R,G,B

Here λa are the SU(3) generators in the fundamental triplet representation of SU(3) — the λ-matrices,
and the “dot product” (η · λnk) is a shorthand for

(η · λnk) =
∑

a=1...8

ηaλa
nk

where ηa are the eight “rotation angles” in SU(3) colour space.
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Colour of quarks and hadrons

The key point here is that coloured (i.e. non-singlet in colour SU(3)) objects are not allowed to travel
macroscopic distances — “colour confinement”.

Leptons are fine — they are colour-singlet objects as they are.

But in the quark world, we are only ever able to directly observe composite objects which are
colour-singlets, as all quarks and antiquarks carry colour.

And there are only three possible ways to construct colour-singlet objects from colour-triplet
quarks and antiquarks: 1√

3
|RR̄+GḠ+BB̄〉

1√
6
|RGB −GRB +BRG−RBG+GBR−BGR〉

1√
6
|R̄ḠB̄ − ḠR̄B̄ + B̄R̄Ḡ− R̄B̄Ḡ+ ḠB̄R̄− B̄ḠR̄〉

✦ The first one clearly needs a quark and an antiquark - this will be a meson.

✦ The second can only be formed from three quarks; this is a baryon.

✦ The last one must contain three antiquarks, and will be an antibaryon.

✦ These are the three types of hadrons — strongly interacting particles.

There is a compact way of writing the colour part of the wave functions describing these particles:

1√
3
δnkqnq̄k,

1√
6
ǫnklqnqkql,

1√
6
ǫnklq̄nq̄k q̄l, n, k, l = R,G,B.
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Gauge group SU(3)

So the combination of colours (R̄R+ ḠG+ B̄B) is invariant under general rotations in colour space,
defined by

ψn → exp[
ig

2
(η · λnk)]ψk ψ̄k → ψ̄n exp[−

ig

2
(η · λnk)] n, k = R,G,B

where λa are SU(3) λ-matrices, the 8 generators of SU(3) in the fundamental 3-component
representation, while the “dot product” (η · λnk) is a shorthand for

(η · λnk) =
∑

a=1...8

ηaλa
nk

where ηa is an octet of “rotation angles” in SU(3) colour space.

The way things are defined so far, both terms in the original free-quark Lagrangian will be invariant
under such global gauge transformations, as the “positive” rotations of ψ will be cancelled out by
“negative” rotations of ψ̄, very similarly to the U(1) case.
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Local SU(3) transformation

Clearly, if the angles ηa are changing from point-to-point in space, i.e. for the local gauge
transformations, the differentiation operator in the kinetic term will cause non-invariance (again!).

Suppressing the quark colour indices, we have

ψ′ = exp(
ig

2
η(x) · λ)ψ

ψ̄′ = ψ̄ exp(− ig

2
η(x) · λ)

and it is clear that ∂µψ
′ will contain an unwanted term ∂µη

a(x), which violates local gauge invariance.

But we already know the way to combat this: introduce the covariant derivative

Dµ = ∂µ +
ig

2
(Gµ · λ)

where Ga
µ are the new gauge fields. There are 8 of them, because you need one for each angle ηa, as the

colour dot-product implies. They are called gluons.
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Local SU(3) invariance

Now, just as in the case of U(1) in QED, the condition that the fermionic part of the Lagrangian, now
with the modified derivative, stays invariant under local gauge transformations,

ψ̄′D′
µγ

µψ′ = ψ̄Dµγ
µψ

dictates the transformation properties of the gauge fields G:

Ga
µ → G′a

µ = Ga
µ − ∂µη

a−gfabcηbGc
µ

This again looks similar to the U(1) case, except for the last term, which shows up because SU(3) is a
non-ableian group. It emerged from the invariance condition, because otherwise the terms with λ would
not cancel.
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Lagrangian for gluons

The Lagrangian of the gauge fields proper still looks quite innocent

Lgauge = −1

4
F aµνF a

µν

But the price to pay is an extra term in the definition of F :

F a
µν ≡ ∂µG

a
ν − ∂νG

a
µ−gfabcGb

µG
c
ν

The effect of this term is quite dramatic:

In addition to quadratic terms, there will now be terms containing three G fields, and even terms
containing four G fileds.

This means that gluons must carry colour charges, and can interact with each other directly.

And this is all due to the fact that SU(3) is non-ableian: all those new interaction terms vanish if
fabc = 0.
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Quantum Chromodynamics

So, the interaction term between quarks ψn and gluons Gµ
a looks like this:

−igψ̄n

(

λa

2

)

nk

γµψkG
a
µ

Once again, due to non-Abelian nature of SU(3), the interaction resulting from the requirement of local
SU(3) gauge inveriance exists not only between quarks and gluons, but also between gluons themselves,
through 3-gluon and 4-gluon couplings.

Only “coloured” particles — quarks, antiquarks ang gluons — participate in this interaction, hence all
leptons, photons, W and Z are colour-neutral (i.e. are SU(3) scalars) and hence do not participate in
strong interactions.

So far, there is no indication that gluons have mass. Like photons, they are considered to be massless.

According to the colour confinement hypothesis, only colour-neutral (“white”) particles can exist as
asymptotic (observable) states, hence quarks and gluons remain locked inside hadrons: mesons, baryons
and antibaryons.
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Colour of gluons

For completeness, let’s list possible colours of gluons.

There are eight different gluons. Here is the usual choice:

|RḠ〉, |RB̄〉, |GR̄〉, |GB̄〉, |BR̄〉, |BḠ〉, 1√
2
|RR̄−GḠ〉, 1√

6
|RR̄+GḠ− 2BB̄〉

There is no such thing as a white, colourless gluon (or quark, for that matter).

On the other hand, leptons, photons, W and Z are all colourless.

Gluons are massless. They do not carry electric charge, and have no coupling with photons, W± or Z0.
They only participate in strong (QCD) interactions.
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QCD Vertices

So, gauge invariance leads us to the following interaction vertices:

a) A quark-(anti)quark-gluon vertex, somewhat similar to that in QED with coupling g.

b) A three-gluon vertex: the trademark QCD interaction, with coupling g.

c) A four-gluon vertex, with higher-order coupling g2.

There are Feynman rules for these vertices, as well as for quark and gluon propagators. The structure of
the matrix elements is quite similar to that in QED, but in addition to spatial part with traces of γ
matrices and momemtum integration, there are also colour factors, made up from traces of λ matrices
and colour structure functions fabc.

You should be able to use the QCD vertices to draw all kinds of Feynman diagrams for the various QCD
processes.
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Strong coupling αs

Strong coupling αs plays in QCD the role of α in QED.

A simple one-gluon exchange in t-channel, between two scattering quarks, could have been used as the
definition at t → 0, if such limit existed — but because of quark confinement, no such limit exists.
Hence, a different reference momentum scale is needed.

e2

4π
≡ α ⇒ g2

4π
≡ αs

Loop diagrams, like these, result in

q2 dependence of the strong coupling.

QED the electron-positron loop as in (a) leads to Landau singularity, and increase of the coupling at
large q2 (small distances).

In QCD, there are not one, but many one-loop corrections to αs, as in (b,c,d). Some of them involve
quarks, and some involve gluon loops.
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Regularisation scale dependence in QCD

Once again, the evolution of the coupling αs with regularisation scale µ2 is given by the equation

µ2 ∂αs

∂µ2
= β(αs)

where β is the beta-function for QCD, which now should include both quark and gluon loop contributions.

In QCD, β(αs) = −bα2
s where b = 33−2N

12π .

This 33 is due to gluon loops, while each quark flavour contributes −2 (so all N quark flavours
contribute −2N).

As in QED, using the equation above, one can find the expression for αs(q
2) in terms of αs(µ

2) by
solving this differential equation:

µ2 ∂αs

∂µ2
= −bα2

s

The solution process is identical to that in QED case, as only b is different.
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Regularisation scale dependence in QCD (cont.)

Following that derivation, we get

αs(q
2) =

αs(µ
2)

1 + bαs(µ2) log q2

µ2

, b =
33− 2N

12π

Now, if a quark is really-really heavy, like top quark, it’s not likely to significantly contribute. At each q2,
only those quarks contribute, whose typical masses mq are smaller than q. Usually, at momentum scale
of order of tens of GeV, this means no more than 5 “active” quark flavours (u, d, s, c, b). This seems to
be the case in QCD so far.

So, as N < 16, coefficient b is positive, and our effective constant becomes weaker and weaker at high
q2. This property of QCD is called asymptotic freedom: at asymptotically large values of the trasferred
momenta, the “strong” coupling “constant” becomes small, and the quarks are essentially free...

On the other extreme, of very low q2 ≪ µ2, i.e. large distances, the whole log term changes sign, and αs

becomes stronger and stronger.

This may be interpreted as the onset of colour confinement, but as αs increases, higher order diagrams
become more and more important and the above approximation becomes invalid.
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Confinement and Asymptotic Freedom

The formula describing q2-dependence of the strong coupling αs can be re-written in a different form:

αs(q
2) =

4π

β0log(q2/Λ2)
β0 = 11− 2

3
N

Here Λ is the QCD scale parameter, which replaces

the reference point µ. Its measured value is about

100 MeV, which corresponds to αs(q
2 = M2

Z) ≃ 0.12.

There are various ways of measuring αs, such as

the rate of gluon radiation off quarks, heavy

quarkonium decays, deep inelastic lepton-hadron

scattering, and others.

The plot here shows results of some experimantal measurements, compared to the theoretical
expectations.
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Electromagnetic Interactions of Quarks

EM interactions of all refmions — quarks and leptons — are very similar: coupling with
the photon cannot change the type of the fermion, just its 4-momentum, and the
coupling strength is proportional to the electric charge of the fermion.

All Feynman diagrams — and hence matrix element calculatiuons — describing EM
interactions of leptons will also be valid for quarks - just remember to use the correct
charge in each vertex

Additional difference may come from colour: some matrix elements acquire an additional
(perfectly calculable) factor.

Example: The differential cross section of the process e+ + e− → u+ ū is

dσ

dt
(e+e− → uū) =

2πα2

s2
×
(

2

3

)2

× 3× t2 + u2

s2

where the (2/3)2 are due to the u-quark charge, and 3 is due to colour.

(Essentially, there are three possible uū pairs one can create: red-antired, blue-antiblue
and green-antigreen, which the photon cannot distinguish).
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Masses of Fundamental Fermions

The three generations (families) of fundamental fermions have quite different masses (all
in MeV):







e 0.51
νe . 1 · 10−6













µ 105.7
νµ . 1 · 10−6













τ 1777.0
ντ . 1 · 10−6







Leptons become heavier with each new generation!

