Geometric Methods in Mathematical Physics (28 lectures, 58 hours)

Hovhannes Shmavonyan Yerevan Physics Institute

1. Elements of Set Theory

Overview of the course, Propositional and Predicate Logic, Zermelo-Frankel axioms, Classification of sets, Mappings between sets, Equivalence Relations

2. Element of Topology-1

Topological Spaces, Convergence, Continuity, Homeomorphism

3. Elements of Topology-2 Separation properties, Homotopic curves and Fundamental group

4. Topological Manifolds

Topological manifolds, Bundles, Atlases

5. Differentiable Manifolds

Differentiable manifolds, Diffeomorphism, Smooth manifolds

6. Vector spaces Vector spaces, Linear maps, Vector space isomorphism, Tensors, Algebraic fields, Modules

7. Tangent and Cotangent Spaces

(Co)Tangent vector spaces to a manifold, Pull-back, Push-forward

8. (Co)Tangent bundles

Tangent bundle, Vector fiber bundle, Sections and Vector fields, Lie derivative

9. Differential Forms -1

n-forms, Wedge product, Exterior derivative, Hodge dual, Grassmann algebra

10. Differential Forms-2

Gradient, Divergence, Curl, Stokes Theorem, De Rham cohomology, Betti numbers

11. Differential Forms-3

Physical applications, Maxwell equations, Yang-Mills theory

12. Principle Fiber Bundles

Lie groups, Principal fiber bundles, Associated bundles

13. Kahler Manifolds

Symplectic Manifolds, Hermitian Manifolds, Kahler potential

14. Complex Projective Spaces

 C^{N} as a Kahler manifolds, CP^{N} as a Kahler manifold

15. Hamiltonian Formalism-1

Integrability in classical mechanics, Hamiltonian vector fields, Killing potentials

16. Hamiltonian Formalism-2

Lie algebra of Hamiltonian vector fields, Poisson brackets

17. Hamiltonian Reduction

Reduction in case of involution and without involution

18. Liouville-Arnold theorem

Liouville–Arnold theorem, action-angle variables, Conditionally periodic motion

19. Harmonic Oscillator and Coulomb problem

Integrability in a quantum level, Symmetry algebra of harmonic oscillator, Fradkin tensor, Symmetry algebra of a Coulomb model, Laplace–Runge–Lenz vector

20. Interaction with external magnetic Field

Inclusion of an external magnetic field in Hamiltonian mechanics, Landau problem

21. Integrable models on Kahler manifolds

Kahler oscillator, C^{N} - and CP^{N} - oscillators and their hidden symmetries

22. Quaternions

Algebra of quaternions, SU(2)-Instantons, Quaternionic spaces

23. Hopf Maps

Zero, First and Second Hopf maps, Reduction examples via Hopf maps

24. Example-1 (C^N -Smorodinsky-Winternitz system)

Real Smorodinsky-Winternitz system, Symmetry algebra, C^{N} - Smorodinsky-Winternitz and its symmetry algebra, quantization, U(1)-reduction

25. Example-2 (CP^N-Rosochatius model)

CP^N-Rosochatius , conserved quantities, symmetry algebra, quantization

26. Supersymmetry

Supersymmetry in d=4 Minkowski, SuperPoincare, Supermultiplets, Superspace, Superfield

27. Supersymmetric Mechanics

Supersymmetric mechanics (N=2,N=4,N=8), d=1 SuperPoincare,

28. SUSY on Kahler manifolds

SU(2|1)-SUSY algebra, SU(2|1) - Kahler superoscillaror and examples

References

- 1. T.Eguchi, P.B.Gilkey and A.J.Hanson, "Gravitation, gauge theories and differential geometry", Physics Reports 66 (1980) 213-393
- 2. 2.M. Nakahara "Geometry, Topology and Physics", Boca Raton, USA: Taylor & Francis, 2003
- 3. V. I. Arnold, "Mathematical methods of classical mechanics", "Nauka" Publ., Moscow, 1989
- 4. A. Nersessian "Elements of (super-)Hamiltonian formalism", Lect.Notes Phys.698:139-188,2006, [hep-th/0506170]