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Chapter 1

Some Concepts

1.1 Hamilton's Principle

Nearly all physics begins with what is called a Lagrangian for a particle,
which is initially de�ned as the kinetic energy minus the potential energy,

L ≡ T − V , (1.1)

where T = T (q, q̇) and V = V (q). Then, the Action is de�ned as the integral
of the Lagrangian from an initial time to a �nal time,

S ≡
∫ tf

ti

dtL(q, q̇) . (1.2)

It is important to realize that S is a 'functional' of the particle's world-line
in (q, q̇) space, not a function. This means that it depends on the entire
path (q, q̇), rather than a given point on the path. The only �xed points on
the path are q(ti), q(tf ), q̇(ti), and q̇(tf ). The rest of the path is generally
unconstrained, and the value of S depends on the entire path.

Hamilton's Principle says that nature extremizes the path a particle will take
in going from q(ti) at time ti to position q(tf ) at time tf . In other words,
the path that extremizes the action will be the path the particle will travel.
But, because S is a functional, depending on the entire path in (q, q̇) space
rather than a point, it cannot be extremized setting the derivative equal to

3
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0. Instead, we must �nd the path for which the action is 'stationary'. This
means that the �rst-order term in the Taylor Expansion around that path
will vanish, or δS = 0 at that path.

To �nd this, consider some arbitrary path (q, q̇). If it is a path that minimizes
the action, then we will have

δS = δ

∫ tf

ti

dtL(q, q̇) =

∫ tf

ti

dtL(q + δq, q̇ + δq̇)− S =

=

∫ tf

ti

dtL(q, q̇) +

∫ tf

ti

dt

(
δq
∂L

∂q
+ δq̇

∂L

∂q̇

)
− S = (1.3)

=

∫ tf

ti

dt

(
δq
∂L

∂q
+
∂L

∂q̇

d

dt
δq

)
= 0 .

Integrating the second term by parts, and taking the variation of δq to be
at 0 at ti and tf ,

δS =

∫ tf

ti

dt

(
δq
∂L

∂q
− δq d

dt

∂L

∂q̇

)
=

∫ tf

ti

dtδq

(
∂L

∂q
− d

dt

∂L

∂q̇

)
= 0 . (1.4)

The only way to guarantee this for an arbitrary variation δq from the path
(q, q̇) is to demand

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (1.5)

This equation is called the Euler-Lagrange equation, and it produces the
equations of motion of the particle. The generalization to multiple coordi-
nates qi (i = 1, . . . , n) is straightforward:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 . (1.6)

1.2 Noether's Theorem

Given a Lagrangian L = L(q, q̇), consider an in�nitesimal transformation

q → q + ϵδq , (1.7)

where ϵ is some in�nitesimal constant. This transformation will give

L(q, q̇)→ L(q + ϵδq, q̇ + ϵδq̇) = L(q, q̇) + ϵδq
∂L

∂q
+ ϵδq̇

∂L

∂q̇
. (1.8)
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If the Euler-Lagrange equations (1.6) are satis�ed, then under q → q + ϵδq,

L → L+ ϵδq
∂L

∂q
+ ϵδq̇

∂L

∂q̇
=

= L+ ϵδq
d

dt

∂L

∂q̇
+ ϵ

∂L

∂q̇

d

dt
δq = L+

d

dt

(
∂L

∂q̇
ϵδq

)
. (1.9)

So, under q → q + ϵδq, we have

δL =
d

dt

(
∂L

∂q̇
ϵδq

)
. (1.10)

We de�ne the Noether Current, j, as

j ≡ ∂L

∂q̇
δq . (1.11)

Now, if we can �nd some transformation δq that leaves the action invariant,
or in other words such that δS = 0, then

dj

dt
= 0 , (1.12)

and therefore the current j is a constant in time. In other words, j is con-
served. So, Noether's Theorem says that whenever there is a continuous
symmetry in the action, there is a corresponding conserved quantity.

1.2.1 Conservation of Momentum

As a familiar example, consider a projectile, described by the Lagrangian

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy . (1.13)

This will be unchanged under the transformation x→ x+ ϵ, where ϵ is any
constant (here, δq = 1 in the above notation), because

x→ x+ ϵ⇒ ẋ→ ẋ . (1.14)

So,

j =
∂L

∂q̇
δq = mẋ (1.15)

is conserved. We recognize mẋ as the momentum in the x-direction, which
we expect to be conserved by conservation of momentum.
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1.2.2 Conservation of Energy

Consider the quantity

dL

dt
=

d

dt
L(q, q̇) =

∂L

∂q

dq

dt
+
∂L

∂q̇

dq̇

dt
+
∂L

∂t
. (1.16)

