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1 Introduction

The universal formulae for simple Lie algebras were first derived by P. Vogel in his Universal

Lie Algebra [1, 2]. The main aim was to derive the most general weight system for Vassiliev’s

finite knot invariants. This program met difficulties, however, as a byproduct there appeared

the uniform parameterization of simple Lie algebras by the values of Casimir operators on three

representations, appearing in decomposition of the symmetric square of the adjoint represen-

tations:

S2g = 1 + Y2(α) + Y2(β) + Y2(γ) (1)

One denotes the value of the second Casimir operator on the adjoint representation g as 2t,

and parameterizes the values of the same operator on representations in (1) as 4t − 2α, 4t −
2β, 4t−2γ correspondingly (hence notation of representations in (1)). It appears that α+β+γ =

t. The values of the parameters for all simple Lie algebras are given in the table 1, and in the

table 2 in another form. According to the definitions, the entire theory is invariant with respect

to rescaling of the parameters (which corresponds to rescaling of invariant scalar product in

algebra), and with respect to the permutation of the universal (=Vogel’s) parameters α, β, γ.

So, effectively they belong to a projective plane, which is factorized w.r.t. its homogeneous

coordinates, and is called Vogel’s plane.

Table 1: Vogel’s parameters for simple Lie algebras
Root system Lie algebra α β γ t = h∨

An sln+1 −2 2 (n+ 1) n+ 1
Bn so2n+1 −2 4 2n− 3 2n− 1
Cn sp2n −2 1 n+ 2 n+ 1
Dn so2n −2 4 2n− 4 2n− 2
G2 g2 −2 10/3 8/3 4
F4 f4 −2 5 6 9
E6 e6 −2 6 8 12
E7 e7 −2 8 12 18
E8 e8 −2 12 20 30

Table 2: Vogel’s parameters for simple Lie algebras: lines
Algebra/Parameters α β γ t Line

slN -2 2 N N α + β = 0
soN -2 4 N − 4 N − 2 2α + β = 0
spN -2 1 N/2 + 2 N/2 + 1 α + 2β = 0

Exc(n) −2 2n+ 4 n+ 4 3n+ 6 γ = 2(α + β)
For the exceptional line n = −2/3, 0, 1, 2, 4, 8 for g2, so8, f4, e6, e7, e8, respectively.
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As an example of application of this parametrization universal formulae [1, 3], for dimensions

of representations from (1) are presented below:

dim g =
(2t− α)(2t− β)(2t− γ)

αβγ
(2)

dimY2(α) =
(2t− 3α) (β − 2t) (γ − 2t) t (β + t) (γ + t)

α2 (α− β) β (α− γ) γ
(3)

and other two (3) representations which are obtained by permutations of the parameters.

These are typical universal formulae for dimensions: ratios of products of linear homogeneous

functions of universal parameters.

There are a number of universal formulae for different objects in the theory and applications

of simple Lie algebras. E.g. Vogel [1] found complete decomposition of third power of the adjoint

representation in terms of Universal Lie Algebra, defined by himself, and universal dimension

formulae for all representations involved. Landsberg and Manivel [3] present a method which

allows derivation of certain universal dimension formulae for simple Lie algebras and derive

those for Cartan powers of the adjoint, Y2(.), and their Cartan products.Sergeev, Veselov and

Mkrtchyan derived [4] a universal formula for generating function for the eigenvalues of higher

Casimir operators on the adjoint representation.

In subsequent works applications to physics were developed, particularly the universality of

the partition function of Chern-Simons theory on a sphere [13, 6, 7], and its connection with

q-dimension of kΛ0 representation of affine Kac-Moody algebras [8] were shown, the universal

knot polynomials for 2- and 3-strand torus knots [9, 10, 11, 12] were calculated.

The antisymmetric square of the adjoint representation of semisimple Lie algebras is known

to be decomposed in the following universal form:

Λ2g = g ⊕X2

First of all, let’s suppose that for each algebra the square of the long root is equal to 2. This

corresponds to the set of Vogel’s parameters with α = −2. Having this normalization in

mind, we calculate the eigenvalues of the Casimir operator on X2 and it’s Cartan powers. The

eigenvalue of the Casimir operator on an irrep with λ highest weight is equal to (λ + 2ρ, λ).

The corresponding Dynkin diagrams and highest weights are given in the Figure 1. and Table

3 respectively.

