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1 Introduction

The universal formulae for simple Lie algebras were first derived by P. Vogel in his Universal
Lie Algebra [1, 2]. The main aim was to derive the most general weight system for Vassiliev’s
finite knot invariants. This program met difficulties, however, as a byproduct there appeared
the uniform parameterization of simple Lie algebras by the values of Casimir operators on three
representations, appearing in decomposition of the symmetric square of the adjoint represen-

tations:

5% =1+ Ys(a) + Ya(B) + Ya(7) (1)

One denotes the value of the second Casimir operator on the adjoint representation g as 2t,
and parameterizes the values of the same operator on representations in (1) as 4t — 2«, 4t —
23, 4t—2~ correspondingly (hence notation of representations in (1)). It appears that a+ g+~ =
t. The values of the parameters for all simple Lie algebras are given in the table 1, and in the
table 2 in another form. According to the definitions, the entire theory is invariant with respect
to rescaling of the parameters (which corresponds to rescaling of invariant scalar product in
algebra), and with respect to the permutation of the universal (=Vogel’s) parameters «, 3, .
So, effectively they belong to a projective plane, which is factorized w.r.t. its homogeneous

coordinates, and is called Vogel’s plane.

Table 1: Vogel’s parameters for simple Lie algebras

Root system | Lie algebra | « 15} ~y t=hY
A, sl -2 2 n+1) | n+1
Bn 509511 -2 4 2n—3 | 2n—1
Ch SPs, -2 1 n+2 | n+1
D, 509, -2 4 2n—4 | 2n —2
Go g2 -2 110/3 8/3 4
Fy f4 -2] 5 6 9
E6 (4 —2 6 8 12
E; e7 —2] 8 12 18
Ey es -2 12 20 30

Table 2: Vogel’s parameters for simple Lie algebras: lines

Algebra/Parameters | « 15} ~y t Line
sly | -2 2 N N a+ =0
soy | -2 4 N —4 N -2 20+ =0
spy | -2 1| N/24+2 | N/2+1 a+28=0

Ezc(n) | =2 | 2n+4 n+4| 3n+6|y=2(a+p)

For the exceptional line n = —2/3,0,1,2,4,8 for go, 50g, 4, ¢6, ¢7, ¢s, respectively.



As an example of application of this parametrization universal formulae [1, 3], for dimensions

of representations from (1) are presented below:

dlmg _ (2t — Oé)(Qt — ﬁ)<2t — 7) (2)

afy
: (2t =3a) (B-2t) (y—2t)t (B+1) (v +1)
dimYale) = o (a=f) B (a=7)y 9

and other two (3) representations which are obtained by permutations of the parameters.
These are typical universal formulae for dimensions: ratios of products of linear homogeneous
functions of universal parameters.

There are a number of universal formulae for different objects in the theory and applications
of simple Lie algebras. E.g. Vogel [1] found complete decomposition of third power of the adjoint
representation in terms of Universal Lie Algebra, defined by himself, and universal dimension
formulae for all representations involved. Landsberg and Manivel [3] present a method which
allows derivation of certain universal dimension formulae for simple Lie algebras and derive
those for Cartan powers of the adjoint, Y5(.), and their Cartan products.Sergeev, Veselov and
Mkrtchyan derived [4] a universal formula for generating function for the eigenvalues of higher
Casimir operators on the adjoint representation.

In subsequent works applications to physics were developed, particularly the universality of
the partition function of Chern-Simons theory on a sphere [13, 6, 7], and its connection with
g-dimension of kAq representation of affine Kac-Moody algebras [8] were shown, the universal
knot polynomials for 2- and 3-strand torus knots [9, 10, 11, 12] were calculated.

The antisymmetric square of the adjoint representation of semisimple Lie algebras is known

to be decomposed in the following universal form:
Ng=go X,

First of all, let’s suppose that for each algebra the square of the long root is equal to 2. This
corresponds to the set of Vogel’s parameters with @ = —2. Having this normalization in
mind, we calculate the eigenvalues of the Casimir operator on X5 and it’s Cartan powers. The
eigenvalue of the Casimir operator on an irrep with A highest weight is equal to (A + 2p, ).
The corresponding Dynkin diagrams and highest weights are given in the Figure 1. and Table

3 respectively.