Because L does not depend explicitly on time, ∂L/∂t = 0, and therefore

dL

dt
=
∂L

∂q
q̇ +

∂L

∂q̇
q̈ =

(
d

dt

∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ =

d

dt

(
∂L

∂q̇
q̇

)
, (1.17)

where we have used the Euler-Lagrange equation to get the second equality.
So, we have

d

dt

(
∂L

∂q̇
q̇ − L

)
= 0 . (1.18)

For a non-relativistic system (1.1), V is a function of q only, and normally

T ∝ q̇2 ⇒ ∂L

∂q̇
q̇ = 2T . (1.19)

So, the total energy of the system,

∂L

∂q̇
q̇ − L = 2T − (T − V ) = T + V = E , (1.20)

is conserved according to (1.18). We identify

T + V ≡ H (1.21)

as the Hamiltonian, or total energy function, of the system.

Furthermore, we de�ne
∂L

∂q̇
≡ p (1.22)

to be the momentum of the system. Then, the relationship between the
Lagrangian and the Hamiltonian is the Legendre transformation

pq̇ − L = H (1.23)

Exercise 1.1: Consider a non-relativistic system of two particles interacting
through a potential, which depends only on the relative coordinate r1 − r2.
Show that the total momenta p = m1v1 +m2v2 are conserved.

Exercise 1.2: Derive the Euler-Lagrange equation of motion for the case
when Lagrangian also depends on the second derivatives of a �eld.



Chapter 2

Relativistic Field Equations

By relativistically invariant �eld equations we mean linear di�erential equa-
tions whose coe�cients do not depend on xν and invariant under the local
Lorentz transformations. Some examples of relativistically invariant �eld
equations used in physical applications are described below.

2.1 Maxwell Equations

We choose our units so that c = µ0 = ϵ0 = 1. So, the magnitude of the
classical force between two electric charges q1 and q2 is

F =
q1q2
4πr2

. (2.1)

In these units, classical Maxwell's equations are

∇̄ · Ē = ρ , ∇̄ × B̄ − ∂Ē

∂t
= J̄ ,

∇̄ · B̄ = 0 , ∇̄ × Ē +
∂B̄

∂t
= 0 . (2.2)

If we de�ne the Potential 4-vector Aµ = (ϕ, Ā), then we can identify

B̄ = ∇̄ × Ā , Ē = −∇̄ϕ− ∂Ā

∂t
. (2.3)

7



8 CHAPTER 2. RELATIVISTIC FIELD EQUATIONS

Writing B̄ and Ē this way will automatically solve the homogenous Maxwell
equations from the system (2.2).

Then, we de�ne the totally antisymmetric Electromagnetic Field Strength
Tensor Fµν as

Fµν ≡ ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , (2.4)

and the 4-vector current as Jµ = (ρ, J̄). It is straightforward to show that

∂λFµν + ∂νF λµ + ∂µF νλ = 0⇒
(
∇̄ · B̄ = 0 & ∇̄ × Ē +

∂B̄

∂t
= 0

)
,

∂µF
µν = Jν ⇒

(
∇̄ · Ē = ρ & ∇̄ × B̄ − ∂Ē

∂t
= J̄

)
. (2.5)

Now let us construct a Lagrangian density L which will, via Hamilton's
Principle, produce Maxwell's equations. First, we know that L must be a
scalar (no uncontracted indices). The natural choice is to take Aµ as the
fundamental �eld and from classical physics we know that kinetic terms are
quadratic in the derivatives of the fundamental coordinates. Therefore, the
correct choice is

LEM = −1

4
FµνF

µν − JµAµ . (2.6)

So,

S =

∫
d4x

[
−1

4
FµνF

µν − JµAµ
]
. (2.7)

Variation of (2.7) with respect to Aµ gives,

δS =

∫
d4x

[
−1

4
FµνδF

µν − 1

4
δFµνF

µν − JµδAµ
]
=

=

∫
d4x

[
−1

2
FµνδF

µν − JµδAµ
]
=

=

∫
d4x

[
−1

2
Fµν(∂

µδAν − ∂νδAµ)− JµδAµ
]
= (2.8)

=

∫
d4x [−Fµν∂µδAν − JµδAµ] .
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Integrating the �rst term by parts, and choosing boundary conditions so that
δA vanishes at the boundaries, we �nd:∫

d4x [∂µF
µνδAν − JνδAν ] =

∫
d4x [∂µF

µν − Jν ] δAν . (2.9)

So, to have δS = 0, we must have ∂µFµν = Jν , and if this is written out one
component at a time, it will give exactly the inhomogeneous Maxwell equa-
tions from the system (2.2). And as we already pointed out, the homogenous
Maxwell equations become identities when written in terms of Aµ.

