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1 Introduction

Integrble models play an important role in the modern theoretical and mathematical

physics. Due to the fact that different physical phenomena can have similar mathematical

description, exactly solvable models can be used in many different areas. One can see

that using these models huge amount of (both macroscopic and microscopic) physical

phenomena can be described. Moreover integrable models can have applications even in

other disciplines, due to the fact that system of integrable differential equations arise in

other subjects e.g. mathematics, computer science, biology etc. The thesis is devoted

to superintegrable extensions of oscillator and Coulomb models with an inverse square

potential. Integrable models with inverse square potential are studied for few decades.

Due to this fact they are well studied and there are many important results about these

systems. Namely the Calogero-model has unique properties and due to that nowadays this

is an important system in mathematical physics. On the other hand projective spaces

have also interesting properties . Due to the fact that they are maximally symmetric

spaces it is important to consider physical systems on these spaces. Unfortunately these

two branches of mathematical physics are disconnected now. Complex analogs of Calogero

model are not studied well and attempts to construct complexification of Calogero-like

models haven’t succeeded yet.

The N -dimensional mechanical system, i.e. system with N degrees of freedom, will be

called integrable if it has N mutually commuting and functionally independent constants

of motion[10, 11]. In addition to these constants of motion the system may have more. In

that case we will say that the system is superintegrable. In particular if N -dimensional

mechanical system has 2N − 1 functionally independent constants of motion it will be

called maximally superintegrable. In case the system has N+1 conserved quantities it is

called minimally superintegrable. While integrable models possess separation of variables

in one coordinate system, superintegrability guarantees separation of variables in many co-

ordinate systems. For example two-dimensional oscillator is superintegrable, which allows

us to separate variables in Cartesian and polar coordinates. In classical mechanics max-

imal superintegrability guarantees the closeness of trajectories. Quantum mechanically

energy spectrum of integrable models depend on N quantum numbers. If the system has

K additional conserved quantities (superintegrable) energy spectrum depends on N −K

quantum numbers. For maximal superintegrability we have that the energy spectrum
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contains only one quantum number. So we can conclude that superintegrability leads

to degeneracy of energy spectrum in quantum level. Well known examples of maximally

superintegrable models are N -dimensional Coulomb system and N -dimensional harmonic

oscillator. Another important but recently discovered model is the Calogero model.

In the Section 2 we discuss the general notion of Kähler manifolds, namely we speak

about Kähler potential, the metric and the Killing potentials. We give us a simple ex-

ample of Kähler manifolds (pseudo)Euclidean complex spaces as well as compact and

non-compact complex projective spaces.

In the Section 3 we inviting The Klein model of Lobachevsky space and mapping a

conformal mechanics to it in one dimensional case first. Than we extend Klein model

for the N-dimensional case and writing down the SU(1.N) algebra of Killing potentials.

We got an interesting results that isometry generators of the phase space, namely Killing

potentials are appear to be the constants of motion of the system.

In the Section 4 we gave as an example the harmonic oscillator, and show that this

family of integrable systems with Lobachevsky space being their phase space, contains it.
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2 Kähler structure

Kähler manifolds play an important role in modern theoretical physics and mathematics

[15, 18]. In algebraic geometry a class of algebraic varieties are Kähler manifolds. In

supersymmetry the target space can be sometimes viewed as a Kähler manifold. Moreover,

in string theory some compactification schemes are based on Kähler manifolds , e.g Calabi-

Yau manifolds is a compact Kähler manifold with vanishing first Chern class, that is also

Ricci flat. We will mainly focus on the role of Kähler spaces in Hamiltonian mechanics.

