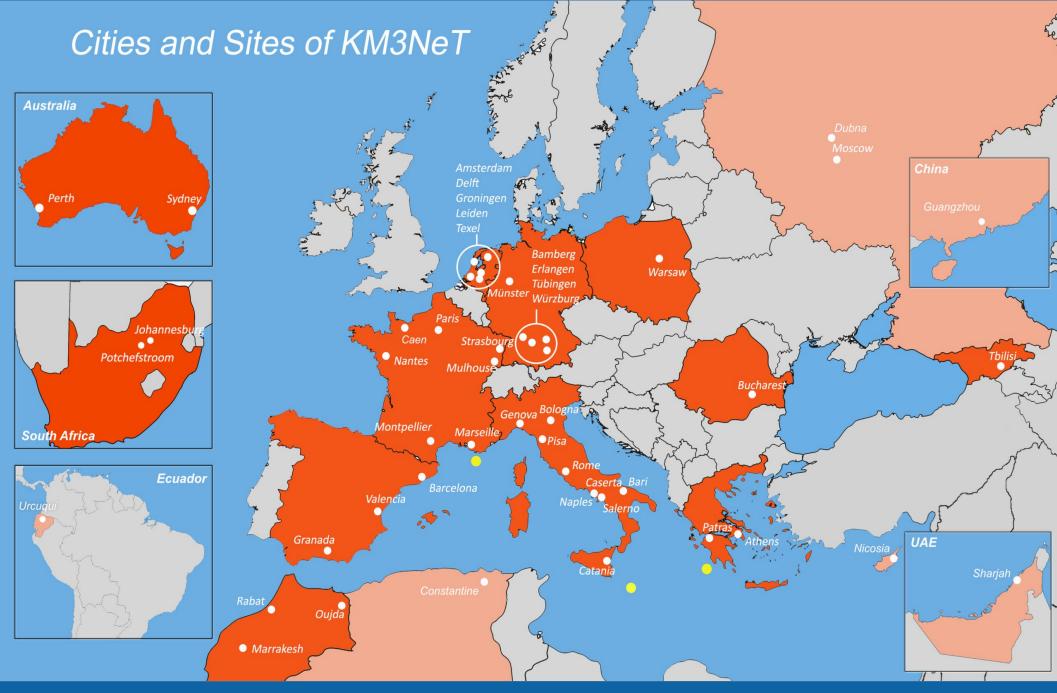
KIU Annual Conference 2021

TSU HEPI Computer Server for Nuclear and Particle Physics

Gogita Papalashvili

High Energy Physics Institute Tbilisi State University

> The author was funded by the Grants #04/48 & FR-18-1268 through Shota Rustaveli National Science Foundation