2.1.1 Gradient Invariance

Given some speci�c potential Aµ, we can �nd the �eld strength action as in
(2.7). However, Aµ does not uniquely specify the action. We can take any
arbitrary function χ(xµ), and the action will be invariant under the gradient
transformation

Aµ → A′µ = Aµ + ∂µχ , (2.10)

or

Aµ → A′µ =

(
ϕ− ∂χ

∂t
, Ā+ ∇̄χ

)
. (2.11)

Under this transformation, we have

F ′µν = ∂µA′ν − ∂νA′µ = ∂µ(Aν + ∂νχ)− ∂ν(Aµ + ∂µχ) =

= ∂µAν − ∂νAµ + ∂µ∂νχ− ∂µ∂νχ = Fµν . (2.12)

So, F ′µν = Fµν .

Furthermore,
JµAµ → JµAµ + Jµ∂µχ . (2.13)

Integrating the second term by parts with the usual boundary conditions,∫
d4xJµ∂µχ = −

∫
d4x(∂µJ

µ)χ

But, according to Maxwell's equations, ∂µJµ = ∂µ∂νF
µν ≡ 0 because Fµν is

totally antisymmetric. So, both Fµν and Jµ∂µχ are invariant under (2.10),
and therefore the action of S is invariant under (2.10).
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2.2 Klein-Gordon Equation

Let us consider a scalar �eld, ϕ′(x′) = ϕ(x). Using the notation

pµ = −i~ ∂

∂xµ
, pµ = ηµνpν , (2.14)

the invariant Klein-Gordon equation can be written in the form:

− pµpµϕ(x) = m2c2ϕ(x) , (2.15)

i.e.

∂µ∂
µϕ(x) =

m2c2

~2
ϕ(x) . (2.16)

The Klein-Gordon equation can be derived from the invariant action:

S =

∫
d4x

(
ηµν∂µϕ

∗∂νϕ+
m2c2

~2
ϕ∗ϕ

)
, (2.17)

where ϕ∗ denotes complex conjugation of the �eld ϕ.

Below, if otherwise is not stated, we shall use the universal system of units
where c = ~ = 1.

2.3 Proca Equation

The Proca equations,

∂µ (∂
µBν − ∂νBµ)−m2Bν = 0 , (2.18)

describes a complex massive spin-1 �eld Bν . This equation is equivalent to
the conjunction of (

∂µ∂
µ −m2

)
Bν = 0 , (2.19)

with (in the massive case)
∂µB

µ = 0 , (2.20)

which may be called a generalized Lorenz gauge condition.

The Proca equation is closely related to the Klein-Gordon equation, because
it is second order in space and time. It is involved in the SM and describes
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there the three massive vector bosons, Z0 and W±. When m = 0, the
equations (2.18) reduce to Maxwell's equations without charge or current.

The Proca (and Maxwell, when m = 0) equations can be derived from the
invariant action:

S =

∫
d4x

[
1

2

(
∂µB

∗
ν − ∂νB∗

µ

)
(∂µBν − ∂νBµ)−m2B∗

νB
ν

]
. (2.21)

2.4 Weyl Equation

We look for an equation whose �eld is represented by a two component vector
which transforms accordingly to the (0, 1/2) representation

ψ′(x′) = Ãψ(x) . (2.22)

Here AσµxµA+ = σµx
′µ, which is equivalent to Ãσ̃µxµÃ+ = σ̃µx

′µ, where
Ã = (A+)−1 and σ̃µ = (σ0,−σi), with σ0 the identity and σi the Pauli
matrices.

Such an equation is given by

σµp
µψ(x) = 0 . (2.23)

In fact if (2.23) holds we have

σµp
′µÃψ(x) = σµp

′µψ′(x′) = 0 , (2.24)

as seen by rewriting (2.23) as

0 = Aσµp
µA+Ãψ = σµp

′µÃψ . (2.25)

Multiplying on the left by σ̃µpµ we have

− pµpµψ(x) = 0 . (2.26)

So the Weyl equation describes particles of zero mass, since it is not possible
to add to it a mass term,

σµp
µψ(x) =Mψ(x) , (2.27)

M being a 2 × 2 matrix, without violating Lorentz invariance. In fact if
ψ(x) ∈ (0, 1/2) we have σµpµψ(x) ∈ (1/2, 0) because

σµp
′µψ′(x′) = Aσµp

µA+ψ̃(x) = Aσµp
µψ(x) , (2.28)
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from which
Mψ(x) = A−1MÃψ(x); ∀A ∈ SL(2, C) , (2.29)

or
Mψ(x) = A+MAψ(x) ; ∀A ∈ SL(2, C) . (2.30)