All masses on this slide are in MeV

Quark masses, although not very well defined, are still meaningful and important
quantities (see later). And here the same pattern is even more pronounced:







u ∼ 5
d 7













c 1200
s 120













t 175000
b 4300







In order to produce a quark-antiquark pair qq̄, the energy
√
s should be higher than the

respective threshold, Eth ≃ 2mq. So producing a tt̄ pair is obviously a bit of a problem. . .
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e+e− Annihilation into Quarks

We’ve seen that away from both µµ and qq̄ thresholds,

dσ

dt
(e+e− → uū) =

4

9
· 3 · dσ

dt
(e+e− → µ+µ−)

The same should be true for the total cross section, and in fact all qq̄ cross sections:

σ(uū) = σ(cc̄) = σ(tt̄) =
4

9
· 3 · σ(e+e− → µ+µ−)

σ(dd̄) = σ(ss̄) = σ(bb̄) =
1

9
· 3 · σ(e+e− → µ+µ−)

Then the total cross section of producing any quark-antiquark pair in e+e− annihilation
(away from threshold regions) should be proportional to the cross section of producing a
µ+µ− pair:

R ≡
∑

σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
=

∑

3e2q

where the summation goes over ‘kinematically allowed’ quark flavours (those above
threshold at given energy, so ignore tt̄ for the time being).

So, R should increase with energy in steps, being roughly constant between thresholds.
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Experimental Plot of R = σ(e+e−→ hadrons)
σ(e+e−→µ+µ−)
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Q & A: Is it true that qq̄ ≡ hadrons ? What’s the difference between the red and the
green lines? What are those blue peaks? Red peaks? The huge green Z peak?
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Q & A Session

✦ Is it true that qq̄ ≡ hadrons ?

The short answer is ‘almost’, as at high s QCD corrections must be small, since αs is
small

✦ What’s the difference between the red and the green lines?

The green line describes our prediction, which assumes that q and q̄, unce produced,
do not interact with each other any more. The red line takes into account this
interaction as described by QCD. Including leading order corrections gives a factor
1 + αs(s)/π.

✦ What are those blue peaks? Red peaks?

There are hadronic resonances being produced (and then decayed) at/near each
flavour threshold: ρ/ω for u, d, φ for s, J/ψ for c, Υ for b. All these are bound states
of the respective quark and antiquark and are called quarkonium.

✦ What’s the huge green Z peak?

That’s a completely different story. That peak corresponds to the production and
subsequent decay of the Z0-boson, one of the carriers of weak interactions.

And that will be our next topic!
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Propagator of an Unstable Particle

The propagator of a stable particle with 4-momentum k and mass m is:

∼ 1

k2 −m2

The propagator has a singularity at p2 = m2. Theorists may even say that a particle’s mass (squared) is
defined as the value of k2 where the propagator has that singularity.

Unstable particles: mass acquires an imaginary part proportional to the (total) decay rate:

m → m− iΓ/2

Propagator of an unstable particle:

1

k2 − (m− iΓ/2)2
=

1

k2 − (m2 − Γ2/4) + iΓm

The position of the singularity is shifted slightly along the real axis (but usually Γ2/m2 ≪ 1, so this does
not matter much).

More importantly, the singularity is shifted away from the real axis, because of the imaginary part. As
long as particle momenta remain real, the denominator is never zero and the propagator of an unstable
particle will remain finite.

Particle Physics (page 221) V. Kartvelishvili (Lancaster U)



The Breit-Wigner Distribution

Usually Γ2/4 ≪ m2, so let’s neglect that term for simplicity.

Calculate the modulus squared of the propagator:

∣

∣

∣

∣

1

(k2 −m2) + iΓm

∣

∣

∣

∣

2

=
1

(k2 −m2)2 +m2Γ2

This function clearly has a peak — but not a singularity — at k2 = m2 (check this!).

Let’s move to the decay frame of the particle, where, by definition, k = 0. But the particle is not real,
and E 6= m in general. Then

k2 −m2 = E2 −m2 = (E +m)(E −m)

In the vicinity of the peak E +m ≈ 2m and we finally have:

|Propagator|2 ∼ 1

4m2(E −m)2 +m2Γ2
∼ Γ2

(E −m)2 + Γ2/4

This formula, as a function of E, describes the Breit-Wigner distribution. It has a peak at E = m, whose
width at half-height is Γ (check this!).

All resonances in physics, including particle physics, are described by a Breit-Wigner distribution.
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Hadronisation

Process e+e− → q q̄, via an s-channel photon and/or Z0, at high energy
√
s & 10 GeV.

The qq̄ system is colourless (as was the γ/Z0), but there are very strong colour forces
acting between q and q̄, (fig. (a)), especially when their invariant mass

√
s is high and

hence they have to move away from each other with big relative momentum.

These forces are such that some

kind of “colour string” is formed

between the two quarks (fig. (b)).

The energy of this string increases

(linearly) with the length of the string,

up to the point when the vacuum breaks down

and another quark-antiquark pair is born out of vacuum —

or, in other words, a virtual pair becomes real, thanks to the energy of the string.

It’s a bit like a long straight magnet: if you pull the ends,

it will break into two (or more) smaller straight magnets. . . .
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Hadronisation — II

Let’s observe the evolution — “fragmentation” —

of say, a → cc̄ pair produced in e+e− annihilation:

The colour strings continue breaking up as long

as there is enough energy (inv. mass) available.

Then, the produced quarks combine with

“nearest” antiquarks (diquarks)

to produce final mesons (baryons).

Those secondary quark-antiquark

pairs are usually light, i.e.

uū or dd̄, sometimes ss̄.

That’s why the leading hadrons — those at the ends of the chain — usually contain the
initial quarks (whichever flavour they were), while the rest are nearly always pions.
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Feynman vs Quark Flow

The Feynman diagram (or the colsest thing to F.d. we can draw in QCD), equivalent to
the process on the previous slide, looks like this:

The space between the quark-antiquark lines

is understood to be filled with virtual gluon

“fishnet”. But counting vertices does not make

sense: the coupling is too strong!

In these circumstances, including all those

gluonic interactions in the Feynman diagrams

is pointless, and those soft gluons are just

ignored. Feynman diagrams thus become quark-flow diagrams, showing only constituent
quarks, i.e. those which determine the quatum numbers of the hadrons, not the “sea” of
virtual qq̄ pairs and gluons which is always present inside hadrons. But electroweak
vertices still have to be shown explicitly.

On the contrary, it is thought that the hadronisation proceeds without any suppression,
i.e. the probability of ending up in some final hadronic state is equal to unity. The
problem is, we cannot predict probabilities of specific final configurations very well. . .
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Hadrons at High Energy

So, at rest all mesons consist of a “constituent” quark and a “constituent” antiquark,
while all (anti)baryons consist of three “constituent” (anti)quarks, of various flavours.

These “constituent” quarks and antiquarks are, however, in constant interaction with
each other, emitting and swallowing gluons all the time. In their turn, these gluons can
split into more gluons, or create virtual (same flavour) quark-antiquark pairs.

So, at any given moment, a hadron will contain its constituent (or valence) quarks, a few
gluons and a few quark-antiquark pairs. The valence quarks carry all the quantum
numbers (isospin, strangeness etc), but the gluons and the quark-antiquark “sea” can
carry quantities like momentum, energy and/or spin.

In order to see the “sea”, one needs a camera with a very fast shutter, to take a snapshot.
At high energy, this is relatively easy to accomplish: a proton which has high energy in
the lab frame will have its proper time slowed down a lot. If it is probed with the help of
a high-energy electron, we indeed get a snapshot with very fast shutter speeds.
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Electron-Proton Scattering

At low energies, electrons can only scatter elastically off the protons, i.e. the reaction is

e− + p → e− + p

Here the electron does not see the structure of the proton, it only sees it as a whole, and the cross
section is similar to eµ scattering: a single-photon exchange in the t-channel gives rise to the formulae
we’ve seen before.

At higher energies, the resolving power of the virtual photon improves, and now the electron scatters not
off the proton as a whole, but off individual charged constituents, i.e. quarks (and antiquarks) inside
the proton.

Now, the (anti)quark which took the blow will gain a lot of energy/momentum, which will most probably
break up the proton. This would give rise to those strong colour forces stretching those colour strings,
and we get lots of final qq̄ pairs etc. recombining into numerous final hadrons.

This is called not simply inelastic, but deep-inelastic electron-proton scattering:

e− + p → e− +X

where X stands for a multi-hadronic final state, which, incidentally, must have net baryon number of +1,
zero strangeness etc., but number and type of final particles and their total invariant mass may vary in a
wide range.
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Deep Inelastic Kinematics

e−(p1) + p(p2) → e−(p3) +X(p4)

q = (ν,q) ≡ p1 − p3

−q2 = q2 − ν2 ≡ Q2 > 0

In deep inelastic scattering, the photon is

deeply virtual, with Q2 very large, & 10 GeV2.

The quantity 1/
√

Q2 is the measure of the spatial resolution and/or of the shutter speed achieved, and
is hence very small. So, at large Q2 we get information about the deep structure of the proton. But, in
the best traditions of the uncertainty principle, this info comes at the price of completely destroying the
proton. . .

If the quark hit by the photon was initially carrying the fraction x of the proton’s 4-momentum, k1 = xp2,
then its final 4-momentum is k2 = k1 + q = xp2 + q. But in QCD, we expect the quark to be (almost)
free, hence the electron-quark scattering is elastic and the quark’s mass should remain the same, k21 = k22:

k22 = (k1 + q)2 = k21 + q2 + 2x(p2q) ⇒ x = − q2

2(p2q)
=

Q2

2Mpν

x = Q2/Mpν, is called Bjorken’s scaling variable.
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Structure Functions

The cross section of the deep-inelastic ep scattering looks like this:

d2σ

d cos θdx
=

πα2s

q4

(

1 + cos4
θ

2

)

F2(x,Q
2)

which is identical to the scattering of electrons of momentum p1 on a bunch of point-like particles, with
momenta xp2, times the probability of finding that pointlike particle.

F2(x) is called the structure function of the proton, and is closely related to the distributions of various
quarks and antiquarks inside the proton:

F2(x) =
4

9
x[u(x) + ū(x)] +

1

9
x[d(x) + d̄(x)] +

1

9
x[s(x) + s̄(x)]

Here q(x) describe the probabilities of finding a quark of type q inside a proton, carrying the fraction x of
proton’s momentum. c, b, t quarks and antiquarks are usually neglected at this stage as they are too
heavy.
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Quark Disrtibutions in a Proton

Due to isotopic symmetry, u-quarks in a proton have the same distribution as d-quarks in a neutron, and
deep inelastic en scattering can be observed if deuterium target is used.

Similar deep inelastic processes are possible with initial neutrinos, via charged weak interactions. Here, ν
(ν̄) will mainly see d and ū (u and d̄) quarks inside protons and neutrons, thus giving enough information
to determine all quark and antiquark distribution functions independently.
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Figure shows valence u, d and

sea u, d, s, c distributions, as

well as gluon distribution g.

In the sea, u = ū etc.

Roughly half of momentum is

taken away by gluons, only

about 30% by valence quarks.
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Scaling Violations

So far, the distribution functions — and hence the structure functions — depend only on
x and do not depend on Q2. This is called “scale invariance”, or simply “scaling”.

This is only the case if the quarks, antiquarks and gluons inside a proton are free, i.e. do
not interact with each other.

