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Abstract

The present thesis represents developments in two main directions related to the simple Lie

algebras. The first one is devoted to the representation theory of the simple Lie algebras.

Specifically we present recent results, which include new universal formulae in Vogel’s universal

description, as well as the discovery of additional properties of those formulae. In the second

part of the thesis we demonstrate applications of Vogel’s description to the study of a physical

theory. Namely, we explicitly formulate the refined Chern-Simons theories on S3 for each of

the simple gauge groups, including the exceptional ones.

Relevance of the scientific research. Vogel’s universal approach to simple Lie algebras

is a powerful and attractive tool both for mathematicians and theoretical physicists. First of all,

it allows unifying innately discrete objects such as different simple Lie algebras into analytical

functions defined in Vogel’s plane. This is indeed a remarkable phenomenon in science. On

the other hand, the possibility of treating different algebras on an equal footing provides a new

possibility for physicists to work with the gauge theories built upon all simple gauge groups.

These arguments motivate the relevance of developing Vogel’s approach and investigating its

applications to physical gauge theories.

Purpose of the work. One of the aims of this work is the deeper understanding of

Vogel’s universal description of simple Lie algebras. Another one is opening a new door to

the possibility of setting up a duality between the refined Chern-Simons theories on S3 built

upon the exceptional gauge algebras and some (refined) topological strings living on specific

Calabi-Yau manifolds.

The novelty of the work. The research presented develops Vogel’s universal approach

to simple Lie algebras by expanding the list of universal representations which has remained

unchanged since 2005. It also presents an explicit expression for the partition function of the

refined Chern-Simons on S3 for all simple gauge groups.

Results submitted for defense:

1. Derivation of universal dimension and quantum dimension formulae for Cartan products

of arbitrary powers of the adjoint g and X2 representations (Xk
2 g

n, k, n ∈ Z+) of the simple Lie
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algebras. Study of these formulae under permutations of universal parameters and demonstra-

tion that in their stable limits the outputs are quantum dimensions of some representations of

the corresponding algebras.

2. Definition of the linear resolvability feature of the universal formulae. Proof that the all

known quantum dimension formulae are linearly resolvable.

3. Derivation of universal eigenvalues of the second Casimir operator on the Cartan products

of arbitrary powers of the adjoint g and X2 representations.

4. Geometrical interpretation of the universal formulae. Establishment of correspondence

between non-uniqueness factors of universal formulae and geometrical configurations of points

and lines. Derivation of a four-by-four non-uniqueness factor using this correspondence.

5. Refinement of the Kac-Peterson identity for the determinant of the symmetrized Cartan

matrix. Derivation of an explicit formula for the partition functions of the refined Chern-Simons

theory on S3 with an arbitrary simple gauge group.

6. Universal-like representation of all these partition functions of the refined Chern-Simons

theory on S3 with an arbitrary simple gauge group. This representation aims at a further check

of possible Chern-Simons/topological strings dualities for all gauge groups.

The current work is based on the following articles:

1. M.Y. Avetisyan and R.L. Mkrtchyan, X2 Series of Universal Quantum Dimensions,

arXiv:1812.07914, J. Phys. A: Math. Theor. Volume 53, Number 4, 045202, (2020)

doi:10.1088/1751-8121/ab5f4d

2. M.Y. Avetisyan and R.L. Mkrtchyan, On (ad)n(X2)k series of universal quantum dimen-

sions, arXiv:1909.02076, J. Math. Phys. 61, 101701 (2020)

doi:10.1063/5.0007028

3. M. Y. Avetisyan, On universal eigenvalues of the Casimir operator, arXiv:1908.08794,

Phys. Part. Nucl., Lett. 17(5), pp 779-783 (2020)

doi:10.1134/S1547477120050039

4. M.Y.Avetisyan and R.L.Mkrtchyan, Universality and Quantum Dimensions, Phys. Part.

Nucl., Lett. 17(5), pp784-788 (2020),

doi:10.1134/S1547477120050040

5. M.Y. Avetisyan, Universal dimensions of simple Lie algebras and configurations of points
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and lines, Proceedings of Science, Vol 394, (2021)

doi:10.22323/1.394.0005

6. M.Y. Avetisyan and R.L. Mkrtchyan, On partition functions of refined Chern-Simons

theories on S3, arXiv:2107.08679, JHEP 10 (2021) 033,

https://doi.org/10.1007/JHEP10(2021)033

7. M.Y. Avetisyan and R.L. Mkrtchyan, On linear resolvability of universal quantum di-

mensions, Journal of Knot Theory and its Ramifications, Vol. 31, No. 2 (2022) 2250014,

https://doi.org/10.1142/S0218216522500146

8∗. M.Y. Avetisyan and R.L. Mkrtchyan, Uniqueness of universal dimensions and configu-

rations of points and lines, arXiv:2101.10860v3, Geometriae Dedicata, (2022) 216:41,

https://doi.org/10.1007/s10711-022-00699-2

This thesis is organized as follows:

Chapter 1 is introductory notions describing Vogel’s universality and its state-of-the-art.

Chapter 2 is devoted to the presentation of the new universal formulae, derived in the scope

of the representation theory of the simple Lie algebras.

Chapter 3 focuses on the revelation of a non-trivial property of our universal formulae,

which we call ”linear resolvability”, and provides the proof that all known universal quantum

dimensions are linearly resolvable.

Chapter 4 presents the establishment of a connection between simple Lie algebras and

geometrical configurations of points and lines, by proposing a problem of the uniqueness of the

universal formulae describing the representations of the algebras.

Chapter 5 addresses the applications of Vogel’s universality to physical problems and presents

an explicit expression for the partition function of the refined Chern-Simons theory on S3.

Chapter 6 is the summary of the work and discusses the possible directions of research

springing out of it.

∗The results presented in this paper are not submitted for defence for timing reasons.
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Chapter 1

Introduction

1.0.1 On Vogel’s universal approach to the simple Lie algebras

The universal description of the simple Lie algebras was first introduced by P. Vogel in his

Universal Lie Algebra [1, 2]. He was aiming at a derivation of the most general weight system

for Vassiliev’s finite knot invariants. For some unpredicted difficulties this project in fact was

not a success. However, a uniform parameterization of the simple Lie algebras appeared as a

byproduct of it, (see Table 2.26 and Table 1.2).

Table 1.1: Vogel’s parameters for simple Lie algebras
Root system Lie algebra α β γ t = h∨

An sln+1 −2 2 (n+ 1) n+ 1
Bn so2n+1 −2 4 2n− 3 2n− 1
Cn sp2n −2 1 n+ 2 n+ 1
Dn so2n −2 4 2n− 4 2n− 2
G2 g2 −2 10/3 8/3 4
F4 f4 −2 5 6 9
E6 e6 −2 6 8 12
E7 e7 −2 8 12 18
E8 e8 −2 12 20 30

Table 1.2: Vogel’s parameters and distinguished lines
Algebra/Parameters α β γ t Line

slN −2 2 N N α + β = 0, sl
soN −2 4 N − 4 N − 2 2α + β = 0, so
spN −2 1 N/2 + 2 N/2 + 1 α + 2β = 0, sp

exc(n) −2 n+ 4 2n+ 4 3n+ 6 γ = 2(α + β), exc
For the exceptional line n = −2/3, 0, 1, 2, 4, 8 for g2, so8, f4, e6, e7, e8, respectively.

To give an idea of the origin of these tables we write the following universal (i.e. valid for

12



any simple Lie algebra) decomposition of the symmetric square of the adjoint representation

[1]:

S2g = 1⊕ Y2(α)⊕ Y2(β)⊕ Y2(γ) (1.1)

Let 2t denote the eigenvalue of the second Casimir operator on the adjoint representation g

and the eigenvalues of the same operator on representations in (1.1) be 4t−2α, 4t−2β, 4t−2γ,

correspondingly. In this way we define α, β, γ (Vogel’s) parameters. It can be proved [1] that

with these definitions α + β + γ = t.

According to the definitions, the entire theory is invariant with respect to a rescaling of the

parameters (which corresponds to the rescaling of the invariant scalar product in algebra), and

with respect to the permutation of the universal (or, Vogel’s) parameters α, β, γ. In essence,

these parameters belong to a projective plane, which is factorized w.r.t. its homogeneous

coordinates and is called Vogel’s plane, see Figure 1.1.

As is seen, it demonstrates the points from Vogel’s table. Also, it includes some additional

points and lines studied by Landsberg, Manivel, Westbury, and Mkrtchyan, namely, the line

corresponding to D(2,1,λ) superalgebras, the 3d line, which passes through the sl(2) point, etc.

This parameterization of the simple Lie algebras happens to be very convenient and useful. In

particular, the existence of the so-called universal formulae for several objects appearing both

in the representation theory of the simple Lie algebras and physical theories built upon the

symmetries corresponding to the simple groups is made possible due to this parametrization.

As typical examples of universal formulae, those for the dimensions of representations from

(1.1) are presented below:

dim g = −(2t− α)(2t− β)(2t− γ)

αβγ
(1.2)

dimY2(α) =
(2t− 3α) (β − 2t) (γ − 2t) t (β + t) (γ + t)

α2 (α− β) β (α− γ) γ
(1.3)

and the other two (1.3) representations are obtained by permutations of the parameters [1, 3].

13



Figure 1.1: Vogel’s plane
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1.0.2 A bird’s-eye view on the state of play

There are a number of universal formulae for different objects in the theory and applications of

simple Lie algebras. E.g. Vogel [1] found a complete decomposition of the third power of the ad-

joint representation in terms of Universal Lie Algebra, defined by him, and universal dimension

formulae for all representations involved. Landsberg and Manivel [3] presented a method that

allows the derivation of certain universal dimension formulae for simple Lie algebras and derived

those for the Cartan powers of the adjoint, Y2(.), and their Cartan products. A universal for-

mula for the quantum dimension of the adjoint representation has been found by Westbury [26].

Sergeev, Veselov, and Mkrtchyan have derived [5] a universal formula for generating function

for the eigenvalues of higher Casimir operators on the adjoint representation.

In subsequent works, applications to physics were developed, particularly the universality

of the partition function of Chern-Simons theory on a S3 sphere [6, 7, 8]. Its connection with

q-dimension of the kΛ0 representation of affine Kac-Moody algebras [9] was shown, and the

universal knot polynomials for 2- and 3-strand torus knots [10, 11, 12, 13] were calculated.

Another application of universal formulae is the derivation of non-perturbative corrections to

Gopakumar-Vafa partition function [14, 15] by gauge/string duality from the universal partition

function of Chern-Simons theory. This shows the relevance of the ”analytical continuation” of

the universal formulae from the points of Vogel’s table (2.26) to the entire Vogel’s plane.

A completely different direction of development, the Diophantine classification of simple Lie

algebras [16] and its connection with the McKay correspondence [17], is also worth mentioning.

1.0.3 Results presented in this work

Our first achievement is embodied in the extension of the list of universal quantum dimension

formulae for the representations of the simple Lie algebras.

The initial list of universal formulae derived by Vogel was first expanded by Landsberg

and Manivel [3]. They in fact proved that the arbitrary Cartan powers of the representations

appearing in the symmetric square of the adjoint (1.1), and the Cartan products of the powers

of any two of them are universal.

It seemed natural to ask if the same is true for the representations appearing in the anti-

15



symmetric square of the adjoint:

∧2g = g⊕X2 (1.4)

And the answer happened to be ”yes”! In [18] we first derived a universal quantum dimension

formula for the Cartan products of X2 representation. Soon we managed to generalize this result

by deriving universal quantum dimensions for the Cartan products of arbitrary powers of X2

and the adjoint g, [19].

Another achievement is the derivation of the universal eigenvalues of the second Casimir

operator on the same representations, [20].

Chapter 2 is devoted to the detailed presentation of these three results.

The next attainment relates to the discovery of a remarkable property, which we call linear

resolvability, of the quantum dimension formulae derived in [18, 19].

The seeds of this discovery have been sowed in [3] where the authors examined universal

dimensions at the points, corresponding to the permuted universal parameters. They noticed

that for some of these points their formula has singularities and called them indeterminacy

locis.

After derivation of the universal quantum dimensions for the Cartan products of arbitrary

powers of X2 and the adjoint g [18, 19], we carried out a similar examination of these formulae

and encountered analogous singularities for them too. Actually, we succeeded in understanding

these singularities better. Namely, we showed that for all possible singular points those new

formulae admit radial limit in all but a finite number of directions. We called such formulae lin-

early resolvable (LR) and claimed that the new universal quantum dimension formulae derived

in Chapter 2 are LR.

Chapter 3 is focused on the discussion of this property.

Chapter 4 describes how we connected the theory of simple Lie algebras with the theory of

geometrical configurations of points and lines [21].

This achievement is rooted in the question of whether there is more than one universal

dimension formula yielding the same outputs at the distinguished points and sharing the same

structure with a particular known universal representation. Or, equivalently, are the known

universal dimension formulae unique?
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To answer this question we search for the so-called non-uniqueness factors – non-trivial

functions, that yield 1 at the points, corresponding to the simple Lie algebras. We notice that

an equivalent geometrical formulation of this question shows that the existence of such non-

uniqueness factors is directly dependent on the existence of particular types of configurations

of points and lines.

The final achievement of the present work is the generalization of the partition function of

the refined Chern-Simons theory on S3 to all simple gauge algebras.

Vogel’s universal description of the simple Lie algebras soaks into physical theories, based

on gauge groups corresponding to these algebras. Particularly, quantities, appearing in these

theories, such as the central charge [6] in the Chern-Simons theory on S3, the partition function

of the same theory, the volume of a group, etc., were shown to be expressed in terms of Vogel’s

universal parameters [6, 7, 8]. In fact, this means that there appears a possibility for treating

the physical theories with the classical and the exceptional gauge groups on an equal footing.

This possibility has shown itself as a valuable tool for establishing and/or investigating dualities

between theories, in particular, the Chern-Simons/topological strings duality [6, 15, 14, 38].

In this work we make the first step towards understanding the refined Chern-Simons/topolo-

gical strings dualities for each of the simple gauge groups. Particularly, we succeeded in gen-

eralizing the Kac-Peterson formula for the volume of the fundamental domain of the coroot

lattice of a Lie algebra, which leads us to the presentation of a partition function of the refined

Chern-Simons theories for all simple gauge groups at once. This presentation makes it possible

to derive each of the refined partition functions in a form, suitable for comparing it with the

Gopakumar-Vafa partition functions for topological strings.

Chapter 5 is devoted to a detailed description of these procedures.

Finally, the summary of this work and the vision of the future directions of development

are presented in Chapter 6.
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Chapter 2

Extending the “universality island”.

Derivation of the universal quantum

dimensions for (X2)
k(g)n and the

universal second Casimir on them

After the first universal dimension formulae, derived by Vogel in 1999 [1, 2], the uncertainty,

caused by the revelation of a zero divisor in the Λ algebra was still unanswered. The question

of whether the initial list of those formulae can be further extended was uncertain until the

publication [3] in 2005, where Landsberg and Manivel presented a universal expression for the

dimensions of arbitrary Cartan powers of the adjoint g and the Y2 representations, which appear

in the universal decomposition of the symmetric square of the adjoint representation:

S2g = 1⊕ Y2(α)⊕ Y2(β)⊕ Y2(γ) (2.1)

Their technique of derivation of that new universal formula differed from the one Vogel had

used: it was essentially based on the examination of the root systems and some important

properties of the Weyl dimension formula, following from the structure of the root systems.

The results, in this chapter are obtained using a similar technique to Landsberg’s and

Manivel’s.

At first, we derive a universal dimension as well as a quantum dimension for the Cartan
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powers of X2 representation, which appears in the decomposition of the antisymmetric square

of the adjoint:

∧2g = g⊕X2 (2.2)

Then we manage to generalize that formula by derivation of a universal (quantum) dimension

for the Cartan products of arbitrary powers of g and X2 representations: (X2)
k(g)n.

Finally, we show that the eigenvalues of the second Casimir operator on these representations

are also universal and present the corresponding universal expression.
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2.1 Xk
2

In this section we present the derivation of universal formulae for quantum dimensions for an

arbitrary Cartan power of the X2 representation, appearing in the following decomposition

∧2g = g +X2 (2.3)

The k-th Cartan power of a representation with the highest weight λ is that with the

highest weight kλ. Note that for sl(n) algebras X2 is not an irreducible representation until

one considers the Lie algebra’s semidirect product with the automorphism group of its Dynkin

diagram (instead of the algebra itself), as suggested and implemented in [22, 29, 30] for the

exceptional algebras. Particularly, in sl(n) case one has Z2 as an automorphism group and X2

is the sum of representations with highest weights 2ω1 +ωn−2 and ω2 +2ωn−1. Its Cartan power

we consider to be the sum of Cartan powers of these two representations. More generally, any

irrep of simple Lie algebras below is considered to be extended by the automorphism group of

their Dynkin diagram. We shall see, that the universal formulae yield answers for irreps of such

extended Lie algebras, i.e. if there appears an irrep which is not invariant under automorphism,

then it appears in the sum with his automorphism-transformed version(s), so that the invariance

is recovered.

For k = 1 the universal quantum dimension of X2 has been given in [31]:

DX2
Q =

sinh
(
x
4
(2t− α)

)
sinh

(
x
4
(2t− β)

)
sinh

(
x
4
(2t− γ)

)
sinh

(
αx
4

)
sinh

(
βx
4

)
sinh

(
γx
4

) ×

sinh
(
x
4
(t+ α)

)
sinh

(
x
4
(t+ β)

)
sinh

(
x
4
(t+ γ)

)
sinh

(
αx
2

)
sinh

(
βx
2

)
sinh

(
γx
2

) ×

sinh
(
x
2
(t− α)

)
sinh

(
x
2
(t− β)

)
sinh

(
x
2
(t− γ)

)
sinh

(
x
4
(t− α)

)
sinh

(
x
4
(t− b)

)
sinh

(
x
4
(t− γ)

) (2.4)

Below we generalize this formula for k > 1 cases and discuss its properties.

Note that X2 had remained the only representation from the square of the adjoint, which

had not had a universal formula for (quantum) dimensions of its Cartan powers. For powers of

other representations, i.e. Y2(.), both usual and quantum dimensions are given in [3, 11, 9].

20



2.1.1 Technique

There is no regular way of obtaining universal formulae (and their very existence is not guaran-

teed). Vogel’s approach gave unique answers for dimensions, but it was based on the calculation

with ring Λ, which appears to have [2] divisors of zero, so that approach is not self-consistent if

one does not handle that issue carefully. In fact, in [3] (and in the present work) the restricted

definition of universal formulae is adopted, namely- they have to give correct answers for true

simple Lie algebras at the corresponding points of Vogel’s table 2.26.

That allows one to use the Weyl formula for characters, restricted to the Weyl line, i.e. for

quantum dimensions (see e.g. [32], 13.170):

Dλ
Q = χλ(xρ) =

∏
µ>0

sinh(x
2
(µ, λ+ ρ))

sinh(x
2
(µ, ρ))

(2.5)

where λ is the highest root of the given irreducible representation, ρ is the Weyl’s vector,

the sum of the fundamental weights. The usual dimensions are obtained in the x→ 0 limit of

the quantum ones. Both sides of this formula are invariant w.r.t. the simultaneous rescaling (in

”opposite directions”) of the scalar product in algebra and the parameter x.The automorphism

of the Dynkin diagram leads to the equality of quantum dimensions for representations with

the highest weights connected by an automorphism.

Evidently, only the roots with a non-zero scalar product with λ contribute. So, one has to

express the scalar product of such roots with λ and ρ in terms of the universal parameters, and

that has to be done in a uniform way for all simple Lie algebras. Then one may hope to get a

universal expression for Dλ.

To describe the technique, consider, e.g. the case of λ = θ, the highest weight of the adjoint

representation. As it is shown in [3], the values of scalar product of roots with θ are either 2

(for root θ itself) or 1. These last roots can be organized into three ”segments” (see definition

below) with unit spacing of (ρ, α) (we normalize the scalar product as in [3] and table 2.26 by

α = −2), which we present below for E7 as an example:

Table 2.1: Height ht = (ρ, µ) and nht for all roots µ with (θ, µ) = 1 for E7

ht 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
nht 1 1 1 2 2 3 3 3 3 3 3 2 2 1 1 1
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where there are the values of scalar products with ρ, i.e. the heights ht of roots in the first

line, and in the second line - nht - the number of roots on that height (remember we consider

the roots µ with (µ, θ), only). So, we see, that roots with (θ, µ) = 1 can be organized into three

sets of roots, which we shall call ”segments of roots”, or simply segments. A segment of roots

is the finite number of roots with equidistant values of heights including exactly one root for

any given height from that equidistant sequence of heights. The first, the longest segment, has

length t− 2 = 16, with heights from 1 to 16, the second is in the center of the first, is of length

γ−2 = 10 (we order universal parameters as γ ≥ β > −2), and the third segment, again in the

center of the first (and the second) segments, has length β − 2. The same pattern of segments

is observed for most of the simple Lie algebras.

With this data, it is easy to obtain universal formulae for dimensions [3] and quantum

dimensions [9] for k-th Cartan power of the adjoint representation. Namely, numerators and

denominators of consecutive roots of the given segment of roots cancel (2.20), so for each

segment there remains a number of the first denominators and the same number of the last

numerators, which finally lead to the universal formulae.

These results have been proven in [3] partially by ”general” considerations, restricted, how-

ever, to the algebras of the rank at least three, and partially by case-by-case considerations for

each algebra separately.

The description above reflects the advantage of the approach - the possibility of using the

Weyl formula, as a basis of calculations, and shortcomings, which come from the use of very

restricted sets of truly existing simple Lie algebras, see more on that below. Particularly, one

can add an arbitrary polynomial to the results, which accepts zero values on the lines of the

simple Lie algebras (tables 2.26, 1.2). Such ”minimal” symmetric polynomial can easily be

written:

(α + β)(β + γ)(γ + α)(2α + β)(2β + α)(2α + γ)(2γ + α) · (2.6)

(2β + γ)(2γ + β)(2γ + 2α− β)(2γ + 2β − α)(2α + 2β − γ)

However, one can require that, first, the formula should be presented as a ratio of products

of linear functions over universal parameters (and not the sum of such expressions), and, second,
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that Deligne hypothesis [31] should be satisfied. Deligne assumes that the standard relations of

characters (recall that quantum dimensions are characters on the Weyl line) namely, the product

of characters of two representations is equal to the sum of characters of their decomposition,

should be satisfied on the entire Vogel’s plane (and not on the points of Vogel’s table, only).

Deligne’s hypothesis is checked in some cases [13], particularly for the symmetric cube of the

adjoint representation. At this time it is not known whether it is possible to satisfy one or both

of these requirements, as well as the very existence of universal formulae, is not guaranteed.