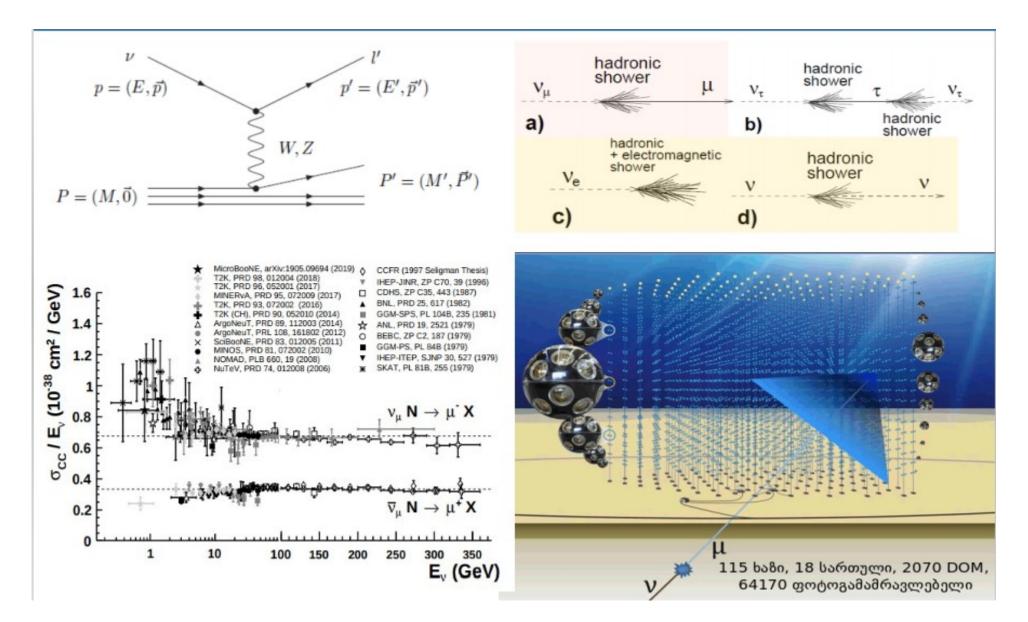

✓ Introduction

✓ TSU HEPI computer server specifications

 \checkmark Installed software and examples of usage

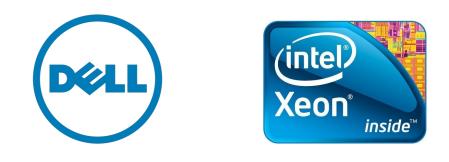
 \checkmark Summary and Outlook

KM3NeT Collaboration


G.Papalashvili

KIU Annual Conference 2021

July 6, 2021 **3**


KM3NeT Project

Neutrino physics and astrophysics in the Mediterranean Sea

TSU HEPI Computer Server Specifications

Main Hardware specifications Dell PowerEdge T40

- Intel Xeon E-186G
- 3.8GHz (upto 4.7GHz) 6 core, 12 Threads
- 12MB cache memory
- 32GB RAM
- 10 TB hard disk

CentOS 7 The Community ENTerprise Operating System

Address: <u>t2.km3net.tsu.ge</u>

Number of users > 30 Used storage > 4TB

Available software at TSU server

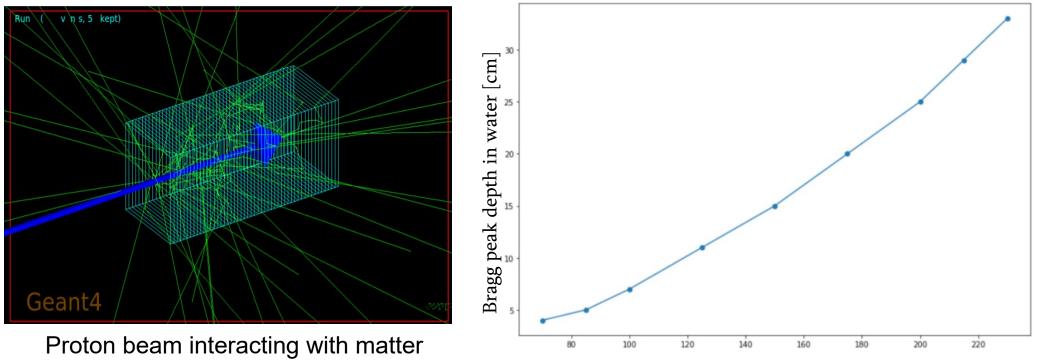
KM3NeT Software

Software	Programming Language	Main Functions
gSeaGen	C++	Simulations of neutrinos
MUPAGE	C++	Simulations of atm. muons
JPP	C++	Simulations of light and detector data analysis
AANET	Python	data analysis
km3py	Python	Accessing and analysis of the data

Simulations of particle decays

Web based python environment

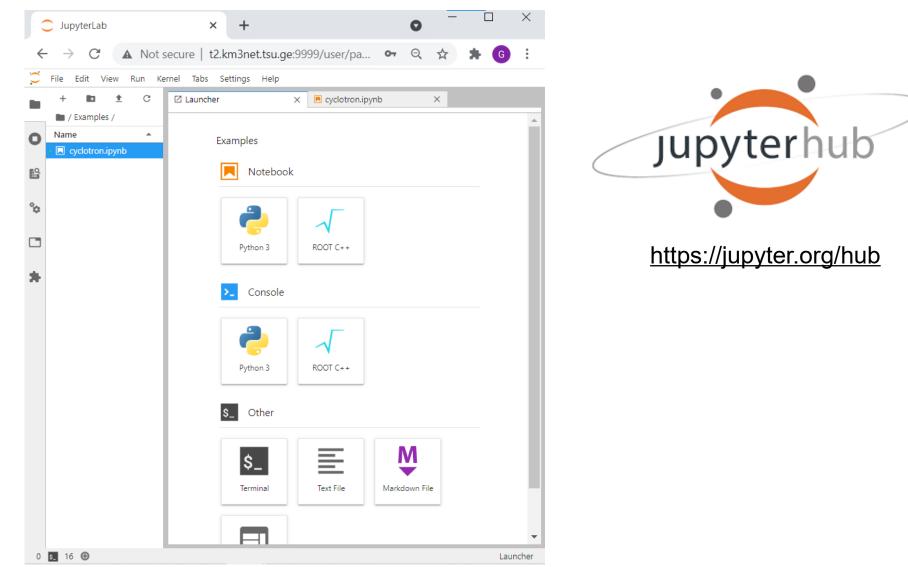
Simulations of high-energy particle collisions