Kähler manifolds have three mutually compatible structures, namely complex structure,

Riemannian structure and symplectic structure. Kähler manifold is a special case of

general Hermitian manifold (gab̄du
adūb). For the general Hermitian metric one can define

a 2-form

ω = ıgab̄du
a ∧ dūb (1)

This two form is called a fundamental form of Hermitian manifold. Hermitian manifold is

called Kähler manifold if the two form maintained above is symplectic, that is closed and

non-degenerate. This requirement allow us to write Kähler metric as a second derivative

of some function K = K(u, ū) which is called Kähler potential.

gab̄ =
∂2K(u, ū)

∂ua∂ūb
(2)

This function is not defined uniquely, a holomorphic or antiholomorphic functions can

be added to it.

K(z, z̄)→ K(z, z̄) + U(z) + Ū(z̄) (3)

Due to natural symplectic structure of Kähler manifolds they can be equipped with

Poisson brackets

{f(u, ū), g(u, ū)} = ıgab̄
(
∂f

∂ua
∂g

∂ūb
− ∂f

∂ūb
∂g

∂ua

)
, gābgbc̄ = δac , gab̄ = ∂a∂b̄K. (4)

Let us consider the Lagrangian

L =
ı

2
(ża∂aK − ˙̄z

a
∂āK)−H(z, z̄), (5)

where K(z, z̄) is Kähler potential defining the metrics gab̄dz
adz̄b, gab̄ = ∂a∂b̄K. It describes

Hamiltonian mechanics with Hamiltonian H and symplectic structure ı
2
gab̄dz

a ∧ dz̄b.
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Since the symplectic structure relates functions (Hamiltonian) and vector fields (Hamil-

tonian vector fields), we can introduce functions that generate a Killing vector fields. The

isometries of Kähler structure are Hamiltonian holomorphic vector fields,

V(µ) = V a
(µ)(u)

∂

∂ua
+ V̄ a

(µ)(ū)
∂

∂ūa
, V a(u) = ıgāb∂āh(µ)(u, ū) : {hµ, hν} = Cλ

µνhλ (6)

V(µ) = {hµ, }. (7)

and the Hamiltonian functions (generators) hµ are known as the ”Killing potentials”.

Using Killing Equations one can derive restrictions on Killing potentials. They should be

real and they have to satisfy the following equation

∂2hµ
∂za∂zb

− Γcab
∂hµ
∂zc

= 0. (8)

2.1 (Pseudo)Euclidean space as a Kähler manifold

The well known metric of N+1-dimensional complex Euclidean space is (from now on

Einstein sum notation is assumed)

ds2 = uiūi ≡ uū, gij̄ = δij̄ i = 0, ..., N. (9)

for the further analogy with pseudo-Euclidean space let us keep in mind the following way

of writing the metric above,

ds2 = u0ū0 + uaūa ≡ uū, a = 1, ..., N. (10)

It is easy to see that the following Kähler potential will bring to this metric:

K(u, ū) = uū, ω = −ıdu ∧ dū, {ui, ūj} = ıδij̄, i, j = 0, ..., N. (11)

The metric of N+1-dimensional pseudo-Euclidean space C1.N is

ds2 = u0ū0 − uaūa, gij̄ = γij̄, i, j = 0, a a = 1, ..., N. (12)

γ =


1 0

−1

0
. . .

 . (13)

The Kähler potential that brings to this metric and Kähler structure are as follows

K(u, ū) = u0ū0 − uaūa, ω = −ıγij̄dui ∧ dūj, {ui, ūj} = iγij̄, i, j = 0, ..., N. (14)
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2.2 Compact and non-compact complex projective spaces

The N-dimensional complex projective space CPN , compact and non-compact, can be

obtained by reduction from Euclidean complex space CN+1 and pseudo-Euclidean complex

space C1.N respectively. We can get to the compact CPN from the Euclidean complex

space by imposing the constraint uiūj = u0ū0 + uaūa = 1. In the same way, for the

non-compact CPN we need to have a constraint u0ū0 − uaūa = 1. The coordinates of

CPN for both cases (compact and non-compact) are defined as follows

za =
ua
u0

,

(
z̄a =

ūa
ū0

)
(15)

For the compact and non-compact complex projective spaces CPN , Kḧler structure

and respective metrics are defined by expressions (the upper sign presents the compact

case, the lower one non-compact)