So, we do not worry about this problem further in this paper and present the new universal

formulae in the natural way we found them.

So, below we use this approach to obtain the universal formulae for quantum dimensions of

k-th Cartan powers of X2 representation.

Next, we present data for En algebras and try to rewrite them in the universal form. It

appears that it is not sufficient for derivation of the general formula, due to the ambiguities

of rewriting the answers in the universal form. We use two additional ideas: first is that

the results should not be singular for sl(n) algebra, and, second, that the answer should be

invariant w.r.t. the permutation of two parameters. In that way, we obtain the final formula

(2.20) below. All this, however, does not combine into formal derivation and all together should

be considered as an educated guess. The formal proof is carried out in the Appendix, for all

algebras. We nevertheless outline these steps to show how we came to the final, sufficiently

complicated formula. The development of a general method for derivation of universal formulae

still remains an open problem.

2.1.2 En data

It appears that En are the only algebras, which can hint at a universal form of non-trivial

contributions to the Weyl formula (2.20) for X2 representation. So below we present relevant

roots and their contributions.

E8

Dimension of E8=248, number of positive roots |∆+| = 120, Vogel’s parameters (α, β, γ) =

(−2, 12, 20). For E8 the highest weight of X2 is λ = ω7, in Dynkin’s numeration of roots (for
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reader’s convenience we give it below):

1 2 3 4 5 6 7

8

The number of positive roots µ with (λ, µ) = 0 is 1 + |∆+|E6 = 1 + 36 = 37.

The number of positive roots µ with (λ, µ) = 1 is 54 and is given in table 2.2 with numbers

n.

Table 2.2: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 1 for E8

ht 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
nht 1 2 2 2 3 4 4 4 5 5 4 4 4 3 2 2 2 1

So, here we have 5 segments of roots.

The number of positive roots µ with (λ, µ) = 2 is 27 and is given in table 2.3 with numbers

nht.

Table 2.3: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 2 for E8

ht 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
nht 1 1 1 1 2 2 2 2 3 2 2 2 2 1 1 1 1

So, here we have 3 segments of roots.

The number of positive roots µ with (λ, µ) = 3 is 2 and is given in table 2.4

Table 2.4: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 3 for E8

ht 28 29
nht 1 1

So, here we have 1 segment, consisting of two roots.

Check the total number of roots: 37+54+27+2=120, as it should be.

E7

Dimension E7=133, number of positive roots |∆+| = 63, Vogel’s parameters (α, β, γ, t) =

(−2, 8, 12, 18).

For E7 λ = ω3, in Dynkin’s numeration of roots:

1 2 3 4 5 6

7

The number of positive roots µ with (λ, µ) = 0 is 1 + |∆+|A5 = 1 + 15 = 16.
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The number of positive roots µ with (λ, µ) = 1 is 30 and is given in table 2.5 with multi-

plicities.

Table 2.5: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 1 for E7

ht 1 2 3 4 5 6 7 8 9 10
nht 1 2 3 4 5 5 4 3 2 1

So, here we have 5 segments of roots, i.e. sequences with a unit distance between consecutive

roots.

The number of positive roots µ with (λ, µ) = 2 is 15 and is given in table 2.6 with multi-

plicities.

Table 2.6: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 2 for E7

ht 7 8 9 10 11 12 13 14 15
nht 1 1 2 2 3 2 2 1 1

So, here we have 3 segments of roots.

The number of positive roots µ with (λ, µ) = 3 is 2 and is given in table 2.7 with multiplic-

ities.

Table 2.7: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 3 for E7

ht 16 17
nht 1 1

So, here we have 1 segment of roots.

Check the total number of roots: 16+30+15+2=63.

E6

dimE6=78, |∆+| = 36, (α, β, γ, t) = (−2, 6, 8, 12).

For E6 λ = ω4, in Dynkin’s numeration of roots.

1 2 3 4 5

6

The number of positive roots µ with (λ, µ) = 0 is 7.

The number of positive roots µ with (λ, µ) = 1 is 18 and is given in table 2.8 with numbers

nht.
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Table 2.8: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 1 for E6

ht 1 2 3 4 5 6
nht 1 3 5 5 3 1

So, here we have 5 segments of roots, i.e. sequences with a unit distance between consecutive

roots.

The number of positive roots µ with (λ, µ) = 2 is 9 and is given in table 2.9 with multiplic-

ities.

Table 2.9: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 2 for E6

ht 5 6 7 8 9
nht 1 2 3 2 1

So, here we have 3 segments of roots.

The number of positive roots µ with (λ, µ) = 3 is 2 and is given in table 2.10 with multi-

plicities.

Table 2.10: Number nht vs height ht = (ρ, µ) for roots µ with (λ, µ) = 3 for E6

ht 10 11
nht 1 1

So, here we have 1 segment of roots.

Check the total number of roots: 7+18+9+2=36.

2.1.3 Quantum dimensions

Now we calculate the contributions of roots with (λ, µ) 6= 0 in the Weyl formula for quantum

dimension.

The contribution of roots with (λ, µ) = 3 comes from two roots of heights t− 1, t− 2 (recall

the normalization α = −2):

L3 =
sinh

(
x
2
(t+ 1)

)
sinh

(
x
2
(t+ 2)

)
sinh

(
x
2
(t− 2)

)
sinh

(
x
2
(t− 1)

) (2.7)

Due to the rescaling invariance, mentioned after (2.30), we can recover the parameter α in
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this formula in explicit form by substitution

β → −2β/α, γ → −2γ/α, t→ −2t/α, x→ −xα/2 (2.8)

Then L3 accepts the form

L3 =
sinh

(
x
4
(3α(k − 1)− 2(β + γ))

)
sinh

(
x
4
(α(3k − 4)− 2(β + γ))

)
sinh

(
x
2
(2α + β + γ)

)
sinh

(
x
4
(3α + 2(β + γ))

) (2.9)

Below we skip the intermediate formulae in normalization α = −2 and present the final

ones with explicit α recovered.

Next consider roots with (λ, µ) = 2. There are three segments, the first (longest) one starts

at height β − 1 and ends at height t− 3, its contribution in the Weyl formula is

L21 =
2k∏
i=1

sinh
(
1
4
x(α(i− 5)− 2(β + γ))

)
sinh

(
1
4
x(α(i− 2)− 2β)

) (2.10)

The second segment starts at height t/2 and ends at height (t+ γ − 4)/2, the contribution

is

L22 =
2k∏
i=1

sinh
(
1
4
x(−α(i− 3) + β + 2γ)

)
sinh

(
1
4
x(−α(i− 2) + β + γ)

) (2.11)

The third segment includes one root at height (γ + 2β − 6)/2 and it’s contribution is

L23 =
sinh

(
1
4
x(α(3− 2k) + 2β + γ)

)
sinh

(
1
4
x(3α + 2β + γ)

) (2.12)

Next are the roots with (λ, µ) = 1. There are five segments, the first (longest) one starts at

height 1 and ends at height (γ + 2β − 8)/2, its contribution in the Weyl formula is

L11 =
k∏
i=1

sinh
(
1
4
x(−α(i− 4) + 2β + γ)

)
sinh

(
αix
4

) (2.13)

The second segment starts at height 2 and ends at height γ − 2, contributing
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L12 =
k∏
i=1

sinh
(
1
4
x(α(i− 3)− 2γ)

)
sinh

(
1
4
α(i+ 1)x

) (2.14)

The third segment starts at height (β − 2)/2 and ends at (γ + β − 4)/2, contributing

L13 =
k∏
i=1

sinh
(
1
4
x(−α(i− 2) + β + γ)

)
sinh

(
1
4
x(β − α(i− 2))

) (2.15)

The fourth segment is similar to the third one but shorter by one element on each end:

L14 =
k∏
i=1

sinh
(
1
4
x(−α(i− 3) + β + γ)

)
sinh

(
1
4
x(α(−i) + α + β)

) (2.16)

The fifth segment consists of two roots, starting at height (γ − 2)/2, and contribution will

be

sinh
(
x
2
(β − 3 + k)

)
sinh

(
x
2

(
γ−2
2

)) sinh
(
x
2
(β − 2 + k)

)
sinh

(
x
2

(
γ−2
2

+ 1
)) (2.17)

This contribution is appropriate at k = 1, in a sense that all contributions together -

the product of all L-s - form the corrects answer (2.4). However, for k > 1 and for sl(n)

algebras (i.e. on the line α + β = 0) one loses the zero of (2.17) on that line which at k = 1

cancels out with the zero in denominator of (2.15), also on the same line. So, in analogy

with other contributions above, we simply change this contribution to other one, namely L15,

written below. It cancels mentioned singularity for an arbitrary k, coincides with (2.17) on the

exceptional line γ = 2(α + β), but differs in other points:

L15 =
k∏
i=1

sinh
(
1
4
x(α(i− 3)− 2β)

)
sinh

(
1
4
x(α(i− 2)− 2β)

)
sinh

(
1
4
x(γ − α(i− 2))

)
sinh

(
1
4
x(α(−i) + α + γ)

) (2.18)

However, this is not the end of the story. We expect that our final formula should be
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invariant under switch of the β and γ parameters, in analogy with the universal formula (1.1)

for Y2(α) . So we add a new multiplier, which in some ”minimal” way symmetrizes the product

of all L? multipliers above w.r.t. the switch β ↔ γ:

Lcorr =
k∏
i=1

sinh
(
1
4
x(α(−(i+ k − 4)) + 2β + γ)

)
sinh

(
1
4
x(α(i+ k − 2)− 2γ)

) (2.19)

Finally, our main result is

Proposition 2.1

The function

X2(x, k, α, β, γ) ≡ X2(k, α) = L3L21L22L23L11L12L13L14L15Lcorr (2.20)

is equal, besides exceptions, to the quantum dimensions of k-th Cartan power of above defined

X2 representation for any given simple Lie algebra on corresponding point of Vogel’s table 2.26.

Exceptions are: sp(2n), for which the formula gives the quantum dimensions of X2 at k = 1,

and zero otherwise, and the B2 algebra. Exact details are given in the tables 2.25 and 2.12.

The case by case proof of Proposition 2.1 will be given in the next section after the

generalized formula, when k > 1, will be presented.

Table 2.11: X2(k, α) for classical algebras
k 1 2 ≥ 3
A1 0 0 0
A2 3ω1 ⊕ 3ω2 6ω1 ⊕ 6ω2 3kω1 ⊕ 3kω2

An, n ≥ 3 (2ω1 +
ωn−1) ⊕
(ω2 + 2ωn)

2(2ω1 +
ωn−1) ⊕
2(ω2+2ωn)

k(2ω1 + ωn−1)⊕ k(ω2 + 2ωn)

B2 ω1 + 2ω2 0 0
B3 ω1 + 2ω3 2ω1 + 4ω3 k(ω1 + 2ω3)

Bn, n ≥ 4 ω1 + ω3 2(ω1 + ω3) k(ω1 + ω3)
Cn, n ≥ 3 2ω1 + ω2 0 0

D4 ω1+ω3+ω4 2(ω1 +ω3 +
ω4)

k(ω1 + ω3 + ω4)

Dn, n ≥ 5 ω1 + ω3 2(ω1 + ω3) k(ω1 + ω3)
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Table 2.12: X2(k, α) for Exc line
k 1 ≥ 2
G2 3ω1 3kω1

F4 ω2 kω2

E6 ω3 kω3

E7 ω2 kω2

E8 ω6 kω6

D4 ω1 + ω3 + ω4 k(ω1 + ω3 + ω4)

Remark 1, on sl(n) case. In the case of sl(n) line denominator of L13 and numerator of

L15 both contain a zero multiplier, which however cancel out, i.e. one can continuously extend

X2(k, α) function on that line. In more detail: for the α+ β = 0 line the mentioned fraction is

sinh((2β + 2α)x/4)

sinh((β + α)x/4)
(2.21)

and evidently tends to 2 in the limit α+β → 0 independent on the direction of approaching

the given point on the line on Vogel’s plane. Of course, one can simply substitute the expression

sinh((2β + 2α)x/4)

sinh((β + α)x/4)
= 2 cosh((β + α)x/4) (2.22)

in the formula (2.20) for X2(k, α) from the very beginning and avoid the questions about

continuity of the function.

Remark 2, on tables. The entries of the tables 2.25 and 2.12 for a given algebra and k

are the representation(s), denoted by highest weight, the quantum dimension of which is given

by our main formula (2.20).

Remark 3, on the connection with the dimension formulae [30]. In the x→ 0 limit

X2(x, k, α, β, γ) gives the universal dimension formulae. When considered on the exceptional

line by taking α = y, β = 1 − y, γ = 2 and for k = 2, in the x → 0 limit the expression for

X2(x, k, α, β, γ) gives the following dimension formula

−10(y − 6)(y − 5)(y + 3)(y + 4)(y + 5)(2y − 5)(3y − 4)(5y − 6)

(1− 2y)2(y − 1)3y4(3y − 2)
(2.23)

which coincides exactly with the universal formula on the exceptional line of [30] for repre-

sentation H.
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Remark 4, on sp(2n) case. We assume the following interpretation of this case. The

point is that Vogel’s parameters for sp(2n) algebras can be obtained from those of so(2n) by

transformation (α, β, γ) → (−1/2)(β, α,−γ), which includes transposition of α and β. And

indeed, we see in the table 2.20, that our formula gives quantum dimensions of some sequence

of representations of sp(2n), although not the Cartan powers of its X2 representation. Simulta-

neously, table 2.20 doesn’t give quantum dimensions of new representations of so. We conclude,

that for sp the role of X2 sequence of representation in our formulae is played by other series,

given in table 2.20.

2.2 (g)n(X2)
k

Consider the antisymmetric square of the adjoint representation. In [1] it is shown that its

decomposition can be presented in a uniform way (i.e. for all simple Lie algebras) as

∧2g = g⊕X2 (2.24)

The representation X2 is irreducible w.r.t. the semidirect product of simple Lie algebra

and the group of automorphisms of the corresponding Dynkin diagram (see [29, 30]) and its

highest weights are given in the table 2.2 in terms of fundamental ones. Here we refer to

the enumeration of nodes of the Dynkin diagram, used by Dynkin [33], with two corrections:

enumeration of nods of E8 starts from the shorter wing, as in E7, and enumeration of nods

for G2 is opposite. This enumeration coincides with that used in the Wolfram Mathematica

package LieART, given in its description ([34], page 11), corrected for the enumeration of nods

Table 2.13: X2(k, β) for the classical algebras for sufficiently large n (depends on k)
k 1 2 3 4 ≥ 5
An (2ω1 +

ωn−1) ⊕
(2ωn + ω2)

(2ω2 +
ωn−3) ⊕
(2ωn−1 +
ω4)

(2ω3 +
ωn−5) ⊕
(2ωn−2 +
ω6)

(2ω4 +
ωn−7) ⊕
(2ωn−3 +
ω8)

· · ·

Bn ω1 + ω3 0 0 0 0
Cn 2ω1 + ω2 2ω2 + ω4 2ω3 + ω6 2ω4 + ω8 · · ·
Dn ω1 + ω3 0 0 0 0
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for G2 to the opposite to that given in [34]. For a definition of fundamental weights of simple

Lie algebras see e.g. [32].

Table 2.14: Highest weights of the adjoint (λad) and X2 (λX2) representations in terms of
fundamental weights for simple Lie algebras

λad λX2

G2 ω2 3ω1

F4 ω1 ω2

E6 ω6 ω3

E7 ω1 ω2

E8 ω7 ω6

A1 2ω 0
AN , N > 1 ω1 + ωN (2ω1 + ωN−1)⊕ (ω2 + 2ωN)

B2 2ω2 ω1 + 2ω2

B3 ω2 ω1 + 2ω3

BN , N > 3 ω2 ω1 + ω3

CN 2ω1 2ω1 + ω2

D4 ω2 ω1 + ω3 + ω4

DN , N > 4 ω2 ω1 + ω3

Table 2.14 needs a comment for the AN case. In that case, λX2 is not the highest weight, but

a pair of highest weights of the direct sum of the corresponding representations, shown in the

table. This is because the representation X2 is the direct sum of two irreducible representations

of AN , their highest weights being connected by the automorphism of the Dynkin diagram. In

that case the sum e.g. λX2 + λad should be understood as a pair of two highest weights, each

element of pair is the sum of the λad and one of the highest weights of λX2 pair.

According to [30], [22] universal formulae give answers for the semidirect product of simple

Lie algebra on the group of automorphisms of their Dynkin diagrams. It will be observed below

that it happens in all cases we consider.

The main object of our consideration will be the quantum dimensions of (some) repre-

sentations of simple Lie algebras. Quantum dimension of representation is character of that

representation, restricted to Weyl line, i.e. the argument of character is taken to be xρ, where x

is an arbitrary parameter and ρ is the Weyl vector, i.e. the half of the sum of all positive roots.

See formula (2.30) below for expression of quantum dimension of irreducible representations in

terms of highest weight of representation.

Next we present our main result - the universal formula for the quantum dimension of irreps

with the highest weights kλX2 + nλad, k, n ∈ Z+:
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X(x, k, n, α, β, γ) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 (2.25)

where the multipliers L? look as follows∗ (see the definition of the symbol sinh
[
x
4

: in Appendix

B):

L31 = sinh
[x

4
:
−2(β + γ) + α(−4 + 3k + n)

4α + 2β + 2γ

L32 = sinh
[x

4
:
−2(β + γ) + α(−3 + 3k + 2n)

3α + 2(β + γ)

L21s1 = sinh
[x

4
:
2k+n∏
i=1

−2(β + γ) + α(−5 + i)

−2β + α(i− 2)

L21s2 = sinh
[x

4
:
2k+n∏
i=1

β + 2γ − α(−3 + i)

β + γ − α(i− 2)

L21s3 = sinh
[x

4
:

2β + γ + α(3− 2k − n)

3α + 2β + γ

∗Below we omit the numerous sinh signs and use the following notation instead:

a sinh [x :
A ·B...
M ·N...

≡ a sinh(xA) sinh(xB)...

sinh(xM) sinh(xN)...
(2.26)

where x, a,A,B, ...,M,N, ... are numbers (dots between are not necessary, provided no ambiguity arises). For
example

2 sinh
[x

4
:

1 · 4
2
≡ 2

sinh(x
4 ) sinh( 4x

4 )

sinh( 2x
4 )

(2.27)

One can derive simple rules which this notation obeys. E.g.

(sinh [x : A ·B) (sinh [x : M ·N) = sinh [x : A ·B ·M ·N (2.28)

Of course, our notation belongs to the field of q-calculus, however, we didn’t find this or similar convenient
notation, perhaps missed that.

Evidently, one gets the universal dimension formulae, just by omitting the front sinh sign for L?-s and
X2(x, k, α, β, γ) in formulae below.
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L10s1 = sinh
[x

4
:

k∏
i=1

2γ − α(i− 3)

−αi

L10s2 = sinh
[x

4
:

k∏
i=1

β + γ − α(i− 3)

β − α(i− 2)

L10s3 = sinh
[x

4
:

k∏
i=1

−2β + α(i− 3)

γ − α(i− 2)

L11s1 = sinh
[x

4
:
k+n∏
i=1

2β + γ − α(i− 4)

α(i+ 2)

L11s2 = sinh
[x

4
:
k+n∏
i=1

β + γ − α(i− 2)

β − α(i− 1)

L11s3 = sinh
[x

4
:
k+n∏
i=1

−2β + α(i− 2)

γ + α(1− i)

L01 = sinh
[x

4
:

(α(1 + n))

α

Lc2 = sinh
[x

4
:

k∏
i=1

γ + 2β − α(i+ k + n− 4))

α(i+ k + n− 2)− 2γ

We do not present any derivation of this formula. It is obtained in a way, similar to the

universal formula (2.20) for the quantum dimension of the Cartan powers of X2 representation

(which is a particular case of (2.25)). However, even in that simpler case, that formula is

obtained by an ”educated guess”, and not exactly derived, as we mentioned in above. In the

present case, that remark is even more relevant, so we don’t bring any incomplete ”derivation”,

but simply present the following Proposition 2.2 and its proof.

Proposition 2.2

The function (2.25) X(x, k, n, α, β, γ) at the points from the Vogel’s table is equal to the

quantum dimensions of representations of simple Lie algebras presented in the tables 2.15, 2.16

(k, n = 0, 1...)

Remark 1. The main formula (2.25) is symmetric w.r.t. the switch of β and γ parameters.
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This feature becomes evident after rewriting (2.25) in the following form.

X(x, k, n, α, β, γ) =

sinh
[x

4
:
k−1∏
i=0

(α(i− 2)− 2β)2(α(i− 2)− 2γ)2(β + γ + α(−(i− 2))2

(α(i+ 1))2(β − α(i− 1))2(γ − α(i− 1))2
×

×
n∏
i=0

(α(i+ k − 2)− 2β)(α(i+ k − 2)− 2γ)(β + γ + α(−(i+ k − 2))

(α(i+ k + 1))(β − α(i+ k − 1))(γ − α(i+ k − 1))
×

×
2k+n∏
i=1

(−β − 2γ + α(i− 3))(−2β − γ + α(i− 3))(α(i− 5)− 2(β + γ))

(α(i− 2)− 2β)(α(i− 2)− 2γ)(β + γ − α(i− 2))
×

× (α + β)(α + γ)(α(n+ 1))

(2α + 2β)(2α + 2γ)(2α + β + γ)
×

× (α(3k + n− 4)− 2(β + γ))(α(3k + 2n− 3)− 2(β + γ))

(3α + 2β + 2γ)(4α + 2β + 2γ)
(2.29)

We do not have a clear explanation for this feature, though.

Remark 2. Formula (2.25) is valid for k = 0 and/or n = 0 provided one assumes
∏0

i=1 = 1.

In that cases it coincides with the results of [13], for k = 0, and of [18] for n = 0.

Remark 3. The proof of the Proposition 2.2 is carried out case by case in Appendix B.

I.e. for each set of the parameters α, β, γ from Vogel’s table the expression (2.25) is compared

with the Weyl formula for the quantum dimension (2.30) of the corresponding algebra. The

latter is the Weyl formula for the characters, restricted to the Weyl line xρ (see e.g. [32],

13.170):

Dλ
Q = χλ(xρ) =

∏
µ>0

sinh(x
2
(µ, λ+ ρ))

sinh(x
2
(µ, ρ))

(2.30)

Here λ is the highest weight of the given irreducible representation, ρ is the Weyl vector,

the sum of the fundamental weights. This formula is invariant w.r.t. the simultaneous rescaling

of the scalar product in algebra and the parameter x ”in the opposite directions”. Note, that

the automorphism of the Dynkin diagram leads to the equality of quantum dimensions for

representations with the highest weights connected by the automorphism.

