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Introduction

Let us take a bunch of electrons, confine them in a two-dimensional plane and turn on a

strong magnetic field. This simple step provides the setting for some of the unexpected and

surprising results in physics. These phenomena are known as the quantum Hall effect. The

name comes from experimental results. The Hall conductivity takes quantised values

σxy =
e2

2π~
ν. (1)

From the beginning it was found that ν takes integer valued. Certainly,we are used to

see things being quantised at the microscopic, atomic level. But here the picture is different

: it’s the quantisation of a macroscopic property in a messy system involving many particles

and its explanation requires new approach. It comes out that this new approach is related

to the role that topology can play in quantum many-body systems. Later, it was found that

the conductivity not only takes integer values, but can also take specific rational values. The

most known experimentally found fractions are ν = 1/3 and ν = 2/5 but there are some

other fractions that have been observed. In this case the interaction between electrons was

observed which is now known as a new state of matter.The charged particles that wander

around these system, transport a fraction of the charge of the electron, as though the electron

has break itself into several pieces. It is not just the charge of the electron that fractionalises:

this occurs to the "statistics" of the electron also.Yet this happens in spite of the fact that the

electron is an indivisible component of matter. Recollect that the electron is a fermion, which

is governed by the Fermi-Dirac distribution function. Because of fermionic nature electron
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splits.But the individual components are no longer fermions, but neither are they bosons.

They are new objects known as anyons which lie somewhere between bosons and fermions.

In more general cases, even this description breaks down: the resulting objects are called

non-Abelian anyons and provide physical manifestation of the kind of non-local entanglement

famous in quantum mechanics.

Because of this fact, the quantum Hall effect has been a constant source of new ideas, most

of them related to the ways in which the topology invades the quantum physics. Attractive

examples include the subject of topological insulators, topological order and topological quan-

tum computing. Basically, all of these phenomena are impressive theoretical constructions,

which include a journey through some of the most fascinating and important developments in

theoretical and mathematical physics over the past decades. The first attack on the problem

focused on the microscopic details of the electron wave functions. Subsequent approaches

looked at the system from a more coarse-grained, field-theoretic perspective where a subtle

construction known as Chern-Simons theory plays a key role. Yet another perspective comes

from the edge of the sample where certain excitation live that know more about what is hap-

pening inside the system than you might think. Graphene is now attracting scientists with its

peculiar material characteristics.Electrons in graphene strongly interact and therefore exhibit

fractional quantum Hall effect(FQHE).But remarkably,the evidence for collective behaviour of

electrons in graphene still is absent.The integer quantum Hall effect (IQHE) can be described

only in terms of individual electrons in a magnetic field while the (FQHE)can be understood

by studying the collective behaviour of all the electrons [1].The quantum Hall effect is also

studied in context of conform field theory (CFT). In this [2] paper is examined the applica-

tion of Quantum Fractional Hall effect. It is shown that the Gaussian model together with

appropriate boundary conditions for the order parameter provides an effective theory for the

Laughlin type (FQHE). The plateau forming condition corresponds to the taking the chiral

portion of the theory c = 1 conformal field theory to the description of the (FQHE).

The first example of a topological quantum state [3–7] is the integer quantum Hall ef-

fect (QHE) in a 2D electron system in the presence of a perpendicular magnetic field. For

conductivity, the distinction between localised and extended states is an important.Only the
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extended states can transport charge from one side of the sample to the other. So only these

states can contribute to the conductivity. Suppose that we have filled all the extended states

in a given Landau level and consider what happens when we decrease B with fixed n. Each

Landau level can contain fewer electrons, so the Fermi energy will increase. Before jumping up

to the next Landau level, we now begin to settle the localised states. As long as these states

can not contribute to the current, the conductivity stays constant. This brings to exactly

the kind of plateaux that are observed, with constant conductivities over a range of magnetic

field. The presence of disorder explains the presence of plateaux.In result the resistivities take

specific quantised values. These were computed assuming that all states in the Landau level

contribute to the current.Many of these states are localised by impurities and don’t transport

charge.We expect that the value of the resistivity should be different. Uncommonly, current

carried by the extended states increases to compensate for the lack of current transported

by localised states,because of that the resistivity remains quantised in presence of disorder.

When a one-dimensional world is observed we have two basic motions forward and backward.

The random scattering can mingle them, which brings to resistance.The QH effect is possible

when a strong magnetic field is applied to a 2D gas of electrons in a semiconductor. When

we have low temperature and high magnetic field, the electrons transport only along the

edge of the semiconductor.In 1D system the electrons are propagating in both directions, the

top edge of a QH bar contains only half the degrees of freedom.When an edge-state electron

meets an impurity, it just rounds and still keeps going in the same direction, as there is no

option for it to turn back. This dissipationless transport mechanism could be extremely use-

ful for semiconductor devices. The fact that we should have a large magnetic field strongly

confines the application potential of the QH effect. The quantum Hall (QH) systems now

is a major paradigm in condensed matter physics, with important applications such as re-

sistance metrology and measurements of fundamental constants. In the recent years,it has

been shown that the QHE is just one member of a much larger family of topologically spe-

cific quantum states,some instances of which contain the quantum spin Hall (QSH) effect

which is famous also as the 2D topological insulator and 3D TIs [8]. Current time there

are a large number of materials,TIs with their characteristic spin-helical Dirac fermion TSS
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brings forth intense interests. In a real 1−D system, there are four channels for the forward

and backward moving paths with spin-up or spin-down electrons. The traffic lanes for the

electrons can be split without any magnetic field.It’s possible to leave the spin-up forward

mover and the spin-down backward mover on the top edge and go the other two channels

to the bottom edge.The similar system with such edge states is in a QSH (quantum Spin

Hall) state, because it has a net transport of spin forward along the top edge and backward

along the bottom edge,as the separated transport of charge in the QH state. Charles Kane

and Eugene Mele from the University of Pennsylvania [9, 10], and Andrei Bernevig [11] from

Stanford University, independently offered in 2005 and 2006 that such a divided, and there-

fore the QSH state, can basicaly be real in some theoretical models with spin-orbit coupling.

The fractional QSH state should be experimentally observed. Actually QSH edge consists of

both backward and forward movers, but back-scattering by nonmagnetic impurities is forbid-

den. Most eye-glasses and camera lenses have a so-called anti-reflection coating.The reflected

light from the top and the bottom surfaces interfere with each other, bringing to the zero

net reflection and thereby perfect transmission. However, such an effect is not strong, as

it depends on the matching between the optical wavelength and the thickness of the coat-

ing [12–14]. A large part of the unique quantum-mechanical properties of TIs come from

the peculiar characteristics of the surface states. Currently, the TI research is concentrated

basically on time-reversal (TR) invariant systems, where the nontrivial topology is preserved

by time-reversal symmetry (TRS). In those systems, the surface states present Dirac disper-

sion therefore the physics of relativistic Dirac fermions becomes pertinent. Furthermore, spin

degeneracy is appeared in the Dirac fermions staying in the surface states of TR-invariant TIs

and their spin is blocked to the momentum. In similar cases we say that a spin states have

helical spin polarization and it brings chance to realize Majorana fermions in the presence of

proximity-induced superconductivity. The first 3D TI material Bi1−xSbx, whose topological

surface state contains 2D massless Dirac fermions, has unique band structure which brings

3D massive Dirac fermions in the bulk. This situation is like to the Kane-Mele model where

1D massless Dirac fermions come out of 2D massive Dirac fermions. Since Dirac fermions

play significant roles in TIs, it is necessary to mention the history of Dirac physics in con-
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densed matter. The semi-metal Bi has played an important role in quantum mechanichs ,

this is significant because the extremely low carrier density and the very long mean free path

easily set the system in the quantum limit at relatively low magnetic fields [15] In the mid

20-th century, one of the long-standing puzzles in Bi was its large diamagnetism, which defies

the common wisdom for magnetism in metals involving Pauli paramagnetism and Landau

diamagnetism [16]. Entertainingly, in Bi1−xSbx at low Sb concentration, the carrier density

becomes even lower than in Bi, in same time the diamagnetic susceptibility increases, which

is also opposite to the expectation from Landau diamagnetism. The peculiar electronic prop-

erties of Bi, an effective two-band model was formed by Cohen and Blount in 1960. In 1964,

Wolff acknowledged that this two-band model can be transformed into the four-component

massive Dirac Hamiltonian, and he expressed delicate analysis of the selection rules using

the Dirac theory. This was the start of the concept of Dirac fermions in solid states, though

some of the special physics of massless Dirac fermions were established in as early as 1956 by

McClure in the scope of graphite. Speaking of graphite, the mapping of the Hamiltonian of its

2D sheet to the massless Dirac Hamiltonian was first used by Semenoff in 1984 [17]. With the

experimental realization of graphene, this system has become a prototypical Dirac material.

One of the distinguishing properties of massless Dirac fermions is the Berry phase of, a special

effect of the Berry phase in the condensed matter setting is the absence of backscattering,

which was indicated first by Ando, Nakanishi, and Saito in 1998 [18]. The substantial aspect

of the Dirac physics is that magnetic fields surely cause interactions between upper and lower

Dirac cones. In fact, the Dirac formalism allows one to easily involve such interband effects

of magnetic fields into calculations [19]. Expending the range of topological materials is an

important subject.So far as superconductors have a superconducting gap at the Fermi level,

they are in a way similar to insulators and one can comprehend topological superconductors

described by a topological invariant that is covered by the existence of a gap [20]. So far, topo-

logical classifications of insulators and superconductors based on three discrete symmetries

(TR, particle-hole and chiral) have been established [21].The new topological classifications

based on point group symmetry of the crystal lattice is attracting significant interest [22–24],

particularly after the new type of topological materials called topological crystalline insula-
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tors [25–27] have been experimentally discovered [28, 29]. Also, although it was considered

necessary to have topological materials fully-gapped energy energy spectrum for topological

invariant be clearly defined, it becomes possible to present a non-trivial topology for gapless

systems [30–33]. The experimental innovations of several materials that are nontrivial with

respect to the new topologies will continue be mainly considered. Whereas the concept of

topological insulators became popular when the discovery of the Z2 topology by Kane and

Mele, there had been theoretical attempts to comprehend topological states of matter beyond

the range of the quantum Hall system. In this regard, an important development was made in

2001 by Zhang and Hu, who extended the 2D quantum Hall state to a four-dimensional (4D)

TR-invariant state possessing an integer topological invariant. The effective field theory for

this 4D topological system was constructed by Bernevig.After the Z2 topology was discovered

for TR-invariant systems in 2D and 3D, it was shown by Qi, Hughes, and Zhang that the

framework of topological field theory is useful for describing those systems as well, and they

further demonstrated that the Z2 TIs in 2D and 3D can actually be deduced from the 4D

effective field theory by using the dimensional reduction. The topological field theory is ap-

propriate for describing the electromagnetic response of TIs and has been used for foretelling

new topological magnetoelectric effects. Two-dimensional conformal field theories describe

statistical systems at critical points and provide the classical solutions of string theory. Re-

cently, it has been proposed that the order parameter of the fractional quantum Hall effect

(FQHE) is related to the vertex operator, and the ground state wavefunction of a certain

fractional filling factor can be expressed in terms of the N-point correlation function of vertex

operators [34, 35]. The application of conformal field theory has thus been expended into a

rather specific condensed matter phenomenon. In [36] the Laughlin states for N interacting

electrons at the plateaus of the fractional Hall effect are examined in the thermodynamic limit

of large N . It was shown that this limit related to the semiclassical regime for these states,

thus connecting their stability to their semiclassical nature. The analogous problem of two-

dimensional plasmas is studied analytically, to leading order for N →∞, by the saddle-point

approximation - a two-dimensional extension of the method used in random matrix models

of quantum gravity and gauge theories. The Laughlin states describe classical droplets of
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fluids with uniform density and sharp boundaries, as expected from the Laughlin plasma

analogy [37–45]. In this limit, the dynamical W∞-symmetry of the quantum Hall states rep-

resents the kinematics of the area-preserving deformations of incondensable liquid droplets.

The main idea of this theory is the existence of incompressible quantum fluids at specific

rational values of the electron density. These values are very stable, macroscopical quantum

states with uniform density ρ(x) = νeB/hc = const, ν = 1/m,m = 1, 3, 5, ..., which has an

energy gap where B is the external magnetic field. Incompressibility accounts for the lack of

low-lying conduction modes, which arises the longitudinal conductivity σxx to vanish, while

the generally strict motion of the uniform droplet of fluid gives the rational values of the Hall

conductivity σxy = νe2/h [46–49].

The topological phases of matter [50–53] have been examined by some models , such

as wave function modeling , band theory and effective field theory of boundary excitations.

In [54], is investigated (3 + 1)-dimensional time-reversal invariant topological insulators ap-

plying field theory methods. The main idea of exploring such a system is the success of the

field theory approach for (2 + 1) dimensional topological states [55, 56] . The comprehensive

modeling of quantum Hall states has been used to the definition of the quantum spin Hall

effect and then to time-reversal invariant topological insulators [57]. In some cases,the Z2

characterization of stability of topological insulators, initially deduced within band theory

by Fu, Kane and Mele , has been redefined in field-theory language and expanded to inter-

acting fermion models with Abelian and non-Abelian fractional statics of excitations. The

Z2 stability also expends to (3 + 1) dimensional band insulators and it is important to find

the corresponding field theory argument for exploring the interacting systems [58, 59]. The

quantization of the compactified boson in (2 + 1) dimension produces eight sectors that cor-

respond to the spin sectors of the fermionic theory on the torus. The partition functions in

two theories are modified under flux insertions and modular transformations;in fact , they

become equal due to dimensional reduction to (1 + 1) dimensions. This thesis is composed

ofintroduction,three chapters,conclusion and bibliography. In introduction are presented the

general view of the problem. In the first chapter we studied 3D massive Dirac fermions in the

presence of chemical potential,where we have used Feynman diagrams for the calculations.The
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response of fermionic system to external gauge fields is defined by current-current correlation

function Πµν(q, q0). The transport properties of various physical quantities are determined by

the zero limit of the energy-momentum. As it is known, the close to half-filling the physics of

graphene is described by 2 + 1 dimensional Dirac theory.We calculate current-current correla-

tion function in Dirac theory in a presence of chemical potential η and gap m. The fermionic

system to external gauge fields in presence of non-quantized magnetic field is determined by

current-current correlation function Πµν(B). We study 2 + 1 dimensional Dirac electron sys-

tem and calculate current-current correlation function in a presence of magnetic field B,gap

m and chimical potential η. In the second chapter we present polarization operator of non-

relativistic fermions with spin-orbit (SO) Rashba interaction. The spectrum of this fermions

is moat type having minimum on a circle. Contrary to Dirac or non-relativistic fermions

Fermi sea here has a geometry of Corbino disk which reflects in a transport properties of

excitation’s.

In the third chapter we study mini-superspace semiclassical limit of the boundary three-

point function in the Liouville field theory. We compute also matrix elements for the Morse

potential quantum mechanics. An exact agreement between the former and the latter is

found. We show that both of them are given by the generalized hypergeometric functions.

In this chapter chapter also are constructed topological defects in the Liouville field theory

producing jump in the value of cosmological constant. We construct them using the Cardy-

Lewellen equation for the two-point function with defect. We show that there are continuous

and discrete families of such kind of defects. For the continuous family of defects we also find

the Lagrangian description and check its agreement with the solution of the Cardy-Lewellen

equation using the heavy asymptotic semiclasscial limit.

The equation of motion in a magnetic Field

The fact that a magnetic field causes charged particles to move in circles arises the Hall

effect. The equation of motion for a particle which has mass m and charge e in a magnetic
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field has the following form

m
dv

dt
= −eE− ev ×B− mv

τ
, (2)

τ is called scattering time, which is the average time between collisions.This (2) equation

describes the most simple model of charge transport. It is the Drude model.The velocity of

the particle when dv
dt

= 0 will be

v +
eτ

m
v ×B =

eτ

m
E. (3)

The current density J is related to velocity by following form

J = −nev, (4)

where n is the density of charge carriers.In matrix form from (3) for ωB is received

 1 ωBτ

−ωBτ 1

 (5)

J =
e2nτ

m
E (6)

This equation is known as Ohm’s law,where σ is conductivity.In the presence of a magnetic

field σ is a matrix

J = σE (7)

We can write it as

σ =

 σxx σxy

−σxy σxx

 (8)

From the Drude model,we obtain the accurate expression for the conductivity

σ =
σDC

1 + ω2
Bτ

2

 1 −ωBτ

ωBτ 1,

 (9)
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where σDC = ne2τ
m

is the conductivity in the absence of a magnetic field. The resistivity is

defined as the inverse of the conductivity

ρ = σ−1 =

 ρxx ρxy

−ρyx ρyy

 (10)

From the Drude model we get

ρ =
1

σDC

 1 ωBτ

−ωBτ 1

 (11)

When me measure the resistance R it differs from the resistivity ρ by geometrical factor

Landau Levels

It won’t come as a unexpected to study that the physics of the quantum Hall effect includes

quantum mechanics [60]. In this subsection, we will observe the quantum mechanics of free

particles which are moving in a background of magnetic field and the creation of Landau

levels.When we have a nonzero magnetic field B, there is a Zeeman splitting between the

energies of up and down spins. The Lagrangian for a particle of charge e and mass m which

is moving in a background magnetic field B = 5×A

L =
1

2
mẋ2 − eẋA (12)

When A→ A+5α the Lagrangian changes L→ L−eα̇ From here we see that the equations

of motion remain unchanged under a gauge transformation. For canonical momentum of this

Lagrangian we can write

p =
∂L

∂ẋ
= mẋ− eA (13)

In this case Hamiltonian will have the following form

H = ẋp− L =
1

2m
(p + eA)2 (14)
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We should notice that p is not gauge invariant,in contrast,the mechanical momentum mẋ is

gauge invariant. x and p are canonical,it means that

{xi, pj} = δij, {xi, xj} = {pi, pj} = 0 (15)

For the Poisson bracket of the mechanical momentum we will have

{mẋi,mẋj} = {pi + eAi, pj + eAj} = −e
(
∂Aj
∂xi
− ∂Ai
∂xj

)
= −eεijkBk (16)

Now our problem is to find for the spectrum and wave functions of the quantum Hamiltonian,

H =
1

2
(p + eA)2 (17)

The fact, that particle is restricted in the plane,it means that x = (x, y).The magnetic field

we will take constant and perpendicular to this plane,5×A = Bẑ. From (15) for canonical

commutation relations we will have

[xi, pj] = i~δij, [xi, xj] = [pi, pj] = 0 (18)

We will denote π = p + eA = mẋ, then for commutation relations we can write

[πx, πy] = −ie~B (19)

For convenience we will introduce new variables

a =
1√

2e~B
(πx − iπy) a+ =

1√
2e~B

(πx + iπy) (20)

The new commutation relations is

[a, a+] = 1 (21)
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Then the Hamiltonian gets the following form

H =
1

2
π̄π̄ = ~ωB

(
a+a+

1

2

)
(22)

where ωB = eB
m

is the cyclotron frequency. The state |n > has energy

E = ~ωB =

(
n+

1

2

)
n ∈ N (23)

In the presence of a magnetic field the energy levels of a particle become equally spaced, where

the gap between each level is proportional to the magnetic field B. These energy levels are

called Landau levels. It’s important to notice that the spectrum looks very different in the

absence of a magnetic field.The splitting between Landau levels is ∆ = ~ωB = e~B
m

. In case of

free electrons, this level coincides with the Zeeman splitting ∆ = gµBB between spins, where

µB = e~
2m

is the Bohr magneton. It looks as though the spin up particles in Landau level n

have the same energy as the spin down particles in the level n+1. Actually, in real materials,

the situation is different. The real value of the cyclotron frequency is ωB = eB
meff

, where meff

is the effective mass of the electron moving in its environment.The g factor can also change

due to effects of band structure.