3



Figure 1: Dynkin diagrams

Table 3: X2(α, β, γ)
An, n ≥ 3 (2ω1 + ωn−1)⊕ (ω2 + 2ωN)
Bn, n ≥ 4 ω1 + ω3

Cn, n ≥ 3 2ω1 + ω2

Dn, n ≥ 5 ω1 + ω3

G2 3ω1

F4 ω2

E6 ω3

E7 ω2

E8 ω6

4



2 Calculation of Casimir’s Eigenvalues for X2 Represen-

tations

Taking into account the above mentioned data, we carry out the direct calculations for X2 first.

AN

α = −2, β = 2, γ = N + 1, λ1 = 2ω1 + ωN−1, λ2 = ω2 + 2ωN ,

For λ1 = 2ω1 + ωN−1 case

C = (2ω1 + ωN−1, 2ω1 + ωN−1) + 2(ω1 + · · ·+ ωN , 2ω1 + ωN−1) =

6N + 6

N + 1
+

2

N + 1
(N(N + 1) + (N − 1)(N + 1)) = 6 + 2N + 2N − 2 = 4N + 4

For λ2 = ω2 + 2ωN irrep the Casimir eigenvalue coincides with the one calculated above, so the

eigenvalue on the direct sum of these two irreps will be C.

BN

α = −2, β = 4, γ = 2N − 3, λ = ω1 + ω3

C = (ω1 + ω3, ω1 + ω3) + 2(ω1 + · · ·+ ωN , ω1 + ω3)

= F11 + F31 + F13 + F33 + 2 ((F11 + F12 + · · ·+ F1N) + F31 + · · ·+ F3N) =

6 + 2N − 1 + 9 + 6(N − 3) = 2N + 14 + 6N − 18 = 8N − 4

Where Fi,k = (ωi, ωk) (MetricTensor[] in LieART).

CN

α = −2, β = 1, γ = N + 2, λ = 2ω1 + ω2

C = (2ω1 + ω2, 2ω1 + ω2) + 2(ω1 + · · ·+ ωN , 2ω1 + ω2)

= 4F11 + 4F12 + F22 + F33 + 2 (2(F11 + F12 + · · ·+ F1N) + F21 + · · ·+ F2N)

= 2 + 2 + 1 + 2(N + 1/2 +N − 1) = 5 + 2N + 1 + 2N − 2 = 4N + 4

DN

α = −2, β = 4, γ = 2N − 4, λ = ω1 + ω3
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C = (ω1 + ω3, ω1 + ω3) + 2(ω1 + · · ·+ ωN , ω1 + ω3) = 6 + 2(N − 1 + 6 + 3N − 12) = 8N − 8

G2

α = −2, β = 10/3, γ = 8/3, λ = 3ω1

C = (3ω1, 3ω1) + 2(ω1 + ω2, 3ω1) = 9F11 + 2 (3F11 + 3F12) = 6 + 4 + 6 = 16

F4

α = −2, β = 5, γ = 6, λ = ω2

C = (ω2, ω2) + 2(ω1 + ω2 + ω3 + ω4, ω2) = 6 + 30 = 36

E6

α = −2, β = 6, γ = 8, λ = ω3

C = F33 + 2
∑6

k=1 F3k = 6 + 2(6 + 15) = 48

E7

α = −2, β = 8, γ = 12, λ = ω2

C = F22 + 2
∑6

k=1 F2k = 6 + 2(9 + 14 + 10) = 72

E8

α = −2, β = 12, γ = 20, λ = ω6

C = F66 + 2
∑6

k=1 F6k = 6 + 2 · 57 = 120

It can be easily noticed, that for each of the algebra the obtained value can be expressed as

4t = 4(α + β + γ).

In the work of M.Cohen and R. de Man ([14]) the Casimir eigenvalues on each of the irrep ap-

pearing in the decomposition of up to 4th square of the adjoint representation for the exceptional

Lie algebras have been computed. So we can check the correspondence between our formula

and that values for the exceptional algebras. If we scale the Casimir eigenvalue to be equal to 1

on the adjoint representation, as it is done in [14], our formula will be Cc = C/2t = 4t/2t = 2,

which coincides with the value, presented in that work.
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3 Calculation of Casimir’s Eigenvalues for Cartan Pow-

ers of X2 Representations

Now we turn to the Cartan power case. The highest weight is now kλ. Substituting these

new highest weights in the expressions for the Casimir eigenvalue, one obtains the expressions

shown in the following table:

Table 4: Casimir Eigenvalues
An, n ≥ 3 6k2 + k(4N − 2)
Bn, n ≥ 4 6k2 + k(8N − 10)
Cn, n ≥ 3 5k2 + k(4N − 1)
Dn, n ≥ 5 6k2 + k(8N − 14)

G2 6k2 + 10k
F4 6k2 + 30k
E6 6k2 + 42k
E7 6k2 + 66k
E8 6k2 + 114k

One can easily check, that for each of the cases (except for the Cn) the eigenvalue can be

expressed as

C = −3αk2 + (4t+ 3α)k = 3α(k − k2) + 4tk.

