Modern Trends in Mathematical Physics

Gia Giorgadze Iv. Javakishvili Tbilisi State University

60 hours: 15 lectures (in total 30 hours), 15 Seminars (in total 30 hours)

1.	Vector space, space of linear functions, fields of complex numbers and	[1] Chapters 1-
	generalizations (dual vector space, hyperbolic numbers, quaternions,	3
	octonions, spinors, group of motions, matrices of geometric numbers,	
	special relativity and Lorencial geometry).	
<u>ר</u>	Differentiable manifold tangent and extendent energy (vector fields	[2] Chapter 5
۷.	complex of differential forme duality integration of differential	[2] Chapter 5
	forms curves and surfaces)	
	Tornis, curves and surfaces)	
3.	Complex structure on manifolds (Riemann surface, differential and	[2] Chapter 4,
	integral calculus on Riemann surfaces)	Chapter 11
4	Systems of ordinary differential equations on complex plane and	[E] Chantan 2
4.	Riemann sphere I (regular and Fuchsian systems, boundary value	[5] Chapter 2
	problems, monodromy representation)	
5.	Systems of ordinary differential equations on complex plane and Riemann sphere II (Isomonodromic deformation, nonlinar differential	[5] Chapter 5
	equations in isomonodromic problems)	
6.	Vector bundle on manifolds, tangent and cotangent bundle (coordinate	[2] Chapter 2
	and invariant descriptions, duality, Hopf fibration, description of	
	holomorphic vector bundles on Riemann sphere, space of	
	holomorphic and meromorphic sections)	
7.	Connection and curvature on vector bundles (holomorphic vector	[2] Chapter 10
	bundles induced from Fuchsian system, connection 1-form, solutions	-
	space of Fuchsian systems as sections of holomorphic vector bunles	
	with connection)	
0	Deal 9 holes and is sector born its on Discourse allow (Di	[E] Charten 2
δ.	Kank 2 noiomorphic vector bundle on Riemann sphere (Riemann and	[5] Chapter 3,
	rypergeometric equations, nypergeometric functions and related	Apenaix 2
	topics including properties of special functions)	

	Colloquium	
9.	Orthogonal polynomials (Orthogonal polynomials as solutions special type second order Fuchian equations, analytic extension, electrostatic interpretation of zeros of orthogonal polynomials)	[5] Chapter 2
10.	Nonlinear PDE (Inverse scattering problem, Painleve transcendent, KdV, nonlinear Schrodinger and sin-Gordon equations)	[4] Chapter 1and Chapter 4;[5]
11.	Multimidensonal calculus of variations (variational derivative, Euler- Lagrange equations, energy-momentum tensor and conservation laws, electromagnetic field equation, Dirichlet functional and harmonic mapping)	[2] Chapter 14
12.	Distributions (Physical approach: problem of distribution of charge, problem of momentum; regular and singular distributions, derivation of distributions, convolution, physical interpretation of convolution operators, Cauchy principal value)	[3], Chapters 7-8.
13.	Fourier analysis (Hilbert space, Fourier series, Fourier transform functions and distributions, Sturm-Liouville problem, Gibbs phenomenon)	[3] Chapter 9- 11
14.	Geometric fields in physics I (gravitation field as metric, action functional of gravitational field, Schwarzschild and Kerr metrics, interaction of matter with gravitational field)	[2], Chapter 15
15.	Geometric fields in physics II (Dirac equation, Yang-Mils field and equations)	[2], Chapter 15
	Exam	

Literature:

[1] G. Sobczyk. Matrix Gateway to Geometric Algebra, Spacetime and Spinors, 2019

[2] S.Novikov, I.Taimanov. Modern geometric structures and fields, 2006

[3] W.Appel, Mathematics for physics and physicists, Princeton Uni.Press, 2007

[4] M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform. SIAM, Philadelphia, 1981

[5] A.Fikas, A. Its, A. Kapaev, V Novokshenov. Painleve transcendents: The Riemann-Hilbert approach, 2006