The Lowest Landau Level

Now we will frame the wave functions in symmetric gauge. We are going to discuss the

lowest Landau level n = 0. The states in the lowest Landau are annihilated by a,meaning

a|0,m >= 0.The problem is to interpret this into a differential equation. For the lowering

operator we can write

a =
1√

2e~B
(πx − iπy) =

1√
2e~B

(px − ipy + e(Ax − iAy)) =

15



In the complex coordinates we introduce

z = x− iy z̄ = x+ iy (24)

For holomorphic and anti-holomorphic derivatives we can write

∂ =
1

2

(
∂

∂x
+ i

∂

∂y

)
∂̄ =

1

2

(
∂

∂x
− i ∂

∂y

)
(25)

where ∂z = ∂̄z̄ = 1 and ∂̄z = ∂z̄ = 0. Using holomorphic coordinates for a we get

a = −i
√

2

(
lB∂̄ +

z

4lB

)
(26)

a+ = −i
√

2

(
lB∂ −

z̄

4lB

)
(27)

where lB =
√

~
eB

.The lowest Landau level wave function has the following form

ψLLL(z, z̄) = f(z)e
−|z|2

4l2
B (28)

In the lowest Landau level we can form the states |0,m > and write

b = −i
√

2

(
lB∂ −

z̄

4lB

)
(29)

b+ = −i
√

2

(
lB∂̄ −

z̄

4lB

)
(30)

There is state given by

ψLLL,m=0 ∼ e
−|z|2

4l2
B (31)

For the lowest Landau level wave function in terms of holomorphic polynomials we can write

ψLLL,m=0 ∼
(
z

lB

)m
e
−|z|2

4l2
B (32)

These states are the eigenstates of angular momentum.The angular momentum operator is
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the following

J = i~
(
x
∂

∂y
− y ∂

∂x

)
= ~(z∂ − z̄∂̄) (33)

Acting on these lowest Landau level states, we get

JψLLL,m = ~mψLLL,m (34)

Landau Gauge

In order to find wave functions we should specify a gauge potential corresponding to the

energy eigenstates in following way

5×A = Bẑ (35)

Here we work with the choice

A = xBŷ (36)

This is called Landau gauge.We should note that the magnetic field B is invariant under

translational symmetry and rotational symmetry in the (x, y)-plane.The choice of A breaks

the translational symmetry in the x direction and rotational symmetry.While the physics

will stay invariant under all symmetries, the intermediate calculations will not be manifestly

invariant. This sort of situation is typical when dealing with magnetic field. For Hamiltonian

we can write

H =
1

2m
(p2
x + (py + eBx)2) (37)

Because we have obvious translational invariance in the y direction, we can seek energy

eigenstates which are also eigenstates of py.Using the separation of variables we get

ψk(x, y) = eikyfk(x) (38)
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Acting on this wavefunction with the Hamiltonian we obtain

Hψk(x, y) =
1

2m
(p2
x + (~k + eBx)2)psix(x, y) ≡ Hkψk(x, y) (39)

We should note that it’s the Hamiltonian for a harmonic oscillator in the x direction

Hk =
1

2m
p2
x +

mω2
B

2
(x+ kl2B)2 (40)

The frequency of the harmonic oscillator is equal to the cyclotron frequency ωB = eB
m
, where

lB is a length scale. This is a peculiar length scale which manages any quantum phenomena

when exists magnetic field. It is called a magnetic length.

lB =

√
~
eB

(41)

The energy eigenvalues are represented in (23).

The explicit wavefunctions depend on two quantum numbers k ∈ R and n ∈ N

ψn,k(x, y) ∼ eikyHn(x+ kl2B)e
− (x+kl2B)2

2l2
B (42)

where Hn is the usual Hermite polynomial wavefunctions of the harmonic oscillator. The

∼means that we have made no attempt to normalize these wavefunction. One privilege of this

approach is that we can instantly find the degeneracy in each Landau level. The wavefunction

(42) depends on two quantum numbers, the energy levels depend only on n.At first we need

to confine a finite region of the (x, y)-plane. We choose a rectangle with sides of lengths Lx

and Ly.Our purpose is to know how many states we have inside this rectangle. The side of

rectangle Ly has a finite size,it means that we can put the system in a box in the y-direction.

Note that the effect of this is to quantise the momentum k in units of 2π/Ly. The finite size of

Lx is something more subtle,than Ly.That is the result of fact that the gauge choice (36) does

not include translational invariance in the x-direction. The reason is that,the wavefunctions

(42) are exponentially localized around x = −kl2B, for a finite sample confined to 0 ≤ x ≤ Lx
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we would expect the allowed k values to range between−Lx/l2B ≤ k ≤ 0. The number of

states is

N =
Ly
2π

∫ 0

−Lx/l2B
dk =

LxLy
2πl2B

=
eBA

2π~
(43)

where A = LxLy.In spite of the small approximation used above,this is the accurate answer for

the number of states on a torus. The degeneracy in (43) is significant.We have a macroscopic

number of states in each Landau level. The resulting spectrum looks like the figure on the

right, with n ∈ N labelling the Landau levels and the energy independent of k.

In order to describe the degeneracy it is convenient to input some new notation in (43).We

write

N =
AB

Φ0

with Φ0 =
2π~
e

(44)

Φ0 is called the quantum of flux. We can consider that the magnetic flux falls within the

area 2πl2B.It is an important in a number of quantum phenomena in the presence of magnetic

fields. The Landau gauge is helpful when we work in rectangular geometries.In this gauge it

is easy to add an electric field E in the x direction. That is possible to realize by the addition

of an electric potential φ = −Ex.In result we get

H =
1

2m
(p2
x + (py + eBx)2) + eEx (45)

For wave function we can write

ψ(x, y) = ψn,k

(
x− mE

eB2
, y

)
(46)

The energies are given by

En,k = ~ωB
(
n+

1

2

)
+ eE

(
kl2B −

eE

mω2
B

)
+
mE2

2B2
(47)

Now the degeneracy in each Landau level rises,as a result, the energy in each level depends

linearly on k .

We see that the energy depends on the momentum,therefore the states drift in the y
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direction. For the group velocity we can write

vy =
1

~
∂En,k
∂k

= e~El2b =
E

B
(48)

If we try to put an electric field E perpendicular to a magnetic field B then we will see that the

cyclotron orbits of the electron drift in the direction E ×B, they don’t drift in the direction

of the electric field.
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Chapter 1

Current-current correlation function

1.1 The Kubo Formula

Our problem in this subsection will be to get a formula for the Hall conductivity σxy. At

first our aim is to derive the Kubo formula. We’ll derive the Kubo formula for a general case,

multi-particle Hamiltonian H0 where the index 0 indicates that this is the unperturbed Hamil-

tonian before we switch on an electric field.Here H0 could be the single e-particle Hamiltonian.

We represent the energy eigenstates of H0 as |m >,with H0|m >= Em|m > When we have

background electric field and also gauge At = 0 for electric filed we can write E = −∂tA.The

Hamiltonian gets the form H = H0 + ∆H with

∆H = −JA (1.1)

where J is the quantum operator associated with the electric current. Our purpose is to calcu-

late the current < J > that flows because of the perturbation ∆H. We will suppose that the

electric field is small and continue using standard perturbation theory.We are using interac-

tion representation,it means that operators expand as O(t) = V −1OV with V = e−iH0t/~.For

|ψ(t) > we can write

|ψ(t) >I= U(t, t0)ψ(t0) >I (1.2)
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where the unitary operator

U(t, t0) = T exp

(
− i
~

∫ t

t0

∆H(t′)dt′
)

(1.3)

Here T means time ordering, it assures that U obeys the equation i~dU/dt = ∆HU .

We investigate the system at time t → −∞in a specific many-body state |0 >. The

expectation value of the current is given by

< J >=< 0(t)|J|0(t) >=< 0|U−1(t)J(t)U(t)|0 > ≈<
(

J(t) +
i

~

∫ t

−∞
dt
′
∆H(t

′
)J(t) >

)
(1.4)

Because of electric field the current will have the following form

< Ji(t) >=
1

~ω

∫ t

−∞
dt
′
< 0|[Jj(t

′
)Ji(t)]|0 > Eje

−iωt′ (1.5)

Due to the fact that the system is invariant under time translations,the correlation function

above will depend on t” = t− t′ .Therefore (1.5) we can write

< Ji(t) >=
1

~ω

(∫ ∞
0

dt”eiωt” < 0|[Jj(0), Ji(t
”]|0 >

)
Eje

iωt (1.6)

t dependence in the formula (1.6) means that if we apply an electric field at frequency ω, the

current will oscillate at the same frequency ω.This is the essence of linear response. The Hall

conductivity has the following form

σxy(ω) =
1

~ω

∫ ∞
0

dteiωt < 0|[Jy(0), Jx(t)]|0 > (1.7)

This is the Kubo formula for the Hall conductivity. For current operator J(t) = V −1J(0)V

with V = e−iH0t/~.Then for σxy we get

σxy(ω) =
1

~ω

∫ ∞
0

dteiωt
∑
n

[< 0|Jy|n >< n|Jx|0 >]ei(En−E0)t/~− < 0|Jx|n >< n|Jy|0 > ei(E0−En)t/~

(1.8)
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In order to provide convergence we should substitute ω → ω + iε,in result we obtain

σxy(ω) = − i
ω

∑
n6=0

[
< 0|Jy|n >< n|Jx|0 >

~ω + En − E0

− < 0|Jx|n >< n|Jy|0 >
~ω + E0 − En

]
(1.9)

When ω → 0 we expand the denominators

1

~ω + En − E0

≈ 1

En − E0

− ~ω
(En − E0)2

+O(ω2)... (1.10)

Finite contribution in the limit ω → 0 is given by

σxy = i~
∑
n6=0

< 0|Jy|n >< 0|Jx|n > − < 0|Jx|n >< 0|Jy|n >
(En − E0)2

(1.11)

1.2 Current-current correlation function Πµν(q, q0)

The electrical conductivity of graphene, a two-dimensional hexagonal lattice of carbon

atoms,has a great deal of qualities needed for prospective applications in both fundamental

physics and nanotechnology. At energies below a few electron volts the electronic proper-

ties of graphene are perfectly reported by the Dirac model [61, 62, 64]. In the scope of this

model graphene quasiparticles submit a linear dispersion relation, where the speed of light

c is susbstituted with the Fermi velocity vFc/300. The electrical properties of graphene are

substantially associated with an existence of the so-called universal conductivity σ0 discribed

via the electron charge e and Planck constant.A few specific values for σ0 have been received

by different authors [65–68]. Ultimately was obtained the expression σ0 = e2/4~. Generally,

the conductivity of graphene is nonlocal,depends on both the frequency and the magnitude of

the wave vector, and also on the temperature. It was explored by many authors applying the

phenomenological two-dimensional Drude model, the current-current correlation function in

the random phase approximation, the Kubo response formalism, and the Boltzmann transport

equation [69–73].Moreover, the electrical conductivity of graphene is susceptible to weather

the mass of quasiparticles m is accurately equal to zero or it is rather small but nonzero.In

case when we have real graphene models a nonzero mass gap δ = 2mc2 in the energy spectrum

23



of quasiparticles appears under the impact of electron-electron interactions, substrates and

impurities [74, 75]. Some partial results for the conductivity of gapped graphene have been

gotten using the two-band model [76] and the static polarization function [77]. In the local

approximation at zero temperature the conductivity of gapped graphene was also examined

in [78, 79]. The real graphene models have some peculiarites,they are always doped and can

be describe by some nonzero chemical potential µ.Particularly the electrical conductivity of

doped graphene was investigated by using some approximate methods [80, 81]. The ques-

tion emerges of whether there are spacial differences in influences of the nonzero mass-gap

parameter and chemical potential on the conductivity of graphene. It was examineded [82]

that at zero temperature in the local approximation the response function for undoped but

gapped graphene is similar to the case of doped but ungapped graphene if to identify the gap

parameter ∆, with twice the Fermi energy 2EF .

A comprehensive investigation of the conductivity of graphene can be performed using

the exact expression for its polarization tensor at any temperature, mass gap and chemical

potential. Although in some specific cases the polarization tensor in (2+1)-dimensional space-

time has been calculated by many authors, the complete results needed for a fundamental

understanding of the conductivity were obtained only recently.The exact polarization tensor of

graphene with any mass-gap parameter has been found at zero temperature. The extension

of this tensor to the case of nonzero temperature was made in [83], but only at the pure

imaginary Matsubara frequencies. The results of have been extensively used to calculate the

Casimir force in graphene systems [84], but they are not directly applicable in the studies

of conductivity which is defined along the real frequency axis. Another representation for

the polarization tensor of gapped graphene, allowing an analytic continuation to the real

frequency axis, was derived in [85]. It was applied in calculations of the Casimir force, on

the one hand, and of the reflectivity properties of graphene and graphene-coated substrates,

on the other hand. For the latter purposes, explicit expressions for the polarization tensor

at real frequencies have been obtained for a gapless and gapped graphene. This has opened

up opportunities for a detailed study of the conductivity of graphene on the basis of first

principles of quantum electrodynamics at nonzero temperature. The conductivity of pure
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(gapless) graphene was investigated in Ref using the continuation of the polarization tensor

to real frequencies derived in. The case of gapped graphene was considered with the help of

analytic continuation of the polarization tensor obtained for this case in Ref. In so doing,

the previously known partial results for the conductivity of graphene have been reproduced

and their generalizations to the case of any temperature with taken into account effects of

nonlocality have been obtained. In this chapter, we develop the complete theory for the

electrical conductivity of graphene in the framework of the Dirac model at arbitrary values

of the mass gap, temperature and chemical potential. For this purpose, the results are used,

where the polarization tensor of graphene of Ref. was generalized to the case of graphene with

nonzero chemical potential. We perform an analytic continuation of the polarization tensor

of Ref. to the real frequency axis and express both the longitudinal (in-plane) and transverse

(perpendicular to the plane of graphene) conductivities in terms of its component.

The fermions on honeycomb lattice, as an effectively three dimensional Dirac theory

around K-point with high mobility, graphene, is interesting with transport and magnetic

properties and provides unique opportunity to introduce and analyze set of parameters, which

control their behavior [86,87]. Most intriguing property, which first attracted tremendous in-

terest continuing up to our days, is unusual quantum Hall effect (QHE), expressing itself in

absence of zero conductivity at zero magnetic field [88]. This effect comes from Z2-anomaly

first observed by Jackiw in a seminal paper [90]. The set of parameters, which affects the

physical properties of the fermions are gap(mass, m), chemical potential (η), applied mag-

netic field (B) and the scattering rate (Γ), which phenomenologically reflects the presence of

impurities.

The presence of Dirac points with different chiralities is the main characteristic of 2D

topological insulators. Transport properties of this systems contain huge potential for their

practical application in various environment. Therefore the importance of the study of re-

sponse functions in 3D Dirac theory is hard to overestimate. In the papers [91–95] the

polarization of media in graphene was studied, namely, the density-density correlators were

calculated.

The conductivity of fermions in graphene in most general situation was investigated in
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a large amount of papers (see [96] for complete set of references). In a series of papers

authors had calculated conductivity with non-zero gap, chemical potential, scattering rate

and magnetic field.

However, as it appears, current response functions were not studied properly in a men-

tioned above literature, namely, the precise expression for the current-current correlation

function Πµν(q0,q) = 〈jµ(q0,q)jν(−q0,−q)〉, µ, ν = 0, 1, 2 for most general case is not pre-

sented there. One of our goals in this chapter is the calculation of current-current correlation

function in one loop approximation and in a presence of non-zero chemical potential η and a

gap m, which appears to have simple expression. The extension of the result to RPA series

is straightforward.

