
UNIVERSITY OF L’AQUILA

DEPARTMENT OF PHYSICAL AND CHEMICAL
SCIENCES

Master’s Thesis in Physics

Grand Unification
of Fermion Masses

Author:
Lasha Pantskhava

Supervisor:
Prof. Zurab Berezhiani

Matricola : 253856

October 2019



Contents
1 Introduction 2

2 Standard Model 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 SM Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Strong Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electroweak Theory . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Renormalization Group 13
3.1 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Gauge Couplings are Running . . . . . . . . . . . . . . . . . . 14

4 Fritzsch Mass Matrices 16

5 Beyond Standard Model 18
5.1 SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 GUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 SU(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 SO(10) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 The Model 28
6.1 Preparation to test the Model . . . . . . . . . . . . . . . . . . 31
6.2 Testing Model (Exchange with 10) . . . . . . . . . . . . . . . 34
6.3 Introducing Higher Symmetry SO(10) . . . . . . . . . . . . . . 37

6.3.1 When M ′
5 = M ′

10 . . . . . . . . . . . . . . . . . . . . . 44
6.3.2 When M ′

5 = −3M ′
10 . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion 51

8 Appendix 51
8.1 Seesaw Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1



1 Introduction
Nowadays, Standard Model is the most successful model that is tested by
many precise experimental measurements. SM coalesces in itself many fun-
damental theories, like: Quantum Field Theory that provided ultimate
view of describing particles and their interactions; Dirac equation that de-
scribes dynamics of spin 1

2 particles-fermions and of course gauge principle
that gives us clear description of interaction between gauge and fermion-
boson fields. Ultimately, SM is nothing without the Higgs Mechanism,
that with its brilliant method for breaking the electroweak symmetry gener-
ates masses. However, there are some uncertainties and problems. Standard
Model of particle physics has 26 free parameters, we insert it on our own.
There are twelve masses of fermions, three coupling constants describing
gauge interaction, two parameters for Higgs potential eight mixing angles
and one from CP violation.

me mµ mτ mν1 mν2 mν3 mu mc mt md ms mb θcp
g′ gW gs v mH θ12 θ13 θ23 δ λ A ρ η

These 26 parameters are chosen in a way to match the observations. It does
not come from a higher theoretical phenomena. In other way, we can say
that - theory cannot fix them by itself. Moreover, it should be said that
SM describes only 3 fundamental forces Strong, Electromagnetic and Weak.
Therefore, Gravity is somewhat "oppressed".

Despite this huge problem SM gives us some hints. If we look on the
pic.1 we can see that masses of fermions are divided by family. It is clear
that in each family fermions have masses of the same order, this is unlikely to
happen by chance. Consequently, we might think that our Standard Model
might be some low-energy manifestation of some, more general theory.

Such hierarchy between the fermion masses is highly intriguing for us.
We do not know why the spectrum is spread from MeVs to GeVs (nearly 105

order). In SM Lagrangian Yukawa terms are vital to give particles masses
after SSB and Highs mechanism. These Yukawa matrices are proportional
to the mass matrices and they are arbitrary. After some procedures, diago-
nalizing and getting eigenvalues we get small mixing angles between up and
down quarks. So, our problem can be stated in a different way: why up and
down quark matrices are aligned in a way to give us small angles?

To explain this phenomena, it is appealing to consider some scale between
electroweak and Plank. Then we assume that there exists more fundamental
theory that can make some constraint on Yukawa terms.

Nowadays the most promising ideas beyond SM are related to the con-
cepts of GUT and SUSY. At some energy SU(3) × SU(2) × U(1) is unified
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Figure 1: The fermion masses shown by generation. Here, the neutrino
masses are displaye as approximate ranges of values assuming that we have
normal hierarchy. The upper limits on the sum of neutrino masses from
cosmological constraints are being used [7].

into the SU(5). Is SU(5) unification the answer? unfortunately, no. It can
provide vital improvements, however Yukawa terms Y u and Y d still remain
arbitrary. So, we are forced to go beyond SU(5) and implement new ideas
that can shed more light on our problem.

Creating a model is like playing a lottery, because you do not know at
the end if you win or not(if you get correct results or not) therefore we tried
different models and schemes and at the end we got the results with high
precession. Firstly, we are working of a GUT scale considering SU(5) sym-
metry, using its’ perks and algebra. However, to explain hierarchy between
masses we say that there exist new symmetry between families that is called
a horizontal symmetry SU(3)H that is chiral and compatible with grand uni-
fication. It is impressive that by writing operators of processes we can make
realization of Fritzsch-like matrices where we have three free parameters ini-
tially, A,B and α. Then comes the fourth one from Clebsch coefficients. Our
task was to fix these parameters from knowing lepton masses and their divi-
sions however, how unfortunate it sounds SU(5) × SU(3)H did not gave us
physically correct model. Consequently, we went a little bit "up" and intro-
duced SO(10) that made problem more symmetric. It was quite impressive
how this change made task more united and clear. We made realization of
Fritzsch-like mass matrices and finally got brilliant results for quarks. We
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used constantly iteration method during calculation to make results more
and more accurate. On a table below you can see what was our input and
what we have got:

Free Parameters
A B α x

Input in the Model:
Whole Lepton Part+(23) mixing angle

Output
Yu
Yc
∼ 1

500 ∴ Yd
Ys
∼ 1

20.3
mu(2GeV ) '
2.64 MeV

mc(Mc) ' 1.32 GeV mt(Mt) ' 163.42GeV

md(2GeV ) '
4.768 MeV

ms(2GeV ) '
96.8 MeV

mb(Mb) ' 4.117 GeV

s12 ' 0.22 ∴ s13 ' 4 · 10−3

As you can see all values fall into the error range of pdg values [9].
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2 Standard Model

2.1 Overview
For the Standard Model we have local symmetry group:

SU(3)C × SU(2)L × U(1)Y (1)

Here C stands for the color charge. L and Y, left-handed chirality and
weak hypercharge respectively. We have to have Lorentz invariance, gauge
invariance, therefore mediator of the interactions are bosons of their group,
that have their own coupling constants. About SU(3)C we can say that it
is the non-abelian local symmetry group for QCD. It has N2− 1 generators,
that describe eight massless gluons. Electromagnetic and weak interaction
is unified into electroweak (EW) SU(2)L × U(1)Y . Mediators are 3 massive
particles, massive bosons (W±, Z0) and the massless photon γ.

Fermions are two types, quarks and leptons. Both are divided into three
families, generations. Up, Charm and top quarks have charge +2

3 and Down,
Strange, Bottom quarks have −1

3 . In leptons we have Electron, Muon and
Tauon that have charge −1 and three chargeless neutrinos.

Standard Model
Three Generations of Matter Interactions/force carriers
1st 2nd 3rd Bosons
u+ 2

3 c+ 2
3 t+

2
3 g H

d−
1
3 s−

1
3 b−

1
3 γ

e−1 µ−1 τ−1 Z0

ν0
e ν0

µ ν0
τ W±

We construct theory in a way that left-handed and right-handed chi-
ral components of the fermions "construct" different representations. So for
quarks we can say that their left-handed components are grouped into weak
isospin doublet and color tiplet. Leptons are singlets of SU(3)C but dou-
blets of SU(2)L. RH components are just weak isospin singlets. This can be
summarized on the diagram below [7]
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I I3 Y Q

Lepton Doublet lL ≡
(
νL
lL

)
i

1
2

1
2
−1

2
−1

2
0
−1

Lepton Singlet lRi 0 0 −1 −1

Quark Doublet qL ≡
(
uL
dL

)
i

1
2

1
2
−1

2

1
6

2
3
−1

3

Quark Singlet uRi
dRi

0 0
2
3
−1

3

2
3
−1
3

Higgs Doublet Φ ≡
(

Φ+

Φ0

)
1
2

1
2
−1

2

1
2

1
0

2.2 SM Problems
In SM there are plenty of incompleteness, which are known as SM problems.
For example, the hierarchy problem: The Higgs mass is mH ≈ 125GeV
whereas the gravitational scale is MPlank ∼

√
G ∼ 1019GeV So,firstly, the

"Hierarchy Problem" stands as: why do we have mH/Mplank ∼ 10−17 so
small? This question arises because in fundamental theory we expect them
to be the same. The hierarchy is stable with respect to the quantum cor-
rections so this problem is called technical hierarchy problem and it is
the motivation for weak-scale super-symmetry. Secondly, the cosmological
constant problem that with respect to the plank mass is really small. we
have (λ/Mplank)4 ∼ 10−120 � 1 Moreover, there exists some open questions
like which particles constitute into the CDM (cold dark matter). Large scale
structure data favour a cosmological constant-cold dark matter model where
nearly 22% of the universe’s energy lies into the DM, only 4% in ordinary
matter and 74% in the dark energy. Neutrinos are relativistic when they de-
couple from the thermal plasma therefore they constitute a hot component
of our dark matter. It should be said that the SM and Gravity do not get
together. Simply adding a graviton to the SM does not coincide with the ex-
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perimental measurements. Also, neutrino mass problem is quite important.
From neutrino oscillation model we know that they have mass however, SM
cannot give it to them without "help". We put mass terms for neutrinos by
hand that leads to a new theoretical problem. For example, the mass terms
need to be small and it is not clear if the neutrino masses would arise in
the same way that the masses of other particles. One of the problem which
draws attention is a Strong CP problem. Theoretically SM should contain a
term that breaks CP symmetry which is connected to the matter antimatter
difference. However, it predicts that matter and antimatter should have been
created equal amounts. Ultimately, we can say that SM is not perfect model
and we should look for something more complete and precise. [7]

2.3 Strong Interaction
Group that describes strong interaction is called SU(3). It has eight genera-
tors that correspond to 8 massless gluons. Six quarks and six antiquarks are
represented in three colors Red Blue and Green. Gluons carry color charges
and are mediators of quark interactions via exchanging the color charges.
Lagrangian of the QCD contains of course the gauge field part, kinetic term
of the field interacting part and mass.

LQCD = −1
4

8∑
a=1

Gµν
a G

a
µν +

nf∑
j=1

q̄j
(
i /D −mj

)
qj (2)

Here we have summation of each gluon and on the right side for different
flavors.

D = ∂µ + igsGµ (3)
gs is the coupling constant for the strong interaction.

Gµ =
∑
a

λaGa
µ (4)

where Ga
µ are gluon fields and λa are the generators.

Ga′

µ = Ga
µ − ∂µαa − gsfijkαiGj

µ (5)
The last term arises because we have non-abelian group and commutation

relations are [λi, λj] = 2ifijkλk
There are many experiments that give us clear evidence about existence

of the quarks. But, free quarks are not observed and this is explained by the
hypothesis of color confinement. Quarks interact by exchanging gluons that
have color, because of that these are attractive interactions. Colour field is
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squeezed between the quarks and they are somewhat confined to a tube. The
energy stored in the field is proportional to the separation of the quarks
giving a term in the potential. So,total potential for quark and anti-quark
can be proportional:

Vqq̄ ∝
[
αs(r)
r

+ · · ·+ κ r

]
(6)

Here αs = g2
s/4π.