Remark 4. The formula (2.25) is not unique in the sense that one can write another similar

expression - a product of (sines of) linear functions over universal parameters, yielding the same
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values on points from Vogel’s table. This follows from the existence of the following expression

(2α + β + γ)(7α + 4β + γ)(8α + 6β + γ)

(3α + 2β + γ)(4α + 2β + γ)(10α + 7β + γ)
(2.31)

This function is equal to 1 on the lines α + β = 0, 2α + β = 0, γ = 2(α + β) and evidently

is not constant, so it may be used to rewrite another similar expression for (2.25), without

changing its outputs at the points from Vogel’s table. E.g. one may ask about some ”minimal”

expression of (2.25). However, the features under permutation of parameters might be violated.

Particularly, (2.31) is not symmetric under β ↔ γ. These problems are out of scope of the

present paper, we hope to clarify them in the future.

Remark 5. Both formulae for X(x, k, n, α, β, γ) are complicated, so we are willing to

provide the Wolfram Mathematica notebook file with these as well as other universal formulae

under a request.

Table 2.15: X(x, k, n, α, β, γ) for the classical algebras
k, n 0, n 1, n k, n (k > 1)
A1 nλad 0 0

AN , N ≥ 2 nλad λX2 + nλad kλX2 + nλad
B2 nλad λX2 + nλad 0

BN , N > 2 nλad λX2 + nλad kλX2 + nλad
CN , N > 2 nλad λX2 + nλad 0
DN , N > 3 nλad λX2 + nλad kλX2 + nλad

Table 2.16: X(x, k, n, α, β, γ) for the exceptional algebras
k, n k, n
L kλX2 + nλad

L is any of the exceptional simple Lie algebras.

2.3 X2(x, k, α, β, γ) and X(x, k, n, α, β, γ) Under Permuta-

tions of Universal Parameters

All universal dimension formulae known so far share a notable feature. It consists in yielding

reasonable outputs even when considering them at the points connected with the initial ones via

permutation of the coordinates. The word reasonable in this context means that these outputs
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Table 2.17: X2(k, β, α, γ) for the exceptional algebras
k 1 2 3 4 ≥ 5
G2 3ω1 0 0 0 0
F4 ω2 3ω4 0 0 0
E6 ω3 3ω1 ⊕ 3ω5 −(ω1 + ω5) 0 0
E7 ω2 0 −ω2 -1 0
E8 ω6 0 ω8 0 0

D4 ω1 + ω3 + ω4

{
ω1 + ω3 + ω4 on the Exc line

0 on the so line

{
3 on the Exc line
0 on the so line

0 0

also correspond to (quantum) dimensions of some other representations of a given Lie algebra.

In some cases a minus sign appears in front of the (quantum) dimensions. We refer to such

output as corresponding to a virtual representation. In this section we show that the newly-

derived quantum dimension formulae do have this notable feature. Our check mainly extends

to the level of dimensions of representations. The behavior of the formulae at the permuted

coordinates is presented in a sequence of tables where the corresponding highest weights are

listed. The cases when a virtual representation appears are also denoted by highest weights

with minus sign put in front of them.

The values of X2(k, β) for algebras on the exceptional line are presented in the table 2.17.

Here we see a new phenomenon: the value of X2(k, β) on, say, point k = 2 for D4 algebra

(i.e. α = −2, β = 4, γ = 4) is not defined, since the limit of 0/0 ambiguity is dependent on

the direction of approaching that point. However, if one approaches that point by one of the

relevant lines, e.g. exc or so, reasonable results are obtained.

We see that X2(3, β) for D4 gives pure number 3, independent on x. This should be

interpreted as quantum dimension of some representation of semidirect product of D4 and its

Dynkin diagram’s automorphism group S3. We assume that the corresponding representation

is the trivial one for D4 factor and the non-trivial reducible three-dimensional permutation

representation of S3 factor.

X2(k, γ, α, β) for the exceptional algebras are given in table 2.18.

Again, when restricted to the exceptional line α = y, β = 1 − y, γ = 2 and in the limit

x→ 0, X2(2, γ) gives the following formula

5(y − 6)(y − 4)(y + 3)(y + 5)

(y − 1)2y2
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Table 2.18: X2(k, γ, α, β) for the exceptional algebras
k 1 2 3 ≥ 4
G2 3ω1 3ω1 0 0
F4 ω2 ω2 0 0
E6 ω3 ω3 0 0
E7 ω2 ω2 0 0
E8 ω6 ω6 0 0

D4 ω1 + ω3 + ω4

{
ω1 + ω3 + ω4 on the Exc line

0 on the so line

{
0 on the Exc line
0 on the so line

0

Table 2.19: X2(k, γ, β, α) for the classical algebras
k 1 2 3 ≥ 4
A1 0 −2ω on the sl line 0 0
A2 3ω1 ⊕ 3ω2 −(ω1 + ω2) 0 0

An, n ≥ 3 (2ω1 + ωn−1)⊕ (ω2 + 2ωn) −(ω1 + ωn) 0 0
B2 ω1 + 2ω2 0 on the so line 0 on the so line 0
B3 ω1 + 2ω3 0 0 0

Bn, n ≥ 4 ω1 + ω3 0 0 0
Cn, n ≥ 3 2ω1 + ω2 0 0 0

D4 ω1 + ω3 + ω4 0 on the so line 0 on the so line 0
D5 ω1 + ω3 0 0 0
D6 ω1 + ω3 0 on the so line 0 0

Dn, n ≥ 7 ω1 + ω3 0 0 0

which coincides with the dimensional formula for X2 from [30], and agrees with table 2.18.

For the classical algebras X2(k, β) is given in the table 2.20. For small ranked algebras there

shows up a complicated picture, so we present the stabilized answers for sufficiently large ranks.

The boundary depends on k, the larger k, the larger the boundary. At least the rank should

be large enough to allow the existence of the fundamental weights mentioned in the table.

Now, we present the similar results for the more general formula – X(x, k, n, α, β, γ). For

the exceptional algebras the results are shown via tables 2.21 and 2.22.

For the points associated with the classical algebras one has the results shown in tables 2.23

Table 2.20: X2(k, β, α, γ) for the classical algebras for sufficiently large n (depends on k)
k 1 2 3 4 ≥ 5
An (2ω1 +

ωn−1) ⊕
(2ωn + ω2)

(2ω2 +
ωn−3) ⊕
(2ωn−1 +
ω4)

(2ω3 +
ωn−5) ⊕
(2ωn−2 +
ω6)

(2ω4 +
ωn−7) ⊕
(2ωn−3 +
ω8)

· · ·

Bn ω1 + ω3 0 0 0 0
Cn 2ω1 + ω2 2ω2 + ω4 2ω3 + ω6 2ω4 + ω8 · · ·
Dn ω1 + ω3 0 0 0 0
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Table 2.21: X(x, k, n, β, α, γ) for the exceptional algebras
k, n G2 F4 E6 E7 E8

1,0 3ω1 ω2 ω3 ω2 ω6

1,1 ω1 + ω2 ω3 + ω4
(ω1 + ω2)
⊕(ω4 + ω5)

ω6 + ω7 ω8

1,2 0 ω1 + ω4 ω3 0 −ω8

1,3 0 0 0 E:−2ω6 −ω6

1,4 0 0 -1 0 0
1,5 0 0 0 0 1
2,0 0 3ω4 3ω1 ⊕ 3ω5 0 0
2,1 0 0 −ω3 E:−ω6 − ω7 0
2,2 0 0 −ω6 −ω5 ω6

2,3 0 0 0 0 ω7

3,0 0 0 −ω1 − ω5 E:−ω2 ω8

3,1 0 0 0 E:−ω1 ω1

4,0 0 0 0 -1 0

Table 2.22: X(x, k, n, γ, α, β) for the exceptional algebras
k, n 1,0 1,1 1,3 2,0 2,1
G2 3ω1 −3ω1 1 3ω1 ω2

F4 ω2 −ω2 1 ω2 ω1

E6 ω3 −ω3 1 ω3 ω6

E7 ω2 −ω2 1 ω2 ω1

E8 ω6 −ω6 1 ω6 ω7

and 2.24.

As we see the situation is more complex in this case.. In the table 2.23 we present the

outputs of the X(x, k, n, β, α, γ) for ”sufficiently large” rank of the corresponding algebra.

One can prove the following

Proposition 2.3.

At the points in Vogel’s plane, corresponding to the classical algebras with sufficiently large

ranks, the function X(x, k, n, β, α, γ) is equal to the quantum dimension of representation of

the corresponding algebra given in the table 2.23. The ranges of the ”sufficiently large” ranks

(”Validity range”) are presented in the tables.

Remark 1. The columns ”Validity range/Regularity range” show the range of the rank

N where X(x, k, n, β, α, γ) yields the quantum dimension of the representation, given in the

previous column, and the range of the rank N where our formula is non-singular, respectively.

However, we do not claim that for the ranks less than the boundary, given in the ”Regularity

range”, our formula is always singular. It is singular only for some of the ranks less than that

boundary. We give some examples below.

Remark 2. For the ranks smaller than the boundary of the validity range we assume that

X(x, k, n, β, α, γ) still yields quantum dimensions of some representations of the corresponding
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Table 2.23: X(x, k, n, β, α, γ) for the classical algebras
k, n 1, n Validity range

Regularity range
k, n , k ≥ 2 Validity range

Regularity range
AN (ω1 + ω1+n + ωN−1−n)⊕

(ωN + ωN−n + ωn+2)
N > 2n+ 1
N > 2n+ 1

(ωk + ωk+n + ωN+1−2k−n)⊕
(ω2k+n + ωN+1−k + ωN+1−k−n)

N > 4k + 2n− 3
N > 4k + 2n− 3

BN ω1 + ω2n+3 N > 2n+ 3
N ≥ 2

0 N ≥ 2
N ≥ 2

CN ω1 + ωn+1 + ωn+2 N > n+ 1
N > n

ωk + ωk+n + ω2k+n N > 2k + n− 1
N > 2k + n− 2

DN ω1 + ω2n+3 N > 2n+ 4
N > 2n+ 3

0 N ≥ 4
N > 4k + 2n− 1

algebra. We do not prove that, and just present some information on the low ranks for the

specific algebras.

Remark 3.Proposition 2.3 is proved by a direct case by case comparison of the output of

our formula with the Weyl formula written for the corresponding highest weights. Calculations

are similar to those implemented for the proof of Proposition 2.2 given in the Appendix C.II,

and we omit them.

The possible singularities that may appear in the low rank domain will be studied in Section

3.

Table 2.24: X(x, k, n, γ, α, β) for the classical algebras
k, n > 0 1, 2
AN -1

2.4 Universal Casimir Eigenvalues on (X2)
k(g)n

Let us now show, that the eigenvalues of the second Casimir operator on (X2)
k(g)n represen-

tations can be written in terms of Vogel’s universal parameters. The highest weights of the X2

and g are kλX2 and nλg, correspondingly. It is easy to check, that

Ck,n = CkλX2
+ Cnλg + 2kn(λX2 , λg)

where Ck,n is the Casimir eigenvalue on (X2)
k(g)n. Substituting the corresponding highest

weights (see Table 2.14) in the expression, written above for the Casimir eigenvalue, one ob-

tains the expressions shown in the following table 4:
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Table 2.25: Casimir Eigenvalues
CkλX2

Cnλg 2kn(λX2 , λg) Ck,n
AN , N ≥ 3 6k2 + k(4N − 2) 2n(n+N) 6kn 6k2 + k(4N − 2) + 2n(n+N) + 6kn
BN , N ≥ 4 6k2 + k(8N − 10) 2n(n+ 2N − 2) 6kn 6k2 + k(8N − 10) + 2n(n+ 2N − 2) + 6kn
CN , N ≥ 3 5k2 + k(4N − 1) 2n(n+N) 6kn 5k2 + k(4N − 1) + 2n(n+N) + 6kn
DN , N ≥ 5 6k2 + k(8N − 14) 2n(n+ 2N − 3) 6kn 6k2 + k(8N − 14) + 2n(n+ 2N − 3) + 6kn

G2 6k2 + 10k 2n(n+ 3) 6kn 6k2 + 10k + 2n(n+ 3) + 6kn
F4 6k2 + 30k 2n(n+ 8) 6kn 6k2 + 30k + 2n(n+ 8) + 6kn
E6 6k2 + 42k 2n(n+ 11) 6kn 6k2 + 42k + 2n(n+ 11)6kn
E7 6k2 + 66k 2n(n+ 17) 6kn 6k2 + 66k + 2n(n+ 17) + 6kn
E8 6k2 + 114k 2n(n+ 29) 6kn 6k2 + 114k + 2n(n+ 29) + 6kn

Universal Form 3α(k − k2) + 4tk α(n− n2) + 2tn −3αkn α(3k − 3k2 + n− n2 − 3kn) + t(4k + 2n)

One can check, that for each of these cases (except for the CN) the universal expression

for the Casimir eigenvalues on the Cartan powers of X2 and g representations can be written

through a linear function in terms of Vogel’s universal parameters:

Ck,n = 3α(k − k2) + 4tk + α(n− n2) + 2tn =

α(3k − 3k2 + n− n2 − 3kn) + t(4k + 2n) (2.32)

which proves, that the Casimir eigenvalues on (X2)
k(g)n representations are universal.

2.4.1 Conformity Check

Now we turn to the comparison of our universal expression with the values presented in [30]. The

representations on which the Casimir eigenvalues are to be compared are those defined with the

following highest weights: 2λX2 , λX2 +λg and λX2 +2λg. So, we calculate γ(H), γ(C), γ(G) (i.e.

Casimirs in [30] notation) and compare them with C2,0, C1,1, C1,2, written in the corresponding

scaling.

For the k = 2 and n = 0 case our formula in the corresponding scaling gives:

C2,0 =
3α(k − k2) + 4tk

2t
=
−3α + 4t

t
=

6 + 4t

t
.

For k = 1, n = 1

C1,1 =
6t− 3α

2t
=

3(t− 1)

t

Finally, for k = 1, n = 2

C1,2 =
−8α + 8t

2t
=

8 + 4t

t
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In the following table the corresponding Casimir eigenvalues calculated in [30] and those

obtained by our formula are shown.

Table 2.26: Conformity check of the Casimir Eigenvalues
a γ(H) = 4 + 6a γ(C) = 3 + 3a γ(G) = 4 + 8a t C2,0 = (6 + 4t)/t C1,1 = 3(t− 1)/t C1,2 = (8 + 4t)/t

A1 1/2 7 9/2 8 2 7 9/2 8
A2 1/3 6 4 20/3 3 6 4 20/3
G2 1/4 11/2 15/4 8 4 11/2 15/4 8
D4 1/6 5 7/2 16/3 6 5 7/2 16/3
F4 1/9 14/3 10/3 14/3 9 14/3 10/3 14/3
E6 1/12 9/2 13/4 14/3 12 9/2 13/4 14/3
E7 1/18 13/3 19/6 40/9 18 13/3 19/6 40/9
E8 1/30 21/5 31/10 64/15 30 21/5 31/10 64/15

Thus, we see that the Casimir eigenvalues coincide.

2.4.2 Non-zero Universal Values of Casimir on Zero Representations

A notable quality of the X2(k, α, β, γ) formula, presented above, is that for the parameters,

corresponding to the CN algebra it gives 0 for any k ≥ 2, while we see that the Casimir

eigenvalues on those irreps are not 0.

A similar situation regarding A2 algebra takes place. The universal decomposition of the

symmetric square of the adjoint representation writes as follows:

S2g = 1 + Y2(α) + Y2(β) + Y2(γ)

The Y2(β) for A2 is 0, whilst the Casimir eigenvalue on the same representation is 4t− 2β.

At first glance it seems natural to expect, that the Casimir eigenvalues on that representations

should be equal to 0, while we see, that they are not. If one thinks deeper, it is easy to un-

derstand, that the Casimir eigenvalue does not have to be equal to 0 on a zero-dimensional

representation. Indeed, for the points close to the (-2,2,3) on the Vogel plane the Casimir oper-

ator acting on the symmetric square of the adjoint representation of A2 has three eigenvalues,

so in an appropriate basis, it has a block-diagonal form. At (-2,2,3) point all that happens is

that Y2(γ) becomes zero for that particular combination of parameters, and the corresponding

block of the Casimir operator acts on a zero-dimensional vector subspace. Thus we do not see

anything that dictates that block to be a zero-matrice at that particular point.

After the discussion of this situation one concludes, that the universal description sheds a

light on the fact, that it is not just only reasonable, but turns out to be necessary to consider
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some non-zero eigenvalues of Casimir operators on non-existing, i.e. zero-dimensional repre-

sentations. Thus, it seems natural to believe, that the universal formulae ”take care” of the

”invisibility” of that sort of Casimirs. In other words, we expect that in the universal formulae

the Casimir eigenvalues appear in the product with the universal dimensions, or, more gener-

ally, with expressions, which are necessarily zero, if the dimension is zero.

In support of this idea we bring a formula, presented by Deligne in [22]:

Tr(C2, [R]V ) =
1

n!

∑
σ

χ(σ)m(σ)(dimV )n(σ)−1Tr(C2, V )

where V is a representation of the algebra, R is a representation of the Sn group, [R](V ) :=

HomSn(R,⊗nV ), σ is an element of Sn, χ(σ) is the character on that element, m(σ) is the sum

of the squares of the lengths of cycles of σ, n(σ) is the number of cycles of σ.

For the symmetric square of the adjoint representation, we rewrite this formula explicitly:

1·C2(1)+dimY2(α)C2(Y2(α))+dimY2(β)C2(Y2(β))+dimY2(γ)C2(Y2(γ)) = (2+dimg)·dimgC2(g),

where g is the adjoint representation.

Substituting the corresponding universal formulae, one can check, that for A2 algebra this

formula is true.

2.4.3 Conformity With sp(−2n) = so(2n) Duality

In ([6]) R.Mkrtchyan and A.Veselov have discussed the duality of higher-order Casimir oper-

ators for SO(2n) and Sp(2n) groups. Using the Perelomov and Popov ([23]) formula for the

generating function for the Casimir spectra and parametrizing the Young diagrams in a dif-

ferent way ([6]), they have explicitly shown the CSp(2n)(λ, z) = −CSO(−2n)(λ
′,−z) duality for

arbitrary Young diagrams.

Here we write the expressions for the corresponding eigenvalues of the second Casimir operator

(C2) for so(2n) and sp(2n) algebras, in the A,B parametrization, used in [6].

so(2n)

For so(2n) the Casimir spectra write as follows
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Cso(2n)(z, A,B) =
∞∑
p=0

Cpso(2n)z
p =

(1− zn)(2− z(4n− 3))

z(1− z(n− 1))(2− z(4n− 2))
×

k∏
i=0

1− z(−Ak−i +Bi + 2n− 1)

1− z(Ak−i −Bi)
×

k∏
i=1

1− z(A−i+k+1 −Bi)

1− z(−A−i+k+1 +Bi + 2n− 1)

After a proper expansion of Cso(2n)(z, A,B) into series in the vicinity of the z0 = 0 point,

one can check, that the coefficient of z2, i.e. C2so(2n) can be expressed as follows:

C2so(2n)(A,B) =
k∑
i=1

(
4nAi(B−i+k+1 −Bk−i) + 2A2

i (Bk−i −B−i+k+1)+

+ 2Ai(Bk−i −B−i+k+1) + 2B2
i (A−i+k+1 − Ak−i)

)
− 4nA0Bk+

+ A2
0(2Bk + 4B0) + 2A0(Bk −B0)−B2

0(2Ak + 4A0)−

− n(A0 −B0) + 2n
(
A2

0 +B2
0

)
+ 2

(
B3

0 − A3
0

)
+ 1/2(A0 −B0).

sp(2n)

The Casimir spectra for this case is

Csp(2n)(z,A,B) =
∞∑
p=0

Cpsp(2n)z
p =

(1− zn)(2− z(4n+ 3))

z(1− z(n+ 1))(2− z(4n+ 2))
×

k∏
i=0

1− z(Bk−i − Ai + 2n+ 1)

1− z(−Bk−i + Ai)
×

k∏
i=1

1− z(−B−i+k+1 + Ai)

1− z(B−i+k+1 − Ai + 2n+ 1)

And for C2sp(2n) one has

C2sp(2n)(A,B) = −
k∑
i=1

(
− 4nBi(A−i+k+1 − Ak−i) + 2A2

i (B−i+k+1 −Bk−i)+

2B2
i (Ak−i − A−i+k+1) + +2Bi(Ak−i − A−i+k+1)

)
− 4nB0Ak+

+ A2
0(2Bk + 4B0)− 2B0(Ak − A0)−B2

0(2Ak + 4A0)−

− n(B0 − A0) + 2n
(
A2

0 +B2
0

)
+ 1/2(A0 −B0)− 2

(
A3

0 −B3
0

)
.

Therefore, we have obtained formulae for second Casimir eigenvalues on irreps of sp(2n)
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Table 2.27: Comparison
Algebra Diagram A,B C2(A,B) C2

so(2n) A1 = B1 = 1, A2 = 3, B2 = 2 16n− 16 8n− 8

sp(2n) A1 = B1 = 1, A2 = 2, B2 = 3 16n+ 16 4n+ 4

and so(2n) algebras, corresponding to any Young diagram (any (A,B) set).

It can be checked, that

C2so(2n)(A,B) = −C2sp(−2n)
(B,A)

i.e. the Casimir duality for the second Casimir holds for any Young diagram (for any A,B

set). In particular, for X2 one has the values, shown in the Table 4. It can be observed, that

C2so(2n) = 2C2sp(2n) = 1/2C2so(2n)(A,B), which indicates the difference of the definition of the

Killing form in [6] †.

In [18] it has been shown, that when permuting the Vogel parameters corresponding to

the so(2n) algebra in this way: (α, β, γ) → (β, α, γ), the X2(k) formula gives dimensions

for some representations of the sp(2n) algebra. More precisely, that permutation specifies a

correspondence between λso(2n) = k(ω1 + ω3) and λsp(2n) = 2ωk + ω2k representations. One can

notice, that the Young diagrams, associated with these representations are conjugate with each

other. Indeed, in A,B parametrization the associated sets are

λso(2n) ↔ A0 = B0 = 0, A1 = 1, B1 = k,A2 = 3, B2 = 2k,

λsp(2n) ↔ A0 = B0 = 0, A1 = k,B1 = 1, A2 = 2k,B2 = 3.