When Q2 is high, QCD coupling αs is small due to asymptotic freedom. So, at high Q2

quarks and gluons are almost free, but not quite.

Hence, the structure function F2, apart from x, will have some dependence on Q2 too,
which would mean scaling violation.

In particular, if a photon of a certain Q2 sees a quark carrying momentum fraction x,
another photon of higher Q2 may see the quark after it has radiated a gluon, and hence
its momentum fraction is smaller. In general, at larger Q2, QCD interaction would tend
to make the distribution functions softer.
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Q2-dependence of the Structure Function
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Figure shows F2(x,Q
2) at various x

values, versus Q2.

If scaling is exact, all the curves on the

plot will be horizontal straight lines.

In fact, we see that at small x values,

F2 increases with increasing Q2.

At large x F2 decreases with Q2,

while at intermediate values around

x ≃ 0.1 it is almost constant.

Perturbative QCD cannot predict the exact

shape of F2, but given F2(x,Q
2
0) at some

Q2 = Q2
0, it can predict the evolution of

F2 with increasing Q2.
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Quantum Numbers of Quarks

Property d u s c b t

B — baryon number + 1
3 + 1

3 + 1
3 + 1

3 + 1
3 + 1

3

Q — electric charge − 1
3 + 2

3 − 1
3 + 2

3 − 1
3 + 2

3

I — isospin 1
2

1
2 0 0 0 0

Iz — isospin z-component − 1
2

1
2 0 0 0 0

S — strangeness 0 0 −1 0 0 0

C — charm 0 0 0 +1 0 0

B — bottomness (beauty) 0 0 0 0 −1 0

T — topness 0 0 0 0 0 +1

Gell-Mann-Nishijima formula: Q = Iz +
B+S+C+B+T

2

For antiquarks, all numbers change signs (except isospin).
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Charmonium Decays

J/ψ(3097) and ψ(3770) are

examples of charmonium,

cc̄ bound states, mesons

with “hidden charm”.

There is a rich spectrum of charmonium states, somewhat similar to positronium. ψ(3770) is one of
excited states, just heavy enough to decay into two “open charm” mesons D+ and D−, as shown in
quark flow diagram on the right. Its total width is a few MeV, since it’s very close to the threshold.

J/ψ(3097) is well below this threshold, so it can only decay via c− c̄ annihilation. Various selection rules
forbid annihilation into one and two gluons, so the left diagram is the leading one in QCD. It’s total
width is about 60 keV, much smaller than a typical hadronic decay (Okubo-Zweig-Iizuka rule).

We draw a proper QCD diagram here because J/ψ is quite heavy, and some k2 in this process are as
large as ∼ 10 GeV2, so we would hope to be able to use QCD perturbation theory, with αs ≃ 0.2.

Further “hadronisation” of the three gluons happens “softly”, i.e. they produce many qq̄ pairs with small
invariant masses, which somehow combine into a few final-state pions etc. This should not require any
more “hard” (i.e. small!) QCD vertices.
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Mesons in 4-quark World
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Here are the 16-plets of pseudoscalar (a) and vector (b)

mesons, built out of 4 quark flavours.

Each level (“floor”) contains mesons with

a particular value of charm.

Adding b-quarks would make the plot 4-dimensional. . .

The two groups of four mesons in the centres are

various mixtures of qq̄ states: uū, dd̄, ss̄, cc̄.

In pseudoscalar sector, ηc is almost pure cc̄,

but η and η′ are mixtures of uū+dd̄√
2

and ss̄.

In vector mesons, the mixing is close to “ideal”:

ω =
uū+ dd̄√

2
, φ = ss̄, J/ψ = cc̄.
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Baryons in 4-quark World
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Here are the spin-1/2 baryons (a)

and spin-3/2 baryons (b).

Again, each floor contains baryons with

one value of charm.

The octet of charmless spin-1/2 baryons

lies on the ground floor in (a).

The decuplet of charmless spin-3/2 baryons

lies on the ground floor of (b).

In each multiplet, same letter denotes

similar quark content, but different

isospin projection.

Some baryons have identical quark contents,

but different spins. The one with spin-3/2

then acquires a star, e.g. Σ∗++
c .
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Hadron-hadron scattering

Let’s try and draw a diagram

describing π+ + p elastic scattering.

All the space between the quark and

antiquark lines is understood to be

filled with QCD interactions —

a “fishnet” of gluon-quark-aniquark lines.

We cannot hope to use perturbation theory as αs is rather large in “soft” processes, and we don’t even
attempt to count QCD vertices, but we know they are there.

Note that all rules used in drawing Feynman diagrams are still valid, simply gluons are not plotted and
are just ignored, unless at least one line in the vertex is “hard”, i.e. has a large k2.

In this particular diagram, we expect to see a peak in the cross section at s = M2
∆, but there are other

possible diagrams too: e.g. t-channel exchange of a ρ meson, or simply two gluons exchanged in the
t-channel (why not just one gluon?).

Incidentally, the right half of the above diagram represents quark flow in the main decay of ∆ baryon:
∆ → π + p.
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πp Cross Section
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You can see the ∆++ resonance in

π+p cross sections, and also the

∆0 resonance in π−p cross

section, as well as a number of

higher-mass baryonic resonances.

Why do you think σelastic at peak

is much less than σtotal for π
−p,

but not for π+p?

Note that the energies do not

go as far as in pp, p̄p or even

e+e− collisions, because all πp are

fixed-target experiments: no colliding

pion beams so far. . .
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Quark-parton model and QCD

So, QCD perturbation theory (PT) can only work in processes with momentum transfer q2 larger than a
few GeV2 (i.e. happening at small distances), where αs is small. Hence, QCD PT cannot describe things
like hadron masses, or strong decays or hadronic resonances, or hadronic scattering at low-energy.

It has been shown however, that in high energy hadronic collision, the cross section can be factorised
into a large-distance, low q2 part, described using phenomenological probability densities fi(x), and a
small-distance, high q2 part described by QCD PT.

This fi(x) is the probability of finding, inside a proton,

a “parton” i (i.e. a quark, and antiquark or a gluon)

carrying a fraction x of the proton’s momentum.

The σ̂ij is the cross section of some subprocess i+ j → c+ d

Could be gg → gg, or qq̄ → gg, or gg → H → W+W− etc.

The c.m.s. energy2 of the subprocess is hence ŝ = x1x2s

The cross section of the whole process is then calculated with

σ(p+ p → c+ d+X) =
∑

i,j

∫

dx1dx2f
(1)
i (x1)f

(2)
j (x2)σ(i+ j → c+ d)

where ”X” is whatever other “stuff” is produced in addition to c and d, and the sum is taken over all
subprocesses contributing to the final state of interest, i.e. production of c and d.
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Path Integrals and classical limit

Remember the Least Action Principle? In classical physics, the system chooses one trajectory (path)
corresponding to the minimum of S.

Important question: how is this generalised to the quantum

case? “Particles” are now waves, covering the whole space...

Feynman gave a very useful generalisation of that principle,

allowing to consider classical and quantum-mechanical systems

on the same footing, with a smooth transition between the two:

In quantum mechanics, all paths are possible, and the evolution of a system is determined by integrating
over all paths. But here is the interesting part: each path needs to be weighted with a factor exp(iS/~),
where S is the action along this path.

One can build a theory of interacting quantum-mechanical particles using this approach, without invoking
all the complexities of the Quantum Field theory (but there are other difficulties, not least
computational). Lattice theory is one example.

In classical limit, action S along a trajectory tends to be large, S ≫ ~. This leads to very rapidly
oscillating weights which tend to cancel out along all the paths, except the one corresponding to the
smallest value of S — and that’s the classical one!
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From strong to weak

We have used QED — the most successful quantum field theory so far — as a platform to move to
QCD, the theory describing coloured quarks and their interactions. Along this way, we’ve postulated the
existence of the colour quantum number in the quark wave functions, and the invariance of the
Lagrangian under SU(3) gauge transformations.

Once these gauge transformations are allowed to be local, the gauge invariance only holds if gluon fields,
with very specific interaction properties, are introduced.

Now, because SU(3) group is non-abeliean, gluon fields are required to carry colour charges and hence
interact with each other.

Next step would be to try and build the theory of weak interactions. But here there are a few new
hurdles to overcome:

✦ interactions changing quarks’ flavour (and charge)

✦ parity violation

✦ massive gauge bosons
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The main challenges of the weak theory

✦ We know weak interactions require charged currents, i.e. the Lagrangian needs to include interaction
terms where the fermion type is changing at the vertex. These were not allowed in QED and QCD.

✦ In QED and QCD, all therms in the Lagrangians were true scalars, and hence parity was a conserved
quantum number. We know this is not the case in weak interactions, so the respective term in the
Lagrangian may contain both scalar and pseudo-scalar terms, which means that ψR and ψL may not
/ should not be treated equally.

✦ Still, the biggest difference is that the weak interactions are (very) short-range, hence the bosons
involved need to be massive. This is by far the biggest challenge, as theories with massive vector
bosons are usually not renormalisable.

✦ On top of all these complciations, there are also weak neutral currents. These cannot change fermion
flavours (just like in QED and QCD), but they do violate parity, and need massive bosons.

In the next few lectures, we will study the phenomenology of weak intereactions, and see how the gauge
theory of electroweak interactions overcomes these hurdles.
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Gauge Boson Exchange Potential

Here are four examples of fermion-fermion (quasi-)elastic

scattering due to the four gauge boson exchange:

One can easily assess these amplitudes using

simplified Feynman rules:

coupling × propagator × coupling.

A 3D Fourier transform of these amplitudes

gives an equivalent potential V (r).

In QED we thus have the Coulomb potential:

MQED ∼ e2

q2
⇒ VQED(r) =

e2

4πr

Gluons are much like photons as they are massless, but the three-gluon vertex — and colour
confinement — result in important differences, as we have seen.

Weak amplitudes, with massive particles being exchanged, lead to MW,Z ∼ e2

q2−M2
W,Z

, which correspond

to short range Yukawa-type potentials VW,Z(r) =
e2

4πr exp(−MW,Zr).
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Diagonality of photon and gluon interactions

So far, we’ve been considering flavours (types) of leptons and quarks one at-a-time.

This was OK, as neither QED not QCD are capable of changing the flavours.

EM interaction is fully diagonal:

the photon only couples to the fermion-antifermion pair of the same type, with strength proportional to
its charge: 0 for neutrinos; −1 for e, µ, τ ; +2/3 for u, c, t; −1/3 for d, s, b.

The photon is unable to change a quark’s colour or flavour, or a lepton’s type.

Similarly, gluons are unable to change quark types, so strong interactions are flavour-diagonal
too.

Gluons do change quark colour though. . .
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Left-right symmetry

In terms of left and right components of the fermionic filed, the electromagnetic interaction term
contains both

ejµEM Aµ = eψ̄γµψAµ = e
(

ψ̄Lγ
µψL + ψ̄Rγ

µψR

)

Aµ

The interaction term in QED (and also in QCD for that matter) is a true scalar, and hence parity is
conserved in these interactions.