Choose a point x such that ψ(x) ̸= 0 and replacingA withAU , A ∈ SL(2, C),
U ∈ SU(2) we have

Mψ(x) = U+A+MAUψ(x) . (2.31)

Taking the scalar product

(Uψ(x), A+MAUψ(x)) = (ψ(x),Mψ(x)) ≡
≡ c(ψ(x), ψ(x)) = c(Uψ(x), Uψ(x)) (2.32)

for all U ∈ SU(2) and as Uψ(x) covers the whole two dimensional space
we have A+MA = cI, which has to hold for all A ∈ SL(2, C). For A = I
we have M = cI so that cI = cA+A for all A ∈ SL(2, C), which implies it
implies c = 0.

Going over to the Fourier transform we have

σµp
µψf (p

0,p) = 0, with (p0)2 − p2 = 0 . (2.33)

Equation (2.23) is not invariant under parity. In fact let us look for an
invertible matrix P such that

ψ′(x′) = Pψ(x) with x′ = (x0,−x) (2.34)

and such that
σµp

′µψ′(x′) = 0 , (2.35)

i.e.
(σ0p

0 − σ · p)Pψ(x) = 0 . (2.36)

Going over to Fourier transform we have

(σ0p
0 + σ · p)ψf (p0,p) = 0 and (σ0p

0 − σ · p)Pψf (p0,p) = 0 , (2.37)

i.e. we must have

− σ · pψf (p0,p) = P−1σ · pPψf (p0,p) . (2.38)
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Taking p→ −p we have also

− σ · pψf (p0,−p) = P−1σ · pPψf (p0,−p) . (2.39)

ψf (p
0,p) and ψf (p

0,−p) span the 2D space otherwise from ψf (p
0,−p) =

αψf (p
0,p) it follows

σ0p
0ψf (p

0,p) = 0 . (2.40)

Thus
− σ · p = P−1σ · pP, ∀p . (2.41)

But such a matrix P does not exists as seen from

{σ · p, aσ0 + σ · b} = 2a σ · p+ 2b · p . (2.42)

Similar results hold for a ψ(x) which transforms as ψ′(x′) = Aψ(x) and obeys
σ̃µp

µψ(x) = 0. Weyl equation can be derived from the invariant action

S =

∫
d4x ψ+(x)σµ(−i∂µ)ψ(x) . (2.43)

Such an action is hermitean as seen by taking the hermitean conjugate and
integrating by parts.

2.4.1 Majorana Mass

It is possible to give a mass to a two component �eld transforming accord-
ing to the (1/2, 0) representation of the restricted Lorentz group as follows
(similar considerations can be done for the (0, 1/2) representation). Let us
consider the equation

σ̃µp
µϕ(x) = −imc σ2ϕ∗(x) . (2.44)

We saw already that if ϕ′(x′) = Aϕ(x) then σ̃µp
′µϕ′(x′) = Ãσµp

µϕ(x) ∈
(0, 1/2). Thus we have simply to prove that σ2ϕ∗(x) ∈ (0, 1/2). In fact

σ2(Aϕ(x))
∗ = σ2A

∗σ2σ2ϕ
∗(x) = Ã σ2 ϕ

∗(x) . (2.45)

Multiplying (2.44) on the left by σµp
µ and using again (2.44) we obtain,

taking into account that (pµ)∗ = −pµ,

− p2ϕ(x) = m2c2ϕ(x) (2.46)
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proving that both component of the spinor ϕ(x) satisfy the massive Klein-
Gordon equation.

Equation (2.44) can be derived by varying the action

S =

∫
d4x

[
ϕ+(x)iσ̃µ∂

µϕ(x) +
imc

2

(
ϕTσ2ϕ(x)− ϕ+σ2ϕ∗

)]
. (2.47)

Again integrating by parts it is proved that the action S is hermitean.

The action (2.47) is invariant under the parity transformation

ϕ′(x′) = Pϕ(x) = σ2ϕ
∗(x), with x′ = (x0,−x) (2.48)

and thus also the equations of motion are invariant under such a transfor-
mation.

