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Introduction

Let us take a bunch of electrons, confine them in a two-dimensional plane and turn on a
strong magnetic field. This simple step provides the setting for some of the unexpected and
surprising results in physics. These phenomena are known as the quantum Hall effect. The

name comes from experimental results. The Hall conductivity takes quantised values
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Oy = %7/. (].)

From the beginning it was found that v takes integer valued. Certainly,we are used to
see things being quantised at the microscopic, atomic level. But here the picture is different
. it’s the quantisation of a macroscopic property in a messy system involving many particles
and its explanation requires new approach. It comes out that this new approach is related
to the role that topology can play in quantum many-body systems. Later, it was found that
the conductivity not only takes integer values, but can also take specific rational values. The
most known experimentally found fractions are v = 1/3 and v = 2/5 but there are some
other fractions that have been observed. In this case the interaction between electrons was
observed which is now known as a new state of matter.The charged particles that wander
around these system, transport a fraction of the charge of the electron, as though the electron
has break itself into several pieces. It is not just the charge of the electron that fractionalises:
this occurs to the "statistics" of the electron also.Yet this happens in spite of the fact that the
electron is an indivisible component of matter. Recollect that the electron is a fermion, which

is governed by the Fermi-Dirac distribution function. Because of fermionic nature electron



splits.But the individual components are no longer fermions, but neither are they bosons.
They are new objects known as anyons which lie somewhere between bosons and fermions.
In more general cases, even this description breaks down: the resulting objects are called
non-Abelian anyons and provide physical manifestation of the kind of non-local entanglement
famous in quantum mechanics.

Because of this fact, the quantum Hall effect has been a constant source of new ideas, most
of them related to the ways in which the topology invades the quantum physics. Attractive
examples include the subject of topological insulators, topological order and topological quan-
tum computing. Basically, all of these phenomena are impressive theoretical constructions,
which include a journey through some of the most fascinating and important developments in
theoretical and mathematical physics over the past decades. The first attack on the problem
focused on the microscopic details of the electron wave functions. Subsequent approaches
looked at the system from a more coarse-grained, field-theoretic perspective where a subtle
construction known as Chern-Simons theory plays a key role. Yet another perspective comes
from the edge of the sample where certain excitation live that know more about what is hap-
pening inside the system than you might think. Graphene is now attracting scientists with its
peculiar material characteristics.Electrons in graphene strongly interact and therefore exhibit
fractional quantum Hall effect(FQHE).But remarkably,the evidence for collective behaviour of
electrons in graphene still is absent.The integer quantum Hall effect (IQHE) can be described
only in terms of individual electrons in a magnetic field while the (FQHE)can be understood
by studying the collective behaviour of all the electrons [1].The quantum Hall effect is also
studied in context of conform field theory (CFT). In this [2| paper is examined the applica-
tion of Quantum Fractional Hall effect. It is shown that the Gaussian model together with
appropriate boundary conditions for the order parameter provides an effective theory for the
Laughlin type (FQHE). The plateau forming condition corresponds to the taking the chiral
portion of the theory ¢ = 1 conformal field theory to the description of the (FQHE).

The first example of a topological quantum state [3-7] is the integer quantum Hall ef-
fect (QHE) in a 2D electron system in the presence of a perpendicular magnetic field. For

conductivity, the distinction between localised and extended states is an important.Only the



extended states can transport charge from one side of the sample to the other. So only these
states can contribute to the conductivity. Suppose that we have filled all the extended states
in a given Landau level and consider what happens when we decrease B with fixed n. Each
Landau level can contain fewer electrons, so the Fermi energy will increase. Before jumping up
to the next Landau level, we now begin to settle the localised states. As long as these states
can not contribute to the current, the conductivity stays constant. This brings to exactly
the kind of plateaux that are observed, with constant conductivities over a range of magnetic
field. The presence of disorder explains the presence of plateaux.In result the resistivities take
specific quantised values. These were computed assuming that all states in the Landau level
contribute to the current.Many of these states are localised by impurities and don’t transport
charge.We expect that the value of the resistivity should be different. Uncommonly, current
carried by the extended states increases to compensate for the lack of current transported
by localised states,because of that the resistivity remains quantised in presence of disorder.
When a one-dimensional world is observed we have two basic motions forward and backward.
The random scattering can mingle them, which brings to resistance. The QH effect is possible
when a strong magnetic field is applied to a 2D gas of electrons in a semiconductor. When
we have low temperature and high magnetic field, the electrons transport only along the
edge of the semiconductor.In 1D system the electrons are propagating in both directions, the
top edge of a QH bar contains only half the degrees of freedom.When an edge-state electron
meets an impurity, it just rounds and still keeps going in the same direction, as there is no
option for it to turn back. This dissipationless transport mechanism could be extremely use-
ful for semiconductor devices. The fact that we should have a large magnetic field strongly
confines the application potential of the QH effect. The quantum Hall (QH) systems now
is a major paradigm in condensed matter physics, with important applications such as re-
sistance metrology and measurements of fundamental constants. In the recent years,it has
been shown that the QHE is just one member of a much larger family of topologically spe-
cific quantum states,some instances of which contain the quantum spin Hall (QSH) effect
which is famous also as the 2D topological insulator and 3D TIs [8]. Current time there

are a large number of materials, Tls with their characteristic spin-helical Dirac fermion TSS



brings forth intense interests. In a real 1 — D system, there are four channels for the forward
and backward moving paths with spin-up or spin-down electrons. The traffic lanes for the
electrons can be split without any magnetic field.It’s possible to leave the spin-up forward
mover and the spin-down backward mover on the top edge and go the other two channels
to the bottom edge.The similar system with such edge states is in a QSH (quantum Spin
Hall) state, because it has a net transport of spin forward along the top edge and backward
along the bottom edge,as the separated transport of charge in the QH state. Charles Kane
and Eugene Mele from the University of Pennsylvania [9,10], and Andrei Bernevig [11] from
Stanford University, independently offered in 2005 and 2006 that such a divided, and there-
fore the QSH state, can basicaly be real in some theoretical models with spin-orbit coupling.
The fractional QSH state should be experimentally observed. Actually QSH edge consists of
both backward and forward movers, but back-scattering by nonmagnetic impurities is forbid-
den. Most eye-glasses and camera lenses have a so-called anti-reflection coating.The reflected
light from the top and the bottom surfaces interfere with each other, bringing to the zero
net reflection and thereby perfect transmission. However, such an effect is not strong, as
it depends on the matching between the optical wavelength and the thickness of the coat-
ing [12-14]. A large part of the unique quantum-mechanical properties of TIs come from
the peculiar characteristics of the surface states. Currently, the TI research is concentrated
basically on time-reversal (TR) invariant systems, where the nontrivial topology is preserved
by time-reversal symmetry (TRS). In those systems, the surface states present Dirac disper-
sion therefore the physics of relativistic Dirac fermions becomes pertinent. Furthermore, spin
degeneracy is appeared in the Dirac fermions staying in the surface states of TR~invariant TIs
and their spin is blocked to the momentum. In similar cases we say that a spin states have
helical spin polarization and it brings chance to realize Majorana fermions in the presence of
proximity-induced superconductivity. The first 3D TI material Bi,_,Sb,, whose topological
surface state contains 2D massless Dirac fermions, has unique band structure which brings
3D massive Dirac fermions in the bulk. This situation is like to the Kane-Mele model where
1D massless Dirac fermions come out of 2D massive Dirac fermions. Since Dirac fermions

play significant roles in TIs, it is necessary to mention the history of Dirac physics in con-



densed matter. The semi-metal Bi has played an important role in quantum mechanichs ,
this is significant because the extremely low carrier density and the very long mean free path
easily set the system in the quantum limit at relatively low magnetic fields [15] In the mid
20-th century, one of the long-standing puzzles in Bi was its large diamagnetism, which defies
the common wisdom for magnetism in metals involving Pauli paramagnetism and Landau
diamagnetism [16]. Entertainingly, in Bi;_,Sb, at low Sb concentration, the carrier density
becomes even lower than in Bi, in same time the diamagnetic susceptibility increases, which
is also opposite to the expectation from Landau diamagnetism. The peculiar electronic prop-
erties of Bi, an effective two-band model was formed by Cohen and Blount in 1960. In 1964,
Wolff acknowledged that this two-band model can be transformed into the four-component
massive Dirac Hamiltonian, and he expressed delicate analysis of the selection rules using
the Dirac theory. This was the start of the concept of Dirac fermions in solid states, though
some of the special physics of massless Dirac fermions were established in as early as 1956 by
McClure in the scope of graphite. Speaking of graphite, the mapping of the Hamiltonian of its
2D sheet to the massless Dirac Hamiltonian was first used by Semenoff in 1984 [17|. With the
experimental realization of graphene, this system has become a prototypical Dirac material.
One of the distinguishing properties of massless Dirac fermions is the Berry phase of, a special
effect of the Berry phase in the condensed matter setting is the absence of backscattering,
which was indicated first by Ando, Nakanishi, and Saito in 1998 [18]. The substantial aspect
of the Dirac physics is that magnetic fields surely cause interactions between upper and lower
Dirac cones. In fact, the Dirac formalism allows one to easily involve such interband effects
of magnetic fields into calculations [19]. Expending the range of topological materials is an
important subject.So far as superconductors have a superconducting gap at the Fermi level,
they are in a way similar to insulators and one can comprehend topological superconductors
described by a topological invariant that is covered by the existence of a gap [20]. So far, topo-
logical classifications of insulators and superconductors based on three discrete symmetries
(TR, particle-hole and chiral) have been established [21].The new topological classifications
based on point group symmetry of the crystal lattice is attracting significant interest [22-24],

particularly after the new type of topological materials called topological crystalline insula-



tors [25-27| have been experimentally discovered [28,29]. Also, although it was considered
necessary to have topological materials fully-gapped energy energy spectrum for topological
invariant be clearly defined, it becomes possible to present a non-trivial topology for gapless
systems [30-33]. The experimental innovations of several materials that are nontrivial with
respect to the new topologies will continue be mainly considered. Whereas the concept of
topological insulators became popular when the discovery of the Z, topology by Kane and
Mele, there had been theoretical attempts to comprehend topological states of matter beyond
the range of the quantum Hall system. In this regard, an important development was made in
2001 by Zhang and Hu, who extended the 2D quantum Hall state to a four-dimensional (4D)
TR-invariant state possessing an integer topological invariant. The effective field theory for
this 4D topological system was constructed by Bernevig.After the Z, topology was discovered
for TR~invariant systems in 2D and 3D, it was shown by Qi, Hughes, and Zhang that the
framework of topological field theory is useful for describing those systems as well, and they
further demonstrated that the Z; TIs in 2D and 3D can actually be deduced from the 4D
effective field theory by using the dimensional reduction. The topological field theory is ap-
propriate for describing the electromagnetic response of TIs and has been used for foretelling
new topological magnetoelectric effects. Two-dimensional conformal field theories describe
statistical systems at critical points and provide the classical solutions of string theory. Re-
cently, it has been proposed that the order parameter of the fractional quantum Hall effect
(FQHE) is related to the vertex operator, and the ground state wavefunction of a certain
fractional filling factor can be expressed in terms of the N-point correlation function of vertex
operators [34,35]. The application of conformal field theory has thus been expended into a
rather specific condensed matter phenomenon. In [36] the Laughlin states for N interacting
electrons at the plateaus of the fractional Hall effect are examined in the thermodynamic limit
of large N. It was shown that this limit related to the semiclassical regime for these states,
thus connecting their stability to their semiclassical nature. The analogous problem of two-
dimensional plasmas is studied analytically, to leading order for N — oo, by the saddle-point
approximation - a two-dimensional extension of the method used in random matrix models

of quantum gravity and gauge theories. The Laughlin states describe classical droplets of



fluids with uniform density and sharp boundaries, as expected from the Laughlin plasma
analogy [37-45|. In this limit, the dynamical W,,-symmetry of the quantum Hall states rep-
resents the kinematics of the area-preserving deformations of incondensable liquid droplets.
The main idea of this theory is the existence of incompressible quantum fluids at specific
rational values of the electron density. These values are very stable, macroscopical quantum
states with uniform density p(x) = veB/hc = const, v = 1/m,m = 1,3,5, ..., which has an
energy gap where B is the external magnetic field. Incompressibility accounts for the lack of
low-lying conduction modes, which arises the longitudinal conductivity o,, to vanish, while
the generally strict motion of the uniform droplet of fluid gives the rational values of the Hall
conductivity o,, = ve?/h [46-49].