K = ± log(1±zz̄), gab̄dz
adz̄b =

dzdz̄

1± zz̄
∓ (z̄dz)(zdz̄)

(1± zz̄)2
, gāb = (1±zz̄)(δāb± z̄azb). (16)

The isometry algebra of CPN is su(N+1)/su(N.1). It is defined by the Killing potentials

hab̄ =
zaz̄b ∓ δab̄

1± zz̄
, ha =

2za
1± zz̄

, hā =
2z̄a

1± zz̄
(17)

The generators hab̄ form u(N) symmetry algebra, and all together- su(N + 1) algebra for

the upper sign, and su(N.1) for the lower one, with

{ha, hb} = 0, {ha, hb̄} = −4ıhab̄, {ha, hbc̄} = ±i (haδbc̄ + hbδac̄) , (18)

{hab̄, hcd̄} = ∓ı(had̄δcb̄ − hcb̄δad̄). (19)

Remark.This system can be interpreted as a ”large mass limit” of the particle on

Kähler manifold moving in the constant magnetic field Bab = ıBgab. Indeed, consider

first order Lagrangian

L = πaż
a + π̄az̄ −

ıB

2
(ża∂aK − ˙̄z

a
∂āK)− 1

µ
gābπ̄aπb − V (z, z̄), (20)

It describes particle with mass µ moving on Kähler space with metric gab̄dz
adz̄b in the

presence of potential field H and magnetic field with ”vector” potential (1-form) A =

ıB
2

(dza∂aK − dz̄a∂āK). Its strength is equal to dA = ıBgab̄dz
a ∧ dz̄b. Respectively, the

magnitude of this magnetic field is equal to B, i.e. the magnetic field is constant. Hence

in the ”large mass limit” µ→∞ the Lagrangian results in.
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Most known example of integrable system with Kähler phase space is (compactified)

Ruijsenaars-Schneider system, or the so-called “relativistic Calogero model” was sug-

gested in [19]. It has trigonometric, elliptic variants and hyperbolic variants. Hyperbolic

variant is dual to rational Calogero model. Trigonometric Ruijsenaars-Schneider model

is periodic both on coordinates and momenta, and therefore, has a compact phase space.

Pompactifying momenta in the trigonometric Ruijsenaars model one get that phase space

to complex projective space CPN . Tthe explicit mapping of that phase space to com-

plex projective space CPN , as well as formulation of the system in terms of action-angle

variables was done by Ruijeersnaars in [20]. Then Van Dejen and Vinet quantised these

system by the use of geometric quantization method [21], while Gorbe and Feher extended

this result to elliptic Ruijsenaars-Schneider systems [22].
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3 Non-compact complex projective space as a Klein

model of Lobachevsky space

3.1 One dimensional case

In the one dimensional case the reduction is performed from the 2-dimensional pseudo-

Euclidean space C1.1

ds2 = u0ū0 − u1ū1, K = u0ū0 − u1ū1, {ui, ūj} = ıγij̄ (21)

γ =

1 0

0 −1

 (22)

The coordinates in CP1 are

z =
u1

u0

,

(
z̄ =

ū1

ū0

)
(23)

The Kähler potential that defines Poincare model is

K = − log(1− zz̄). (24)

With the Poisson brackets for the one dimensional Poincare model

{z, z̄} = −ı(1− zz̄)2 (25)

The mapping of conformal mechanics to Lobachevsky space(non-compact complex projec-

tive space) is convenient to perform by the use of Klein model. Let us perform following

coordinate transformations in C1.1

u0 =
v1 + ıv0√

2
, u1 =

v1 − ıv0√
2

. (26)

it will bring us to to

ds2 = ı(v0v̄1 − v1v̄0), K = ı(v0v̄1 − v1v̄0), {vi, v̄j} = ıΓij̄ (27)

Γ =

0 −ı

ı 0

 (28)