Therefore, it is reasonable to check the Casimir duality for these representations. Substituting

the corresponding (A,B) sets into the expressions for C2(A,B) written above, one gets

C2so(2n)(A,B) = 12k2 + k(16n− 28),

C2sp(2n)(B,A) = −12k2 + k(16n+ 28) = −(12k2 + k(16(−n)− 28) = −C2so(2n)(A,B).

†in [6] the Killing form is defined as Tr(X̂a, X̂b) in the fundamental representation, while our normalization

(so called Cartan-Killing normalization) corresponds to the Killing form, defined as Tr(adX̂a, adX̂b), i.e. in the
adjoint representation.
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So, the Casimir duality holds for representations, associated with the

X2(k,−2, 4, 2n−4)↔ X2(k, 4,−2, 2n−4) transformation of the X2(k, α, β, γ) universal formula

[18].

For the same representations in the Cartan-Killing normalization we have

C2so(2n) = 6k2 + k(8n− 14),

C2sp(2n) = −3k2 + k(4n+ 7),

i.e.

C2so(2n)(λ) = −2C2sp(−2n)
(λ′),

as expected.

2.5 Appendix C.II

Proof of the Propositions

The proof is carried out case by case: for each set of the parameters α, β, γ from the Vogel’s

table (except Cn) we compare the expression (2.25) with the quantum dimension obtained by

Weyl formula (2.30) for the corresponding algebra.

2.5.1 AN−1

Substituting α = −2, β = 2, γ = N in the L-terms, one gets

L31 = sinh
[x

2
:
N + 3k + n− 2

N − 2
,

L32 = sinh
[x

2
:
N + 3k + 2n− 1

N − 1
,

L21s1 = sinh
[x

2
:

(N − 2) · (N − 1) . . . (N + 2k + n− 3)

1 · 2 . . . (2k + n)
,
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L21s2 = sinh
[x

2
:

(N − 1) ·N . . . (N + 2k + n− 2)

N/2 · (N/2 + 1) . . . (N/2 + 2k + n− 1)
,

L21s3 = sinh
[x

2
:
N/2 + 2k + n− 1

N/2− 1
,

L10s1 = · sinh
[x

2
:

(N − 2) · (N − 1) ·N . . . (N + k − 3)

1 · 2 . . . k
,

L10s2 = · sinh
[x

2
:

(N/2− 1) ·N/2 · (N/2 + 1) . . . (N/2 + k − 2)

(α + β) · 1 . . . (k − 1)
,

L10s3 = − sinh
[x

2
:

(2α + 2β) · 1 · 2 . . . (k − 1)

(N/2− 1) ·N/2 . . . (N/2 + k − 2)
,

L11s1 = sinh
[x

2
:

(N/2− 1) · (N/2) . . . (N/2 + k + n− 2)

2 · 3 . . . (k + n+ 1)
,

L11s2 = sinh
[x

2
:
N/2 · (N/2 + 1) . . . (N/2 + k + n− 1)

1 · 2 · 3 . . . (k + n)
,

L11s3 = 1/L11s2

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = sinh
[x

2
:

(N/2 + k + n− 1) · (N/2 + k + n)) . . . (N/2 + 2k + n− 2)

(N + k + n− 1) · (N + k + n) . . . (N + 2k + n− 2)
,

The product of all these terms gives
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X(x, k, n,−2, 2, N + 1) =

= L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

2 · sinh
[x

2
:

k∏
i=1

i+N − 3

i
×

k+n∏
i=1

i+N − 2

i+ 1
×

2k+n∏
i=1

i+N − 3

i
×

n+ 1

1
· N + 3k + 2n− 1

N − 1
· N + 3k + n− 2

N − 2

which equals to the double of the expression of the Weyl formula, written for λ = (2k +

n)ω1 + kωN−1 + nωN highest weight representation of AN algebra, as expected.

2.5.2 BN

For this case we should substitute α = −2, β = 4, γ = 2N − 3, so

L31 = sinh
[x

2
:

2N + 3k + n− 3

2N − 3
,

L32 = sinh
[x

2
:

2N + 3k + 2n− 2

2N − 2
,

L21s1 = sinh
[x

2
:

(2N − 3) · (2N − 2) . . . (2N + 2k + n− 4)

3 · 4 . . . (2 + 2k + n)
,

L21s2 = sinh
[x

2
:

(2N − 3) · (2N − 2) . . . (2N + 2k + n− 4)

(N − 1/2) · (N + 1/2) . . . (N + 2k + n− 3/2)
,

L21s3 = sinh
[x

2
:
N + 2k + n− 1/2

N − 1/2
,

L10s1 = · sinh
[x

2
:

(2N − 5) · (2N − 4) . . . (2N + k − 6)

1 · 2 . . . k
,

L10s2 = · sinh
[x

2
:

(N − 3/2) · (N − 1/2) . . . (N + k − 5/2)

1 · 2 . . . k
,
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L10s3 = · sinh
[x

2
:

2 · 3 · 4 . . . (k + 1)

(N − 5/2) · (N − 3/2) . . . (N + k − 7/2)
,

L11s1 = sinh
[x

2
:

(N − 1/2) · (N + 1/2) . . . (N + k + n− 3/2)

2 · 3 . . . (k + n+ 1)
,

L11s2 = sinh
[x

2
:

(N − 1/2) · (N + 1/2) . . . (N + k + n− 3/2)

2 · 3 · 4 . . . (k + n+ 1)
,

L11s3 = sinh
[x

2
:

3 · 4 . . . (k + n+ 2)

(N − 3/2) · (N − 1/2) . . . (N + k + n− 5/2)
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = sinh
[x

2
:

(N + k + n− 1/2) · (N + k + n+ 1/2) . . . (N + 2k + n− 3/2)

(2N + k + n− 4) · (2N + k + n− 3) . . . (2N + 2k + n− 5)
,

So, the product of all L-terms is:

X(x, k, n,−2, 4, 2N − 3) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

sinh
[x

2
:

k∏
i=1

i+ 2N − 6

i
×

2k+n∏
i=1

i+ 2N − 4

i+ 2
×

k+n∏
i=1

i+ 2N − 5

i+ 1
×

n+ 1

1
· k + 1

1
· k + n+ 2

2
· N + 2k + n− 1/2

N − 1/2
· N + k + n− 3/2

N − 3/2
·

N + k − 5/2

N − 5/2
· 2N + 3k + 2n− 2

2N − 2
· 2N + 3k + n− 3

2N − 3
· 2N + 2k + n− 4

2N − 4
.

It coincides with the Weyl formula, written for λ = kω1 + nω2 + kω3 highest weight repre-

sentation of BN algebra.

2.5.3 CN

The Vogel parameters in this case are α = −2, β = 1, γ = N + 2, and we notice, that for k ≥ 2

and for any n, the formula gives 0, due to the contribution of L10s3 term. So, we observe the

L? terms for k = 1 and any n. Thus, one has
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L31 = sinh
[x

2
:
N + n+ 2

N − 1
,

L32 = sinh
[x

2
:
N + 2n+ 3

N
,

L21s1 = sinh
[x

2
:

(N − 1) ·N . . . (N + n)

(−α− 2β)/2 · 1 . . . (n+ 1)
,

L21s2 = sinh
[x

2
:

(N + 1/2) · (N + 3/2) . . . (N + n+ 3/2)

(N/2 + 1/2) · (N/2 + 3/2) . . . (N/2 + n+ 3/2)
,

L21s3 = sinh
[x

2
:
N/2 + n+ 1

N/2− 1
,

L10s1 = · sinh
[x

2
:
N

1
,

L10s2 = · sinh
[x

2
:
N/2− 1/2

1/2
,

L10s3 = · sinh
[x

2
:

1

N/2
,

L11s1 = sinh
[x

2
:

(N/2− 1) ·N/2 . . . (N/2 + n− 1)

2 · 3 . . . (n+ 2)
,

L11s2 = sinh
[x

2
:

(N/2 + 1/2) · (N/2 + 3/2) . . . (N/2 + n+ 1/2)

1/2 · 3/2 · 5/2 . . . (n+ 1/2)
,

L11s3 = sinh
[x

2
:

(−α− 2β)/2 · 1 . . . n
(N/2 + 1) · (N/2 + 2) . . . (N/2 + n+ 1)

,

L01 = sinh
[x

2
:
n+ 1

1
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Lc2 = sinh
[x

2
:
N/2 + n

N + n+ 2
,

And the product is

X(x, k, n,−2, 4, 2N − 3) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

sinh
[x

2
:
n+2∏
i=1

(
i+N − 2

i
· i+N − 1/2

i− 1/2

)
× (N/2− 1/2) · (N + 2n+ 3)

(N − 1) · (N/2 + n+ 3/2)
× n+ 3/2

1/2

which coincides with the Weyl formula, written for λ = (2 + 2n)ω1 + ω2 highest weight repre-

sentation of CN algebra.

2.5.4 DN

For this case we substitute α = −2, β = 4, γ = 2N − 4, so L-terms become

L31 = sinh
[x

2
:

2N + 3k + n− 4

2N − 4
,

L32 = sinh
[x

2
:

2N + 3k + 2n− 3

2N − 3
,

L21s1 = sinh
[x

2
:

(2N − 4) · (2N − 3) . . . (2N + 2k + n− 5)

3 · 4 . . . (2 + 2k + n)
,

L21s2 = sinh
[x

2
:

(2N − 4) · (2N − 3) . . . (2N + 2k + n− 5)

(N − 1) ·N . . . (N − 2 + 2k + n)
,

L21s3 = sinh
[x

2
:
N + 2k + n− 1

N − 1
,

L10s1 = · sinh
[x

2
:

(2N − 6) · (2N − 5) . . . (2N + k − 7)

1 · 2 . . . k
,

L10s2 = · sinh
[x

2
:

(N − 2) · (N − 1) . . . (N + k − 3)

1 · 2 . . . k
,
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L10s3 = · sinh
[x

2
:

2 · 3 · 4 . . . (k + 1)

(N − 3) · (N − 2) . . . (N + k − 4)
,

L11s1 = sinh
[x

2
:

(N − 1) ·N . . . (N + k + n− 2)

2 · 3 . . . (k + n+ 1)
,

L11s2 = sinh
[x

2
:

(N − 1) ·N . . . (N + k + n− 2)

2 · 3 · 4 . . . (k + n+ 1)
,

L11s3 = sinh
[x

2
:

3 · 4 . . . (k + n+ 2)

(N − 2) · (N − 1) . . . (N + k + n− 3)
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = sinh
[x

2
:

(N + k + n− 1) · (N + k + n) . . . (N + 2k + n− 2)

(2N + k + n− 5) · (2N + k + n− 4) . . . (2N + 2k + n− 6)
,

Overall, for X(x, k, n,−2, 4, 2N − 4) one gets

X(x, k, n,−2, 4, 2N − 4) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

sinh
[x

2
:
k+n∏
i=1

i+ 2N − 5

i+ 1
×

2k+n∏
i=1

i+ 2N − 5

i+ 2
×

k∏
i=1

i+ 2N − 7

i
×

n+ 1

1
· k + 1

1
· k + n+ 2

2
· ·N + 2k + n− 1

N − 1
· N + k + n− 2

N − 2
·

N + k − 3

N − 3
· 2N + 3k + 2n− 3

2N − 3
· 2N + 3k + n− 4

2N − 4
· 2N + 2k + n− 5

2N + k + n− 5

This coincides with the Weyl formula answer for λ = kω1 + nω2 + kω3 highest weight

representation.

2.5.5 G2

For G2 exceptional algebra Vogel’s parameters take values α = −2, β = 10/3, γ = 8/3. Substi-

tuting them in the L-terms, one has

52



L31 = sinh
[x

2
:

3k + n+ 2

2
,

L32 = sinh
[x

2
:

3k + 2n+ 3

3
,

L21s1 × L21s2 = 1,

L21s3 = sinh
[x

2
:

2k + n+ 5/3

5/3
,

L10s1 × L10s2 = 1,

L10s3 = sinh
[x

2
:

4/3 · 7/3 · 10/3 . . . (k + 1/3)

1/3 · 4/3 . . . (k − 2/3)
= sinh

[x
2

:
k + 1/3

1/3
,

L11s1 × L11s2 = 1,

L11s3 = sinh
[x

2
:

7/3 · 10/3 . . . (k + n+ 4/3)

4/3 · 7/3 . . . (k + n+ 1/3)
= sinh

[x
2

:
k + n+ 4/3

4/3
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = 1

X(x, k, n,−2, 10/3, 8/3) =

sinh
[x

2
:

(n+ 1)(k + 1/3)(k + n+ 4/3)(2k + n+ 5/3)(3k + n+ 2)(3k + 2n+ 3)

1 · 1/3 · 4/3 · 5/3 · 2 · 3
,

which coincides with the expression the Weyl formula (2.30) gives for quantum dimension

of G2 algebra.
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2.5.6 F4

In this case we have α = −2, β = 5, γ = 6

L31 = sinh
[x

2
:

3k + n+ 7

7
,

L32 = sinh
[x

2
:

3k + 2n+ 8

8
,

L21s1 = sinh
[x

2
:

7 · 8 · 9 . . . (2k + n+ 6)

4 · 5 . . . (2k + n+ 3)
= sinh

[x
2

:
(2k + n+ 4)(2k + n+ 5)(2k + n+ 6)

4 · 5 · 6
,

L21s2 = sinh
[x

2
:

(2k + n+ 9/2)(2k + n+ 11/2)

9/2 · 11/2
,

L21s3 = sinh
[x

2
:

2k + n+ 5

5
,

L10s1 = sinh
[x

2
:

4 · 5 · 6 . . . (k + 3)

1 · 2 . . . k
= sinh

[x
2

:
(k + 1)(k + 2)(k + 3)

1 · 2 · 3
,

L10s2 = sinh
[x

2
:

7/2 · 9/2 · 10/2 . . . (k + 5/2)

3/2 · 5/2 . . . (k + 1/2)
= sinh

[x
2

:
(k + 3/2)(k + 5/2)

3/2 · 5/2
,

L10s3 = sinh
[x

2
:

3 · 4 · 5 . . . (k + 2)

2 · 3 . . . (k + 1)
= sinh

[x
2

:
k + 2

2
,

L11s1 = sinh
[x

2
:

5 · 6 · 7 . . . (k + n+ 4)

2 · 3 . . . (k + n+ 1)
= sinh

[x
2

:
(k + n+ 2)(k + n+ 3)(k + n+ 4)

2 · 3 · 4
,

L11s2 = sinh
[x

2
:

9/2 · 11/2 · 13/2 . . . (k + n+ 7/2)

5/2 · 7/2 . . . (k + n+ 3/2)
= sinh

[x
2

:
(k + n+ 5/2)(k + n+ 7/2)

5/2 · 7/2
,
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L11s3 = sinh
[x

2
:

4 · 5 . . . (k + n+ 3)

3 · 4 . . . (k + n+ 2)
= sinh

[x
2

:
k + n+ 3

3
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = 1

The product of all these terms

X(x, k, n,−2, 5, 6) =

sinh
[x

2
:

(2k + n+ 4)(2k + n+ 5)(2k + n+ 6)

4 · 5 · 6
× (2k + n+ 9/2)(2k + n+ 11/2)

9/2 · 11/2
×

(k + 1)(k + 2)(k + 3)

1 · 2 · 3
× (k + 3/2)(k + 5/2)

3/2 · 5/2
× (k + n+ 2)(k + n+ 3)(k + n+ 4)

2 · 3 · 4
×

(k + n+ 5/2)(k + n+ 7/2)

5/2 · 7/2
× n+ 1

1
· k + 2

2
· k + n+ 3

3
· 2k + n+ 5

5
· 3k + n+ 7

7
· 3k + 2n+ 8

8

This immediately coincides with the Weyl formula output for the representations of F4 algebra

with highest weights λ = kω2 + nω1.

2.5.7 E6

For E6 the Vogel parameters are α = −2, β = 6, γ = 8.

L31 = sinh
[x

2
:

3k + n+ 10

10
,

L32 = sinh
[x

2
:

3k + 2n+ 11

11
,

L21s1 = sinh
[x

2
:

10 · 11 . . . (2k + n+ 9)

5 · 6 . . . (2k + n+ 4)
= sinh

[x
2

:
(2k + n+ 5) . . . (2k + n+ 9)

5 · 6 . . . 9
,

55



L21s2 = sinh
[x

2
:

9 · 10 . . . (2k + n+ 8)

6 · 7 . . . (2k + n+ 5)
= sinh

[x
2

:
(2k + n+ 6)(2k + n+ 7)(2k + n+ 9)

6 · 7 · 8
,

L21s3 = sinh
[x

2
:

2k + n+ 7

7
,

L10s1 = sinh
[x

2
:

6 · 7 . . . (k + 5)

1 · 2 . . . k
= sinh

[x
2

:
(k + 1) . . . (k + 5)

1 · 2 . . . 5
,

L10s2 = sinh
[x

2
:

5 · 6 . . . (k + 4)

2 · 3 . . . (k + 1)
= sinh

[x
2

:
(k + 2)(k + 3)(k + 4)

2 · 3 · 4
,

L10s3 = sinh
[x

2
:

4 · 5 . . . (k + 3)

3 · 4 . . . (k + 2)
= sinh

[x
2

:
k + 3

3
,

L11s1 = sinh
[x

2
:

7 · 8 . . . (k + n+ 6)

2 · 3 . . . (k + n+ 1)
= sinh

[x
2

:
(k + n+ 2) . . . (k + n+ 6)

2 · 3 . . . 6
,

L11s2 = sinh
[x

2
:

6 · 7 . . . (k + n+ 5)

3 · 4 . . . (k + n+ 2)
= sinh

[x
2

:
(k + n+ 3)(k + n+ 4)(k + n+ 5)

3 · 4 · 5
,

L11s3 = sinh
[x

2
:
k + n+ 4

4
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = 1
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The product of all these terms is

X(x, k, n,−2, 6, 8) =

sinh
[x

2
:

9∏
i=5

i+ 2k + n

i
×

8∏
i=6

i+ 2k + n

i
×

5∏
i=1

i+ k

i
×

4∏
i=2

i+ k

i
×

6∏
i=2

i+ k + n

i
×

5∏
i=3

i+ k + n

i
× n+ 1

1
· k + 3

3
· k + n+ 4

4
· 2k + n+ 7

7
· 3k + n+ 10

10
· 3k + 2n+ 11

11

which coincides with the quantum dimension (2.30) of the λ = kω3 + nω6 irrep.

2.5.8 E7

For E7 Vogel’s parameters are α = −2, β = 8, γ = 12.

L31 = sinh
[x

2
:

3k + n+ 16

16
,

L32 = sinh
[x

2
:

3k + 2n+ 17

17
,

L21s1 = sinh
[x

2
:

16 · 17 . . . (2k + n+ 15)

7 · 8 . . . (2k + n+ 6)
= sinh

[x
2

:
(2k + n+ 7) . . . (2k + n+ 15)

7 · 8 . . . 15
,

L21s2 = sinh
[x

2
:

14 · 15 . . . (2k + n+ 13)

9 · 10 . . . (2k + n+ 8)
= sinh

[x
2

:
(2k + n+ 9) . . . (2k + n+ 13)

9 · 10 . . . 13
,

L21s3 = sinh
[x

2
:

2k + n+ 11

11
,

L10s1 = sinh
[x

2
:

10 · 11 . . . (k + 9)

1 · 2 . . . k
= sinh

[x
2

:
(k + 1) . . . (k + 9)

1 · 2 . . . 9
,

L10s2 = sinh
[x

2
:

8 · 9 . . . (k + 7)

3 · 4 . . . (k + 2)
= sinh

[x
2

:
(k + 3) . . . (k + 7)

3 · 4 . . . 7
,
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L10s3 = sinh
[x

2
:

6 · 7 . . . (k + 5)

5 · 6 . . . (k + 4)
= sinh

[x
2

:
k + 5

5
,

L11s1 = sinh
[x

2
:

11 · 12 . . . (k + n+ 10)

2 · 3 . . . (k + n+ 1)
= sinh

[x
2

:
(k + n+ 2) . . . (k + n+ 10)

2 · 3 . . . 10
,

L11s2 = sinh
[x

2
:

9 · 10 . . . (k + n+ 8)

4 · 5 . . . (k + n+ 3)
= sinh

[x
2

:
(k + n+ 4) . . . (k + n+ 8)

4 . . . 8
,

L11s3 = sinh
[x

2
:
k + n+ 6

6
,

L01 = sinh
[x

2
:
n+ 1

1

Lc2 = 1

The product of all these terms gives

X(x, k, n,−2, 8, 12) =

sinh
[x

2
:

15∏
i=7

i+ 2k + n

i
×

13∏
i=9

i+ 2k + n

i
×

9∏
i=1

i+ k

i
×

7∏
i=3

i+ k

i
×

10∏
i=2

i+ k + n

i
×

8∏
i=4

i+ k + n

i
× n+ 1

1
· k + 5

5
· k + n+ 6

6
· 2k + n+ 11

11
· 3k + 2n+ 17

17
· 3k + n+ 16

16

which coincides with quantum dimension of the λ = kω2 + nω1 irrep.

2.5.9 E8

For E8 the Vogel parameters are α = −2, β = 12, γ = 20.

L31 = sinh
[x

2
:

3k + n+ 28

28
,
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L32 = sinh
[x

2
:

3k + 2n+ 29

29
,

L21s1 = sinh
[x

2
:

28 · 29 . . . (2k + n+ 27)

11 · 12 . . . (2k + n+ 10)
= sinh

[x
2

:
(2k + n+ 11) . . . (2k + n+ 27)

11 · 12 . . . 27
,

L21s2 = sinh
[x

2
:

24 · 25 . . . (2k + n+ 23)

15 · 16 . . . (2k + n+ 14)
= sinh

[x
2

:
(2k + n+ 15) . . . (2k + n+ 23)

15 · 16 . . . 23
,

L21s3 = sinh
[x

2
:

2k + n+ 19

19
,

L10s1 = sinh
[x

2
:

18 · 19 . . . (k + 17)

1 · 2 . . . k
= sinh

[x
2

:
(k + 1) . . . (k + 17)

1 · 2 . . . 17
,

L10s2 = sinh
[x

2
:

14 · 15 . . . (k + 13)

5 · 6 . . . (k + 4)
= sinh

[x
2

:
(k + 5) . . . (k + 13)

5 · 6 . . . 13
,

L10s3 = sinh
[x

2
:

10 · 11 . . . (k + 9)

9 · 10 . . . (k + 8)
= sinh

[x
2

:
k + 9

9
,

L11s1 = sinh
[x

2
:

19 · 20 . . . (k + n+ 18)

2 · 3 . . . (k + n+ 1)
= sinh

[x
2

:
(k + n+ 2) . . . (k + n+ 18)

2 · 3 . . . 18
,

L11s2 = sinh
[x

2
:

15 · 16 . . . (k + n+ 14)

6 · 7 . . . (k + n+ 5)
= sinh

[x
2

:
(k + n+ 6) . . . (k + n+ 14)

6 · 7 . . . 14
,

L11s3 = sinh
[x

2
:
k + n+ 10

10
,
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L01 = sinh
[x

2
:
n+ 1

1

Lc2 = 1

X(x, k, n,−2, 8, 12) =

sinh
[x

2
:

27∏
i=11

i+ 2k + n

i
×

23∏
i=15

i+ 2k + n

i
×

17∏
i=1

i+ k

i
×

13∏
i=5

i+ k

i
×

18∏
i=2

i+ k + n

i
×

14∏
i=6

i+ k + n

i
× n+ 1

1
· k + 9

9
· k + n+ 10

10
· 2k + n+ 19

19
· 3k + n+ 28

28
· 3k + 2n+ 29

29

coinciding with direct calculation by (2.30) carried out for λ = kω6 + nω7 irrep.
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Chapter 3

On singularities of universal formulae.

