

1

Inclusive J/ψ production

B. Chargeishvili^{1,} T. Djobava¹, V. Kartvelishvili², <u>T. Zakareishvili¹</u>

1. High Energy Physics Institute of Tbilisi State University

2. Lancaster University

31.03.2021

The author was funded by the grants # DI-18-293, and #04/48 through Shota Rustaveli National Science Foundation

Introduction

- Analysis already done "Measurement of the production cross-section of J/ψ and $\psi(2S)$ mesons at high transverse momentum in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector"*, main analyzer Bakar Chargeishvili.
 - = J/ψ and $\psi(2S)$ cross-sections were measured;
 - Prompt and non-prompt contributions were separated;
 - Analysis was performed in high-pT bins, starting from 60 GeV reaching 360 GeV region for $J/\psi.$
- We continue to study inclusive onia production at lower pT range (8 < pT < 60 GeV).
- Low pt dimuon trigger is used: HLT_2mu4_bJpsimumu_noL2

* CONF Note approved in Autumn, 2019: https://cds.cern.ch/record/2693955

Inclusive J/ ψ production studies at low pt

- Used data: 2015 13 TeV data samples;
- Trigger: HLT_2mu4_bJpsimumu_noL2 (available unprescaled for 2015 data);
 - Integrated Luminosity about 2.6 fb⁻¹, but can reach the lowest J/ ψ pT;
 - Sample extends up to ~150 GeV, but with low statistics;
- Acceptance cut: (pT1>4 && pT2>4);
- Use unweighted events for yield determination, with average perbin efficiency and acceptance corrections applied at the next step.

Fit function modification

The fit model is described by a sum of the following terms:

$$PDF(m,\tau) = \sum_{i=1}^{7} \kappa_i f_i(m) \cdot (h_i(\tau) \otimes R(\tau)) \cdot C_i(m,\tau).$$
(4)

where *m* is the dimuon invariant mass, while τ is the pseudo-proper lifetime of the dimuon. $R(\tau)$ in eq. (4) is the function describing the experimental resolution in pseudo-proper lifetime. It is parameterised as a weighted sum of three Gaussians, with $\sigma_2 = 2\sigma_1$ and $\sigma_3 = 3\sigma_1$, where the relative weights and σ_1 are free parameters. $\omega^* CB_1(S_1^* \sigma_1) + (1-\omega)^* G_2(S_2^* \sigma_1)$

								\mathbf{w} and \mathbf{s}_2 are m
i	Туре	P/NP	$f_i(m)$	$h_i(\tau)$	$C_i(m,\tau)$	Notation	Function	parameters – determined using MC
1	J/ψ	Р	$\omega G_1(m) + (1 - \omega)CB_1(m)$	$\delta(\tau)$	$BV(m,\tau,\rho)$	G	Gaussian	fits
2 3	J/ψ ψ(2S)	NP P	$\omega G_1(m) + (1 - \omega)CB_1(m)$ $\omega G_2(m) + (1 - \omega)CB_2(m)$	$E_1(\tau)$ $\delta(\tau)$	1		Crystal Ball	
4	$\psi(2S)$	NP	$\omega G_2(m) + (1 - \omega) CB_2(m)$	$E_2(\tau)$	1	E B	Exponential Bernstein polynomials	• $ω^*E(τ1) + (1-ω)^*E(A^*τ1)$
5	Bkg	Р	B	$\delta(au)$	1	BV	Correlation term of the	A – free fit parameter
6 7	Bkg Bkg	NP NP	$E_4(m)$ $E_6(m)$	$E_5(\tau)$ $E_7(\tau)$	1		bivariate Gaussian dist.	

() and S and fit

4

Table 1: Parameterisation of the fit model. Notation is explained in the text and in the table on the right.

• Fit yields are corrected with acceptance, trigger efficiency and reconstruction weights.

Prompt J/ ψ cross-section

Non-prompt J/ ψ cross-section

Prompt $\psi(2S)$ cross-section

Systematic errors are not displayed yet!

Non-prompt $\psi(2S)$ cross-section

Systematic errors are not displayed yet!

Next few steps:

- Fits need attention in the region of $\psi(2S)$;
- Determine the trigger and reconstruction efficiency weights for $\psi(2S);$
- Study other rapidity bins, systematics etc.

Thank you!

Fit function

In order to take into account possible correlations between mass *m* and lifetime τ of a dimuon, in eq. 4 in the term with *i* = 1, the simple product of two Gaussians is replaced by a bivariate normal distribution (BVN), defined as:

$$BVN(m,\tau) = \text{Const} * \exp\left[\frac{1}{2(1-\rho^2)} \left(\frac{(m-\mu_m)^2}{\sigma_m^2} - \frac{2\rho(m-\mu_m)(\tau-\mu_\tau)}{\sigma_m\sigma_\tau} + \frac{(\tau-\mu_\tau)^2}{\sigma_\tau^2}\right)\right]$$
(5)

where ρ is the correlation coefficient between *m* and τ .

BPHY1 MC

- Lower p_T range has much higher statistics, and more complex lineshapes.
- Allows moving to narrower binning, but additional shapes in the fit model still necessary.
- Too many parameters make fits unstable In order to fine-tune signal shapes, same fits were applied to signal-only MC distributions (mix of pp and bb)
- Aim to fix some parameters once fits move to data, with parameter varied at systematics stage

MC: $bb \rightarrow J/\psi \rightarrow \mu\mu$ DAODs used:

1. mc16_13TeV.300203.Pythia8BPhotospp_A14_CTEQ6L1_bb_Jpsimu3p5mu3p5.deriv.DAOD_BPHY1.e4889_a875_r93 64_p3648

MC: $pp \rightarrow J/\psi \rightarrow \mu\mu$ DAODs used:

- $1.\ mc16_13 TeV. 300013. Py thia 8B_A14_CTEQ6L1_pp_Jpsimu3p5 mu3p5. deriv. DAOD_BPHY1.e7703_a875_r9364_p4277$
- 2. mc16_13TeV.300000.Pythia8BPhotospp_A14_CTEQ6L1_pp_Jpsimu2p5mu2p5.deriv.DAOD_BPHY1.e3989_s3126_r9 364_p4277

Description of MC produced $(pp \rightarrow J/\psi)$:

- Derivation format: BPHY1
- AthDerivation cache used: 21.2.105.0
- Production: unskimmed production