If we try to separate quark and anti-quark pair it will be energetically
favourable to create additional pair and neutralize color. So, ultimately, we
will have two jets of colorless hadrons. Consequently, we can say that this
hypothesis about confinement gives us strong restrictions on the possible
combinations of quarks and antiquarks. In this way we know that it is
impossible to have (qq̄) state [7]

2.4 Electroweak Theory
Force carrying particle in Electromagnetic interaction and in the weak in-
teraction possess charge -1. This is the first implication that they might be
somehow connected. Moreover, there are strong theoretical arguments that
involve violation of quantum mechanical unitarity. For instance, W± can be
produced by electron-positron annihilation, however exchange by neutrino
and photon give a cross section that at high energies goes to infinity unless
there exists additional gauge boson, neutral Z.

Now let us write the form of the SM Lagrangian for Electroweak part
that consists of Yukawa, Higgs and gauge parts. For the last one we have
kinetic terms for fermions and gauge fields:

Lgauge = i
∑
α

f̄αL /DfαL + i
∑
α

f̄αR /DfαR −
∑
a

1
4F

a
µνF

µν
a (7)

Here covariant derivative is defined as:

Dµ = ∂µ + ig
τa

2 W
a
µ + ig′QYBµ (8)

g′ and g are gauge couplings constants for U(1)Y and SU(2)L. τa corresponds
to the Pauli matrices for SU(2) group. We cannot just write mass terms in
SM Lagrangian because it violates gauge invariance, therefore we have Higgs
part, that generates masses of the particles after Spontaneous Symmetry
Breaking (SSB). The Goldstone theorem states that if we have continuous
symmetry that is broken we get spin zero,massless particle, the Goldstone
Boson [8].
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Figure 2: you can see the cross section for three cases: only neutrino ex-
change, neutrino and γ exchange and all three exchange [7].

|π(~p)〉 = −2i
F

∫
d3xei~p·~xJ0(x) |Ω〉[8]. (9)

SSB occurs in a gauge theory with massless vector bosons and scalar
fields, the Goldstone bosons transfer their degrees of freedom to the longitu-
dinal mode of the vector fields and make them massive. This is the Higgs
Mechanism. The Lagrangian has the form:

LHiggs = (DµΦ)† (DµΦ)− µ2Φ†Φ− λ
(
Φ†Φ

)2
(10)

To generate masses, so to break the symmetry µ2 must be negative. So
the middle part of the Higgs Lagrangian is not actually the mass term. Higgs
potential has a set of minimum values that can be determined by:

Φ†Φ = v2

2 = −µ
2

2λ (11)

Now, if we choose one of the minimums we can write for the Higgs field
as:

Φ =
(

0
v +H(x)

)
ei
π(x)
F (12)

9



sin2 θW 0.23126(5)
MW 80.379± 0.012 GeV
MZ 91.1876± 0.0021 GeV
MH 125.10± 0.14 GeV
v ∼ 246 GeV

Table 1: List of EW theory parameters [9].

Here H(x) is the physical Higgs boson and its excitation can change energy.
π(x) is the excitation on the same energy level, it’s the Goldstone boson.

In unitary gauge we neglect oscillations that does not change the energy
so:

Φ(x) = 1√
2

(
0

v +H(x)

)
(13)

When we insert this field into the Lagrangian 3 bosons and Higgs field acquire
masses while photon remains massless, so the mass part of the Lagrangian
will have the form:

Lmass = −M2
HH

2 +M2
ZZ

2
µ +M2

WW
†
µW

µ (14)

Explicit calculation that we have omitted here gives us expressions for
the masses that are: MH =

√
sλv2 , MW = gv

2 ,MZ = gv
2cos(θW )

Here θW is the weak mixing angle that is called Weinberg angle. Mixing
happens between the neutral fields of the U(1)Y and SU(2)L gauge symme-
tries. This angle is connected to the gauge coupling constants in this way:

tan θW = g
′

g
(15)

Electric charge gets this form:

e = gg
′√

g2 + g′2
= gsinθW (16)

Now let us see the Yukawa term in the Lagrangian, specifically the quark
sector.

LY uk = Y d
ijQ̄

iHdjR + Y u
ij Q̄

iH̃j
Ru

j
R (17)
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That explicitly is:

LY uk = Y d
ijQ̄

i

(
0
v

)
djR + Y u

ij Q̄
i

(
v
0

)
ujR (18)

Doing further calculations give us the Lagrangian with the following form:

LY uk = vY d
ij d̄

i
Ld

j
R + vY d

ij ū
i
Lu

j
R (19)

Which can be easily written in the matrix form:

LY uk = v
[
d̄LYddR + ūLYuuR

]
(20)

Now our aim is to diagonalize Yukawa matrices to get mass terms for quarks.
Consequently, let us introduce diagonal matrices, such as: Mu and Md and
lets state that YuY +

u = UuM
2
uU

+
u . From here we can write that Yu =

UuMuK
+
u . Now let us put this expression for Yukawa matrices into our

Lagrangian.
LY uk = v

[
d̄LUdMdK

+
d dR + ūLUuMdK

+
u uR

]
(21)

If we transform our fields in this way:

dL → UddL dR → KddRuL → UuuL uR → KuuR (22)

We would eliminate extra terms in the Lagrangian.

LY uk = v
[
d̄LMddR + ūLMduR

]
(23)

Now let us see the interaction term.

LY uk = ...+W+
µ ū

i
Lγ

µU+i
u U j

dd
j
L +W−

µ d̄
i
Lγ

µU+i
d U j

ud
j
L (24)

we make denotion of the middle unitary terms U+
u Ud = VCKM . This is well

known Cabibbo-Kobayashi-Maskawa matrix, that embodies very interesting
physical phenomena-quark mixing. It is a 3 × 3 matrix that in general is
described by nine complex parameters. However, it is also unitary and this
feature leaves us only nine independent parameters. It CKM were real we
would get just orthogonal rotations with 3 parameters(rotations) however
now we have other six additional degrees that can be complex phases of the
form eiδ. This phases can be rotated in a way that from 6 there will be left
only 1. Therefore, we can say that CKM has 4 parameters, 3 angles and 1
phase [7].
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VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 1 0 0
0 c23 s23
0 −s23 c23

× (25)

×

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

×
 c12 s12 0
−s12 c12 0

0 0 1


where sij = sin(φij) and cij = cos(φij)
So, VCKM equals to:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (26)
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3 Renormalization Group

3.1 Simple example
We are now going to briefly discuss one of the most vital ideas in theoretical
physics. As you know a change in scale is a scale transformation and our
RG is connected to scale invariance and conformal invariance (symmetries
where system appears same at all scale). Let us indroduce a Block Spin RG
to better understand idea of this mathematical tool. If we consider 2D solid
and we put atoms into a perfect imaginary squares we will get picture below:

Atoms interact among their nearest neighbours and system has temper-
ature T . Hamiltonian of the system is H(T, J), where J characterizes the
strength of the interaction. Now we divide system into solid blocks as it is
in a picture and we introduce variables that describe not one by one interac-
tion but average behaviour of the blocks. In the first approximation, we can
say that total system hamiltonian will have nearly the same form H(T ′, J ′).
Consequently, if initially we had a lot of atoms and solving this problem
was too hard now we made everything easier. We can continue this division
into groups until there is only one very big block. This process is equiva-
lent to finding the long range behaviour of the RG. There are two versions
of the renormalization group used in quantum field theory. The wilso-
nian renormalization group tells us that with a UV cutoff Λ, physics at
energies less than this coefficient is independent of precise value of it. Fur-
thermore, changing the Λ changes the couplings, however observables are the
same. The continuum renormalization group tells us that observables
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do not depend on the renormalization conditions ( for instance on a scale
p0). This invariance holds when we renormalize theory and remove cutoff
(Λ = ∞‘, ‘d = 4). We should mention also that in dimensional regulariza-
tion the scales p0 will be replaced by new undefined scale and our continuum
RG comes from this scale independence. One should mention that these
two are closely related but different. However, in both cases theory is in-
dependent of something. If we denote an observable by Θ we can say that
d
dΛΘ‘ = ‘0, d

dp0
Θ‘ = ‘0 or d

dµ
Θ‘ = ‘0. When we solve these equations it will

give us a trajectories and RG evolution refers to the flow along them. So
what does the RG solve? well for example it can solve problem of large
logarithms. If we calculate the vacuum polarization diagrams at 1-loop we
end up with this:

V (p2) = e2
R

p2

(
1 + e2

R

12π2 ln
p2

p2
0

)
(27)

coefficient that logarithm has is or the order of 10−3 however there exists
scales where p2 � p2

0. Okay, now let us solve our problem by RG that is large
logarithms. We know that large logarithms are related to the physical scale
p2. At this scale potential were measured to an arbitrary scale p2

0 and coupling
was defined. The RGE then requires that our potential is independent of p2

0.

p2
0
d

dp2
0
V (p2) = 0; (28)

When we do all the calculations we get that:

e2
eff (p2) = e2

R

1− e2
R

12π2 ln
p2

p2
0

(29)

This is known as a running coupling. It includes contributions from all orders
in perturbation theory.

We should specify that RG comes from the simple observation that there
is nothing special about the renormalization point [8].

3.2 Gauge Couplings are Running
Let us now consider general aspects of the gauge coupling unifications. Here
we just will use 1-loop level. The coupling constants g1,2,3 of the standard
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gauge factors SU(3) × SU(2) × U(1) at low energies are quite well known.
Firstly we will write it as α that equals to αi = g2

i

4π . We calculate it an Z-peak
and they are the following [5]

α−1
1 (MZ) = 58.98± 0.04;
α−1

2 (MZ) = 29.57± 0.03;
α−1

3 (MZ) = 0.119± 0.002;

From Renormalization Group Equations there are some vital parts that
we use in our task. For example we will need to know from where this
Bt comes from that we are using so many times. Therefore, I will write
everything down.

Yukawa constants are running too and we will see how. Let us just write
1-loop corrections that is suffice in our problem.

d

dt
ga = g3

a

16π2B
(1)
a ; (30)

Here B(1)
a =

(
33
5 , 1,−3

)
for U(1)Y , SU(2)L and SU(3)c respectively. Now the

Yukawa coupling constant renormalization has a form:

d

dt
Yu,d,e = 1

16π2β
(1)
Yu,d,e

(31)

now let us specify what is beta:

β
(1)
Yu = Yu3Tr(YuY †u ) + 3Y †uYu + Y †d Yd −

16
3 g

2
3 − 3g2

2 −
13
15g

2
1

β
(1)
Yd

= YdTr(3YuY †u + YeY
†
e ) + 3Y †d Yd + Y †uYu −

16
3 g

2
3 − 3g2

2 −
7
15g

2
1

β
(1)
Ye = YeTr(3YdY †d + YeY

†
e ) + 3Y †e Ye − 3g2

2 −
9
5g

2
1

(32)

Of course, the β functions are 3× 3 matrices in family space [15].
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4 Fritzsch Mass Matrices
Firstly, let us state that ΨU = (u, c, t), ΨD = (u, c, t) and ΨE = (u, c, t).
So, mass matrices for these fields are denoted by MU ,MD and ME. Fritzsch
with his ansatz introduced mass matrices that have the form [13]:

M̄ =

 0 Aeiα 0
Ãeiα̃ 0 Beiβ

0 B̄eiβ̃ Ceiγ

 (33)

these coefficients have the hierarchy C � B, B̃ � A, Ã. The mass ma-
trices of type U,D and E are of this form. It is convenient to write M̃ in
a diverse form M̃ = P1MP2. Here Pj is a diagonal matrix with phases
and it will remove all phase from our M̃ mass matrix. If we assume that
Pj = diag(eiαj , eiβj , eiγj) (j=1,2), then we can derive connection:

α = β2 + α1,

α̃ = β1 + α2,

β = γ2 + β1, (34)
β̃ = γ1 + β2,

γ = γ1 + γ2,

If we make more simplification and assume that α = α̃, β = β̃, A = Ã
and P1 = P2.