In order to describe weak charged interactions, three big differences are needed:

✦ There is maximum possible parity violation: only the first term in brackets is present in weak
interactions. Right-haded particles do not participate in charged weak interactions.

✦ The interaction has to change the type of fermion, i.e. ψ̄ on the left and ψ on the right have to
describe different fermions. Neutrinos are transformed into electrons (and vice-versa), u-quarks into
d-quarks, etc.

✦ Hence, the exchange boson has to be charged, i.e. there will be two hermitian-conjugate interaction
terms in the Lagrangian. The bosons responsible for weak charged interactions are, as you should
know by now, the W± bosons.
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W Bosons

We know that there are three families of leptons and quarks, organised into doublets:






νe
e−













νµ
µ−













ντ
τ−













u
d













c
s













t
b







Neutrinos and u, c, t quarks are considered “up”-type, while charged leptons and d, s, b quarks are
“down”-type. Then, the piece of electroweak Lagrangian describing charged weak interactions with
coupling g should look like this:

Lweak charged ∼ g
(

ψ̄up
L γµψ

down
L

)

W+
µ + g

(

ψ̄down
L γµψ

up
L

)

W−
µ

✦ There are two terms, one describing the interaction of down-type fermion and up-type antifermion
with W+, and the other, charge-conjugate term describing the interaction of up-type fermion and
down-type antifermion with W−.

✦ In both terms, only left-handed fermions are present. Right-handed fermions remain untouched by
the charged weak interactions.

✦ The operator projecting out left handed components is 1
2 (1− γ5), i.e. the Lorentz structure of the

charged weak current is “vector minus axial-vector”, i.e. V −A.
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Feynman vertices for charged current interactions

l−νl

↑ W+

u, c, td, s, b

↑ W−

Vqq′

l− ν̄l

↑ W−

u, c, t d, s, b

↑ W+

Vqq′

Here are the Feynman vertices matching the various

interaction terms from the part of the Lagrangian

that describes charged current interactions of

fundamental fermions with W± bosons.

✦ At each vertex, there is a structure

−ig Vff ′ γµ(1− γ5)

and the usual energy-momentum δ function.

✦ The charge of the W depends

on the direction of its momentum.

Arrows show the correct flow,

but the charge will be opposite

if momentum direction is inverted.

✦ The propagator of a (massive) W boson

with momentum q is

i
−gµν +

qµqν
m2

W

q2 −m2
W

accompanied by the inevitable integration over d4q.
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Weak charged interactions

So here is again the piece of electroweak Lagrangian describing the interaction of charged fermionic
currents with the W bosons:

LW ∼ −ig
{

Vff ′ ψ̄downγµ(1− γ5)ψ
upW−

µ + V †
ff ′ ψ̄

upγµ(1− γ5)ψ
downW+

µ

}

There are as many terms like this as there are up-type/down-type combinations in the Standard Model.

This time I also show the constants Vff ′ , that determine relative strengths of various terms in the
Lagrangian. These constants in fact form unitary matrices, one for quarks, one for leptons.

For quarks, this is the Cabibbo-Kobayashi-Maskawa matrix





d s b

u Vud Vus Vub

Vff ′ = VCKM = c Vcd Vcs Vcb

t Vtd Vts Vtb









d s b

u 1− λ2/2 λ ∼ Aλ3

≈ c −λ 1− λ2/2 Aλ2

t ∼ Aλ3 −Aλ2 1





where λ ≃ sin θCabibbo ≃ 0.22, and elements are expanded up to O(λ4). Hidden inside the corner terms
A there is a complex phase which, if not zero, will allow CP violation.

There is a similar Pontecorvo-Maki-Nakagawa-Sakata matrix describing neutrino mixing, but it is (just)
outside the scope of this course.
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Basic Charged Current Processes: Leptons

Here are the basic first-order leptonic processes corresponding to the basic vertices:

✦ A neutrino can radiate a W+ (or “swallow” a W−) and become the negatively charged lepton from
the same family.

✦ An antineutrino can radiate a W− (or “swallow” a W+) and become the positively charged lepton
from the same family.

✦ A negatively-charged lepton can radiate a W− (or “swallow” a W+) and become the neutrino the
same family.

✦ A positively-charged lepton can radiate a W+ (or “swallow” a W−) and become the anti-neutrino
the same family.

✦ In any case, charge should be conserved at each vertex.

✦ For massless neutrinos, transitions between families are not allowed, and lepton numbers of each
type are conserved separately.
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Basic Charged Current Processes: Quarks

Here are the basic first-order quark processes corresponding to the basic vertices:

✦ A down-type quark can radiate a W− (or “swallow” a W+) and become an up-type quark, possibly
from a different family.

✦ A down-type anti-quark can radiate a W+ (or “swallow” a W−) and become an up-type anti-quark,
possibly from a different family.

✦ An up-type quark can radiate a W+ (or “swallow” a W−) and become a down-type quark, possibly
from a different family.

✦ An up-type anti-quark can radiate a W− (or “swallow” a W+) and become a down-type anti-quark,
possibly from a different family.

✦ In any case, charge should be conserved at each vertex.

✦ Any quark-flavour-specific quantum numbers (although conserved in other interactions) will not be
conserved in weak charged current interactions.

✦ Whenever kinematically allowed, transitions within the same quark family are still more likely,
because diagonal elements of the CKM matrix still dominate, as λ is a small number.
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W Decays

W bosons decay into a fermion-antifermion pair, but the fermions must be different, such that the sum
of two fermion charges is equal to the charge of the decaying W .

Hence, possible decay modes of W− are: e−ν̄e, µ−ν̄µ, τ−ν̄τ , dū, sū, bū, dc̄, sc̄, bc̄.

(why not dt̄ etc?):

W−

f̄ ′

f

So there are many decay modes here, with effective branching

fractions proportional to this combination of couplings:

Γ(W− → ff̄ ′) = Ncolour|Vff ′ |2 Γ1

where Ncolour is 1 for leptonic, and 3 for qq̄′ decay modes,

and Γ1 is a constant common for all decays.

This is the case of a first-order Feynman diagram actually corresponding to a real process — but again,
remeber that the W− in the initial state is usually virtual, at least slightly away from its mass shell.

It is not that difficult to calculate that

Γ1 =
g2

48π
MW = 226 MeV

Knowing the total width Γtot(W ) = 2.1 GeV, can you calculate the separate branching fractions and
partial decay widths?
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Some Interesting Processes

Muon decay rate:

Γµ = τ−1
µ =

G2
Fm

5
µ

192π3

where τµ = 2.2× 10−6 s.

Our simplified Feynman rules would

“predict” that the amplitude

describing this decay is

M ∼ g2

M2
W

The width is proportional to |M|2, and one would expect m5
µ to keep dimensions right.

Indeed, GF is the Fermi constant, which, in modern terms, is

GF =
g2

4
√
2M2

W

= 1.166 · 10−5GeV−2

So, our rules are doing very well!

Particle Physics (page 252) V. Kartvelishvili (Lancaster U)



τ Decay

Decay of the τ lepton proceeds in a very similar way to the decay of the muon.

The Feynman diagram is identical, with µ− νµ line replaced by τ − ντ line.

However, in case of τ , the virtual W has enough invariant mass to decay not only into eνe, but also into
µνµ ,ud and us — with appropriate couplings.

Leptonic decay mode, τ → ντeνe has its partial decay rate calculated same way as the muon decay rate,
only the mass of the decaying particle has to be changed.

Rates for other decay channels can be calculated similarly, but colour and CKM couplings should be
taken into account for hadronic decays.

Full decay rate, or total width, is calculated as usual, as the sum of partial decay rates.
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Quark Decay Chain

Top quark is the heaviest fundamental particle

(so far). Its main decay amplitude contains Vtb:

t → b+W+

Top quark is heavy enough for W to be “real”.

But W is unstable, and will decay “as usual”.

Main amplitude of b decay contains Vbc:

b → c+W−∗

This time, W− is virtual. It can only decay

into states which are lighter than its actual

invariant mass (eν, µν, τν, dū, sc̄ . . .).

Now, c-quark’s main decay amplitude contains Vcs:

c → s+W+∗

Of course, the lighter the quark, the fewer decay modes are available for W ∗.

The decay amplitude of the s-quark contains Vsu:

s → u+W−∗
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β decay

Final step in quark decay chain: d → u.

In heavier quark doublets, the positive

quark is heavier than the negative one.

The lightest quark family is

an exception: u is lighter than d,

and hence u is the stable one. d quark decays, with amplitude containing Vud ≈ 0.975:

d → u+W−∗ → u+ e− + ν̄e

Given the small d− u mass difference, this is the only decay channel left available for the virtual W in
this case.

From outside, d quark decay is usually seen as the β decay of the neutron.

Can we predict neutron lifetime, starting from muon decay rate?

What would the world look like, if u were slightly heavier than d?
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Is the gauge group SU(2) ?

Introducing a doublet of left-handed fermionic fields ψL ≡
(

ψup
L

ψdown
L

)

one can rewrite the charged

current interaction terms as

Lweak charged ∼ g ψ̄Lγ
µ

(

0 W+
µ

W−
µ 0

)

ψL ∼ g ψ̄Lγ
µ
(

σ+W+
µ + σ−W−

µ

)

ψL

where σ± = (σ1 ± iσ2)/2 are combinations of σ matrices (again!).

This looks very much like SU(2) invariance, but with one term missing:

σkW k
µ =

(

W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)

with the off-diagonal combinations identified as W±
µ ≡ (W 1

µ ∓ iW 2
µ)/

√
2.

Now, if this is SU(2), then we can naturally associate ψL with a weak isospin doublet, so that any
up-type fermion has weak isospin projection t3 = + 1

2 while any down-type fermion has t3 = − 1
2 .

In that formalism, W bosons form a 3-component isovector in weak isospin, t = 1.

The right-handed spinors then behave as invariants, i.e. isoscalars under weak isospin, t = 0.
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Weak currents

So, if SU(2) is the gauge group of weak interactions, with left-handed up-type and down-type fermions
forming the basic fundamental spinor representation, then, following our usual formalism:

global gauge invariance ⇒ local gauge invariance ⇒ covariant derivative ⇒ interaction terms

we will end up with a theory with three W fileds, W+,W−,W 3. The two charged ones carry the weak
charged currents, while the neutral one, W 3, carries a left-handed neutral current.

The right-handed fermions, either up-type or down-type, do not participate in these interactions.

The interaction Lagrangian looks like this:

LW = −gJ+µ
L W+

µ − gJ−µ
L W−

µ − gJ3µ
L W 3

µ , J±µ
L ≡ ψ̄

σ±
√
2
γµ 1− γ5

2
ψ, J3µ

L ≡ ψ̄
σ3

2
γµ 1− γ5

2
ψ

Here L-components have been projected out, as required, by (1− γ5), so the first two terms represent
the correct phenomenology of the weak charged interactions.

