

ELEMENTARY PARTICLE PHYSICS

BASIC CONCEPTS

MAY 2020 I HANS STRÖHER (FZ JÜLICH, UNIVERSITY OF COLOGNE)

Outline:

- A brief **introduction** (history ...)
- The **tools** (accelerators, targets, detectors ... concepts, ...)
- The **particles** (hadrons, baryons, mesons ...)
- The *fundamental* particles (quarks, leptons)
- The **forces** (gravitation, nuclear forces)
- The *fundamental* interactions (strong and electro-weak IA)
- The Standard Model of EPP
- Physics **Beyond the Standard Model** (BSM)
- Spin-offs Applications of EPP

What is Particle Physics?

Particle Physics – studies of building blocks of matter and interactions

Matter consists of particles – **fermions** at the fundamental level

Particles interact via forces, mediated by force-carrying particles – **bosons**

Particle physics is **relativistic** and **quantum mechanical**:

The Units of Particle Physics

The Units of Particle Physics

Natural units – how to simplify calculations

In physics, the SI-units (with base quantities are *mass*, *length*, *time* ...) is most frequently used; in particle physics, since it relies on **special relativity** and **quantum mechanics**, it is more convenient to use *energy* [GeV], *velocity* [c] and *angular momentum* [h] as base units: since "c" (velocity of light) and "h" (Planck's constant) are "**natural units**":

Kinematics in Particle Physics

RELATIVISTIC KINEMATICS

A GUIDE TO THE KINEMATIC PROBLEMS OF HIGH ENERGY PHYSICS

Member of the Helmholtz Association

Page 6

Kinematics in Particle Physics

4-vectors – taking special relativity into account

In special relativity, a "**four-vector**" (4-vector) is an object with four components, which describes, e.g., the particle position in spacetime or its momentum:

- Space-time 4-vector: x=(ct,x) where x is a normal 3-vector
- Momentum 4-vector: p=(E/c,p) where p is particle momentum

- 4-vector rules (recap) $a = (a_0, a_1, a_2, a_3)$ $b = (b_0, b_1, b_2, b_3)$
 - $a \pm b = (a_0 \pm b_0, a_1 \pm b_1, a_2 \pm b_2, a_3 \pm b_3)$
 - Scalar product (minus sign!) $a \cdot b = a_0 b_0 - a_1 b_1 - a_2 b_2 - a_3 b_3 = a_0 b_0 - a \cdot b$
 - Scalar product of momentum and space-time 4-vectors are thus:
 x·p=Et x_xp_x x_yp_y x_zp_z= Et x·p

The length of a 4-vector is a scalar and an invariant quantity.

Kinematics in Particle Physics

4-vectors – taking special relativity into account

The scalar product of the "energy-momentum 4-vector" p = (E,p) represents the "invariant mass" of a particle:

$$m^2 = E^2 - \vec{p}^2$$

<u>Note</u>: an invariant mass of zero is possible – it simply means that $E^2 = p^2$ (e.g. E = p for massless photons)

An invariant mass analysis is a powerful tool to identify a (new) particle,

e.g. Higgs-boson:

Kinematics in Particle Physics

Dalitz plots – analyzing 3-body decays

Particles frequently **decay** into lighter "daughter particles":

4-momentum conservation restricts events in the shaded 2D-region:

Kinematics in Particle Physics

Dalitz plots – analyzing 3-body decays

If no angular correlations between the decay products ("phase space") \rightarrow uniform Dalitz plot distribution; symmetries may impose certain restrictions on the distribution; resonant processes: ($A \rightarrow a b \rightarrow (a_1a_2) b$) result in a non-uniform distribution

Example: $pp \rightarrow \pi^+\pi^-\pi^0$ at 1940 MeV/c beam momentum

Kinematics in Particle Physics

Reference frames – Galilei and Lorentz-transformation (I)

The "Lorentz-transformation" is a linear transformation from a coordinate frame in spacetime to another frame that moves at a constant velocity (v) relative to the former:

<u>Notes</u>: for $v \rightarrow 0$ ($\gamma \rightarrow 1$), **Galilean transformation** is recovered space and time coordinates are mixed only relative velocities matter

Kinematics in Particle Physics

Reference frames – Galilei and Lorentz-transformation (II)

Consider 2 inertial frames S and S' with a **relative velocity v** (e.g. in x-direction) and an **object in S' moving with the velocity u_x'**:

<u>Notes</u>: although y = y' and z = z', $u_y \neq u_y'$ and $u_z \neq u_z'$ speed-of-light (c) is independent of the reference frame

Member of the Helmholtz Association

Page 12

Kinematics in Particle Physics

Reference frames – center-of-momentum (COM) frame

The "**center-of-momentum frame**" (also: zero-momentum frame or COM frame) of a system is the unique inertial frame in which the **total momentum of the system vanishes**; in all COM frames, the center of mass (CM) is at rest:

A special COM case is the "center-of-mass frame" in which the center of mass (of the system) remains at the origin

Kinematics in Particle Physics

Reference frames – energy in collider vs. fixed target experiments (I)

Consider **colliding beams** of symmetric particles (e-e, p-p, ...) at same energy: the laboratory frame is equal to CM frame; the **total energy** is:

$$E_{a} = E_{b} \qquad \mathbf{p}_{a} = -\mathbf{p}_{b}$$

$$s = (E_{a} + E_{b})^{2} + 0 = 4E_{a}^{2}$$

$$\sqrt{s} \propto E_{a} \qquad \qquad \text{energy available, e.g.,}$$
for particle production

This is advantageous to a **fixed target** experiment (with "b" at rest):

$$s = (E_a + m_b)^2 - p_a^2 \approx 2E_a m_b \quad \text{for} \quad E_a >> m_a, m_b$$

$$\sqrt{s} \propto E_a^{\frac{1}{2}}$$

Kinematics in Particle Physics

Reference frames – energy in collider vs. fixed target experiments (II)

Produced particles are emitted in forward direction (fixed target) or concentrically around the interaction point (collider):

Processes in Particle Physics

JÜLICH Forschungszentrum

Member of the Helmholtz Association

Page 16

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (I)

In 1948 **Richard Feynman** introduced/developed these diagram technique for describing the behavior and interaction of subatomic particles:

- Time from left to right (may also be other way!)
- Particle: \rightarrow
- Anti-particle
- Different lines for each group of particles
- Interaction at "vertices"

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (II)

At a vertex, charge and momentum is conserved, but not energy; since in a physics process, **energy conservation** has to be fulfilled, one needs to combine (at least) two of them:

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (III)

Any **physical process** is the sum of contributions from all possible **virtual processes**:

Example: two-photon exchange in electron scattering

This includes "**loop diagrams**" and originally lead to divergencies, cured by the process of "renormalization"

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (IV)

Examples:

(i) annihilation vs. scattering:

(ii) identical particles (e):

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (V)

Examples:

(iii) strong interaction:

(iv) weak interaction:

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (VI)

- It is perfectly acceptable to appreciate Feynman diagrams at face value as pictorial representations of particle interactions
- In fact there is a much more **mathematical interpretation** of these diagrams: it produces **mathematical expressions** which predict the **probability** of these interactions to occur
- Feynman gave a **prescription for calculating the amplitude** for any given diagram from a field theory Lagrangian the **Feynman rules** (he used Ernst Stueckelberg's interpretation of the positron as an electron moving backward in time)
- Computer programs (e.g. Mathematica) available to perform calculations

Processes in Particle Physics

Feynman diagrams – a pictorial representation of subatomic processes (VII)

Coupling strength g determines the "order of magnitude" of the matrix element M, the cross section σ is proportional to $|M|^2$

Example: electron-proton scattering

Symmetries in Particle Physics

Member of the Helmholtz Association

Page 24

Symmetries in Particle Physics

What is a symmetry? – from "beauty" to physics

Symmetry and asymmetry are well known to all of us:

- In physics, there are many notations with symmetries, e.g.: T-, P-, CPand CPT-symmetry, spontaneous symmetry breaking, supersymmetry, ...
- Why is the concept of symmetries so important in physics?