So, at the end we get, very simplified matrix M:

M̃ =

 0 A 0
A 0 B
0 B C

 (35)

The texture of Fritzsch naturally comes in the context of SU(5) however,
theoretical approach to these types of matrices have some problems when
comparing with the experimental ones. It was nearly impossible to match
all the parameters simultaneously, until now! Because we have succeeded.
Fritzsch tried to use symmetric matrices, with less parameters, however, he
failed and could not fulfil experimental expectations [14],[16]. The reason
was very simple, he was just taking random matrices and using them, there
were no theoretical model from which these textures would be realized. How-
ever, in our case everything comes from the model and it is physical. Okay
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we stopped on the symmetric matrix that has free parameters that must be
fixed somehow by known masses. It must be also emphasized that these pro-
cedures are used in the future to get way difficult equations, therefore these
subsections are important to understand every detail in the thesis. To fix
free parameters: A, B and we want to make diagonalization of these matri-
ces to get masses. We say initially that the eigenvalues are (M1,−M2,M3).
By taking trace of matrix M, its determinant and trace of its square (tr(M),
det(M) and tr(M2)) we can get these relations between coefficients of matrix
M (A,B and C) and eigenvalues [17].

C = M1 −M2 +M3,

A2C = M1M2M3 (36)
2(A2 +B2) + C2 = M1 +M2 +M3

From here it is easy to calculate exact values of coefficients:

C = M1 −M2 +M3,

A =
√

M1M2M3

M1 −M2 +M3
(37)

B = (M3 −M2)(M3 +M1)(M2 −M1)
M1 −M2 +M3

Now, if we use hierarchy of the masses we can easily say that C ≈ M3,
A ≈

√
M1M2 and B ≈

√
M2M3 finding coefficients enable us to get matrices

that make diagonalization of our Fritzsch matrix. Therefore our CKM matrix
will be

VCKM = O+
u P
∗
uPdOd (38)

CKM was already defined in the previous sections therefore we will not re-
define it again.
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5 Beyond Standard Model
Understanding flavour dynamics and the related origin of quark and lepton
masses and mixings are one of the most important aims in particle physics. In
this context, weak decays of hadrons, and in particular the CP violating and
rare decay processes, play crucial role as they are sensitive to short distance
phenomena. Therefore, determination of the CKM that parametrizes the
weak charged current interactions of quarks is currently a central theme in
particle physics.

5.1 SUSY
Generally, Supersymmetry is a model that proposes connection between
bosons and fermions. In SUSY each particle from one group would have an
associated particle in the other and they are called superpartners. However,
it is not like an antiparticle because superpartners differ by a half-integer
spin. There are many Motivations for SUSY. One of them is Gauge coupling
unification. You will see on a picture below, that Just GUT is not enough
for uniting coupling constants at 1016 GeV scale. They come very close,
however it is the SUSY that make them to go in one point. Therefore, we
can say that without SUSY GUT is not complete. Superpartners are called
different names like Higgsinos, Gluinos and etc. Now what about model.
Firstly, let us just understand what is this SUSY exactly, what type of sym-
metry it exerts on a system or, what kind of symmetry, it is. To understand
better what is SUSY let us introduce a simple free model that consists of one
massive fermion of mass m, denoted by ψ(x) and two complex scalars of the
same mass m that will be denoted by φ+(x) and φ−(x). Lagrangian for this
simple model will be:
L = ∂µφ∗+∂µφ

∗
+ −m2 |φ+|2 + ∂µφ∗−∂µφ

∗
− −m2 |φ−|2 + ψ̄(ıγν∂nu −m)φ (39)

This theory has symmetries like: spacetime, translation, rotations and
boosts. We here have spinor that has left and right handed parts. However,
we can write right-handed spinor in terms of a left-handed.

ψR = ıσ2ψ
∗
L; (40)

Now let us introduce two left-handed spinors ψ+ and ψ− and define our old
spinor with them;

ψL = ψ+, ψR = ıσ2ψ
∗
−; (41)

Now let us put everything into our main lagrangian:
L = ∂µφ∗+∂µφ

∗
+ −m2 |φ+|2 + ∂µφ∗−∂µφ

∗
− −m2 |φ−|2 + (42)

ψ†+ıσ̄
µ∂µψ+ + ψ†−ıσ̄

µ∂µψ− −m(−ψT+ıσ2ψ− + h.c)
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Now what we do is called "Extension of the Symmetry". We take two-
component left spinor and make following transformation:

δξψ+ =
√

2ıσµεξ∗∂µφ+ (43)
δξφ+ =

√
2ξT εψ+

So, it is evident that such symmetry transformation takes fermion into a
boson and vice versa. This is called a SUSY. It must be noted that masses
should be same otherwise theory will not be supersymmetric

To incorporate SUSY into our SM requires doubling the number of par-
ticles. When we add new particles we have a lot of other interactions. Now
let us consider the most general SUSY-GUT model then lowering energy we
will get Minimal Supersymmetric model consistent with the SM, which is
called Minimal Supersymmetric SM (MSSM). This is a minimal phenomeno-
logically viable extension of the SM, that adds the least number of extra
elements. Consequently, In the MSSM, each of our fundamental particle has
its superpartner with different spin. Now on the table below let us specify
them (superpartners are identified by tilde):
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Before starting let me define two important terms one is called F and
another D. For each vector multiplet (λa, Aaµ) we have:

Da = −gφ†iT aφa (44)

To this all the charged scalars contribute. For each chiral multiplet (φi, ψi)
we have:

F∗i = −∂W
∂φi

(45)

The scalar potential is:

V = F ∗i Fi + 1
2D

aDa (46)

With this language we can now write everything. Okay, let us start. We are
considering SUSY-GUT based symmetry within a framework of N=1 Super-
symmetry. That means that such a theory must contain vector superfields V
in adjoint representation of our symmetry. We set chiral superfields Φ in a
different representations of our symmetry. Let us write a generic renormal-
izable Lagrangian

LSUSY =
∫
d2θd2θ̄Φ†eV Φ +

[∫
d2WW +

∫
d2θW (Φ) + h.c

]
Here, first and second term give us canonically normalized kinetic terms and
gauge superfields with their gauge interactions. Third therm describes mass
and intecation terms between the fermionic and scalar components of chiral
superfields Φ, via the superpotential W(Φ).

To break the symmetry and introduce spontaneous symmetry breaking
in the model we add "soft" terms that has nearly the same forms and is
presented in a same way as the first Lagrangian:

LSSB =
∫
d2θd2θ̄ρΦ†eV Φ +

[∫
d2θηWW +

∫
d2θηW ′(Φ) + h.c

]
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So, what we did is just used auxiliary superfields with non-zero F and D-
terms ,where η = MF θ

2 and ρ = M2
Dθ

2θ̄2 this MF and MD can be different.
First one determines the size of gaugino mass terms.

The chiral superfields can be divided into Higgs and fermion superfields
distinguished by matter parity Z2, under which the fermion superfields change
the sign while the Higgs superfields are invariant. In this way we have this
form:

W =WHiggs +WY ukawa

This Higgs part is responsible for the VEVs breaking both the gauge sym-
metry that we introduced to MSSM and then to SM.

Now what is the MSSM, it is the low energy limit of SUSY-GUT. In this
low energy mode, superpotential has the form:

WMSSM = Y u
ijQiu

c
jHu + Y d

ijQid
c
jHd + Y e

ije
c
iLjHd + µHuHd (47)

This part contains chiral superfields corresponding to three families of quarks
and leptons and two Higgses Hu and Hd. The SSB F-terms repeat the struc-
ture of WMSSM and contain also the soft Majorana masses of gauginos:

LF = AuijQ̃iũ
c
jHu + AdijQ̃id̃

c
jHd + Aeij ẽ

c
i L̃jHd + µHuHd + m̃a

Gλaλa (48)

Soft masses of all scalars including the Higgses are given by D-terms:

LD = m̃2
QijQ̃

†
iQ̃j + m̃2

uijũ
†c
i ũ

c
j + m̃2

dij d̃
†c
i d̃

c
j +

+m̃2
LijL̃

†c
i L̃

c
j + m̃2

eij ẽ
†c
i ẽ

c
j + M̃2

uH
∗
uHu + M̃2

dH
∗
dHd (49)

Let us comment on their mass matrix:

M2 =
(
M̃2

u + µ2 µBµ

µBµ M̃2
d + µ2

)
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As you can see the mass matrix contains mass terms M̃2
u and M̃2

d that
are D-terms of spontanious symmetry breaking and Bµ are F-terms. µ is a
supersymmetric term.

Okay we have described sufficiently good model, however, there are some
other terms that could be added. For example, some quark to lepton direct
transition that violates baryon-lepton number and etc. Therefore, we must
introduce something that will fix and tell me that NO you cannot add terms
like that. Therefore, we introduce new discrete symmetry that is called R-
parity. Sometimes it is called matter parity. Then we can postulate B and
L conservation. Moreover, PR = +1 for all SM particles and PR = −1 for all
sparticles.

PR = (−1)3(B−L)+2s (50)

Conservation of R-parity states the difference between our particles and
their superpartners. Also, in every interaction vertex we have conservation of
R-parity One subtle remark is that last term in the Lagrangian µHuHd can
become huge therefore, we might have hierarchy problems here. For this rea-
son we add terms that somehow, diminish this huge part of the Lagrangian.
We have not observed superpartners yet, therefore some realistic phenomeno-
logical model must contain SUSY breaking terms. So, we add soft term to
MSSM to maintain hierarchy berween EW scale and Planck scale.

L = LMSSM + LSoft (51)

The main difference between SSB here and EW symmetry breaking is
that we have two Higgs bosons that have two VEVs vu and vd. This VEVs
of course have restriction by SM: v2

u + v2
d = v2 ≈ (174GeV )2. From this

equation we can easily parametrize our VEVs:

vu = 〈H0
u〉 = v sin β vd = 〈H0

d〉 = v cos β tan β = vu
vd

(52)

SSB gives us the process in which three of the eight degrees of freedom
of the Higgs fields become the longitudinal modes of the physical Z0 and
W±. From the equations above it is clear that in MSSM, masses and mixing
angles for quarks and leptons depend not only on Yukawa coupling but also
on parameter β.
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5.2 GUT
5.2.1 SU(5)

A Grand Unified Theory is just a guess that there exist much more sym-
metries in the nature than we have in the SM and this symmetry depends
on the energy. So, SM is low energy limit of GUT. The SM has been tested
countless times and as we already mentioned it is incomplete. However, we
cannot prove experimentally that GUT fixes something but we cannot see
otherwise too. GUT is a model that states that at high energy, our three
gauge interactions of the SM (electromagnetic weak and strong) are merged
into a larger gauge symmetry, one single force with one single parameter. If
we have realization of GUT in our nature, then it is logical to think that
there was a epoch of grand unification in the early universe when fundamen-
tal forces were not distinct. So, currently we are leaving in a broken phase in
which SU(3)C ×U(1)Q is invariant to us and the low-energy phenomena are
governed by the electrodynamics and strong interactions. The first implica-
tion of the GUT is that at some scale MU � MW the relevant symmetry
is G and g1 , g2 and g3 coupling constants of SU(3)C × SU(2)L × U(1)Y
merge into a single gauge coupling gU The most important "hints" in favour
of GUT is the fact that the running within the SM shows an approximate
convergence of the gauge couplings around 1015 GeV. In our problem we
consider Georgi-Glashow Model therefore let us talk a little bit about it.