However, the third term does not show up in nature in this form.
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Electroweak Gauge group SU(2)× U(1)

In order to describe the correct phenomenology of weak and electromagnetic interactions, including the
correct properties of weak neutral currents, one needs to extend the electroweak gauge group by adding a
U(1) gauge symmetry, which includes both L and R components.

Through now familiar route, this would introduce one new neutral vector field Bµ:

Interaction Gauge group Fermion representation Covariant derivative

QCD SU(3) ψn : SU(3) triplet ∂µ + i gs2 λ
aGa

µ

ψL : SU(2) doublet, t = 1
2 ∂µ + i g2σ

iW i
µ + i g

′

2 yBµ

Electroweak SU(2)× U(1)

ψR : SU(2) singlet, t = 0 ∂µ + i g
′

2 yBµ

The operator governing the SU(2) part is the weak isospin t with coupling g, so g
2σ

i represents this
operator for weak isoboublets, while the matching term for weak isosinglets is zero.

The U(1) part is governed by the operator of “weak hypercharge” y with coupling g′.
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Weak isospin and weak hypercharge

The SM fermions have a variety of properties which distinguish them from each other. In each
generation, various electroweak couplings depend on whether the fermion is left-handed or right-handed,
up-type or down-type (i.e. weak isospin projection t3) and what its electric charge Q is.

Here is a table summarising the assignments of these quantum numbers to various fileds:

t t3 Q y

νeL, νµL, ντL 1/2 +1/2 0 −1
νeR, νµR, ντR 0 0 0 0
eL, µL, τL 1/2 −1/2 −1 −1
eR, µR, τR 0 0 −1 −2
uL, cL, tL 1/2 1/2 2/3 1/3
uR, cR, tR 0 0 2/3 4/3
dL, sL, bL 1/2 −1/2 −1/3 1/3
dR, sR, bR 0 0 −1/3 −2/3

φ+ 1/2 +1/2 1 1
φ0 1/2 −1/2 0 1

The table also includes weak hypercharge y = 2(Q− t3) for various fields, and the quantum numbers for
the scalar fields we will shortly introduce.
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Bosonic part of the Lagrangian

The new gauge fields need their own separate kinetic terms in the electroweak Lagrangian:

Lboson = −1

4
F k µνF k

µν − 1

4
FµνFµν k = 1, 2, 3

where

F k
µν = ∂µW

k
ν − ∂νW

k
µ − gǫklmW l

µW
m
ν k, l,m = 1, 2, 3

Fµν = ∂µBν − ∂νBµ

F k
µν corresponds to the triplet of W fields.

The term with ǫklm is, of course, due to non-abelianity of SU(2) and eventually leads to self-interactions
of the gauge fields.

Fµν correspinds to the B field. Its kinetic term does not contain self-interaction, as this field corresponds
to an abelian gauge symmetry.
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Mixing gauge bosons

There are four new gauge fields, W 1,2,3
µ and Bµ, but neither of these are physical fileds.

Their linear combinations are.

We have already introduced the two off-diagonal W boson combinations, which are each other’s
hermitian conjugates and are responsible for charged weak current interactions:

W±
µ ≡

W 1
µ ∓ iW 2

µ√
2

Both remaining two fields are neutral, but neither of them has the right properties to represent the good
old, parity conserving, flavour-conserving photon.

Let’s introduce two orthogonal linear combinations of W 3 and B, mixed with a certain angle θW —
Weinberg angle, or simply “weak mixing angle”:

Aµ = Bµ cos θW +W 3
µ sin θW

Zµ = −Bµ sin θW +W 3
µ cos θW

These can be easily resolved for W 3 and B:

Bµ = Aµ cos θW − Zµ sin θW

W 3
µ = Aµ sin θW + Zµ cos θW
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Mixing neutral currents

Thus, the interaction terms between the electroweak gauge bosons and the fermions now look like this:

LEW = −gJ+µ
L W+

µ − gJ−µ
L W−

µ − gJ3µ
L W 3

µ − g′JyµBµ

Let’s concentrate on the neutral-current terms, which include two neutral currents:

J3µ
L = ψ̄

σ3

2
γµ 1− γ5

2
ψ Jyµ = ψ̄

yL
2

γµ 1− γ5
2

ψ + ψ̄
yR
2

γµ 1 + γ5
2

ψ

where each fermionic field comes with appropriate values of t3 and y.

In particular, for a neutrino t3 = +1/2, yL = −1, yR = 0, the term − 1
2γ

µ 1−γ5

2 will have a coefficent

gW 3 − g′B = g(sWA+ cWZ)− g′(cWA− sWZ) = (gsW − g′cW )A+ (gcW + g′sW )Z

But if A is the photon, its coupling to neutrinos should be zero. Hence

cW ≡ cos θW =
g

√

g2 + g′2
sW ≡ sin θW =

g′
√

g2 + g′2

Now, for electrons: t3 = −1/2, yL = −1, yR = −2. It’s not so hard to see that the couplings with the A
field are the same for L and R terms. Thus the sum of these terms looks like ψ̄γµψ again, parity is indeed
conserved in electromagnetic interactions, and we can link g and g′ to the electromagnetic coupling:

− 2gg′
√

g2 + g′2
= −2e ⇒ e =

gg′
√

g2 + g′2
= g sin θW = g′ cos θW
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Neutral currents (cont.)

In general, the two terms describing neutral currents can be rewritten as

LNC = −gJ3µ
L W 3

µ − g′JyµBµ

= −
(

gsWJ3µ
L + g′cWJyµ

)

Aµ −
(

gcWJ3µ
L − g′sWJyµ

)

Zµ

= −ejµemAµ − e

2sW cW
ψ̄iγ

µ(gV − gAγ5)ψiZµ

So, the t, y assignments for each fermion were designed in such a way that the combination of the
neutral currents coupled to the photon field Aµ has the correct coupling and parity of the
electromagnetic current jµem.

The price to pay is that every fermion type i now has a non-trivial set of couplings gV and gA to the
vector and axial-vector parts of the weak neutral current, coupled to the Z boson:

gV = t3 − 2Q sin2 θW , gA = t3

where t3 = +1/2 for all neutrinos and all u-type quarks, t3 = −1/2 for all charged leptons and all d-type
quarks, and Q is the electric charge of the fermion (e.g. −1 for electrons, +2/3 for u quarks).
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Properties of weak neutral current

Let’s look at weak neutral currents in some more detail.

For an individual fermionic field ψ, the interaction term in the Lagrangian is

LZ = − e

2 sin θW cos θW
ψ̄γµ(gV − gAγ5)ψZµ

where e2/4π = α, sin2 θW = 0.23120± 0.00015.

Weak neutral interactions are diagonal in fermion flavour (and colour!)

gV and gA are weak-neutral-vector-current and weak-neutral-axial-vector-current couplings, respectively,
for each type of the fermion-antifermion pair, with the Z0 boson. They depend on whether the fermion is
a lepton or a quark, up-type or down-type:

gV = t3 − 2Q sin2 θW , gA = t3

where t3 = +1/2 for all neutrinos and all u-type quarks, t3 = −1/2 for all charged leptons and all d-type
quarks, and Q is the electric charge of the fermion (e.g. −1 for electrons, +2/3 for u quarks).

In general, if either gV or gA were zero, parity would be conserved.

However, this is not the case, so in weak neutral interactions parity is not conserved.

In practice, this means, for example, that the angular distributions for the reaction
e+e− → Z → µ+µ− are not left-right symmetric, as opposed to e+e− → γ∗ → µ+µ−.
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Couplings

Vector and axial-vector couplings to γ and Z0 for various fermions

Carrier Current Common neutral charged quarks quarks
type factor νe, νµ, ντ e, µ, τ u, c, t d, s, b

γ Vector −e 0 −1 + 2
3 − 1

3

γ Axial −e 0 0 0 0

Z0 Vector, gV
−e

2sW cW

1
2 −( 12 − 2s2W ) ( 12 − 2 2

3s
2
W ) −( 12 − 2 1

3s
2
W )

Z0 Axial, gA
−e

2sW cW

1
2 − 1

2
1
2 − 1

2

A partial decay width of Z into any of 11 allowed fermion-antifermion pairs (neglecting fermion masses) is

Γ(Z → f̄f) =
αMZ

12s2W c2W
(g2V + g2A)Nc = (330 MeV)(g2V + g2A)Nc

where the number of colours Nc is 1 or 3 for leptons or quarks, respectively.
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Comparing γ and Z0

ψψ̄

γ

ψψ̄

Z0

The vertices for QED and W.N.C are quite similar:

✦ Neither of the two can change fermion type.

✦ Couplings have similar strengths.

However, there are significant differences:

✦ The fermionic current paricipating in the QED interactions is a pure vector, and Parity is conserved.

✦ The fermionic current participating in the Weak Neutral-Current interation is a mixture of a vector
and an axial vector, hence it may (and will!) violate Parity conservation.

✦ Only charged fundamental fermions participate in E.M. interactions.

✦ All fundamental fermions participate in W.N.C. interactions, including neutrinos.

✦ The photon is massless and stable.

✦ The Z0 boson is very heavy, MZ = 91.2 GeV, and decays quickly into a fermion-antifermion pair,
with total width ΓZ = 2.5 GeV.
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Old Friends Again

So, both γ and Z are couipled to e+e− and also to µ+µ−. Hence, we must add the two amplitudes (star
∗ means that the particle is virtual):

e+e− → γ∗ → µ+µ− and e+e− → Z0∗ → µ+µ−

Draw Feynman diagrams for both processes, and use our simplified Feynman rules:

|Mγ |2 ∼ α2

s2

|MZ |2 ∼ α2

16s4W c4W
(g2V e + g2Ae)(g

2
V µ + g2Aµ)

∣

∣

∣

∣

1

s−M2
Z + iΓMZ

∣

∣

∣

∣

2

✦ Which one dominates at small s?

✦ At s = M2
Z?

✦ At extremely large s ≫ M2
Z?

Note that at the Z peak, s = M2
Z , the γ − Z interference term vanishes (check this!).

Also, note the absence of terms like gV egAe: vector and axial-vector currents do not mix!
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W − Z − γ Relations

We have not looked at all interaction terms in the electroweak Lagrangian yet. . .

Consider once again the bosonic part:

Lboson = −1

4
F k µνF k

µν − 1

4
FµνFµν k, l,m = 1, 2, 3

F k
µν = ∂µW

k
ν − ∂νW

k
µ − gǫklmW l

µW
m
ν

Fµν = ∂µBν − ∂νBµ

there is only one way of producing a tri-linear interaction term here, through the ǫklm which is due to
non-abelianity of SU(2).

So, any such term needs to be proportional to

Ltri−boson ∼ gǫ123W 1W 2W 3 ∼ gW+W−W 3

∼ gW+W−(cWZ + sWA) ∼ e(W+W−A+ cot θWW+W−Z)

Hence, there are only two trilinear interaction terms: W+W−γ and W+W−Z
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W − Z − γ Relations – II

✦ W± are charged, so the existence of the W+W−γ vertex with coupling ∼ e is not surprising

✦ Moreover, theory predicts a vertex W+W−Z0, with coupling ∼ e cot θW .