Table 3: Xy (a, 5,7)

An,n >3 (2W1 + wn,l) S5 ((JJQ + 20.)]\[)
B,,n>4 w1 + w3
Cp,,n>3 21 + wa
D,,n>5 w1 + w3

G2 3LU1

Fy w2

Eg w3

E; w2

Ey We

Figure 1: Dynkin diagrams



2 Calculation of Casimir’s Eigenvalues for X, Represen-

tations

Taking into account the above mentioned data, we carry out the direct calculations for X5 first.

Ay
a:—2,6:2,fy:N—|—1,)\1:2w1+wN,1,)\2:w2+2wN,

For A\ = 2w; + wy_; case

C=2uw +wn_1,2w1 +wn_1) +2(w1 + -+ wn, 2w +wn_1) =

6N+6+ 2
N+1 N+1

For Ay = wy + 2wy irrep the Casimir eigenvalue coincides with the one calculated above, so the

(N(N+ 1)+ (N=1)(N+1))=6+2N +2N —2=4N +4

eigenvalue on the direct sum of these two irreps will be C.

By
a=-2,0=4,v7v=2N -3, =w; + w3
C = (w1 +ws,ws +ws) +2(wy + -+ - + wy,wi + ws3)
=+ + s+ Fss+2((Fu+ Fro+-+ Fiy) + Fap + -+ Fyy) =

6+2N—-1+9+6(N—-3)=2N+14+6N —18 =8N —4

Where F; . = (w;, wy) (MetricTensor[] in LieART).

Cn
a=-20=1,vy=N+2,\ =2w; +w>
C = 2wy + wa, 2wy + wa) + 2(w1 + -+ + wy, 2wy + wo)
=4Fy + 4P + Foy + Fy3 + 2 (2(Fuy + Fio + - + Fin) + For + -+ + Faoy)
— 21241 4+2(N+1/2+N—-1)=5+2N+1+2N —2=4N +4
Dy

a=—-2,0=4,7v=2N —4, )\ =w; + ws



C=(wi+ws,w +ws)+2w +--+wy,wi +wg) =6+2(N—-1+6+3N—12) =8N —38

Go
a=-2,0=10/3,y=8/3,A = 3w,

C = (3001,3(JJ1) + 2(0)1 —|—CL)2,3(JJ1) = 9F11 + 2 (3F11 + 3F12) =6+4+6=16

Fy
Oé:—2,5:5,’}/:6,)\:w2

C= (WQ,WQ)+2(CU1+LO2+W3+LU4,W2) =64+ 30=36

Eg
a=-2,0=6,7v=8\=uw;

C=Fi3+23 0 Fy=642(6+15) = 48

Er
a=-2,0=8v=12,A = w»

C=Fy+230  Fou=06+2(9+ 14+ 10) = 72

FEg
a=-2,0=12,7v=20,\ = wy

C=Fe+25 0  Fope=06+2-57=120

It can be easily noticed, that for each of the algebra the obtained value can be expressed as
At =4(a+ B+ 7).
In the work of M.Cohen and R. de Man ([14]) the Casimir eigenvalues on each of the irrep ap-
pearing in the decomposition of up to 4th square of the adjoint representation for the exceptional
Lie algebras have been computed. So we can check the correspondence between our formula
and that values for the exceptional algebras. If we scale the Casimir eigenvalue to be equal to 1
on the adjoint representation, as it is done in [14], our formula will be C, = C/2t = 4t/2t = 2,

which coincides with the value, presented in that work.



3 Calculation of Casimir’s Eigenvalues for Cartan Pow-

ers of X, Representations

Now we turn to the Cartan power case. The highest weight is now kA. Substituting these
new highest weights in the expressions for the Casimir eigenvalue, one obtains the expressions

shown in the following table:

Table 4: Casimir Eigenvalues

Ap,n >3 | 6k* + k(AN —2)
Bn,n >4 | 6k*+ k(8N — 10)
Cpyn >3 | bk*+ k(4N —1)
Dyp,n>5 | 6k* + k(8N — 14)

G, 6k% + 10k
F, 6k* + 30k
Fq 6k% + 42k
E; 6k* + 66k
Fy 6k* + 114k

Omne can easily check, that for each of the cases (except for the C),) the eigenvalue can be
expressed as
C = —3ak® + (4t + 3a)k = 3a(k — k?) + 4tk.

