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Abstract

In this PhD dissertation split octonionic fields and their symmetries are studied. The

property of (4 + 4)-space known as triality, which manifests as equivalence of the 8-

dimensional chiral spinors and the vector, is explored in the context of physics. Split oc-

tonionic representations of SO (4, 4) and Spin (4, 4) groups are found and are com-

pared to the Clifford algebraic matrix representations. By utilizing group invariant forms,

Lagrangian that generalizes Dirac and Maxwell theories is constructed, extending these

fundamental theories onto exceptional mathematical structures. In addition, the disserta-

tion investigates automorphism group of split octonion algebra, the noncompact G2, cor-

responding Lie algebra, its Casimir operator and geometrical application of these algebraic

structures in physics. These results contribute to the development of a theoretical frame-

work for split octonionic field theories and open up new avenues for exploration of non-

associativity in physics.
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Chapter 1

Introduction

1.1 Research topic and its importance

The standard model of elementary particles, which was formed in the 1970s, is the

most successful theory in particle physics. It classifies all known particles and describes all

interactions between them except gravity. The big unsolved problem related to it is the

so-called hierarchy problem, a problem concerning weakness of gravity compared to other

forces on the one hand, and lightness of Higgs boson, with the mass of µ ≈ 125 GeV,

compared to the Planck massMPl =
√
h̄c/G ≈ 1.22× 1019 GeV on the other.

One possible solution to these problems are supersymmetric theories, according to

which particles have superpartners. For fermions, these superpartners are bosonic particles,

and for bosons they are fermionic. Although none of the supersymmetric theories have

been experimentally confirmed to date, they remain a subject of active research.

This thesis discusses the structures needed to construct a theory similar to super-

symmetric theories. In particular, the Dirac equation describing fermionic particles and

the system of Maxwell's equations describing bosonic particles with the corresponding La-

grangians are derived. Both systems are obtained in a particular limits of the same trilinear

split octonionic Lagrangian. Unlike supersymmetric theories, this theory may not need to

introduce additional Grassmannian variables, since the split octonion algebra itself contains

zero divisors. It may also not be necessary to postulate additional particles. The spectrum

of particles will be dictated from the algebra itself.

Advancements inmathematics often preceded the development of theoretical physics.

For example, hypercomplex numbers had significant impact on theoretical physics. In par-
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ticular, we can mention Clifford algebras and finite-dimensional normed division algebras.

According to Hurwitz's theorem, there are only four number systems: R reals, C com-

plex numbers, H quaternions, and O octonions. Historically, relatively less attention has

been paid to the split versions of the last three algebras: C′, H′, and O′, even though they

have properties characteristic of physical systems. The broadest of the algebras listed, the

octonions and their split version, are the least established in physics. This is partially ex-

plained by the fact that they do not have the associativity property (ab) c = a (bc)which

makes working with them particularly difficult. However, with the development of com-

puter algebra systems, calculations with such structures became easier. One of the goals

of this thesis is to fill these gaps in knowledge. Supersymmetric theories are mathemati-

cally related to the above-mentioned Hurwitz algebras R, C,H andO [Kugo & Townsend

1983, Baez & Huerta 2009, Baez & Huerta 2011]. In particular, the octonion spin [Gamba

1968] is the subject of research in relation to supersymmetries [Schray 1994]. This work

proposes a mathematical structure, the split octonionic triality, as a possible basis for a su-

persymmetric theory.

For more than half a century, group theory, a branch of mathematics that studies

symmetries, has become extremely important to physics. Based on the theory of groups,

it was possible to predict the existence of some subatomic particles, which was later con-

firmed experimentally. In addition, it was possible to combine electromagnetic and weak

interactions in the so-called electro-weak interaction. For these reasons, many physicists

base their hopes for a grand unification on the use of group theory.

Out of all groups Lie groups are the most important in particle physics and relativity.

The elements of these groups are often represented as parameter-dependent matrices. Lie

groups correspond to Lie algebras, which represent the tangential space of the group man-

ifold at the identity element. Algebra elements are called generators because they allow us

to generate group elements [Georgi 1999].

For physical applications, it is important to find the corresponding Casimir operators

of the Lie algebra. These operators are expressed through algebra elements and commute

with all algebra elements. As an example for why it's important, the eigenvalues of the

Poincaré group Casimir operators correspond to the mass and spin of a particle.

At the end of the 19th century, Wilhelm Killing and Élie Cartan classified simple
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Lie algebras [Agricola 2008]. It turned out that they fall into four infinite families and five

exceptional cases that do not belong to any family.

Out of exceptional Lie groups G2 has the smallest rank. Its existence was first sur-

mised by Friedrich Engel in 1886 [Agricola 2008]. Cartan discovered that G2 is the auto-

morphism group of octonions. It was later found that the noncompactG2 group describes

two rolling spheres of relative radius 1:3 [Bor & Montgomery 2009]. In physics, there is

an opinion that the group G2 can also be used to classify elementary particles [Silagadze

1994, Gogberashvili 2016b], or to describe the symmetries of time and space [Zhevlakov

1982, Gogberashvili & Sakhelashvili 2015].

In this work, a noncompact variant of G2 is studied, which is an automorphism

group of O′ split octonions. The possibility of its geometrical use is also discussed. The

second-order Casimir operator of this group is found and it's shown that in a special case it

can be represented as a sum of Casimir operators of Lorentz and Poincaré groups.
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1.2 Research goals and objectives

The goal of the research is to create a supersymmetric-like theory based on the split

octonion algebra and related eight-dimensional rotations. The aim of the thesis is to con-

struct Maxwell and Dirac Lagrangians based on rotation invariant trilinear form.

The triality symmetry with respect to the split version of octonions is discussed. In

this case, the space is non-Euclidean, but has a (4, 4)metric. Unlike the algebrasC,H and

O, their split versions C′, H′ and O′ are not division algebras because they contain zero

divisors. However, this is what brings them closer to physics, because zero dividers have

the structure of a light cone and are thus related to Minkowski space. Of these, only the

split octonion algebraO′contains Minkowski space as a subspace. In such a space, the sym-

metry group of vectors SO (8) is replaced by the pseudo-orthogonal noncompact group

SO (4, 4), and its double coverage Spin (8), which is the symmetry group of spinors, is

replaced by the group Spin (4, 4). It is important to note that SO (4, 4) contains the

Lorentz group as a subgroup. Because of this property, the study of split octonions is inter-

esting in a geometrical context [Gogberashvili 2002, Gogberashvili 2005, Gogberashvili &

Sakhelashvili 2015, Gogberashvili 2016a, Gogberashvili & Gurchumelia 2019].