The action which describes the graphene in the Effective Field Theory (EFT) framework

viaNf four-component massive Dirac fermions with instantaneous three-dimensional Coulomb

interactions is the following (in Eucliean space time) [97,98]

Sg = −
Nf∑
i=1

∫
d2xdtψ̄i

(
γ0∂0 + vγk∂k + iA0γ

0 + iγ0η) +m
)
ψi +

1

2g2

∫
d2xdt(∂kA0)2. (1.12)

Here v is the velocity, which can be taken as 1 in the calculations and then restore in the

resulting formulas. In real graphene Nf = 2, γ-matrices satisfy to Euclidean Clifford algebra

and can be chosen as

γ0 = σ3 ⊗ σ3, γi = σi ⊗ 1, {γµγν} = 2δµν . (1.13)

The four-component fermionic structure is conditioned by the existence of the quasi-particle

excitations in two sublattices in the graphene around two Dirac points.

Since each Dirac point contributes to response function additively, below, for simplicity, we

will be concentrated on calculation of current-current correlation function only for single Dirac

point. Therefore we start from Dirac action in three dimensional space-time with chemical
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Figure 1.1: One-loop Feynman’s diagram .

potential η and gap m, which after Wick rotation to complex time/energy acquires the form

S =

∫
dkdω

(2π)3
ψ̄k,ω[σk + σ3(ω + iη) +m]ψk,ω, (1.14)

where the Fourier transformation is done (k = {k1, k2}) and in the role of γ functions

Pauli matrices are taken.

Here we intend to calculate the current-current correlation function for the three-dimensional

theory with the kinetic part for the fermions presented above and the interaction term with

U(1) gauge field Aµ in the one-loop approximation.

The current-current correlation function Πµν(r−r′) = 〈jµ(r)jν(r
′)〉 is defined by Feynman

diagram Fig.1.1 and in momentum space it reads

Πµν =

∫ ∞
−∞

d3k

(2π)3
Tr
[
σµG(k)σνG(k + q)

]
=

∫ ∞
−∞

d3k

(2π)3

Tr
[
σµ(kρσρ −m)σν(kλσλ −m)

][
k2 +m2

][
(k + q)2 +m2

] . (1.15)

where G(k) is the Green function of the fermion and and we have used the notation k2 =

|k|2 + (ω + iη)2 , (k + q)2 = k + q|2 + (ω + iη + q0)2. The calculation of Trace gives

Tr
[
σµ(kρσρ −m)σν(kλσλ −m)

]
=

2
[
kµ(k + q)ν + kν(k + q)µ − δµνkλ(k + q)λ + δµνm

2 − im
2
εµνρqρ

]
. (1.16)

Note, that for the graphene model’s case with four-component fermions, the last term lin-

ear by m must be annihilated, due to the contributions of two different two-dimensional
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fermions with opposite parities. The expression (1.16) combined with the formula of Feyn-

man parametrization

1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]2
(1.17)

applied to denominator of (1.15), and the shift of integration energy/momenta k → k−(1−x)q

gives

Πµν = 2

∫ ∞
∞

d3k

(2π)3

∫ 1

0

dx
2kρkν − δρν

(
k2 +m2 + q2x(1− x)

)
+ 2x(1− x)(δρνq2 − qρqν)(

k2 +m2 + q2x(1− x)
)2

− im εµνρ qρ

∫ ∞
∞

d3k

(2π)3

∫ 1

0

dx
1(

k2 +m2 + q2x(1− x)
)2 = Π(1)

µν + Π(2)
µν + Π(3)

µν . (1.18)

Three summands in (1.18) are chosen in this way. The first one is the part, which does

not satisfy the condition of conservation of charge - ∂µΠµν = 0. The third summand is the

Z2-anomaly part.

We will prove now that the first, non-transversal part Π
(1)
µν in the integral (1.18) is zero.

Indeed, it is clear, that due to integration over angles and the presence of δµν the integral

Π(1)
µν = 2

∫ ∞
−∞

d3k

(2π)3

∫ 1

0

dx
2kµkν − δµν

(
k2 +m2 + q2x(1− x)

)
(
k2 +m2 + q2x(1− x)

)2 (1.19)

is zero for µ 6= ν. For µ = ν we have (see Appendix)

Π(1)
µµ = 2

∫ 1

0

dx

∫
d2k

(2π)2

∫
dω

2π

2
(
δµ0(ω + iµ)2 + δµa|k|2/2

)
−
(
|k|2 + (ω + iη)2 +m2 + q2x(1− x)

)
(
|k|2 + (ω + iη)2 +m2 + q2x(1− x)

)2

= 2

∫ 1

0

dx

∫
d2k

(2π)2

 δµa|k|2

4
(
|k|2 +m2 + q2x(1− x)

) 3
2

− (1− δµ0)

2
(
|k|2 +m2 + q2x(1− x)

) 1
2

 (1.20)

Here a = 1, 2. For µ = 0 this expression vanishes immediately (because of 1 − δ00 and δ0a),

while for the case µ = a - after integration over momentum k2 with proper regularization.
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Regularized momentum integrals can be taken easily and reads

∫ −Λ

−Λ

d2k

(2π)2
(|k|2 + z)−n/2 =

1

4π(1− n/2)
(|k|2 + z)1−n/2

∣∣∣Λ
0
→reg − 1

2π(2− n)
z1−n/2 (1.21)

By use of (1.21) one can easily check that Π
(1)
µν = 0.

1.3 Calculation of Π
(2)
µν

Second, the main q-dependent transverse term is

Π(2)
µν = 2(δρνq2 − qρqν)

∫ ∞
−∞

d3k

(2π)3

∫ 1

0

dx
2x(1− x)(

k2 +m2 + q2x(1− x)
)2 (1.22)

Cauchy integration over ω (see formula (1.34) in Appendix) and subsequent integration over

k by (1.21) gives

Π(2)
µν = 2(δµνq2 − qµqν)

∫ 1

0

dx

∫
d2k

(2π)2

∫
dω

2π

2x(1− x)(
|k|2 +m2 + (ω + iη)2 + q2x(1− x)

)2 (1.23)

= 2(δµνq2 − qµqν)
∫ 1

0

dx

∫
d2k

(2π)2

2x(1− x)

4
(
|k|2 +m2 + q2x(1− x)

)3/2
Θ
[
|k|2 +m2 + q2x(1− x)− η2

]

=
(δµνq2 − qµqν)

π

(∫ x2

x1

dx
(x(1− x))

2q (x(1− x) +m2/q2)
1
2

+

∫ x1

0

dx
x(1− x)

2η
+

∫ 1

x2

dx
x(1− x)

2η

)

where x1,2 = 1
2
(1±

√
1− 4(η2−m2)

q2
) obtained from m2 + q2x(1− x)− η2 = 0.

Then, for q2 ≥ 4(η2 −m2) ≥ 0, when the square root in the expression of x1,2 is real, the

integral over x gives

Π(2)
µν =

(δµνq2 − qµqν)
π

(1.24)

×

[
1

12η

(
1 +

(
η2 + 2m2

q2
− 1

)√
1− 4(η2 −m2)

q2

)
+

1− 4m2

q2

8q
arctan

q
√

1− 4(η2−m2)
q2

2η

]
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In the opposite region 4(η2 −m2) ≥ q2 we should take x1,2 = 1/2 and the integral becomes

Π(2)
µν =

(δµνq2 − qνqν)
12πη

. (1.25)

For the case (η2 − m2) ≤ 0 the expressions for x1,2 define larger than segment [0, 1] region

and we have to put x1 = 0, x2 = 1. In a result

Π(2)
µν =

(δµνq2 − qµqν)
π

1

8q

(2m

q
+ (1− 4m2

q2
) arctan

q

2m

)
. (1.26)

where q =
√
|q|2 + q2

0.

1.4 Calculation of Π
(3)
µν

Last term gives

Π(3)
µν = −imqρεµνρ

∫ ∞
∞

d3k

(2π)3

∫ 1

0

dx
1(

k2 +m2 + q2x(1− x)
)2 . (1.27)

Using formula (1.34) for the integration over ω and (1.21) for k we obtain

Π(3)
µν = −imqρεµνρ

∫ ∞
∞

d2k

(2π)2

∫ 1

0

dx
1

4
(√
|k|2 +m2 + q2x(1− x)

)3 Θ
[
|k|2 +m2 + q2x(1− x)− η2

]

=
−imqρεµνρ

2π

(∫ x2

x1

dx
1

2q (x(1− x) +m2/q2)
1
2

+

∫ x1

0

dx
1

2η
+

∫ 1

x2

dx
1

2η

)
. (1.28)

Again, as above, for the region q2 ≥ 4(η2 −m2) ≥ 0 the integral gives

Π(3)
µν =

−imqρεµνρ
2π

[1

q
arctan

q
√

1− 4(µ2−m2)
q2

2η
+

1−
√

1− 4(η2−m2)
q2

2η

]
. (1.29)
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For the case 4(η2 −m2) ≥ q2 we have x1,2 = 1/2 and the integral becomes

Π(3)
µν =

−imqρεµνρ
4πη

. (1.30)

In the interesting region (η2 −m2) ≤ 0, when x1 = 0, x2 = 1, the calculation brings to

the formula

Π(3)
µν = −im qρ εµνρ

2πq
arctan[

q

2|m|
] = − i

4π
sign[m] qρ εµνρ +O(

q2

m2
), (1.31)

in full accordance with the Z2 anomaly, first observed by Jackiw and further by Semenoff.

1.5 Summary

Finally the result for Πµν is

Πµν = Π(2)
µν + Π(3)

µν , (1.32)

where Π
(2)
µν is presented in formulas (1.24,1.25,1.26), while Π

(3)
µν in (1.29,1.30,1.31) . The result

for the graphene with two Dirac fields of opposite chirality is

Πµ nug = 2Π(2)
µν (1.33)

cause the anomaly term will be cancelled.

It is interesting to mention about the dependence of the polarization operator (1.33) over

the mass m (or chemical potential η) for the fixed values of q. At the region m2 ≤ η2 − q2/4

(η2 ≤ m2) the function is constant in respect of the variable m (η), then the function is

monotonic decreasing in respect of m (η) via two different laws at the regions η2 − q2/4 ≤

m2 ≤ η2 and m2 ≥ η2 (m2 ≤ η2 ≤ m2 +q2/4 and η2 ≥ m2 +q2/4). In the case of m = 0, η = 0

and with Aν = {A0, 0, 0} the obtained result coincides with the one presented in a paper [93].
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1.6 Appendix:

Here we present integration formulas over the energy ω, used in the calculations above.

Integration is taken in the complex plane (the upper half-plane) by use of Cauchy formulas.

First integral is

∫
dω

2π

1(
|k|2 + (ω + iη)2 +m2 + q2x(1− x)

)2 (1.34)

=
1

4
(√
|k|2 +m2 + q2x(1− x)

)3 Θ
[
|k|2 +m2 + q2x(1− x)− η2

]
,

Second integral has the same poles and reads

∫
dω

2π

(ω + iη)2(
|k|2 + (ω + iη)2 +m2 + q2x(1− x)

)2 (1.35)

=
1

4
√
|k|2 +m2 + q2x(1− x)

Θ
[
|k|2 +m2 + q2x(1− x)− η2

]
,

The last integral gives

∫
dω

2π

1(
|k|2 + (ω + iη)2 +m2 + q2x(1− x)

) (1.36)

=
1

2
√
|k|2 +m2 + q2x(1− x)

Θ
[
|k|2 +m2 + q2x(1− x)− η2

]
.

In this formulas Θ-functions ensures, that integrals are non-zero when the poles

ω =
(
− iη ± i

√
|k|2 +m2 + q2x(1− x)

)
are on different sides of real axes. The range of the

integration of the parameter x is defined as in the formulas (1.24,1.25,1.26).

1.7 The culculation of Πµ3

Experimental and theoretical investigations of graphene form an extremely fast growing

area of the present-day field of condensed matter research. The diversity of chemical and

physical properties of graphene is due to the crystal structure and ÏĂ-electrons of carbon

32



atoms making up the graphene. The graphene is a semiconductor with zero energy gap

because the band and the conduction band converge in the Dirac point. Owing to the linear

dispersion law the effective mass of electrons and holes in graphene is zero. The electronic

properties of graphene are sensitive to conditions of environment and, hence, change in the

presence of other layers. The band structure of graphene is singular, as a result of which the

electron at Fermi energies is described by means of the effective invariant Lorentz theory. The

graphene is notable for the highest heat conduction, electric conductivity and an ability to

change these properties depending on modifications of structure and on the nature of external

influences [2]. Recently, theoretical and experimental studies of the influence of external fields

on the transport characteristics of graphene are carried out. A constant magnetic field acts

as a strong catalyst of dynamic symmetry by leading to generation of fermion masses in

(2 + 1) dimension. As is well known from quantum-mechanical calculations, an application of

magnetic field to a conductor causes the conduction electrons to move (within the framework

of semiclassical approximation) in a limited area of space with a discrete and uniformly

distributed set of energies. Such quantized orbits are termed as the Landau levels. In graphene

these levels are nonuniform, since the conduction electrons behave in it as massless fermions,

the velocity of which is independent of their energy. In particular, the Landau levels in

graphene were first experimentally fixed recently. The aim of this chapter is the calculation

of the correlation function of the density of current via third order Feynman diagram, in the

presence of gap m , the chemical potential η and magnetic field B.

The result obtained may be used for the investigation of the transport and magnetic

properties of graphene. In the frameworks of efficient field theory the graphene is described

by means of four-component massive Dirac fermions with instantaneous three-dimensional

Coulomb interaction. The result obtained may be used for investigation of the transport and

magnetic properties of graphene. In the frameworks of efficient field theory the graphene

is described by means of four-component massive Dirac fermions with instantaneous three-

dimensional Coulomb interaction. For such a system the action has the following form (in

the Euclidean space-time)
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Sg = −
Nf∑
i=1

∫
d2xdtψ̄i

(
γ0∂0 + vγk∂k + iA0γ

0 + iγ0η +m
)
ψi +

1

2g2

∫
d2xdt(∂kAµ)2. (1.37)

Here v is the velocity, which can be taken as 1 in the calculations and then restore in the

resulting formulas. In real graphene Nf = 2, γ-matrices satisfy to Euclidean Clifford algebra

and can be chosen as

γ0 = σ3 ⊗ σ3, γi = σi ⊗ 1, {γµγν} = 2δµν . (1.38)

The four-component fermionic structure is conditioned by the existence of the quasi-particle

excitations in two sublattices in the graphene around two Dirac points.

The four-component fermion structure is due to the presence of quasi-excitation of particles

in two sublattices of graphene around two Dirac points. As the contribution of each Dirac

point to the response function is additive, we shall concentrate for simplicity on the calculation

of current-current correlation function only for one Dirac point. Therefore, we start from the

free Dirac action in three-dimensional space-time with chemical potential η , gap m and

magnetic field B, that acquires the following form after the Wick rotation:

S =

∫
dkdω

(2π)3
ψ̄k,ω[σk + σ3(ω + iη) +m]ψk,ω, (1.39)

where the Fourier transformation is done (k = {k1, k2}) and in the role of γ functions Pauli

matrices are taken. Here we intend to calculate the current-current correlation function for

the three-dimensional theory with the kinetic part for the fermions presented above and the

interaction term with U(1) gauge field Aµ in the third order approximation.

The magnetic field dependence of the current-current correlation function is defined by

third order Feynman diagrams in Fig.1.1 [99, 100], where the vector potential Aρ couples to

vertex ρ. After some transformations diagram a) reads
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3µ

k

b)

3µ

a)

k + p

kk

k+

−

k + p +−

+

−

ρ ρ

Figure 1.2: Third order Feynman diagram for current-current correlation function .

Πµ3 = Ng2

∫ +∞

−∞

d3k

(2π)3
Tr[σµG(k̂+)AρσρG(k̂+ + p̂)σ3G(k̂−)]

= Ng2

∫ +∞

−∞

d3k

(2π)3
Tr[σµG(k̂+)Aρσρ

p̂

p2 +m2
σ3G(k̂−)] (1.40)

where G(k̂) = k̂−m
k2+m2 is the Green function of the fermion and we have used the notation

k± = (~k± ~q
2
,Ω± ω

2
). By using identity Aρσρp̂ = ~A~p+ iενρAνpρσ3 = iBσ3 in second row of the

expression (1.40), where we have dropped ~A~p term since it gives zero, we come to following

Trace in the nominator

BTr[σµ(k̂+ −m)σ3σ3(k̂− −m)] = 2B(εµνσk
+
ν k
−
σ −m(k+ + k−)µ) (1.41)

= 2B[εµν(qνΩ− kνω)− 2mkµ]

In the same way one can find corresponding expression for Trace for diagram of Fig.1(b),

which coincides with (1.41).

We see, that in three dimensional space the third order Feynman’s diagrams are not vanish,

therefore, summarizing Trace results we obtain 4B[εµν(qνΩ− kνω)− 2mkµ].

1.8 Calculation of Πµ3

Using the trace result Πµ3 is acquired following form

Πµ3(B) = Ng2

∫ +∞

−∞

d3k

(2π)3

(4B[εµν(qνΩ− kνω)− 2mkµ]

(k+2 +m2)(k−2 +m2)2
+

4B[εµν(qνΩ− kνω)− 2mkµ]

(k−2 +m2)(k+2 +m2)2

)
(1.42)
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where k2 = ~k2 + (Ω + Γ + iη). Generally Πµν must satisfy the condition of conservation of

charge ∂µΠµν = 0. The evaluation of such integrals is performed with the method of Feynman

parametrization. These method gives opportunity to squeeze the three denominator factors

into single quadratic as polynomial of k. After we shift k by a constant. It is easy to begin

with trivial case when in denominator we have two factors

1

AB
= 2

∫ 1

0

dx1dx2
δ(x1 + x2 − 1)

[x1A+ x2B]2
(1.43)

When we have three factors then

1

ABC
= 2

∫ 1

0

dx1dx2dx3
δ(x1 + x2 + x3 − 1)

[x1A+ x2B + x3C]3
(1.44)

Our integral (1.42) has three factors in the denominator, therefore by using (1.44) we obtain

1

AB2
=

Γ(1 + 2)

Γ(1)Γ(2)

∫ 1

0

du1du2
δ(u1 + u2 − 1)u2

(u1A+ u2B)3
= 2!