Now we can make a reduction of C1.1, and parameterize C1.1 in the following way

w =
v1

v0

,

(
w̄ =

v̄1

v̄0

)
. (29)
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This will bring to the Klein model of Lobachevsky space.It defined by Kähler potential

K = − log ı(w̄ − w). (30)

The Poisson brackets in Klein model in one dimensional case are defined by

{w, w̄} = i(w̄ − w)2. (31)

It can be obtained from Poincare model by transformation

z =
w − ı
w + ı

. (32)

In this notation Killing potentials read

h11̄ =
ww̄ + 1

ı(w̄ − w)
, h1 =

(w − ı)(w̄ − ı)
ı(w̄ − w)

, h1̄ =
(w + ı)(w̄ + ı)

ı(w̄ − w)
(33)

Then we introduce the canonical phase space variables by the expression

w =
p

x
+ ı

g

x2
. (34)

In these terms the standard conformal mechanics reads

H = 2g
ww̄

ı(w̄ − w)
= p2 +

g2

x2
, K = 2g

1

ı(w̄ − w)
= x2, D = 2g

w̄ + w

ı(w̄ − w)
= px. (35)

{H,K} = −D, {H,D} = −2H, {K,D} = 2K (36)

3.2 N-dimensional case

Now, let us try to find the analog of this structure in the N -dimensional Klein model.

In this case, as we have said above, for C1.N space the metric is ds2 = u0ū0 − uaūa, the

Kähler potential K = u0ū0 − uaūa and the Poisson brackets

{ui, ūj} = ıγi,j̄, i, j = 0, N, α α = 1, ..., N − 1. (37)

Here we have changed some labeling of the rows and columns of the matrix γ, namely we

replace 1st row and 1st column by Nth ones and the next indexes are just shifted by 1

(2, ..., N → 1, ..., N − 1).

γ =



1 0

0 −1

−1
. . .

−1


(38)
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The coordinates in Poincare model of CPN where defined as follows

za =
ua
u0

. (39)

Performing an analogous transformations of coordinates as in one dimensional case

u0 =
vN + ıv0√

2
, uN =

vN − ıv0√
2

, uα = vα, α = 1, ..., N − 1. (40)

we will arrive to the metric ds2 = ı(v0v̄N − vN v̄0 − vαv̄α), Kähler potential K = ı(v0v̄N −

vN v̄0 − vαv̄α) and Poisson brackets

{vi, v̄j} = ıΓij̄, i, j = 0, N, α α = 1, ..., N − 1. (41)

Γ =



0 −i

i 0

−1
. . .

−1


(42)

Then we define the coordinates in N-dimensional Klein model of Lobachevsky space

by the following

w =
vN
v0

, z̃α =
vα
v0

, α = 1, ..., N − 1. (43)

N-dimensional Klein model is defined by the Kähler potential

K = − log [ı(w̄ − w)− z̃α ¯̃zα] , α = 1, . . . N − 1. (44)

It can be obtained from the N -dimensional Poincare one by transformation

zN =
w − ı
w + ı

, zα =
√

2
z̃α

w + ı
. (45)

Poisson brackets in Klein model are defined by the relations

{w, w̄} = ı[(w̄ − w)− zγ z̄γ](w̄ − w), {w, z̄α} = [ı(w̄ − w)− zγ z̄γ]z̄α, (46)

{zα, z̄β} = −ı[ı(w̄ − w)− zγ z̄γ]δᾱβ. (47)

The Killing potentials of respective Kähler structure are defined by the expressions

(instead of z̃α we use the old notation zα)

hNN̄ =
ww̄ + 1

ı(w̄ − w)− zγ z̄γ
, hαN̄ =

1√
2

zα(w̄ + ı)

ı(w̄ − w)− zγ z̄γ
, hαβ̄ =

zαz̄β
ı(w̄ − w)− zγ z̄γ

(48)
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hN =
(w − ı)(w̄ − ı)
ı(w̄ − w)− zγ z̄γ

, hα =
√

2
zα(w̄ − ı)

ı(w̄ − w)− zγ z̄γ
. (49)

These potentials form su(1.N) algebra, which in given notation reads the same as (6)

with a = N,α.