The long-term goal is to build a theory of supersymmetric type. The aim of this

particular study is to obtain a possible Lagrangian for the theory, or its interaction term,

whose candidate is the split octonionic trilinear form F : O′ × O′ × O′ → R. Also to

determine the split octonionic representation of pseudo orthogonal groups.

The triality symmetry was investigated with respect to the split version of octonions

[Gurchumelia & Gogberashvili 2021]. Triality exists between spinors and vectors in eight-

dimensional space. In the discussed case, eight-dimensional space has 4 time-like dimen-

sions and 4 space-like dimensions, which is why it is called (4+4) space. The symmetry

groups of spinorial and vectorial objects are SO (4, 4) and Spin (4, 4). The invariant

forms of these transformations are bilinear and trilinear forms on the split octonionic vec-

tor and on the two split octonionic chiral components of the spinor. In the thesis, these

forms are used to express the Lagrangian.

A gradient operator is also needed to construct the Lagrangian. This requires analysis

on split octonion functions, for which there is no mathematical literature, and literature on
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analysis of ordinary octonion functions is sparse [Kauhanen &Orelma 2018, Sudbery 1979].

Dirac and Maxwell equations have been written in terms of split octonions in the

following papers [Gogberashvili 2006a, Gogberashvili 2006b, Chanyal, Bisht & Negi 2011],

but their corresponding Lagrangian was not written so far, and therefore it was not linked

to the rotation invariant trilinear form.
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Chapter 2

Literature review

2.1 General overview

Octonions are eight-dimensional algebras and are the largest of the normal division

algebras. It is the least established in physics despite various attempts [Okubo 1995, Gürsey

& Tze 1996, Lõhmus, Paal & Sorgsepp 1994, Lõhmus, Paal & Sorgsepp 1998]. The use of

octonions has been proposed for the color symmetry of quarks [Günaydin, M., & Gürsey

1973, Morita 1981], in grand unified theories [Sudbery 1984, Dixon 1990, Castro 2007], in

quantum mechanics [Günaydin, Piron & Ruegg 1978, Dzhunushaliev 2006], string theory

and M-theory [Chung & Sudbery 1987, Lukierski & Toppan 2002, Kuznetsova & Toppan

2006, Boya 2003], signal analysis [Gao & Li 2021, Błaszczyk 2020] and etc.

The eight-dimensional Euclidean space in which octonions reside has a unique prop-

erty. In particular, the dimensions of the vector and chiral spinors coincide in this space,

and there is a trilinear invariant form on them in which they are indistinguishable from

each other. This property is called triality symmetry [Gamba 1968, Dray & Manogue] and

is often formulated using spin group automorphisms andD4 Dynkin diagram symmetries

[Lounesto 2001].



2.2 Casimir operator and Poincaré group 7

2.2 Casimir operator and Poincaré group

An algorithm for finding Casimir operators of semisimple compact Lie algebras is

given in the article [Gruber & O'Raifeartaigh 1964]. In the thesis, this algorithm was suc-

cessfully used to find a Casimir operator of the noncompact g2 Lie algebra. According to

the algorithm, for some the Lie algebra h following matrix should be found

Q =
∑
m,n

gmn ẑm ⊗ Zn (2.1)

where ẑk is a linearly independent basis element of h, Zk is its corresponding element in

some matrix representation, and

gmn = tr (XmXn) (2.2)

is called Killing metric. Using this matrixQ , the Casimir operator of order p can be found

as

Cp = tr (Qp) , (2.3)

which means that for every ẑk element the following holds:

[Qp, ẑk] = 0 . (2.4)

For example, the Casimir operator of the Lorentz group has a form [Liu, Tang & Xun

2011, Bekaert et al 2021]

CLorentz =
1

2
MµνM

µν

=
3∑

n=1

(Ln −Kn) ,
(2.5)

where the angular momentum operator

Lk =
∑
ij

iϵijkxi

∂

∂xj

, (2.6)

and the Lorentz boost operator
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Kn = −i
(
xn

∂

∂t
+ t

∂

xn

)
, (2.7)

can be written in 4-vector notation using

Mµν = xµPν − xνPµ ,

where

Pµ = −i
∂

∂x
, (2.8)

is a 4-momentum operator.

The relation between the above two notations is

Mmn =
∑
k

ϵmnkLk ,

M0ℓ = −Mℓ0 = Kℓ .

(2.9)

The Poincaré group has two Casimir operators [Bekaert et al 2021], of which the

second-order operator is PµP
µ with Klein-Gordon equation as its eigenvalue equation.
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2.3 Cayley-Dixon constructions in physics

Using the involution1 algebra An, a new involutional algebra can be constructed us-

ing the generalized Cayley-Dixon construction [Albert 1942]

An+1 = An ⊕ An (2.10)

which defines multiplication as

(a1, a2) (b1, b2) = (a1b1 − γb∗2a2, b2a1 + a2b
∗
1)

(a1, a2)
∗
= (a∗1,−a2)

(2.11)

where a = (a1, a2) and b = (b1, b2) are elements of An+1 algebra, a1, a2, b1 and b2

are the elements of the An, γ = ±1 and the ∗ symbol denotes involution. A sequence

of involutional algebras is obtained using (2.10) formula iteratively. If A0 = R and γ =

1 then a sequence of algebras one obtains is: R real numbers, C complex numbers, H

quaternions,O octonions S sedenions, and so on. At every doubling, properties of the field

of real numbers are lost, for example starting from C we no longer have ordering, for H

commutativity, for O associativity and for S alternativity. The first four in the sequence

are normed division algebras. According to the Hurwitz theorem, these are the only four

normed division algebras.

There is a deep connection between normed division algebras and supersymmetries.

For example, for non-Abelian Young-Mills fields and Green-Schwartz superstrings, super-

symmetry is only possible in 3, 4, 6, or 10 dimensions, which is 2 more than the dimensions

of the division algebras on which they depend [Baez & Huerta 2009]. Poincaré-Lie super-

algebras of the same dimension are obtained from normed division algebras by a certain

systematic procedure [Baez & Huerta 2011].