Notice, that for k = 1 case C = 4t, as expected.

In the recent work of M.Avetisyan and R.Mkrtchyan ([15]) a universal formula for dimensions

of the k-th Cartan power of the X2 representation has been obtained. A notable quality of the

X2(k, α, β, γ) formula is that for the parameters, corresponding to the Cn algebra it gives 0 for

any k ≥ 2. So, the situation is such that for the Cn algebra the X2(k, α, β, γ) gives 0, while the

universal Casimir eigenvalue on the corresponding representation does not.

A similar case regarding A2 algebra is worth recalling. The universal decomposition of the

symmetric square of the adjoint representation writes as follows:

S2g = 1 + Y2(α) + Y2(β) + Y2(γ)

The Y2(β) for A2 is 0, whilst the Casimir eigenvalue on the same representation is 4t − 2β.

In either case discussed above the product of the universal Casimir and universal dimension is

0. These examples suggest an idea, that in the universal description (or, maybe, in general)

of semisimple Lie algebras the second Casimir operators appear in product with the universal

dimensions. In support of this idea we bring a formula, presented by Deligne in [16]:

Tr(C2, [R]V ) =
1

n!

∑
σ

χ(σ)m(σ)(dimV )n(σ)−1Tr(C2, V )
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where V is a representation of the algebra, R is a representation of the Sn group, [R](V ) :=

HomSn(R,⊗nV ), σ is an element of Sn, χ(σ) is the character on that element, m(σ) is the sum

of the squares of the lengths of cycles of σ, n(σ) is the number of cycles of σ.

For the symmetric square of the adjoint we rewrite this formula explicitly:

1 · C2(1) + Y2(α)C2(Y2(α)) + Y2(β)C2(Y2(β)) + Y2(γ)C2(Y2(γ)) = (2 + g) · gC2(g)

Substituting the corresponding universal formulae, one can check, that for A2 algebra this

formula is true.

Now we turn to the comparison of our universal expression with the values presented in [14].

For the k = 2 case we rewrite our formula in the corresponding scaling.

Cc =
3α(k − k2) + 4tk

2t
=
−3α + 4t

t
=

6 + 4t

t
.

In the following table the Casimir eigenvalues on X2
2 (denoted as H in [14]) for the excep-

tional algebras and the values obtained by our formula are shown.

Table 5: Casimir on X2
2

a γ(H) = 4 + 6a t Cc
A1 1/2 7 2 7
A2 1/3 6 3 6
G2 1/4 11/2 4 11/2
D4 1/6 5 6 5
F4 1/9 14/3 9 14/3
E6 1/12 9/2 12 9/2
E7 1/18 13/3 18 13/3
E8 1/30 21/5 30 21/5

Thus, we see that the Casimir eigenvalues coincide.
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4 On sp(−2n) = so(2n) duality

In ([13]) R.Mkrtchyan and A.Veselov have discussed the duality of Casimirs for So(2n) and

Sp(2n) groups. Using the Perelomov and Popov ([17]) formula for the generating function for

the Casimir spectra and parametrizing the Young diagrams in a different way ([13]), they have

explicitly shown the CSp(2n)(λ, z) = −CSO(−2n)(λ
′,−z) duality for rectangular Young diagrams.

Here, using the same ([17]) formula, we write the expressions for the corresponding eigenvalues

of the second Casimir operator (C2) for so(2n) and sp(2n) algebras, in the A,B parametrization,

used in [13].

so(2n)

For so(2n) the Casimir spectra writes as follows

Cso(2n)(z, A,B) =
∞∑
p=0

Cpso(2n)
zp =

(1− zn)(2− z(4n− 3))

z(1− z(n− 1))(2− z(4n− 2))
×

k∏
i=0

1− z(−Ak−i +Bi + 2n− 1)

1− z(Ak−i −Bi)
×

k∏
i=1

1− z(A−i+k+1 −Bi)

1− z(−A−i+k+1 +Bi + 2n− 1)

After a proper expansion of Cso(2n)(z, A,B) into series in the vicinity of the z0 = 0 point,

one can check, that the coefficient of z2, i.e. C2so(2n), can be expressed as follows:

C2so(2n)
(A,B) =

k∑
i=1

(
4nAi(B−i+k+1 −Bk−i) + 2A2

i (Bk−i −B−i+k+1)+

+ 2Ai(Bk−i −B−i+k+1) + 2B2
i (A−i+k+1 − Ak−i)