Notice, that for k = 1 case C' = 4t, as expected.

In the recent work of M.Avetisyan and R.Mkrtchyan ([15]) a universal formula for dimensions
of the k-th Cartan power of the X, representation has been obtained. A notable quality of the
Xo(k, a, B,7y) formula is that for the parameters, corresponding to the C), algebra it gives 0 for
any k > 2. So, the situation is such that for the C,, algebra the X5 (k, a, 8,7) gives 0, while the
universal Casimir eigenvalue on the corresponding representation does not.

A similar case regarding A, algebra is worth recalling. The universal decomposition of the

symmetric square of the adjoint representation writes as follows:
S%g =1+ Ys(a) + Ya(B) + Ya(v)

The Y3(B) for As is 0, whilst the Casimir eigenvalue on the same representation is 4t — 20.
In either case discussed above the product of the universal Casimir and universal dimension is
0. These examples suggest an idea, that in the universal description (or, maybe, in general)
of semisimple Lie algebras the second Casimir operators appear in product with the universal

dimensions. In support of this idea we bring a formula, presented by Deligne in [16]:

Tr(Cy, [R]V) = % > x(o)m(o)(dimV)" )" Tr(Cy, V)



where V' is a representation of the algebra, R is a representation of the S, group, [R](V) :=
Homg, (R, ®"V), 0 is an element of S,,, x(o) is the character on that element, m(o) is the sum
of the squares of the lengths of cycles of o, n(co) is the number of cycles of o.

For the symmetric square of the adjoint we rewrite this formula explicitly:

1+ Cy(1) 4 Ya(a)Co(Ya(a)) + Ya(B)Ca(Ya(B)) + Ya(7)Ca(Ya(7)) = (2 + g) - gCa(g)

Substituting the corresponding universal formulae, one can check, that for A, algebra this
formula is true.
Now we turn to the comparison of our universal expression with the values presented in [14].

For the k = 2 case we rewrite our formula in the corresponding scaling.

Ba(k —k?) + 4tk —3a+4t 6+ 4t

C.=
2t t t

In the following table the Casimir eigenvalues on X3 (denoted as H in [14]) for the excep-

tional algebras and the values obtained by our formula are shown.

Table 5: Casimir on X3

a |y(H)=446a| t | C.
A | 1)2 7 2 7
Ay | 1/3 6 3 6
G, | 1/4 11/2 1112
D, | 1/6 5 6| 5
Fi | 1/9 14/3 0 | 14/3
Es | 1/12 9/2 12] 9/2
E. | 1/18 13/3 18] 13/3
Es | 1/30 21/5 30 | 21/5

Thus, we see that the Casimir eigenvalues coincide.



4 On sp(—2n) = so(2n) duality

In ([13]) R.Mkrtchyan and A.Veselov have discussed the duality of Casimirs for So(2n) and
Sp(2n) groups. Using the Perelomov and Popov ([17]) formula for the generating function for
the Casimir spectra and parametrizing the Young diagrams in a different way ([13]), they have
explicitly shown the Cgp(2n) (A, 2) = —Cso(—2n)(A', —2) duality for rectangular Young diagrams.
Here, using the same ([17]) formula, we write the expressions for the corresponding eigenvalues

of the second Casimir operator (Cs) for so(2n) and sp(2n) algebras, in the A, B parametrization,
used in [13].

so(2n)

For so(2n) the Casimir spectra writes as follows

(1 —2n)(2 — z(4n — 3))
2(1—2(n—1))(2 — z(4n — 2))

030(271) (27 A? B) = Z Opso(Qn) Zp =
p=0
ﬁl—z (—Aj_i+ B;+2n—1) ﬁ 1= 2(A_jipsr — By
. 1—=2

i—0 1— Z Ak i B; ) (_A—i+k+1 + Bl + 2n — 1)

After a proper expansion of Cyo2n)(2, A, B) into series in the vicinity of the 2y = 0 point,

one can check, that the coefficient of 22, i.e. Cys0(2n), can be expressed as follows:

k
Co,pom (A, B) = Z (4nAi(B_isr41 — Bri) + 247 (By—s — B_ish1)+
=1

+ 2A;(Bii — B_ippr1) + 2BH (A1 — Aiy)) — 4nAgBy+
+ A2(2By, + 4By) + 2A0(By — By) — B2(2A; + 4Ap)—
—n(Ayg — By) + 2n (A5 + B3) + 2 (B — Aj) + 1/2(Ag — By).