✦ This means that we can draw three distinct Feynman diagrams for producing a W+W− pair in e+e−

collisions: through a t-channel neutrino exchange, through an s-channel annihilation into a virtual γ,
and through an s-channel annihilation into a virtual Z (do it!).

✦ The product of two ǫklm terms will give rise to terms quadri-linear in gauge fields, but, again, not all
possible combinations will be allowed.

✦ There are only four types of quadrilinear vertices:

W+W−γγ W+W−γZ0 W+W−Z0Z0 W+W−W+W−

These are of second order in e, i.e. have couplings ∼ e2. Together with other second-order diagrams,
these will be important while studying vector-boson scattering.
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Almost there

So far, we have succeeded in introducing the correct phenomenology of the charged weak interactions,
kept the electromagnetic interactions and predicted the properties of weak neutral interactions, but:

All our fields are still massless – both fermions and bosons.

Because the gauge transformation properties for L and R components are different, even the usual mass
terms like mψ̄ψ will not be gauge invariant, to say nothing of the gauge boson mass terms like M2BµBµ.

Even worse, mass terms like that will render the theory non-renormalisable!

So, what’s the proper way to introduce masses into the theory?

It’s spontaneous breaking of the gauge invariance and generation of masses through the Higgs
mechanism.
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Training exercise: scalar fields again

Remember scalar fields, with a nice simple non-interacting Lagrangian (p. 36)

Lφ = (∂µφ)(∂
µφ)−m2φ2

First of all, let’s make the scalar field charged. This would mean making φ complex:

Lφ = (∂µφ
∗)(∂µφ)−m2φ∗φ

Also, let us introduce a non-linear interaction term ∼ (φ∗φ)2, which can be easily switched on and off by
choosing its coupling λ. Let’s also include the Lagrangian of a separate free vector field Aµ:

L = (∂µφ
∗)(∂µφ)−m2φ∗φ− λ(φ∗φ)2 − 1

4FµνF
µν

where, as usual, Fµν = ∂µAν − ∂νAµ. At this point, the scalar field φ is self-interacting (if λ 6= 0), but
the scalar and the vector fields know nothing about each other.

Now, let’s use our vast experience in building gauge-invariant theories to replace the normal derivative ∂µ
with the U(1)-gauge-covariant derivative:

∂µ → Dµ ≡ ∂µ + ieAµ,
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Is this photon mass?

Our Lagrangian gets modified accordingly (note that the FµνF
µν part stays the same, as the new terms

cancel, thanks to abelian nature of U(1)):

L = [(∂µ − ieAµ)φ
∗][(∂µ + ieAµ)φ]−m2φ∗φ− λ(φ∗φ)2 − 1

4FµνF
µν

= (∂µφ
∗)(∂µφ)−m2φ∗φ− λ(φ∗φ)2−ie(φ∗∂µφ− φ∂µφ

∗)Aµ

−
(

1
4FµνF

µν − e2φ∗φAµA
µ
)

Here we can identify the interaction term between the photon field and the electromagnetic current of
the scalar field, as expected.

We also see a term ∼ AµA
µ, which would indicate that the photons may have acquired something like a

mass. Indeed, following Euler-lagrange formalism, the new Klein-Gordon equation for Aµ would look like

∂ν∂
νAµ + 2e2(φ∗φ)Aµ = 0

with a plane wave solution satisfying

k2 = 2e2(φ∗φ)

So, if, on average, (φ∗φ) > 0, our “photon” acquires mass as a result of interaction with the scalar field.
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Vacuum expectation

For a classical field φ, it looks natural that at its ground state (i.e. vacuum) the average value of
(φ∗φ) = 0. Indeed, with the potential given by

V (φ) = m2φ∗φ+ λ(φ∗φ)2

the minimum is clearly achieved at φ = 0.

But hang on, this is only true if both

parameters m2 and λ are positive!

If λ > 0 but m2 < 0, then the point φ = 0 is a

local maximum, while the minimum is achieved at

φ∗φ = |φ|2 =
−m2

λ
≡ v2

2

This is not a single point, but a circle in complex φ plane. Any point on this circle corresponds to a
minimum of the potential. But whichever point the system chooses, the average value of φ∗φ, the
vacuum expectation value will be the same:

〈φ∗φ〉 = v2/2
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Spontaneous symmetry breaking

This is interesting: the Lagrangian only depends on combinations like φ∗φ, i.e. is clearly invariant under
arbitrary rotations around the origin φ = 0 on a complex φ plane, for whatever values of m2 and λ.

L = (∂µφ
∗)(∂µφ)−m2φ∗φ− λ(φ∗φ)2−ie(φ∗∂µφ− φ∂µφ

∗)Aµ −
(

1
4FµνF

µν − e2φ∗φAµA
µ
)

However, for our new preferred choice, the lowest energy solution — the vacuum — in not unique. And
whichever direction is chosen, it will violate the original symmetry.

Once again: any direction from the origin is equally probable, i.e. the symmetry is still there. But once
we choose our vacuum, i.e. pick one point among the equally probable circle of points corresponding to
the minimum of the potential, the physics stops being explicitly invariant under rotations in φ plane.

This is an example of spontaneous symmetry breaking, when the Lagrangian is symmetric under some
transformations, but the vacuum is not. The description of the physical system built on top of that
vacuum will have that symmetry explicitly broken, but the fundamental properties of the symmetric
Lagrangian will remain intact.
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Spontaneous symmetry breaking: examples

Spontaneous symmetry breaking is all around us:

✦ when two cars are “palying chicken”, to avoid collision they have to swerve — but which way? A
priori, there is a left-right symmetry, which is spontaneously broken in different ways in the UK and
Europe.

✦ Place a thin long knitting needle vertically, and push the tip down. It will bend, but which way? The
direction is random, but whichever it chooses, the original axial symmetry is broken (despite the
force being axially symmetric too).

✦ Find your own examples?
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Moving to new vacuum

What we need to do now is move our theory to a new vacuum: instead of the real and imaginary parts of
the original scalar field φ, let’s introduce two real new fields, h and θ, relative to the new minimum:

φ =
√

1
2 (v + h+ iθ) φ∗ =

√

1
2 (v + h− iθ)

Gauge invariance can be used to totally eliminate the phase θ, thus only leaving one physical scalar field
h (the price to pay is that we have no more freedom in choosing the gauge, we have exhausted our
gauge-fixing capacity).

So, re-expanding the Lagrangian in terms of h, we obtain:

L = 1
2

(

∂µh ∂
µh− 2λv2h2

)

− λvh3 − 1
4λh

4

−
(

1
4FµνF

µν − 1
2e

2v2AµA
µ
)

+ 1
2e

2h2AµA
µ + ve2hAµA

µ

The first line is the Lagrangian of a massive (with mass =
√
2λv2) self-interacting scalar field. In the

second line, the term in brackets is the Lagrangian of a massive vector field (with mass = ev), and the
remaining two terms correspond to the interaction of photons with the field h.
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What’s the gain?

So, if we wanted to introduce a mass to the photons, all we had to do was to fill the whole space with a
complex scalar field, postulate that the scalar field has its gauge symmetry spontaneously broken, and
re-locate the vacuum to a new position.

As a result, we get a self-interacting real massive scalar field, but more importantly our photons gain
masses, and also gain the ability to interact with the remaining scalar fields.

Was it worth the effort? Yes, because the Lagrangian is still the same, it never changed, it’s
gauge-invariant and hence renormalisable, despite the apparent “massiveness” of the photon.

But we know that the photon is massless!!!

We did all this to demonstrate the machinery at work, now we will leave the photons alone and outline
how to do this where it really matters, i.e. in the weak interaction domain.

The real photon will remain massless, but the W and Z bosons — and the fermions too! — will gain
masses.

Particle Physics (page 277) V. Kartvelishvili (Lancaster U)



Back to Electroweak Lagrangian

The EW Lagrangian, with all participating fields still free, contains terms for each fermion ψf (with index
f running through all colour and flavour degrees of freedom, for all six quarks and all six leptons, but
with no mass terms) and terms for each vector field (A,W±, Z or equivalently, before mixing,
W 1,W 2,W 3, B, with index b running through all necessary degrees of freedom, again with no mass
terms):

Lfermion = ψ̄fγµ∂µψ
f Lgauge = − 1

4F
b
µνF

bµν

L =
∑

fermion=q,l

Lfermion +
∑

boson=W,B

Lgauge

The Lagrangian is invariant under global gauge transformations from group SU(2)×U(1), with W fields
associated to SU(2) and B field linked to U(1).

Now we request that this Lagrangian is invariant under local gauge transformations from SU(2)× U(1),
and this is achieved by replacing the derivative ∂µ with the covariant derivative, which for this symmetry
group will be

∂µ → Dµ ≡ ∂µ + i
g

2
σkW k

µ + i
g′

2
yBµ
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Adding scalar fields

Now we want to add a new term to the Lagrangian, describing a set of complex scalar fields φ, a doublet
in weak isospin with hypercharge y = 1:

L =
∑

fermion=q,l

Lfermion +
∑

boson=W,B

Lgauge + Lscalar

where the scalar field Lagrangian has the familiar form:

Lscalar = (∂µφ
†)(∂µφ)− µ2φ†φ− λ(φ†φ)2

except the φ fields have multiple components:

φ =
1√
2

(

φU

φD

)

=

(

φU1 + iφU2

φD1 + iφD2

)

so the simple complex conjugate φ∗ becomes the hermitian conjugate, row φ†.

To achieve local gauge invariance, the covariant derivative should be used throughout the Lagrangian,
including the kinetic term in the scalar field Lagrangian. For the fermion and gauge parts of the
Lagrangian, we have seen this introduce fermion-antifermion-gauge and gauge-gauge interactions, and
then the mixing between W 3 and B yileds familiar A and Z fields as before. But so far, everything
remains massless.
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Breaking spontaneously

For the scalar part of the Lagrangian, the introduction of the covariant derivative also introduces various
gauge-scalar couplings, similarly to the spontaneous-symmetry-breaking example exercise we did before.
Following that example, we will consider the case µ2 < 0 and hence the non-zero vacuum expectation
value for the φ fields:

〈φ†φ〉 =
1

2
〈φ2

U1 + φ2
U2 + φ2

D1 + φ2
D2〉

= −µ2

2λ
≡ v2

2

Thus the minimum of the scalar field potential is situated in φ space somewhere along the circle with
radius v/

√
2. Anywhere on this “sphere” will do, but:

We should use this ambiguity to make sure that while W (and hence Z) bosons gain masses due to
spontaneous symmetry breaking, the symmetry tied to the photon stays unbroken and the photon
remains massless.
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Higgs field

These aims can be achieved by choosing the following new vacuum:

φ =
1√
2

(

0
v +H

)

where H is the only remaining physical field (out of initial 4 components of φ).

This neutral scalar field is called the Higgs field.

Plugging this form of φ into the Lagrangian will reveal what the existence of this field does to the other
fields: vector bosons and fermions.