1involution f is such a mapping, for which f−1 = f , for instance complex conjugation.
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2.4 Clifford algebras and spinors in physics

Clifford algebras form important mathematical structures for physics. They are the

most natural generalizations of complex and quaternion algebras for any dimensional spaces.

Clifford algebra theory is directly related to orthogonal groups important to physics. Clif-

ford algebra defined on the real number field is used in geometry [Hestenes & Sobczyk

2012], where it is known as geometric algebra.

Spinors are one of the most important classes of objects in physics. The language of

Clifford algebras is most convenient for talking about them. With its help, it is possible to

generalize the concept of spinor for any dimensional spaces with diagonal non-degenerate

metric. In this subsection, spinor and vector representations of orthogonal groups are dis-

cussed, based on the book [Lounesto 2001].

Clifford algebras also combine the dot product and the cross product in the so-called

geometric (or Clifford) product, thereby generalizing the standard Gibbs-Heaviside vec-

tor notation, as well as complex, quaternion and some matrix algebras and bringing them

together in one system.

The defining algebraic relation ofCℓp,q (R)Clifford algebras on the real number field

is given in the following form

eiej + ejei = 2gij , where i, j = 1, 2, . . . , d , (2.12)

where d = p+ q and gij is a diagonal metric with the signature (p, q),

g = diag( 1, 1, . . . , 1,︸ ︷︷ ︸
p

−1,−1, . . . ,−1︸ ︷︷ ︸
q

) . (2.13)

Notation eiej = eij is usually used.

Clifford algebras are isomorphic to certain matrix rings. The isomorphism between

Cℓp,q (R) algebras of d = p + q < 8 dimensional spaces is given in (table 2.1). The no-

tation mA (N) stands for is a block-diagonal matrix withm number ofMatN (A) blocks,

while, A is any associative Hurwitz algebra: R, C orH.
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q\p 0 1 2 3 4 5 6 7

0 R 2R R (2) C (2) H (2) 2H (2) H (4) C (8)

1 C R (2) 2R (2) R (4) C (4) H (4) 2H (4)

2 H C (2) R (4) 2R (4) R (8) C (8)

3 2H H (2) C (4) R (8) 2R (8)

4 H (2) 2H (2) H (4) C (8)

5 C (4) H (4) 2H (4)

6 R (8) C (8)

7 2R (8)

Table 2.1: Isomorphism between matrices and Cℓp,q (R) Clifford algebras.
The following formulas are used to obtain the matrix representation of algebras of

higher dimensional d > 7 spaces

Cℓp,q (R) ' Cℓp−4,q+4 (R) , (2.14)

Cℓp+8,q (R) ' Mat16 (Cℓp,q (R)) . (2.15)

As an example, the matrix representation of generators of the algebra Cℓ2,0 (R) '
Mat2 (R) can taken as

e1 =

 1 0

0 −1

 , e2 =

 0 1

1 0

 , (2.16)

from which it follows that

1 =

 1 0

0 1

 , e12 =

 0 1

−1 0

 . (2.17)

In the language of Clifford algebras, a spinor is defined as a minimal left or right ideal.

It is easy to find in the matrix representation. A left (right) ideal is a subspace that is closed

under left (right) side action by the general element of the algebra. An example of an ideal

is a matrix whose only first column is non-zero

ψ =

 ψ1 0

ψ2 0

 =
1

2
(1 + e1)ψ1 +

1

2
(e1 − e12)ψ2 , (ψ1, ψ2 ∈ R) (2.18)
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because acting on it from the left with any matrix A ∈ Mat2 (R) yields a matrix of the

same type. This left ideal is minimal because it contains no smaller subideals.

In order to find the minimal ideal, one must find an idempotent, that is, an element

f of the algebra for which f 2 = f . This is an example of an idempotent for an algebra

f =
1

2
(1 + e1) =

1 0

0 0

 . (2.19)

To get the left ideal from an idempotent, it is simply necessary to multiply it from the left

by a general element of the algebra. The result of this can be clearly seen from the matrix

representation. It will result in a matrix with only the first column being non-zero.

A spinor is transformswith respect to the groupSpin (p, q) in the followingmanner

ψ → ψ′ = Lij (ϑ)ψ (2.20)

where

Lij (ϑ) = exp
(
−1
2
eijϑ

)
. (2.21)

A vector is an object whose basis is given by the generating elements of an algebra

x = x1e1 + x2e2 + · · ·+ xded . (2.22)

It transforms under the SO (p, q) group as follows:

x→ x′ = Lij (ϑ) xLij (−ϑ) . (2.23)
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Chapter 3

Original results

3.1 Noncompact G2 group

The automorphism group of the split octonionicO′ algebra is an exceptional Lie group

called noncompactG2. The Lie group is 14 dimensional, which means that its element is

parametrized by 14 real numbers and thus it has 14 generators. These generators were first

provided by Élie Cartan in his thesis [Cartan 1894] in the differential operator form. They

can be written as:

Yij = yi
∂

∂yj
− zj

∂

∂zi
+

1

3
δij
∑
n

(
zn

∂

∂zn
− yn

∂

∂yn

)
,

Yk0 = yk
∂

∂t
− 2t

∂

∂zk
+

1

2

∑
m,n

ϵmnk

(
zm

∂

∂yn
− zn

∂

∂ym

)
,

Y0k = zk
∂

∂t
− 2t

∂

∂yk
+

1

2

∑
m,n

ϵmnk

(
ym

∂

∂zn
− yn

∂

∂zm

)
,

(3.1)

where indices take values 1, 2, 3while yn, t, zn ∈ R. Even though expressions (3.1) show

15 generators, Y11, Y22 and Y33 are not linearly independent because

Y11 + Y22 + Y33 = 0 . (3.2)

To convert them to a linearly independent basis, the generator Ynn can be replaced by

H1 = Y11 − Y22 ,

H2 =
√
3Y33 ,

(3.3)

which is called the Cartan-Weyl basis.
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The smallest faithful real representations of the noncompact groupG2 is provided by

7-dimensional matrices acting on the vector p ∈ R7

p =
(
y1 y2 y3 t z1 z2 z3

)T
. (3.4)