2.5 Dirac Equation

Consider again a ψ(x) which transforms according to

ψ′(x′) = Ãψ(x) . (2.49)

Posing
σµp

µψ(x) = ϕ(x) (2.50)

we have that ϕ(x) transforms like

ϕ′(x′) = Aϕ(x) . (2.51)

In fact
Aσµp

µA+Ãψ(x) = Aϕ(x) , (2.52)

i.e.
σµp

′µψ′(x′) = ϕ′(x′) . (2.53)

We have now four components and we must supply other two equations,
invariant under Lorentz transformations. These are given by

σ̃µp
µϕ(x) = κψ(x) , (2.54)

which is invariant as

Ãσ̃µp
µÃ+Aϕ(x) = κÃψ(x) , (2.55)
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i.e.
σµp

′ϕ′(x′) = κψ′(x′) . (2.56)

Multiplying now (2.50) on the left by σ̃µpµ we have

− pµpµψ(x) = κψ(x) , (2.57)

i.e. the two equations,

σµp
µψ(x) = ϕ(x) ,

σ̃µp
µϕ(x) = κψ(x) , (2.58)

describe particles of mass m such that m2 = κ. It is better to distribute in
more symmetrical way the κ

σµp
µψ(x) = m ϕ(x) ,

σ̃µp
µϕ(x) = m ψ(x) . (2.59)

Thus the

Ψ(x) =

(
ψ(x)
ϕ(x)

)
(2.60)

transforms according to the (1/2, 0)⊕ (0, 1/2) representation. From σ̃ = −σ
it is immediately seen that the parity transformation is

Ψ′(x′) = PΨ(x), with x′ = (x0,−x) (2.61)

and

P =

(
0 1
1 0

)
. (2.62)

We can also write

σµpµψ(x) = m ϕ(x) ,

σ̃µpµϕ(x) = m ψ(x) , (2.63)

with σµ = ηµνσν or[
−
(
1 0
0 1

)
p0 +

(
σk 0
0 −σk

)
pk

]
Ψ(x) = m

(
0 1
1 0

)
Ψ(x) , (2.64)

which can also be written as

(γµ∂µ +m)Ψ(x) = 0 , (2.65)
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with

γ0 =

(
0 −i
−i 0

)
antihermitean , (2.66)

γj =

(
0 −iσj
iσj 0

)
hermitean . (2.67)

Notice that de�ned

Σµ =

(
σ̃µ 0
0 σµ

)
(2.68)

and

A =

(
Ã 0
0 A

)
(2.69)

we have obviously
AΣµA+ = ΣνΛ

ν
µ . (2.70)

Taking into account that γµ = iΣµP we have

AΣµ(iP )(−iP )A+(iP ) = Σν(iP )Λ
ν
µ , (2.71)

i.e.
AγµA−1 = γνΛ

ν
µ . (2.72)

In addition it will be useful to de�ne γ5 = −iγ0γ1γ2γ3 which in the same
representation assumes the form

γ5 =

(
1 0
0 −1

)
hermitean . (2.73)

2.6 Rarita-Schwinger Equation

In the theory of supergravity one needs the �eld theoretical description of
spin 3/2 particles. These are described by a vector-spinor ψµ. We recall
that a 4−vector V µ has spin content 0 ⊕ 1 because ∂µV µ is a scalar. On
the other hand a spinor describes a particle of spin 1/2. As a consequence
the spin content of ψµ is (0 ⊕ 1) ⊗ 1/2 = 1/2 ⊕ 1/2 ⊕ 3/2 and thus we
have two unwanted spin 1/2 particles. These can be eliminated by imposing
the following supplementary conditions γλψλ = 0 and ∂λψλ = 0, which set
to zero two spinors. For massive particles both conditions are contained in
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the Rarita-Schwinger equation, which in addition contains the dynamical
equations for the ψλ. Such equation is

εµνρσγνγ5

(
∂ρ +

m

2
γρ

)
ψσ = 0 , (2.74)

where ε0123 = 1 and ε0123 = −1. The only properties of the γµ we shall use
are the Cli�ord algebra

{γµ, γλ} = 2ηµλ (2.75)

and the ensuing relation {γλ, γ5} = 0.

By taking the divergence of (2.74) we have, for m ̸= 0

εµνρσγνγ5γρ∂µψσ = 0 . (2.76)

But
εµνρσγνγ5γρ = −i(γµγσ − γσγµ) (2.77)

and thus
(γµγσ − γσγµ)∂µψσ = 0 . (2.78)

Rewriting the above as

(2γµγσ − 2ηµσ)∂µψσ = 0 (2.79)

we obtain
γµ∂µ(γ

σψσ)− ∂µψµ = 0 . (2.80)

We contract now (2.74) with γµ to obtain

εµνρσγµγνγ5∂ρψσ +
m

2
εµνρσγµγνγ5γρψσ = 0 . (2.81)

The �rst term vanishes due to (2.76) and thus we have

0 = (γργσ − γσγρ)γρψσ = −2(γσγρ − ησρ)γρψσ = −6γσψσ = 0 . (2.82)