As you know in SM we have groups of rank four:SU(3) has rank 2, SU(2)
rank 1 and U(1) rank 1. Therefore, If we require that rank of the group
that contains our SM must be the same then the only simple group with
complex representations which can contain our SM is SU(5). This groups’
fundamental representation is a 5-dimensional vector 5i and embedding is
in a way that upper part goes for three components of SU(3) and down for
SU(2)L.

5 = (3, 1)⊕ (1, 2) (53)

Second representation of SU(5) is 10. Ten is a little bit complex than 5.

10 = (5⊗ 5)A = (3̄, 1,−2
3)⊗ (3̄, 2,+1

6)⊗ (1, 1,+1) (54)

To embed our SM particles in these representations we firstly must specify
them:

q ∼
(

3, 2,+1
6

)
, l ∼

(
1, 2,−1

2

)
,

uc ∼
(

3̄, 1,−2
3

)
, dc ∼

(
3̄, 1,+1

3

)
, ec ∼ (1, 1,+1) (55)
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Therefore, our particles will be embedded into 5̄ ⊕ 10. Also it must be
mentioned that hypercharge is a traceless generator of SU(5) and that is
how the third component (Hypercharge)is taken. Adjoint representation of
SU(5) is 24 dimensional,traceless.

Σ =


a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 b 0
0 0 0 0 b

 (56)

It has this form, When we insert in the process the most important thing
that it does is "telling" to down-quarks and leptons that they are different.
It gives them different coefficients and weights.

Yukawa sector in SU(5) is quite interesting. it consists of 2 parts (and of
course hermition conjugate):

LY = 5̄ · Y · 105̄H + 1
810 · Y · 10 · 5H + h.c (57)

It is better not to write all the indices explicitly because otherwise it is
impossible to see formulas, but we should say that we have family and Lorentz
indices. First part on the left gives us down-quarks and leptons and the right
one just up part. It is a subtle point because as down-quarks and leptons
are written by the same operator they have the same coupling constants,
however their Yukawa mass matrices are Transposed.

5.2.2 SO(10)

The next and the most interesting for us simple Lie group containing our
Standard Model is SO(10):

SO(10) ⊃ SU(5) ⊃ SU(3)⊗ SU(2)⊗ U(1)

Here unification of matter is way complete than it was in SU(5), because here
we do not have two representations in which we embed our SM particles-we
have only one spinorial representation that is called 16. The Boson matrix
for it is found by taking 15 × 15 matrix from the 10 + 5̄ representation and
adding 1 raw and column for right-handed neutrino. Now let us talk about
group itself. This group is orthogonal group of rotations in ten dimensional
vector space. The matrices of our group can be written by 45 imaginary
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generators:

O = exp
(1

2εijTij
)

SO(10) has two main "channels" to decompose ,just to mention, one of
them is into SU(4)⊗ SU(2)L ⊗ SU(2)R that is called Pati-Salam Model the
other is what we want SU(5) ⊗ U(1)X . In the publication by R.Slansky
there are brilliantly discussed how these decompositions happen [18]. We
will shortly show diagram: and also must be seen hypercharges of decoupled

groups because we will see that hypercharges are connected to the Mass,
consequently, knowing it is important.

16 = 1(−5) + 5̄(3) + 10(−1)
45 = 1(0) + 1̄0(−4) + 10(4) + 24(0)

Furthermore, tensor products are vital [18]:

10× 10 = 1s + 45a + 54s;
1̄6× 10 = 16 + 144

16× 16 = 10s + 120a + 126s
1̄6× 16 = 1 + 45 + 210

Now about processes in SO(10). As we have already mentioned theory
here is better unified, the reason is adjoint spinorial representation 16 that
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contains everything, even Right-handed antineutrino. couplings are written
as:

16 · 16 · 10s (58)

where this 10s is for the Higgs part. Here everything has the same coupling
constant.

Now let us more discuss GUT with a "different angle too". The basic
tool for exploring GUT is the renormalization. Group evolution of the gauge
couplings as a function of energy scale can be given by:

1
αi(µ) = 1

α(Mth)
+ bi

2π log
(
Mth

µ

)
(59)

where αi = g2
i /4π and the i=1,2,3 indicate which coupling constant we

are considering they are linked to the SM coupling constant by the relations:√
3/5 g1 = g′ , g2 = g and g3 = gs.
Mth is a threshold where a new set of particles enter into the loop di-

agrams. It corresponds to the mass of superpartners to MSUSY . The bi
coefficients also depend on the number of particles in the loops:

b1 = −
(4

3NF + 1
10NH

)
b2 =

(22
3 −

4
3NF −

1
6NH

)
(60)

b3 =
(

11− 4
3NF

)
Here NF is the number of families running into loops and N_H is the

number of Higgs doublets. When we reach to SUSY our particle content will
be enriched and our coefficients will gain some extra contributions:

∆b1 = −
(
−2− 2

3NF

)
∆b2 =

(
−4

3 −
2
3NF −

1
3NH

)
(61)

∆b3 =
(
−2

3NF −
1
5NH

)
As we will see in the next section for SUSY GUT NH = 2. With this

modifications three gauge couplings meet on a single energy scale:

MG = 2.19+0.44
−0.37 × 1016GeV (62)
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Figure 3: Running of the gauge coupling constants in the SU(5) SUSY +
GUT scenario. SUSY and EW breaking scale are underlined.
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6 The Model
Now let us discuss theoretical framework for our model. Here it is considered
the supersymmetric SU(5) model with addition of SU(3)H symmetry among
the three families of quarks and leptons. With this we try to depict processes
that might explain mass Hierarchy between families. As we know, standard
SU(5) fundamental representation is 5. Introducing new symmetry tells us
that three fermion familie are unified in chiral superfields:

5̄ = (dc, l)i ∼ (5̄, 3) 10i = (uc, q, ec)i ∼ (10, 3). (63)
These, i indices come from SU(3). So, now what about Higgs? Higgs super-
fields that are 5 and 5̄ are singlets of SU(3)H

H ∼ (5, 1), H̄ ∼ (5̄, 1) (64)

Of course, we assume that the theory is invariant under R-parity. Let us
talk more about The Higgs sector. For our SU(5) it spans over the reducible
5H ⊕ 24H . These two fields are minimally needed in order to break SU(5).
However,in our model, we have also new symmetry,therefore it forbids stan-
dard coupling with Higgses. The reason is that fermion bilinears transform
as 3× 3 = 3̄ + 6 therefore, fermion masses can be introduced by higher order
operators involving "horizontal" Higgs superfields χαβ. This field will help us
to break SU(3)H till the SU(5). After that other two Higgs fields will carry
on. The χ fields transform under SU(3)H either as sextets or as antitriplets
[6]. Let us specify the general structure of the VEV.

U =

 A11 A12 +B12 A13 +B13
A12 −B12 A22 A23 +B23
A13 −B13 A23 −B23 A33

 (65)

Here A and B come from the horizontal Higgs fields from the sextets and
antitriplets respectively. However, we make a simplification and say that
they both have a third direction. In this way in the sextet we will have only
one (3,3) term and in antitriplet (1,3). In this way we only have (12),(21)
and (33)element in χ, that has Fritzsch-like matrix form and we know to to
treat with it from previous sections. Now let us see the form of operators in
our model.

Ou = χij

M
10i10jH, O = χij

M
5̄i10jH̄ (66)

I already said previously but it is very important part so let me strain
that down-quarks and leptons are united in one operator, therefore there
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is one coupling constant for them and after breaking SU(3)H particles do
not "Know" about it, therefore we should add something to the theory that
will differentiate between the leptons and down-quarks. So what about M .
M is just some large scale. It is well known that the effective operators (66)
naturally arise from a renormalizable theory after integrating some heavy
degrees of freedom [19]. Therefore, this flavour scale can be connected to
the mass scale. It is convenient to say that this mass scale is set by large
VEV of some Higgs Ω, and 〈Ω〉 ∼M We will show everything explicitly with
diagrams and etc. It can be said that there are quark-like particles that can
be represented by 5̄F ⊕10F . These heavy particles take place into the several
processes like:

As you can see, we have here two Higgs fields, one from 5 representation and
another for SU(3)H breaking. Additionally, we can change process and add
one 24 representation Higgs field in the middle.

You might Ask why. Why do we need introduction of new, additional Higgs
field. The reason is very clear. As we already emphasized downs and leptons
are united, therefore these adjoint 24 will introduce Clebsch-Gordan coeffi-
ciets and differentiate between downs and leptons. After introducing new Σ
you can see that instead of old χ we have used χ′ this is because we say that
during these processes this sextet and triplet can be rotated by some angle
α.  0 0 0

0 0 0
0 0 B

 →

 0 0 0
0 s2B −scB
0 −scB c2B


 0

0
A

 →

 0
As
Ac

 (67)
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Now, we have to write operators explicitly count all combinatoric terms and
write all Yukawa terms to get Yukawa matrices at the end. Let us now
concentrate on the picture below where we have specified all terms of com-
binations in the process.

We can now construct a matrix that will have a form:

∴ uc Qc U c

q 0 χ gH
Q gH M 0
U χ 0 M

To continue, M is big, consequently, it is normal to diagonalize this matrix
like that:

∴ uc Qc U c

q 2gHχ
M

0 0
Q 0 M 0
U 0 0 M

So in this way we have an operator:

2gχαβ
M

εijklm10ij10klHm (68)

Consequently, we can use same steps to construct operators for next order
graphs where we have three Higgs fields.

∴ uc Qc U c Qc
} U c

}

q 0 χ gH χ′ 0
Q gH M 0 0 0
U χ 0 M 0 g′Σ
Qc

} 0 g′Σ 0 M ′ 0
U c
} χ′ 0 0 0 M ′
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At the end of the day when we sum up all the diagrams for the processes we
get:

2g1χ

M
5̄i10ijH̄j + 2gχ

M
εijklm10ij10klHm +

+g1g
′
1χ
′

MM ′ Σ
i
p5̄j10ijH̄p + g1g

′
1χ
′

MM ′ Σ
i
p5̄p10ijH̄j +

+ gg′χ′

MM ′ ε
pjklmΣi

p10ij10klH̄p + gg′χ′

MM ′ ε
pijklΣm

p 10ij10klH̄m (69)

Here Σ is an adjoint representation that has all elements 0 except diagonal
ones. Moreover, trace is also 0.