The topological phases of matter [50-53] have been examined by some models , such
as wave function modeling , band theory and effective field theory of boundary excitations.
In [54], is investigated (3 + 1)-dimensional time-reversal invariant topological insulators ap-
plying field theory methods. The main idea of exploring such a system is the success of the
field theory approach for (2 + 1) dimensional topological states [55,56] . The comprehensive
modeling of quantum Hall states has been used to the definition of the quantum spin Hall
effect and then to time-reversal invariant topological insulators [57]. In some cases,the Z,
characterization of stability of topological insulators, initially deduced within band theory
by Fu, Kane and Mele , has been redefined in field-theory language and expanded to inter-
acting fermion models with Abelian and non-Abelian fractional statics of excitations. The
Z, stability also expends to (3 + 1) dimensional band insulators and it is important to find
the corresponding field theory argument for exploring the interacting systems [58,59]. The
quantization of the compactified boson in (2 + 1) dimension produces eight sectors that cor-
respond to the spin sectors of the fermionic theory on the torus. The partition functions in
two theories are modified under flux insertions and modular transformations;in fact , they
become equal due to dimensional reduction to (1 + 1) dimensions. This thesis is composed
ofintroduction,three chapters,conclusion and bibliography. In introduction are presented the
general view of the problem. In the first chapter we studied 3D massive Dirac fermions in the

presence of chemical potential,where we have used Feynman diagrams for the calculations.The

10



response of fermionic system to external gauge fields is defined by current-current correlation
function I1,,, (¢, go). The transport properties of various physical quantities are determined by
the zero limit of the energy-momentum. As it is known, the close to half-filling the physics of
graphene is described by 2+ 1 dimensional Dirac theory.We calculate current-current correla-
tion function in Dirac theory in a presence of chemical potential n and gap m. The fermionic
system to external gauge fields in presence of non-quantized magnetic field is determined by
current-current correlation function IT,,(B). We study 2 + 1 dimensional Dirac electron sys-
tem and calculate current-current correlation function in a presence of magnetic field B,gap
m and chimical potential 7. In the second chapter we present polarization operator of non-
relativistic fermions with spin-orbit (SO) Rashba interaction. The spectrum of this fermions
is moat type having minimum on a circle. Contrary to Dirac or non-relativistic fermions
Fermi sea here has a geometry of Corbino disk which reflects in a transport properties of
excitation’s.

In the third chapter we study mini-superspace semiclassical limit of the boundary three-
point function in the Liouville field theory. We compute also matrix elements for the Morse
potential quantum mechanics. An exact agreement between the former and the latter is
found. We show that both of them are given by the generalized hypergeometric functions.
In this chapter chapter also are constructed topological defects in the Liouville field theory
producing jump in the value of cosmological constant. We construct them using the Cardy-
Lewellen equation for the two-point function with defect. We show that there are continuous
and discrete families of such kind of defects. For the continuous family of defects we also find
the Lagrangian description and check its agreement with the solution of the Cardy-Lewellen

equation using the heavy asymptotic semiclasscial limit.

The equation of motion in a magnetic Field

The fact that a magnetic field causes charged particles to move in circles arises the Hall

effect. The equation of motion for a particle which has mass m and charge e in a magnetic

11



field has the following form

d
md—Z:—eE—eVXB—g, (2)

7 is called scattering time, which is the average time between collisions. This (2) equation
describes the most simple model of charge transport. It is the Drude model. The velocity of

the particle when Z—‘t’ = 0 will be
v ZvxB="E (3)
m m
The current density J is related to velocity by following form
J = —nev, (4)

where n is the density of charge carriers.In matrix form from (3) for wp is received

1 WBT
(5)
—wpT 1
e’nt
J= E 6
- (6)

This equation is known as Ohm’s law,where ¢ is conductivity.In the presence of a magnetic

field o is a matrix

J=0E (7)
We can write it as
0—$£E O-I‘
o= ’ (8)
_ny Ozx

From the Drude model,we obtain the accurate expression for the conductivity



n€2’7'

where opc = is the conductivity in the absence of a magnetic field. The resistivity is

defined as the inverse of the conductivity

prx pr
p=o0"= ! (10)
Pyx  Pyy
From the Drude model we get
1 1 WwRT
P = o (11)
DO\ —wpT 1

When me measure the resistance R it differs from the resistivity p by geometrical factor

Landau Levels

It won’t come as a unexpected to study that the physics of the quantum Hall effect includes
quantum mechanics [60]. In this subsection, we will observe the quantum mechanics of free
particles which are moving in a background of magnetic field and the creation of Landau
levels.When we have a nonzero magnetic field B, there is a Zeeman splitting between the
energies of up and down spins. The Lagrangian for a particle of charge e and mass m which
is moving in a background magnetic field B = 7 x A

1
<L:§nﬁ?—eXA (12)

When A — A+ 7« the Lagrangian changes L — L —ea From here we see that the equations
of motion remain unchanged under a gauge transformation. For canonical momentum of this

Lagrangian we can write
oL

In this case Hamiltonian will have the following form

1
H=%p—L=— A)? 14
Xp 5, (P cA) (14)
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We should notice that p is not gauge invariant,in contrast,the mechanical momentum mx is

gauge invariant. x and p are canonical,it means that
{zi,pj} = 6i5, A{zi,z;} ={pi,p;} =0 (15)
For the Poisson bracket of the mechanical momentum we will have

. ) 0A; 04;
{ma;, ma;} = {pi + eAi, pj + ed;} = —e (83:] B 83:) = —e€;5, By (16)
i j

Now our problem is to find for the spectrum and wave functions of the quantum Hamiltonian,

H = (p+cAY (17)

The fact, that particle is restricted in the plane,it means that x = (z,y).The magnetic field
we will take constant and perpendicular to this plane,s7 x A = BZ. From (15) for canonical

commutation relations we will have
[zi, ] = ihdy,  [i, 23] = [pi,ps] = 0 (18)
We will denote m = p + eA = mx, then for commutation relations we can write
[Tz, my] = —iehB (19)

For convenience we will introduce new variables

(mp —im,) at = (7y + imy) (20)

The new commutation relations is

la,a*] =1 (21)
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Then the Hamiltonian gets the following form

e

where wp = RB is the cyclotron frequency. The state |n > has energy

1
E:th:(n—l—§) neN (23)

In the presence of a magnetic field the energy levels of a particle become equally spaced, where
the gap between each level is proportional to the magnetic field B. These energy levels are
called Landau levels. It’s important to notice that the spectrum looks very different in the
absence of a magnetic field. The splitting between Landau levels is A = hwg = %. In case of

free electrons, this level coincides with the Zeeman splitting A = gupB between spins, where

up = % is the Bohr magneton. It looks as though the spin up particles in Landau level n

have the same energy as the spin down particles in the level n+ 1. Actually, in real materials,

the situation is different. The real value of the cyclotron frequency is wg = meB;f

, where me s
is the effective mass of the electron moving in its environment.The ¢ factor can also change

due to effects of band structure.

The Lowest Landau Level

Now we will frame the wave functions in symmetric gauge. We are going to discuss the
lowest Landau level n = 0. The states in the lowest Landau are annihilated by a,meaning
a|0,m >= 0.The problem is to interpret this into a differential equation. For the lowering

operator we can write

1 , 1
Ty — UTy) =
V2ehB ( v) V2ehB

(px — ipy + e(Ay —iAy)) =



In the complex coordinates we introduce
z=x—iy Z=x+1y (24)

For holomorphic and anti-holomorphic derivatives we can write

1/0 .0 - 170 .0

where 0z = 0Z = 1 and 0z = 9% = 0. Using holomorphic coordinates for a we get

4lp

a=—iV2 (zBé + i) (26)
ot = —iv2 (zBa - i) (27)

where lg = M%.The lowest Landau level wave function has the following form

2
—lz|

Yrre(z,2) = f(2)e 5 (28)
In the lowest Landau level we can form the states |0, m > and write

b=—iv2 <lBa - ﬁ) (29)

bt = —iv2 (zBa _ ﬁ) (30)

There is state given by
— 12|

ULLLm=0 ~ € "B (31)

For the lowest Landau level wave function in terms of holomorphic polynomials we can write

mo |z
YLLLm=0 ~ (i> e b (32)

lp

These states are the eigenstates of angular momentum.The angular momentum operator is

16



the following

J =ih (az(% — %) = h(z0 — 20) (33)

Acting on these lowest Landau level states, we get

Jrorm = hmirrrm (34)

Landau Gauge

In order to find wave functions we should specify a gauge potential corresponding to the

energy eigenstates in following way

v XA = Bz (35)

Here we work with the choice

A = 2By (36)

This is called Landau gauge.We should note that the magnetic field B is invariant under
translational symmetry and rotational symmetry in the (x,y)-plane.The choice of A breaks
the translational symmetry in the z direction and rotational symmetry.While the physics
will stay invariant under all symmetries, the intermediate calculations will not be manifestly
invariant. This sort of situation is typical when dealing with magnetic field. For Hamiltonian
we can write
Ly 2
H = ——(p + (p, + eBa)?) (37)

2m

Because we have obvious translational invariance in the y direction, we can seek energy

eigenstates which are also eigenstates of p,.Using the separation of variables we get

Uiz, y) = ™ fiu(x) (38)

17



Acting on this wavefunction with the Hamiltonian we obtain

Hpy(z,y) = ﬁ(pi + (hk + eBx)?)psiy(x,y) = Hihr (2, y) (39)

We should note that it’s the Hamiltonian for a harmonic oscillator in the x direction

1 2
P2+ Tl (w + ki) (40)

The frequency of the harmonic oscillator is equal to the cyclotron frequency wg = %, where
g is a length scale. This is a peculiar length scale which manages any quantum phenomena

when exists magnetic field. It is called a magnetic length.

The energy eigenvalues are represented in (23).

The explicit wavefunctions depend on two quantum numbers k£ € R and n € N

_ (=+Rip)?