Let’s start from the vector bosons, where the non-zero mass terms emerge even without propagating
Higgs fields, i.e. for H = 0.

When we decide that time has come to study not just the masses of the vector bosons but also their
couplings to the Higgs field, we can substitute v +H instead of v.

The terms with v, which are quadratic in the fields, describe the masses. The terms with H are the
interaction terms.

Particle Physics (page 281) V. Kartvelishvili (Lancaster U)



Weak gauge boson masses

So we have the scalar field Lagrangian with local gauge invariance

Lscalar = (Dµφ
†)(Dµφ) + λ

v2

2
φ†φ− λ(φ†φ)2

where

Dµ = ∂µ + i
g

2
σkW k

µ + i
g′

2
Bµ, φ =

1√
2

(

0
v +H

)

and we can put H = 0 for the time being. The two “potential” terms simply give the value of the
potential at minimum (by construction), which is an irrelevant constant. The important terms are those
which contain gauge and scalar fields:

1

8

∣

∣

∣

∣

(

gW 3
µ + g′Bµ gW 1

µ − igW 2
µ

gW 1
µ + igW 2

µ −gW 3
µ + g′Bµ

)(

0
v

)∣

∣

∣

∣

2

=
1

8

∣

∣

∣

∣

(
√

g2 + g′2Aµ g
√
2W+

µ

g
√
2W−µ −

√

g2 + g′2Zµ

)(

0
v

)∣

∣

∣

∣

2

=
1

2

(g2v2)

4

(

W+
µ Wµ− + W−

µ Wµ+
)

+
1

2

(g2 + g′2)v2

4
ZµZ

µ

So, the two charged W s gain the mass MW = g(v/2) each, the Z boson gains the mass

MZ =
√

g2 + g′2(v/2), while the photon remains massless.

The ratio of masses is firmly predicted: MW /MZ = g/
√

g2 + g′2 = cos θW
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...and more

So, we have predictions for the masses of W and Z:

MW =
vg

2
, MZ =

v
√

g2 + g′2

2
=

MW

cos θW

Also, we remember that g sin θW = g′ cos θW = e.

From some basic processes like beta decay or muon decay, we know that

g2

8M2
W

=
GF√
2
, GF = 1.16639× 10−5 GeV−2, α(M2

W ) ≡ e2

4π
=

1

128.9

so we have more constraints than unknowns, and we can check whether the measured values for masses
satisfy the predicitions.

MW = 80.40 GeV, MZ = 91.19 GeV, sin2 θW = 0.231, v ≃ 250 GeV

It appears that they do, up to loop corrections. These are usually assigned to α, which changes to the
above value at q2 = M2

W from its value at zero momenta, α(0) = 1/137.036, as mentioned before.

Note that we have thus a way of measuring g, g′, cos θW , v and some other combinations of constants,
but have no handle on λ (except λ > 0).
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Higgs mass etc.

How about the mass of the Higgs itself? It also gains mass through spontaneous symmetry breaking
(just like in our abelian example):

mH =
√
2λv2

which remains unknown, as we do not know λ. In fact, it’s much more convenient to replace λ with
m2

H/(2v2), as mH has a direct physical meaning.

How about vector-boson interactions with the Higgs?

We could have obtained those terms, if we had not put H = 0. Here is the end result:

✦ There is a Higgs−W −W vertex, gMWHW+
µ W−

µ , with a very strong coupling gMW (which is very
strong! Remember: g sin θW = g′ cos θW = e).

✦ There is also a Higgs−Z − Z vertex, gMZ

2 cos θW
HZµZµ, with the coupling as shown (which is very

strong too!).

✦ There is no fundamental coupling of Higgs with photons — no surprise here, that part of the
symmetry is not broken, and photon has no mass.

✦ Naturally, there are also HHWW and HHZZ couplings, but these are higher-order (∼ g2).
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Fermion masses

In order to allow fermions to have masses (such that do not break the gauge invariance), one needs to
introduce interactions with the (same) scalar fields, and then allow spontaneous symmetry breaking to
work its magic.

By construction, the quantum numbers of the scalar fields are such, that the new interaction term should
couple the SU(2)-doublet of left-handed fermions with the U(1)-singlet of the right-handed fermions
(and vice-versa):

Lfermion−scalar = −gD
(

ψ̄U
L , ψ̄

D
L

)

(

φU

φD

)

ψD
R + . . .

where . . . replace three more similar terms. After spontaneous symmetry breaking, with φU = 0 and
φD = (v +H)/

√
2, we get two kinds of terms:

L = −gDv√
2

(

ψ̄D
L ψD

R + ψ̄D
RψD

L

)

− gDH√
2

(

ψ̄D
L ψD

R + ψ̄D
RψD

L

)

= −mDψ̄DψD − mD

v
Hψ̄DψD

and a similar expression for up-type “U”-fermions. Clearly, the first one has the structure of the mass
term for D-type fermion, while the second one is the fermion-antifermion-higgs interaction term.

Hence, introducing the mass mD ≡ gDv√
2
, the Higgs-fermion-antifermion coupling becomes

mD

v
.

Each fermion couples to the Higgs field with strength proportional to the fermion’s mass.
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Higgs decays

It’s not too hard to calculate (at leading order) the partial widths of the Higgs decays into any of the
final states:

Γ(H → WW ) ≃ α

16 sin2 θW

M3
H

M2
W

βW Γ(H → l̄l) ≃ α

8 sin2 θW

m2
fMH

M2
W

β3
l

Γ(H → ZZ) ≃ α

32 sin2 θW

M3
H

M2
W

βZ Γ(H → q̄q) ≃ 3
α

8 sin2 θW

m2
fMH

M2
W

β3
q

where I used e = g sin θW , α = e2/4π, and βi are speeds of the final state particles in the Higgs decay
frame.

There are also sizeable decays into:

✦ γγ (both diagrams)

✦ two gluons (only the diagram on the right)

despite the fact that these come only at loop level
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Higgs width and branching fractions
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Full width of the Higgs is a very steep function of its mass – the whole concept loses sense at about 1
TeV. . .

Expected branching fractions vary hugely with mass too. . .
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Higgs production at LHC

There are several subprocesses contributing to the Higgs production process in proton-proton collisions.

Their contributions depend on energy, and the Higgs mass...
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Summer 2012: Hunt is over!

Fortunately, the Higgs – or at least a Higgs – has been observed, at the most interesting mass about 125
GeV, where many decay channels may be within reach!

Make no mistake: it’s a

HUGE achievement

for both theory and experiment!

Particle Physics (page 289) V. Kartvelishvili (Lancaster U)



Higgs discovery
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The object found at ∼ 125 GeV looks very much like a Higgs, and is seen beyond reasonable doubt in
both γγ and ZZ∗ → 4leptons decay modes.

Spin is also more compatible with zero (than with 2). Looking forward to further studies on measuring
angular distributions and branching fractions into various channels!
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Neutral Kaon System

Let’s have a special look at the K0(498) = ds̄ and K̄0(498) = sd̄. Strong interactions can tell them
apart, because strangeness is conserved. But weak interactions may mix these two with each other!

Both neutral kaons are pseudoscalars, meaning

that their internal parity is negative:

P |K0〉 = −|K0〉, P |K̄0〉 = −|K̄0〉.

Both kaons have strangeness and isospin, so a charge-conjugation operator transforms one into the other
(minus occurs from swapping the quarks: parity is negative):

C|K0〉 = −|K̄0〉, C|K̄0〉 = −|K0〉,
Applying combined parity operator CP we have:

CP |K0〉 = |K̄0〉, CP |K̄0〉 = |K0〉,
neither of these two is a CP eigenstate, but certain mixtures of the two will be:

CP |K0 + K̄0〉 = |K0 + K̄0〉, CP |K0 − K̄0〉 = |K̄0 −K0〉 = −|K0 − K̄0〉,
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K-long and K-short

Provided combined CP -parity is conserved, the CP -even eigenstate should be able to decay into a
pair of pions (angular momentum is conserved, hence ⇒ Lππ = 0, which means C = (−1)L = +1). This
happens rather quickly as a lot of phase scpace is available. The respective CP -even kaon combination
has a short lifetime, and is hence called K-short:

KS ≡ K0 + K̄0

√
2

→ π+π− or π0π0, τS = 0.9 · 10−10 s cτS ≃ 3 cm

The CP -odd eigenstate, however, must decay into three pions (here all orbital momenta are zero again,
so it’s the intrinsic negative parity of the pions wihc makes the difference). The phase space is tight here,
the decay goes far slower, and the CP -odd kaon is called K-long:

KL ≡ K0 − K̄0

√
2

→ π+π−π0 or π0π0π0, τL = 0.5 · 10−7 s cτL ≃ 15 m

Even masses of the two are slightly different: MKL
−MKS

≃ 3.5 · 10−12 MeV.

The CPT theorem requires that masses of particles and antiparticles are equal, so m(K0) = m(K̄0).
However KS and KL are not each other’s antiparticles!
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Kaon Regeneration

Consider a reaction of neutral kaon production, e.g. one of the following:

K+ + p → K0 + π+ + p, K− + p → K̄0 + π− + p,

The neurtal kaons are produced in strong interactions as eigenstates of the strangeness operator, i.e.
have definite strangeness, +1 or −1.

However, we know that K0 ≡ 1√
2
(KS +KL) and K̄0 ≡ 1√

2
(KS −KL). So, after some time, all KS will

have decayed, while KL will survive for significantly longer, and in either reaction we are left with a
“beam” of KL mesons, which is in fact a superposition of K0 and K̄0:

If this “beam” hits a slab of material,

the K̄0 component is absorbed

much stronger (because it contains a

light antiquark), and on exit we will have a reasonably clean beam of K0.

Which, of course, is a superposition of KS and KL, and after some time most of KS will have decayed
and we get a clean beam of KL (of course, with reduced intensity).

And then somebody asks why people called them strange particles. . .

Similar oscillations exist in B0 − B̄0 and Bs − B̄s systems.
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CP-violation

This is not the whole story, however. . .

In prehistoric days, everybody believed in conservation of parity, i.e left-right symmetry of fundamental
laws of narure.

But particle physicists have a nasty habit of checking everything experimentally. And in 1957 it was
shown that parity is violated in weak interactions, which means that if we view a weak decay in the
mirror, the reflection will not look the same as the original.

Then it was discovered that C-parity is not conserved in weak interactions either, i.e. a particle’s decay
does not look the same as its antiparticle’s decay (without any mirrors).

However, theorists expected that the combined, CP -parity was still conserved, i.e. a weak decay of a
particle would look the same as the decay of its antiparticle viewed in the mirror. In which case, KS only
decays into two pions, while KL only decays into three pions.

In 1964 another group of particle physicists discovered that very rarely — but most definitely — KL does
decay into two pions (BR ≃ 10−3), thus violating CP -invariance!

Similar CP -violating decays have been observed in B-systems, too. In fact, two dedicated B-factory
experiments (BaBar in California and Belle in Japan) have been built to study these decays.
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Standard Model – looking back

Starting from basic free-field Lagrangians for the various fermions, we applied gauge transformations and
used gauge invariance to introduce all three types of interactions known in particle physics.