Σ =


a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 b 0
0 0 0 0 b

 (70)

When we sum up all the indices at the end of the day we will get Yukawa
matrices for up, down and lepton parts, that will depend on A-B parameters
(will be specified soon) on angle (6 and 3∗ rotation) and a-b.

6.1 Preparation to test the Model
Yukawa coupling constants connect to the physical fermion masses, how-
ever masses are running (their value depend on the energy on which we are
measuring it). Therefore, connection is through the renormalization group
equations (RGE).

tanβ = v2/v1 [12].

mu = YuRuηuB
3
t v2, md = YdRdηdv1, me = YeRev1

mc = YcRuηcB
3
t v2, ms = YsRdηsv1, mµ = YµRev1 (71)

mt = YtRuB
6
t v2, mb = YbRdηbBtv1, mτ = YτRev1

Here the factors Ru,Rd and Re account for the gauge-coupling induced
running from 1016 to the SUSY breaking scale Ms ∼Mt. η factors encapsu-
late the QCD + QED running from Ms to mf for f = b, c. It is said that
η = 1GeV for the light quarks (f = u, d, s). For αs(MZ) = 0.118± 0.005 we
have:

Ru = 3.33± 0.07, Rd = 3.25± 0.07, Re = 1.49
ηb = 1.52± 0.04, ηc = 2.02+0.16

−0.13 ± 0.07, ηu,d,s = 2.33+0.29
−0.21 (72)
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The factor Bt includes the running induced by the large top quark Yukawa
constant (Yt ∼ 1):

Bt = exp

[
− 1

16π2

∫ lnMG

lnMS

Y 2
t (µ)d(lnµ)

]
; (73)

Bt as a function of the GUT scale value is shown below on a picture: We

Figure 4: We see that for Yt varyng from a lower limit to its upper limit Bt

decreases from 0.9 to 0.7. This is very important physical fact that we will
use upon our calculations. Now let us derive and list fermion mass fractions
with RG coefficients and put it on the table [1].

see that for Yt varyng from a lower limit to its upper limit Bt decreases from
0.9 to 0.7. This is very important physical fact that we will use upon our
calculations. Now let us calculate and list fermion mass fractions with RG
coefficients and put it on the table. However, before we do it let us see what
are masses of fermions:

mu(µ) = 2.16+0.49
−0.26 MeV, md(µ) = 4.67+0.48

−0.17 MeVms(µ) = 93+11
−5 MeV ;(74)
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We must say that these masses are at a renormalization scale of µ = 2GeV .

mc(µ) = 1.275+0.025
−0.035 GeV, mb(µ) = 4.18+0.04

−0.03 GeV,mt(µ) = 163.3± 0.4 GeV ;(75)

Above the c,b and t-quark masses corresponds to the masses measured on
µ = mc,b,t respectively.

me = 0.51 MeV, mµ = 105.65 MeV, mτ = 1776.86±0.12 MeV ; (76)

All masses are taken from the particle data group [9]. We know that masses
are running however, we cannot make division of them if they are measured
on a different scale. What should be done is to convert all masses into one
scale and then divide.

Renormalization Group Parameters
Ru = 3.33± 0.07 Rd = 3.25± 0.07 Re = 1.49
ηb = 1.52± 0.04 ηc = 2.02+0.16

−0.13 ηuds = 2.33+0.29
−0.21

from Yt = 0.5 to Yt = 3, the factor Bt decreases from 0.9 to 0.7
These are the parameters that ensure that we take all the masses on a

scale of Mz [4],[1].
Finally, let us calculate division of Yukawa constants. We use dependence

in equation (71) and given masses in 74,75,76.

Yb
Ys

=
mb

RdηbBt
ms
Rdηs

=
(

50 1
Bt

∼ 53 1
Bt

)
Yb
Yτ

=
mb

RdηbBt
mτ
Re

= 4.18
1.776

Re

RdηbBt

∼ 0.77B−1
t (77)

Yc
Yt

=
mc

RuηcB3
t

mt
RuB6

t

= 0.0078B
3
t

ηc
∼ 0.0039B3

t

Yµ
Yτ

= mµ

mτ

= 1
16.824 ∼ 0.059

As you can see some fractions of Yukawa couplings depend on our Bt. In the
future we will try to create model that will take into account this fact.

Furthermore, let us make a table of mass divisions below, that might be
convenient for the future. One must say that these divisions are independent
of the running.
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mu

mc

= 0.001976, mu

md

= 0.48+0.07
−0.08,

mb

ms

= 53.07, mb

mc

= 4.528± 0.054, ms

mu

= 43.2,
ms

md

= 20.2, mb

md

= 1072, mc

mt

= 0.003945,
mµ

me

= 206.76, mτ

mµ

= 16.824, mτ

me

= 3484.03. (78)

6.2 Testing Model (Exchange with 10)
At first we introduce only processes where we have exchange of 10. From the
propagators (eq: 69) 3× 3 matrices have the form:

Yu =

 0 0 0
0 0 0
0 0 Bu

+

 0 εucΣA
uAu εusΣA

uAu
−εucΣA

uAu BuεuΣs
us

2 −BuεuΣs
usc

−εusΣA
uAu −BuεuΣs

usc 2BuεuΣs
uc

2



Yd =

 0 Ad 0
−Ad 0 0

0 0 Bd

+

 0 AdεdΣA
d c εdΣA

dAds
−AdεdΣA

d c BdεdΣs
ds

2 −BdεdΣs
dsc

−AdεdΣA
d s −BdεdΣs

dsc BdεdΣs
dc

2

 (79)

Yl =

 0 Al 0
−Al 0 0

0 0 Bl

+

 0 AlεlΣA
l c AlεlΣA

l s
−AlεlΣA

l c BlεlΣs
l s

2 −BlεlΣs
l sc

−AlεlΣA
l s −BlεlΣs

l sc BlεlΣs
l c

2


Where Σ and ΣA are Clebsch-Gordan coefficients for symmetric and anti-
symmetric part of the matrix, ε is the approximation parameter and s-c sine
and cosine for rotational angle of sextet and triplet. Σs

u = 3a+b
4 , Σs

d = a+b
2 ,

Σs
l = 2b

2 ,Σ
A
u = a−b

2 ,ΣA
d = a+b

2 ,ΣA
l = 2b

2 (a and b from eq: 70). As you
can see, down-quark and charged-lepton matrices does not have the sym-
metric "Fritzsch texture" in the first approx. Otherwise, we would have
tanθd23 =

(
ms
mb

)
and tanθl23 =

(
mµ
mτ

)
which both do not satisfy CKM-first

is too big second too small [1]. In our problem A� B, consequently, for the
first approximation in Yukawa matrices (eq: 79) we can neglect terms with
parameters A and rewrite 3× 3 matrix into the form of 2× 2

Yu = Bu

(
εΣus

2 −εΣusc
−εΣusc 1 + εΣuc

2

)

Yd = Bd

(
εΣds

2 −εΣdsc
−εΣdsc 1 + εΣdc

2

)
(80)

Yl = Bl

(
εΣls

2 −εεlsc
−εΣesc 1 + εΣec

2

)
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Now let us calculate determinants and traces of square matrices.

B2
us

2εuΣu = YtY
′
c , B2

u(1 + 2εuΣuc
2) ≈ Y 2

t .

B2
ds

2εdΣd = YbY
′
s , B2

d(1 + 2εdΣdc
2) ≈ Y 2

b . (81)
B2
l s

2εlΣl = YτY
′
µ, B2

l (1 + 2εlΣlc
2) ≈ Y 2

τ .

So, determinants on the left side and traces on the right. As you can
see Yukawa couplings have prime on them. This is because (2, 2) terms
in 3 × 3 matrices have small corrections and with this denotion
we wanted to emphasize that. This small correction does not have any
meaning in the first approximation-

Y ′2 = Y2 − Y1;

However we will use it at the end so we must remember that. Now let us
make division of determinants to the traces.

s2εuΣu

1 + 2εuΣc2 = Y ′c
Yt

s2εdΣd

1 + 2εdΣc2 = Y ′s
Yb

(82)

s2εlΣl

1 + 2εlΣlc2 =
Y ′µ
Yτ

for the first and second ones in equation: (82) we can write that

Y ′c
Yt
/
Y ′s
Yb

= Σu

Σd

(1 + 2(εdΣd − εuΣu)c2);

Y ′µ
Yτ
/
Y ′s
Yb

= Σl

Σd

(1 + 2(εdΣd − εlΣl)c2); (83)

It is obvious that down quarks and leptons are come from the same diagram,
therefore we can say that Bd = Bl. Consequently, there is a possibility to
write third equation from eq: (81):

Yb
Yτ

= 1 + (εdΣd − εlΣl)c2; (84)

Now division of the Yukawa couplings is given in equation (77), therefore we
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can put them into the equations (83) and (84).

0.2B2
t = Σu

Σd

(1 + 2(εdΣd − εuΣu)c2);

3.11
Bt

= Σl

Σd

(1 + 2(εdΣd − εlΣl)c2); (85)

0.77
Bt

− 1 = (εdΣd − εlΣl)c2;

Now, form the last two equations in (85) we can get:

3.11
Bt

= Σl

Σd

(1.54
Bt

− 1)⇒

Bt = 1− 3.11Σd

Σl

(86)

Now let us put values of Σu,d,l in the previous equations and see what we
get.

Bt = 1− 3.11Σd

Σl

= 1− 3.11a+ b

2b ;

0.77
Bt

− 1 = ε
a− b

2 c2; (87)

0.2B2
t = 3a+ b

2(a+ b)

(
1− ε

(
3a+ b

4 − a+ b

2

)
c2
)

;

where εu = εd = εl ≡ ε. Reason for that is that inner operator is the same for
all these diagrams.Let us solve this system of 3 equations. From the second
equation in (87) we define cosine and put in the third one that gets a form:

0.4B2
t = 3a+ b

(a+ b)

(
1− εa− b2

2(0.77−Bt)
ε(a− b)Bt

)
(88)

Now let us define b=1. We want that matrix: (69) to be traceless, there-
fore, for it, a must be a = −2

3 but we will not use this condition because it
is the theory that fixes Σ and theory can be modified. Putting just value b
in the equation (87) and then using our formula to put in the last one will
give us the form that will depend only on Bt. At the end of the day, we can
put every logical values in the last equation (88).

0.4B2
t = 3a+ 1

(a+ 1)

(
1− (0.77−Bt)

Bt

)

a = 1−Bt

1.555 − 1;⇒ (89)

0.4B3
t (Bt − 1) = (3Bt + 0.11)(2Bt − 0.77)
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doing the last step gives us polynomial equation for Bt

0.4B4
t − 0.4B3

t − 6B2
t + 2.09Bt + 0.0847 = 0 (90)

We have four real solutions:

Bt ∼ −0.04 Bt ∼ 0.38 Bt ∼ −3.58 Bt ∼ 4.24 (91)

So, that means that in physically correct area this model does not work.
Consequently, we cannot use just 10 exchange and describe model explicitly.
However, just adding exchange of 5-s will not be good for a model because it
will introduce new coupling constant and new unknown parameters, therefore
we should search for mode advanced model and unification. This is SO(10),
it coalesces in itself, everything that we want and coupling constant is same
for everything. To discriminate between ups, downs and leptons we will
introduce new sigma Σ that will be 45, and this sigma will give us Clebschs
that will give us hierarchy between fermions.