Uni(w,y) ~ " H,(x +klg)e b (42)

where H,, is the usual Hermite polynomial wavefunctions of the harmonic oscillator. The
~ means that we have made no attempt to normalize these wavefunction. One privilege of this
approach is that we can instantly find the degeneracy in each Landau level. The wavefunction
(42) depends on two quantum numbers, the energy levels depend only on n.At first we need
to confine a finite region of the (z,y)-plane. We choose a rectangle with sides of lengths L,
and L,.Our purpose is to know how many states we have inside this rectangle. The side of
rectangle L, has a finite size,it means that we can put the system in a box in the y-direction.
Note that the effect of this is to quantise the momentum £ in units of 27/L,. The finite size of
L, is something more subtle,than L,.That is the result of fact that the gauge choice (36) does
not include translational invariance in the z-direction. The reason is that,the wavefunctions

(42) are exponentially localized around x = —kl%, for a finite sample confined to 0 < z < L,

18



we would expect the allowed k values to range between—L, /1% < k < 0. The number of

states is

L, (° L,L, eBA
Neg [ ak=gm= (43)
—Lo /1% TR ™

where A = L, L,.In spite of the small approximation used above,this is the accurate answer for
the number of states on a torus. The degeneracy in (43) is significant. We have a macroscopic
number of states in each Landau level. The resulting spectrum looks like the figure on the
right, with n € N labelling the Landau levels and the energy independent of k.
In order to describe the degeneracy it is convenient to input some new notation in (43).We
write
AB 2mh

® is called the quantum of flux. We can consider that the magnetic flux falls within the
area 2ml%.It is an important in a number of quantum phenomena in the presence of magnetic
fields. The Landau gauge is helpful when we work in rectangular geometries.In this gauge it

is easy to add an electric field E in the x direction. That is possible to realize by the addition

of an electric potential ¢ = —Fx.In result we get
Loy 2
H = = (2 + (p, + eBo)’) + B (45)

For wave function we can write

E
V(T,y) = Vi (ﬂs - %, y) (46)

The energies are given by

1 eF mE?
E, . = hw - E | ki3 — 47
ot (v ) e (=5 o

Now the degeneracy in each Landau level rises,as a result, the energy in each level depends
linearly on k .

We see that the energy depends on the momentum,therefore the states drift in the y

19



direction. For the group velocity we can write

 10E,,
YT ok

E
= ehBl} = 5 (48)

If we try to put an electric field F perpendicular to a magnetic field B then we will see that the
cyclotron orbits of the electron drift in the direction £ x B, they don’t drift in the direction

of the electric field.
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Chapter 1

Current-current correlation function

1.1 The Kubo Formula

Our problem in this subsection will be to get a formula for the Hall conductivity o,,. At
first our aim is to derive the Kubo formula. We’ll derive the Kubo formula for a general case,
multi-particle Hamiltonian Hy where the index 0 indicates that this is the unperturbed Hamil-
tonian before we switch on an electric field.Here Hy could be the single e-particle Hamiltonian.
We represent the energy eigenstates of Hy as |m >,with Hy|m >= E,,|m > When we have
background electric field and also gauge A; = 0 for electric filed we can write E = —0; A. The

Hamiltonian gets the form H = Hy + AH with

AH = —JA (1.1)

where J is the quantum operator associated with the electric current. Our purpose is to calcu-
late the current < J > that flows because of the perturbation AH. We will suppose that the
electric field is small and continue using standard perturbation theory.We are using interac-
tion representation,it means that operators expand as O(t) = V'OV with V = e~*Hot/! For
|1(t) > we can write

() >r=U(t, to)¥(to) >1 (1.2)
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where the unitary operator

U(t,ty) = T exp (—% /t AH(t’)dt’) (1.3)

to

Here T' means time ordering, it assures that U obeys the equation ihdU/dt = AHU.
We investigate the system at time t — —ocin a specific many-body state |0 >. The

expectation value of the current is given by

< T >=< 0)|I|0(t) >=< O[T OIOTB)]0 > ~< (J(t) + %/t

—00

dt AH(t)J(t) >>
Because of electric field the current will have the following form
1 t ’ ’ -
< Jl(t) >= a/ dt < O’[J](t )J,(t)]\O > Eje_“”t (15)

Due to the fact that the system is invariant under time translations,the correlation function

above will depend on ¢ =t — . Therefore (1.5) we can write

]. > ”» ; 9 ” N
<t >= — </ dt’ e < 0|[J;(0), Jy(£]]0 >) B¢t (1.6)
0

t dependence in the formula (1.6) means that if we apply an electric field at frequency w, the
current will oscillate at the same frequency w.This is the essence of linear response. The Hall

conductivity has the following form

Oy (w) = % /Ooo dte < 0][J,(0), J,(£)]]0 > (1.7)

This is the Kubo formula for the Hall conductivity. For current operator J(t) = V-1J(0)V

with V = e~ /" Then for o,, we get

1 o , . .
Ty(w) = a/O dte™" S "[< 0] Jy[n >< n[ 1|0 S|P — < 0] |n > < n|J,[0 > efFomFnt/h

(1.8)

22



In order to provide convergence we should substitute w — w + 7¢,in result we obtain

i < 0|Jyln >< n|J,|0 > < 0|Jy|n >< n|J,|0 >
. __° — 1.9
Oay () w;[ hw + E, — E, o + Eo — B, (1.9)
When w — 0 we expand the denominators
1 1 hw

~ - O(w?)... 1.10
ot B =y " By—Fy (B, —Eop OW) (1.10)

Finite contribution in the limit w — 0 is given by
ouy = mz < 0]Jy|n >< 0|Jz|n > — < 0]J,|n >< 0] Jy|n > (1.11)

n#0 (En - E0)2

1.2 Current-current correlation function HW(q, Q)

The electrical conductivity of graphene, a two-dimensional hexagonal lattice of carbon
atoms,has a great deal of qualities needed for prospective applications in both fundamental
physics and nanotechnology. At energies below a few electron volts the electronic proper-
ties of graphene are perfectly reported by the Dirac model [61,62,64]. In the scope of this
model graphene quasiparticles submit a linear dispersion relation, where the speed of light
¢ is susbstituted with the Fermi velocity vF'¢/300. The electrical properties of graphene are
substantially associated with an existence of the so-called universal conductivity oy discribed
via the electron charge e and Planck constant.A few specific values for oy have been received
by different authors [65-68]. Ultimately was obtained the expression oy = €?/4h. Generally,
the conductivity of graphene is nonlocal,depends on both the frequency and the magnitude of
the wave vector, and also on the temperature. It was explored by many authors applying the
phenomenological two-dimensional Drude model, the current-current correlation function in
the random phase approximation, the Kubo response formalism, and the Boltzmann transport
equation [69-73].Moreover, the electrical conductivity of graphene is susceptible to weather
the mass of quasiparticles m is accurately equal to zero or it is rather small but nonzero.In

case when we have real graphene models a nonzero mass gap d = 2mc? in the energy spectrum
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of quasiparticles appears under the impact of electron-electron interactions, substrates and
impurities [74,75]. Some partial results for the conductivity of gapped graphene have been
gotten using the two-band model [76] and the static polarization function [77]. In the local
approximation at zero temperature the conductivity of gapped graphene was also examined
in [78,79]. The real graphene models have some peculiarites,they are always doped and can
be describe by some nonzero chemical potential p.Particularly the electrical conductivity of
doped graphene was investigated by using some approximate methods [80,81]. The ques-
tion emerges of whether there are spacial differences in influences of the nonzero mass-gap
parameter and chemical potential on the conductivity of graphene. It was examineded [82]
that at zero temperature in the local approximation the response function for undoped but
gapped graphene is similar to the case of doped but ungapped graphene if to identify the gap
parameter A, with twice the Fermi energy 2Ep.

A comprehensive investigation of the conductivity of graphene can be performed using
the exact expression for its polarization tensor at any temperature, mass gap and chemical
potential. Although in some specific cases the polarization tensor in (2+1)-dimensional space-
time has been calculated by many authors, the complete results needed for a fundamental
understanding of the conductivity were obtained only recently. The exact polarization tensor of
graphene with any mass-gap parameter has been found at zero temperature. The extension
of this tensor to the case of nonzero temperature was made in [83], but only at the pure
imaginary Matsubara frequencies. The results of have been extensively used to calculate the
Casimir force in graphene systems [84], but they are not directly applicable in the studies
of conductivity which is defined along the real frequency axis. Another representation for
the polarization tensor of gapped graphene, allowing an analytic continuation to the real
frequency axis, was derived in [85]. It was applied in calculations of the Casimir force, on
the one hand, and of the reflectivity properties of graphene and graphene-coated substrates,
on the other hand. For the latter purposes, explicit expressions for the polarization tensor
at real frequencies have been obtained for a gapless and gapped graphene. This has opened
up opportunities for a detailed study of the conductivity of graphene on the basis of first

principles of quantum electrodynamics at nonzero temperature. The conductivity of pure
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(gapless) graphene was investigated in Ref using the continuation of the polarization tensor
to real frequencies derived in. The case of gapped graphene was considered with the help of
analytic continuation of the polarization tensor obtained for this case in Ref. In so doing,
the previously known partial results for the conductivity of graphene have been reproduced
and their generalizations to the case of any temperature with taken into account effects of
nonlocality have been obtained. In this chapter, we develop the complete theory for the
electrical conductivity of graphene in the framework of the Dirac model at arbitrary values
of the mass gap, temperature and chemical potential. For this purpose, the results are used,
where the polarization tensor of graphene of Ref. was generalized to the case of graphene with
nonzero chemical potential. We perform an analytic continuation of the polarization tensor
of Ref. to the real frequency axis and express both the longitudinal (in-plane) and transverse
(perpendicular to the plane of graphene) conductivities in terms of its component.

The fermions on honeycomb lattice, as an effectively three dimensional Dirac theory
around K-point with high mobility, graphene, is interesting with transport and magnetic
properties and provides unique opportunity to introduce and analyze set of parameters, which
control their behavior [86,87]. Most intriguing property, which first attracted tremendous in-
terest continuing up to our days, is unusual quantum Hall effect (QHE), expressing itself in
absence of zero conductivity at zero magnetic field [88|. This effect comes from Z-anomaly
first observed by Jackiw in a seminal paper [90]. The set of parameters, which affects the
physical properties of the fermions are gap(mass, m), chemical potential (1), applied mag-
netic field (B) and the scattering rate (I'), which phenomenologically reflects the presence of
impurities.

The presence of Dirac points with different chiralities is the main characteristic of 2D
topological insulators. Transport properties of this systems contain huge potential for their
practical application in various environment. Therefore the importance of the study of re-
sponse functions in 3D Dirac theory is hard to overestimate. In the papers [91-95] the
polarization of media in graphene was studied, namely, the density-density correlators were
calculated.

The conductivity of fermions in graphene in most general situation was investigated in
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a large amount of papers (see [96] for complete set of references). In a series of papers
authors had calculated conductivity with non-zero gap, chemical potential, scattering rate
and magnetic field.

However, as it appears, current response functions were not studied properly in a men-
tioned above literature, namely, the precise expression for the current-current correlation
function I1,,, (g0, q) = (Ju(90,9)J.(—q0, —q)), p,v = 0,1,2 for most general case is not pre-
sented there. One of our goals in this chapter is the calculation of current-current correlation
function in one loop approximation and in a presence of non-zero chemical potential n and a
gap m, which appears to have simple expression. The extension of the result to RPA series
is straightforward.

The action which describes the graphene in the Effective Field Theory (EFT) framework
via Ny four-component massive Dirac fermions with instantaneous three-dimensional Coulomb

interactions is the following (in Eucliean space time) [97,98|

Ny
: 1
Sg=-2_ / d*wdti); (7' + v 0 + iA” + iv"n) +m) ¥; + 277 / d2zdt(0y Ag)?. (1.12)
=1

Here v is the velocity, which can be taken as 1 in the calculations and then restore in the
resulting formulas. In real graphene Ny = 2, y-matrices satisfy to Euclidean Clifford algebra

and can be chosen as
Y=0*®o Y =0'®1, {9} =20". (1.13)

The four-component fermionic structure is conditioned by the existence of the quasi-particle
excitations in two sublattices in the graphene around two Dirac points.