∫ 1

0

du
1− u

(uA+ (1− u)B)3
(1.45)

where A = k−2 +m2, B = k+2 +m2. Easy to find out, that making shift k± = k
′±+(1/2−u)q

we come to very simple expressions

1

AB2
= 2!

∫ 1

0

du
1− u

[k′2 + u(1− u)q2 +m2]3

1

A2B
= 2!

∫ 1

0

du
u

[k′2 + u(1− u)q2 +m2]3
. (1.46)
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Then the polarization operator Πµ3 defined by (1.42) acquires the form

Πµ3(B)

= 8B

∫ 1

0

du
d3k

′

(2π)3

[εµνqν(Ω
′
+ (1

2
− u)ω)− (k

′
+ (1

2
− u)q)νω − 2m(k

′
+ (1

2
− u)q)ν ]

(k′2 +m2 + u(1− u)q2)3

= 8B

∫ 1

0

du
d3k

(2π)3

εµν [qν(
1
2
− u)(Γ + iη)− (1

2
− u)qνω]− 2m(1

2
− u)qµ

(k2 +m2 + u(1− u)q2)3
(1.47)

= 8B

∫ 1

0

du
d2k

(2π)2

dΩ

2π

εµνqν(Γ + iη)−m(1− 2u)qµ[
(Ω + Γ + iη)−

√
~k2 +m2 + u(1− u)q2

]3

× 1[
(Ω + Γ + iη) +

√
~k2 +m2 + u(1− u)q2

]3

In (1.47) we see, that have a pole of third order, therefore, applying Cauchy integration

formula and differentiating twice integrand of (1.47) over Ω we obtain

Πµ3(B) = 8iB

∫ 1

0

du
d~k

(2π)2

∂2

∂Ω2

εµνqν(Γ + iη)−m(1− 2u)qµ

[(Ω + Γ + iη)−
√
~k2 +m2 + u(1− u)q2]3

(1.48)

× 1

[(Ω + Γ + iη) +

√
~k2 +m2 + u(1− u)q2]3

=
3iB

2

∫ 1

0

du
d~k

(2π)2

εµνqν(Γ + iη)−m(1− 2u)qµ

(~k +m2 + u(1− u)q2)5/2

Now, by performing integration over ~k using standard formula of dimensional regularization

∫
d2k

(2π)d
1

(k2 + ∆)n
=

1

(4π)
d
2

Γ(n− d
2
)

Γ(n)

1

∆n− d
2

(1.49)
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and dividing the range of integration [0, 1] in three part we obtain

Πµ3(B) =

=
iB

4π

{∫ u2

u1

du
εµνqν(Γ + iη)−m(1− 2u)qµ

(m2 + u(1− u)q2)3/2
−
∫ u1

0

du
εµνqν(Γ + iη)−m(1− 2u)qµ

η3
−(1.50)

∫ 1

u2

du
εµνqν(Γ + iη)−m(1− 2u)qµ

η3

}
= −iB

4π

[(
− 2

1−2u
4m2+q2

εµνqν(Γ + iη) + 2m qµ
q2

(m2 + u(1− u)q2)1/2
|u2u1

)

+
1

η3
εµνqµ(Γ + iη)(1 + u1 − u2) +

m

η3
qµ(u1 − u2)(u1 + u2 − 1)

]

= −Bi
π

εµνqν(Γ + iη)

(4m2 + q2)|η|

√
1− 4(η2 −m2)

q2
− Bi

4π|η|
εµνqν
η3

(Γ + iη)

[
1−

√
1− 4(η2 −m2)

q2

]

where expressions u1 = 1
2

(
1−
√

1− 4(η2−m2)
q2

)
, u2 = 1

2

(
1 +
√

1− 4(η2−m2)
q2

)
are obtained from

the equation m2 + u(1− u)q2 = η2.

1.9 Results

Finally, in case of q2

4
≥ (η2 −m2) ≥ 0, when the square root in the expression of u1,2 is

real, the integral over u gives

Πµ3(B) = − iB

4π|η|
εµνqν(Γ + iη)

( 1

m2 + q2

4

√
1− 4(η2 −m2)

q2
+

1

η2

(
1−

√
1− 4(η2 −m2)

q2

))
(1.51)

Denote that for polarization operator take place the condition of conservation of charge. When

η2 −m2 ≥ q2

4
, then u1 = u2 = 1

2
and for Πµ3(B) we obtain

Πµ3(B) = − iB

4π|η|3
εµνqν(Γ + iη) (1.52)

For η2 −m2 ≤ 0 then u1 = 0, u2 = 1 and in a result we have following expression

Πµν(B) = − iB
πm

εµνqν(Γ + iη)
1

4m2 + q2
(1.53)
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The main results of this chapter are published in [99,100]
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Chapter 2

Topological Insulators

Topological insulators are electronic materials that have a bulk band gap and also have

protected conducting states on their edge or surface. These states are possible because of the

combination of spin-orbit interactions and time-reversal symmetry. The two-dimensional 2D

topological insulator is a quantum spin Hall insulator. A three-dimensional 3D topological

insulator contributes new spin-polarized 2D Dirac fermions on its surface. A magnetic gap

drives to a novel quantum Hall state that brings forth to a topological magnetoelectric ef-

fect. A superconducting energy gap brings to a state that contributes Majorana fermions.The

progress in condensed matter physics is particularly based on openings of new materials. In

this respect, materials presenting exeptional quantum-mechanical properties are special im-

portance. Topological insulators (TIs) are a materials which at the present time creating a

blast of research activities [101–103]. The band insulators can be topologically classified by

evaluating the Z2 invariant from valence band Bloch wave functions. This classification is

based on TRS of the system.It is also possible to classify band insulators based on topolo-

gies protected by point-group symmetries of the crystal lattice. Those insulators that have

nontrivial topology protected by point-group symmetries are called topological crystalline in-

sulators (TCIs).The most known property of a TI is the presence of a gapless surface state.

The gapless nature is protected by TRS in Z2 topological insulators. What makes this surface

state distinct from ordinary surface states (including accumulation and inversion layers) is its
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helical spin polarization, which is also called spin-momentum locking,specifically, the surface

state is spin non-degenerate and the direction of the spin is perpendicular to the momentum

vector and is primarily confined in the surface plane. In fact, if a band has such a peculiar

spin polarization and the system preserves TRS, there must be a Kramers partner for each

eigenstate and Kramers theorem says that the two eigenstates cross each other at TRIMs,

which guarantees the gapless nature of the surface state. The helical spin polarization of the

surface state means that a dissipationless spin current exists on the surface in equilibrium,

because there is no net charge flow but the spin angular momentum flows in the direction

perpendicular to the spin direction. The spin helicity of the surface state determines the spin

current direction. [104–106].

An important consequence of a nontrivial topology associated with the wave functions of

an insulator is that a gapless interface state necessarily shows up when the insulator is physi-

cally terminated and faces an ordinary insulator (including the vacuum). This is because the

nontrivial topology is a discrete characteristic of gapped energy states, and as long as the en-

ergy gap remains open, the topology cannot change.In order to change the topology across the

interface into a trivial one, the gap must close at the interface. Therefore, three-dimensional

3D TIs are always connected with gapless surface states, and so are two-dimensional (2D)

TIs with gapless edge states [107–109]. This principle for the necessary occurrence of gapless

interface states is called bulk-boundary correspondence in topological phases [110–112].

2.1 Berry’s phase in Hall effects and topological insulators

It is not surprising that Berry’s phase can be important in the Hall effect because there

is analogs between Berry’s phase and vector potentials.We will start think about adiabaticity

by putting a Bloch electron in an electric field. Lets discuss that problem. We can look this

problem in terms of adiabatic evolution by applying a gauge where the electric field arises

from a time dependent vector potential:

H =
1

2m
(p− eA/c)2 + V (r) (2.1)
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where V is the potential of the ions.In case when we have a constant electric field we take

A = −Et (2.2)

If this is changing slowly enough during time,the state at time t will simply be

|ψ(t) >= e−iΦ(t)|p0 − eE/c >, (2.3)

where p0 is the momentum at time 0.The momentum only increases with time . The phase

factor

Π(t) =

∫ t

ε(t)dt+

∫ t

(∂teA/c) < p|∂p|p > (2.4)

where

p = p0 − eA/c. (2.5)

This extra phase factor gives an extra contribution to the group velocity of a wave

packet.Therefore

v = ∂pεp −
e

~
E×Ω(p) (2.6)

where

Ω(p) = i(∇p < p|)× (∇p < p|). (2.7)

Even in the absence of a magnetic field we can see a Hall effect: if we place a voltage across

the x̂ axis, and allow a current flowing along the ŷ axis.This is famous as the "Anomalous

Hall effect". A question arises: what materials have non-zero Ω and thence a considerable

Anomalous Hall effect? When Ω = 0 the system has both time reversal and inversion sym-

metry.Time reversal takes v → v , E → E and k → −k. Therefore, if the system has time

reversal symmetry thenΩ(−k) = −Ω(−k), inversion symmetry will be v → −v, E → −E

and k → −k. Thus if the system has inversion symmetry then Ω(−k) = Ω(k). The coherent

way to have both symmetry is to have Ω = 0. Time reversal symmetry is broken in ferro-

magnets and antiferromagnets. Actually, it is generally the Hall effect in ferromagnets which

is known to as the "Anomalous Hall Effect". An ordinary case would be a two-dimensional
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tight binding model with a Rashba spin-orbit term ẑ(S × p) and an exchange splitting

H =
∑
i,σ,τ

[a+
i,σai−x̂,τ (−tδστ+iα(Sy)στ+a

+
i,σai−ŷ,τ (−tδστ−iα(Sx)στ ]+HC+ε

∑
i

(a+
i↑−ai↑−a

+
i↓−ai↓)

(2.8)

The importance of spin-orbit coupling is natural. Actually the idea is the following:when we

adiabatically move through k-space, our spin rotates. This rotation in spin space produces

a Berry phase.An exemplary model without inversion symmetry would be graphene with an

extra superlattice potential.When we have a conductor with non-zero Ω,the Anomalous Hall

conductivity will appear if we sum up all the velocities from all the occupied states:

σxy =
e2

~

∫
ddk

(2π)d
f(εk)Ωkx,ky , (2.9)

where f is a step function at the Fermi surface. Applying Stokes theorem we will have

σxy =
e2

~

∮
dkȦk. (2.10)

In this way the Hall conductivity can be considered as the Berry phase accumulated in moving

around the Fermi surface.

2.2 Hall conductivity of an insulator

The Hall conductivity of an insulator arises easily from summing 2.6 over the filled bands.

For two dimensions we can write

σxy =
e2

~

∫
BZ

d2k2

2π
Ωkx,ky. (2.11)

This integral must be an integer,the idea is that the Berry phase accumulated in any closed

loop in k-space is exceptional. Applying Stoke’s theorem, for this phase we can write an

integral of the Berry curvature. There are two cases the integral can be done over. These

phases are just the same if the integral is a multiple of an integer. This integer is known
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as the first Chern number. Any insulator which has a topological invariant is a "topological

insulator". So far we have seen one invariant, the first Chern number. There are interesting

varients of this invarient: for example, there is at least one model for which the up-spins have

a Chern number of +1, and the down spins −1. This gives rise to a "Spin Hall Effect".

Graphene directed interest to Dirac fermions in crystals [113].The valence band and the

conduction band linearly contact in the Brillouin zone on the honeycomb lattice, which pro-

vides massless Dirac fermions . This peculiarity is perfectly manifest under a strong magnetic

field, in which unusual quantum Hall effect (QHE) for relativistic particles [114,115] has been

exemined. Various topological aspects of graphene QHE for example disorder effects and the

bulk-edge correspondence have been observed. In graphene,arise two Dirac fermions in the

Brillouin zone because of the overlapping mechanism on lattice systems [116, 117].Thus,the

Hall conductivity as the result of degenerate Dirac fermions is always observed. What concerns

two-dimensional Dirac fermions they can also be observed on the surface of three dimensional

3D topological insulators [118].In spite of fact that they are doubled , it may be easier to con-

trol them, because they emerge on the opposite surfaces which are spatially separated.Some

experimental and theoretical studies on the QHE of the surface states of topological insulators

have been examined.Particularly in a magnetic topological insulator in presence of broken in-

version symmetry nondegenerate surface states have been realized and the QHE for a single

Dirac fermion has been observed [119]. An insulator is characterized as a material with an

energy gap dividing filled and empty energy bands.There is also other a more complicated

definition of an insulator,it’s the following: the material for which all electronic phenomena

are local [120]. This definition implies that such a material insensitive to boundary condi-

tions, so that in a multiply connected model, such as a ring,also is important to notice that

there is exponentially small sensitivity to magnetic flux threading the holes. In atomic insu-

lator electrons are tightly bound to atoms in closed shells, obviously satisfies both properties.

When we have ionic and covalent insulators the picture is the same.These band insulators are

topologically equivalent,it means that the Hamiltonian can be adiabatically transformed into

an atomic insulator without going through any phase transitions.From point of view their

low-energy electronic behavior, conventional insulators are equivalent to atomic insulators.
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The existence of a bulk energy gap does not provide the insensitivity to boundary conditions,

and also there exist phases with bulk gaps, which are topologically special.In complement to

strongly correlated phases [121,122] are appearing even for noninteracting electrons described

within band theory. The simplest example is the integer quantum Hall effect (IQHE). In two

dimensions, a magnetic field creats a cyclotron gap between Landau levels, which is possible

to express as energy bands in the magnetic Brillouin zone. This phase can exist even without

Landau levels in the absence of a uniform magnetic field [123].But there is a necessary con-

dition according which time-reversal symmetry must be broken.What concerns to the band

structure, it is not easy exactly to observe the difference between the IQHE state and a band

insulator. The veriety between the two is expressed by a triad of Chern integers [124]. A

hallmark of the (IQHE) phases, which is intimately related to their topology, is the existence

of gapless chiral edge states which are strong in the presence of disorder [125, 126]. The sur-

face states are provided by topologically nontrivial phase of the bulk which is famous as the

bulk-edge correspondence.Consequently,it is not explicit whether the QHE of massless Dirac

fermions are indeed observed in a strong magnetic field regime, since broken time reversal

symmetry makes the bulk topological insulating phase instable. The stability of the surface

Dirac fermions of a topological insulator under a strong magnetic field has been invaesti-

gated. Recently, new topological insulating phases for systems with time-reversal symmetry

have been observed [127–130]. The quantum spin-Hall phase is prominenet from a band

insulator by a single Z2 invariant.This phase demonstrates gapless spin-filtered edge states,

which is important because that states allow for dissipationless transport of charge and spin

at zero temperature and are protected from weak disorder and interactions by time-reversal

symmetry. A timereversal invariant band structure is described by four Z2 invariants . Three

of the invariants depend on the translational symmetry of the lattice and are not strong in the

presence of disorder, leading to "weak topological insulators". The fourth invariant is enough

strong and discerns the "strong topological insulator" STI. Nontrivial Z2 invariants assume

the presence of gapless surface states.The surface states form a two-dimensional "topological

metal", in the STI phase, encircles an odd number of Dirac points. This fact brings to a quan-

tized Berry’s phase of obtained by an electron circling the surface Fermi arc, which does not
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change under continuous perturbations [131, 132]. It’s important to notice that the Berry’s

phase also indicates that with disorder, the surface states are in the symplectic universal-

ity class and show antilocalization. Therefore,the metallic surface states mold a uncommon

phase, which cannot be fulfilled in a conventional two-dimensional electron system for which

Dirac points must be in pairs [133].

2.3 Time-reversal polarization

In [134] is represented the idea of the time-reversal polarization, in the same way as

charge polarization. For description of the Z2 invariants has been used a Laughlin-type

gedanken experiment on a cylinder. For understanding the time-reversal polarization, we

need at first begin with a discussion of the charge polarization.The charge polarization implies

that the surface charges present in a finite system. After electrons may be added or removed

from a surface, the charge polarization is determined only modulo an integer.In [135–138]

,the changing in the charge polarization caused by adiabatic changes in the Hamiltonian is

accurately described. In Laughlin’s gedanken experiment for the integer quantum Hall effect,

a quantum of magnetic flux h/e is adiabatically input in a cylindrical quantum Hall sample at

filling ν = N . The resulting transfer of N electrons from one end of the cylinder to the other

can be modified as a change in the charge polarization of the cylinder. What concerns to

the Chern invariant, which distinguishes the integer quantum Hall state, accurately describes

this quantized change in charge polarization [139–143]. The time-reversal polarization is a Z2

quantity, which shows the presence or absence of a Kramers degeneracy related with a surface.

As in case of the charge polarization, the value can be changed by adding an extra electron

to the surface. Therefore, the time-reversal polarization is not significant.What concerns to

changes in the time-reversal polarization because of adiabatic changes in the bulk Hamiltonian

are correctly defined.Particularly, the change in the time-reversal polarization when half a flux

quantum h/2e is cut through a cylinder defines a Z2 invariant, which is analogous to the Chern

invariant, and differentiates topological insulators.

The topological invariant describing a two dimensional band structure may be formed by

46



imagining a long cylinder whose axis is parallel to a reciprocal-lattice vector G and which

has a circumference of a single lattice constant. Then, the magnetic flux cutting the cylin-

der plays the role of the circumferential or "edge" crystal momentum kx, with Φ = 0 and

Φ = h/2e corresponding to two edge time-reversal invariant momenta kx = Λ1 and kx = Λ2 .