For our purposes it is more convenient to use the linear combination of above genera-

tors, vis

H0 =
ww̄

ı(w̄ − w)− zγ z̄γ
, K0 =

1

ı(w̄ − w)− zγ z̄γ
, D0 =

w + w̄

ı(w̄ − w)− zγ z̄γ
, (50)

HαN̄ =
zαw̄

ı(w̄ − w)− zγ z̄γ
, Hα =

zα
ı(w̄ − w)− zγ z̄γ

, Hαβ̄ =
zαz̄β

ı(w̄ − w)− zγ z̄γ
, (51)

In these terms the SU(1.N) algebra reads

{Hα, Hβ} = {HαN̄ , HβN̄} = 0, (52)

{H0, K0} = −D0, {H0, D0} = −2H0, {K0, D0} = −2K0, (53)

{H0, Hα} = HαN̄ , {H0, HαN̄} = 0, {H0, Hαβ̄} = 0 (54)

{K0, Hα} = 0, {K0, HαN̄} = −Hα, {K0, Hαβ̄} = 0, (55)

{D0, Hα} = Hα, {D0, HαN̄} = −HαN̄ , {D0, Hαβ̄} = 0, (56)

{Hα, Hβ̄} = −ıK0δαβ̄, {Hα, HNβ̄} = Hαβ̄ −
1

2
(H0 +K0 + ıD0)δαβ̄, (57)

{HαN̄ , HNβ̄} = −ıH0δαβ̄, (58)

{Hα, Hβγ̄} = −ıHβδαγ̄, {HαN̄ , Hβγ̄} = −ıHβN̄δαγ̄, (59)

{Hαβ̄, Hγδ̄} = ı(Hαδ̄δγβ̄ −Hγβ̄δαδ̄). (60)

Notice that we have the following generators HαN̄ , HNᾱ, Hαβ̄ that commute with

Hamiltonian.

With these expressions at hands we can construct the variety of conformal mechanical

systems defined by Killing potentials.

To transit to canonical coordinates let us write down the symplectic one-form

A =
1

2

dw + dw̄ + ı(zαdz̄α − z̄αdzα)

ı(w̄ − w)− zβ z̄β
. (61)

Then we transit from the complex coordinates to the real ones w = x+ıy, zα = qαeıϕα and

require A = pxdx+παdϕα. This yields the following canonical coordinates and momenta:

px =
1

2y − q2
, πα =

q2
α

2y − q2
⇔ qα =

√
πα
px
, y =

π + 1

2px
, with π =

∑
πα

(62)
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Thus, the complex coordinates express via canonical ones as follows

w = x+ ı
π + 1

2px
, zα =

√
πα
px

eıϕα . (63)

This prompt us to perform the trivial canonical transformation (px, x) → (x,−px) and

rewrite above expression in a more convenient form

w = −px + ı
π + 1

2x
, zα =

√
πα
x

eıϕα . (64)

Notice that

ı(w̄ − w)− zγ z̄γ =
1

x
. (65)

For complete analogy with one-dimensional case we perform further canonical transfor-

mation (px, x)→ (pr, r) with

(px, x)→ (pr, r) : px =
pr
r
, x = r2. (66)

Then we get

w =
pr
r

+ ı
π + 1

2r2
, zα =

√
πα
r

eıϕα (67)

and

ı(w̄ − w)− zγ z̄γ =
1

r2
. (68)

Thus, the Killing potentials reads

H0 = p2
r +

(π + 1)2

4r2
, K0 = r2, D0 = 2prr (69)

HαN̄ =

(
pr − ı

π + 1

2r

)
√
παeıϕα , Hα = r

√
παeıϕα , Hαβ̄ =

√
παπβeı(ϕα−ϕβ) (70)