Since each Dirac point contributes to response function additively, below, for simplicity, we
will be concentrated on calculation of current-current correlation function only for single Dirac

point. Therefore we start from Dirac action in three dimensional space-time with chemical

26



e
_ Ve
nux-‘.q'qu} = =K Voo
q'qn \.\_\_‘__- ~ q.qn
k+q. 044,

Figure 1.1: One-loop Feynman’s diagram .

potential n and gap m, which after Wick rotation to complex time/energy acquires the form

dkdw -
S = / ﬁd’k,w ok + o3(w + in) + M|k, (1.14)

where the Fourier transformation is done (k = {ki, k2}) and in the role of 4 functions
Pauli matrices are taken.

Here we intend to calculate the current-current correlation function for the three-dimensional
theory with the kinetic part for the fermions presented above and the interaction term with
U(1) gauge field A, in the one-loop approximation.

The current-current correlation function II,,, (r —r’) = (j,(r);,(r")) is defined by Feynman

diagram Fig.1.1 and in momentum space it reads

I, = /Z (;ing)gTr [O’MG(IC)O'VG(]C + q)}

_ /°° a3k Tr [a#(kpap —m)o,(kxoy — m)]
oo (21 [R2 ] [(k + q)* 4+ m?]

(1.15)

where G(k) is the Green function of the fermion and and we have used the notation k* =

k]2 + (w+1in)?, (k+q¢)* =k +q|*> + (w+in + q)? The calculation of Trace gives

Trlou(k,0, — m)o,(kxoy —m)] =

m
2 [ku<k +@)v + k(b +q)u — Suka(k +q)x + 5Wm2 - Z?@Wf)qﬁ . (1.16)

Note, that for the graphene model’s case with four-component fermions, the last term lin-

ear by m must be annihilated, due to the contributions of two different two-dimensional
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fermions with opposite parities. The expression (1.16) combined with the formula of Feyn-

man parametrization

1 ' 1
Zﬁzﬂédﬂwbu1—@BP (L.17)

applied to denominator of (1.15), and the shift of integration energy /momenta k — k—(1—x)q

gives
o B L 2Kk — o <k2 +m? + ¢z (1 — a:)) +2x(1 — 2) (67 ¢* — ¢°q")
I, = / / 2
00 (277)3 0 2 2 2
<k+WL+qﬂ1—@>
* Bk [ 1
~ (2m)* Jo <k2 +m? + ¢?x(1 — x))

Three summands in (1.18) are chosen in this way. The first one is the part, which does
not satisfy the condition of conservation of charge - 9,11, = 0. The third summand is the
Z-anomaly part.

(1)

We will prove now that the first, non-transversal part II,,; in the integral (1.18) is zero.

Indeed, it is clear, that due to integration over angles and the presence of 0*” the integral

—00

" o B 1 2kMEY —6M (/{:2 +m? + ¢z (1 — m))
my = 2/ o / dx . (1.19)
0 (k‘2 +m? + ¢?x(1 — :L‘))

is zero for p # v. For = v we have (see Appendix)

Ph o 2(00 i + 5 /2) = (1K + (w+ in)* + m? + gPa(1 - x)
oy — / da / / : |
(|k|2 + (w+1in)? + m? 4+ ¢?x(1 — m))

wa 112 _ su0
ol L (. B, I

WP+Wﬂ+qxﬂ—$0 20kP+m?+fﬂ1—@>

Here a = 1,2. For p = 0 this expression vanishes immediately (because of 1 — §% and §%¢),

while for the case u = a - after integration over momentum k? with proper regularization.
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Regularized momentum integrals can be taken easily and reads

-A 32
d°k 1 A 1
k 2 n/2 _ k 2 1-n/2 reg 1-n/2 1.21
/A (27)? ekl 2 47r(1—n/2)(| " +2) 0 27T(2—n)z (121)

By use of (1.21) one can easily check that HW =0.

1.3 Calculation of ny)

Second, the main g-dependent transverse term is

>~ &k [ 22(1 — x)
2 v 2 v
Q) = 2(67¢* - ¢°q )/_ /0 da:( (1.22)

3 2
 (27) k2 +m? 4 ¢?x(1 — x))

Cauchy integration over w (see formula (1.34) in Appendix) and subsequent integration over

k by (1.21) gives

2z(1 — x)

2) 5" q 2 z(l — ) .
Mo = 20 / das/ / ]k|2 +m? + (i +1i77)2 + ¢?x(1 — m))Q e
v [ o f

— 2(oMg? 6[[k\2+m2 (1 —z)—7

12 +m2 + g2a(1 - z))

(0"q* —q"q") ([ (z(1 —x)) nooa(l—a) T r(l—a)
- qﬂqq </m dIZq(w(l—x)—l—mQ/q?);—i_/o o 2n +/xgdx 2n )

where z15 = $(1+4/1 — 4(”2;27"2)) obtained from m? + ¢*z(1 — z) — n* = 0.

Then, for ¢*> > 4(n? — m?) > 0, when the square root in the expression of x5 is real, the

integral over x gives

e — (0""q* — q"q")

v
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In the opposite region 4(n* — m?) > ¢* we should take z15 = 1/2 and the integral becomes

Mg —q'q")

@ _ (
e o (1.25)

For the case (n* — m?) < 0 the expressions for 15 define larger than segment [0, 1] region

and we have to put x1 =0, 2o = 1. In a result

SMq? —q'q”) 1 /2m 4m? q
me - ¢ —(— 1— ) arct —) 1.26
s - 30\ +( " ) arctan 5 (1.26)
where ¢ = \/|q|? + ¢.
. 3
1.4 Calculation of wa)
Last term gives
. 3L 1 1
H;(fu) = —zmqpe/wp/ (27‘(’)3 / dx R (1.27)
oo 0 <k2 + m?2 + q2.’ll'(1 _ .’17))

Using formula (1.34) for the integration over w and (1.21) for k we obtain

o0 2 1 1
ne = —imqpeu,,p/ ﬁ/ dz
g (2m)% Jo 2 2 1 2
i 4<\/|k| +m?+q x(l—x))

3 5 9 1 z1 1 1 1
_ TUmGpeu p(/ dr T +/ dx——l—/ dI—)- (1.28)
2 o 2q (.flj'(l _ 33) +m2/q2)§ 0 277 To 277

Again, as above, for the region ¢ > 4(n* — m?) > 0 the integral gives

1P —m?) 2P —m?)
Cimaen 11 gy /1 — Mom?) gy Ao
@3 — —"pCuvp [ o & + 2 “ } : (1.29)

— arctan
me 2 q
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For the case 4(n? — m?) > ¢* we have 15 = 1/2 and the integral becomes

— MG p€pp

n® —
" 4mn

v

(1.30)

In the interesting region (n* — m?) < 0, when x; = 0, 23 = 1, the calculation brings to

the formula

. . 2
3 m qp € q Lo q
H}(“/) = —# arctan[m] = —Eszgn[m] qp €uvp + O(ﬁ% (131)

in full accordance with the Z, anomaly, first observed by Jackiw and further by Semenoff.

1.5 Summary

Finally the result for II,, is

H#V = HE?V) + HEEL)’

(1.32)

where H,(f,,) is presented in formulas (1.24,1.25,1.26), while H,(f;,) in (1.29,1.30,1.31) . The result

for the graphene with two Dirac fields of opposite chirality is
My g = 211) (1.33)

cause the anomaly term will be cancelled.

It is interesting to mention about the dependence of the polarization operator (1.33) over
the mass m (or chemical potential n) for the fixed values of q. At the region m? < n* — ¢?/4
(n* < m?) the function is constant in respect of the variable m (n), then the function is
monotonic decreasing in respect of m (1) via two different laws at the regions n? — ¢*/4 <
m? < np?andm? > n? (m? <n? <m?+q¢*/4and n* > m?+¢*/4). In the case of m =0, n =0

and with A = {A° 0,0} the obtained result coincides with the one presented in a paper [93].
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1.6 Appendix:

Here we present integration formulas over the energy w, used in the calculations above.
Integration is taken in the complex plane (the upper half-plane) by use of Cauchy formulas.

First integral is

/d_w 1 (1.34)

27 2 S \2 2 2 2
k[? + (w+in)* + m? + ¢*x(1 — )

1
= SO[k* +m? + ¢*z(1 — z) — n°],

4<\/|k|2 +m? + ¢?x(1 — 93))

Second integral has the same poles and reads

/d—“ (w+ )" (1.35)
5 :
27 (|k|2 + (w4 in)2 +m? + ¢?z(1 — x))
1
= Oflk|* +m? + ¢®z(1 — z) — n*],
4y/|k[? + m? + ¢?z(1 — z) [k 7ol )=

The last integral gives

/dw ! (1.36)

27 (1K[2 + (e + in)? + m? + g% (1 - )
1
= Okl + m? + ¢®z(1 — z) — n?].
24/ k|2 +m? + ¢?x(1 — z) [ 7l )]

In this formulas ©-functions ensures, that integrals are non-zero when the poles

w= ( —in+iy/|k]2+m? + 2x(l — x)) are on different sides of real axes. The range of the

integration of the parameter x is defined as in the formulas (1.24,1.25,1.26).

1.7 The culculation of II ;3

Experimental and theoretical investigations of graphene form an extremely fast growing
area of the present-day field of condensed matter research. The diversity of chemical and

physical properties of graphene is due to the crystal structure and TA-electrons of carbon
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atoms making up the graphene. The graphene is a semiconductor with zero energy gap
because the band and the conduction band converge in the Dirac point. Owing to the linear
dispersion law the effective mass of electrons and holes in graphene is zero. The electronic
properties of graphene are sensitive to conditions of environment and, hence, change in the
presence of other layers. The band structure of graphene is singular, as a result of which the
electron at Fermi energies is described by means of the effective invariant Lorentz theory. The
graphene is notable for the highest heat conduction, electric conductivity and an ability to
change these properties depending on modifications of structure and on the nature of external
influences [2|. Recently, theoretical and experimental studies of the influence of external fields
on the transport characteristics of graphene are carried out. A constant magnetic field acts
as a strong catalyst of dynamic symmetry by leading to generation of fermion masses in
(2+1) dimension. As is well known from quantum-mechanical calculations, an application of
magnetic field to a conductor causes the conduction electrons to move (within the framework
of semiclassical approximation) in a limited area of space with a discrete and uniformly
distributed set of energies. Such quantized orbits are termed as the Landau levels. In graphene
these levels are nonuniform, since the conduction electrons behave in it as massless fermions,
the velocity of which is independent of their energy. In particular, the Landau levels in
graphene were first experimentally fixed recently. The aim of this chapter is the calculation
of the correlation function of the density of current via third order Feynman diagram, in the
presence of gap m , the chemical potential n and magnetic field B.

The result obtained may be used for the investigation of the transport and magnetic
properties of graphene. In the frameworks of efficient field theory the graphene is described
by means of four-component massive Dirac fermions with instantaneous three-dimensional
Coulomb interaction. The result obtained may be used for investigation of the transport and
magnetic properties of graphene. In the frameworks of efficient field theory the graphene
is described by means of four-component massive Dirac fermions with instantaneous three-
dimensional Coulomb interaction. For such a system the action has the following form (in

the Euclidean space-time)
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Ny
7 1
Sg = — Z/dQIdth (’7060 + U’ykak + Z.AO/YO + 2'7077 + m) Q,Dz + 2_92/d2xdt(akAM)2 (137)
i=1

Here v is the velocity, which can be taken as 1 in the calculations and then restore in the
resulting formulas. In real graphene Ny = 2, y-matrices satisfy to Euclidean Clifford algebra

and can be chosen as
Y=0®o) y=0'®1, {9} =20". (1.38)

The four-component fermionic structure is conditioned by the existence of the quasi-particle
excitations in two sublattices in the graphene around two Dirac points.