The Z2 invariant characterizes the change in the Kramers degeneracy at the boundariess of

this one-dimensional system between kx = Λ1 and kx = Λ2 . For a three-dimensional crystal,

suppose a "generalized cylinder" which is long in one direction,parallel to G but, in the other

two directions, has a width of one lattice constant with periodic boundary conditions.Though

this structure is not possible represent as regular cylinder, a misrepresented(but topologically

equivalent) version can be viewed as a torus with a finite thickness. This "Corbino donut" is

similar to the generalized cylinder in same analogy the Corbino disk is like to the regular cylin-

der.The "long" direction corresponds to the thickness of the torus, and the two boundaries

correspond to the inner and outer surfaces. This system can be divided by two independent

magnetic fluxes,where they correspond to the two components of the momentum perpendic-

ular to G. In result we have four time-reversal invariant surface momenta Λa, corresponding

to the two fluxes which can get either 0 or h/2e values . The band structure can be described

by the difference in the time-reversal polarization between any pair. The Z2 invariants can be

derived from the topological structure of the Bloch wave functions of the bulk crystal in the

Brillouin zone. Some recent experimental results related to peculiar properties of (TI) are in

this [144–149] works.

2.4 Transport properties of fermions with moat spectra

In modern physics there are materials, such as topological insulators (TI) (see for a re-

view [150–153]) with edge states, Bose-Einstein condensates of Rb atoms with spin-orbit in-

teractions (SOBEC) [154,155] and honeycomb lattices with next to nearest neighbor (NNN)

interactions [156], where the spectrum of non-relativistic particles combined with relativistic

Dirac component. The analyze of transport properties of this type of systems is an important

task which is necessary to carry out. The polarization operator is a variety which determines
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both, longitudinal and Hall conductivity from one side and effective action of U(1) gauge

field, defined by quantum fluctuations of fermions, from the other. The goal of this paper

is the calculation of the polarization operator of fermions with moat type spectrum. Similar

type of investigations were carry earlier [157,158].

Most general form of the basic Hamiltonian of such systems has a form

H(k) = εk +
∑
i=x,y,z

di(~k)σi, (2.12)

where εk = −µ + D~k2, ~d = A~k and dz = ∆ −M~k2. For topological insulators D < 0, while

for cold atom systems D > 0, because it defines positive non-relativistic kinetic energy of

Rubidium atoms used in fabrication of artificial Rashba term by the system of lasers [159].

The edge states in TI or excitation’s on honeycomb lattice whit NNN interaction come in

pairs with states of opposite chirality defined by time reversal Hamiltonian

H∗(−~k) = εk + A(−kxσx + kyσy) + dzσ
s
3 (2.13)

where σsz = sσz, s = ±1 defines chirality. Without loss of generality we can take σsi = sσi, i =

x, y, z. The total Hamiltonian of such systems is

H =

 H(k) 0

0, H∗(−k)

 (2.14)

The action of fermions with particular chirality is

S = ψ̄+[Ω− εk − vF ~σs~k − dzσsz]ψ (2.15)

Causal/Feynman Green function can be written in a simple form

G(Ω, ~k) =
1

2

(
1 + σini

Ω− E−k + iηk
+

1− σini

Ω− E+
k + iηk

)
(2.16)

where ni = ki/k is the unit vector along momentum direction, E± = εk ± εk = D~k2 ±
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√
vF 2~k2 + d2

z, µ is the chemical potential and ηk = η sign(Ω− µ) with η = 1/2τ , defined by

scattering rate τ .

We will be concentrated on a problem of cold atoms with spin-orbit interacting [160]. For

simplicity we take M = 0 and in that case the spectrum become

E±k = D~k2 ±
√
v2
F
~k2 + ∆2. (2.17)

Characteristics picture of two branches of this spectrum is presented on Fig.2.1, while only

lower branch, which is forming ground state, on Fig.2.2a.

k

xk
yk

0k

Figure 2.1: Two branches of spectra of moat type. k0 denotes radius of circle of minimal
energy.

Lowest energy located on a circle of radius k0 =
√
m2v2

F − ∆2

v2F
in E−k branch. Interesting

for us region for chemical potential is ∆ > µ > −∆2/2mv2
F −mv2

F/2 when Fermi sea has a

form of Corbino disk with radius

k2
1/2,F = 2m

[
µ+mv2

F ±
√

2mµv2
F +m2v4

F + ∆2
]
. (2.18)

At µ2−∆2 = 0, Fermi momenta are kF2 = 0 and k2
F1

= 4m(µ+mv2
F ). On Fig2.2a we present

49



  

k 2Fk1 F

Figure 2.2: a) Lower branch of spectrum with filled Fermi sea. b) ky = 0 projection of the
spectrum. k1F and k2F denote Fermi momenta of inner and outer circles.

characteristic form of the Fermi sea. Fig.2.2b demonstrates projection of spectrum on ky = 0

plane with notion of Fermi momenta kF1,2 .

2.5 Transport property. The polarization operator

Study of transport properties in this systems, as usual, should start from calculation and

analyze of polarization operator

Πµν = 〈jµjν〉, , µ, ν = x, y. (2.19)

Here current ~j defined from the action (2.15) as

~j =
δS

δ~j
= 2iDψ+~∂ψ + vFψ

+~σψ − 2D
e

c
~Aψ+ψ (2.20)

which, due to gauge invariance and according to Neuter’s theorem, fulfills conservation low

~∂~j = 1
c
∂t(ψ

+ψ). Last term in the current (2.20) given by ~A just insures gauge invariance.
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By taking D = 1
2m

, we get

~j = i
1

m
ψ+~∂ψ + vFψ

+~σψ − e

mc
~Aψ+ψ (2.21)

Linear response of currents to external gauge field Aµ is given by

< jµ >=

∫
ΠµνAνd~rdt+

ne

c
Aµ, µ, ν = 1, 2 (2.22)

where

Πµν =<

(
i
∂µ
m

+ vFσµ

)(
∂ν
m

+ vFσν

)
> . (2.23)

Denoting matter field defined part of the current as j0
µ = i∂µ

m
+ vFσµ for gauge invariant full

polarization operator Kµν we have

Kµν(~r − ~r′) =< j0
µ(~r)j0

ν(~r
′) > −ne

c
δ(2)(~r − ~r′)δ(t− t′) (2.24)

Therefore, for the analyze of the transport properties of cold atom systems with moat spec-

trum (2.17) we need to calculate

Πµν = iTr

∫
dΩd2k

(2π)3

[
j0
µG
(

Ω− ω

2
, k − q

2

)
j0
νG
(

Ω +
ω

2
, k +

q

2

)]
(2.25)

We consider only lower branch of the spectrum, therefore

Πµν =
i

4

∫
dΩd2k

(2π)3

Tµν
(Ω− ω

2
− E−

k− q
2

+ iηk− q
2
)(Ω + ω

2
− E−

k+ q
2

+ iηk+ q
2
)

(2.26)

where

Tµν = Tr

[(
(k − q

2
)µ

m
+ vFσµ

)
(1 + nik− q

2
σi))(m(k +

q

2
)ν + vFσν)(1 + nj

k+ q
2
σj))

]
(2.27)
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Integration over Ω in (2.26) gives

Πµν =
i2

4

∫
d2k

(2π)2

Tµν(n(Ek+ q
2
− iηk+ q

2
− µ)− n(Ek− q

2
− iηk− q

2
− µ))

ω + Ek− q
2
− Ek+ q

2
+ i(ηk+ q

2
− ηk− q

2
)

. (2.28)

Where n(Ek± q
2
− iηk± q

2
− µ) are Fermi distribution functions of occupied/empty states. For

small ~q and in linear approximation

Ek− q
2
− Ek+ q

2
= −

(
εk − v2

Fm

mεk

)
~k~q (2.29)

Therefore the expression (2.28) become

Πµν = −1

4

∫
d2k

(2π)2

Tµν

[
n(Ek+ q

2
− iηk+ q

2
− µ)− n(Ek− q

2
− iηk− q

2
− µ)

]
ω + 2iη −

(
1
m
− v2F

εk

)
kq cosφ+ θ(q3)

. (2.30)

Taking into account, that the terms εijkiqj ∼ kxqy−kyqx ∼ ky ∼ sinφ and after integration

over angles will give 0 and consequently
(
k − q

2

)
µ

(
k + q

2

)
ν

= kµkν − qµqν
4

+ kµqν
2
− kνqµ

2
→

kµkν − qµqν
4

, we left with expression

Tµν(k) = 2
(
kµkν −

qµqν
4

)[
2

(
1

m
+
v2
F

εk

)2

− 1

m2
+
v2
F

m2

(
~k2 − ~q2

4

ε2k

)]

+ δµνv
2
F

[
1− v2

F

ε2k

(
~k2 − ~q2

4

)]
+ 2i

v3
F

εk
εµνjqj. (2.31)

Finally we obtain

Πµν = −1

4

∫ 2π

0

kdkdφ

(2π)2

Tµν(k)[n(Ek+ q
2
− iηk+ q

2
− µ)− n(Ek− q

2
− iηk− q

2
− µ)]

ω + 2iη −
(

1
m
− v2F

εk

)
kq cosφ+O(q3)

. (2.32)

Integral over k is located on two Fermi surfaces Ek − µ = 0 when n(Ek+ q
2
− iηk+ q

2
− µ) −

n(Ek− q
2
− iηk− q

2
− µ) 6= 0. Because

Ek − µ =
k2

2m
−
√
v2
Fk

2 + ∆2 − k2
1F

2m
−
√
v2

1Fk
2 + ∆2 = ~k1F (~k − ~k1F )

[
1

m
− v2

F

εk1F

]
, (2.33)
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where k − k1F << {∆2,m2} and k + k1F ∼ 2k1F , one can obtain

E~k1F+~q/2 − µ ≈
~k1F~q

2

(
1

m
− v2

F

εk1F

)
(2.34)

E~k1F−~q/2 − µ ≈ −
~k1F~q

2

(
1

m
− v2

F

εkF

)
(2.35)

The function n(Ek+ q
2
− iηk+ q

2
− µ) − n(Ek− q

2
− iηk− q

2
− µ) is not zero(correspondingly the

integral (2.30) is not zero) only for momenta around Fermi surfaces obeying ∆k2 ∼ ~k1/2,F~q−

2iη
mεk1/2,F

εk1/2,F−mv
2
F
. Therefore from the contribution of the inner Fermi surface to the integral

(2.32) we receive

Π(1)
µν (k1F ) =

1

4

∫ 2π

0

dφ

(2π)2

Tµν(k1F )
[
~k1F~q − 2iη

mεk1F
εk1F−mv

2
F

]
ω + 2iη −

(
1
m
− v2F

εk

)
k1F q cosφ

(2.36)

= −Tµν(k1F , q)

8π

1(
1
m
− v2F

εk1F

)
1− ω√

(ω + 2iη)2 −
(

1
m
− v2F

εk1F

)2

k2
1F q

2

+O(
ω3

µ3
,
q3

k3
1F

)

where

Tµν(k1F , q) = 2

(
qµqν

4
− k2

1F

2
δµν + v2

Fm
2δµν

)
1

m2

(
∆2 + v2

F
~q2/4

ε2k1F

)

+ 4

(
k2

1F

2
δµν −

qµqν
4

)(
1

m
+
v2
F

εk

)2

+ 2i
v2
F

εk1F
εµνω (2.37)

We have used

< kµkν >=
< ~k2 >

2
=
k2

1F

2
δµν (2.38)

We see, that Z2 chiral anomaly based term proportional to v2
F εµν defined by Rashba term of

the action (2.15), because it will disappear if vF = 0.

At the point k2F the answer is the same but will appear with opposite sign, because

velocity at k2F is negative. Finally, for total polarization operator we obtain

Πµν(q, ω) = Π(1)
µν (k1F )− Π(1)

µν (k2F ) (2.39)
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where Π
(1)
µν (k1,2F ) are defined by formulas (2.36) and (2.37).

Longitudinal conductivity σxx(ω) = i(Πxx(0, ω) − Πxx(0, 0))/ω as a coefficient of linear

response to external electric field will give

σxx(ω) =
Txx(k1F , 0)− Txx(k2F , 0)

8π
(

1
m
− v2F

εk

) i

ω + 2iη
(2.40)

The expression shows, that at chemical potential µ = −m2v4F+∆2

2mv2F
, when it is at level of energy

minima, the conductivity is zero. Furthermore, in the limit vF = 0, ∆ = 0 Rashba term is

disappearing in the action (2.15) and we have non-relativistic fermions. Then moat absent

in the spectrum, we have only outer k2F Fermi momentum and conductivity acquires Drude

form

σxx(ω) =
k2

2F

4πm

i

ω + 2iη
(2.41)

2.6 Conclusions

We have presented here the calculation of the polarization operator in the fermionic system,

which have moat type spectrum. The answer has normal part, leading to Drude conductivity

and Z2 anomaly part, defined by Rashba SO-term in the Hamiltonian. The result presents

correct, expected limits at vF = 0, when Rashba term is zero, atm =∞, when non-relativistic

part of the Hamiltonian is zero and we have only Rashba term. At the minimal chemical

potential the conductivity became zero.

The main results of this chapter is published in [160].
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Chapter 3

Liouville field theory

3.1 Introduction to the conformal field theory

We define by gµν the metric tensor in a space-time of dimension d. By defnition a conformal

transformation of the coordinates is an reverseable mapping x → x
′ which leaves the metric

tensor invariant up to a scale:

g
′

µν(x
′
) = Λ(x)gµν(x) (3.1)

where

g
′

µν(x
′
) =

∂x
′µ

∂xλ
∂x
′ν

∂xρ
= gλρ (3.2)

A conformal transformation is locally equivalent to the rotation and dilatation. For conve-

nience, we assume that the conformal transformation is an infinitesimal deformation of the

standard Cartesian metric gµν=ηµν ,where ηµν = diag(1, ..., 1). The set of conformal trans-

formations clearly forms a group, and it evidently has the Poincare group as a subgroup,

since the latter corresponds to the special case Λ(x) = 1.Let us examine the outcomes of the

definition (3.1)on an infinitesimal transformation

xµ → x
′µ = xµ + εµ(x) (3.3)
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it comes from (3.1)

ηµν =
∂x
′µ

∂xλ
∂x
′ν

∂xρ
= Λ−1ηλρ (3.4)

and inserting in (3.3) we get in the first order by epsilon

ηµν

(
δλµ +

∂εµ

∂xλ

)(
δρν +

∂εν

∂xρ

)
(3.5)

Therefore, the requirement that the transformation be conformal means that

∂µεν + ∂νεµ = (λ−1 − 1)ηµν = f(x)ηµν (3.6)

The factor f(x) is defined by taking the trace on both sides:

f(x) =
2

d
∂ρε

ρ (3.7)

By using an additional derivative ∂ρ on Eq.(3.6),inverting the indices and taking a linear

combinations,we have

2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (3.8)

Upon contracting with ηµν = this gets following form

2∂2εµ = (2− d)∂µf (3.9)

From (3.6) we find

(2− d)∂µ∂νf = ηµν∂
2f (3.10)

In result we get

(d− 1)∂2f = 0 (3.11)

Now we can extract the accurate form of conformal transformation in d dimensions.When

d = 1 the above equations do not inflict any limitation on the function f , and thus any

smooth transformation is conformal in one dimension.Condition (3.6) for gµν = δµν becomes
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the Cauchy-Riemann equation

∂1ε1 = ∂2ε2 ∂1ε2 = −∂2ε1 (3.12)

Then ε(z)ε1−iε2 and ε̄(z̄) = ε1+iε2 in the complex coordinates z = x+iy and z̄ = x−iy.In case

of two dimensional conformal transformations hereby coincide with the analytic coordinate

transformations

z → f(z), z̄ → f̄(z̄) (3.13)

In case of complex coordinates the metric is

ds2 = dzdz̄ (3.14)

Under the analytic coordinate transformations

z → f(z), z̄ → f̄(z̄) ds2 = dzdz̄ →
∣∣∣∣∂f∂z

∣∣∣∣2 dzdz̄ (3.15)

Any holomorphic infinitesimal transformation is possible expressed as:

z
′
= z + εz, εz =

∞∑
∞

cnz
n+1 (3.16)

In this case

δφ = −ε(z)∂φ− ε̄(z̄)∂̄φ =
∑
n

cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄) (3.17)

where we have represented the generators

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (3.18)

For these generators are right the following commutation relations:

[ln, lm] = (n−m)ln+m (3.19)
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[ln, lm] = (n−m)l̄n+m (3.20)

[ln, l̄m] = 0 (3.21)

We see that the conformal algebra is the direct sum of two isomorphic algebras,which obey

very simple commutation relations. The algebra (3.19) is famous as the de Witt algebra.

3.2 Tensor energy-momentum, radial quantization, OPE

Under an arbitrary transformation of the coordinates xµ → xµ + εµ, the action changes as

follows:

δS =

∫
d2xT µν∂µεν =

1

2

∫
d2xT µν(∂µεν + ∂νεµ) (3.22)

where T µν is the symmetric energy-momentum tensor. The infinitesimal conformal mapping

brings the action to the following form

δS =
1

2

∫
d2xT µµ ∂ρε

ρ (3.23)

The trace of the energy-momentum tensor vanishes which means the invariance of the action

under the conformal transformation. The current of conformal symmetry is

Jµ = Tµνε
ν (3.24)

This current is conserved because

∂µJµ = ∂µTµνε
ν + Tµν∂

µεν = 0 (3.25)

the tensor energy-momentum is conserved and traceless. Euclidean metric ds2 = dx2 + dy2

in the complex coordinates z = x+ iy has the form ds2 = dzdz̄ therefore

gzz = gz̄z̄ = 0 and gzz̄ = gz̄z =
1

2
(3.26)
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and

gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 2 (3.27)

For the components of the energy-momentum tensor we have

Tzz =
1

4
(T00 − 2iT10 − T11) (3.28)

Tz̄z̄ =
1

4
(T00 + 2iT10 − T11)

Tzz̄ = Tz̄z =
1

4
(T00 + T11) =

1

4
T µµ

Under tracelessness we understand

Tzz̄ = Tz̄z = 0. (3.29)

The conservation law gαµ∂αTµν = 0 brings two equations

∂z̄Tzz + ∂zTz̄z = 0 and ∂zTz̄z̄ + ∂z̄Tzz̄ = 0 (3.30)

Using (3.29) we obtain

∂z̄Tzz = 0 and ∂zTz̄z̄ = 0 (3.31)

The two non-vanishing components of the energy-momentum tensor will have the following

form

T (z) ≡ Tzz(z) and T̄ (z̄) ≡ Tz̄z̄(z̄) (3.32)

where there is only the holomorphic and anti-holomorphic dependence.