6.3 Introducing Higher Symmetry SO(10)
The main Advantage of SO(10) with respect to SU(5) is that all the known
SM fermions plus three right handed neutrinos fit into three copies of the 16
dimensional spinorial representation of SO(10). Important branching rule
for this 16 is:

16→ 10⊕ 5̄⊕ 1 (92)

The SO(10) symmetry is spontaneously broken to SU(5) by the Higgs su-
permultiplet and then we have breaking of SU(5) into Standard Model. As
it was in MSSM here we also have two Higgses that make possible to break
the symmetry and they are contained in a superfield 10. Now let us describe
in more details ingredients of the model. For simplicity we assume that all
vertical Higgses are singlets of SU(3) and all horizontal Higgses are singlets
of SO(10). Vertical is just a name for Higgses of SO(10). In particular the
vertical sector of SO(10) includes chiral superfields in the representations 54
45, 16 and 1̄6, needed for the breaking down this to SU(3)× SU(2)× U(1)
and 10-plets for the electroweak symmetry breaking and the mass generation.
Now for the horizontal parts we have triplet, sextet and octet representations.
We, therefore, introduce anti-sextet and triplet combinations as it was in the
previous case and also some adjoint representation. One should emphasize
that besides the matter superfields (16, 3) we introduce a number of vector-
like representations as we did for SU(5) these are needed for the fermion
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generation. Algorithm is nearly the same, these states mediate the see-saw
like diagrams and hence the quark and lepton Yukawa structures emerge
after integrating them out.

Let us talk one of the main things in our talk and emphasize some details.
SU(3)H Higgs part is a little bit sophisticated. We are now taking disoriented
"vectors". However, we fix the norm of them. By introducing specific type of
superfields counting F terms and fixing parameters will show us how we fix
a norm. Consequently we introduce W , that is:

W(χ) = I(χχ̄− λ2) (93)

This tells us that I (that is some singlet), must be 0. and it fixes the norm
of χ. We do the same for the triplet. At the end, int this model we also are
introducing two sextets and 1 triplet, however, initial triplet does not have
just a third direction it has some component on the second direction too,
therefore we have some change. To be precise, let us show the matrices: 0 0 0

0 0 0
0 0 B


 0
AS•
AC•


 0 0 0

0 s2B −scB
0 −scB c2B


 0
As
Ac

 (94)

so you can see two sextets and 1 triplet! Now we have to depict correct
process for our model and that is all. If you remember we used diagrams for
SU(5) for exchange of 10,in the first approximation it was just 2 diagrams
(+2 if we consider 5 exchange too). However, introducing SO(10) merged
everything and now we will have one simple process, exchanging by 16: It is

evident now that coupling constant is identical for each process that we had
in SU(5) because they are united in 16. For operators now we can draw the
similar diagram as we did at the beginning of this section:

∴ uc Qc U c

q 0 χT H
Q H M10 0
U χ 0 M10

Yukawa matrix after diagonalization takes the form:

Yu = χTM−1
10 +M−1

10 χ
T =

(
χ+ χT

)
M−1

10 (95)
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Now let us see for down quarks:

∴ dc Qc Dc

q 0 χT H̄
Q H̄ M10 0
D χ 0 M5

In this matrix you can see that there are two types of masses, one that
comes from 10 exchange and one from exchange of 5. So, Yukawa matrix
after diagonalization becomes:

Yd = χTM−1
10 +M−1

5 χ (96)

For leptons everything is settled because we know that Yl = Y T
d . Moreover,

as we already mentioned [18] 16 = 1(−5) + 5̄(3) + 10(−1) where numbers in
parenthesis are hypercharges that are connected to the masses heavy parti-
cles. Because of these charges we consider a case where M5 = −3M10. So,
If we consider all of these statements we can write for a down quarks ( and
leptons):

Yd =
(
χT − 1

3χ
)
M−1

10 (97)

What we have calculated in this section so far was the a simple process,
we now want to add another exchange set which will introduce new sets of
exchange particles with mass M ′

10 and M ′
5. Furthermore, we have two new

fields one is the χ′ that has the same direction as the old but rotated chi
(rotation happens with an angle α) and we have field Σ. This field interacts
with 16× 1̄6 that can be decomposed as 1 + 45 + 210 [18]. For our problem 1
does not change anything, so we use 45. Ultimately, Σ can be a combination
of 1 and 24, because 45 = 1(0) + 24(0) + 10(4) + 1̄0(−4). We write it as
Σ = Σx + Σy = xX + Yhcharge. Here X is unitary matrix.
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Figure 5: All process with exchange of 5̄F and 10F

So,Σy is between 16 and 1̄6. Each transition has been drawn, now we find
which particle goes into which and from it get hypercharges. So decmposition
of 5̄ and 10 are [18]:

5̄ =
(

3̄, 1,+1
3

)
⊕
(

1, 2,−1
2

)
10 = (5⊗ 5)A =

(
3̄, 1,−2

3

)
⊕
(

3̄, 2,+1
6

)
⊕
(
1̄, 1,+1

)
(98)

Consequently, from it we know hypercharges of particles:

q ∼ (3, 2,+1
6), ` ∼ (1, 2,−1

2),

uc ∼ (3̄, 1,−2
3), dc ∼ (3̄, 1,+1

3), ec ∼ (1, 1,+1)). (99)

To write everything explicitly we have to create two 5×5 matrices, one for
up quarks and another for down for leptons we can make some implications
easily.
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∴ uc Qc U c U c
1 Qc

1
q 0 χTu H 0 χ′Tu
Q H M10 0 0 0
U χu 0 M10 ΣU−Uc1 0
U1 χ′u 0 0 M ′

5 0
Q1 0 ΣQc−Q1 0 0 M ′

10

After integrating:

∴ uc Qc U c U c
1 Qc

1
q 0 χTu+4χTu H 0 0
Q H M10 0 0 0
U χ+4χu 0 M10 0 0
U1 0 0 0 M ′

10 0
Q1 0 0 0 0 M ′

10

where 4χu = ΣU−Uc1M
′−1
10 χ′u and 4χTu = χ′Tu M

−1
10 ΣQc−Q1 . If we put values of

Sigma we will get:

χ→ χ+4χ = χ+ (x+ 2
3)M ′−1

10 χ′

χT → χT +4χT = χT + (x− 1
6)M ′−1

10 χ′T (100)

Consequently, Yukawa matrix for up quarks will have a form:

Yu =
(
χT + χ+ x(χ′ + χ′T )M ′−1

10 +
(2

3χ
′ − 1

6χ
′T
)
M ′−1

10

)
M−1

10 (101)

Okay, it is time for down part, however here we have also exchange of
heavy particles with mass M ′

5 which might have different charge X with
respect to other heavy particles with mass M ′

10. I want to convey that if we
have same exchange with 16 then for sure we have M ′

5 = −3M ′
10 but also it

is possible to have heavier particle exchange where M ′
5 = M ′

10. So two cases
that must be considered.

∴ dc Qc Dc Dc
1 Qc

1
q 0 χTd H̄ 0 χ′Td
Q H̄ M10 0 0 0
D χd 0 M5 ΣD−Dc1 0
D1 χ′d 0 0 M ′

5 0
Q1 0 ΣQc−Q1 0 0 M ′

10

After integrating:
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∴ dc Qc Dc Dc
1 Qc

1
q 0 χTd +4χTd H̄ 0 χ′Td
Q H̄ M10 0 0 0
D χ+4χd 0 M5 0 0
D1 0 0 0 M ′

5 0
Q1 0 0 0 0 M ′

10

where 4χd = ΣD−Dc1M
′−1
5 χ′d and 4χTd = χ′Td M

−1
10 ΣQc−Q1 . Putting values of

Sigma:

χ→ χ+4χ = χ+ ((−3)x− 1
3)M ′−1

5 χ′

χT → χT +4χT = χT + (x− 1
6)M ′−1

10 χ′T (102)

Consequently, Yukawa matrix for down quarks will have a form:

Yd =
(
χT − 1

3χ+ x
(
M ′−1

10 χ′T +M ′−1
5 χ′

)
+ 1

9M
′−1
5 χ′ − 1

6M
′−1
10 χ′T

)
M−1

10(103)

For the first case, when M ′
5 = −3M ′

10

Yd =
(
χT − 1

3χ+ x
(
χ′T − 1

3χ
′
)
M ′−1

10 −
( 1

27χ
′ + 1

6χ
′T
)
M ′−1

10

)
M−1

10 (104)

For the second case, when M ′
5 = M ′

10

Yd =
(
χT − 1

3χ+ x
(
χ′T + χ′

)
M ′−1

10 +
(1

9χ
′ − 1

6χ
′T
)
M ′−1

10

)
M−1

10 (105)

Form of a χ and χ′ is the same as it was in previous model. They are
comprised of sextet and triplet. Let us make such kind of denotion: χ33

M10
≡ B,

χ12
M10
≡ A and 〈Σ〉

M ′
10
≡ ε. Now let us put explicit form to get mass matrices:

Yu =

 0 0 0
0 0 0
0 0 2B

+

xε

 0 0 0
0 2Bs2 −2Bsc
0 −2Bsc 2Bc2

+ ε

 0 5
6Ac

5
6As

−5
6Ac

1
2Bs

2 −1
2Bsc

−5
6As −

1
2Bsc

1
2Bc

2

⇒ (106)

Yu =

 0 0 0
0 0 0
0 0 2B

+ ε

 0 5
6Ac

5
6As

−5
6Ac (2x+ 1

2)Bs2 −(2x+ 1
2)Bsc

−5
6As −(2x+ 1

2)Bsc (2x+ 1
2)Bc2


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We did not expect much of a change in Up part, inasmuch as there are no 5
exchange in this part. Okay, let us move on an important part-down quark
mass matrix (For the case M ′

5 = −3M ′
10).

Yd =

 0 −4
3AC• −

4
3AS•

4
3AC• 0 0
4
3AS• 0 2

3B

+

xε

 0 −4
3Ac −4

3As
4
3Ac

2
3Bs

2 −2
3Bsc

4
3Ac −

2
3Bsc

2
3Bc

2

− ε
 0 − 7

54Ac − 7
54As

7
54Ac

11
54Bs

2 −11
54Bsc

7
54As −

11
54Bsc

11
54Bc

2

⇒ (107)

Yd =

 0 −4
3AC• −

4
3AS•

4
3AC• 0 0
4
3AS• 0 2

3B

+

ε

 0 −(4
3x−

7
54)Ac −(4

3x−
7
54)As

(4
3x−

7
54)Ac (2

3x−
11
54)Bs2 −(2

3x−
11
54)Bsc

(4
3x−

7
54)As −(2

3x−
11
54)Bsc (2

3x−
11
54)Bc2


For the case M ′

5 = M ′
10.