The four-component fermion structure is due to the presence of quasi-excitation of particles
in two sublattices of graphene around two Dirac points. As the contribution of each Dirac
point to the response function is additive, we shall concentrate for simplicity on the calculation
of current-current correlation function only for one Dirac point. Therefore, we start from the
free Dirac action in three-dimensional space-time with chemical potential n , gap m and

magnetic field B, that acquires the following form after the Wick rotation:

dkdw -

S = / W@Dk’w [ok + o3(w + 1) + m]iy . (1.39)

where the Fourier transformation is done (k = {k;,k2}) and in the role of v functions Pauli
matrices are taken. Here we intend to calculate the current-current correlation function for
the three-dimensional theory with the kinetic part for the fermions presented above and the
interaction term with U(1) gauge field A, in the third order approximation.

The magnetic field dependence of the current-current correlation function is defined by
third order Feynman diagrams in Fig.1.1 [99,100], where the vector potential A, couples to

vertex p. After some transformations diagram a) reads

34



Figure 1.2: Third order Feynman diagram for current-current correlation function .

+oo dgk . . . ~
;s = Ng2/ (QT)?)TI"[O'MG(]{J+)AI;O’,,G(]C+—{—p)dgG(k )]

= Ng° /+OO &k Tr[o,G(kT) A0 LU;;G(I%_)] (1.40)
. (2n) o e m—

~

where G(k) = k';‘jr—:; is the Green function of the fermion and we have used the notation
kT = (E:I: g, Q1+ %). By using identity A,0,p = A}ﬂ— i€,,A,p,03 = 1Bos in second row of the
expression (1.40), where we have dropped ffﬁ term since it gives zero, we come to following

Trace in the nominator

~ ~

BTr[o, (kT —m)osos(k™ —m)] = 2B(eok k, — m(kt +k7),) (1.41)

= 2Ble (¢, — kyw) — 2mk,]

In the same way one can find corresponding expression for Trace for diagram of Fig.1(b),

which coincides with (1.41).

We see, that in three dimensional space the third order Feynman’s diagrams are not vanish,

therefore, summarizing Trace results we obtain 4Ble,, (¢,Q — k,w) — 2mk,].

1.8 Calculation of II 3

Using the trace result 11,3 is acquired following form

oo [T @k 4Blew (0, — kyw) — 2mk,]  4Bleun (¢, — kyw) — 2mbk,]
La(B) = Ny / (27?)3< (k2 +m2) (k=2 + m2)? (k=2 + m?)(k*+2 + m?)? (>1 2)

—00
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where k? = k2 + (Q+ T +n). Generally II,,, must satisfy the condition of conservation of
charge 0,11, = 0. The evaluation of such integrals is performed with the method of Feynman
parametrization. These method gives opportunity to squeeze the three denominator factors
into single quadratic as polynomial of k. After we shift £ by a constant. It is easy to begin

with trivial case when in denominator we have two factors

1 1 6(331 + X9 — 1)
— =2 dxid 1.43
AB /0\ T1aT2 [x1A+sz]2 ( )
When we have three factors then
1 ! (5(x1+a:2+x3—1)
—_— =2 dridxod 1.44
ABC /0 RO A ¥ 298 + 23C)° (1.44)

Our integral (1.42) has three factors in the denominator, therefore by using (1.44) we obtain

(1.45)

1 r+2) (! §(uy + up — 1)uy /1 1—u
duyd —o [ 4
AB? T T(DD(2) /0 N2 A+ 1B s AT (1—w)B)

where A = k=2 +m?, B = k*t?4+m?. Easy to find out, that making shift k* = £'* +(1/2—u)q

we come to very simple expressions

1 1
- 2!/ du “ . (1.46)
0
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Then the polarization operator 11,5 defined by (1.42) acquires the form

M,5(B)
::SB/iwd% et (' + (3 —ww) — (K + (5 — w)q)uw — 2m(k’ + (5 — u)g).]
; (B2 +m?2 +u(l —u)g?)3
! d3keyy I +in) — (3 — u)qu] — 2m(3 —u
_ SB/O " ol (3 — )((k2+7777)z2 +(i<1_>3>q]2>3 (2 = Wi, (1.47)
_ / d?k dQ €y (I + in) — m(1 — 2u)q,
(Q+F+m \/k2+m2+U(1—U)Q]3
) 1

[(Q+F+in)+\/E2+m2—|—u(1_u)q2r

In (1.47) we see, that have a pole of third order, therefore, applying Cauchy integration

formula and differentiating twice integrand of (1.47) over Q2 we obtain

. ! dk 02 € (I +in) — m(1 — 2u)q
M5(B) = 8@B/ 3 557 o ”1 ( )4 (1.48)
0 [(Q+T+in)—\/k2+m2—|—u(1—u)q2]3
1
[(Q+T + i) + /R +m2 + (1 — u)g?]?

3B /1 dk €y (T +1in) — m(1 — 2u)q,
2 Jo 212 (E+m2+u(l —u)g)>?

X

Now, by performing integration over k using standard formula of dimensional regularization

(1.49)

/d2k 1 1 Tln-9 1
@2m)d (B + A" (4m)z T(n) A
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and dividing the range of integration [0, 1] in three part we obtain

HMB (B) =
m{/wwwmw+mwwMLﬂw%—/um%%@+m*”ﬂkﬂm%&m>
Ul 0

4 (m? +u(l —u)g®)*? Uk

( 9 4m2+q2 €;LVQV(F + 277) + qu | )
U1

/1 gy St L+ )

ug 773 N 471'

—m(l —2u)g, | _ _iB
(m? 4 ol = ) )

1 ) m
+ $€uuqu(F +in) (1 4 uy — ug) + $qu(ul — Up)(uy + uy — 1)]

_ _Bigwa [T +iy) [ A2 —m?)  Bi g Ctin)|1—f1- 4(n* —m?)
™ (4m? + ¢*)|n| ¢ Arin| n? ¢
where expressions u; = %(1 —4/1-= 4("2(1;27”2)), Uy = %(1 +4/1— @) are obtained from

the equation m? + u(1 — u)g* = n>.

1.9 Results

Finally, in case of % > (n* —m?) > 0, when the square root in the expression of w5 is

real, the integral over u gives

11,5(B) = 4“? L+ m)(ﬁ\/l - W + %(1 - \/1 - W)@.m)

4
Denote that for polarization operator take place the condition of conservation of charge. When

n* —m? > L then uy = up = 3 and for I1,,3(B) we obtain

iB
La(B) = —— » |3e,wqy(F+m) (1.52)

For n* — m? < 0 then u; = 0,u; = 1 and in a result we have following expression

1B )
H,UV(B) - _%eullqy(r + ”7) (153)

4m2 + q2
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The main results of this chapter are published in [99, 100]
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Chapter 2

Topological Insulators

Topological insulators are electronic materials that have a bulk band gap and also have
protected conducting states on their edge or surface. These states are possible because of the
combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional 2D
topological insulator is a quantum spin Hall insulator. A three-dimensional 3D topological
insulator contributes new spin-polarized 2D Dirac fermions on its surface. A magnetic gap
drives to a novel quantum Hall state that brings forth to a topological magnetoelectric ef-
fect. A superconducting energy gap brings to a state that contributes Majorana fermions.The
progress in condensed matter physics is particularly based on openings of new materials. In
this respect, materials presenting exeptional quantum-mechanical properties are special im-
portance. Topological insulators (TIs) are a materials which at the present time creating a
blast of research activities [101-103]. The band insulators can be topologically classified by
evaluating the Z, invariant from valence band Bloch wave functions. This classification is
based on TRS of the system.It is also possible to classify band insulators based on topolo-
gies protected by point-group symmetries of the crystal lattice. Those insulators that have
nontrivial topology protected by point-group symmetries are called topological crystalline in-
sulators (T'CIs).The most known property of a TI is the presence of a gapless surface state.
The gapless nature is protected by TRS in Z5 topological insulators. What makes this surface

state distinct from ordinary surface states (including accumulation and inversion layers) is its
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helical spin polarization, which is also called spin-momentum locking,specifically, the surface
state is spin non-degenerate and the direction of the spin is perpendicular to the momentum
vector and is primarily confined in the surface plane. In fact, if a band has such a peculiar
spin polarization and the system preserves TRS, there must be a Kramers partner for each
eigenstate and Kramers theorem says that the two eigenstates cross each other at TRIMs,
which guarantees the gapless nature of the surface state. The helical spin polarization of the
surface state means that a dissipationless spin current exists on the surface in equilibrium,
because there is no net charge flow but the spin angular momentum flows in the direction
perpendicular to the spin direction. The spin helicity of the surface state determines the spin
current direction. [104-106].

An important consequence of a nontrivial topology associated with the wave functions of
an insulator is that a gapless interface state necessarily shows up when the insulator is physi-
cally terminated and faces an ordinary insulator (including the vacuum). This is because the
nontrivial topology is a discrete characteristic of gapped energy states, and as long as the en-
ergy gap remains open, the topology cannot change.In order to change the topology across the
interface into a trivial one, the gap must close at the interface. Therefore, three-dimensional
3D TIs are always connected with gapless surface states, and so are two-dimensional (2D)
TIs with gapless edge states [107-109]. This principle for the necessary occurrence of gapless

interface states is called bulk-boundary correspondence in topological phases [110-112].

2.1 Berry’s phase in Hall effects and topological insulators

It is not surprising that Berry’s phase can be important in the Hall effect because there
is analogs between Berry’s phase and vector potentials.We will start think about adiabaticity
by putting a Bloch electron in an electric field. Lets discuss that problem. We can look this
problem in terms of adiabatic evolution by applying a gauge where the electric field arises

from a time dependent vector potential:

H= %(p _ A/ +V(r) (2.1)
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where V' is the potential of the ions.In case when we have a constant electric field we take
A =-Et (2.2)
If this is changing slowly enough during time,the state at time ¢ will simply be
[ih(t) >= e O |py — eE/c >, (2.3)

where pg is the momentum at time 0.The momentum only increases with time . The phase

factor

H@)zi/ﬁdﬂdt+p/Q8ﬁA/d<<pﬁ%m:> (2.4)

where

p=py—€eA/c. (2.5)

This extra phase factor gives an extra contribution to the group velocity of a wave

packet.Therefore

v:@%—%ExQ@) (2.6)
where
Q(p) =i(V, <pl) x (V, <pl). (2.7)

Even in the absence of a magnetic field we can see a Hall effect: if we place a voltage across
the z axis, and allow a current flowing along the ¢ axis.This is famous as the "Anomalous
Hall effect". A question arises: what materials have non-zero €2 and thence a considerable
Anomalous Hall effect? When €2 = 0 the system has both time reversal and inversion sym-
metry. Time reversal takes v — v , E — E and k — —k. Therefore, if the system has time
reversal symmetry thenQ(—k) = —Q(—k), inversion symmetry will be v - —v, £ — —F
and k — —k. Thus if the system has inversion symmetry then Q(—k) = Q(k). The coherent
way to have both symmetry is to have {2 = 0. Time reversal symmetry is broken in ferro-
magnets and antiferromagnets. Actually, it is generally the Hall effect in ferromagnets which

is known to as the "Anomalous Hall Effect". An ordinary case would be a two-dimensional
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tight binding model with a Rashba spin-orbit term 2(S X p) and an exchange splitting

H = Z[a;foai_agﬁ(—téaT—l—ia(Sy)M—i—a;'y'aai_g,T(—t5gT—ioz(Sx)gT]+HC’+e Z(a;—aﬁ—ait—au)

1,0,T i

(2.8)
The importance of spin-orbit coupling is natural. Actually the idea is the following:when we
adiabatically move through k-space, our spin rotates. This rotation in spin space produces
a Berry phase.An exemplary model without inversion symmetry would be graphene with an
extra superlattice potential. When we have a conductor with non-zero (2,the Anomalous Hall

conductivity will appear if we sum up all the velocities from all the occupied states:

2 d?k
Oy = %/ (QW)df(ek)ka,kw (2.9)

where f is a step function at the Fermi surface. Applying Stokes theorem we will have

e? ,
o= jq{ dkAy. (2.10)

In this way the Hall conductivity can be considered as the Berry phase accumulated in moving

around the Fermi surface.