On a cylinder we can write Σ = R × S1 = (t, x mod 2π), where t is world-sheet time,

and x is compactified space coordinate.

Suppose we have conformal map w → z = ew = et+ix, then infinite past and future on a

cylinder, t = ±∞ are mapped to points z = 0,∞ on a plane.What concerns to the equal time

surfaces, t = const it becomes circles of the constant radius on z-plane. Dilatation on the
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plane ea modifies time translation t+a on the cylinder, and rotation on the plane eiα is space

translation x + α on the cylinder. In result the dilatation generator on the conformal plane

can be considered as the Hamiltonian, and the rotation generator on the conformal plane can

be considered as momentum.

The current of conformal transformations takes the form:

Jz = T (z)ε(z) and Jz̄ = T̄ (z̄)ε̄(z̄) (3.33)

The conserved charge of the conformal transformations takes the form

Q =
1

2πi

∮
dzT (z)ε(z) +

1

2πi

∮
dz̄T̄ (z̄)ε̄(z̄) (3.34)

3.3 Boundary Liouville field theory

Recently the various semiclassical limits of the Liouville correlation functions appeared

in different instances. For example we can mention study of conformal blocks in AdS/CFT

correspondence, see e.g. [161–163], semiclassical limits of the Nekrasov partition functions,

see e.g [164–169], minisuperspace limit of correlation functions in AdS3/H
+
3 [170, 171], semi-

classical limit of correlation functions in the presence of defects and boundaries [172,173] and

the most recently found application of the semiclasical limit of Liouville field theory to the

SYK problem [174].

In this paper we study matrix elements of the boundary Liouville field theory in mini-

superspace limit. In the minisuperspace limit one considers a limit where only the zero

mode dynamics survives and the theory is reduced to the corresponding quantum mechanical

problem. The mini-superspace limit of the Liouville field theory was considered in [175,176].

In these papers the matrix elements of the Liouville quantum mechanics with exponential

potential were computed. Later it was shown in [178] that the DOZZ structure constants

[179, 204] in this limit coincide with the matrix elements found in [175, 176]. It was also

demonstrated in [204] that the Liouville two-point function in the mini-superspace limit in

agreement with the reflection function of the Liouville quantum mechanics wave functions
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given by the modified Bessel function. In papers [181, 182] was studied the mini-super space

limit of the boundary Liouville field theory (BLFT). It was found that BLFT in this limit

reduced to the Morse potential quantum mechanics. It was shown in [181] that in the mini-

super space limit the boundary two-point function, computed in [201], coincides with the

reflection amplitude of the eigen-functions of the Morse potential Hamiltonian given by the

Whittaker functions.

In this paper we study the mini-superspace limit of the boundary three-point function

in the BLFT. The boundary three-point function in the BLFT was computed in [184] and

expressed vie double Gamma and double Sine functions [185, 186]. Using known asymptotic

properties of the double Gamma and Sine functions we have shown that in the mini-superspace

limit the boundary three-point function can be expressed via the Meijer functions G3,2
3,3 with

the unit argument or equivalently via the generalized hypergeometric functions 3F2 with

the unit argument. We also computed matrix elements for the Morse potential and have

shown that they can be expressed via the generalized hypergeometric functions 3F2 with the

unit argument as well. Using the identities, relating different generalized hypergeometric

functions with the unit argument [187–189], and matching quantum and classical parameters,

we established exact agreement between the mini-superspace limit of the boundary three-

point function and the matrix elements for the Morse potential. It is important to note that

in the BLFT relation of the boundary cosmological parameter to the corresponding quantum

parameter appearing in the boundary one-point function is two-fold due to a sign ambiguity

in the choice of the square-root branch. We found that to match the minisuperspace limit

of the boundary three-point with the corresponding quantum mechanical matrix element we

should use the branch with the negative sign. We also found that passing from one branch to

another brings to additional factor in the normalization of the wave functions corresponding

to the boundary condition changing operators. We would like also to mention that various

consequences of the branching of the BLFT parameters earlier were considered in [190].

The paper is organized as follows. In section 2 we review the BLFT and compute the

mini-superspace limit of the boundary three-point function. In section 3 we compute matrix

elements for the Morse potential and establish precise agreement with the boundary three-
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point function in the mini-superspace limit found in the previous section. In appendices A,

B and C we review various properties of the special functions used in the paper.

Let us consider the Liouville field theory on a strip R× [0, π] , parameterized by the time

τ and space σ coordinates, 0 ≤ σ ≤ π. The conformal invariant action has the form:

S =

∫ ∞
−∞

dτ

∫ π

0

dσ

(
1

4π
(∂aφ)2 + µe2bφ

)
+

∫ ∞
−∞

dτM1e
bφ|σ=0 +

∫ ∞
−∞

dτM2e
bφ|σ=π (3.35)

where M1 and M2 are the corresponding boundary cosmological constants.

Let us review some facts on the boundary Liouville field theory [184,191,201]. The primary

fields of the Liouville field theory are Vα, associated with the vertex operators e2αφ. They

have conformal dimension

∆α = α(Q− α), Q = b+
1

b
(3.36)

In the presence of the boundary with the cosmological constant M the primary fields Vα

have the one-point functions:

〈0|Vα(z, z̄)|0〉 =
Uσ(α)

|z − z̄|2∆α
(3.37)

where

Uσ(α) =
2

b
(πµγ(b2))(Q−2α)/2bΓ(1−b(Q−2α))Γ(−b−1(Q−2α)) cos(π(2σ−Q)(2α−Q)) (3.38)

where the parameter σ is related to the boundary cosmological constant M by the relation:

M =

√
µ

sin(πb2)
cos πb (2σ −Q) (3.39)

Besides bulk primary fields in the boundary conformal field theory exist also boundary

condition changing operators, parameterized by the types of the switched boundary conditions

and conformal weight. In the case of the BLFT they are given by the fields Ψσ1σ2
β with
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conformal weight ∆β = β(β −Q). They have the two-point function:

〈0|Ψσ1σ2
β1

(x)Ψσ2σ1
β2

(0)|0〉 =
δ(β2 + β1 −Q) + S(β1, σ2, σ1)δ(β2 − β1)

|x|2∆β1
(3.40)

where

S(β, σ2, σ1) =
(
πµγ(b2)b2−2b2

)Q−2β
2b × (3.41)

×Γb(2β −Q)

Γb(Q− 2β)

Sb(σ2 + σ1 − β)Sb(2Q− σ2 − σ1 − β)

Sb(σ2 − σ1 + β)Sb(σ1 − σ2 + β)

and three-point function

〈0|Ψσ1σ3
β3

(x3)Ψσ3σ2
β2

(x3)Ψσ2σ1
β1

(x3)|0〉 = (3.42)
Cσ3σ2σ1
β3β2β1

|x21|∆1+∆2−∆3 |x32|∆2+∆3−∆1|x31|∆3+∆1−∆2

Cσ3σ2σ1
β3|β2β1 ≡ Cσ3σ2σ1

Q−β3,β2,β1 (3.43)

Cσ3σ2σ1
β3|β2β1 = Rσ2,β3

 β2 β1

σ3 σ1

∫ i∞

−i∞

dτ

i
Jσ2,β3

 β2 β1

σ3 σ1

 (3.44)

where

Rσ2,β3

 β2 β1

σ3 σ1

 = (πµγ(b2)b2−2b2)
1
2b

(β3−β2−β1) (3.45)

× Γb(2Q− β1 − β2 − β3)Γb(β2 + β3 − β1)Γb(Q+ β2 − β1 − β3)Γb(Q+ β3 − β2 − β1)

Γb(2β3 −Q)Γb(Q− 2β2)Γb(Q− 2β1)Γb(Q)

× Sb(β3 + σ1 − σ3)Sb(Q+ β3 − σ3 − σ1)

Sb(β2 + σ2 − σ3)Sb(Q+ β2 − σ3 − σ2)
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and

Jσ2,β3

 β2 β1

σ3 σ1

 =
Sb(U1 + τ)Sb(U2 + τ)

Sb(V1 + τ)Sb(V2 + τ)

Sb(U3 + τ)Sb(U4 + τ)

Sb(V3 + τ)Sb(V4 + τ)
(3.46)

U1 = σ2 + σ1 − β1, V1 = Q+ σ2 + β3 − β1 − σ3 (3.47)

U2 = Q+ σ2 − β1 − σ1, V2 = 2Q+ σ2 − β3 − σ3 − β1

U3 = σ2 + β2 − σ3, V3 = 2σ2

U4 = Q+ σ2 − β2 − σ3, V4 = Q

Γb(x) and Sb(x) in the formulae above denote the double Gamma and Sine functions reviewed

in appendix A.

The three-point function has the property, that setting one of the field to vacuum, one

recovers the two-point function. For example it was checked in [184] that

limβ1→0C
σ3σ2σ1
β3|β2β1 = δ(β3 − β2) + S(β2, σ3, σ2)δ(β3 + β2 −Q) (3.48)

Let us now consider the minisuperspace limit of three-point function.

As the warm-up exercise we review the minisuperspace limit of two-point function (3.41),

computed in [181]. It is argued in [181] that one should take the limit b → 0 and scale the

parameters β and σ in the following way:

β =
Q

2
+ ikb (3.49)

and

σ1 =
1

4b
+ ρ1b (3.50)

σ2 =
1

4b
+ ρ2b

64



Using formulae (3.88, (3.89) and (3.91) in appendix A one can easily obtain:

S(β, σ2, σ1)→
(

4πµ

b2

)−ik
Γ(2ik)

Γ(−2ik)

Γ
(
ρ1 + ρ2 − 1

2
− ik

)
Γ
(
ρ1 + ρ2 − 1

2
+ ik

) (3.51)

To compute the mini-superspace limit of the boundary three-point function we will use

the ansatz (3.50) for all the three boundary condition parameters:

σ1 =
1

4b
+ ρ1b (3.52)

σ2 =
1

4b
+ ρ2b

σ3 =
1

4b
+ ρ3b

For the primary fields parameters we will use the ansatz suggested in [178] for calculation

of the mini-superspace limit of the bulk three-point function [177]:

β1 =
Q

2
+ ik1b (3.53)

β2 = ηb

β3 =
Q

2
+ ik2b

It is convenient to denote

ρ1 + ρ2 = 1− λ (3.54)

ρ2 − ρ3 = ξ (3.55)

implying also

ρ1 + ρ3 = 1− λ− ξ (3.56)

Inserting (3.52) and (3.53) in (3.46), using the formulas (3.88), (3.89),(3.90) in appendix

A, and rescaling the integration variable τ → bτ , one obtains in the limit b→ 0
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∫ i∞

−i∞

dτ

i
Jσ2,β3

 β2 β1

σ3 σ1

→ 2−7/2(πb2)−λ+ik1b−1π−2 × (3.57)

∫ i∞

−i∞

dτ

i

Γ(−τ)Γ(τ − ik1 + 1/2− λ)Γ(η + ξ + τ)Γ(ik1 − ik2 − ξ − τ)Γ(ik2 + ik1 − ξ − τ)

Γ(η − ξ − τ)

Using the definition of the Meijer G-functions, reviewed in appendix B, one can write

∫ i∞

−i∞

dτ

i
Jσ2,β3

 β2 β1

σ3 σ1

→ (3.58)

2−5/2(πb2)−λ+ik1b−1π−1G3,2
3,3

1

∣∣∣∣∣
1
2

+ λ+ ik1, 1− η − ξ, η − ξ

0, ik1 − ik2 − ξ, ik1 + ik2 − ξ

 =

2−5/2(πb2)−λ+ik1b−1π−1G3,2
3,3

1

∣∣∣∣∣
1
2

+ λ+ ξ + ik1, 1− η, η

ξ, ik1 − ik2, ik1 + ik2


In the second line we used the identity (3.96) in appendix B.

For further purposes, it is convenient to present the Meijer G3,2
3,3-function (3.58) in a special

way, use of which become clear in the next section. Namely, first we decompose the G3,2
3,3-

function as a sum of 3F2 hypergeometric functions with the unit argument according to

eq. (3.94) in appendix B. Afterwards we transform obtained in this way 3F2 hypergeometric

functions with the unit argument successively applying identities (3.97) and (3.98) in appendix
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C. We end up with

G3,2
3,3

1

∣∣∣∣∣
1
2

+ λ+ ik1 + ξ, 1− η, η

ξ, ik1 − ik2, ik1 + ik2

 =
Γ(ξ + η)Γ(1

2
+ λ− ik1)

sin π(ik1 + 1
2

+ λ)
× (3.59)

[
Γ(2ik2)Γ(ik1 − ik2 + η)Γ(1

2
− ik2 − λ− ξ)

Γ(−ik1 + ik2 + η)Γ(−ik2 + 1
2

+ λ+ η)Γ(−ik2 + 1
2
− λ+ η)Γ(ik2 + 1

2
+ λ− η)

×

3F2

 −ik1 − ik2 + η, ik1 − ik2 + η, 1
2

+ λ+ ξ − ik2;

1− 2ik2,
1
2

+ λ− ik2 + η : 1

+

Γ(−2ik2)Γ(ik1 + ik2 + η)Γ(1
2

+ ik2 − λ− ξ)
Γ(−ik1 − ik2 + η)Γ(ik2 + 1

2
+ λ+ η)Γ(ik2 + 1

2
− λ+ η)Γ(−ik2 + 1

2
+ λ− η)

×

3F2

 ik1 + ik2 + η,−ik1 + ik2 + η, 1
2

+ λ+ ξ + ik2;

1 + 2ik2,
1
2

+ λ+ ik2 + η : 1




Now inserting (3.52) and (3.53) in (3.45), and using formulae (3.84)-(3.92) in appendix A,

we obtain for the prefactor (3.45) in the limit b→ 0

Rσ2,β3

 β2 β1

σ3 σ1

→ (
4πµ

b2

)(ik2−ik1−η)/2

25/2(πb2)−ik1+λbπ2 (3.60)

Γ(−ik1 + ik2 + η)Γ(−ik1 − ik2 + η)

Γ(2ik2)Γ(−2ik1)Γ(1
2
− ik2 − λ− ξ)Γ(η + ξ)
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Combining (3.60) and (3.59) finally we obtain:

Cσ3σ2σ1
β3|β2β1 → Cλξ

k2|ηk1 = (3.61)(
4πµ

b2

)(ik2−ik1−η)/2 Γ(1
2

+ λ− ik1)

sin π(ik1 + 1
2

+ λ)Γ(2ik2)Γ(−2ik1)Γ(1
2
− ik2 − λ− ξ)

×[
Γ(2ik2)Γ(ik1 − ik2 + η)Γ(−ik1 − ik2 + η)Γ(1

2
− ik2 − λ− ξ)

Γ(−ik2 + 1
2

+ λ+ η)Γ(−ik2 + 1
2
− λ+ η)Γ(ik2 + 1

2
+ λ− η)

×

3F2

 −ik1 − ik2 + η, ik1 − ik2 + η, 1
2

+ λ+ ξ − ik2;

1− 2ik2,
1
2

+ λ− ik2 + η : 1

+

Γ(−2ik2)Γ(ik1 + ik2 + η)Γ(−ik1 + ik2 + η)Γ(1
2

+ ik2 − λ− ξ)
Γ(ik2 + 1

2
+ λ+ η)Γ(ik2 + 1

2
− λ+ η)Γ(−ik2 + 1

2
+ λ− η)

×

3F2

 ik1 + ik2 + η,−ik1 + ik2 + η, 1
2

+ λ+ ξ + ik2;

1 + 2ik2,
1
2

+ λ+ ik2 + η : 1




As we will see in the next section, especially important role plays the case when ξ = −η. For

ξ = −η (3.61) simplifies and takes the form:

C
λ(−η)
k2|ηk1 = (3.62)(
4πµ

b2

)(ik2−ik1−η)/2 Γ(1
2

+ λ− ik1)

sin π(ik1 + 1
2

+ λ)Γ(2ik2)Γ(−2ik1)Γ(1
2
− ik2 − λ+ η)

×[
Γ(2ik2)Γ(ik1 − ik2 + η)Γ(−ik1 − ik2 + η)

Γ(−ik2 + 1
2

+ λ+ η)Γ(ik2 + 1
2

+ λ− η)
×

3F2

 −ik1 − ik2 + η, ik1 − ik2 + η, 1
2

+ λ− η − ik2;

1− 2ik2,
1
2

+ λ− ik2 + η : 1

+

Γ(−2ik2)Γ(ik1 + ik2 + η)Γ(−ik1 + ik2 + η)

Γ(ik2 + 1
2

+ λ+ η)Γ(−ik2 + 1
2

+ λ− η)
×

3F2

 ik1 + ik2 + η,−ik1 + ik2 + η, 1
2

+ λ− η + ik2;

1 + 2ik2,
1
2

+ λ+ ik2 + η : 1




Let us consider the limit β2 → 0 and correspondingly η → 0.

Using, that as we explained in appendix C, in this limit 3F2 reduces to 2F1, which for the
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unit argument is given by eq. (3.99), it is straightforward to show that:

limη→0C
λ(−η)
k2|ηk1 = δ(k1 − k2) +

(
4πµ

b2

)−ik1 Γ(2ik1)

Γ(−2ik1)

Γ
(

1
2
− λ− ik1

)
Γ
(

1
2
− λ+ ik1

)δ(k1 + k2) (3.63)

in agreement with (3.51).