sp(2n)

The Casimir spectra for this case is

ad (1 —2n)(2 — z(4n + 3))
Osp 2n) < A B pgo Cpsz)(%) 2(1 — Z(TL + 1))(2 — Z(4TL + 2))

f[ 1-— Z(Bk_i - Az + 2n + 1) ﬁ 1— Z(—B_Z‘+k+1 + Az)

1— Z(—Bk_i + Az) 1 1-— Z<B—i+k+1 - AZ + 2n + 1)

=0



Table 6: Comparison

Algebra | Diagram A B Cy(A, B) Cy
so(2n) | | A, =B =1,4,=3,B,=2|16n—16 | 8n —8
sp(2n) | ] A =B =1,4,=2,B,=3| 16n+16 | 4n+4

And for Cygp2n) one has

M»

Co — AnBi(A it — Armi) + 247 (B_iviy1 — Broi)+

sp(2n
1=1

2B} (Ap—i — A_igir1) + +2Bi(Akmi — Aii)) — 4nBoAy+
+ A3(2By + 4By) — 2Bo(Ay — Ag) — B3 (24, + 4A0)—
—n(By — Ag) + 2n (A5 + B3) + 1/2(Ao — Bo) — 2 (A} — BY) .

Therefore, we have obtained formulae for second Casimir eigenvalues on irreps of sp(2n)
and so(2n) algebras, corresponding to any Young diagram (any (A, B) set).
It can be checked, that
Cs

A, B) = -y B, A)

So —
s (2n)( sp( 2")(

i.e. the Casimir duality for the second Casimir holds for any Young diagram (for any A, B
set). In particular, for X5 one has the values, shown in the Table 4. It can be observed, that
C’QSO(%) 20%, oy = 1 /2Cy (A, B), which indicates the difference of the definition of the
Killing form in [13] !

In [15] it has been shown, that when permuting the Vogel parameters corresponding to

so(2n)

the so(2n) algebra in this way: («,,7) — (8,,7), the Xo(k) formula gives dimensions
for some representations of the sp(2n) algebra. More precisely, that permutation specifies a
correspondence between A*°?™ = k(w; + ws) and A*P2™ = 2w, + wyy, representations. One can
notice, that the Young diagrams, associated with these representations are conjugate with each

other. Indeed, in A, B parametrization the associated sets are
)\so(2n) < A(] = BO = O,Al = 1,Bl = ]{Z,Ag = 3, B2 = 2k’,

)\sp(Z’rL) < AO — BO = OaAl = kal = 17A2 = 2]{:732 =3.

Therefore, it is reasonable to check the Casimir duality for these representations. Substituting

lin [13] the Killing form is defined as Tr(X®, X b) in the fundamental representation, while our normalization

(so called Cartan-Killing normalization) corresponds to the Killing form, defined as Tr(adX a, adX b), i.e. in the
adjoint representation.

10



the corresponding (A, B) sets into the expressions for Cy(A, B) written above, one gets

Cy A, B) = 12k* + k(16n — 28),

so(2n) (

C, B, A) = —12k* + k(16n + 28) = —(12k* + k(16(—n) — 28) = —Cs A, B).

sp(2n) ( so(2n) (

So, the Casimir duality holds for representations, associated with the
Xo(k,—2,4,2n—4) <> X5(k,4, —2,2n—4) transformation of the Xs(k, a, 3, y) universal formula
[15].

For the same representations in the Cartan-Killing normalization we have

C, ) = OK” + k(80 — 14),

Ca,yny = —3K° + k(4 +7),
i.e.

C2so(2n) ()\> = _2C2sp(—2n) (A,)7

as expected.

11



5 Conclusion

In the present work new universal formulae for the second Casimir operator on X, repre-
sentations and its Cartan powers are presented. Then, the correspondence of these formulae
with previously known particular cases is checked.The correlation of obtained formulae with
Sp(2n) <» So(—2n) duality is also discussed.

In general, these formulae do assure the importance of the universality in mathematical physics.
The further analysis and particularly the investigation of applications of these formulae in

Chern-Simons theory is planned.

12
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