Yd =

 0 −4
3AC• −

4
3AS•

4
3AC• 0 0
4
3AS• 0 2

3B

+

ε

 0 5
18Ac

5
18As

− 5
18Ac (2x− 1

18)Bs2 −(2x− 1
18)Bsc

− 5
18As −(2x− 1

18)Bsc (2x− 1
18)Bc2


Now, what about lepton part. We knew that without inserting Σ lepton

part was just a transpose, however, after this Σ enters in a game we have
different hypercharges and we cannot make a simple transpose for the second
part of the matrix. We must go back to the 5 × 5 matrices and to the
transitions and see what is changing. So,it is evident that the M5 and M ′

5
switch places with M10 and M ′

10. Moreover, 4χ is changed also in a sense
that Σ is different.

4χl = ΣE−Ec1M
′−1
10 χ′ = (x− 1)M ′−1

10 χ′;

4χTl = χ′TM ′−1
5 ΣLc−L1 =

(
(−3)x+ 1

2

)
χ′TM ′−1

5 ; (108)

So for leptons:

Yl =
(
χ− 1

3χ
T + x

(
χ′M ′−1

10 + χ′TM ′−1
5

)
−
(1

6χ
′TM ′−1

5 + χ′M ′−1
10

))
M−1

10(109)
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For the case M ′
5 = −3M ′

10

Yl =

 0 4
3AC•

4
3AS•

−4
3AC• 0 0
−4

3AS• 0 2
3B

+ ε

 0 (4
3x−

19
18)Ac (4

3x−
19
18)As

−(4
3x−

19
18)Ac (2

3x−
17
18)Bs2 −(2

3x−
17
18)Bsc

−(4
3x−

19
18)As −(2

3x−
17
18)Bsc (2

3x−
17
18)Bc2

(110)
For the case M ′

5 = M ′
10

Yl =

 0 4
3AC•

4
3AS•

−4
3AC• 0 0
−4

3AS• 0 2
3B

+ ε

 0 5
6Ac

5
6As

−5
6Ac (2x− 7

6)Bs2 −(2x− 7
6)Bsc

−5
6As −(2x− 7

6)Bsc (2x− 7
6)Bc2

(111)
For convenience, let us split our problem in two cases. Further calcula-

tions will be held separately.

6.3.1 When M ′
5 = M ′

10

Consequently,

Yu =

 0 5
6Aεc

5
6Aεs

−5
6Aεc (2x+ 1

2)Bεs2 −(2x+ 1
2)Bεsc

−5
6Aεs −(2x+ 1

2)Bεsc (2 + (2x+ 1
2)εc2)B



Yd =

 0 −(4
3C• −

5
18εc)A −(4

3S• −
5
18εs)A

(4
3C• −

5
18εc)A (2x− 1

18)Bεs2 −(2x− 1
18)Bεsc

(4
3S• −

5
18εs)A −(2x− 1

18)Bεsc (2
3 + (2x− 1

18)εc2)B

 (112)

Yl =

 0 (4
3C• + 5

6εc)A (4
3S• + 5

6εs)A
−(4

3C• + 5
6εc)A (2x− 7

6)Bεs2 −(2x− 7
6)Bεsc

−(4
3S• + 5

6εs)A −(2x− 7
6)Bεsc (2

3 + (2x− 7
6)εc2)B


Now let us estimate everything with the approximation of ε. We will ne-
glect terms with ε2. Let us look on the up-quark matrix. If we make
(23) rotation to diagonalize it (detailed calculation in the Appendix) for
(22) term we are getting (2x + 1

2)Bεs2 + (2x+ 1
2 )2B2ε2s2c2

2B+(2x+ 1
2 )Bεc2 , so as you can see

we have ε2 on the second term and we neglect it. We can do it for these
three matrices and we can get Yukawa constants with ε approximation for
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charm,top,strange,bottom,mu and tau particles.

Y ′c ∼
(

2x+ 1
2

)
Bεs2, Yt ∼

(
2 +

(
2x+ 1

2

)
εc2
)
B

Y ′s ∼
(

2x− 1
18

)
Bεs2, Yb ∼

(2
3 +

(
2x− 1

18

)
εc2
)
B

Y ′µ ∼
(

2x− 7
6

)
Bεs2, Yτ ∼

(2
3 +

(
2x− 7

6

)
εc2
)
B

In the previous section 6.1 we have calculated the Yukawa constant divi-
sions(in the first approximation), so let us use them (we put values of Bt

from 0.7 to 0.9 respectively):

Y ′c
Yt
∼ (x+ 0.25)εs2 ∼ 0.0039B3

t = [0.00134÷ 0.00284] ;

Y ′s
Yb
∼ 3

(
x− 1

36

)
εs2 ∼ Bt

50 = [0.014÷ 0.018] ;

(113)
Y ′µ
Yτ
∼ 3

(
x− 7

12

)
εs2 ∼ 0.059;

Now let us look on the first and second pair in equation 113.∣∣∣∣∣Y ′sYb /Y
′
c

Yt

∣∣∣∣∣ = 3

(
x− 1

18

)
x+ 0.25 = |10.45÷ 6.34| (114)

We have to solve in case of moduli and get values for x:

(−) x = [−0.188 ÷ − 0.16]
(+) x = [−0.362 ÷ − 0.5] (115)

From equation (113) let us use third-second pair and see which values of x
satisfies it:

∣∣∣∣∣Y
′
µ

Yτ
/
Y ′s
Yb

∣∣∣∣∣ =

(
x− 7

12

)
x− 1

36
= 3.15

Bt

= [4.5÷ 3.5]

x ∈ [−0.1309÷−0.194] (116)

As you can see our solution in equation (135) fully covers area of valid x
in equation (115). Therefore now we can find the point where these lines
interact and give us the solutions: x and Bt.

45



Figure 6: Dependence of x on the Bt. Red point represents the interaction
point that is (0.826,−0.17).

So, so far we found Bt for our model that is Bt = 0.826 and x = −0.17.
Let us put these values and find exactly what are Yukawa coupling divisions:

Y ′c
Yt
∼ 1

455 ,
Y ′s
Yb
∼ 1

64 ,
Y ′s
Yb
/
Y ′c
Yt
∼ 7.109

Now let us estimate what should be the angle α between the χ and χ′.
First of all we should say that in CKM matrix (VCKM = V †uVd) contribution
of up-quarks is very small so we can neglect it in the first approximation.
Therefore, it can be said that tandα23 ' 0.042. From the appendix (8), we
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can easily write the exact rotational angle for down-quarks.
Y ′s
Yb
∼ 1

64 = 3(x− 1
36)εs2

tan(θ23) ∼ 3(x− 1
36)εsc⇒ (117)

tan(α) =
1
50

0.042 ∼ 0.449

So α ∼ 25.74◦. Now that we know the rotational angle we can find also
smallness parameter too. Just for convenience I will give a numerical results
for c2 and s2 that are 0.8116 and 0.1883 respectively. Let us put values in the
second equation of (113). So, in the first approximation we get ε ∼ −0.1479.
We have found all parameters that are necessary to start process of "iteration"
and make better calculations in the second approximation. It is handy to
start with down quark and lepton part. Considering small term in Yukawa
coupling constants division of τ and bottom quark will be:

Yτ
Yb

=
1 + 3(1− 7

12)εc2

1 + 3(1− 1
18)εc2 ∼ 1.1868 ≡ Q (118)

We have now everything to estimate mass of the bottom quark. Must not
be forgotten that we have to use R and η factors to take masses from GUT
to their measurement scale.

mb = Yτ
Q

= Rdηb
Re

mτBt

Q
∼ 3.31

1.18681.776Bt ∼ 4.961Bt ∼ 4.117 GeV (119)

So, we can say our value falls into the range of the particle data group given
mass [9]! Now it is vital to "talk to" the asymmetric part of Yukawa matrix
and estimate parameter A. As you can see in the down and lepton matrices
we have ε-corrections too that we have to consider. However, it must be
emphasized that in the first approx. determinants of these two matrices are
equal YdYsYb = YeYµYτ(4

3 −
5
18εc

)
A ∼

√
YdYs

(4
3 + 5

6εc
)
A ∼

√
YeYµ ⇒ YdYs = YeYµ

1.223
1.3684

Now, introducing higher order correction into the determinant will give us:

YdYs = YeYµ · 0.947 ·Q (120)

To extract Yd
Ys

we also use another divisions from equation (113). Let us
divide second and third one:

Ys − Yd
Yb

/
Yµ − Ye
Yτ

∼ Bt

51 ·
1

0.059 ∼ 0.276 ≡ R (121)
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We have used this equation (82).Now, let us divide eq:(120) on square of
eq:(121):

Yd
Ys
·
(

1− Yd
Ys

)−2
= Ye
Yµ

(
1− Ye

Yµ

)−2
Q3

R2 (122)

From this equation it is easy to find our wanted division that is

Yd
Ys
∼ 1

20.3 . (123)

This also matches with the experimentally given number in the error range.
Let us move to the up-quark Yukawa matrix and find mass divisions there

too. For ups in asymmetric part we only have ε-correction terms, therefore
for A there we have:

5
6Aεc =

√
YuYc (124)

We also will need this equation:

Yc ∼ B
(

2x− 1
18

)
εc2. (125)

now their division equals to:

A

B
· 5

6
c

s2(2x+ 0.5) =
√
Yu
Yc

(126)

If we do same for down-quark:

A

B
· 4

3
1

εs2
(
2x− 1

18

) =
√
Yd
Ys

(127)

Division of eq:(126) into eq:(127) gives us:

Yu
Yc

= 25
36 ·

9
16 ·

c

s2(2x+ 0.5) ·
εs2(2x− 1

18)
4 · Yd

Ys
∼ 0.002 = 1

500 (128)

This factor gets also well with experimental value. As you know we have
calculated and estimated Bt that is nearly 0.83. Bt is a function of Yt,
therefore we also know it from the figure: (4). Yt ∼ 0.91 for calculating
tan(β) (that is v1/v2) we take division of top quark to bottom quark that is:

Yb
Yt

=
2
3 +

(
2x− 1

18

)
εc2

2 + (2x+ 0.5) εc2 ' 0.3604 ≡ P (129)
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Then if we use definition of Yb and put there mass of the bottom quark that
we already took we find that:

cos(β) = mb

PYtRdηd · 174 ⇒

tan(β) = 68.486; (130)

We know the β angle too, therefore it is very easy to find mt:

mt = YtRu(Bt)6 · 174 · sin(β) ' 0.91 · 3.25 · (0.826)6 · 174 · sin(β) ∼ 163.421;

Consequently, mt = 163.421GeV is a very good theoretical value and it
matches with the experiment! Now we have estimated vital parameters and
we can clearly and easily get not only division of masses but also their values.
Let us put all needed parameters in this equation Ys = B

(
2x− 1

18

)
εs2. We

already know Yt therefore we can easily get B coefficient from it (B ' 0.4594).

ms = BRdηs · 174 · cos(β)
(

2x− 1
18

)
εs2 ' 0.0968GeV = 96.8MeV ;

Yd
Ys

= md

ms

⇒ md '
1

20.3 · 96.8 ∼ 4.768MeV ; (131)

Both are very good results if you check with experimental values [9]. Ana-
logical strategy will be used for the upper part and we will get that:

mc = BRuηc · 174 · sin(β)B3
t (2x+ 0.5) εs2 ' 1.32GeV ;

(132)

by the same logic we calculate up quark mass that will be mu ∼ 2.64 MeV .
As you can see all 6 masses that we are getting from theoretical considerations
match with experiment very well. Now, let us calculate also s12 and s13
The main part in CKM is bottom-quark, inasmuch as up is very "stretched"
and it gives little contribution, therefore one can say that s12 =

√
md
ms
∼ 0.22

that is nearly ∼ 12.8◦. For the (13) mixing we have that |Vub| =
√
ds
b
∼√

d
s
· s
b
∼ 4 · 10−3. However, this good result is possible if C• = S• =

√
2

2 so it
is 45◦.
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6.3.2 When M ′
5 = −3M ′

10

So,

Yu =

 0 5
6Aεc

5
6Aεs

−5
6Aεc (2x+ 1

2)Bεs2 −(2x+ 1
2)Bεsc

−5
6Aεs −(2x+ 1

2)Bεsc (2 + (2x+ 1
2)εc2)B



Yd =

 0 −(4
3C• + (4

3x−
7
54)εc)A −(4

3S• + (4
3x−

7
54)εs)A

(4
3C• + (4

3x−
7
54)εc)A (2

3x−
11
54)Bεs2 −(2

3x−
11
54)Bεsc

(4
3S• + (4

3x−
7
54)εs)A −(2

3x−
11
54)Bεsc (2

3 + (2
3x−

11
54)εc2)B

(133)

Yl =

 0 (4
3C• + (4

3x−
19
18)εc)A (4

3S• + (4
3x−

19
18)εs)A

−(4
3C• + (4

3x−
19
18)εc)A (2

3x−
17
18)Bεs2 −(2

3x−
17
18)Bεsc

−(4
3S• + (4

3x−
19
18)εs)A −(2

3x−
17
18)Bεsc (2

3 + (2
3x−

17
18)εc2)B


Here we do the same procedures as we did in the last subsection-considering

two equations finding all areas where our x is good and then checking if for
these two equations these areas cover each other.