Revelation and proof of the linear

resolvability property

It has been observed that the known universal formulae show quite an interesting behavior

when considering them at the permuted coordinates of the initial special points in Vogel’s

plane, which correspond to the simple Lie algebras. Namely, in case they are not singular at a

given permuted point, they (usually) yield some reasonable outputs, which naturally correspond

to some other representations of the algebra, associated with the permuted coordinates. In this

chapter, we will show that the quantum dimension X(x, k, n, α, β, γ), derived in the previous

chapter, has a feature which allows obtaining finite answers at its singular points, associated

with those from Vogel’s table. Below we present the formal definition of that feature and call

it linear resolvability. Then we show that all universal formulae known so far, including the

newly derived X(x, k, n, α, β, γ), are linearly resolvable at the points from Vogel’s table.
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3.1 Definition of linear resolvability for universal formu-

lae and the main statement

In this section, we give the definition of linear resolvability LR and set out the method, which

has been used for the proof of the main results stated in Proposition 3.1 and Proposition 3.2.

Definition. A multivariable function is said to be LR at its singular point, if it yields

finite output when approaching that point through all (regular, by definition) but a finite number

of (irregular) lines.

Note, that all known universal (quantum) dimension formulae, particularly (2.25) are ratios

of a special form, where both the numerator and denominator decompose into products of a

finite number of (sines of) linear functions of parameters (α, β, γ), so that at their singular

points some of the factors of the denominator are necessarily zeroing.

This feature allows us to prove the following

Lemma. A universal formula is LR at its singular point iff the number of zeroing factors

in the denominator is less or equal to those in the numerator at that point.

Proof. Suppose for a universal formula F the number of zeroing terms in the numerator and

denominator is n and d respectively. If d > n then approaching the singular point through

lines, other than those given by the equations coinciding with any of the zeroing factors in the

numerator, the formula obviously yields an infinite output. As the number of such choices is

infinite, then F is not LR.

Now suppose d ≤ n. If we approach the singular points through all but the line given by

the equation coinciding with any of the d factors, we will necessarily get a finite output for F ,

which means that it is LR. It is clear, that as long as d < n, F yields zero when restricted at

any regular line.

Remark 1. Obviously, when considered a universal formula on any regular line, both n

and d do not change. It means that the complete examination of LR can be made by observing

the function on a single regular line.

Remark 2. All irregular lines for a given universal formula are exactly determined by each

of the factors in its denominator; if there is, say a c1α + c2β + c3γ factor in the denominator

of the universal formula, it cannot yield a finite output, when restricted on the associated
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c1α + c2β + c3γ = 0 line, meaning, that each of the factor of the denominator determines an

irregular line of the corresponding function.

Remark 3. Based on the previous remark, one can easily check, that any of the sl, so, exc

lines (see Table 1.2) is regular for 2.25 formula.

The Lemma is of essential importance for the proof of the following

Proposition 3.1

At the points from the Vogel’s table the function X(x, k, n, β, α, γ) (2.25) and and functions,

obtained from it by all possible permutations of the corresponding parameters (α, β, γ), are LR

for any set (k, n) with integer non-negative numbers k, n.

The proof is carried out by case by case (for each algebra and for each permutation) exami-

nation of the structure of (2.25), restricting it on the corresponding line and tracking all possible

zero factors appearing both in the numerator and the denominator. In fact, the procedure of

the proof automatically highlights all possible singular points.

Finally, we propose a conjecture:

Conjecture.

The values of functions X, calculated at the singular points by restricting the functions to the

corresponding sl, so, sp or exc lines, are equal to the quantum dimensions of some representa-

tions of the corresponding algebra. Particularly, if a singular point belongs to two distinguished

lines simultaneously, the same statement is true for each of the obtained values.

This conjecture has been tested in a number of cases.

3.2 Proof of the linear resolvability of X(x, k, n, β, α, γ)

Since the 2.25 function is symmetric w.r.t. the two last arguments, there are only two relevant

permutations to be examined: X(x, k, n, β, α, γ) and X(x, k, n, γ, α, β).

3.2.1 Exceptional algebras

At the points, corresponding to the exceptional algebras, the behavior of X(x, k, n, β, α, γ) and

X(x, k, n, γ, α, β) functions is shown in the tables 3.1 and 3.2. Namely, they yield quantum di-

mensions of representations with highest weights given in these tables, provided that in marked

cases (”E:”) the singularities are linearly resolved on the exceptional line Exc (see table 1.2).
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Table 3.1: X(x, k, n, β, α, γ) for the exceptional algebras
k, n G2 F4 E6 E7 E8

1,0 3ω1 ω2 ω3 ω2 ω6

1,1 ω1 + ω2 ω3 + ω4
(ω1 + ω2)
⊕(ω4 + ω5)

ω6 + ω7 ω8

1,2 0 ω1 + ω4 ω3 0 −ω8

1,3 0 0 0 E:−2ω6 −ω6

1,4 0 0 -1 0 0
1,5 0 0 0 0 1
2,0 0 3ω4 3ω1 ⊕ 3ω5 0 0
2,1 0 0 −ω3 E:−ω6 − ω7 0
2,2 0 0 −ω6 −ω5 ω6

2,3 0 0 0 0 ω7

3,0 0 0 −ω1 − ω5 E:−ω2 ω8

3,1 0 0 0 E:−ω1 ω1

4,0 0 0 0 -1 0

Table 3.2: X(x, k, n, γ, α, β) for the exceptional algebras
k, n 1,0 1,1 1,3 2,0 2,1
G2 3ω1 −3ω1 1 3ω1 ω2

F4 ω2 −ω2 1 ω2 ω1

E6 ω3 −ω3 1 ω3 ω6

E7 ω2 −ω2 1 ω2 ω1

E8 ω6 −ω6 1 ω6 ω7

For the values of the parameters, exceeding the corresponding numbers of rows/columns, they

yield 0.

Thus we see, that for the exceptional algebras, all singularities can be resolved, moreover,

their resolution on the exceptional line yield some quantum dimensions of representations of

the corresponding algebra, affirming the statement of the Conjecture of the previous section.

3.2.2 Classical algebras

X(x, k, n, γ, α, γ) The direct substitution of Vogel’s parameters, corresponding to the clas-

sical algebras yield the following result: at the points, corresponding to the classical alge-

bras, the X(x, k, n, γ, α, β) is always zero, except when (k, n) = (k, 0), (see Table 3.3), and

(k, n, γ, α, β) = (1, 2, N + 1,−2, 2) i.e. for k = 1, n = 2 and the algebra AN , only. For the latter

case X(x, k, n, γ, α, β) = −1, (see Table 3.4).
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Table 3.3: X(x, k, 0, γ) for the classical algebras
k 1 2 3 ≥ 4
A1 0 −2ω on the sl line 0 0
A2 3ω1 ⊕ 3ω2 −(ω1 + ω2) 0 0

AN , N ≥ 3 (2ω1 + ωN−1)⊕ (ω2 + 2ωN) −(ω1 + ωN) 0 0
B2 ω1 + 2ω2 0 on the so line 0 on the so line 0
B3 ω1 + 2ω3 0 0 0

BN , N ≥ 4 ω1 + ω3 0 0 0
CN , N ≥ 3 2ω1 + ω2 0 0 0

D4 ω1 + ω3 + ω4 0 on the so line 0 on the so line 0
D5 ω1 + ω3 0 0 0
D6 ω1 + ω3 0 on the so line 0 0

DN , N ≥ 7 ω1 + ω3 0 0 0

Table 3.4: X(x, k, n, γ, α, β) for the classical algebras
k, n > 0 1, 2
AN -1

X(x, k, n, β, α, γ)

For AN algebra, i.e. the universal parameters (α, β, γ) = (−2, 2, N + 1), the function

X(x, k, n, β, α, γ) is equal to

X(x, k, n, 2,−2, N + 1) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

2× sinh
[x

2
:

(n+ 1)

1 · 2 · 3 · . . . (k + n+ 1)
× (N + 2)(N + 1) . . . (N − (k + n− 3))

(N + 3) · (N + 2) · (N + 1) ·N · (N − 1) . . . (N − (2k + n− 4))

1 · 2 · . . . (2k + n)
×

(N + 3) · (N + 2) · . . . (N − (k − 4))

1 · 2 · . . . k
× (N − (3k + n− 3)) · (N − (3k + 2n− 2))

(N + 3) · (N + 2)
(3.1)

It obviously is non-singular.

For BN algebra, i.e. (α, β, γ) = (4,−2, 2N − 3), X(x, k, n, β, α, γ) has no zeroing terms in

the denominator for N ∈ Z+, so that it also is non-singular.

For CN algebra, i.e. for the parameters (α, β, γ) = (−2, 1, N+2), the functionX(x, k, n, β, α, γ)

is equal to
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X(x, k, n, 1,−2, N + 2) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

sinh
[x

4
:

(n+ 1)(k + 1)(k + n+ 2)(N − k + 3)(N − k − n+ 2)(N − 2k − n+ 1)

12 · 2 · (N + 1)(N + 2)(N + 3)
×

(2N − 3k − n+ 4)(2N − 3k − 2n+ 3)

(2N + 4)(2N + 3)
× (2N + 4) · (2N + 3) · . . . (2N − 2k − n+ 5)

3 · 4 · . . . (2k + n+ 2)
×

(2N + 4) · (2N + 3) · . . . (2N − k − n+ 6)× (2N − 2k − n+ 5)

2 · 3 · 4 . . . (k + n+ 1)

× (2N + 6) · (2N + 5) . . . (2N − k + 7)

1 · 2 · 3 . . . k
(3.2)

It also is non-singular.

For DN algebra, i.e. for the parameters (α, β, γ) = (−2, 1, 2N − 4), and for k = 1, the

function X(x, 1, n, β, α, γ) is equal to

X(x, 1, n, 4,−2, 2N − 4) =

L31 · L32 · L21s1 · L21s2 · L21s3 · L10s1 · L10s2 · L10s3 · L11s1 · L11s2 · L11s3 · L01 · Lc2 =

sinh [x :
(N − 2n− 3)(N/2 + 1/2)

(N/2− n− 3/2) · 1/2 · (N + 1) · (n+ 2)
×

(N + 1) ·N · (N − 1) . . . (N − n)

1 · 2 · 3 . . . (n+ 1)
×

(N − 1/2) · (N − 3/2) . . . (N − n− 3/2)

1/2 · 3/2 . . . (n+ 1/2)
(3.3)

It can easily be seen, that the number of zero terms in the numerator is not less than those in

the denominator, which according to the Proposition 3.1 means that the corresponding function

is linearly resolvable.

At last, the remaining case of DN algebra at k > 1, the function X(x, k, n, β, α, γ) is

identically zero due to the 2α + β term in the numerator:
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sinh [x :
(2α + β) ·N/2

(N/2− k − n)(k + n)(k + n+ 1)
×

(N − 1/2) · (N − 3/2) . . . (N − 2k − n+ 1/2)

1/2 · 3/2 . . . (k + n− 1/2)× (N/2− k − n− 1/2) · (N/2− k − n− 3/2) . . . (N/2− 2k − n+ 1/2)
×

(N + 1) ·N . . . (N − k − n)

2 · 3 . . . (2k + n− 1)
× (N/2− k − n) . . . (N/2− 2k − n+ 2)

(N − 2k − n+ 1)(N − 2k − n)
×

1

(k − 1) · k
× N · (N − 1) . . . (N − k + 1)

(−1/2) · 1/2 . . . (k − 3/2)
×

(N/2 + 1/2) · (N/2− 1/2) · (N/2− k + 3/2)

N/2 · (N/2− 1) . . . (N/2− k + 1)
×

(N − 3k − n+ 1) · (N − 3k − 2n) · (N/2− 2k − n+ 1) · (n+ 1)

1 · (N + 1) ·N
(3.4)

After a careful inspection, we see that the number of zero terms in the denominator again

is not greater than those in the numerator for any natural value of the rank N , which means

that the whole function X(x, k, n, β, α, γ) is linearly resolvable.

Overall, we proved the Proposition 3.1 by case by case inspection of the main formula (2.25).

3.3 Permutation of the parameters, corresponding to

so(8) algebra

Below we present some interesting results regarding the so(8) algebra. It belongs both to the

orthogonal and the exceptional lines and its Dynkin diagram has the largest symmetry group,

S3. However, as it is shown below, that symmetry group reveals itself when we consider so(8)

algebra as a member of the exceptional family, i.e. resolve the singularities on the exceptional

line. If we consider it as a member of the orthogonal algebras our formulae reveal only the Z2

symmetry. So, the expectation that our formula for X(x, k, n, α, β, γ) yields reasonable results

when restricted on either of these lines is totally met. In the table 3.5 we present the results of

permutation and restriction on each of the mentioned lines.

E.g. the number (minus) 2 in (k, n) = (1, 3) case on the exceptional line is the dimension

of the standard representation of S3 group. The number 3 in (3, 0) case also can be interpreted

as a (reducible) representation of S3 group, so part is represented trivially. The weight ω1, for

(1, 2) case, is invariant w.r.t. the Z2 group of automorphism of the orthogonal algebras, that is
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Table 3.5: Permutations of the parameters for so(8) algebra
Line k, n : 1,0 1,1 1,2 1,3 2,0 2,1 3,0
Exc X(x, k, n, β, α, γ) λX2 λX2 ⊕ λX2 ω1 ⊕ ω3 ⊕ ω4 -2 λX2 λad 3
Exc X(x, k, n, γ, α, β) λX2 −λX2 0 1 λX2 λad 0
SO X(x, k, n, β, α, γ) λX2 λX2 ω1 -1 0 0 0
SO X(x, k, n, γ, α, β) λX2 0 0 0 0 0 0

why it appears alone when resolved on the orthogonal line.

3.4 On LR of all known universal quantum dimensions

After revelation that X(x, k, n, α, β, γ) is LR, we tested all known universal quantum dimension

formulae on this property, [24]. Namely, we tested the following series of universal (quantum)

dimensions (g)kY n
2 (β) ([3, 13]):

Z(x, k, l, α, β, γ) =

sinh
[x

4
:
k+l∏
i=1

(α(3− i) + 2γ) · (α(4− i) + β + 2γ) · (α(3− i) + 2β + γ)

(α(1− i) + 2β) · (−αi+ β) · (α(1− i) + γ)
×

k∏
i=1

α(i− 1)− 2β

(αi)
×

k+2l∏
i=1

α(4− i) + 2β + 2γ

α(3− i) + 2γ
×

l∏
i=1

(α(3− i)− β + 2γ) · (α(3− i) + β + γ) · (α(4− i) + 2γ)

(α(1− i)− β + γ) · (α(1− i) + β) · (−αi)
×

(α(3− 2k − 2l) + 2β + 2γ) · (α(3− 2l) + 2γ) · (α(3− k − 2l) + β + 2γ) · (−αk + β)

β · (3α + 2β + 2γ) · (3α + 2γ) · (3α + β + 2γ)
(3.5)

and proved that it also has the feature of LR. The proof is carried out by case by case (for

each algebra and for each permutation) examination of the structure of (3.5), restricting it on

the corresponding line and tracking all possible zero factors appearing both in the numerator

and the denominator. In fact, the procedure of the proof automatically highlights all possible

singular points. Particularly, it turns out that there is an infinite number or series of singular

points, (see Appendix C.III). However, the patterns, governing the appearance of them is pretty

complicated, so we do not classify them in the scope of this work.

Finally, joining this result with the one in Proposition 3.1 we claim our ultimate result:

Proposition 3.2
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At the points from Vogel’s table all universal quantum dimensions known so far, and func-

tions, obtained from them by all possible permutations of the corresponding parameters (α, β, γ),

are LR.

3.5 LR beyond Vogel’s table

Besides the points corresponding to the simple Lie algebras, there are other notable ones in

Vogel’s plane. These points have been revealed in [16] (see also [25]. Some of them were studied

earlier in [26, 27]) using the requirement that the universal quantum dimension of the adjoint

representation (3.6) be a regular function of x in the finite complex plane. In other words, the

quantum dimension, associated with these points, rewrites as a finite sum of exponents.

f(x) = −
sinh

(
γ+2β+2α

4
x
)

sinh
(
α
4
x
) sinh

(
2γ+β+2α

4
x
)

sinh
(
β
4
x
) sinh

(
2γ+2β+α

4
x
)

sinh
(
γ
4
x
) (3.6)

These points are listed in Tables (3.6) and (3.7), along with the points, which correspond to

the exceptional simple Lie algebras. Note the E7 1
2
, X1 and X2 points there, which belong to

the physical region of Vogel’s plane. They were suggested to have the following interpretations:

E7 1
2
, with dimension 190 and rank 8, is proven to be the semidirect product of e7 and H56 -

(56+1)-dimensional Heisenberg algebra [26, 27] X1, with dimension 156 and rank 8, is proposed

to be so14oH64 semidirect product, and X2 is proposed to be the so12oH32 semidirect product

[26, 27, 16].

Examining the behavior of Z(x, k, l, α, β, γ) (3.5) and X(x, k, n, α, β, γ) (2.25) functions at

these points we present the following:

Proposition 3.3 At the X1, X2, E7 1
2

points in the Vogel’s plane, both Z(x, k, l) and X(x, k, n)

functions are LR.

The proof is straightforward.

The remaining 48 points, corresponding to the so-called Y-objects, are given in Table 2.

Dimensions of their ”adjoint representation”, i.e. values of f(x) at the associated points, when

x→ 0, are negative∗.

∗Note some irregularity in the notations: there is an object Y ′
6 , which stands out from the remaining ones

(Yi, i = 1, 2, ..., 47) in its notation. The reason is that in [16] two different solutions of Diophantine equations
were accidentally denoted by the same notation Y6, and here, trying to have minimal changes in notations, we
denote one of them as Y ′

6 .
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We tested both Z(x, k, l, α, β, γ) (3.5) and X(x, k, l, α, β, γ) (2.25) [19] formulae on LR at

those points and obtained the following result:

Proposition 3.4 At the points Y2, Y6, Y32 from Table 2 both Z(x, k, l, α, β, γ) and X(x, k, l, α, β, γ)

formulae are regular. At all other points from the same table, it is possible to choose a (k, l)

pair, for which either Z(x, k, l, α, β, γ) or X(x, k, n, α, β, γ) is singular and not LR for some

permutation of the Vogel’s parameters.

Proof. The desired result follows from the direct substitution of the corresponding sets of

parameters (α, β, γ) (with all possible permutations) into the denominators of Z(x, k, l, α, β, γ)

and X(x, k, l, α, β, γ).

Remark. A notable fact is that when taking the x → 0 limit, both Z(x, k, l, α, β, γ) and

X(x, k, n, α, β, γ) formulae yield integer-valued outputs at the Y2 and Y32 points, pointing out

a remarkable similarity of those ”unknown” objects with the simple Lie algebras.

We see that among so-called Y-objects, with corresponding points belonging to the non-

physical region of the Vogel’s plane, there are another three points at which all universal

quantum dimensions are regular. Furthermore, we observe that two of them behave like real

existing algebras, in the sense that the universal dimension formulae yield integer-valued output

at those points.

This results prompt a number of natural questions. For example it would be interesting

to find out what is the underlying reason for universal quantum dimensions possessing the LR

feature. Also, it is intriguing where is the remarkable property of Y2 and Y32 points inducing

integer-valued outputs from universal dimension formulae rooted in.

Table 3.6: Isolated solutions in the physical region of Vogel’s plane.
αβγ Dim Rank Notation

-6 -10 1 248 8 E8

-8 1 -5 190 8 E7 1
2

-4 1 -7 156 8 X1

-6 -4 1 133 7 E7

1 -3 -5 99 7 X2

-3 -4 1 78 6 E6

-6 2 -5 52 4 F4

3 -5 -4 14 2 G2
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3.6 Appendix C.III: Proof of LR of Z(x, k, l) formula

The procedure of the proof is carried out in the following way: first, we take the main for-

mula (3.5), and for each of the point (α, β, γ) from Table 1.2 in the Vogel’s plane, including

those obtained by another 5 permutations of the parameters, examine its expression in the

neighborhood of the point in question, restricting it on the corresponding distinguished line

(Table 1.2) beforehand. Then, we trace the number of zeroing factors in both its numerator

(n) and denominator (d) at the corresponding points. Based on the Lemma 1, the proof of LR

is, in fact, equivalent to the checking of the realization of the n ≥ d inequality in each of the

possible cases, namely, for every possible non-negative integer-valued set (k, l) for each of the

permutations of the corresponding Vogel’s parameters.

Since the implementation of this procedure is quite repetitive, we find it reasonable to

present the explicit calculations for several key cases only, which are sufficient to outline the

essence of the proof. They are presented in the following section.

Classical algebras.

3.6.1 AN

α, γ, β

Here we examine the Z(x, k, l, α, γ, β) for the parameters, corresponding to the AN algebra, by

presenting the corresponding formulae, which are obtained by every possible choice of the set

k, l:

l = 0, k = 1

Z(x, 1, 0,−2, N + 1, 2) = sinh
[x

4
:

(2N) · (2N + 4)

22

l = 0, k > 1

Z(x, k, 0,−2, N+1, 2) = sinh
[x

4
:

(2N) · (2N + 4k)

(2k)2
× (2N + 2)2 · (2N + 4)2 . . . (2N + 2k − 2)2

22 · 42 . . . (2k − 2)2

l = 1, k = 0

Z(x, 0, 1,−2, N + 1, 2) = sinh
[x

4
:

(2N) · (2N + 4)

22
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l = 1, k ≥ 1

Z(x, k, 1,−2, N+1, 2) = sinh
[x

4
:

(2N) · (2N + 4k + 4)

(2k + 2)2
× (2N + 2)2 · (2N + 4)2 . . . (2N + 2k)2

22 · 42 . . . (2k)2

Obviously, each of the functions written above is regular for any N ∈ N.