2.2 Hall conductivity of an insulator

The Hall conductivity of an insulator arises easily from summing 2.6 over the filled bands.
For two dimensions we can write
e? d*k?

S L 2.11
Oy h sy 2m kx,ky ( )

This integral must be an integer,the idea is that the Berry phase accumulated in any closed
loop in k-space is exceptional. Applying Stoke’s theorem, for this phase we can write an
integral of the Berry curvature. There are two cases the integral can be done over. These

phases are just the same if the integral is a multiple of an integer. This integer is known
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as the first Chern number. Any insulator which has a topological invariant is a "topological
insulator". So far we have seen one invariant, the first Chern number. There are interesting
varients of this invarient: for example, there is at least one model for which the up-spins have
a Chern number of +1, and the down spins —1. This gives rise to a "Spin Hall Effect".
Graphene directed interest to Dirac fermions in crystals [113].The valence band and the
conduction band linearly contact in the Brillouin zone on the honeycomb lattice, which pro-
vides massless Dirac fermions . This peculiarity is perfectly manifest under a strong magnetic
field, in which unusual quantum Hall effect (QHE) for relativistic particles [114,115] has been
exemined. Various topological aspects of graphene QHE for example disorder effects and the
bulk-edge correspondence have been observed. In graphene,arise two Dirac fermions in the
Brillouin zone because of the overlapping mechanism on lattice systems [116, 117|.Thus,the
Hall conductivity as the result of degenerate Dirac fermions is always observed. What concerns
two-dimensional Dirac fermions they can also be observed on the surface of three dimensional
3D topological insulators [118].In spite of fact that they are doubled , it may be easier to con-
trol them, because they emerge on the opposite surfaces which are spatially separated.Some
experimental and theoretical studies on the QHE of the surface states of topological insulators
have been examined.Particularly in a magnetic topological insulator in presence of broken in-
version symmetry nondegenerate surface states have been realized and the QHE for a single
Dirac fermion has been observed [119]. An insulator is characterized as a material with an
energy gap dividing filled and empty energy bands.There is also other a more complicated
definition of an insulator,it’s the following: the material for which all electronic phenomena
are local [120]. This definition implies that such a material insensitive to boundary condi-
tions, so that in a multiply connected model, such as a ring,also is important to notice that
there is exponentially small sensitivity to magnetic flux threading the holes. In atomic insu-
lator electrons are tightly bound to atoms in closed shells, obviously satisfies both properties.
When we have ionic and covalent insulators the picture is the same.These band insulators are
topologically equivalent,it means that the Hamiltonian can be adiabatically transformed into
an atomic insulator without going through any phase transitions.From point of view their

low-energy electronic behavior, conventional insulators are equivalent to atomic insulators.
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The existence of a bulk energy gap does not provide the insensitivity to boundary conditions,
and also there exist phases with bulk gaps, which are topologically special.In complement to
strongly correlated phases [121,122] are appearing even for noninteracting electrons described
within band theory. The simplest example is the integer quantum Hall effect (IQHE). In two
dimensions, a magnetic field creats a cyclotron gap between Landau levels, which is possible
to express as energy bands in the magnetic Brillouin zone. This phase can exist even without
Landau levels in the absence of a uniform magnetic field [123].But there is a necessary con-
dition according which time-reversal symmetry must be broken.What concerns to the band
structure, it is not easy exactly to observe the difference between the IQHE state and a band
insulator. The veriety between the two is expressed by a triad of Chern integers [124]. A
hallmark of the (IQHE) phases, which is intimately related to their topology, is the existence
of gapless chiral edge states which are strong in the presence of disorder [125,126]. The sur-
face states are provided by topologically nontrivial phase of the bulk which is famous as the
bulk-edge correspondence.Consequently,it is not explicit whether the QHE of massless Dirac
fermions are indeed observed in a strong magnetic field regime, since broken time reversal
symmetry makes the bulk topological insulating phase instable. The stability of the surface
Dirac fermions of a topological insulator under a strong magnetic field has been invaesti-
gated. Recently, new topological insulating phases for systems with time-reversal symmetry
have been observed [127-130|. The quantum spin-Hall phase is prominenet from a band
insulator by a single Z5 invariant.This phase demonstrates gapless spin-filtered edge states,
which is important because that states allow for dissipationless transport of charge and spin
at zero temperature and are protected from weak disorder and interactions by time-reversal
symmetry. A timereversal invariant band structure is described by four Z, invariants . Three
of the invariants depend on the translational symmetry of the lattice and are not strong in the
presence of disorder, leading to "weak topological insulators". The fourth invariant is enough
strong and discerns the "strong topological insulator" STI. Nontrivial Z, invariants assume
the presence of gapless surface states.The surface states form a two-dimensional "topological
metal", in the STI phase, encircles an odd number of Dirac points. This fact brings to a quan-

tized Berry’s phase of obtained by an electron circling the surface Fermi arc, which does not
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change under continuous perturbations [131,132]. It’s important to notice that the Berry’s
phase also indicates that with disorder, the surface states are in the symplectic universal-
ity class and show antilocalization. Therefore,the metallic surface states mold a uncommon
phase, which cannot be fulfilled in a conventional two-dimensional electron system for which

Dirac points must be in pairs [133].

2.3 Time-reversal polarization

In [134] is represented the idea of the time-reversal polarization, in the same way as
charge polarization. For description of the Z, invariants has been used a Laughlin-type
gedanken experiment on a cylinder. For understanding the time-reversal polarization, we
need at first begin with a discussion of the charge polarization.The charge polarization implies
that the surface charges present in a finite system. After electrons may be added or removed
from a surface, the charge polarization is determined only modulo an integer.In [135-13§|
,the changing in the charge polarization caused by adiabatic changes in the Hamiltonian is
accurately described. In Laughlin’s gedanken experiment for the integer quantum Hall effect,
a quantum of magnetic flux h/e is adiabatically input in a cylindrical quantum Hall sample at
filling v = N. The resulting transfer of N electrons from one end of the cylinder to the other
can be modified as a change in the charge polarization of the cylinder. What concerns to
the Chern invariant, which distinguishes the integer quantum Hall state, accurately describes
this quantized change in charge polarization [139-143]. The time-reversal polarization is a Z,
quantity, which shows the presence or absence of a Kramers degeneracy related with a surface.
As in case of the charge polarization, the value can be changed by adding an extra electron
to the surface. Therefore, the time-reversal polarization is not significant. What concerns to
changes in the time-reversal polarization because of adiabatic changes in the bulk Hamiltonian
are correctly defined.Particularly, the change in the time-reversal polarization when half a flux
quantum h/2e is cut through a cylinder defines a 75 invariant, which is analogous to the Chern
invariant, and differentiates topological insulators.

The topological invariant describing a two dimensional band structure may be formed by
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imagining a long cylinder whose axis is parallel to a reciprocal-lattice vector G and which
has a circumference of a single lattice constant. Then, the magnetic flux cutting the cylin-
der plays the role of the circumferential or "edge" crystal momentum k,, with ® = 0 and
® = h/2e corresponding to two edge time-reversal invariant momenta k, = Ay and k, = A .
The Z, invariant characterizes the change in the Kramers degeneracy at the boundariess of
this one-dimensional system between k, = A; and k, = A, . For a three-dimensional crystal,
suppose a "generalized cylinder" which is long in one direction,parallel to G but, in the other
two directions, has a width of one lattice constant with periodic boundary conditions. Though
this structure is not possible represent as regular cylinder, a misrepresented(but topologically
equivalent) version can be viewed as a torus with a finite thickness. This "Corbino donut" is
similar to the generalized cylinder in same analogy the Corbino disk is like to the regular cylin-
der.The "long" direction corresponds to the thickness of the torus, and the two boundaries
correspond to the inner and outer surfaces. This system can be divided by two independent
magnetic fluxes,where they correspond to the two components of the momentum perpendic-
ular to G. In result we have four time-reversal invariant surface momenta A,, corresponding
to the two fluxes which can get either 0 or h/2e values . The band structure can be described
by the difference in the time-reversal polarization between any pair. The Z, invariants can be
derived from the topological structure of the Bloch wave functions of the bulk crystal in the

Brillouin zone. Some recent experimental results related to peculiar properties of (TI) are in

this [144-149] works.

2.4 Transport properties of fermions with moat spectra

In modern physics there are materials, such as topological insulators (TI) (see for a re-
view [150-153]) with edge states, Bose-Einstein condensates of Rb atoms with spin-orbit in-
teractions (SOBEC) [154, 155] and honeycomb lattices with next to nearest neighbor (NNN)
interactions [156], where the spectrum of non-relativistic particles combined with relativistic
Dirac component. The analyze of transport properties of this type of systems is an important

task which is necessary to carry out. The polarization operator is a variety which determines
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both, longitudinal and Hall conductivity from one side and effective action of U(1) gauge
field, defined by quantum fluctuations of fermions, from the other. The goal of this paper
is the calculation of the polarization operator of fermions with moat type spectrum. Similar
type of investigations were carry earlier [157,158].

Most general form of the basic Hamiltonian of such systems has a form

Hk)=e,+ Y di(k)o, (2.12)

where €, = —u + Dk?, d = Ak and d, = A — Mk2. For topological insulators D < 0, while

for cold atom systems D > 0, because it defines positive non-relativistic kinetic energy of

Rubidium atoms used in fabrication of artificial Rashba term by the system of lasers [159].
The edge states in TT or excitation’s on honeycomb lattice whit NNN interaction come in

pairs with states of opposite chirality defined by time reversal Hamiltonian
H*(—k) = e, + A(=koo, + kyo,) + d.03 (2.13)

where o] = s0,, s = £1 defines chirality. Without loss of generality we can take o] = so;, ¢ =

x,1, z. The total Hamiltonian of such systems is
H = (2.14)

The action of fermions with particular chirality is
S =0tQ — e — vpotk — d.o%lY (2.15)

Causal/Feynman Green function can be written in a simple form

| 14 o'n’ 1 —o'n'
G(Q. k)= - 2.16

where n’ = k'/k is the unit vector along momentum direction, B* = &), + ¢, = Dk* +
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\J upZk? + d?, 1 is the chemical potential and 7, = n sign(2 — p) with n = 1/27, defined by
scattering rate 7.