∣∣∣∣∣Y ′sYb /Y
′
c

Yt

∣∣∣∣∣ =

(
x− 11

36

)
x+ 0.25 = |10.45÷ 6.34| ⇒ (134)

(+) x ∈ [−0.31 ÷ − 0.35]
(−) x ∈ [−0.2 ÷ − 0.175]

∣∣∣∣∣Y
′
µ

Yτ
/
Y ′s
Yb

∣∣∣∣∣ =

(
x− 7

12

)
x− 1

36
= 3.15

Bt

= [4.5÷ 3.5] ⇒ (135)

(+) x ∈ [−0.012 ÷ − 0.138]
(−) x ∈ [0.5 ÷ 0.55]

As you can see neither of these areas cover each other, therefore we do not
have a solution for x in this model.
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7 Conclusion
Introducing a new symmetry on a GUT-SUSY scale made possible to some-
how explain hierarchy of masses between families. We created a model where
for input there is used a lepton part, however you get output of quark masses
and mixing angles. This is quite beautiful and thrilling.

Output
Yu
Yc
∼ 1

500 ∴ Yd
Ys
∼ 1

20.3
mu(2GeV ) '
2.64 MeV

mc(Mc) ' 1.32 GeV mt(Mt) ' 163.42GeV

md(2GeV ) '
4.768 MeV

ms(2GeV ) '
96.8 MeV

mb(Mb) ' 4.117 GeV

s12 ' 0.22 ∴ s13 ' 4 · 10−3

8 Appendix

8.1 Seesaw Mechanism
Neutrinos are special in the Standard Model for three reasons: 1. Neutrinos
have no electric charge. 2. Neutrinos are so much lighter in mass than all the
other particles of the Standard Model. 3. Neutrinos are only left-handed.
By linking these three apparently different facts together Murray Gell-Mann
was able to propose the seesaw mechanism. The seesaw mechanism is a
general phenomenon that occurs with eigenvalues of matrices of a certain
form. Consider a matrix: (

0 a
a b

)
(136)

which has eigenvalues

λ+ = b

2 +
√

( b2)2 − a2 (137)

λ− = b

2 −
√

( b2)2 − a2 (138)

It is needed to emphasize the fact that light eigenvalue is parametri-
cally smaller than any of the (non-zero) elements of the matrix. The bigger
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that the ’larger’ eigenvalue becomes, the smaller the ’lighter’ eigenvalue be-
comes. From this property arouses the name “seesaw”, one goes up, the
other goes down. In reality, if there is a small eigenvalue to explain, the
seesaw formula transforms it into explanation when a different eigenvalue is
so big. Transforming problems this way is an effective method in science.
How the seesaw mechanism is believed to work in the neutrino sector of the
Standard Model is as follows.

Fermions in the Standard Model are Weyl fermions — half of a nor-
mal Dirac fermion. These Weyl fermions have a definite chirality mean-
ing that the spin and the momentum are either perfectly aligned (so-called
right-handed fermions) or perfectly anti-aligned (left-handed fermions) Weyl
fermions are massless. The Standard Model fermions obviously have masses
(otherwise the electron wouldn’t form atoms). Fermions acquire mass in the
Standard Model through electroweak symmetry breaking. When electroweak
symmetry is broken by the Higgs field acquiring a vacuum expectation value,
the left-handed Weyl fermions find right-handed Weyl fermions and “marry”
through a mass term and become a Dirac fermion. In the Standard Model it
looks like this:

Lmass = (ψ ψc)
(

0 m
m 0

)(
ψ
ψc

)
+ h.c. (139)

where ψ is the left-handed part of the fermion species and ψc is the charge
conjugate of the right-handed part of the fermion species. The diagonal zeros
of the mass matrix are forbidden by electroweak symmetry (and often by
electric charge). The eigenvalues of this matrix are degenerate and equal to
m.

Let’s consider Neutrino masses. One of the ways that neutrinos are special
is because there is only left-handed part of the fermion species and there is
no right-handed part of the neutrino species in the Standard Model. This
results in the mass term for the neutrinos in the Lagrangian to be

Lν−mass = (ν −)
(

0 −
− −

)(
ν
−

)
+ h.c. (140)

where the ’-’ means that term does not exist. Hence the neutrino has no
mass in the Standard Model. So neutrinos stay Weyl even after electroweak
symmetry breaking. Of course we have discovered that neutrinos have mass
thanks to neutrino oscillations. It’s time to consider Neutrino Seesaw Masses.
It was realized during the developments of grand unified theories that there
often can be a right-handed neutrino. However, the right-handed neutrino
was special because it has no charges under electroweak symmetry. This
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means that the right-handed neutrino can be different type of fermion known
as a Majorana fermion which is still half of a normal fermion, but does not
have a definite chirality like Weyl fermions. The right-handed neutrino can
only be a Majorana particle because the Standard Model neutrinos have no
electric charge. With the right-handed neutrino as a Majorana fermion, the
mass matrix is different from all the other fermions of the Standard Model
and is of the form

Lmass = (ν νc)
(

0 m
m M

)(
ν
νc

)
+ h.c. (141)

where M is some unknown mass scale. Now in most of physics, mass terms
are as large as they are allowed to be. In grand unified theories, this turns out
to be the grand unified scale, which is about a trillion times larger than the
electroweak scale (which itself is about 100 times larger than the rest mass
energy of the proton. What results is that the light eigenvalue is nearly com-
pletely the left-handed neutrino and is very light and the heavy eigenvalue is
very heavy and is nearly purely the right-handed neutrino. The right-handed
neutrino is far too heavy to be produced and thus we only observe a very
light, left-handed neutrino. So this is the link between the neutrino being
only left-handed, uncharged, and being very light. If we examine the lighter
eigenvalue, which is the mass of the Standard Model neutrino, the mass is
m2/M , or about a trillion times smaller than other particles of the Standard
Model, which are m. Most of the other fermions of the Standard Model are
in the 0.1 GeV to 100 GeV range, this gives a neutrino mass in the 1 MeV to
100 MeV ranger, which is the ball park of what is observed (we do not know
the absolute scale of neutrino masses, instead only known the differences of
the mass squares of the neutrino masses)[7].

8.2 Diagonalization
Let us consider a matrix: 0 Acεeıα

′
Asεeıα

′

−Acεeıα Bεs2 −Bεsc
−Asεeıα −Bεsc B(1 + εc2)

 (142)

Here ε is a smallness parameter α and α′ are phases. c and s these are angle
sine and cosine. We have the hierarchy B > A. Without loss of generality
we have only first horizontal-vertical line complex, other elements are real.
This matrix can be brought to the diagonal form, however we have to use
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bi-unitary transformation:

U ′TY U = YD =

 −Y1 0 0
0 Y2 0
0 0 Y3

 (143)

where we have some hierarchy too, like: Y3 � Y2 � Y1. These are Yukawa
eigenvakues for the physical fermions of three families. Now, firstly what we
have to do is to remove these complex phases and then make diagonalization.
For this we decompose unitary matrices U = CO and U ′ = C ′O′. Phase
transformations have this form:

C ′ =

 eı(2π−α
′) 0 0

0 1 0
0 0 1

 C =

 eı(2π−α) 0 0
0 1 0
0 0 1

 (144)

At the end of the day we have matrix without any phase and we can make
orthogonal transformations,rotations, to make it diagonal.

Y =

 0 Aεc Aεs
−Aεc Bεs2 −Bεsc
−Aεs −Bεsc B(1 + εc2)

 (145)

Consequently, we want-O′TY O, where O rotating matrix is:

O = O23O13O12 =

 1 0 0
0 c23 s23
0 −s23 c23


 c13 0 −s13

0 1 0
s13 0 c13


 c12 s12 0
s12 c12 0
0 0 1

(146)
The same is done for the prime part of orthogonal rotation. To compute
these rotational angles we may use some interesting fact that OTY TY O =
O′TY Y TO′ = Y 2

D. For the elements in our (145), approximation gives that:

B(1 + εc2) ∼ Y3

Bεs2 + Bε2s2c2

(1 + εc2) ∼ Y2 (147)

A2εc2

Bs2 + A2ε2s2

B(1 + εc2) ∼ Y1

We can see that we have second order smallness parameters inside, therefore,
if we neglect it what remains is:

B(1 + εc2) ∼ Y3

Bεs2 ∼ Y2 (148)
A2εc2

Bs2 ∼ Y1
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We start with the 23 rotation to diagonalize the lower 23 block:

O′T23Y
(0)O23 =

 0 Acεc23 − Asεs23 Acεs23 + Asεc23
−Acεc′23 + Asεs′23 y2 0
−Acεs′23 − Asεc′23 0 y3

(149)
Angle that does this job is:

tan2θ23 = 2εsc(1 + ε)
(εs2)2 − (1 + εc2)2 = − εsin(2α)

1 + εcos(2α) = tan2θ′23 (150)

As you can see diagonal terms are small y-s this is because there will be
some corrections, that will be added and at the end of the day, we will get
Yukawa coefficients. Now it is time for a next block (13) that will add small
correction to the 11 and 33 elements, however they are way too small and we
neglect it. However, 12 rotation implements sufficient correction to the 22
element that will be proportional to Y1. Angles can be derived in the same
way as it was in SeeSaw mechanism.

sinθ13 ∼ −
Aε(cs23 + sc23)

Y3

sinθ′13 ∼
Aε(cs23 + sc23)

Y3
(151)

and for the 12 rotation:

tan2θ12 ∼ 2Aεcc
′
23 − ss′23
Y2 − Y1

tan2θ′12 ∼ −2Aεcc23 − ss23

Y2 − Y1
(152)
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