Let’s move on to the remaining (k, l) sets:

l = 2, k = 0

Z(x, 0, 2,−2, N + 1, 2) =

sinh
[x

4
:

(2α + 2β) · (N − 1) ·N · (N + 1)2 · (N + 7) · (2N + 2) · (2N + 6) · (2N + 8)

22 · 43 · (N − 3) · (N + 3)2 · (N + 5)

We see, that there is a 2α + 2β factor, which is zeroing at any point of the 2α + 2β = 0 line,

so that one can easily determine, that the possible number of zeroing factors in the numerator

is always greater or equal to those in the denominator, namely d ≤ n, which means, that the

initial function is LR.

l = 2, k ≥ 1

Z(x, k, 2,−2, N + 1, 2) =

sinh
[x

4
:

(2α + 2β) · 6 · (2N) · (N + 1) · (N − 1) · (2N + 4k + 8)

2 · 4 · (2k + 4) · (N + 2k + 3) · (N + 2k + 5) · (N + 3)
×

(N + 2k + 7) · (N + 2k + 1) · (2N + 2k + 2) · (2N + 2k + 6)

(N − 3) · (2k + 2) · (2k + 4) · (2k + 6)
×

(2N + 2)2 · (2N + 4)2 . . . (2N + 2k)2

22 · 42 . . . (2k)2

Proof of the LR of this function is similar to that of the previous one. Notice, that for each

of the integer k ≥ 1, the corresponding function has a singularity (linear resolvable, of course),

when N = 3. This particular case is interesting in the sense, that it explicitly demonstrates,

that the set of singularities of the function (3.5) is basically infinite.
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l ≥ 3, k = 0

Z(x, 0, l,−2, N + 1, 2) =

sinh
[x

4
:

(2α + 2β) · (2N) · (N + 1)2 · (N − 1) · (2N + 4l)

(2l − 2) · (2l)2
×

(N + 4l − 1) · (4l − 2)

(N − 2l + 1) · (2N + 2l) · (N + 2l − 1)2 · (N + 2l + 1)
×

(2N + 2) . . . (2N + 4l − 2)

2 · 4 . . . (4l − 2)

l ≥ 3, k ≥ 1

Z(x, k, l,−2, N + 1, 2) =

sinh
[x

4
:

(2α + 2β) · (N + 1) · (N − 1) · (2N + 4k + 4l)

(2l − 2) · (2l) · (2k + 2l) · (N + 2l − 1)
×

(N + 2k + 4l − 1) · (N + 2k + 1) · (4l − 2)

(N − 2l + 1) · (2N + 2k + 2l) · (N + 2k + 2l − 1) · (N + 2k + 2l + 1)
×

(2N + 2) · (2N + 4) . . . (2N + 2k)

2 · 4 . . . 2k
× 2N · (2N + 2) . . . (2N + 2k + 4l − 2)

2 · 4 . . . (2k + 4l − 2)

The same reasoning, which proves the LR, holds for the latter two cases.

Thus, we proved the LR of the Z(x, k, l, α, γ, β) function at any N ∈ N point lying on the

sl line.

3.6.2 BN

β, γ, α

Let’s prove, that the Z(x, k, l, 4, 2N − 3,−2) function is LR for any non-negative integer set

(k, l). To prove the LR of Z(x, k, l, β, γ, α) at the (4, 2N − 3,−2) points, where N ∈ N, we

examine it on the so line in the following cases:

l = 1, k = 0

In this case, Z writes as follows

Z(x, 0, 1, 4, 2N − 3,−2) = sinh
[x

4
:

(4N)(4N − 2)(2N + 3)

2 · 4 · (2N − 1)
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it is regular on the so line for any integer N .

One can easily determine, that the following 4 functions are also regular for any integer N .

l = 1, k ≥ 1

Z(x, k, 1, 4, 2N − 3,−2) =

= sinh
[x

4
:

(2α + β) · 4 . . . (4k − 4)

6 · 10 · 14 . . . (4k + 2)
×

(2N + 5) · (2N + 1) . . . (2N − 4k + 5)

(2N − 7) · (2N − 11) . . . (2N − 4k − 7)
× 4N · (4N − 4) . . . (4N − 4k)

(4N − 6) · (4N − 10) . . . (4N − 4k − 6)
×

(4N − 6)2 · (4N − 10)2 . . . (4N − 4k − 2)2

42 · 82 · . . . (4k)2
×

(4N − 2) · (2N − 4k − 3)2 · (4N − 8k − 6) · (2N − 7) · (2N + 3)

2 · 4 · (2N − 3)2 · (2N + 5) · (1− 2N)
. (3.7)

l = 2, k = 0

Z(x, 0, 2, 4, 2N − 3,−2) = = − sinh
[x

4
:

(4N) · (4N − 4) · (4N − 2) · (2N + 1) · (4N − 14)

2 · 4 · 6 · 8 · (2N − 7)

l = 2, k ≥ 1

Z(x, k, 2, 4, 2N − 3,−2) =

= − sinh
[x

4
:

4 . . . (4k)

10 · 14 . . . (4k + 6)
×

(2N + 5) · (2N + 1) . . . (2N − 4k + 1)

(2N − 7) · (2N − 11) . . . (2N − 4k − 11)
× 4N · (4N − 4) . . . (4N − 4k − 4)

(4N − 6) · (4N − 10) . . . (4N − 4k − 10)
×

(4N − 6) · (4N − 10) . . . (4N − 4k − 2)

4 · 8 · . . . 4k
×

(4N + 2) · (4N − 2) · . . . (4N − 4k − 10)

2 · 6 · 4 · 8 . . . (4k + 8)
×

(2N − 4k − 3) · (2N − 4k − 11) · (4N − 8k − 14)

(2N − 3) · (2N + 5) · (4N + 2)
. (3.8)
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l ≥ 3, k = 0

Z(x, 0, l, 4, 2N − 3,−2) =

= sinh
[x

4
:

(4N) · (4N − 4) . . . (4N + 4− 4l)

2 · 6 · . . . (4l − 2)
×

(2N + 5) · (2N + 1) · . . . (2N + 9− 4l)

(2N − 7) · (2N − 11) . . . (2N − 4l − 3)
×

(4N − 2− 4(l + 1)) . . . (4N − 2− 4(2l − 2))

(4(l − 1)) · (4l) . . . (4(2l − 2))
×

4 · (2α + β)

(4l − 8) · (4l − 4) · 4l
× (2N + 1) · (2N + 5) . . . (2N + 4l − 11)

(2N + 7) · (2N + 11) . . . (2N + 4l − 5)
×

(2N − 5) · (2N − 9) . . . (2N + 7− 4l)

(2N − 11) · (2N − 15) . . . (2N + 1− 4l)
×

(4N − 2) · (2N − 4k − 3) · (2N − 8l + 5) · (8l − 8) · (4N − 8l + 2)

(2N − 3) · (2N + 5)
. (3.9)

l ≥ 3, k ≥ 1

Z(x, k, l, 4, 2N − 3,−2) =

= sinh
[x

4
:

(4N) · (4N − 4) . . . (4N + 4− 4k − 4l)

2 · 6 · . . . (4k + 4l − 2)
×

(2N + 5) · (2N + 1) · . . . (2N + 9− 4k − 4l)

(2N − 7) · (2N − 11) . . . (2N − 4k − 4l − 3)
×

(4N − 2− 4(k + l + 1)) . . . (4N − 2− 4(k + 2l − 2))

4 · 8 . . . 4k
× 4 · (2α + β)

(4l − 8) · (4l − 4) · 4l
×

(2N + 1) · (2N + 5) . . . (2N + 4l − 11)

(2N + 7) · (2N + 11) . . . (2N + 4l − 5)
× (4N + 2) · (4N − 2) . . . (4N − 2− 4k)

(4(k + l − 1)) · (4(k + l)) . . . (4(k + 2l − 2))
×

(2N − 5) · (2N − 9) . . . (2N + 7− 4l)

(2N − 11) · (2N − 15) . . . (2N + 1− 4l)
×

(2N − 4k − 3) · (2N − 4k − 8l + 5) · (8l − 8) · (4N − 8k − 8l + 2)

(2N − 3) · (2N + 5) · (4N + 2)
. (3.10)

3.6.3 CN

β, α, γ

Let’s examine the following functions:
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l = 0, k ≥ 1

Z(x, k, 0, 1,−2, N + 2) =

= sinh
[x

4
:

(2N + 5) · (2N + 4) . . . (2N + 6− k)

3 · 4 · . . . (k + 2)
×

(2N + 6) · (2N + 5) · . . . (2N + 7− k)

4 · 5 . . . (k + 3)
× (k + 1) · (k + 2)2 · (k + 3)

1 · 22 · 3
×

(N − k + 2) · (N − k + 1) · (2N + 6− k) · (2N + 5− k) · (2N + 4− k)

(2N + 3) · (2N + 4) · (2N + 5)2 · (2N + 6) · (2N + 7)
×

(2N + 5− k) · (2N + 7) · (2N + 3− 2k)

(N + 1) · (N + 2)
(3.11)

l ≥ 1, k = 0

Z(x, 0, l, 1,−2, N + 2) =

= sinh
[x

4
:

(2N + 5) · (2N + 4) . . . (2N + 6− l)
3 · 4 · . . . (l + 2)

×

(2N + 6) · (2N + 5) · . . . (2N + 7− l)
4 · 5 . . . (l + 3)

×

(2N + 7) . . . (2N + 8− l)
1 · 2 . . . l

× (2N + 8) · (2N + 7) . . . (2N + 9− l)
2 · 3 . . . (l + 1)

×

(N − l + 2) · (N − l + 1) · (2N + 6− 2l) · (2N + 5− 2l) · (2N + 4− 2l)

(2N + 3) · (2N + 4) · (2N + 5)2 · (2N + 6) · (2N + 7)
×

(N + 4− l) · (N + 3− l) · (2N + 5− 2l) · (2N + 7− 2l) · (2N + 3− 2l)

(N + 1) · (N + 2) · (N + 3) · (N + 4)
(3.12)
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l ≥ 1, k ≥ 1

The Z(x, k, l, 1,−2, N + 2) rewrites as follows:

Z(x, k, l, 1,−2, N + 2) =

= sinh
[x

4
:

(2N + 5) · (2N + 4) . . . (2N + 6− k − l)
3 · 4 · . . . (k + l + 2)

×

(2N + 6) · (2N + 5) · . . . (2N + 7− k − l)
4 · 5 . . . (k + l + 3)

×

(2N + 7) . . . (2N + 8− l)
1 · 2 . . . l

× (2N + 8) · (2N + 7) . . . (2N + 9− l)
2 · 3 . . . (l + 1)

× (k + 1) · (k + 2)2 · (k + 3)

1 · 22 · 3
×

(N − k − l + 2) · (N − k − l + 1) · (2N + 6− k − 2l) · (2N + 5− k − 2l) · (2N + 4− k − 2l)

(2N + 3) · (2N + 4) · (2N + 5)2 · (2N + 6) · (2N + 7)
×

(N + 4− l) · (N + 3− l) · (2N + 5− k − 2l) · (2N + 7− 2l) · (2N + 3− 2k − 2l)

(N + 1) · (N + 2) · (N + 3) · (N + 4)
(3.13)

As we see, in all three cases the Z(x, k, l, 1,−2, N + 2) function is regular for any integer

valued set (k, l) and N ∈ N.
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3.6.4 DN

3.6.5 γ, β, α

l + k > 4 and l, k ≥ 1

In the following expression T = 2N − 4, T ≥ 4, since N ≥ 4:

Z(x, k, l, T, 4,−2) =

= sinh
[x

4
:

(4 + T )

(4− 3T ) · (4− 4T )
× (4 + 2T ) · (4 + 3T ) . . . (4 + (k + l − 3)T )

(4− 5T ) · (4− 6T ) . . . (4− (k + l)T )
×

(2T ) · T · (2α + β)

8 · (8− T ) · (8− 2T ) · (8− 3T )
× T · (2T ) . . . ((k + l − 4)T )

(8− 4T ) · (8− 5T ) . . . (8− (k + l − 1)T )
×

(6 + 2T ) · (6 + T ) · 6 · (6− T )

2 · (2 + T ) · (2 + 2T ) · (2 + 3T )
× (6− 2T ) · (6− 3T ) . . . (6− (k + l − 3)T )

(2 + 4T ) · (2 + 5T ) . . . (2 + (k + l − 1)T )
×

8 · (8− T ) . . . (8− (k − 1)T )

T · (2T ) . . . (kT )
×

(4− 2T ) · (4− 3T ) · (4− 4T ) . . . (4− (k + 2l − 4)T )

(4 + 3T ) · (4 + 4T ) · (4 + 5T ) . . . (4 + (k + 2l − 3)T )
×

(8− 2T ) · (8− T ) · 8 . . . (8 + (l − 3)T )

4 · (4− T ) · (4− 2T ) . . . (4− (l − 1)T )
×

(2 + 2T ) · (2 + T ) · 2 . . . (2− (l − 3)T )

6 · (6 + T ) · (6 + 2T ) . . . (6 + (l − 1)T )
×

(4− 3T ) · (4− 2T ) . . . (4 + (l − 4)T )

T · (2T ) . . . (lT )
×

(4 + (3− 2k − 2l)T ) · (4 + (2l − 3)T ) · ((2l + k − 3)T ) · (kT − 4)

(4− 2T ) · (4− 3T )
(3.14)

A careful inspection of the above-written formula shows, that for any integer-valued T ≥ 4

the number of zeroing factors in the denominator is not greater than those in the numerator:

d ≤ n, which proves the LR of it.

In the following cases, proofs are either evident or repeat those for the previous case.
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l + k = 4 and k, l ≥ 1

In this case we have the following function:

Z(x, k, l, T, 4,−2) =

= sinh
[x

4
:

4 · (4 + T )

(4− 3T ) · (4− 4T )
× (3T ) · (2T ) · T · (2α + β)

8 · (8− T ) · (8− 2T ) · (8− 3T )
×

(6 + 2T ) · (6 + T ) · 6 · (6− T )

2 · (2 + T ) · (2 + 2T ) · (2 + 3T )
× 8 · (8− T ) . . . (8− (3− l)T )

T · (2T ) . . . ((4− l)T )
×

(4 + 3T ) · (4 + 2T ) . . . (4− lT )

(4− 2T ) · (4− T ) . . . (4 + (l + 1)T )
× (8− 2T ) · (8− T ) · 8 . . . (8 + (l − 3)T )

4 · (4− T ) · (4− 2T ) . . . (4− (l − 1)T )
×

(2 + 2T ) · (2 + T ) · 2 . . . (2− (l − 3)T )

6 · (6 + T ) · (6 + 2T ) . . . (6 + (l − 1)T )
×

(4− 3T ) · (4− 2T ) . . . (4 + (l − 4)T )

T · (2T ) . . . (lT )
×

(4− 5T ) · (4 + (2l − 3)T ) · ((l + 1)T ) · (4− (4− l)T )

4 · (3T ) · (3T − 4) · (3T + 4)
(3.15)

l + k = 4 and k = 0

Z(x, 0, 4, T, 4,−2) =

=
(2α + β) · 4 · (5T ) · (2− T ) · (6− T ) · (8 + T ) · (4− 5T ) · (4 + T )

(3T ) · (4T ) · (8− 3T ) · (2 + 3T ) · (4 + 4T ) · (4− 3T ) · (4 + 3T ) · (6 + 3T )
(3.16)

l + k = 4 and l = 0

Z(x, 4, 0, T, 4,−2) =

= − sinh
[x

4
:

(2α + β) · 6 · (T ) · (4 + T ) · (6 + 2T ) · (6 + T ) · (6− T ) · (4 + 2T ) · (4− 5T )

2 · (3T ) · (4T ) · (4− 3T ) · (2 + T ) · (2 + 2T ) · (2 + 3T ) · (4− 2T ) · (4− T )

(3.17)
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l + k = 3 and l ≥ 1

Z(x, k, l, T, 4,−2) =

= sinh
[x

4
:

(2T ) · T
8 · (8− T ) · (8− 2T )

×

(6 + 2T ) · (6 + T ) · 6
2 · (2 + T ) · (2 + 2T )

× 8 · (8− T ) . . . (8− (2− l)T )

T · (2T ) . . . ((3− l)T )
×

(4 + 3T ) · (4 + 2T ) . . . (4− (l − 1)T )

(4− 2T ) · (4− T ) . . . (4 + lT )
× (8− 2T ) · (8− T ) · 8 . . . (8 + (l − 3)T )

4 · (4− T ) · (4− 2T ) . . . (4− (l − 1)T )
×

(2 + 2T ) · (2 + T ) · 2 . . . (2− (l − 3)T )

6 · (6 + T ) · (6 + 2T ) . . . (6 + (l − 1)T )
× (4− 3T ) · (4− 2T ) . . . (4 + (l − 4)T )

T · (2T ) . . . (lT )
×

4 · (4 + (2l − 3)T ) · (lT ) · (4− (3− l)T )

(3T − 4)2 · (3T + 4)
(3.18)

l + k = 3 and k = 0

Z(x, 0, 3, T, 4,−2) = −1 (3.19)

l + k = 3 and l = 0

Z(x, 3, 0, T, 4,−2) =

= sinh
[x

4
:

(2α + β) · 6 · (6 + T ) · (6 + 2T ) · (4 + T ) · (4 + 2T ) · (4− 3T )

2 · 4 · (3T ) · (2 + T ) · (2 + 2T ) · (4− T ) · (4− 2T )
(3.20)

l + k = 2 and k, l > 0

Z(x, 1, 1, T, 4,−2) =

= − sinh
[x

4
:

(2α + β) · (2T ) · (6 + 2T ) · (6 + T ) · (4 + 2T ) · (4 + T )2 · (8− 2T ) · (2 + 2T ) · (4− T )

2 · 43 · 6 · (T )2(8− T ) · (2 + T ) · (4− 2T )

(3.21)

l + k = 2 and k = 0

Z(x, 0, 2, T, 4,−2) = sinh
[x

4
: =

(4 + T ) · (2 + 2T ) · (4 + 2T ) · (6 + 2T ) · (8− 2T )

2 · 4 · 6 · 8 · (4− T )
(3.22)
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l + k = 2 and l = 0

Z(x, 2, 0, T, 4,−2) = sinh
[x

4
:

(6 + T ) · (6 + 2T ) · (4 + 2T )

2 · 4 · (2 + T )
(3.23)

l + k = 1 and l = 0

Z(x, 1, 0, T, 4,−2) = sinh
[x

4
:

(2T ) · (6 + 2T ) · (4 + T )

2 · 4 · (T )
(3.24)

l + k = 1 and k = 0

Z(x, 0, 1, T, 4,−2) =

= sinh
[x

4
:

(2 + 2T ) · (4 + 2T ) · (6 + 2T ) · (8− 2T ) · (4 + T )

2 · 4 · 6 · 8 · (4− T )
(3.25)

Exceptional algebras:

For the exceptional algebras, the procedure is technically similar to that for the classical

algebras, so we omit its detailed presentation.
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Table 3.7: Isolated solutions in the non-physical region of Vogel’s plane.
αβγ Dim Rank Notation
1 1 1 -125 -19 Y1
10 8 7 -129 -1 Y2
6 4 5 -130 -4 Y3
2 2 3 -132 -10 Y4
5 7 8 -132 -2 Y5
5 8 6 -132 -2 Y6
4 5 3 -133 -2 Y

′
6

4 7 5 -135 -3 Y7
7 6 4 -135 -3 Y8
2 4 3 -140 -8 Y9
2 1 2 -144 -14 Y10
2 1 1 -147 -17 Y11
7 3 4 -150 -4 Y12
2 4 5 -153 -7 Y13
5 3 2 -153 -7 Y14
1 2 3 -165 -13 Y15
2 6 5 -168 -6 Y16
6 2 7 -184 -6 Y17
4 5 13 -186 -2 Y18
3 10 4 -186 -4 Y19
3 7 2 -187 -7 Y20
1 1 3 -189 -17 Y21
11 5 3 -189 -3 Y22
4 1 3 -195 -11 Y23
2 1 4 -195 -13 Y24
3 11 4 -200 -4 Y25
2 3 8 -207 -7 Y26
2 5 9 -207 -5 Y27
3 1 5 -221 -11 Y28
1 4 5 -228 -10 Y29
2 1 5 -231 -13 Y30
4 1 1 -242 -18 Y31
6 5 22 -244 -2 Y32
18 4 5 -245 -3 Y33
14 4 3 -247 -5 Y34
10 2 3 -252 -8 Y35
1 4 6 -252 -10 Y36
3 5 16 -258 -4 Y37
6 1 2 -272 -14 Y38
1 3 7 -285 -11 Y39
1 5 7 -285 -9 Y40
14 2 5 -296 -6 Y41
6 8 1 -319 -9 Y42
1 3 8 -322 -12 Y43
4 1 9 -342 -10 Y44
10 1 4 -377 -11 Y45
12 1 5 -434 -10 Y46
1 6 14 -492 -10 Y47
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Chapter 4

On the problem of uniqueness of

universal formulae for simple Lie

algebras. Geometrical configurations of

points and lines from the perspective of

the uniqueness of universal formulae

In this chapter, we describe how Vogel’s universal description of Lie algebras makes it possible

to connect two distinct areas of mathematics – the theory of Lie algebras and geometrical

configurations of points and lines.

Firstly, we formulate the problem of the uniqueness of universal dimension formulae and

introduce the notion of a non-uniqueness factor.

Then, we present a geometrical formulation of the uniqueness problem and show that it

brings us to a completely new area of mathematics – the theory of configurations of points and

lines. Finally, we employ the geometrical formulation by deriving an explicit expression for a

four-by-four non-uniqueness factor, making use of a known (163, 124) configuration.
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4.1 The problem of uniqueness of universal dimensions

The emergence of the uniqueness problem of universal formulae for simple Lie algebras was

motivated by the notice that the variance of intricacies of known formulae is quite big. For

example, take a look at the following dimension formulae:

dimX2 =
(2α + β + γ)(α + 2β + γ)(2α + 2β + γ)(α + β + 2γ)(2α + β + 2γ)(α + 2(β + γ))

α2β2γ2

which is the dimension of the X2 representation, and this one [3]

dim((g)2(Y2(β))2) =

− (α + γ)(2γ − α)(β + γ)(2β + γ)(β + 2γ)(−α + β + γ)(α + β + γ)2

α4β2γ
×

(2α + β + γ)(−α + 2β + γ)(α + 2β + γ)(2α + 2β + γ)(α− β + 2γ)(2α− β + 2γ)

(β − 4α)(β − 3α)(β − α)3(2β − 3α)(γ − 3α)
×

(−3α + β + 2γ)(α + β + 2γ)(2α + β + 2γ)(−5α + 2β + 2γ)(−α + 2β + 2γ)(α + 2β + 2γ)

(γ − 2α)(γ − α)2(2γ − 3α)(γ − β)(α + β − γ)

(4.1)

which gives the dimensions of Cartan product of the squares of Y2(β) and the adjoint represen-

tations ∗

As we see, the first formula writes much simpler than the latter. So, a natural question

arises: for a given universal formula can we find a more “simple-looking” one, with the same

features of universal nature? Or, generally, are the known universal formulae unique?