We will be concentrated on a problem of cold atoms with spin-orbit interacting [160|. For

simplicity we take M = 0 and in that case the spectrum become

Ef = DE? £/ v2 k2 + A2, (2.17)

Characteristics picture of two branches of this spectrum is presented on Fig.2.1, while only

lower branch, which is forming ground state, on Fig.2.2a.

Figure 2.1: Two branches of spectra of moat type. kg denotes radius of circle of minimal
energy.

Lowest energy located on a circle of radius ko = ,/m?v% — f—; in £,  branch. Interesting
F
for us region for chemical potential is A > pu > —A?/2mov?% — mv%/2 when Fermi sea has a

form of Corbino disk with radius

k‘%/z,F =2m[p + muj + \/Qm,uv%J + m2vf + A?]. (2.18)

At p? — A? = 0, Fermi momenta are kg, = 0 and k3, = 4m(u+mvf). On Fig2.2a we present
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Figure 2.2: a) Lower branch of spectrum with filled Fermi sea. b) k, = 0 projection of the
spectrum. kir and kop denote Fermi momenta of inner and outer circles.

characteristic form of the Fermi sea. Fig.2.2b demonstrates projection of spectrum on &, = 0

plane with notion of Fermi momenta kp, ,.

2.5 Transport property. The polarization operator

Study of transport properties in this systems, as usual, should start from calculation and

analyze of polarization operator
H,uu = <j,ujl/>7 , WV =T,Y. (219)
Here current j defined from the action (2.15) as
) 1+ +2 € X+
Jj= y-i 2iDYT O + vpp T Ty — 2DEA¢ W) (2.20)
J

which, due to gauge invariance and according to Neuter’s theorem, fulfills conservation low

Jj = 10,(¢"¢). Last term in the current (2.20) given by A just insures gauge invariance.
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By taking D = -X, we get

om)
— 1 — —
=it 0y et I — —— Aty (2.21)
m mc
Linear response of currents to external gauge field A, is given by

< jp >= /HWAVdth + A, =12 (2.22)
C

where

0 0,
I, =< (ZE# + vpcr“) (E + UFJV) > . (2.23)

Denoting matter field defined part of the current as jg = i%“ + vpo, for gauge invariant full

polarization operator K, we have
K (F = 7) =< 12()JOF) > —=6@(F — )8t — 1) (2.24)
c

Therefore, for the analyze of the transport properties of cold atom systems with moat spec-

trum (2.17) we need to calculate

1, = z'Tr/ ig:;f [ng <Q . g k- g) 506G (Q + g k+ g)} (2.25)

We consider only lower branch of the spectrum, therefore

[ dQd? T
I :E/d d°k 2 (2.26)

oA @ (-8 - Byt ineg) Q4§ — By +ineg)

k— 3

[S]5S)

where

T,, = Tr KW + UFUM) (1+n_g0")(m(k + g)y +oro,)(L+n) 40))) | (2.27)
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Integration over € in (2.26) gives

i / Pk Tw(n(Eypya —ingya —p) —n(Ep_g —ing_a — p))
( .

v = - 2.28
o4 ) (2n)? wt Eyg — Eppg + (g — m—g) (2:28)

Where n(Eki% U p) are Fermi distribution functions of occupied/empty states. For

small ¢ and in linear approximation
er —vim\ -,
Ek_% —LEpia=————)kq (2.29)

Therefore the expression (2.28) become

1 2k Tw ["(EHE — iMgrs — p) —n(Epg — g — )
/ ( - : : : . (2.30)

M, = ——
4 2m)? w + 2in — (% — %) kqcos ¢ + 0(q3)

Taking into account, that the terms €7 k;q; ~ kyq,—kyq. ~ k, ~ sin ¢ and after integration

over angles will give 0 and consequently (k — %)u (k+1), = kuk, — 2 + k“% — k”% —

kyk, — 22 we left with expression

1
2 2 &
ququ 1 U% 1 U% k?—I
T, :2( ,,—“)2—————
v (K) b [( +ek) m2+m2 e

4
2
2 Ur (12
+ 5MVUF |:1 — g <k' —

v .
)} + 2i-Leig;. (2.31)
€k

Finally we obtain

oo L / *" kdkd Ty (8) (B g — g — 1) = nl(B—g — g — )]
w = ‘
0

z (2.32)
2 . v2
4 (2m) w —+ 2in — (% — i) kqcos ¢ + O(q3)

Integral over k is located on two Fermi surfaces £, — p = 0 when n(EH% U ) —

n(Ey_a —ing_a — p1) # 0. Because

2
1 Ve

k2 k2 oL
1F

} . (2.33)
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where k — ki << {A% m?} and k + ki ~ 2k1p, one can obtain

ElF(T 1 U%
N i Tl (2.34)
EIF(T 1 UIQ;

The function n(Eyya — ingya — p) — n(Ep_a — in_s — p) is not zero(correspondingly the

integral (2.30) is not zero) only for momenta around Fermi surfaces obeying Ak? ~ El /2,7 —

. meg . . . . .
2i %1—/_2;;1}2 Therefore from the contribution of the inner Fermi surface to the integral
1/2,F F

(2.32) we receive

mele :|

2 Ty (ki) | Ky pq — 2im——tae
MY (k1) = 1/ (d¢ wlhue) [Furd = 2in
0

” 5 (2.36)
Lo %04 2in— (& = F) kipgoosg
__Tw(kir,q) 1 1_ w + (9<w_3 4
8 (i_i> (1 2N\2., A=
m €k p (W + 227]) — (E — Ele) kleq

where

ki p

L2 , 1 2\ 2 2
4o e, B ) (2 TR 9 TR o (2.37)
2 4 m €L €kip

K 1 (A% +02gt/4
Tw(kir,q) = 2 (% — %F%V + v%m25w> = (Z—Fq/>

We have used

<kr> 2
<k, >= ——— = %@W (2.38)

We see, that Z, chiral anomaly based term proportional to v¥€,, defined by Rashba term of
the action (2.15), because it will disappear if vy = 0.
At the point kop the answer is the same but will appear with opposite sign, because

velocity at kop is negative. Finally, for total polarization operator we obtain
(g, w) = T (kp) — TG (ko) (2.39)
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where H,(},,) (k12r) are defined by formulas (2.36) and (2.37).
Longitudinal conductivity o,,(w) = i(I1,(0,w) — I1,,(0,0))/w as a coefficient of linear

response to external electric field will give

sz(lea 0) - Txx(k2F7 0) [
8 <i _ ﬁ) w + 2277

€k

Oz (W) = (2.40)

2,4 2
mvp+A

Bmel when it is at level of energy

The expression shows, that at chemical potential y = —
minima, the conductivity is zero. Furthermore, in the limit vz = 0, A = 0 Rashba term is
disappearing in the action (2.15) and we have non-relativistic fermions. Then moat absent
in the spectrum, we have only outer ko Fermi momentum and conductivity acquires Drude
form

k3. i

(W) = ———— 241
Oaz () dmm w + 2in ( )

2.6 Conclusions

We have presented here the calculation of the polarization operator in the fermionic system,
which have moat type spectrum. The answer has normal part, leading to Drude conductivity
and Z, anomaly part, defined by Rashba SO-term in the Hamiltonian. The result presents
correct, expected limits at vy = 0, when Rashba term is zero, at m = oo, when non-relativistic
part of the Hamiltonian is zero and we have only Rashba term. At the minimal chemical
potential the conductivity became zero.

The main results of this chapter is published in [160].
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Chapter 3

Liouville field theory

3.1 Introduction to the conformal field theory

We define by g, the metric tensor in a space-time of dimension d. By defnition a conformal
transformation of the coordinates is an reverseable mapping z — 2 which leaves the metric

tensor invariant up to a scale:

!/ /

9 () = A(2) gy () (3.1)
where
’ ’ 81'/# al'ly
G (@) = D wr v (3.2)

A conformal transformation is locally equivalent to the rotation and dilatation. For conve-
nience, we assume that the conformal transformation is an infinitesimal deformation of the
standard Cartesian metric g,,—,,,where 7, = diag(1,...,1). The set of conformal trans-
formations clearly forms a group, and it evidently has the Poincare group as a subgroup,
since the latter corresponds to the special case A(x) = 1.Let us examine the outcomes of the

definition (3.1)on an infinitesimal transformation

T N ) (3.3)
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it comes from (3.1)
I
T = 5> e

77)\p (34)

and inserting in (3.3) we get in the first order by epsilon

Oe Oe”
my, (5;) + @) (55 + 8IP) (35)

Therefore, the requirement that the transformation be conformal means that

8uel, -+ 81/6“ = (>\71 - 1)77}“/ = f(x)n,ull (36)

The factor f(z) is defined by taking the trace on both sides:

F(a) = 20,6 (3.7

By using an additional derivative d, on Eq.(3.6),inverting the indices and taking a linear

combinations,we have

20,0ve, = 1,0, f + MupOuf — N0, f (3.8)

Upon contracting with 7, = this gets following form

20%¢, = (2—d)0,f (3.9)
From (3.6) we find
(2= d)0,0,f = w0 f (3.10)
In result we get
(d—1)0*f =0 (3.11)

Now we can extract the accurate form of conformal transformation in d dimensions.When
d = 1 the above equations do not inflict any limitation on the function f, and thus any

smooth transformation is conformal in one dimension.Condition (3.6) for g,, = 6,, becomes
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the Cauchy-Riemann equation

(9161 = 6262 8162 = —8261

(3.12)

Then €(2)e; —ies and €(Z) = €;+ie in the complex coordinates z = x+iy and Z = z—iy.In case

of two dimensional conformal transformations hereby coincide with the analytic coordinate

transformations

2= f(2),2 = f(2)

In case of complex coordinates the metric is
ds* = dzdz
Under the analytic coordinate transformations

2
of dzdz

2= f(2),2— f(2) ds* =dzdz — =

Any holomorphic infinitesimal transformation is possible expressed as:

o0

!

2 =z4e€z, €= g ezt
(o]

In this case

06 = —e(2)0¢ — &(2)0¢ = Y _ eulnd(2,2) + Culn(z, %)

where we have represented the generators

l, =—z""o, [,=—-z""o.

For these generators are right the following commutation relations:

[lm lm] = (n - m)ln+m

o7

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



Loy ln] = (0 — M) lpim (3.20)

[y ln] =0 (3.21)

We see that the conformal algebra is the direct sum of two isomorphic algebras,which obey

very simple commutation relations. The algebra (3.19) is famous as the de Witt algebra.

3.2 Tensor energy-momentum, radial quantization, OPE

Under an arbitrary transformation of the coordinates z# — z# + ¢”, the action changes as

follows:

1
68 = /dQJZT’WaNEV =3 /dsz“”((‘?MeV +0,€,) (3.22)

where T"" is the symmetric energy-momentum tensor. The infinitesimal conformal mapping

brings the action to the following form

1
58S = 3 / dPxTH0,e (3.23)

The trace of the energy-momentum tensor vanishes which means the invariance of the action

under the conformal transformation. The current of conformal symmetry is
Jy = Te” (3.24)
This current is conserved because
otJ, =0"T,,e" +T1,0"¢ =0 (3.25)

the tensor energy-momentum is conserved and traceless. Euclidean metric ds? = dz? + dy?

in the complex coordinates z = z + iy has the form ds? = dzdZ therefore

1
9:: =9z =0 and g,z =gz = 3 (3.26)
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and

¢ =g¢g*=0 and ¢¥ =g* =2 (3.27)

For the components of the energy-momentum tensor we have

1 :
Tzz = Z(TOO - 22T10 - Tll) (328)
1 :
T:: = Z(TOO + 2iT1o — T11)
1 1
T:=1T; = Z(TOO + Tll) = ZLT;:

Under tracelessness we understand

The conservation law ¢**0,T,, = 0 brings two equations

agTzz + azng =0 and @ng + agng =0 (330)

Using (3.29) we obtain

82TZZ =0 and aZng =0 (331)

The two non-vanishing components of the energy-momentum tensor will have the following

form

T(z) =T..(2) and T(z) =T::(2) (3.32)

where there is only the holomorphic and anti-holomorphic dependence.