High level data analysis

G.Papalashvili

Examples: GEANT4



Proton kinetic energy [MeV]

Example from master thesis of Giorgi Murvanidze

Examples: JupyterHub

Screenshot from TSU HEPI web based JupyterHub Environment

Address: <u>http://t2.km3net.tsu.ge:9999/</u>

Examples: JupyterHub Cyclotron Simulation

JupyterLab

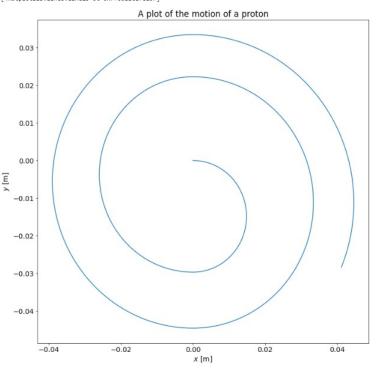
Edit

🖿 / Exa

O Name

Ľ

å


View Run Kernel Tabs Settings Help

C A Not secure | t2.km3net.tsu.ge:9999/user/papalashvili/lab?

× +

10 ± C [🛛 Launcher X 📕 cyclotron.jpynb 🔹	
xamples /	Be + % □ □ ▶ ■ C → Code ∨	[1]
		1-1
	[1]: import sympy as sp	
clotron.ipynb	import numpy as np	
	<pre>import matplotlib.pyplot as plt c = 299 792 458 #speed of Light [m/s]</pre>	
	def F.net(r, y, t, B, g, m, y):	
	d = 90e-6 #Set the separation between the plates to 90 micrometers	
	$E_0 = V/(d)$ #define the electric field based on voltage between the D's and separation	
	<pre>w = q*np.linalg.norm(B)/m #define the cyclotron frequency</pre>	
	F = np.zeros(3)	
	<pre>if np.absolute(r[0]) < d/2: #if the particle is between the two D's calculate the electric force F[0] = q*E_0*np.cos(w*t)</pre>	
	else: #if the particle is not, calculate the magnetic force	
	$F = q^{*}np.cross(v,B)$	
	return F	
	<pre>def cyclotron(q,m,B,dt,T,V=50_000): #Set voltage between the plates to 50kV</pre>	
	N = int(T/dt) r_cyclotron = .05 # set the radius of the D's to 5cm	
	$r_{\pm}(y_{\pm},y_{\pm},y_{\pm})$ is the ratio of the position of the particle.	
	v = np.zeros((N,3)) # create a array for the velocity of the particle.	
	t = np.zeros(N)	
	F = np.zeros((N,3)) # create a array for the net force on the particle.	
	i = 0	
	while (np.linalg.norm(r[i]) < r_cyclotron): # Loop while the magnitude of the particle's position remains within the cyclotron radius	
	<pre>F[i] = F_net(r[i], v[i], t[i], B, q, m, V) v[i+1] = v[i] + F[i] / m * dt</pre>	
	$r_{1}(1+r_{1}) = r_{1}(1+r_{1}) + 0$ dt	
	t[i+1] = t[i] + dt	
	i+=1	
	<pre>print(f"The final speed of the particle is {np.linalg.norm(v[i]):.3e} m/s")</pre>	
	<pre>return r[:1], v[:1], t[:1] B = np.array([0.0,0.0,1.5]) #Set magnetic field to 1.5T in the +Z directio</pre>	
	a = 1.6e-19 #Set the charge of the particle to the charge of a proton	
	m = 1.67e-27 #Set mass of the particle to the mass of a proton	
	dt = 5e-12	
	r,v,t = cyclotron(q,m,B, dt, 1e-5)	
	<pre>print(f"Total time in cyclotron: {t[-1]:.3e} s")</pre>	
	plt.figure(figsize(12,12)) #create the figure	
	<pre>plt.rc('font', size=14) plt.title("A plot of the motion of a proton")</pre>	
	plititie(x pict of the micron of a proton)	
	plt.ylabel("\$y\$ [m]")	
	<pre>plt.plot(r[:,0], r[:,1]) #create the plot</pre>	

Total time in cyclotron: 1.012e-07 s]: [<matplotlib.lines.Line2D at 0x7f6a11c17e10>]

Simulating a relativistic cyclotron Computational Essay - Simulating a cyclotron A computational essay by Vebjørn Hallberg Bakkestuen

G.Papalashvili

July 6, 2021

9

- HEPI TSU Server was created mainly for KM3NeT related projects
- KM3NeT software and other widely used software are available at HEPI TSU
- The server runs continuously and used by more than 30 users currently
- Students are welcome to use our resources

- Involving more students to do high level computing projects for their research
- Implementing new software and methods