Due to (2.80) it implies also ∂µψµ = 0. Now we prove that each component
of the Rarita-Schwinger �eld satis�es the Dirac equation. The term of the
Rarita-Schwinger equation proportional to m can be written as

i
m

2
(γµγσ − γσγµ)ψσ = im(γµγσ − ηµσ)ψσ = −imψµ . (2.83)

With regard to the derivative term, it can be rewritten as

εµνρσγνγ5∂ρψσ = εµνρσγνγ5δ
λ
σ∂ρψλ =

=
1

2
εµνρσγνγ5(γ

λγσ + γσγ
λ)∂ρψλ =

1

2
εµνρσγνγ5γ

λγσ∂ρψλ . (2.84)
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But the following equality holds

1

2
εµνρσγνγ5γ

λγσ = i(ηρλγµ − ηµλγρ) , (2.85)

which substituted in the previous expression gives −iγµ∂µψµ. Summing the
two terms we have

γµ∂µψ
µ +mψµ = 0 . (2.86)

We come now to the massless Rarita-Schwinger equation

εµνρσγνγ5∂ρψσ = 0 . (2.87)

Such equation is invariant under the gauge transformation

ψσ → ψσ + ∂ση (2.88)

with η an arbitrary spinor. Contracting (2.87) with γµ gives

0 = (γργσ − γσγρ)∂ρψσ = 2(γργσ − ησρ)∂ρψσ =

= 2γµ∂µ(γ
σψσ)− 2∂σψ

σ . (2.89)

A useful gauge choice is γσψσ = 0, which induces ∂σψσ = 0.

Exercise 2.1: If a charged particle is unde�ected in passing through uniform
crossed electric and magnetic �elds E and B (mutually perpendicular, and
both perpendicular to the direction of motion), what is its velocity? If we
now turn o� the electric �eld, and the particle moves in an arc of radius R,
what is its charge-to-mass ratio?

Exercise 2.2: Find expression of current for the complex scalar �eld.

Exercise 2.3: Construct the normalized spinors representing an electron of
momentum p with helicity ±1.

Exercise 2.4: Construct the Hamiltonian for the Dirac equation.

Exercise 2.5: Find the commutator of the Dirac Hamiltonian with the
orbital angular momentum.

Exercise 2.6: Find the commutator of the Dirac Hamiltonian with the spin
angular momentum.

Exercise 2.7: Show that the spinor representing an electron at rest is an
eigenstate of the parity operator.



Chapter 3

Forces and Particles

3.1 The Fundamental Forces

The two forces most familiar to people, Gravity and Electromagnetism, are
only half of the four fundamental forces in our universe (that we know of).

We can think about the third force by considering a compact nucleus which
we know to be made of protons and neutrons. We know that the protons
should repel each other because of their like charge. But the nuclei of atoms
somehow hold together, which is evidence for some stronger force that causes
these particles to attract. This force, which allows atomic nuclei to remain
stable, is called the Strong force (The SU(3) color force). Just as electrically-
charged particles are subject to the electromagnetic force, some particles
have a property similar to charge, called Color, and are subject to the strong
force. The �eld theory that describes this is called Quantum Chromodynam-
ics (QCD) and was �rst proposed in 1965 by Han, Nambu, and Greenberg.
This theory predicts the existence of the gluon, which is the mediator of the
strong force between two matter particles.

The fourth force is the one we have the least familiarity with. It is responsible
for certain types of radioactive decays; for example, permitting a proton to
turn into a neutron and vice versa. It is called the Weak force (The SU(2)
part that is left over when SU(2)⊗ U(1) is broken).

In the 1960's, Sheldon Glashow, Abdus Salum, and Steven Weinburg in-

19
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dependently developed a theory that uni�ed the electromagnetic and weak
force. At su�ciently high energies it is observed that the di�erence between
these two separate forces is negligible and that they act together as the
Electro-Weak (EW) force (The unbroken SU(2)⊗U(1) force). For processes
at lower energy scales, the symmetry between the electromagnetic and the
weak force is broken and we observe two di�erent forces with di�erent prop-
erties. EW theory predicts four force-carrier particles, corresponding to the 3
generators of SU(2) and the 1 in U(1), that mediate the force between mat-
ter particles. Two of these particles are uncharged, while two carry charge.
The mediating particle for electromagnetism is the photon, and those for the
weak force are W± (with ±1 electron charges) and Z0 (neutral) bosons.

The electromagnetic, weak, and strong forcesform what is called the Standard
Model (SM) of Particle Physics. The SM is an incomplete theory in the sense
that it fails to describe gravitation, the force that acts on matter.