On a cylinder we can write ¥ = R x S' = (t,# mod 2m), where t is world-sheet time,
and x is compactified space coordinate.

Suppose we have conformal map w — z = e¥ = €™ then infinite past and future on a
cylinder, t = £00 are mapped to points z = 0, o0 on a plane.What concerns to the equal time

surfaces, t = const it becomes circles of the constant radius on z-plane. Dilatation on the
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plane e® modifies time translation ¢+ a on the cylinder, and rotation on the plane e is space
translation x + « on the cylinder. In result the dilatation generator on the conformal plane
can be considered as the Hamiltonian, and the rotation generator on the conformal plane can
be considered as momentum.

The current of conformal transformations takes the form:

J.=T(2)e(z) and J; =T(2)€(2) (3.33)
The conserved charge of the conformal transformations takes the form

0= j'{ d=T(2)e(2) + QL ]{ dZT(2)(2) (3.34)

21 )

3.3 Boundary Liouville field theory

Recently the various semiclassical limits of the Liouville correlation functions appeared
in different instances. For example we can mention study of conformal blocks in AdS/CFT
correspondence, see e.g. [161-163], semiclassical limits of the Nekrasov partition functions,
see e.g [164-169], minisuperspace limit of correlation functions in AdS;/HZ [170,171], semi-
classical limit of correlation functions in the presence of defects and boundaries [172,173] and
the most recently found application of the semiclasical limit of Liouville field theory to the
SYK problem [174].

In this paper we study matrix elements of the boundary Liouville field theory in mini-
superspace limit. In the minisuperspace limit one considers a limit where only the zero
mode dynamics survives and the theory is reduced to the corresponding quantum mechanical
problem. The mini-superspace limit of the Liouville field theory was considered in [175,176].
In these papers the matrix elements of the Liouville quantum mechanics with exponential
potential were computed. Later it was shown in [178| that the DOZZ structure constants
[179,204] in this limit coincide with the matrix elements found in [175,176]. It was also
demonstrated in [204] that the Liouville two-point function in the mini-superspace limit in

agreement with the reflection function of the Liouville quantum mechanics wave functions
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given by the modified Bessel function. In papers [181, 182] was studied the mini-super space
limit of the boundary Liouville field theory (BLFT). It was found that BLFT in this limit
reduced to the Morse potential quantum mechanics. It was shown in [181] that in the mini-
super space limit the boundary two-point function, computed in [201], coincides with the
reflection amplitude of the eigen-functions of the Morse potential Hamiltonian given by the
Whittaker functions.

In this paper we study the mini-superspace limit of the boundary three-point function
in the BLFT. The boundary three-point function in the BLFT was computed in [184] and
expressed vie double Gamma and double Sine functions [185,186]. Using known asymptotic
properties of the double Gamma and Sine functions we have shown that in the mini-superspace
limit the boundary three-point function can be expressed via the Meijer functions G§;§ with
the unit argument or equivalently via the generalized hypergeometric functions 3F» with
the unit argument. We also computed matrix elements for the Morse potential and have
shown that they can be expressed via the generalized hypergeometric functions 3F, with the
unit argument as well. Using the identities, relating different generalized hypergeometric
functions with the unit argument [187-189|, and matching quantum and classical parameters,
we established exact agreement between the mini-superspace limit of the boundary three-
point function and the matrix elements for the Morse potential. It is important to note that
in the BLFT relation of the boundary cosmological parameter to the corresponding quantum
parameter appearing in the boundary one-point function is two-fold due to a sign ambiguity
in the choice of the square-root branch. We found that to match the minisuperspace limit
of the boundary three-point with the corresponding quantum mechanical matrix element we
should use the branch with the negative sign. We also found that passing from one branch to
another brings to additional factor in the normalization of the wave functions corresponding
to the boundary condition changing operators. We would like also to mention that various
consequences of the branching of the BLFT parameters earlier were considered in [190].

The paper is organized as follows. In section 2 we review the BLFT and compute the
mini-superspace limit of the boundary three-point function. In section 3 we compute matrix

elements for the Morse potential and establish precise agreement with the boundary three-
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point function in the mini-superspace limit found in the previous section. In appendices A,
B and C we review various properties of the special functions used in the paper.
Let us consider the Liouville field theory on a strip R x [0, 7] , parameterized by the time

7 and space ¢ coordinates, 0 < ¢ < . The conformal invariant action has the form:

[e.e] T 1 o0 o0
S :/ dT/ do (E(ﬁaqﬁ)Q +,u62b¢> —I—/ dr Me"|,—o —I—/ dr Mye®|,—,  (3.35)
—o0 0

—00 —00

where M; and M, are the corresponding boundary cosmological constants.

Let us review some facts on the boundary Liouville field theory [184,191,201]. The primary
fields of the Liouville field theory are V,, associated with the vertex operators e?*?. They
have conformal dimension

1
A, =a(Q — a), Q:b+g (3.36)
In the presence of the boundary with the cosmological constant M the primary fields V,
have the one-point functions:

Uy (@)

[z — 222

(0]Va(z, 2)|0) = (3.37)

where

Us(a) = 3 (mpy (b)) Q722D (1-b(Q —200) )T (=b~1(Q —20)) cos(m(20 — Q) (2= Q) (3.38)

SN

where the parameter o is related to the boundary cosmological constant M by the relation:

M=

cosh (20 — Q) (3.39)

sin(7b?)

Besides bulk primary fields in the boundary conformal field theory exist also boundary
condition changing operators, parameterized by the types of the switched boundary conditions

and conformal weight. In the case of the BLFT they are given by the fields W3 with
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conformal weight Ag = (5 — Q). They have the two-point function:

8(B2 + B1 — Q) + S(B1,02,01)0(B2 — B1)

<0|\IIU102( )\Dg501(0)|0> = |:L'|2A61 (340)
where
2\ 5
S(B8,09,01) = (7‘(‘#’}/ (b?)b?~2 > X (3.41)
[h(268 — Q) Sp(o2 + 01 — B)Sp(2Q — 03 — 01 — B)
[h(Q —2B8)  Sp(oa — 01 + B)Sp(01 — 02 + )
and three-point function
(0| W57 (23) W57 (23) W57 (23)]0) = (3.42)
C st
|$21|A1+A2—A3|x32|A2+A3 A1|:L‘31|A3-|—A1—A2
Cortntn = €0 2,1 (3.43)
S Ba Pr o dr Ba P1
CﬁS\ﬁzﬁl = B, / TJUQ”% (344)
o3 01 e o3 01
where
B2 B 201
Rowss | | = (@) hios=rem) (3.45)
O3 01
» ['y(2Q — B1 — B2 — B3)Tp(B2 + B3 — B1)To(Q + o — B1 — B3)1%(Q + B3 — P2 — 1)
['h(285 — Q)T (Q — 2B2)[4(Q — 261)I'%(Q)
o Sp(Bs + 01 — 03)5(Q + B3 — 05 — 071)

Sp(Be + 02 — 03)SH(Q + B2 — 03 — 02)
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and

7 Ba B ~ Sy(Ur +7)Sp(Uz + 7) Sp(Us + 7)Sp(Us + 7) (3.46)
72,833 o Sb(vl ‘I'T)Sb(‘/Q —|—7‘) Sb(‘/?,‘f‘T)Sb(VZL_’_T) '

O3 01
Uy =0y +01— fi, Vi=Q+os+ 83— 01 —03 (3.47)
Uy=Q+ 0oy — p1 — o1, Vo=2Q+ 0y — B3 —03—[h
Us = 09 + B2 — 03, Vs = 20,
Uy =Q+ o0y — P2 — 03, Vi=Q

[y(z) and Sp(z) in the formulae above denote the double Gamma and Sine functions reviewed
in appendix A.
The three-point function has the property, that setting one of the field to vacuum, one

recovers the two-point function. For example it was checked in [184] that

lim,eﬁoC’ZjﬁgiE = 0(Bs — B2) + S(B2,03,02)0(Bs + B2 — Q) (3.48)

Let us now consider the minisuperspace limit of three-point function.
As the warm-up exercise we review the minisuperspace limit of two-point function (3.41),
computed in [181]. It is argued in [181] that one should take the limit b — 0 and scale the

parameters [ and o in the following way:

b= > + 1kb (3.49)
and
_ + p1b (3.50)
01 = 1D £1 .
_ ! + pab
TN
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Using formulae (3.88, (3.89) and (3.91) in appendix A one can easily obtain:

(3.51)

47w>”“ ['(2ik) T (p1+ po — 5 — ik)

S L
(8,02,01) = ( ) T(=2k)T (py +p2 — L + ik)

To compute the mini-superspace limit of the boundary three-point function we will use

the ansatz (3.50) for all the three boundary condition parameters:

1
= — .52
01 4b—|—plb (35)
—1+ b
TN
—1—1— b
03—4b P3

For the primary fields parameters we will use the ansatz suggested in [178| for calculation

of the mini-superspace limit of the bulk three-point function [177]:

b = % + ik1b (3.53)
52 = 775
53 - 9 + Zl{?Qb
2
It is convenient to denote
pr+p2=1—2A (3.54)
p2—ps=§ (3.55)
implying also
prtps=1-XA—=¢ (3.56)

Inserting (3.52) and (3.53) in (3.46), using the formulas (3.88), (3.89),(3.90) in appendix

A, and rescaling the integration variable 7 — b7, one obtains in the limit b — 0
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T s — 27T (mp?) MR T2 (3.57)
—100 o3 01

/ > dr Pa Pr

/ioo d_TF(—T)F(T — ik + 1/2 — )\)I‘(n + &+ T)F(z'k’l —iky — & — T)F(ikQ + ik — & — T)
i I'n—&-1)

Using the definition of the Meijer G-functions, reviewed in appendix B, one can write

> d P2
JRE2 2 R (3.58)

; 7
—1%00 o3 01

1 ; I _
2’5/2(7rb2)*”ik1 b—lﬂng:g 1l 2 TAFik 1 =n—=&n—¢ _
Oaikl - Zk2 - 5,7:]{?1 + Zkg — 5

1 ; _
2*5/2(7rb2)*”ik1bilw’ng’g 1 2 + A+ &+ ik, 1 —nn

€, iky — iky, iky + iky

In the second line we used the identity (3.96) in appendix B.

For further purposes, it is convenient to present the Meijer Ggﬁ—function (3.58) in a special
way, use of which become clear in the next section. Namely, first we decompose the Ggf),—
function as a sum of 3F; hypergeometric functions with the unit argument according to
eq. (3.94) in appendix B. Afterwards we transform obtained in this way 3F5 hypergeometric

functions with the unit argument successively applying identities (3.97) and (3.98) in appendix
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C. We end up with

1 . .
T AN +ik + &1 -1, r DL+ X —ik
G2 2 1 mn (§'+ n)'k(2 +1 ; 1) y (3.50)
€. iky — ik, iky + iky sinm(iky + 3 + )
{ D(2iko)T (iky — iks + )L (5 — iko — A — &) y
U(—iky + iko + ) (—tks + 2 +