3.4 Matrix elements in the Morse potential

In the mini-superspace limit the boundary Liouville field theory is described by the Hamil-

tonian with the Morse potential [181, 182]. The corresponding eigenfuntions satisfy the

Schrödinger equation:

− ∂2ψ

∂φ2
0

+ πµe2bφ0ψ + (M1 +M2)ebφ0ψ = k2b2ψ (3.64)

The relation between parameters Mi appearing in the Schrödinger equation and parame-

ters ρi used in the previous section can be found using (3.52) and (3.39) and taking the limit

b→ 0:

Mi =

√
µ

sin(πb2)
sin πb2(2ρi − 1)→ ±(µπ)1/2b(2ρi − 1) (3.65)

The solution of the eq. (3.64) is given by the Whittaker function Wµ,ν(y) [192,193]:

ψ = N

e−y/2yik Γ (−2ik)

Γ
(

1
2
− ik + M1+M2

2b
√
πµ

)1F1

(
1

2
+ ik +

M1 +M2

2b
√
πµ

, 1 + 2ik, y

)
+

e−y/2y−ik
Γ (2ik)

Γ
(

1
2

+ ik + M1+M2

2b
√
πµ

)1F1

(
1

2
− ik +

M1 +M2

2b
√
πµ

, 1− 2ik, y

) ≡
N W−M1+M2

2b
√
πµ

,ik
(y)y−

1
2 (3.66)

where

y =
2
√
πµ

b
ebφ0 (3.67)
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N is normalization and 1F1(a, c, z) is the confluent hypergeometric function:

1F1(a, c, z) =
Γ(c)

Γ(a)

∞∑
n=0

Γ(a+ n)

Γ(c+ n)

zn

n!
(3.68)

Now we wish to compute matrix element of the “vertex operator" eηbφ0 , between the wave

functions corresponding to the boundary condition changing operators. According to this

solution to the operator Ψσ2σ1
β1

corresponds the wave function N1Wχ1,ik1(y)y−
1
2 with

χ1 = −M1 +M2

2b
√
πµ

= ±λ (3.69)

and to Ψσ1σ3
β3

corresponds the wave function N2Wχ2,ik2(y)y−
1
2 with

χ2 = −M1 +M3

2b
√
πµ

= ±(λ+ ξ) (3.70)

The corresponding integral can be found in [192,193]:

Mχ1χ2

ηk1k2
= N1N ∗2

∫ ∞
−∞

Wχ1,ik1(y)y−
1
2Wχ2,−ik2(y)y−

1
2 eηbφ0dφ0 = (3.71)

=
N1N ∗2
b

(
4πµ

b2

)−η/2 ∫ ∞
0

Wχ1,ik1(y)Wχ2,−ik2(y)yη−2dy = N1N ∗2 (4πµb−2)−η/2b−1 ×[
Γ(ik1 − ik2 + η)Γ(−ik1 − ik2 + η)Γ(2ik2)

Γ(1
2
− χ2 + ik2)Γ(1

2
− χ1 − ik2 + η)

×

3F2

 −ik1 − ik2 + η, ik1 − ik2 + η, 1
2
− χ2 − ik2;

1− 2ik2,
1
2
− χ1 − ik2 + η : 1

+

Γ(ik1 + ik2 + η)Γ(−ik1 + ik2 + η)Γ(−2ik2)

Γ(1
2
− χ2 − ik2)Γ(1

2
− χ1 + ik2 + η)

×

3F2

 ik1 + ik2 + η,−ik1 + ik2 + η, 1
2
− χ2 + ik2;

1 + 2ik2,
1
2
− χ1 + ik2 + η : 1




Comparing (3.71) with (3.62) we see that they coincide if we set:

χ1 = −λ (3.72)
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χ2 = −λ+ η (3.73)

N1 =
(4πµb−2)−ik1/2b1/2

sin π
(

1
2

+ ik1 + λ
) Γ
(

1
2

+ λ− ik1

)
Γ(−2ik1)

(3.74)

N2 =
1

π
(4πµb−2)−ik2/2b1/2 sin π

(
1

2
+ ik2 − λ+ η

)
Γ
(

1
2

+ λ− η − ik2

)
Γ(−2ik2)

(3.75)

This result leads us to the following conclusion on a role of the exponential operator eηbφ0 .

Combining (3.69) and (3.70) with lower signes, as indicating in (3.72) and (3.73), and also

remembering (3.52) and (3.55) one has

M3 −M2

2
√
πµ

= bξ = −bη = σ2 − σ3 (3.76)

Therefore recalling also that the exponential operator eηbφ0 should correspond to a boundary

condition changing operator Ψσ3σ2
β2

, this result implies that the operator eηbφ0 in the semiclas-

sical limit produces change of the boundary condition given by (3.76).

It is instructive to compare the normalization of the wave functions found here with those

used in [181]. For this purpose let us compute the matrix element (3.71) for η → 0 and

χ1 = χ2. In this limit we obtain:

Mχ1χ1

0k1k2
=

N1N ∗2 b−1Γ(2ik1)Γ(−2ik1)

Γ(1
2
− χ1 + ik1)Γ(1

2
− χ1 − ik1)

δ(k1 − k2) + (3.77)

N1N ∗2 b−1Γ(2ik1)Γ(−2ik1)

Γ(1
2
− χ1 − ik1)Γ(1

2
− χ1 + ik1)

δ(k1 + k2)

For χ1, χ2, N1, N2, chosen as in (3.72)-(3.75), with η = 0, expression (3.77) surely coincides

with the two-point function (3.63). But note that for

χ1 = λ (3.78)

χ2 = λ (3.79)

N1 = (4πµb−2)−ik1/2b1/2 Γ
(

1
2
− λ− ik1

)
Γ(−2ik1)

(3.80)
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N2 = (4πµb−2)−ik2/2b1/2 Γ
(

1
2
− λ− ik2

)
Γ(−2ik2)

(3.81)

expression (3.77) again coincides with the two-point function (3.63). This was established

in [181].

This shows that passing from the one branch of the square root to another introduces

additional sine factors in the normalization of the wave functions in a way to keep unchanged

the two-point functions.

3.5 Conclusion

We discussed in this chapter semiclassical properties of the boundary three-point func-

tions. We found perfect agreement with the corresponding quantum mechanical calculations.

The matching of the calculations required to consider the negative branch in the branched cor-

respondence of the classical and quantum parameters. We show that passing from one branch

to another leads to the change in the normalization of the wave functions. We also found the

flip of the boundary conditions induced by the exponential operators in the minisuperspace

limit.
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3.6 Double Gamma and double Sine functions

Here we review double Gamma Γb(x) and double Sine Sb(x) functions [185,186].

Γb(x) can be defined by means of the integral representation

log Γb(x) =

∫ ∞
0

dt

t

[
e−xt − e−Qt/2

(1− e−bt)(1− e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t

]
. (3.82)

It has the property:

Γb(x+ b) =
√

2πbbx−
1
2 Γ−1(bx)Γb(x) (3.83)

The double Sine function Sb(x) may be defined in term of Γb(x) as

Sb(x) =
Γb(x)

Γb(Q− x)
. (3.84)

It has an integral representation:

logSb(x) =

∫ ∞
0

dt

t

(
sinh t(Q− 2x)

2 sinh bt sinh b−1t
− Q− 2x

2t

)
. (3.85)

and the properties:

Sb(x+ b) = 2 sin(πbx)Sb(x) (3.86)

Sb(x+ 1/b) = 2 sin(πx/b)Sb(x) (3.87)

For b → 0 the double Gamma Γb(x) and double Sine Sb(x) functions have the asymptotic

behaviour [170]:

Sb(bx)→ (2πb2)x−
1
2 Γ(x) (3.88)

Sb

(
1

2b
+ bx

)
→ 2x−

1
2 (3.89)

Sb

(
1

b
+ bx

)
→ 2π(2πb2)x−

1
2

Γ(1− x)
(3.90)

Γb(bx)→ (2πb3)
1
2

(x− 1
2

)Γ(x) (3.91)

Γb(Q− bx)→
√

2π(2πb)
1
2

( 1
2
−x) (3.92)
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3.7 Meijer G-function

The Meijer G-function can be defined via the integral [192]:

Gm,n
p,q

x∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

 = (3.93)

1

2πi

∫ ∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
xsds

In this paper we will consider the G3,2
3,3 function. It admits the decomposition [192]:

G3,2
3,3

x∣∣∣∣∣ a1, a2, a3

b1, b2, b3

 = (3.94)

Γ(a1 − a2)Γ(1 + b1 − a1)Γ(1 + b2 − a1)Γ(1 + b3 − a1)

Γ(1 + a3 − a1)
xa1−1

×3F2

 1 + b1 − a1, 1 + b2 − a1, 1 + b3 − a1

1 + a2 − a1, 1 + a3 − a1; x−1

+

Γ(a2 − a1)Γ(1 + b1 − a2)Γ(1 + b2 − a2)Γ(1 + b3 − a2)

Γ(1 + a3 − a2)
xa2−1

×3F2

 1 + b1 − a2, 1 + b2 − a2, 1 + b3 − a2

1 + a1 − a2, 1 + a3 − a2; x−1


Here 3F2 is the generalized hypergeometric function:

3F2

 a, b, c;

d, e : x

 =
∞∑
n=0

(a)n(b)n(c)n
(d)n(e)n

xn

n!

where

(a)n =
Γ(a+ n)

Γ(a)
(3.95)
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is the Pochhammer symbol. We will need also the following property of the Meijer G-function:

xξG3,2
3,3

x∣∣∣∣∣ a1, a2, a3

b1, b2, b3

 = G3,2
3,3

x∣∣∣∣∣ a1 + ξ, a2 + ξ, a3 + ξ

b1 + ξ, b2 + ξ, b3 + ξ

 (3.96)

3.8 3F2 and 2F1 hypergeometric functions with unit argu-

ment

The 3F2 function with the unit argument satisfies the identities [187–189]

3F2

 a, b, c;

d, e : 1

 =
Γ(1− a)Γ(d)Γ(e)Γ(c− b)

Γ(e− b)Γ(d− b)Γ(1 + b− a)Γ(c)
3F2

 b, 1 + b− d, 1 + b− e;

1 + b− c, 1 + b− a : 1


+

Γ(1− a)Γ(d)Γ(e)Γ(b− c)
Γ(e− c)Γ(d− c)Γ(1 + c− a)Γ(b)

3F2

 c, 1 + c− e, 1 + c− d;

1 + c− b, 1 + c− a : 1

 (3.97)

3F2

 a, b, c;

d, e : 1

 =
Γ(d)Γ(d+ e− a− b− c)
Γ(d− a)Γ(d+ e− b− c)3F2

 e− c, e− b, a;

d+ e− b− c, e : 1

 (3.98)

Note that if one of the “upper" arguments of the 3F2 function coincide with one of the

“lower" argument it reduces to 2F1 function:

2F1

 a, b;

c : x

 =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!

2F1 function with unit argument is equal to:

2F1

 a, b;

c : 1

 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(3.99)

In this paper we construct topological defects gluing 2D Liouville field theories with dif-

ferent cosmological constants [206].
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Topological defects in the Louville field theory with the same cosmological constants on the

both side were constructed almost ten years back in papers [194,195]. In that papers two-point

functions in the presence of defects were computed using the Cardy-Lewellen equation for

defects. It was derived that there exist two families of defects, discrete, with one-dimensional

world-volume, and continuous, with two-dimensional world-volume. Later for the continuous

family of defects also the Lagrangian description was suggested in [196]. It was shown in [173]

that this Lagrangian description is in agreement with the found in [194,195] defect two-point

function using various semiclassical limits.

Here we generalize above mentioned calculations to the case of the different cosmological

constants. First we elaborate to this case the Cardy-Lewellen relation for defects. We find

that in fact the two-point functions are given by the same functions as before but which

get rescaled by the factor
(
µ2
µ1

)−iP
b , where µ1 and µ2 are the cosmological constants, and

P is a momentum. Formulae (3.132) and (3.139) are our main result. For the continuous

family of defect we also constructed the corresponding Lagrangian and checked via the heavy

asymptotic limit that it is in agreement with the two-point function (3.139).

We would like to say that one of the motivations of this research was recently suggested

in papers [198, 199] the idea to describe the Fractional Quantum Hall effect (FQHE) by the

Liuoville field theory, whose cosmological constant should play a role of a chemical potential.

On the other hand it is known that in the FQHE one has jump of the chemical potential [200].

We have an impression that our construction which in fact connects two Liouville theories

with the different cosmological constants may have an application to the FQHE.

The paper is organized as follows. In section 2 we collect several necessary for us facts on

classical and quantum Liouville field theory. In section 3 we generalized and solved Cardy-

Lewellen equation for defects to the case of the different cosmological constants. We showed

also here that constructed defects indeed map FZZ [201] and ZZ [202] boundary states of

the first theory to the linear combinations of the FZZ and ZZ boundary states of the second

theory. In section 4 we have written down the Lagrangian for the continuous family of defects.

In section 5 we checked, using the heavy asymptotic semiclassical limit, that the two-point

function for the continuous family of defects computed in section 3, is in agreement with the
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Lagrangian description of section 4.

3.9 Review of Liouville theory

Let us recall some basic facts on classical and quantum Liouville theory.

The action of the Liouville theory is

S =
1

2πi

∫ (
∂φ∂̄φ+ µπe2bφ

)
d2z . (3.100)

Here we use a complex coordinate z = τ + iσ, and d2z ≡ dz ∧ dz̄ is the volume form.

The field φ(z, z̄) satisfies the Liouville equation:

∂∂̄φ = πµbe2bφ . (3.101)

The general solution to (3.101) can be written in terms of two arbitrary functions A(z) and

B(z̄):

φ =
1

2b
log

(
1

πµb2

∂A(z)∂̄B(z̄)

(A(z) +B(z̄))2

)
. (3.102)

The solution (3.102) is invariant if one transforms A and B simultaneously by the constant

Möbius transformations:

A→ ζA+ β

γA+ δ
, B → ζB − β

−γB + δ
, ζδ − βγ = 1 . (3.103)

Classical expressions for the holomorphic and anti-holomorphic components of the energy-

momentum tensor are

T = −(∂φ)2 + b−1∂2φ , (3.104)

T̄ = −(∂̄φ)2 + b−1∂̄2φ . (3.105)

Inserting (3.102) in (3.104) and (3.105) we obtain, that components of the energy-momentum
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tensor are given by the Schwarzian derivatives of A(z) and B(z̄):

T = {A; z} =
1

2b2

[
A′′′

A′
− 3

2

(A′′)2

(A′)2

]
, (3.106)

T̄ = {B; z̄} =
1

2b2

[
B′′′

B′
− 3

2

(B′′)2

(B′)2

]
. (3.107)

The Schwarzian derivative is invariant under a constant Möbius transformation:

{
ζF + β

γF + δ
; z

}
= {F ; z}, ζδ − βγ = 1 . (3.108)

Quantum Liouville field theory is a conformal field theory enjoying the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
cL
12

(n3 − n)δn,−m , (3.109)

with the central charge

cL = 1 + 6Q2 . (3.110)

Two-point functions of Liouville theory are given by the function S(α) (3.112):

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 =
S(α)

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
, (3.111)

S(α) =
(πµγ(b2))

b−1(Q−2α)

b2

Γ(1− b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(b(Q− 2α))Γ(1 + b−1(Q− 2α))
. (3.112)

The spectrum of the Liouville theory has the form

H =

∫ ∞
0

dP RQ
2

+iP ⊗RQ
2

+iP , (3.113)

where Rα is the highest weight representation with respect to the Virasoro algebra.
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3.10 Two-point function with Defect producing jump in

cosmological constant

As we mentioned before the aim of this work is to construct topological defect gluing two

Liouville theories with different cosmological constants. For this purpose we will use bootstrap

programm. In fact the bootstrap programm for topological defects with the same theory on

both sides was developed in [194, 195, 203]. Here we will reconsider it, taking into account

the necessary changes caused by the presence of two different cosmological constants on the

different sides of the defects.

We consider a topological defect mapping the Hilbert space of the first theory on the

Hilbert space of the second theory X : H(1) → H(2) in the form:

X =

∫
Q
2

+iR
dαD(α)Pα , (3.114)

where Pα are maps:

Pα =
∑
N,M

(|α,N〉(2) ⊗ |α,M〉(2))(〈(1)α,N | ⊗(1) 〈α,M |) . (3.115)

Here |α,N〉(i) and |α,M〉(i), i = 1, 2 are vectors of orthonormal bases of left and right copy of

Rα of the first and second theory respectively. Two-point functions with a defect X insertion

can be written as

〈V (2)
α (z1, z̄1)XV (1)

α (z2, z̄2)〉 =
Dα

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
. (3.116)

where

Dα = D(α)S(1)(α) (3.117)

Consider the following four-point function with the defects insertions:

〈V (2)
−b/2(z1, z̄1)V (2)

α (z2, z̄2)XV (1)
α (z3, z̄3)V

(1)
−b/2(z4, z̄4)X†〉 . (3.118)
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One can compute (3.118) in two pictures. In the first picture at the beginning we use the

OPE

V (i)
α V

(i)
−b/2 ∼ C

(i)α−b/2
−b/2,α V

(i)
α−b/2 + C

(i)α+b/2
−b/2,α V

(i)
α+b/2 . i = 1, 2 (3.119)

and then (3.116) for the fields produced in this process. This results in

∑
±

Dα±b/2D0C
(1)α±b/2
−b/2,α C

(2)α±b/2
−b/2,α

Fα±b/2
 α α

−b/2 −b/2




2

, (3.120)

where Fα±b/2

 α α

−b/2 −b/2

 is so called conformal block giving contribution of the descen-

dant fields in the OPE (3.119). It appears squared since it is separately produced by the left

and right modes.