3.2 Fundamental Particles

In the V century B.C., a Greek named Empedocles took the ideas of several
others before him and combined them to say that matter is made up of earth,
wind, �re, and water, and that there are two forces, Love and Strife, that
govern the way they grow and act. More scienti�cally, he was saying that
matter is made of smaller substances that interact with each other through
repulsion and attraction.

Democritus, a contemporary of Empedocles, went a step further to say that
all matter is made of indestructible fundamental particles. He called these
particles atoms, meaning 'indivisible'. Of course, our modern use of the word
is di�erent. At their discovery, it was thought that di�erent elements were
the indivisible particles sought for, so the name atom seemed appropriate.

In the last century, experimenters were surprised as they discovered new par-
ticle after new particle. It seemed disorganized and overwhelming that there
could be so many elementary objects. Eventually, however, the properties
of these particles became better understood and it was found that there re-
ally is just a small, �nite set of fundamental particles, some of which can be
grouped together to make up larger objects.

One property of the "zoo" of discovered particles that helps in our organizing
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them is their intrinsic spin. Any particle, elementary or composite, that is
of half-integer spin is a Fermion. Those with integer spin are Bosons. The
spins govern the statistics of a set of such particles, so fermions and bosons
may also be de�ned according to the statistics they obey.

Namely, fermions obey Fermi-Dirac statistics and therefore also obey the
Pauli Exclusion Principle. This means that no two identical fermions can
be found in the same quantum state at the same time. Furthermore, to
accurately display this behavior it is found that the wave function of a system
with fermions must be antisymmetric; swapping any two like fermions causes
a change in sign of the overall wave function.

Bosons on the other hand obey Bose-Einstein statistics; any number of the
same type of particle can be in the same state at the same time. In contrast
to fermions, the wavefunction of a system of bosons is symmetric.

The elementary particles are those that are considered fundamental, or in
other words, are not composed of smaller particles. They can be divided into
two groups: matter particles and non-matter particles. The elementary mat-
ter particles all have half-integer spin (so are fermions) and the elementary
non-matter particles all have integer spin (so are bosons).

3.2.1 Elementary Fermions

The elementary fermions are the building blocks of all other matter. For
example, the proton and neutron are made up of di�erent combinations
of three elementary quarks. Electrons, which are also elementary, cloud
around the protons and neutrons, and when all three group together in a
particular way, an atom is formed. Less familiar examples include those that
are unstable, such as the muon, which decay fairly quickly.

For every elementary particle, there is also a corresponding particle with
the same mass but of di�erent charge and magnetic moment. Generally the
name of such a particle is the same as the corresponding 'normal' matter
particle, but with the pre�x 'anti' in front of it (e.g. antiquark, antilepton,
etc.). Whenever we discuss matter and its properties, it is implied that the
antimatter counterparts have similar properties.

Now we further divide the elementary fermions into two groups, quarks and
leptons. A convenient way to distinguish these two sets is by whether or not
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they interact via the strong force: quarks may interact via the strong force,
while leptons do not.

Quarks: Experiments involving high energy collisions of electrons and pro-
tons led Murray Gell-Mann to suggest in 1964 that protons and neutrons
are actually composite particles, made of three point-like, spin-1/2 particles
whose charges are either −1/3 or +2/3 units of electron charge. He called
these particles Quarks. Through further experiments it has been found that
there are six �avors of quarks total, grouped into three generations with
the �rst generation containing the up and down quarks, the second genera-
tion containing the more massive charm and strange quarks, and the third
generation containing the even more massive top and bottom quarks.

As electrically charged particles are subject to the electromagnetic force,
quarks have a property similar to charge, called color, and any colored par-
ticle is subject to the strong force. It is found that there are three di�erent
types of colors: (de�ned as) red, green, and blue (plus three more for anti-
quarks: antired, antigreen, and antiblue). Quarks are grouped together to
make composite particles that are colorless (the color charges cancel out),
which is why the concept of color was only discovered after quarks them-
selves were found. The addition of color to the quark model also ensures
that any quarks contained in a composite particle will not violate the exclu-
sion principle since each has a di�erent color. Again, QCD is the �eld theory
that describes these properties.

Another interesting feature of quarks is that they are never found alone,
but rather always inside of a composite particle. This phenomenon is called
Con�nement. It is more a property of the strong force, which increases in
strength as two colored particles are pulled away from each other, just as
would happen when the ends of a piece of elastic are pulled apart. We can
consider reaching a distance between the two quarks where there is su�-
cient potential energy built up that it can be converted to matter, creating
a quark-antiquark pair. The pair will separate and the resulting particles
will recombine with the original quarks. As this process repeats, and more
quark-antiquark pairs are created, the end result in the whole process is a
multiplication of the number of quarks and of the number of composite par-
ticles. In the opposite extreme, as two quarks get closer together, the strong
force between them becomes weaker until the quarks move around freely and
more independently. This is a called Asymptotic Freedom.