Weighted sum of (3.1) by α group parameters can be determined to have the following

matrix form:
Y =

∑
k

(α0kY0k + αk0Yk0) +
∑
m,n

αmnYmn

=


A (α) 2d B (b)

−bT 0 −dT

B (d) 2b −AT (α)

 ,
(3.5)

where

b =
(
α10 α20 α30

)T
, (3.6)

d =
(
α01 α02 α03

)T
, (3.7)

A is a weighted sum of SU (3) generators

A (α) =
1

3


−2α11 + α22 + α33 −3α21 −α31

−3α12 α11 − 2α22 + α33 −3α32

−3α13 −3α23 α11 + α22 − 2α33

 , (3.8)

andB is a weighted sum of SO (3) generators

B (b) =


0 α30 −α20

−α30 0 α10

α20 −α10 0

 ,

B (d) =


0 α03 −α02

−α03 0 α01

α02 −α01 0

 .
(3.9)

The generators of a noncompactG2 group form a simple noncompact g2 Lie algebra

with respect ring commutator [ · , · ] : (a, b) 7→ ab − ba. The commutative relations of
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the algebra are

[Yij, Yi′j′] = δji′Yij′ − δij′Yi′j ,

[Yij, Y0k] = −δikY0j +
1

3
δijY0k ,

[Yij, Yk0] = δjkYi0 −
1

3
δijYk0 ,

[Y0k, Yk′0] = 3Yk′k ,

[Yk0, Yk′0] = −2
∑
ℓ

ϵkk′ℓY0ℓ ,

[Y0k, X0k′] = −2
∑
ℓ

ϵkk′ℓYℓ0 .

(3.10)

Inmatrix form the general element of the group is obtained by exponentiation of the matrix

(3.5).

The invariant quadratic formQη : R7 → R of the group has the form:

Qη (p) = −t2 −
∑
n

znyn . (3.11)

Since the geometric interpretation of the noncompact group G2 is needed, such a

basis of R7 space needs to be found where the quadratic form is diagonal. It is possible to

change to this basis by transforming the coordinates as:

yk = λk + xk ,
∂

∂yk
=

1

2

(
∂

∂λk

+
∂

∂xk

)
,

zk = λk − xk ,
∂

∂zk
=

1

2

(
∂

∂λk

− ∂

∂xk

)
.

(3.12)

As a result, the vector p (3.4) is converted into a vector

q =
(
λ1 λ2 λ3 t x1 x2 x3

)T
, (3.13)

and the operators rewritten for these variables (3.1) will be denoted withX instead of Y .

X generators obey the same (3.10) commutation relations.

In order to simplify the formula of the Casimir operator which is to be obtained, it is
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convenient to introduce a new basis for the noncompact g2 Lie algebra:

Θk = −Xk0 +X0k ,

Bk = −Xk0 −X0k ,

Φk = Xkk .

Γk =
∑
m,n

|ϵmnk|Xmn ,

Rk =
∑
m,n

ϵmnkXmn ,

(3.14)

In this basis of algebra, (3.1) the differential operators have the form:

Θk = −2
(
xk

∂

∂t
+ t

∂

∂xk

)
−
∑
m,n

ϵmnk

(
λm

∂

∂xn

− xn

∂

∂λm

)
,

Bk = −2
(
λk

∂

∂t
+ t

∂

∂λk

)
−
∑
m,n

ϵmnk

(
λm

∂

∂λn

− xn

∂

∂xm

)
,

Γk =
∑
m,n

|ϵmnk|
(
xm

∂

∂λn

+ λn

∂

∂xm

)
,

Rk =
∑
m,n

ϵmnk

(
λm

∂

∂λn

+ xn

∂

∂xm

)
,

Φk =

(
xk

∂

λk

+ λk

∂

∂xk

)
− 1

3

∑
n

(
xn

∂

∂λn

+ λn

∂

∂xn

)
.

(3.15)

The matrix representation in the new basis is:∑
k

(ϑkΘk + βkBk + γkΓk + ρkRk + φkΦk) =
B (ρ)− B (β) −2β M (γ, φ)− 3B (ϑ)

−2βT 0 2ϑT

M (γ, φ)− 3B (ϑ) 2ϑ B (ρ) + B (β)


(3.16)

where ϑk, βk, γk, ρk, φk ∈ R,the matrixB is given by the formula (3.9),

β =
(
β1 β2 β3

)T
, (3.17)

ϑ =
(
ϑ1 ϑ2 ϑ3

)T
, (3.18)
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and matrixM is

M (γ, φ) =
1

3


−2φ1 + φ2 + φ3 −3γ3 −3γ2

−3γ3 φ1 − 2φ2 + φ3 −3γ1
−2γ2 −3γ1 φ1 + φ2 − 2φ3

 . (3.19)

Second-order Casimir operator

In order to apply the algorithm for finding Casimir operators discussed in subsection

2.2 to the algebra (3.15), it is additionally necessary to change to the Cartan-Weyl basis (3.3)

so that the generators are linearly independent, because otherwise Killing metric (2.2) will

be degenerate. A matrix representation (3.15) of generators (3.16) is also needed.

The compact g2 Lie algebra has non-zero Casimir operators of order p = 2 and

p = 6 , whose form for a specific basis of the algebra is found in the article [Bincer &

Riesselmann 1993]. For a noncompact Lie algebra g2, the Casimir operator of order p = 2

in bases (3.1) and (3.15) have the form:

C2 = 2
∑
i,j

X2
ij −

2

3

∑
k

(Xk0X0k +X0kXk0)

=
∑
k

(
1

3
Θ2

k −
1

3
B2
k + Γ2

k − R2
k + 2Φ2

k

)
,

(3.20)

By substituting the differential operators it becomes:

C2 = 6

(
t
∂

∂t
+
∑
k

(
λk

∂

∂λk

+ xk

∂

∂xk

))

+ 2t
∑
k

(
xk

∂2

∂t∂xk

+ λk

∂2

∂t∂λk

)
− 2

3

∑
i,j

λixj

∂2

∂λi∂xj

+
∑
i,j,k

|ϵijk|
(
xixj

∂2

∂xi∂xj

− x2
i

∂2

∂x2
j

+ λiλj

∂

∂λi∂λj

− λ2
i

∂2

∂λ2
j

)

+x2

(
∂2

∂t2
+
∑
k

∂2

∂λ2
k

)
− t2

∑
k

(
∂2

∂λ2
k

− ∂2

∂x2
k

)
− λ2

(
∂2

∂t2
−
∑
k

∂2

∂x2
k

)
,

(3.21)

where x2 = x2
1 + x2

2 + x2
3 and λ

2 = λ2
1 + λ2

2 + λ2
3.
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Eigenvalue equation written for the Casimir (3.21) operator

C2ψ = −m2ψ , (3.22)

is invariant to noncompact G2 transformations, similarly to the Klein-Gordon equation,

which is invariant to transformations of the Poincaré group and is an eigenvalue equation

of the Casimir operator of the Poincaré algebra.