)
− 4nA0Bk+

+ A2
0(2Bk + 4B0) + 2A0(Bk −B0)−B2

0(2Ak + 4A0)−

− n(A0 −B0) + 2n
(
A2

0 +B2
0

)
+ 2

(
B3

0 − A3
0

)
+ 1/2(A0 −B0).

sp(2n)

The Casimir spectra for this case is

Csp(2n)(z,A,B) =
∞∑
p=0

Cpsp(2n)
zp =

(1− zn)(2− z(4n+ 3))

z(1− z(n+ 1))(2− z(4n+ 2))
×

k∏
i=0

1− z(Bk−i − Ai + 2n+ 1)

1− z(−Bk−i + Ai)
×

k∏
i=1

1− z(−B−i+k+1 + Ai)

1− z(B−i+k+1 − Ai + 2n+ 1)
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Table 6: Comparison
Algebra Diagram A,B C2(A,B) C2

so(2n) A1 = B1 = 1, A2 = 3, B2 = 2 16n− 16 8n− 8

sp(2n) A1 = B1 = 1, A2 = 2, B2 = 3 16n+ 16 4n+ 4

And for C2sp(2n) one has

C2sp(2n)
(A,B) = −

k∑
i=1

(
− 4nBi(A−i+k+1 − Ak−i) + 2A2

i (B−i+k+1 −Bk−i)+

2B2
i (Ak−i − A−i+k+1) + +2Bi(Ak−i − A−i+k+1)

)
− 4nB0Ak+

+ A2
0(2Bk + 4B0)− 2B0(Ak − A0)−B2

0(2Ak + 4A0)−

− n(B0 − A0) + 2n
(
A2

0 +B2
0

)
+ 1/2(A0 −B0)− 2

(
A3

0 −B3
0

)
.

Therefore, we have obtained formulae for second Casimir eigenvalues on irreps of sp(2n)

and so(2n) algebras, corresponding to any Young diagram (any (A,B) set).

It can be checked, that

C2so(2n)
(A,B) = −C2sp(−2n)

(B,A)

i.e. the Casimir duality for the second Casimir holds for any Young diagram (for any A,B

set). In particular, for X2 one has the values, shown in the Table 4. It can be observed, that

C2so(2n)
= 2C2sp(2n)

= 1/2C2so(2n)
(A,B), which indicates the difference of the definition of the

Killing form in [13] 1.

In [15] it has been shown, that when permuting the Vogel parameters corresponding to

the so(2n) algebra in this way: (α, β, γ) → (β, α, γ), the X2(k) formula gives dimensions

for some representations of the sp(2n) algebra. More precisely, that permutation specifies a

correspondence between λso(2n) = k(ω1 + ω3) and λsp(2n) = 2ωk + ω2k representations. One can

notice, that the Young diagrams, associated with these representations are conjugate with each

other. Indeed, in A,B parametrization the associated sets are

λso(2n) ↔ A0 = B0 = 0, A1 = 1, B1 = k,A2 = 3, B2 = 2k,

λsp(2n) ↔ A0 = B0 = 0, A1 = k,B1 = 1, A2 = 2k,B2 = 3.

Therefore, it is reasonable to check the Casimir duality for these representations. Substituting

1in [13] the Killing form is defined as Tr(X̂a, X̂b) in the fundamental representation, while our normalization

(so called Cartan-Killing normalization) corresponds to the Killing form, defined as Tr(adX̂a, adX̂b), i.e. in the
adjoint representation.
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the corresponding (A,B) sets into the expressions for C2(A,B) written above, one gets

C2so(2n)
(A,B) = 12k2 + k(16n− 28),

C2sp(2n)
(B,A) = −12k2 + k(16n+ 28) = −(12k2 + k(16(−n)− 28) = −C2so(2n)

(A,B).

So, the Casimir duality holds for representations, associated with the

X2(k,−2, 4, 2n−4)↔ X2(k, 4,−2, 2n−4) transformation of the X2(k, α, β, γ) universal formula

[15].

For the same representations in the Cartan-Killing normalization we have

C2so(2n)
= 6k2 + k(8n− 14),

C2sp(2n)
= −3k2 + k(4n+ 7),

i.e.

C2so(2n)
(λ) = −2C2sp(−2n)

(λ′),

as expected.
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5 Conclusion

In the present work new universal formulae for the second Casimir operator on X2 repre-

sentations and its Cartan powers are presented. Then, the correspondence of these formulae

with previously known particular cases is checked.The correlation of obtained formulae with

Sp(2n)↔ So(−2n) duality is also discussed.

In general, these formulae do assure the importance of the universality in mathematical physics.

The further analysis and particularly the investigation of applications of these formulae in

Chern-Simons theory is planned.
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