Note, that all known universal formulae possess a specific structure: they are rational

functions, where both the numerator and denominator decompose into products of the same

number of linear factors of universal parameters:

F =
k∏
i=1

niα + xiβ + yiγ

miα + ziβ + tiγ
(4.3)

∗they appear in the following universal decomposition of the symmetric square of the adjoint representation:

S2g = 1⊕ Y2(α)⊕ Y2(β)⊕ Y2(γ) (4.2)
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Now let F1 and F2 be two universal formulae, which are rational functions, where both

the numerator and denominator decompose into products of the same finite number of linear

factors of Vogel’s parameters, and yield the same outputs at the points from Table 4.1, which

correspond to the simple Lie algebras.

Table 4.1: Vogel’s parameters for simple Lie algebras and the distinguished lines
Algebra/Parameters α β γ t Line

sl(N) -2 2 N N α + β = 0
so(N) -2 4 N − 4 N − 2 2α + β = 0
sp(2N) -2 1 N + 2 N + 1 α + 2β = 0
exc(n) −2 2n+ 4 n+ 4 3n+ 6 γ = 2(α + β)

On the exc line n = −2/3, 0, 1, 2, 4, 8 for G2, so(8), F4, E6, E7, E8, respectively.

Then their ratio Q, which has the same structure, is obviously equal to 1 at those points.

Q =
F1

F2

(4.4)

We call such functions Q non-uniqueness factors. In fact, the problem of uniqueness of dimen-

sion formulae formulates as the search for possible non-uniqueness factors Q.

Note that the points from Vogel’s table occupy the following distinguished lines [3]:

sl : α + β = 0, (4.5)

so : 2α + β = 0, (4.6)

sp : α + 2β = 0, (4.7)

exc : γ − 2(α + β) = 0, (4.8)

on which the linear, orthogonal, symplectic and the exceptional algebras are situated, respec-

tively. Based on this fact, we add an additional requirement to the problem, namely, we search

for a Q, which is equal to 1 not only at the points, associated with the simple Lie algebras, but

also on the entire distinguished lines.

In [28] (see Appendix C.IV) we have derived the following general expression for such non-

uniqueness factors, equivalent to 1 on each of the four distinguished lines:
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Q =
k∏
i=1

niα + xiβ + yiγ

kins(i)α + xiβ + yiγ
=

k∏
i=1

niα + xiβ + yiγ

cinp(i)α + xiβ + yiγ
(4.9)

xi = cixp(i) (4.10)

yi = kiys(i) (4.11)

kins(i) = cinp(i) (4.12)

yi = riyv(i) (4.13)

cinp(i) + 3xi = ri(nv(i) + 3xv(i)) (4.14)

c1c2...ck = 1 (4.15)

k1k2...kk = 1 (4.16)

r1r2...rk = 1 (4.17)

for some permutations s(i), p(i), v(i), i = 1, 2...k. Note, that this expression is written after

the following change of coordinates was made:

α′ = α + β, β′ = 2α + β γ′ = γ − 2(α + β)

so that in the primed coordinates the equations of the distinguished lines sl, so, exc will

simply be

α′ = 0, β′ = 0, γ′ = 0

respectively, and thus the one for the sp line will be 3α′ − β′ = 0. The prime mark in (4.9) is

dropped for convenience.

In order to write a non-uniqueness factor explicitly, one has to choose an appropriate set

of the s(i), p(i), v(i), i = 1, 2...k permutations, then solve the presented equations, using it. It

is easy to see, that the choice of the set of permutations is quite wide: there are generally k!

variations for each of them. Remarkably, there is a rather smart option of the derivation of an

explicit expression for some concrete k, which opens up after interpreting the non-uniqueness

factors geometrically. In the next section we outline the geometrical rephrasing of the prob-

lem, then derive a four-by-four (at k = 4) non-uniqueness factor, invoking a specific (163124)

geometrical configuration [21].
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4.2 Rephrazing the problem of uniquiness

In this section, we provide a geometric point of view to the problem of uniqueness, setting up

its connection with a classical problem of the so-called configurations, namely configurations of

points and lines.

4.2.1 Geometric representation of universal formulae

First, observe, that each of the linear factors in the expression of Q corresponds to a line

in the projective Vogel’s plane. Indeed, to each of the factors xα + yβ + zγ one can put in

correspondence the line equation xα + yβ + zγ = 0.

Thus, for any given expression for universal (quantum) dimension, with say k multipliers,

we can draw a unique picture in the Vogel’s plane, consisting of k lines, corresponding to the

linear factors in the numerator, which will be referred to as red lines for convenience, and k

green lines for those in the denominator. In addition, we can draw a number of black lines,

corresponding to the distinguished sl, so, exc, lines as well as those, associated to the permuted

coordinates - such as the sp line.

One can see the corresponding picture† for the simplest universal formula, namely the

dimension of the adjoint representation (1.2), in Figure 4.1.

Let’s consider the picture, associated with a non-uniqueness factor Q. It turns out that

each of the black lines must contain k points, at which a green and a red line intersect.

Indeed, this statement exactly rephrases the cancellation mechanism, necessary for the non-

uniqueness factor Q to be 1 at the distinguished lines: when restricting Q to a black line, each

of the factors from the numerator is proportional to some factor from the denominator. This

means that these two factors are zeroing simultaneously, meaning, that residing on a black and,

say, a red line at once, we necessarily reside on a green line too.

It is easy to notice, that this corresponding picture also contains information about the

choice of the permutations s(i), p(i), ..., - the intersection points of three different-colored lines

obviously define the pairs of canceling factors, when restricting the function to each of the

distinguished black lines.

†The labeling of the lines in the following figures is meant to identify the corresponding colors they are given.
For example, in Figure 4.1, r2 identifies the line, associated to the second factor in the numerator of (1.2), and
g3 - to the third factor in the corresponding denominator.
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g2

g3

r2

r1

r3
sp sl so exc

Figure 4.1: The ”sketch” of the dimension formula of the adjoint.

Thus, the picture of k black, k red, and k green lines, corresponding to a non-uniqueness

factor Q, has the following characteristic feature: on each of the black lines, there are k points

at which a red and a green line intersect. Note that besides these points of intersection of three

differently colored lines, there may be some other intersection points, which however will not

be of interest for us.

4.2.2 Configurations

Let’s introduce the following standard definitions [35, 21]:

Definition 1.

We say a line is incident with a point, (equivalently, a point is incident with a line) if it

passes through it (equivalently, if it lies on it).

Definition 2.

A configuration (pγlπ) is a set of p points and l lines, such that every point is incident

with precisely γ of these lines and every line is incident with precisely π of these points.

88



Remark 1. Notice, that the total number of incidences, on one hand, is equal to pγ, and

is lπ, on the other hand, so that from Definition 2 it follows, that pγ = lπ.

Remark 2. If p = l, γ = π, the configuration is denoted by (pγ).

We see that the picture of k black, k red, and k green lines, possessing the feature described

in the previous subsection, turns into a configuration iff the number of black, red, and green

lines coincide and is equal to k. Obviously, the corresponding configuration will be (k23, 3kk).

However, if we have a configuration (k23, 3kk), it doesn’t mean that we can definitely con-

struct a corresponding Q. The possible obstacle is that one would not be able to attribute the

black, red, and green colors to its 3k lines such that at each of the points, belonging to the

configuration, three lines of different colors meet. Such configuration are presented in Figures

4.2 and 4.3.

For any given configuration (pγlπ) one can construct a so-called configuration table: we label

the points and lines of that configuration, then for each of the lines allocate a column, consisting

of the labels of the points, which are incident with the corresponding line. Characteristic

properties of a configuration table are the following: the label for each of the points occurs

in exactly γ columns, different columns do not contain two similar labels of points, and each

column contains exactly π labels. Two configuration tables are identical, if they coincide after

some relabeling of points and lines, and/or rearranging the points in a given column.

So, ”possible” configurations of a given type (pγlπ) can be considered simply as different

configuration tables of that type.

Further, a configuration table is called realizable if one can construct a geometrical picture

of lines and points corresponding to it. Not all tables are realizable.

4.3 The Pappus-Brianchon-Pascal configuration

Let us take the (4.9)-(4.17) general solution for a four-by-four non-uniqueness factor Q and

relax the (4.13), (4.14), and (4.17) conditions. We will get a solution for a three-by-three non-

uniqueness factor, which is equivalent to 1 on three basic lines – sl, so, and exc. It can be

shown that one can get the following non-trivial Q for this case (see Appendix C.IV, (4.41)):

(α + βx+ γy)(αc1c2 + βc2x+ γy)(αc1 + βc1c2x+ γy)

(αc1 + βx+ γy)(α + βc2x+ γy)(αc1c2 + βc1c2x+ γy)
(4.18)
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Figure 4.2: The (93)2 configuration, which cannot be ”colored” in order to be corresponded to
some Q

Figure 4.3: The (93)3 uncolorable configuration
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A relevant configuration happens to be corresponding to this solution. It is the configuration

(93, 93)1, which is usually referred as (93)1 [35, 21], since the terms in the standard notation

coincide. This configuration is also known as the Pappus (Pappus of Alexandria) or Pappus-

Brianchon-Pascal configuration, which is presented in Figure 4.4.

The index in the notation (93)1 is to indicate the fact that there are several (93) configu-

rations, so that it is used to distinguish these. Possible values of the index, i.e. the number

of different configurations (93) is 3, equivalently, there are three different configuration tables

for (93) configuration. Each of these 3 tables happens to be realizable. However, only one of

them, presented in Figure 4.4, (93)1 from [35], can be colored in the way we need. For example,

for the configuration (93)2 (see Figure 4.2) it is impossible to distinguish 3 black lines, since

for any two lines of the configuration there is always a third one, which intersects with one of

them at some point, belonging to the configuration. This violates the requirement that at each

point of the configuration three lines of different colors intersect. The same reasoning holds for

the remaining third, i.e. the (93)3 configuration, see Figure 4.3. So, we have the following

Proposition 4.1 The non-uniqueness factor (4.41) at k = 3 is in one-to-one correspondence

with the Pappus-Brianchon-Pascal (93)1 configuration.

Proof. The proof is obvious, since there is no other (93) configuration which can be colored in

the needed way.

The picture, associated to the non-uniqueness factor (4.41) is given in Figure 4.5, which is

the (93)1 configuration after a projective transformation, which takes the α = 0 line to infinity.‡

Finally, the geometrical roles of the free parameters c1, c2, x, y in the (4.41) expression of Q

are easily observed in the same Figure 4.5, where the associated coordinates of the points of

the configuration are shown explicitly.

‡One has to take into account that as the equations of the three distinguished lines are α = 0, β = 0 and
γ = 0, one of them unavoidably will be the ideal line of the projective plane, i.e. the line in the infinity (we
choose α = 0).
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r1

r2

r3

g1

g2

g3

sl : α = 0

so : β = 0

exc : γ = 0

Figure 4.4: The Pappus-Brianchon-Pascal, or (93)1 configuration

(0, 0) (− 1
c2x
, 0) (−c1/x, 0)

(0,− c1
y

)

(0,− 1
y
)

(−1/x, 0)

(0,− 1
c1c2y

)

r1

r2
r3

g1

g2

g3

exc : γ = 0

so : β = 0

Figure 4.5: The Pappus-Brianchon-Pascal (93)1configuration after a projective transformation
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g1

g2

g4

g3

r1
r2

r3

r4

γ = 0

β = 3α

α = 0

β = 0

Figure 4.6: A (163124) configuration

4.4 A four-by-four non-uniqueness factor and a known

(163, 124) configuration

If we take the lines sl, so, sp, exc as black lines and search for a non-uniqueness factor Q, which

is equal to 1 on each of these lines, we will happen to be dealing with the configuration (163124)

(k = 4). One of its realizations, taken from [21], is presented in Figure 4.6.

Proposition 4.2 The configuration (163124) presented in Figure 4.6 corresponds to the

following non-uniqueness factor Q for universal dimensions:

Q =
(3kk1k2nα + (−kk1k2n− k1n)β + 3c2kyγ)(3nα + n(−kk2 − 1)β + 3kk2yγ)

(−3k1nα + (kk1k2n+ k1n)β − 3c2kyγ)(−3c2nα + (c2n+ k1k2n)β − 3c2kk2yγ)
×

(3c2nα + (−c2n− k1k2n)β + 3c2yγ)(−3k1k2nα + (c2n+ k1k2n)β − 3c2kk2yγ)

(3k1k2nα + (−c2n− k1k2n)β + 3c2yγ)(3kk2nα + (−kk2n− n)β + 3kk2yγ)
(4.19)

with y = y1, n = n1, k = c1k4, free parameters and which is equal to 1 on each of the

sl, so, sp, exc distinguished lines in Vogel’s plane.

Proof. As it is seen, the configuration in Figure 4.6 can be colored in a needed way, so that

it corresponds to some non-uniqueness factor Q at k = 4. Tracing the pairs of green and red

lines, intersecting at each of the black lines, we almost immediately define the set of three

permutations s(i), p(i), v(i), i = 1, 2...k:

s(1) = 3, s(2) = 1, s(3) = 4, s(4) = 2
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p(1) = 4, p(2) = 3, p(3) = 2, p(4) = 1

v(1) = 2, v(2) = 4, v(3) = 1, v(4) = 3

Then, equations (4.10)-(4.13) and (4.15)-(4.17) yield:

x3 =
x2
c2
, x4 =

x1
c1

(4.20)

y2 = k2y1, y3 =
y1
k1
, y4 = k2k4y1 (4.21)

n2 =
n1

c1k4
, n3 =

k2n1

c2
, n4 =

k1k2n1

c1c2
(4.22)

r1 = 1/k2, r2 = 1/k4, r3 = 1/k1, r4 = 1/k3 (4.23)

c4 =
1

c1
, c3 =

1

c2
(4.24)

The remaining equation (4.14) yields:

x1 = −k1k2 + c2
3c2

n1, x2 = − n1

c1k4
− k2n1 (4.25)

So that we get the non-trivial solution (4.19) for Q:

4.5 The (14433612) configuration and a symmetric non-

uniqueness factor Q

An immediate problem, arising after the previous investigation, is the derivation of a symmetric

non-uniqueness factor Q, which would be equivalent to 1 on all the 12 lines, obtained by the

basic lines after all possible permutations of the coordinates. The search of such a Q appears

to be one of a realizable (14433612) configuration in the scope of the geometrical approach.

Unfortunately, this configuration has not been studied yet, so the existence of a symmetric Q

remains an open question.

94



4.6 Appendix C.IV

Below we present the derivation of the general non-uniqueness factor Q (i.e. (4.10)-(4.17)),

which is equivalent to 1 on sl, so, exc, and sp lines in Vogel’s plane.

To simplify calculations, we make the following change of coordinates :

α′ = α + β α = −α′ + β′

β′ = 2α + β β = 2α′ − β′

γ′ = γ − 2(α + β) γ = 2α′ + γ′

so that in the primed coordinates the equations of the basic lines sl, so, exc will simply be

α′ = 0, β′ = 0, γ′ = 0.

And, consequently, the equation of the sp line will take the following form:

3α′ − β′ = 0

We drop the prime mark below.

Now let us take a universal dimension in its most general form

Q =
k∏
i=1

niα + xiβ + yiγ

miα + ziβ + tiγ
(4.26)

and consider its values on the three lines α = 0, β = 0, γ = 0.

We require Q ≡ 1 at α = 0. Then

1 ≡
k∏
i=1

xiβ + yiγ

ziβ + tiγ
(4.27)

and one deduces, that zi = lixq(i), ti = liyq(i), with some permutation q(i), i = 1, ...k, and

non-zero multipliers li with l1l2...lk = 1.

Substituting these relations into (4.26), one has
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Q =
k∏
i=1

niα + xiβ + yiγ

miα + lixq(i)β + liyq(i)γ
(4.28)

Absorbing the 1/li into mi, renumbering mi → mq(i) and changing the order of the multi-

pliers in the denominator, we rewrite Q as:

Q =
k∏
i=1

niα + xiβ + yiγ

miα + xiβ + yiγ
(4.29)

Now let Q ≡ 1 at β = 0:

1 ≡
k∏
i=1

niα + yiγ

miα + yiγ
(4.30)

Then one must have yi = kiys(i),mi = kins(i), with some permutation s(i) and with

k1k2...kk = 1, so that Q accepts the form:

Q =
k∏
i=1

niα + xiβ + yiγ

kins(i)α + xiβ + kiys(i)γ
=

k∏
i=1

niα + xiβ + yiγ

kins(i)α + xiβ + yiγ
(4.31)

Next we require Q ≡ 1 at γ = 0:

1 ≡
k∏
i=1

niα + xiβ

kins(i)α + xiβ
(4.32)

Again, from this relation we infer

xi = cixp(i) (4.33)

kins(i) = cinp(i) (4.34)

for some permutation p(i) and ci with c1c2...ck = 1.
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So, altogether we have the following expression for Q with the restrictions on its parameters:

Q =
k∏
i=1

niα + xiβ + yiγ

kins(i)α + xiβ + yiγ
=

k∏
i=1

niα + xiβ + yiγ

cinp(i)α + xiβ + yiγ
(4.35)

xi = cixp(i) (4.36)

yi = kiys(i) (4.37)

kins(i) = cinp(i) (4.38)

c1c2...ck = 1 (4.39)

k1k2...kk = 1 (4.40)

for some permutations s(i), p(i). Note that after having solved these equations, one must check

the Q on absence of any cancellation in it.

It is easy to show, that there is not a non-trivial solution if k = 1, 2. For k = 3 one can

show that the existence of a non-trivial solution requires that the permutations s(i), p(i) do not

have fixed points and do not coincide, i.e. s(i) = i+ 1, p(i) = i+ 2 (mod 3), or vice versa. One

can also show that ni 6= 0, so that one can factor them out, or effectively put ni = 1, so that

ki = ci, y3 = c3y1, y2 = c2c3y1, x2 = c2x1, x3 = c2c3x1. Denoting x1 = x, y1 = y, we get the final

expression of Q:

(α + βx+ γy)(αc1c2 + βc2x+ γy)(αc1 + βc1c2x+ γy)

(αc1 + βx+ γy)(α + βc2x+ γy)(αc1c2 + βc1c2x+ γy)
(4.41)

Finally, we require Q ≡ 1 when 3α− β = 0:

1 ≡
k∏
i=1

α(ni + 3xi) + yiγ

α(cinp(i) + 3cixi) + yiγ
(4.42)

97



which leads to

cinp(i) + 3xi = ri(nv(i) + 3xv(i)) (4.43)

yi = riyv(i) (4.44)
k∏
i=1

ri = 1 (4.45)

i = 1, 2, ..., k (4.46)

for some permutation v(i).

So, altogether we have

Proposition A.C.IV. The general expression for a non-uniqueness factor Q for universal

dimensions, which is equal to 1 on each of the α = 0(sl), β = 0(so), γ = 0(exc), and 3α− β =

0(sp) lines in Vogel’s plane, writes as follows:

Q =
k∏
i=1

niα + xiβ + yiγ

kins(i)α + xiβ + yiγ
=

k∏
i=1

niα + xiβ + yiγ

cinp(i)α + xiβ + yiγ
(4.47)

with parameters, satisfying the following equations

xi = cixp(i) (4.48)

yi = kiys(i) (4.49)

kins(i) = cinp(i) (4.50)

yi = riyv(i) (4.51)

cinp(i) + 3xi = ri(nv(i) + 3xv(i)) (4.52)

c1c2...ck = 1 (4.53)

k1k2...kk = 1 (4.54)

r1r2...rk = 1 (4.55)

for some permutations s(i), p(i), v(i), i = 1, 2...k.

Remark. As follows from the example above, one can get a trivial (Q = 1) or a non-trivial
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non-uniqueness factor Q depending on the particular choice of permutations.
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Chapter 5

Vogel’s universality and dualities in the

physical theories. The universal-type

partition functions of the refined

Chern-Simons theories with arbitrary

gauge groups

In this chapter, we generalize the universal partition function of the Chern-Simons theory on

S3 to the refined case, and present its explicit expression for an arbitrary gauge group.

Using this form of the partition function we show that the previously known Krefl-Schwartz

representation of the partition function of the refined Chern-Simons on S3 can be generalized

to all simply laced algebras.

Then, for all non-simply laced gauge algebras, we derive similar representations of that

partition function, which makes it possible to transform it into a product of multiple sine

functions aiming at the further establishment of duality with the refined topological strings.
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5.1 Universal partition function of the Chern-Simons on

S3

The partition function of Chern-Simons (CS) theory on a three-dimensional sphere S3, first

calculated in [36] (see below (5.1)), is presented in a universal form in [6, 7], which means that

alternative to the pure Lie algebra data - roots, invariant scalar product, etc., it is now expressed

in terms of the so-called Vogel’s universal parameters α, β, γ [2, 1], (see Vogel’s table 2.26). The

advantage of this representation is that it is very convenient for the further transformation of the

abovementioned partition function into the Gopakumar-Vafa partition function of topological

strings, as shown in [7, 37] for CS theory with the classical groups. In the recent work, [38] this

transformation has been extended to the CS with the exceptional groups, meaning that the

partition function of CS on S3 with an exceptional gauge group has been presented in the form

of a partition function of a specific refined topological string. This should be considered as a

step towards the establishment of the duality of the corresponding theories. The fact that all

exceptional algebras (actually all algebras in E8 row of the Freudenthal magic square) belong

to a line in Vogel’s plane – the so-called Deligne’s line, is exploited in that work. Deligne [22]

suggested that all the points on that line make up the so-called series of Lie algebras, which

was partially confirmed in [30].

The main features of the presentation of the partition function discovered in [6, 7] have

been extended to include the partition function of the refined CS theory on a 3d sphere∗ for

An and Dn algebras in [15]. It has also been shown to be very convenient for the derivation

of the partition function of the dual refined topological strings in [14]. In the same work the

non-perturbative corrections to the partition function of topological strings, derived from the

universal CS partition function [7] (with An gauge algebra), have been shown to coincide with

those derived in [40, 41] directly in the topological string theory framework, thus extending the

CS/topological strings duality to the non-perturbative domain.