The first term in the operator (3.21)

c1 = t
∂

∂t
+
∑
k

(
λk

∂

∂λk

+ xk

∂

∂xk

)
(3.23)

itself also commutes with (3.15) generators, which is why the coefficient in front of it can

be chosen arbitrarily, for example 3 instead of 6. In the limit where the λ variables are

constants, all derivatives with these variables vanish from the operator (3.15) and what

remains is

C2|λ=const = CLorentz − λ
2PµP

µ , (3.24)

where

PµP
µ =

∂2

∂t2
−
∑
k

∂2

∂xk

(3.25)

is the Casimir operator of the Poincaré algebra, and

CLorentz = 3

(
t
∂

∂t
+
∑
k

xk

∂

∂xk

)
+ x2 ∂

2

∂t2
+ t2

∑
k

∂2

∂x2
k

+ 2t
∑
k

xk

∂2

∂t∂xk

+
∑
i,j,k

|ϵijk|
(
xixj

∂2

∂xi∂xj

− x2
i

∂2

∂x2
j

) (3.26)

is a so (1, 3) Lorentz algebra Casimir operator (2.5) in an explicit form.

The operator C2|λ=const (3.24) can be considered in two additional limits: when λ

is small, it reduces to the Casimir operator of the so (1, 3) Lorentz algebra (2.5, 3.26), and

when λ is large it reduces to the Casimir operator of the Poincaré algebra (3.25).
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Noncompact G2 transformations

By setting to zero all but one variable in the (3.16) matrix and then exponentiating

this matrix, the group element is obtained, which is parameterized by the chosen variable.

By acting on the vector (3.13) by the obtainedmatrix, the transformation of the noncompact

G2 Lie group is performed. Six matrices parametrized by the variables ρk and βk contain

trigonometric functions and describes transformations similar to rotations, while the nine

matrices parametrized by the variables ϑk, φk and γk contain hyperbolic trigonometric

functions and describe transformations similar to Lorentz boosts.

• Rotations. The three Rk generators corresponding to the ρk parameters are the

Euler angles that simultaneously rotate (x1, x2, x3) and (λ1, λ2, λ3) subspaces. For

example q′ = exp (ρ1R1) q is the transformation:

λ′
1 = λ1 ,

λ′
2 = λ2 cos ρ1 + λ3 sin ρ1 ,

λ′
3 = λ3 cos ρ1 − λ2 sin ρ1 ,

t′1 = t1 ,

x′
1 = x1 ,

x′
2 = x2 cos ρ1 + x3 sin ρ1 ,

x′
3 = x3 cos ρ1 − x2 sin ρ1 .

(3.27)

• Boosts. The three parameters corresponding to the generators Θk are hyperbolic

angles 2ϑk. However, these transformations are not pure Lorentz boosts, because

with them also hyperbolic rotation occurs in pairs of coordinates (i, j 6= k) between
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(x1, x2, x3) and (λ1, λ2, λ3) subspaces. For example q′ = exp (ϑ1Θ1) q is:

λ′
1 = λ1 ,

λ′
2 = λ2 coshϑ1 + x3 sinhϑ1

λ′
3 = λ3 coshϑ1 − x2 sinhϑ1 ,

t′1 = t cosh (2ϑ1) + x1 sinh (2ϑ1) ,

x′
1 = x1 cosh (2ϑ1) + t sinh (2ϑ1) ,

x′
2 = x2 coshϑ1 − λ3 sinhϑ1 ,

x′
3 = x3 coshϑ1 + λ2 sinhϑ1 .

(3.28)
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3.2 Clifford algebra Cℓ4,4 (R)

Since Clifford algebras are easier to work with than non-associative algebraic struc-

tures, spinors, vectors, pseudo-orthogonal groups, and rotations are first explored through

them.

It is convenient to use Cℓ4,4 (R) Clifford algebra to describe geometric objects in

pseudo-Euclidean (4 + 4) space. Metric of this space

g = diag (1, 1, 1, 1,−1,−1,−1,−1) (3.29)

will be denoted as gµν , where the Greek alphabet indices take on the values 0, 1, . . . , 7.

The Cℓ4,4 (R) algebra is associative like other Clifford algebras. It can be defined by the

anti-commutative relation:

eµeν + eνeµ = 2gµν , (3.30)

where eµ are the pseudo-orthonormal basis units of the (4 + 4) space. The eµ 7→ Γµ ∈
Mat16×16 (R) representation of the basis elements will be used, which can be determined

using the generating matrices of the Cℓ8,0 (R) algebra [Gamba 1968], given that Cℓ4,4 (R)
algebra has a real representation [Lounesto 2001].

In the (4 + 4)-space vectors are represented using

χ =
7∑

β=0

χβΓβ , (3.31)

where χβ ∈ R. By multiplying this matrix by itself, we get the diagonal Q : R8 → R

quadratic form

Q (χ) = χ2

= 116×16

(
χ2
0 + χ2

1 + χ2
2 + χ2

3 − χ2
4 − χ2

5 − χ2
6 − χ2

7

)
,

(3.32)

where the right side of the equation is multiplied by the identity matrix. Continuous trans-

formations, for which the form (3.31) is invariant, constituteSO (4, 4) group and are writ-

ten as:

χ′ = Lµν (ϑ)χL
−1
µν (ϑ) , (3.33)
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where ϑ ∈ R and

Lµν (ϑ) = exp
(
−1
2
ϑΓµΓν

)
. (3.34)

For spinors and rotations, the matrix B = Γ4Γ5Γ6Γ7 will play an important role

due to the following property:

χT = BχB . (3.35)

The η spinor can be obtained in the way discussed above. Since η represents the first

column of a 16× 16matrix, it will be treated as a 16× 1matrix for simplicity. The chiral

parts of the η = ϕ+ ψ spinor are

ϕ =
(
0 0 · · · 0 ϕ0 ϕ1 · · · ϕ7

)T
,

ψ =
(
ψ0 ψ1 · · · ψ7 0 0 · · · 0

)T
.