Through spontaneous breaking of the gauge symmetry and the Higgs mechanism, some of the gauge
bosons became massive, but without jeopardising good properties of our model such as renormalisability.

The result is the Standard Model of particle physics.

This theory has explained a very wide variety of phenomena, and in many cases came up with successful
predictions, thus making it by far the most successful theory of its kind.

After the discovery of the Higgs boson – a true triumph of both theory and experiment – the focus is
now shifting to precision measurements and searches for any deviations from the Standard Model.

After all, the SM has far too many seemingly arbitrary parameters to be the true theory of everything...

If such a thing exists. . .
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Summary of the Standard Model gauge group structure

✦ The gauge group of the Standard Model is SU(2)⊗ U(1)⊗ SU(3).

✦ SU(2) roughly corresponds to weak interactions. All fundamental fermions (quarks and gluons)
belong to the doublet representation of this group. Bosons carrying weak interactions belong to the
triplet (SU(2)-“vector”, i.e. adjoint) representation.

✦ U(1) roughly corresponds to electromagnetic interactions. All fundamental fermions (quarks and
gluons) belong to the singlet representation of this group (well, it’s an abelian group, everything is a
singlet there. . . ).

✦ More precisely, SU(2)⊗ U(1) describes unified electroweak interactions, a mixture of weak and
electromagnetic.

✦ SU(3) describes strong interactions, Quantum Chromodynamics. Leptons do not feel these
interactions, and hence are invariants (scalars, singlets) against this group; same is true about
photons and W,Z bosons. Quarks belong to the fundamental (triplet) representation of SU(3),
while gluons, as carriers, belong to octet (SU(3)-“vector”), i.e. adjoint representation of SU(3).

Particle Physics (page 296) V. Kartvelishvili (Lancaster U)



Summary of the Standard Model group structure — II

✦ Non-Abelian nature of SU(2) means that weak interactions allow self-coupling of their gauge
bosons, i.e W and Z interact with each other directly.

✦ Similarly, non-abelian nature of SU(3) means that gluons carry colour charges, i.e. interact with
each other directly.

How many different particles are there in the SM?

✦ 3 pairs of leptons and same number of antileptons;

✦ 3 pairs of quarks and 3 pairs of antiquarks, each in 3 colours;

✦ photon, 3 weak bosons, 8 gluons;

✦ The Higgs (recently discovered)

Let’s try matching these numbers with dimensions of relevant representations of the subgroups of the
overall gauge symmetry groups.
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Standard Model: summary of group representations

As explained above, different fundamental particles belong to different representations of the subgroups
of the Standard Model gauge group, SU(2)× U(1)× SU(3).

This table attempts to give a schematic summary.

Particle Electroweak Strong (QCD)
SU(2)× U(1) SU(3)

leptons (each family) 2, 1 1

quarks (each family) 2, 1 3

W,Z, γ 3, 1 1

gluons 1 8

Higgs 1 1
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Unification of Interactions?

The progress of science goes in two directions:

1. We are able to describe mathematically and explain wider and wider range of phenomena by covering
more and more applications.

2. More and more “laws” and “equations” are derived from fewer and more fundamental basic
principles, thus offering unification of fundamental concepts.

Particle physics is at the forefront in both directions, but so far we (in this lecture course) were mainly
busy trying to derive and explain various properties of particles from a variety of theories and models.

Let’s now have a look in the other direction: unification of interactions.
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From Electromagnetic to Electroweak Unification

Without diving too deep into history, Maxwell’s theory of electromagnetism is a very good exmple of
unification.

Here, magnetic and electric phenomena were described within a single framework. Amazingly, only one
‘external’ new constant needed to be introduced: speed of light c.

Electroweak unification considers elctromagnetic and weak interactions on the same grounds, within a
single gauge theory, with gauge symmetry described by the SU(2)× U(1) group of transformations.

Gauge theories are guaranteed to be renormalizable, which means that this theory may be more than just
an “effective” low energy theory — it may be a part of a bigger theory, describing all interactions, with a
bigger gauge symmetry group which becomes apparent at very high energies.

After all, even weak interactions are not exactly symmetric to electromagnetic ones, as γ, W and Z have
rather different proeprties.
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Grand Unification

So, EW symmetry is spontaneously broken at low energies: photons are massless, W and Z rather
massive, hence weak interactions seem week. But at Q2 ≫ M2

Z the symmetry is restored: W and Z
propagators will not be suppressed by the masses any more.

The hope is that at even greater energies, the symmetry between strong and electroweak interactions will
be restored:

✦ all three interactions will have equal strengths (the extrapolation of the Q2-evolution of couplings

predicts the meeting point somewhere at
√

Q2 ≃ 1015 GeV);

✦ both leptons and quarks will belong to the same representations of a big symmetry group, which
would enclose both electroweak SU(2)× U(1) and strong SU(3);

✦ many more gauge bosons should exist (some with charges like − 4
3 and “half-coloured” and

imaginatively called X and Y , allowing — oh horror! — transitions between leptons and quarks.
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Wonders of GUT Theories

GUT theories offer natural explanations to a number of existing puzzles:

✦ Electric charge, presently a continuously-variable generator of the (Abelian) electromagnetic gauge
group U(1), is forced into commutation relations which allow only dicrete eigenvalues — so electric
charge is quantised!

✦ Fractional charges of quarks occur because each quark comes in three colours, while the sum of all
charges in a multiplet should add up to zero.

✦ The historic question why the hydrogen atom (and any other atom for that matter) is exactly neutral
can now be answered.

✦ Similar patterns existing between quark and lepton doublets (like the difference of charges ν − e
being equal to u− d etc.) acquire natural explanations.

But the Grand Unified symmetry is badly broken, and those new X,Y bosons must have very high
masses (of order of the scale of the symmetry breaking, just like in EW). That’s why their existence has
not been noticed so far.

The scale of their masses can be assessed by looking for proton decay. Many simpler models were
excluded by the experimental fact that protons live longer than 1032 years.

Our Universe is “just” ∼ 1010 years old, but it contains many protons. . .
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Hierarchy problem

There is one problem in SM which cannot be addressed by GUT: the hierarchy problem.

If there is a GUT scale of, say, 1015 GeV, then quite a few fundamental particles will have the masses
around that scale.

This makes it extremely improbable (will require a lot of fine-tuning of parameters) that our “good old”
quarks, leptons and bosons have much-much smaller masses.

The problem shows up at its extreme for the Higgs itself: the Higgs mass depends quadratically on any
such big scale! This is a serious theoretical problem, which needs a serious solution.

And the solution is . . .Supersymmetry (SUSY).

Maybe.
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How to extend Poincaré group

Remember how we built our space-time symmetry ‘portfolio’?

We started with rotations, then we added translations, finally we added Lorentz boosts and got to the
biggest group (so far): Poincaré group.

Is it possible to extend Poincaré group further, i.e. find a group for which Poincaré group is a subgroup?
That would be a wonderful way to find a symmetry which is even more fundamental!

Not so easily! Coleman-Mandula theorem says, that the invariance group of any quantum field theory
can only be extended beyond Poincaré group by a finite number of Lorentz-invariant generators.

This in fact means that whatever additional symmetry there may be, it does not mix with the space-time
invariance.

Gauge symmetries are examples of such symmetries. Their generators belong to trivial (scalar)
representation of the Poincaré group.
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Supersymmetry

Fortunately (or unfortunately?) Haag, Lopuszanski and Sohnius soon found a way out, thus opening
the possibility of numerous new developments.

The algebra of a quantum filed theoretical model can be extended in a non-trivial way, without violating
Coleman-Mandula theorem, by ‘simply’ (!) adding the possibility that the algebra may contain
anticommutators. Then, some of the new generators Q must belong to the spinor representation. Their
main properties are defined by

QαQ̄β + Q̄βQα = 2P0Iαβ − 2σi
αβPi

where P0, Pi are Poincaré translation generators. The new Q’s anticommute with themselves, and
commute with P ’s:

QαQβ +QβQα = 0 Q̄αQ̄β + Q̄βQ̄α = 0 PiQβ −QβPi = 0 etc.

Inevitably, these spinor generators generate “rotations” which transform fermions into bosons, and
vice-versa. This gives rise to various supersymmetric (SUSY) field theories, which happen to have some
useful properties (from the field-theoretical point of view).
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MSSM

The simplest of these is MSSM - Minimal Supersymmetric Standard Model

Each of the known fundamental particles acquires here a superpartner, whose spin differs by 1
2 :

leptons ( 12 ) ↔ sleptons (0)

quarks ( 12 ) ↔ squarks (0)

photon (1) ↔ photino ( 12 )

gluons (1) ↔ gluinos ( 12 )

W,Z (1) ↔ wino, zino ( 12 )

Higgs (0) ↔ higgsino ( 12 )

In fact, one needs 4 physical Higgses in MSSM: two neutral, two charged. Hence, there are also 4
higgsinos.

Interestingly, the new particles must belong to the same representations of the gauge groups as their
“old” partners, and hence must have the same interactions. E.g. gluinos, just like gluons, only
participate in strong interactions.
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Supersymmetry and the Hierarchy Problem

In SM, fermions and bosons are playing very different roles and have very different
properties. In SUSY theories, the symmetry between fermions and bosons is restored: for
every existing fermion there will be a matching boson (squark or slepton, and for every
existing boson — a matching fermion photino, wino, zino, gluino, higgsino. . . ).

How does this help the hierarchy problem?

Mass corrections come from loop diagrams with all possible particles in the loops, and the
contributions of bosons and fermions come with opposite signs. So, if all couplings are
the same, the contributions from the superpartners will cancel out at high-energy end of
the integration, even if the actual masses of the superpartners are not exactly equal.
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Supersymmetry Searches

Supersymmetry is clearly broken: we have no scalar electrons with masses of 0.51 MeV, nor new charged
fermion winos at 80 GeV. If they existed, we woluld have certainly seen them already! But the new
superpartners must have masses below ∼ 1 TeV — if higher, the cancellation mechanism will not work.
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In any case, SUSY particles should be

copiously produced in high energy colliders

and will decay into ordinary ones (leptons,

jets of hadrons), but with some specific

observable signatures: missing energy,

high number of energetic jets and/or

leptons etc.

SUSY theories, however, contain a few free

parameters, in terms of which the properties

of SUSY particles are calculated. So the number

of possible scenarios is enormous!

We are doing our best to cover as much as we can, and we believe we have a reasonably good chance of
discovering SUSY at the LHC, if it exists. Nothing so far. . .
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Looking for MSSM

So far, no experimental evidence of supersymmetry exists, but there are numerous predictions of possible
signatures that could/should be observable at LHC.

Theorists believe that typical masses of superpartners — at least some of them —

are below 1 TeV, i.e. such that they should be produced at LHC.

If LHC experiments fail to find SUSY (as is so far the case), much of the hard work by theorists over last
few decades will be in vain.

We will need some new theories. . .

Maybe someone in this room will come up with one?
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