

Search for Muon Decays in KM3NeT/ORCA6

Revaz Shanidze, Gogita Papalashvili, Giorgi Kistauri

2 March 2022

Supported by the joint grant of Volkswagen Foundation and SRNSF Ref. 93 562 & #04/48 And FR 18-1268

KM3NeT Cosmic Ray Group Meeting, 2 March 2022

Muon Decays in ANTARES/KM3NeT

Discussed by Juergen Brunner for ANTARES

Several possible applications for physics (calibration)

Study for KM3NeT/ARCA by Dimitry Zaborov (Bari meeting, 2017)

Michel electrons from muon decay: a feasibility study using ARCA data

Search for a time difference for 2 multiple hits group in the same KM3NeT DOM

Muon Decays

Muons in KM3NeT (Muon Flux Dependence on Seawater Depth)

KM3NeT

$$egin{aligned} I_{\mu}(d) &= rac{I_{\mu}(a,b=0)}{C(d)} &= rac{A_1 \cdot e^{a_2 \cdot a} + A_3 \cdot e^{a_4 \cdot a}}{B_1 + B_2 \cdot d}, \ A_1 &= &1.31 imes 10^{-5} \, {
m cm}^{-2} \, {
m s}^{-1} \, {
m sr}^{-1}, \quad A_2 &= -2.91 imes 10^{-3} \, {
m m}^{-1}, \ A_3 &= &7.31 imes 10^{-7} \, {
m cm}^{-2} \, {
m s}^{-1} \, {
m sr}^{-1}, \quad A_4 &= -1.17 imes 10^{-3} \, {
m m}^{-1}, \ B_1 &= &4.16 imes 10^{-1} \, {
m sr}^{-1}, \quad B_2 &= 1.07 imes 10^{-4} \, {
m m}^{-1} \, {
m sr}^{-1}. \end{aligned}$$

The KM3NeT Collaboration EPJ C80(2020), 99

Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units

Muons are detected with a single DOM – rate difference vs depth indicates muon decays.

Muon Decays

Decays at Rest vs. Decays in Flight

 τ = 2.2 μ sec

KM3NeT events is a collection of the hits (PMT signals) in the selected time interval

Muon Track Selection

Muon Decay Search Window

Time interval for µ-decay search: difference last hit - last triggered hit

MC: Muon Decay distribution (10⁸ decays)

Muon decay MC

- ➤ 2x10⁴ muon decays MC is done using ROOT TGenPhaseSpace
- Michel electrons are distributed around a DOM, inside 10 meter radius sphere

Michel electron MC

Michel electron propagation and light is simulated with KM3Sim

Muon decay MC

Michel electron propagation and light is simulated with KM3Sim

Muon decay MC

- Decayed muons could be observed considering ORCA events' time windows and Michel electron energies
- Electrons with corresponding Cherenkov photons are simulated around a single DOM to study hit patterns

> Time windows for searching Michel electron signals should be optimized

Triggers from background chain should be applied