(3.36)

The rule for transforming spinors is given as:

η′ = Lµν (ϑ) η . (3.37)

This constitute theSpin (4, 4) groupwhich is a double cover ofSO (4, 4). The quadratic

form

ηTBη = ϕTBϕ+ ψTBψ , (3.38)

is invariant with respect to Spin (4, 4) transformations. Under the transformations chi-

ral spinors do not mix with each other and their quadratic forms ϕTBϕ and ψTBψ are

preserved independently.

From (3.36) it can be seen that the dimension of the chiral spinors, like for χ vector,

is 8. However, there is a greater symmetry behind this, which can be demonstrated by

changing the basis of the spinors. In the new basis, the quadratic forms of the chiral spinors

become diagonal and coincide with the quadratic form of the vector (3.31)

ϕTBϕ = ϕ2
0 + ϕ2

1 + ϕ2
2 + ϕ2

3 − ϕ2
4 − ϕ2

5 − ϕ2
6 − ϕ2

7 ,

ψTBψ = ψ2
0 + ψ2

1 + ψ2
2 + ψ2

3 − ψ2
4 − ψ2

5 − ψ2
6 − ψ2

7 .
(3.39)

There exists trilinear form F : R8 × R8 × R8 → R which is invariant under the
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joint SO (4, 4) and Spin (4, 4) transformations

F (ϕ, χ, ψ) = ϕTBχψ , (3.40)

To see a more important and deeper symmetry, one can for example observe the transfor-

mation L01 (ϑ)

ϕ′
0 = ϕ0 +

1
2
ϑϕ1

ϕ′
1 = ϕ1 − 1

2
ϑϕ0

ϕ′
2 = ϕ2 − 1

2
ϑϕ3

ϕ′
3 = ϕ3 +

1
2
ϑϕ2

ϕ′
4 = ϕ4 − 1

2
ϑϕ5

ϕ′
5 = ϕ5 +

1
2
ϑϕ4

ϕ′
6 = ϕ6 +

1
2
ϑϕ7

ϕ′
7 = ϕ7 − 1

2
ϑϕ6

,



χ′
0 = χ0 − ϑχ1

χ′
1 = χ1 + ϑχ0

χ′
2 = χ2

χ′
3 = χ3

χ′
4 = χ4

χ′
5 = χ5

χ′
6 = χ6

χ′
7 = χ7



ψ′
0 = ψ0 +

1
2
ϑψ1

ψ′
1 = ψ1 − 1

2
ϑψ0

ψ′
2 = ψ2 +

1
2
ϑψ3

ψ′
3 = ψ3 − 1

2
ϑψ2

ψ′
4 = ψ4 +

1
2
ϑψ5

ψ′
5 = ψ5 − 1

2
ϑψ4

ψ′
6 = ψ6 − 1

2
ϑψ7

ψ′
7 = ψ7 +

1
2
ϑψ6

. (3.41)

As expected, one complete turn for the vector χ is only half a turn for the spinors ϕ andψ.

Here, in all planes except the one in which the vector rotates, ϕ and ψ rotate in opposite

directions to each other, which is the manifestation of their different chiralities. However,

since the dimensions of the chiral spinors and the vector coincide and theLµν matrices form

a group with respect to multiplication, it is possible to construct such a transformation for

the χ vector that exactly repeats, for example, the transformation of the ϕ chiral spinor

(3.41)

L10

(
ϑ

2

)
L23

(
ϑ

2

)
L54

(
ϑ

2

)
L67

(
ϑ

2

)
' 1− 1

4
ϑ (Γ1Γ0 + Γ2Γ3 + Γ5Γ4 + Γ6Γ7) .

(3.42)



3.2 Clifford algebra Cℓ4,4 (R) 24

It represents the following interesting transformation:

ϕ′
0 = ϕ0 +

1
2
ϑϕ1

ϕ′
1 = ϕ1 − 1

2
ϑϕ0

ϕ′
2 = ϕ2 +

1
2
ϑϕ3

ϕ′
3 = ϕ3 − 1

2
ϑϕ2

ϕ′
4 = ϕ4 +

1
2
ϑϕ5

ϕ′
5 = ϕ5 − 1

2
ϑϕ4

ϕ′
6 = ϕ6 − 1

2
ϑϕ7

ϕ′
7 = ϕ7 +

1
2
ϑϕ6

,



χ′
0 = χ0 +

1
2
ϑχ1

χ′
1 = χ1 − 1

2
ϑχ0

χ′
2 = χ2 − 1

2
ϑχ3

χ′
3 = χ3 +

1
2
ϑχ2

χ′
4 = χ4 − 1

2
ϑχ5

χ′
5 = χ5 +

1
2
ϑχ4

χ′
6 = χ6 +

1
2
ϑχ7

χ′
7 = χ7 − 1

2
ϑχ6

,



ψ′
0 = ψ0 − ϑψ1

ψ′
1 = ψ1 + ϑψ0

ψ′
2 = ψ2

ψ′
3 = ψ3

ψ′
4 = ψ4

ψ′
5 = ψ5

ψ′
6 = ψ6

ψ′
7 = ψ7

. (3.43)

Here it is peculiar that the χ vector and the ϕ and ψ spinors have cyclically exchanged

roles, as shown in the diagram (fig. 3.1). This is a property of 8-dimensional spaces and is

called triality, similar to duality for vector spaces.

Figure 3.1: The sequence of exchange of chiral spinors and vector roles when going
from the L10 (ϑ) transformation to the (3.42) transformation.
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3.3 Split octonionic numbers O′

Split octonions O′ represent a non-associative algebra that can be constructed as a

Cayley-Dixon construction (2.10) and (2.11). They can also be defined through algebraic

relations:
I2 = 1 , (C′ subalgebra)

jmjn = −δmn +
3∑

ℓ=1

ϵℓmnjℓ , (H subalgebra)

JmJn = δmn +
∑
ℓ

ϵℓmnjℓ , ,

Jmjn = δmnI −
∑
ℓ

ϵℓmnJℓ, jnI = Jn ,

(3.44)

together with right and left alternativity properties x (xy) = (xx) y and (xy) y =

x (yy) where x, y ∈ O′.