In the second picture we move the field V (2)
−b/2(z1, z̄1) to the most right position:

〈V (2)
α (z2, z̄2)XV (1)

α (z3, z̄3)V
(1)
−b/2(z4, z̄4)X†V

(2)
−b/2(z1, z̄1)〉 (3.121)

and then use twice (3.116) resulting in

DαD−b/2

F0

 α −b/2

α −b/2




2

+ · · · . (3.122)

Using the fusing matrix:

Fα±b/2

 α α

−b/2 −b/2

 = Fα±b/20

 −b/2 −b/2

α α

F0

 α −b/2

α −b/2

+ · · · , (3.123)

we obtain

∑
±

D0Dα±b/2C
α±b/2(1)
−b/2,α C

α±b/2(2)
−b/2,α

Fα±b/20

 −b/2 −b/2

α α




2

= DαD−b/2 . (3.124)

This is the Cardy-Lewellen cluster condition for defects.
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Let us use the relation [195]:

C(i)α3
α1,α2

Fα3,0

 α1 α1

α2 α2

 = W (i)(0)
W (i)(α3)

W (i)(α1)W (i)(α2)
, i = 1, 2 (3.125)

where W (i)(α) is the ZZ function [202]:

W (i)(α) = − 23/4e3iπ/2(πµiγ(b2))−
(Q−2α)

2b π(Q− 2α)

Γ(1− b(Q− 2α))Γ(1− b−1(Q− 2α))
, i = 1, 2 (3.126)

Define Ψ(α) by the equation.

Dα

D0
= Ψ(α)

W (1)(0)W (2)(0)

W (1)(α)W (2)(α)
. (3.127)

For Ψ(α) the equation (3.124) takes the form

Ψ(α)Ψ(−b/2) = Ψ(α− b/2) + Ψ(α + b/2) , (3.128)

The solution of the equation (3.128) is

Ψm,n(α) =
sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

sin(πmb−1Q) sin(πnbQ)
, (3.129)

Using (3.127) we obtain for the defect two-point function

Dm,n(α) =
sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

W (1)(α)W (2)(α)
. (3.130)

And finally dividing on S(1)(α):

S(1)(α) =
(πµ1γ(b2))

b−1(Q−2α)

b2

Γ(1− b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(b(Q− 2α))Γ(1 + b−1(Q− 2α))
. (3.131)

we get

Dm,n(α) =

(
µ2

µ1

)Q−2α
2b sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

sin πb−1(2α−Q) sinπb(2α−Q)
. (3.132)
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But this is not the end of the story.

Assume that we have a family of defects parameterized by κ. In this case D−b/2/D0, which

is two-point function of the degenerate field V−b/2 in the presence of defect, will be a function

A(κ, b) of κ and b. Substituting

A =
D−b/2

D0
(3.133)

and

Dα =
Λα

W (1)(α)W (2)(α)
. (3.134)

in (3.128) we obtain a linear equation for Λ(α):

W (1)(−b/2)W (2)(−b/2)

W (1)(0)W (2)(0)
AΛ(α) = Λ(α− b/2) + Λ(α + b/2) (3.135)

The solution of (3.135) is indeed one-parametric family,

Λs(α) = cosh(2πs(2α−Q)) , (3.136)

with parameter s related to A by

2 cosh 2πbs = A
W (1)(−b/2)W (2)(−b/2)

W (1)(0)W (2)(0)
. (3.137)

Substituting (3.136) in (3.134) we obtain for Ds(α) and Ds(α) respectively

Ds(α) = −21/2i cosh(2πs(2α−Q))

W (1)(α)W (2)(α)
. (3.138)

Ds(α) =

(
µ2

µ1

)Q−2α
2b cosh(2πs(2α−Q))

2 sinπb−1(2α−Q) sinπb(2α−Q)
. (3.139)

So we have two groups of topological defects:

Xs =

∫
Q
2

+iR
dαDs(α)Pα , (3.140)
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Xm,n =

∫
Q
2

+iR
dαDm,n(α)Pα , (3.141)

Recall that in each copy of the Liouville field theory one has two groups of boundary states,

FZZ states [201]:

|s〉(i) =

∫
Q
2

+iR
B(i)
s (α)|α〉〉(i)dα (3.142)

and ZZ states [202]:

|m,n〉(i) =

∫
Q
2

+iR
B(i)
m,n(α)|α〉〉(i)dα (3.143)

where |α〉〉(i) are the Ishibashi states satisfying L(i)
n + L̄

(i)
−n = 0, and

B(i)
s (α) = −21/2i cosh(2πs(2α−Q))

W (i)(α)
. i = 1, 2 (3.144)

B(i)
m,n(α) =

sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

W (i)(α)
. i = 1, 2 (3.145)

Using the identities:

sinh(2πnbP ) sinh(2πn′bP ) =

min(n,n′)−1∑
l=0

sinh(2πbP ) sinh(2πb(n+ n′ − 2l − 1)P ) (3.146)

and
sinh(2πnbP )

sinh(2πbP )
=

n−1∑
l=1−n,2

exp(2πlbP ) (3.147)

one obtains that fusion of the defects (3.140), (3.141) with boundary state of the first theory

producing linear combination of the boundary states of the second theory:

Xm,n|m′, n′〉(1) =

min(n,n′)−1∑
l=0

min(m,m′)−1∑
k=0

|m+m′ − 2k − 1, n+ n′ − 2l − 1〉(2) (3.148)

Xm,n|s〉(1) =
n−1∑

l=1−n,2

m−1∑
k=1−m,2

|s+ i(k/b+ lb)/2〉(2) (3.149)
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Xs|m,n〉(1) =
n−1∑

l=1−n,2

m−1∑
k=1−m,2

|s+ i(k/b+ lb)/2〉(2) (3.150)

as it is indeed expected.

3.11 Lagrangian of the Liouville theory with defect Xs

We propose the following action for the Liouville theories with the different cosmological

constants connected by the topological defect:

Stop−def =
1

2πi

∫
Σ1

(
∂φ1∂̄φ1 + µ1πe

2bφ1
)
d2z +

1

2πi

∫
Σ2

(
∂φ2∂̄φ2 + µ2πe

2bφ2
)
d2z (3.151)

+

∫
∂Σ1

[
− 1

2π
φ2∂τφ1 +

1

2π
Λ∂τ (φ1 − φ2) +

√
µ1µ2

2
e(φ1+φ2−Λ)b

− 1

πb2
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b +
1

2

√
µ2

µ1

e−(φ1−φ2)b − κ
)]

dτ

i
.

Here Σ1 is the upper half-plane σ = Imz ≥ 0 and Σ2 is the lower half-plane σ = Imz ≤ 0. The

defect is located along their common boundary, which is the real axis σ = 0 parameterized

by τ = Rez. Note that Λ(τ) here is an additional field associated with the defect itself. In

fact this is the Lagrangian proposed in [196] and considered in detail in [173], but which is

modified in a way to take into account that now µ1 6= µ2, and which becomes the old one for

µ1 = µ2.

The action (3.151) yields the following defect equations of motion at σ = 0:

1

2π
(∂ − ∂̄)φ1 +

1

2π
∂τφ2 −

1

2π
∂τΛ +

√
µ1µ2b

2
e(φ1+φ2−Λ)b (3.152)

− 1

πb
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b − 1

2

√
µ2

µ1

e−(φ1−φ2)b

)
= 0 ,

− 1

2π
(∂ − ∂̄)φ2 −

1

2π
∂τφ1 +

1

2π
∂τΛ +

√
µ1µ2b

2
e(φ1+φ2−Λ)b (3.153)

+
1

πb
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b − 1

2

√
µ2

µ1

e−(φ1−φ2)b

)
= 0 ,
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1

2π
∂τ (φ1 − φ2)−

√
µ1µ2b

2
e(φ1+φ2−Λ)b − 1

πb
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b +
1

2

√
µ2

µ1

e−(φ1−φ2)b − κ
)

= 0 .

(3.154)

The last equation is derived calculating variation by the Λ.

Using that ∂τ = ∂+∂̄ and forming various linear combinations of equations (3.152)-(3.154)

we can bring them to the form:

∂̄(φ1 − φ2) = π
√
µ1µ2be

b(φ1+φ2)e−Λb , (3.155)

∂(φ1 − φ2) =
2

b
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b +
1

2

√
µ2

µ1

e−(φ1−φ2)b − κ
)
. (3.156)

∂(φ1 + φ2)− ∂τΛ =
2

b
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b − 1

2

√
µ2

µ1

e−(φ1−φ2)b

)
. (3.157)

Let us require, that Λ is restriction to the real axis of a holomorphic field

∂̄Λ = 0 . (3.158)

This condition allows to rewrite (3.157) in the form

∂(φ1 + φ2 − Λ) =
2

b
eΛb

(
1

2

√
µ1

µ2

e(φ1−φ2)b − 1

2

√
µ2

µ1

e−(φ1−φ2)b

)
. (3.159)

We can check that the system of the defect equations of motion (3.155)-(3.159) guarantees

that both components of the energy-momentum tensor are continuous across the defects and

therefore describes topological defects:

− (∂φ1)2 + b−1∂2φ1 = −(∂φ2)2 + b−1∂2φ2 , (3.160)

− (∂̄φ1)2 + b−1∂̄2φ1 = −(∂̄φ2)2 + b−1∂̄2φ2 . (3.161)

Therefore, remembering that the solution (3.102) is invariant under the transformation (3.103),

and that the chiral components of the energy-momentum tensor are invariant under the
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Möbius transformation (3.108), we can without loosing generality look for a solution in the

form:

φ1 =
1

2b
log

(
1

πµ1b2

∂A∂̄B

(A+B)2

)
, (3.162)

φ2 =
1

2b
log

(
1

πµ2b2

∂C∂̄B

(C +B)2

)
, (3.163)

where

C =
ζA+ β

γA+ δ
. (3.164)

Substituting (3.162) and (3.163) in (3.155) we find that it is satisfied with

e−Λb =
A− C√
∂A∂C

. (3.165)

Since A and C are holomorphic functions, Λ is holomorphic as well, as it is stated in (3.158).

It is straightforward to check that (3.159) is satisfied as well with φ1, φ2 and Λ given by

(3.162), (3.163) and (3.165) respectively. And finally inserting (3.162), (3.163) and (3.165) in

(3.156) we see that it is also fulfilled with

κ =
ζ + δ

2
. (3.166)

3.12 Xs defects in the heavy asymptotic limit

In this section we link the continuous family of defects constructed in section 3 with

the Lagrangian constructed in the previous section. For this purpose we will use the heavy

semiclassical asymptotic limit. Recall that in all semiclassical limits, one takes b→ 0 and the

action blows to infinity like b−2. It is known [204] that in the heavy asymptotic limit, when

one additionally scales α = η
b
and ∆α = η(1 − η)/b2, correlation functions are given by the

exponential of the regularized action with the inserted fields computed on solution with the

logarithmic singularities around the insertion points. The regularization is necessary to keep

the action finite, since singularities of the solution may render it divergent. So we should

86



compute the heavy asymptotic limit of the defect two-point function (3.144) and compare

with the regularized defect action computed on the solutions with two singularities.

First we compute the heavy asymptotic limit of the defect two-point function (3.144). As

we said before, in the heavy asymptotic limit we set α = η
b
, and also s = σ

b
. Denote λi = πµib

2,

i = 1, 2. Performing the same steps as in [173] we can write in the heavy asymptotic limit 1

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 ∼ exp
(
−Sdef

)
, (3.167)

where

b2Sdef = 4η(1− η) log |z1 − z2| −
(

1

2
− η
)

log λ1 −
(

1

2
− η
)

log λ2 − (3.168)

(4η − 2) log(1− 2η) + (4η − 2)− 2π|σ|(1− 2η) .

Here we dropped all the terms in the exponential which blows slower then b−2. As it is

explained in [173] the required classical solution with two singular points can be built taking:

A(z) = e2ν1(z − z1)2η−1(z − z2)1−2η . (3.169)

B(z̄) = −(z̄ − z̄1)1−2η(z̄ − z̄2)2η−1 , (3.170)

C(z) = e2ν2(z − z1)2η−1(z − z2)1−2η = e2(ν2−ν1)A(z) , (3.171)

Eq. (3.166) implies

κ = cosh(ν2 − ν1) . (3.172)

Inserting (3.169)-(3.171) in (3.162 and (3.163) we obtain

ϕ1 = − log λ1 + 2 log(1− 2η) (3.173)

−2 log

(
eν1|z − z1|2η|z − z2|2−2η

|z1 − z2|
− e−ν1|z − z1|2−2η|z − z2|2η

|z1 − z2|

)
,

1Here we consider only the case of real η and real solutions of the Liouville equation. So we do not write
here imaginary terms, which one has in [173].
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ϕ2 = − log λ2 + 2 log(1− 2η) (3.174)

−2 log

(
−e

ν2|z − z1|2η|z − z2|2−2η

|z1 − z2|
+
e−ν2|z − z1|2−2η|z − z2|2η

|z1 − z2|

)
.

Here ϕi = 2bφi, i = 1, 2.

The leading terms of ϕ1 around z1 are

ϕ1 → −4η log |z − z1|+X1 , (3.175)

where

X1 = − log λ1 + 2 log(1− 2η)− (2− 4η) log |z1 − z2| − 2ν1 . (3.176)

The leading terms of ϕ2 around z2 similarly are

ϕ2 → −4η log |z − z2|+X2 , (3.177)

where

X2 = − log λ2 + 2 log(1− 2η)− (2− 4η) log |z1 − z2|+ 2ν2 . (3.178)

Since we consider here only insertions of the bulk field, and do not consider insertions of

the defect or boundary fields, following the same steps as in [204] the regularized action, with

n fields inserted in the upper half-plane, and m fields inserted in the lower half-plane, takes

88



the form:

b2Stop−def =
1

8πi

∫
ΣR1 −∪idi

(
∂ϕ1∂̄ϕ1 + 4λ1e

ϕ1
)
d2z (3.179)

−
n∑
i=1

(
ηi
2π

∮
∂di

ϕ1dθi + 2η2
i log εi

)
+

1

2π

∫
sR1

ϕ1dθ + logR

+
1

8πi

∫
ΣR2 −∪jdj

(
∂ϕ2∂̄ϕ2 + 4λ2e

ϕ2
)
d2z

−
n+m∑
j=n+1

(
ηj
2π

∮
∂dj

ϕ2dθj + 2η2
j log εj

)
+

1

2π

∫
sR2

ϕ2dθ + logR

+

∫ R

−R

[
− 1

8π
ϕ2∂τϕ1 +

1

8π
Λ̃∂τ (ϕ1 − ϕ2) +

√
λ1λ2

2π
e(ϕ1+ϕ2−Λ̃)/2

− 1

π
eΛ̃/2

(
1

2

√
λ1

λ2

e(ϕ1−ϕ2)/2 +
1

2

√
λ2

λ1

e−(ϕ1−ϕ2)/2 − κ

)]
dτ

i
.

where Λ̃ = 2bΛ, ΣR
i is a half-disc of the radius R and sRi is a semicircle of the radius R in

the half-plane Σi, i = 1, 2. The two-point function in question is given by the exponential

of the regularized action with one field inserted in the upper half-plane, and with one field

inserted in the lower half-plane, with η1 = η2 = η, calculated on solution (3.173) and (3.174).

To calculate it, we will use, that it satisfies the equation [173,204,205]:

b2∂S
top−def
cl

∂η
= −X1 −X2 . (3.180)

Inserting (3.176) and (3.178) in (3.180) one obtains

b2∂S
top−def
cl

∂η
= log λ1 + log λ2 − 4 log(1− 2η) + (4− 8η) log |z1 − z2|+ 2(ν1 − ν2) . (3.181)

Integrating equation (3.181) we obtain:

b2Stop−def = 4η(1− η) log |z1 − z2| (3.182)

+η log λ1 + η log λ2 − (4η − 2) log(1− 2η) + 4η + 2η(ν1 − ν2) + C ,

where C is a constant.
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To fix the constant term we can directly compute the action (3.179) for the solution

(3.173)-(3.174) with η = 0:

ϕ1 = − log λ1 − log

(
eν1

|z1 − z2|
|z − z2|2 −

e−ν1

|z1 − z2|
|z − z1|2

)2

, (3.183)

ϕ2 = − log λ2 − log

(
eν2

|z1 − z2|
|z − z2|2 −

e−ν2

|z1 − z2|
|z − z1|2

)2

. (3.184)

Evaluation of the action (3.179) on the solution (3.183), (3.184) can be carried out along

the same steps as done in appendix C of [173]. The result is

b2S0 = −1

2
log λ1 −

1

2
log λ2 − 2− (ν1 − ν2) . (3.185)

Comparing (3.185) with (3.182) fixes the constant C:

C = −1

2
log λ1 −

1

2
log λ2 − 2− (ν1 − ν2) . (3.186)

Inserting this value of C in (3.182) we indeed obtain (3.168) if we set

2πσ = ν1 − ν2 . (3.187)

The main results of this chapter are published in [177,206]
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Conclusion

The main results of dissertation:

1.It has been obtained current-current correlation function in 3D massive Dirac theory with

chemical potential.

2.It has been shown the behaviour of current-current correlation function in third order of

Feynman diagrams in the presence of chemical potential and magnetic field .

3.It has been studied the moat spectra of topological insulator regarding cold atoms with

spin-orbit interacting.

4.It has been obtained boundary three point function on mini-superspace in Liouville field

theory and also has been computed matrix elements for the Morse potential quantum me-

chanics. An exact agreement between the former and latter has been found. We show that

both of them are given by the generalized hypergeometric functions.

5.We construct topological defects in the Liouville filed theory producing jump in the value

of cosmological constant. We construct them using the Cardy-Lewellen equation for the two-

point function with defect.

6.We show that there are continuous and discrete families of such kind of defects. For the

continuous family of defects we also find the Lagrangian description and check its agreement

with the solution of the Cardy-Lewellen equation using the heavy asymptotic quasi-classical

limit.
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