The natural development of these investigations would be the extension of the universal-type

representation of the refined CS theories with An and Dn algebras to the remaining algebras: the

simply-laced En and the non-simply laced classical (Bn, Cn) and exceptional (F4, G2) algebras

with the final aim of setting up a connection of the corresponding refined CS theories with

∗We will omit to mention S3 from now on, since we do not consider theories on other manifolds in this paper
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some (refined) topological strings.

In the given thesis the first step has been taken. Here for the first time we present universal-

type representations of the partition function of the refined CS theory with each of the remaining

gauge groups.

Below we present a new representation of the partition function of the refined CS theory for

all simple Lie algebras. It is based on a new Lie-algebraic identity for the determinant of the

symmetrized Cartan matrix (the refined version of that in the [42]) and generalizes a feature of

the non-refined theory, exploited in [7] earlier, which states that the partition function is equal

to 1 when the coupling of CS is 0.

Then, we rewrite this partition function in a ”universal” form, which means that instead

of the roots and other standard characteristics of a gauge algebra it is now expressed in terms

of Vogel’s parameters. Simultaneously, the range of the refinement parameter is extended to

include non-integer values, too.

5.2 Refined CS theory on S3

The partition function of CS theory on S3 sphere was given in Witten’s seminal paper [36] as

the S00 element of the S matrix of modular transformations. For an arbitrary gauge group, it

is (see, e.g. [32, 6])

Z(k) = V ol(Q∨)−1(k + h∨)−
r
2

∏
α+

2 sinπ
(α, ρ)

k + h∨
(5.1)

Here the so-called minimal normalization of the invariant scalar product (, ) in the root space

is used, which implies that the square of the long roots equals 2. Other notations are: V ol(Q∨)

is the volume of the fundamental domain of the coroot lattice Q∨, the integer k is the CS

coupling constant, h∨ is the dual Coxeter number of the algebra, r is the rank of the algebra,

the product is taken over all positive roots α+.

V ol(Q∨) is equal to the square root of the determinant of the matrix of scalar products of

the simple co-roots. For the simply laced algebras, in the minimal normalization, it is equal to

the square root of the determinant of the Cartan matrix, accordingly:
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V ol(Q∨) = (det(α∨i , α
∨
j ))1/2 (5.2)

α∨i = αi
2

(αi, αi)
, i = 1, ..., r (5.3)

The same formula for the partition function, rewritten in an arbitrary normalization of the

scalar product [6], is

Z(κ) = V ol(Q∨)−1(δ)−
r
2

∏
α+

2 sinπ
(α, ρ)

δ
(5.4)

where k is now replaced by κ, h∨ by t, and δ = κ + t. In this form the r.h.s. is invariant

w.r.t. the simultaneous rescaling of the scalar product, κ, and t (and hence δ). In the minimal

normalization they accept their usual values in (5.1).

In [7] it was noticed that from this formula for the partition function one can derive an

interesting closed expression for V ol(Q∨), which agrees with that in the Kac-Peterson’s paper

[42], (see eq. (4.32.2)), provided

Z(0) = 1 (5.5)

This equality is completely natural from the physical point of view. Indeed, the CS theory

is based on the unitary integrable representations of affine Kac-Moody algebras. At a given k

there is a finite number of such representations, and at k = 0 there is no any non-trivial one.

So, from (5.4) and (5.5) we have

V ol(Q∨) = t−
r
2

∏
α+

2 sinπ
(α, ρ)

t
(5.6)

which, as mentioned, agrees with [42]. Below we generalize this equation by inclusion of a

refinement parameter.

The generalization of the usual CS to the refined CS theory is given in [43, 44, 45]. It is based
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on Macdonald’s deformation of e.g. the Shur polynomials, and other ”deformed” formulae, given

in [46, 47, 48]. In a nutshell, Macdonald’s deformation yields the deformed S and T matrices

of the modular transformations, and since these matrices define all observables in CS theory,

one can naturally consider the ”deformed” or the refined versions of all observables, i.e. the

link/manifold invariants.

Particularly, the partition function of the refined CS theory on S3 is given [43] by the

S00 element of the refined S-matrix. In [43] instead of an orthonormal basis an orhogonal is

sometimes used. We will use the orthonormal one only (as in [15]), so that there is no difference

between e.g. S00 and S0
0 .

We suggest the following expression for S00 for the refined CS theory:

Z(κ, y) = V ol(Q∨)−1δ−
r
2

y−1∏
m=0

∏
α+

2 sinπ
y(α, ρ)−m(α, α)/2

δ
(5.7)

We assume that now δ = κ + yt, y is the refinement parameter, which we consider to be a

positive integer at this stage.

Although we could not find the Z(κ, y) in this exact form in literature, the expression (5.7)

complies with the known formulae in different limits, e.g. at y = 1 it yields the corresponding

formula for the non-refined case (5.4). It also coincides with the corresponding formulae for

the refined CS theory in [43, 45, 15] for An, Dn algebras. The coefficient (α, α)/2 in front of

the summation parameter m coincides with that in the constant term formulae in [49, 50].

Actually, for non-simply laced algebras one can introduce two refinement parameters, one for

each length of the roots, see e.g. [49, 50]. However, we did not try to introduce a second

parameter (and also are not aware of the physical interpretation of it), so below we consider

them to be coinciding, so that we always have one refinement parameter.

The latter expression of the partition function is supported by the key feature of (5.7): at

κ = 0 the equality Z(0, y) = 1 holds, which is ensured by the following generalization of the

formula (5.6) for the same object V ol(Q∨):

V ol(Q∨) = (ty)−
r
2

y−1∏
m=0

∏
α+

2 sinπ
y(α, ρ)−m(α, α)/2

ty
(5.8)
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For An algebras this equality can be easily proved with the use of the following well-known

identity, valid at an arbitrary positive integer N :

N =
N−1∏
k=1

2 sinπ
k

N
(5.9)

Similarly it can be checked for all the remaining root systems.

Next, with (5.8) taken into account, we obtain the following expression of the partition

function:

Z(κ, y) =

(
ty

δ

) r
2
y−1∏
m=0

∏
α+

sin π y(α,ρ)−m(α,α)/2
δ

sin π y(α,ρ)−m(α,α)/2
ty

(5.10)

which explicitly satisfies Z(0, y) = 1, since δ = ty at κ = 0.

5.3 Integral representation of partition function for the

refined CS theories

In order to write the integral representation of the partition function presented above, we apply

the transformation introduced in [7]. We transform each of the sines into a pair of Gamma-

functions by the following well-known identity

sin πz

πz
=

1

Γ(1 + z)Γ(1− z)
(5.11)

and make use of the integral representation of (the logarithm of) the Γ function:

ln Γ(1 + z) =

∫ ∞
0

dx
e−zx + z(1− e−x)− 1

x(ex − 1)
(5.12)

Let us rewrite the partition function in the following form:
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Z(κ, y) =

(
ty

δ

)y dim−r
2

+ r
2
y−1∏
m=0

∏
α+

sin π y(α,ρ)−m(α,α)/2
δ

π y(α,ρ)−m(α,α)/2
δ

× (5.13)

y−1∏
m=0

∏
α+

π y(α,ρ)−m(α,α)/2
ty

sinπ y(α,ρ)−m(α,α)/2
ty

≡ (5.14)

(
ty

δ

)y dim−r
2

+ r
2

Z1Z2 (5.15)

and apply the abovementioned transformation to the first couple of products of sines (then

similarly to the second couple of products):

lnZ1 = ln

(
y−1∏
m=0

∏
α+

sin π y(α,ρ)−m(α,α)/2
δ

π y(α,ρ)−m(α,α)/2
δ

)
= (5.16)

−
∫ ∞
0

dx

x(ex − 1)

y−1∑
m=0

∑
α+

(
ex

y(α,ρ)−m(α,α)/2
δ + e−x

y(α,ρ)−m(α,α)/2
δ − 2

)
(5.17)

Let us introduce the following function for any simple Lie algebra X of the rank r:

FX(x, y) = r +

y−1∑
m=0

∑
α+

(
ex(y(α,ρ)−m(α,α)/2) + e−x(y(α,ρ)−m(α,α)/2)

)
(5.18)

Then

y−1∑
m=0

∑
α+

(
ex(y(α,ρ)−m(α,α)/2) + e−x(y(α,ρ)−m(α,α)/2) − 2

)
= (5.19)

FX(x, y)− r − y(dim− r) (5.20)

and lnZ1 becomes

lnZ1 = −
∫ ∞
0

dx

x(ex − 1)

(
FX

(x
δ
, y
)
− r − y(dim− r)

)
(5.21)

A similar transformation applies to lnZ2:
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lnZ2 =

∫ ∞
0

dx

x(ex − 1)

(
FX

(
x

ty
, y

)
− r − y(dim− r)

)
(5.22)

and lnZ takes the form

lnZ = (5.23)

1

2
(y(dim− r) + r) ln

(
ty

δ

)
+

∫ ∞
0

dx

x(ex − 1)

(
FX

(
x

ty
, y

)
− FX

(x
δ
, y
))

(5.24)

Finally, one can further transform this formula into an expression, similar to the one derived

in [14] for the non-refined theories.

Let us make the x→ tyx/δ rescaling in lnZ2, so that

lnZ2 =

∫ ∞
0

dx

x(etyx/δ − 1)

(
FX

(x
δ
, y
)
− r − y(dim− r)

)
. (5.25)

Using the relation

1

ebx − 1
− 1

eax − 1
=

eax − ebx

(eax − 1)(ebx − 1)
=

sinh
(
x(a−b)

2

)
2 sinh

(
xa
2

)
sinh

(
xb
2

) , (5.26)

and making use of that the combined integrand is even under x→ −x, we can write lnZ as

lnZ =
r + y(dim− r)

2
log (ty/δ)− (5.27)

1

4

∫
R+

dx

x

sinh (x(ty − δ))
sinh (xty) sinh (xδ)

(FX(2x, y)− r − y(dim− r)) , (5.28)

where the integration range passes the origin by an infinitesimal semi-circle in the upper

(or lower) half of the complex plane. We denote the corresponding contour R+. We also take

x→ 2xδ.

Due to the following identity

1

4

∫
R+

dx

x

sinh (x(t− δ))
sinh (xt) sinh (xδ)

= −1

2
log

(
t

δ

)
, (5.29)
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proved in [15] the integral of the r + y(dim − r) term in fact cancels against the log term in

(5.27), so that we obtain the final expression:

lnZ = −1

4

∫
R+

dx

x

sinh (x(ty − δ))
sinh (xty) sinh (xδ)

FX(2x, y) (5.30)

With a corresponding representation of FX(x, y) functions as a ratio of polynomials over

q = expx, which is shown below in section 6, the latter expression can be transformed into

a product of multiple sine functions (see, e.g. [37, 14]), which then hopefully will make the

further correspondence of it with the refined topological strings possible.

5.4 The partition function of the refined CS for simply

laced algebras

In the non-refined case, i.e. at y = 1 (when the sum over m disappears), the partition function

rewrites in terms of the Vogel’s universal parameters. The corresponding FX(x, 1) coincides

with the quantum dimension of the adjoint representation, which is the character χad(xρ),

restricted to the xρ line, collinear with the Weyl vector ρ:

FX(x, 1) = r +
∑
α+

(
ex(α,ρ) + e−x(α,ρ)

)
= χad(xρ) (5.31)

So FX(x, y) can be called the refined quantum dimension.

The quantum dimension of the adjoint representation has been presented in the universal

form in [26, 6]:

χad(xρ) ≡ f(x) =
sinh(xα−2t

4
)

sinh(xα
4
)

sinh(xβ−2t
4

)

sinh(xβ
4
)

sinh(xγ−2t
4

)

sinh(xγ
4
)

(5.32)

Note that the notation α is used both for the root(s) of an algebra and for one of the Vogel’s

parameters. Since these objects are very different, hopefully no interpretation problem appears.

Finally, the partition function in the non-refined case takes the following universal form
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Z(κ) = Z(κ, 1) =

(
t

δ

) dim
2

exp

(
−
∫ ∞
0

dx

x(ex − 1)

(
f
(x
δ

)
− f

(x
t

)))
(5.33)

first given in [7]

In the refined case there is not a similar universal answer for the double sum over m and α+.

However, for An and Dn algebras Krefl and Schwarz [15] have made a statement, equivalent to

y−1∑
m=0

∑
α+

(
ex(y(α,ρ)−m(α,α)/2) + e−x(y(α,ρ)−m(α,α)/2) − 2

)
= (5.34)

f (x, y)− dim(y) (5.35)

with

f(x, y) =
sinh(xα−2ty

4
)

sinh(xα
4
)

sinh(xy β−2t
4

)

sinh(xy β
4
)

sinh(xy γ−2t
4

)

sinh(xy γ
4
)
, (5.36)

dim(y) = lim
x→0

f(x, y) = y dimX − (y − 1)
(β − 2t)(γ − 2t)

βγ
(5.37)

f(x, 1) = f(x) (5.38)

where it is assumed that α is the only negative parameter (equal to −2 in the minimal normal-

ization of the scalar product).

The dim(y) can be further transformed. Indeed, consider the dimension formula for the

simple Lie algebras:

dim =
(α− 2t)(β − 2t)(γ − 2t)

αβγ
=
α− 2t

α

(β − 2t)(γ − 2t)

βγ
(5.39)

In the last expression both fractions are independent of normalization. In the minimal nor-

malization the first fraction is equal to 1 + h∨ (where h∨ is the dual Coxeter number) so we

conclude that the second one is the rank of the algebra
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(β − 2t)(γ − 2t)

βγ
= r (5.40)

since the following relation holds for all simply-laced algebras:

dim = (1 + h∨)r (5.41)

Finally, we have

dim(y) = y(dim− r) + r (5.42)

With this relation we see that (5.34) is equivalent to

FX(x, y) = f(x, y) (5.43)

Then, with the use of (5.34), the partition function (5.23) becomes:

Z(κ, y) =

(
ty

δ

)y dim−r
2

+ r
2

exp

(
−
∫ ∞
0

dx

x(ex − 1)

(
f
(x
δ
, y
)
− f

(
x

ty
, y

)))
(5.44)

As mentioned, this result has first been proven for An and Dn series in [15]. In the next

section we prove the relation (5.34) (and hence (5.43)) for the remaining simply laced algebras,

namely, for En, thus generalizing (5.44) to all the simply-laced simple Lie algebras.

5.5 On the universality of the refined CS for all simply-

laced algebras

In this section, we prove the statement of the previous section, i.e. generalize the relation (5.34)

to all simply-laced algebras. We claim that
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FX(x, y) = f(x, y) (5.45)

for any simply-laced Lie algebra X.

Take e.g. the E6 algebra, for which the corresponding universal parameters in the minimal

normalization are: α = −2, β = 6, γ = 8, t = 12. We should calculate the sum

FE6(x, y) = 6 +

y−1∑
m=0

∑
α+

ex(y(α,ρ)−m) + e−x(y(α,ρ)−m) (5.46)

First note the number of roots nL with a given height L = (α, ρ) among all roots. The set

of couples (L, nL) with a non-zero nL is

(−11, 1), (−10, 1), (−9, 1), (−8, 2), (−7, 3), (−6, 3), (−5, 4), (−4, 5), (5.47)

(−3, 5), (−2, 5), (−1, 6), (0, 6), (1, 6), (2, 5), (3, 5), (4, 5), (5, 4), (6, 3),

(7, 3), (8, 2), (9, 1), (10, 1), (11, 1)

which of course is symmetric w.r.t. the L↔ −L. We also include the element (0, 6) in this list,

which is just the first term 6 in (5.46). Then, using this data, we note that the sum in (5.46)

is given by

FE6 = φ(11y) + φ(8y) + φ(7y) + φ(5y) + φ(4y) + φ(y) (5.48)

φ(n) =
n∑

i=−n

qi =
q2n+1 − 1

qn(q − 1)
(5.49)

q = ex (5.50)

Combining the sums φ(11y) + φ(8y) + φ(5y) and φ(7y) + φ(4y) + φ(y), we get

111



φ(11y) + φ(8y) + φ(5y) =
(q9y − 1)(q5y+1 − q−11y)

(q − 1)(q3y − 1)
(5.51)

φ(7y) + φ(4y) + φ(y) =
(q9y − 1)(qy+1 − q−7y)

(q − 1)(q3y − 1)
(5.52)

FE6 =
(q9y − 1)

(q − 1)(q3y − 1)
(q4y + 1)(qy+1 − q−11y) = (5.53)

(q9y − 1)(q8y − 1)(qy+1 − q−11y)
(q − 1)(q3y − 1)(q4y − 1)

(5.54)

which can be easily checked to coincide with f(x, y) for the universal parameters corresponding

to E6 algebra.

Literally similar calculations can be carried out for the remaining E7, E8 algebras, as well

as for Krefl-Schwarz cases An, Dn, leading to the same conclusion.

5.6 A universal-type presentation of the partition func-

tion for the non-simply laced algebras

Equations (5.34), (5.46) do not hold for the non-simply laced algebras. However, one can present

the corresponding sum in a similar form, appropriate for the further duality considerations

[7, 38, 14]. The latter means that it can be presented as a ratio of a sum of exponents of x (i.e.

powers of q = expx) in the numerator and some sines in the denominator. We aim to represent

FX as follows:

FX = r +

y−1∑
m=0

∑
α+

(
ex(y(α,ρ)−m(α,α)/2) + e−x(y(α,ρ)−m(α,α)/2)

)
=
AX
BX

(5.55)

where X denotes an algebra of type B,C, F or G, r is its rank, BX is a product of a number

of terms of the form qa − 1, and AX is a polynomial in q.

One subtlety regarding the formulae (5.55), which makes them different from the (5.45),

is that in (5.55) one should explicitly mention the normalization of the scalar product. In

(5.45) both sides are invariant under the rescaling of the scalar product in the l.h.s. (with

the corresponding rescaling of the universal parameters in the r.h.s.), and the simultaneous
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appropriate rescaling of x. However, in (5.55) a similar rescaling of the scalar product and x

leaves invariant only the l.h.s., whilst the ratio AX/BX in the r.h.s is dependent only on x, thus

changing under its rescaling. This means that when substituting the r.h.s. of (5.55) into the

partition function 5.23 one should take the parameters t and δ in the same normalization. The

normalizations below are chosen to avoid the appearance of fractional powers of q.

Now we present FX for all non-simply laced algebras.

Let us consider the Bn algebras. Normalization corresponds to α = −4, i.e. the square of

the long root is 4. The corresponding representation we mentioned above is

FBn(x, y) =
ABn
BBn

(5.56)

ABn = q4ny+2 + q−4(n−1)y + (5.57)

(q + 1) (qy − 1)
(
q2y + 1

) (
q2ny − 1

) (
qy−2ny + q

)
− q4y − q2 (5.58)

BBn =
(
q2 − 1

) (
q4y − 1

)
, (5.59)

For the Cn algebras we also choose the same normalization with the square of the long root

being 4. Then FX writes as

FCn =
ACn
BCn

(5.60)

BCn = (q2 − 1)
(
q2y − 1

)
(5.61)

ACn = (q + 1)qy
(
q2ny − 1

) (
q2ny+1 − 1

)
+ (5.62)(

q2y − 1
)

(qny − 1)
(
qny+1 − 1

) (
q2ny+1 − 1

)
(5.63)

For the F4, with the same normalization, we have

FF4 =
AF4

BF4

(5.64)

BF4 = (q2 − 1) (5.65)

AF4 = q−16y
(
q2y + 1

) (
−q2y + q4y + 1

) (
q12y+1 − 1

)
× (5.66)(

q5y+1 − q8y+1 + q9y+1 + q14y+1 + q5y − q6y + q9y + 1
)

(5.67)
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For the G2 we use the normalization corresponding to the square of the long root to be

equal to 6. The corresponding FG2 function is

FG2 =
AG2

BG2

(5.68)

BG2 = q3 − 1 (5.69)

AG2 = q−9y
(
q6y+1 − 1

)
× (5.70)(

q4y+1 + q8y+1 + q4y+2 − q6y+2 + q8y+2 + q12y+2 + q4y − q6y + q8y + 1
)

(5.71)
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Chapter 6

Summary

The puzzle of Vogel’s universal description of simple Lie algebras has been filled in by new

pieces in this thesis.

New universal formulae for quantum dimensions of (X2)
k(g)n representations and for the

second Casimir eigenvalues on them have been discovered.

A new property of this new quantum dimension formula, that is linear resolvability has been

revealed.

A remarkable connection between the universal formulae for the simple Lie algebras and

some geometrical configurations of points and lines has been formulated.

Finally, a step forward has been taken in the understanding of the dualities between the

refined Chern-Simons theories based on arbitrary simple gauge groups and some topological

strings.

Construction of the refined partition functions for all simple gauge groups, ready to be

transformed into Gopakumar-Vafa type partition functions of topological strings, has been

carried out.

The more you dig in, the more there is to explore. The direct routes of the development of

the present results would be the following.

First is the possible derivation of new universal formulae both in the scope of the repre-

sentation theory of the simple Lie algebras and the physical theories based on them. In fact,

the complete universality of all representations appearing in the decompositions of the fourth

and higher tensor powers of the adjoint representation remains open at the moment. Although,

identifyng several universal representations in this higher powers the newly derived series of

115



dimensions does not cover all of them. So, a lot of interesting questions in this direction still

remain open.

Second is the final solution to the problem of the uniqueness of universal dimensions. The

geometrical interpretation of this problem provided us with a quite solid toolbox taken from the

theory of configurations of points and lines. Particularly, now we understand that the existence

of a realizable (1443, 3612) configuration is essential for the complete solution of the problem.

Hopefully, incomprehensive study of this configuration will foster collaborations between pro-

fessionals working in various fields for studying this intriguing puzzle. Evidently, any success

in this direction will have considerable potential for uncovering new properties of universal

formulae, consequently, for deepening the understanding of Vogel’s theory.

And third is the complete understanding of the Chern-Simons/topological strings dualities.

Vogel’s universality demonstrated itself as an outstanding tool for studying the dualities of

physical theories based on any simple gauge groups, more importantly – the exceptional ones.

Particularly, the partition functions presented in Chapter 5 are very promising for identifying

possible dualities between the refined Chern-Simons theories and some topological strings.

The complete solution to this problem would definitely be an impressive result in the current

understanding of nature. To this end, considerable efforts are now being taken in this direction

[51, 52], and some preliminary results have already been obtained shortly after the preparation

of this thesis. We hope that the complete understanding of these dualities is not that far and

will be reached in the near future.
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