A general split octonionic number x ∈ O′ and its split octonionic conjugate x ∈ O′

are

x = x0 + Ix4 +
∑
n

(jnxn + Jnx4+n) ,

x = x0 − Ix4 −
∑
n

(jnxn + Jnx4+n) ,
(3.45)

where x0, x1, . . . , x7 ∈ R.

Since this algebra is non-associative and 8-dimensional, algebraic manipulation of

large expressions is difficult, which is why a computer algebra system for working with

split octonions [Gurchumelia 2023] was created. Most of the following calculations are

performed using this library.

It is possible to conjugate the imaginary part u separately, which will be denoted by

conju : O′ → O′ and calculated as:

conjux = u2 (uxu) . (3.46)

The product of the split octonion x by its conjugate defines the quadratic formQ :

O′ → R

Q (x) = xx =
3∑

n=0

(
x2
n − x2

4+n

)
. (3.47)
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Using the quadratic form, a symmetric non-degenerate bilinear form 〈·, ·〉 : O′×O′ → R

can be constructed as:

〈x, y〉 = 1

2
Q (x+ y)− 1

2
Q (x)− 1

2
Q (y)

=
1

2
(xy + yx) =

3∑
n=0

(xnyn − x4+ny4+n) .
(3.48)

Split octonionic gradient

For functions of the type f : O′ → O′ there are gradient operators

∂ =
∂

∂x
and ∂ =

∂

∂x
. (3.49)

When acting on the linear functions f (x) = x and f (x) = x the split octonionic

gradients have the properties

∂x = ∂x = 1 and ∂x = ∂x = 0 , (3.50)

if defined as:

∂ =
1

2
(∂0 + I∂4) +

1

2

3∑
n=1

(jn∂n + Jn∂4+n) , (3.51)

∂ =
1

2
(∂0 − I∂4)−

1

2

3∑
n=1

(jn∂n + Jn∂4+n) . (3.52)

These operators do not satisfy the properties of derivative, for instance the product rule.

Since split octonions are non-commutative, it will be necessary to specify the direc-

tion of the action of the operator when writing the gradient. Because in general
−→
∂ f 6=

f
←−
∂ .
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3.4 Split octonionic field theories

The linear forms (3.47) and (3.48) are required to construct the Lagrangian for split

octonionic fields. Another such form that will be important for constructing the Lagrangian

is the split octonion representation of the trilinear form (3.40) F : O′ × O′ × O′ → R,

which can be defined through the bilinear form (3.48) as:

F (ϕ, χ, ψ) =
〈
ϕ, χψ

〉
. (3.53)

Explicitly it is

F (ϕ, χ, ψ) =
1

2
ϕ (χψ) +

1

2

(
ψχ
)
ϕ . (3.54)

Representation of symmetry groups of (4+4)-space

TheQ andF quadratic and trilinear forms (3.47) and (3.53), as mentioned in section

3.2, are SO (4, 4) and Spin (4, 4) pseudo-orthogonal group invariants. Similar to theO

octonionic representation of SO (8) and Spin (8) groups [Dray & Manogue], the split

octonionic representation of pseudo-orthogonal groups is achieved by composition of the

following transformations

χ′ = Tuv (ϑ) (uχu)Tuv (ϑ)

ϕ′ = u2 (ϕu)Tuv (suϑ)

ψ′ = u2Tuv (suϑ) (uψ)

(3.55)

where

Tuv (ϑ) =

u cos
ϑ
2
+ v sin ϑ

2
, uu = vv ,

u cosh ϑ
2
+ v sinh ϑ

2
, uu = −vv .

(3.56)

and su ∈ {−1, 1} is calculated as:

su =
∣∣uu− u2

∣∣− 1 . (3.57)
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Lagrangian

Using the trilinear form (3.53), a Lagrangian can be constructed by replacing the χ

split octonion a right-hand (3.51) gradient operator

L =
〈
ϕ,
−→
∂ ψ
〉
. (3.58)

By stationaryizing the corresponding action, the conditions of right and left analyticity on

the ϕ and ψ fields are obtained ϕ
←−
∂ = 0 ,
−→
∂ ψ = 0 .

(3.59)

These equations are generalizations of Cauchy-Riemann andCauchy-Riemann-Futter [Sud-

bery 1979] equations to split octonions. Taking the split octonionic conjugate of the first

equation of (3.59) gives 
−→
∂ ϕ = 0 ,
−→
∂ ψ = 0 .

(3.60)

Adding quadratic terms to the Lagrangian

L =
〈
ϕ,
−→
∂ ψ
〉
+

1

2
λ1 〈ϕ, ϕ〉+

1

2
λ2 〈ψ, ψ〉 (3.61)

results in equations becoming interdependent
−→
∂ ϕ = λ2ψ ,
−→
∂ ψ = −λ1ϕ .

(3.62)

If the coefficient is set toλ2 = 0, then using the property of alternativity (3.62) the equation

reduces to eight independent wave equations (massless Klein-Gordon equations) in (4+4)

space 〈−→
∂ ,
−→
∂
〉
ψ = 0 . (3.63)
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3.5 Dirac and Maxwell equations

To obtain the Dirac and Maxwell equations, it is necessary to define a new gradient

operatorD

D = I∂I . (3.64)

The imaginary parts of this operator jn and Jn have a negative sign

D =
1

2
(∂0 + I∂4)−

1

2

∑
n

(jn∂n + Jn∂4+n) . (3.65)

Fields that will also be considered are

A = C0 + j1A1 + j2A2 + j3A3 + IA0 + J1C1 + J2C2 + J3C3 , (3.66)

F =
−→
DA . (3.67)

By fixing the following parameters in the quadratic Lagrangian defined above (3.61)

λ2 = 0 and λ1 = −1 , (3.68)

by setting the fields

ϕ = F (3.69)

and

ψ = A (3.70)

and using theD operator instead of the ∂ operator the following Lagrangian is obtained

L =
〈
F,
−→
DA

〉
− 1

2

〈
F, F

〉
. (3.71)

Using definition of the field F field (3.67) and the fact that〈
F , F

〉
= 〈F, F 〉 , (3.72)

the Lagrangian takes the form

L =
1

4
〈F, F 〉 . (3.73)
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The equation of its motion is 〈−→
D,
−→
D
〉
A = 0 . (3.74)

In the limit when

D → D =
1

2
(−j1∂x − j2∂y − j3∂z + I∂t) (3.75)

the equation (3.74) reduces to the free Dyonic Maxwell equation in Minkowski space〈−→
D ,
−→
D
〉
A = 0 , (3.76)

whereAn and Cn are electromagnetic and dyonic 4-potentials, whose split octonionic form

was first introduced in [Chanyal, Bisht & Negi 2011, Chanyal 2014].