So, it describes the conformal mechanics with separated ”radial” and ”angular” sec-

tors. Assuming that (πα, φα) are action-angle variables we get that this set of systems

includes rational Calogero models, as well as genic maximally superintegrable deforma-

tions of oscillator and Coulomb systems [7]. Let us mention the recent paper [3] where

these system were in terms of phase space C̃P
1
×M, where M is the phase space of

”angular” sector. Present description is completely geometrical, and allows to use ge-

ometric quantization etc. Moreover, in these terms we can construct the N -extended

superconformal extension of these systems, as it was done in [6] for one-dimensional case.
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4 Holomorphic factorization

In [3] were discussed some aspects of ”holomorphic factorization” and some hidden sym-

metries of deformed oscillator and Coulomb systems were found by guessing the view of

the constants of motion. Having the algebra (52-60) in our hands we can do it easier due

to explicit views of conserved quantities. Here we give an oscillator example by writing

its hidden symmetries, i.e. ”Fradkin Tensor” in terms of our generators. Let us write the

algebra so(1.2) of conformal generator in the following way

H0 =
p2
r

2
+

(π + 1)2

8r2
, K0 =

r2

2
, D0 = prr (71)

and define the Casimir element

I = 2H0K0 −
1

2
D2

0 : {I, H0} = {I, D0} = {I, K0} = 0 (72)

It is obviously a constant of motion independent on radial coordinate and momentum,

and thus could be expressed via appropriate angular coordinates φα and canonically con-

jugate momenta πα which are independent on radial ones: I = I(φα, πα).In these terms

the generators of conformal algebra read

H0 =
p2
r

2
+
I
r2
, K0 =

r2

2
, D0 = prr (73)

Hence, such a separation of angular and radial parts could be defined for any system

with dynamical conformal symmetry, and for those with additional potentials be function

of conformal boost K. In particular, such a generalized oscillator and Coulomb systems

assume adding of potential

Vosc =
ωr2

2
, VCoul = −γ

r
(74)

so that their Hamiltonian takes the form

Hosc/Coul =
p2
r

2
+
I
r2

+ Vosc/Coul (75)

Analyzing these deformations in terms of actionangle variables, it was found that they

are superintagrable iff the spherical part has the form

I =
1

2

(
N−1∑
α=1

kαIα + c

)2

(76)
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with c be arbitrary constant and ka be rational numbers.

Define the action-angle variables

I = I(Iα), ω = Iα ∧ φα, φα ∈ [0, 2π) (77)

Comparing this with the results we got in previous section (68) we see that

I =
(π + 1)2

8
=

1

2

(
N−1∑
α=1

1

2
πα +

1

2

)2

(78)

so it coincides with the formula (73) when kα = 1
2

and c = 1
2
. Note that the action

variables Iα are the conserved quantities Hαᾱ in (50) or (67). Obviously we have more

conserved quantities which are HαN̄ .The algebra of these integrals of motion is given by

(51)-(57).

Now let as consider as an example the Harmonic oscillator given by Hamiltonian

Hosc =
p2
r

2
+
I
r2

+ ωr2 = H0 + ωK (79)

In this case an additional conserved quantities are

Mα = H2
αN̄ + ωH2

α, {Hosc,Mα} = 0 (80)

where Hα-s are given by (50) or (67).
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5 Conclusion

We are inviting non-compact complex projective space as the Klein model of Lobachevsky

space to be Kähler phase space first in on dimensional case. Then we map the conformal

mechanics to it, with generators H0, K0, D0 forming so(1.2) algebra. In N dimensional

case we choose pretty handy coordinates that brings as to conclusion that the symmetries

of the phase space are the same as the symmetries of the system. Moreover, It seems

that very large family of integrable systems may be described in this way, namely all

the deformations of N-dimensional oscillator, Coulomb systems etc.. This description is

purely geometrical so it can be quantized by the geometric quantization. Also, we are

planning to build some super generalization, which will be some unified description of a

large family of supersymmetric systems.
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