Modern Trends in Mathematical Physics II

Gia Giorgadze Iv. Javakishvili Tbilisi State University

45 hours: 15 lectures (in total 15 hours), 15 Seminars (in total 30 hours)

1.	Bilinear forms on functional spaces. Geometry of functional spaces with	[1] Chapter 2,
	weighs (trigonometric, Legendre, Chebyshev, Hermite plyninomiasl and their orthogonalization)	section 4
2.	Unitary space, complexification and polarization (invariant	[1] Chapter 2,
	antisymmetric scalar product respect to multiply complex unity, state	section 6;
	space of quantum system, Feynman rule)	[6] part 1,
D.		pp.311
3.	Symplectic space and two dimensional symplectic geometry	[1] Chapter 2,
	(characteristic polynomials of symplectic matrix, Pfaffian, relations	section 13;
	between orhtogonal, symplectic and unitary groups)	[5] section 2,
		pp. 27-38
4.	Physical interpretation of the Minkowski space (triangle inequality,	[1] Chapter 2,
	Lorentz transformation and multiplier, orientations)	section 12
5.	Selfadjoint operators in quantum mechanics (Heisenberg's uncertainty	[1] Chapter 2
	principle, energy spectrum and stationary states)	Section 9;
		[5] section 8,
		pp. 278-266
6.	Formulation of mechanics according to Newton (autonomous Newtoian	[2] Chapter 7,
	system, Newtonian system with potential energy, energy conservation	pp. 253-257;
	for Newtonian system, Maupertuis-Jacobi principle)	exercises
		pp.264-269
7.	Formulation of mechanics according to Lagrange (Lagrange function,	[2] Chapter 7,
	d'Alambert-Lagrange theorem, Lagrangian system, pseudo-Riemannian	pp. 257- 262;
	manifold, action integral, principle of last action, Legendre	exercises
	transformation, conservation of energy for Lagrangian systems,	pp.264-269;
	Noether's theorem)	[5] section 5,
		pp.123-136
8.	Formulation of mechanics according to Hamilton (Hamiltonian,	[1] section 2.1;
	Hamilton's theorem)	[2] Chapter 7,
		pp. 262-264;
		exercises
		pp.264-269

	Colloquium	[5] section 2, pp. 50-71; [6] part 7, pp.127-135
9.	Lie-Poisson structure on symplectic manifold (Poisson bracket, Poisson geometry, local structure of Poisson manifolds)	[3] Chapter 2; Problems and solutions pp.44-51
10.	Quantitation (Quantization schemes, general description of the canonical, geometric and deformation quantizations)	[3] Chapter 1
11.	Geometric prequantization (quantization and Dirac problem, complex line bundle and Dirac problem, Souriau's theorem)	[3] Chapter 6; Problems and solutions pp.168-181
12.	Polarizations and the first attempts to quantization (integrable distributions on symplectic manifolds, foliation)	[3], Chapter 7 Problems and solutions pp.199-207
13.	Sufficiently condition of quantization (prequantizations of canonical transformation, Bohr-Sommerfeld condition, polarization and quantization)	[4] chapters 8 and 9; [6] part 6, pp.101-115
14.	Path integral and Feynmann expansion (WKB approximation, pairing, relativistic quantization, holomorphic quantization, projections and Fock spaces)	[4] chapter 9 pp.171-217
15.	Metaplectic correction (corrected quantization, metaplectic representation, parallel transform, nonnegative Lagrangian subspaces, real Lagrangian subspaces, corrected Bohr-Sommerfel condition)	[4] chapter 10 [5] section 7, pp.196-227; [6] part 7, 143 147
16.	Exam	
17.	Re-examine	

Literature:

- [1] A. Kostrikin, Yu. Manin. Lienear algebra and Geometry, Gordon and Breach Science Publ.1997
- [2] I. Agricola, Th. Friedrich. Global analysis.AMS,2000
- [3] M. Puta. Hamiltonian mechanical systems and Geometric quantization. 1994
- [4] N. Woodhouse, Geometric quantization, second edition, Oxord Uni., 1997
- [5] M.de Gooson, Symplectic geometry and quantum mechanics, Birkhauser verlag, 2006
- [6] A. Cannas da Silva, Lecture on symplectic geometry, Springer, 2008