By stationarization of a Lagrangian with mass parameterm

L =
〈
ϕ,
−→
Dψ

〉
− 1

2
m
〈
ϕ, J3ψ

〉
=

〈
ϕ,

(−→
D − 1

2
mJ3

)
ψ

〉
, (3.77)

the following two independent equations of motion are obtained
(−→
D − 1

2
J3m

)
ϕ = 0 ,(−→

D − 1

2
J3m

)
ψ = 0 ,

(3.78)

of which the second reduces to the Dirac equation in the limitD → D .

It is also possible to write the Lagrangian for a single field by setting ϕ = ψJ3

L =

〈
−J3ψ,

(−→
D − 1

2
J3m

)
ψ

〉
, (3.79)

which in the limitD → D walks on the split octonion form of the Dirac Lagrangian

L =

〈
−J3ψ,

(−→
D − 1

2
J3m

)
ψ

〉
. (3.80)

This Lagrangian is equivalent to Dirac's Lagrangian and therefore its equation of motion

−→
Dψ =

1

2
J3mψ , (3.81)

is equivalent to the Dirac equation.
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It is noteworthy that equation obtained by stationarization of the (3.79) Lagrangian

does not result in Dirac equation in the D → D limit. In order to finally obtain the

Dirac equation the limit needs to be taken at the Lagrangian level, before the action is

stationarized. On the other hand (3.77) Lagrangian is not equivalent to Dirac Lagrangian,

because it contains an additionalϕ field, but in this case it does not matter if the limitD →
D is taken at the Lagrangian level or at the level of the equation after the stationarizing the

corresponding action, because in both cases an equation equivalent to the Dirac equation is

obtained with respect to split octonion valued ψ function.

Dirac equation inside an external potential fieldA = j1A1+ j2A2+ j3A3+ IA0

can be written as (
D − 1

2
J3m

)
ψ =

1

2
J3
(
conjIj (Aψ) I

)
. (3.82)
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3.6 Signal analysis

As a result of the development of computers, the use of division algebras has become

convenient in data analysis, aerospace, and other practical tasks, since because of divisibility

property the occurrence of zeros in the denominator are excluded

Computer algebra system created for working with split octonions [Gurchumelia

2023] can be used for data analysis.

Analysis was performed for Mrk 501 active galactic nucleus X-ray spectrum [Ka-

panadze, Gurchumelia & Aller 2023], which was primarily based on the Swift data in the

time range of 2021 February to 2022 December. The data indicated a significant boost in

X-ray emissions, marked by a sustained rise in the baseline flux level within the 0.3–10

keV range. This increase is further punctuated by occasional short bursts, occurring over

periods of a few weeks to around two months. At certain points in time, Mrk 501 stood out

as the most luminous blazar in the X-ray spectrum, and it also displayed rapid fluctuations

that were occasionally observed within exposures lasting just a few hundred seconds.

The source displayed unusual spectral characteristics, including a prominent presence

of spectral curvature, frequent instances of hard photon indices in both the 0.3–10 keV

and 0.3–300 GeV energy ranges, and a peak in its synchrotron spectral energy distribution

within the hard X-ray region.

These characteristics illustrate the significance of several factors, including relativis-

tic magnetic reconnection, the first-order Fermi mechanism operating in magnetic fields

with varying confinement efficiencies, stochastic acceleration, and hadronic processes. The

distribution of X-ray and γ-ray fluxes follows a lognormal pattern, suggesting that accretion

disc instabilities might influence the blazar jet. Surprisingly, the variations in optical-UV

and γ-ray emissions do not show a strong correlation with the X-ray flares, challenging

simple leptonic models and indicating the need for more complex explanations involving

particle acceleration, emission mechanisms, and variability patterns.
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Chapter 4

Conclusion

The geometric interpretation of the automorphism group of O′ split octonionic al-

gebra, the noncompact G2and its similarity to the Poincaré group were discussed. It was

shown that despite the absence of translations, it is possible to simulate them using addi-

tional dimensions. The second-order Casimir operator of the corresponding noncompact

g2 Lie algebra was found. In the limiting case where additional three λ dimensions are

held constants, the differential operator form of the Casimir operator was shown to reduce

to the sum of the Casimir operators of the Lorentz and Poincaré algebras [Gogberashvili &

Gurchumelia 2019].

Split octonionic O′ representation was found for pseudo-orthogonal SO (4, 4) and

Spin (4, 4) Lie groups of exotic (4 + 4)-space and one-to-one correspondencewithCℓ4,4 (R)
Clifford algebraic matrix representation of the same groups was shown. An invariant trilin-

ear form of these groups defined on chiral spinors and vectors was also found [Gurchumelia

& Gogberashvili 2021, Gogberashvili & Gurchumelia 2023]. Using the invariant bilinear

and trilinear forms of the pseudo-orthogonal group, the Lagrangian with the symmetries

of these groups was constructed and its corresponding equations of motion were calcu-

lated, which in some special cases reduces to Dirac or Maxwell equations [Gogberashvili &

Gurchumelia 2023].

To work with split octonions, the SplitOct library was created, which makes it pos-

sible to computerize complex calculations. [Gurchumelia 2023].
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Data access and material availability

Based on SymPy computer algebra system [Meuer et al 2017] python library SplitOct

was created for working with split octonions, which is are available at the following link

along with computation examples in Jupyter environment [Granger & Grout 2016]:

• Gurchumelia, A. (2023). SplitOct.

https://github.com/EQUINOX24/SplitOct

 https://github.com/EQUINOX24/SplitOct
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