Symmetries in Particle Physics

Symmetry operations – invariance under transformations

In physics, the symmetry of a system is defined as the **invariance** of some physical or mathematical feature **under some transformation**:

• **Discrete** and **continuous** symmetry operations:

Symmetries in Particle Physics

Noether theorem – symmetries and conservation laws

Emmy Noether showed (in 1918) that there is an **intimate link** between **conservation laws** and the **symmetries of nature**, a connection that physicists have exploited ever since: *If a system of particles shows a symmetry, then there is a conserved quantity*:

Symmetry	Invariance under movement in time	Homogeneity of space	Isotropy of space
Transformation	Translation in time	Translation in space	Rotation in space
Conserved quantity	Energy	Linear momentum	Angular momentum

This theorem also applies to **discrete symmetries**: parity (P), charge symmetry (C) and time reversal (T), <u>but</u>: "**violations**" (see below)

Member of the Helmholtz Association

Examples:

Symmetries in Particle Physics

Importance of symmetries – what famous physicists have to say

"Fundamental **symmetry principles** dictate the basic laws of physics, control the **structure of matter**, and define the **fundamental forces** in nature." (L. Lederman)

"It is only slightly overstating the case to say that **physics is the study of symmetry**." (P. Anderson)

"The fundamental theories of physics are based on symmetry considerations, yet: our **world is filled with asymmetry**." (T.D. Lee)

 \rightarrow During lectures ... symmetries will appear over and over again!

Symmetries in Particle Physics

Symmetry violations (breaking) – this is the interesting part

- The **breaking of symmetries** (i.e. symmetries are not complete ...):
- Parity (P) ... a big surprise, unexpected
- Charge-parity (CP) ... a shock when discovered first
- Charge-parity-time (CPT) ... must not happen (basic principle ...)

As of today there are **fundamental unsolved questions** related to symmetry (breaking):

Examples:

- "Baryon number" (B) ... breaking required for proton decay
- CP ... more required for understanding matter anti-matter asymmetry

Symmetries in Particle Physics

Matter and anti-matter – what's the difference? (I)

Every type of **particle** has an associated **anti-particle** with the **same mass** (and magnetic moments) but with **opposite** (electric) **charges**:

Examples:proton (+e_0) $\leftarrow \rightarrow$ anti-proton (-e_0)electron (-e_0) $\leftarrow \rightarrow$ positron (+e_0)

Neutral particles also have their anti-particle counterparts:

Symmetries in Particle Physics

Matter and anti-matter – what's the difference? (II)

Energy produces **particle – anti-particle pairs**:

and particle – anti-particle pairs annihilate:

Symmetries in Particle Physics

Matter and anti-matter – what's the difference? (III)

For non-fundamental particles, **annihilation** is more complicated:

Symmetries in Particle Physics

Matter and anti-matter – what's the difference? (IV)

A **symmetry breaking** between **matter and anti-matter** responsible for our existence:

Symmetries in Particle Physics

Bosons and fermions – what's the difference? (I)

Consider **2 identical particles** (1 and 2) which may exist in **2 different states** (a and b) – wave functions:

$$\psi_{I} = \psi_{a}(1) \psi_{b}(2)$$

$$\psi_{II} = \psi_{a}(2) \psi_{b}(1)$$

Since it is not possible to tell in which state they are, so write a linear combination:

• if the particles are **bosons**, the system wave function is **symmetric**:

$$\psi_{B} = \frac{1}{\sqrt{2}} \left[\psi_{a}(1) \ \psi_{b}(2) + \psi_{a}(2) \ \psi_{b}(1) \right] = \psi_{S}$$

• if the particles are **fermions**, the wave function is **anti-symmetric**:

$$\psi_{\mathsf{F}} = \frac{1}{\sqrt{2}} \left[\psi_{\mathsf{a}}(1) \ \psi_{\mathsf{b}}(2) - \psi_{\mathsf{a}}(2) \ \psi_{\mathsf{b}}(1) \right] = \psi_{\mathsf{b}}(1)$$

JÜLICH Forschungszentrum

Symmetries in Particle Physics

Bosons and fermions – what's the difference? (II)

Particles with anti-symmetric wave-function (fermions) have **half-integer spin**, those with a symmetric wave-function (bosons) have **integer spin**:

Fermions		Bosons	
Leptons and Quarks	Spin = $\frac{1}{2}$	Spin = 1*	Force Carrier Particles
Baryons (qqq)	Spin = $\frac{1}{2}$ $\frac{3}{2}, \frac{5}{2}$	Spin = 0, 1, 2	Mesons (q q)

Fermions obey the Pauli exclusion principle: no 2 fermions can occupy

the same quantum-mechanical state

Example:

Member of the Helmholtz Association

Page 35

THE PARTICLES

That's it for today

Member of the Helmholtz Association

00 Month 2018

Page 36