Quarks also interact with other particles via the weak force, which is the
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only force that can cause a change of �avor (changing an up into a down, for
example). When this happens, a quark either turns into a heavier quark by
absorbing a W -boson, or it emits a W -boson and then decays to a lighter
quark. Beta decay, a common radioactive process, is caused by this mecha-
nism. Instead of just thinking of beta decay as a neutron in the nucleus of
an atom decaying, or splitting, into a proton, electron, and antineutrino, we
can go a step further with our understanding of quarks subject to the weak
force. We add that, really, it is one of the down quarks in the neutron that
emits a W− boson and then decays to the lighter up quark, keeping charge
conserved in the process. Other conserved quantities are momentum, en-
ergy, quark number, lepton number, and (approximately) lepton generation
number. The neutron, which used to have one up and two down quarks, now
has one down and two up quarks, which is the composition of a proton. The
electron and antineutrino are created from the decay of the W− boson.

Leptons: Leptons interact with other matter via the electromagnetic, the
weak, and gravitational forces, but not through the strong force. This means
that leptons carry SU(2)⊗U(1) terms in their covariant derivatives, but not
SU(3) terms. There are three charged leptons, grouped, like the quarks, into
three di�erent generations based on their masses. This is equivalent to the
statement that there are three copies of the SM Gauge Group. The electron
is the lightest of the charged leptons, then the muon, and the tau. There are
also three neutral leptons, called neutrinos, one type for each of the charged
leptons: the electron neutrino, the muon neutrino, and the tau neutrino.

Some quantities in lepton events are found to be conserved. These conser-
vation laws can all be derived from some rules, though they are typically
treated separately because they are extremely useful when talking about
speci�c interactions. If we de�ne lepton number as the number of leptons
minus the number of antileptons, then lepton number is constant in all in-
teractions. Additionally, the lepton number within each generation is also
approximately conserved. For example, the number of electrons and elec-
tron neutrinos minus the number of antielectrons and electron antineutrinos
is found to be constant in most particle reactions.

An interesting exception is in neutrino oscillations, where a neutrino changes
lepton �avors as it travels. For example, we can take a measurement and
observe an electron neutrino, even though it was known to have been created
as a muon neutrino. These oscillations of �avor only occur if neutrinos have
mass (even just very small mass), so the fact that the SM currently predicts
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them to be massless demonstrates that there are some parameters in the
theory that need to be adjusted.

3.2.2 Elementary Bosons

Throughout the development of the SM it was found that some particles
play a di�erent role than the 'matter' particles that make up the stu� of the
universe. Both the gauge bosons and the Higgs boson fall into this group.

Gauge Bosons: In QFT, the Lagrangian can be made invariant under a
local gauge transformation by the addition of a vector �eld called a gauge
�eld. The quanta of this �eld is called a Gauge Boson. There are three types
of gauge bosons described by the SM (i.e. there are three gauge groups, each
with their own set of generators). They are the photon, which carries the
electromagnetic force, the W± and Z bosons, which carry the weak force,
and the gluons which carry the strong force. Each of these bosons have been
experimentally detected.

Evidence for the photon �rst came in 1905 when Einstein proposed an ex-
planation of the photo-electric e�ect, that light was quantized into energy
packets. Con�rmation of the W± and Z0 bosons came in 1983 through
proton-proton collisions at the CERN.

The gluons were �rst experimentally observed in 1979 in the electron-position
collider at the German Electron Synchroton (DESY) in Hamburg. Further
experiments have demonstrated that the gluons have eight di�erent color
states and that, because they interact via the strong force, they have prop-
erties similar to quarks, such as con�nement.

Taking into account their possible charge or color, we �nd that there are 12
gauge bosons in all, one for the electromagnetic force, three for the weak
force, and eight for the strong force.

Higgs Boson: The Higgs boson was discovers in 2012 at CERN. It is the
only elementary boson that is not a gauge boson. Rather, it is the carrier
of the scalar �eld from which other particles acquire mass. The existence of
the Higgs explains why some particles have mass and others do not.

Let us provide the Table 3.2.2 which should help you see this all more clearly,
the relative strengths have been normalized to unity for the strong force.
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Interaction Gauge Boson Acts On Strength Range

Strong Gluon Hadrons 1 10−15 m

Electro-Magnet. Photon Electric Charges 10−2 ∞ (1/r2)

Weak W±, Z− Lept. and Hadr. 10−5 10−18 m

Gravity Graviton Mass 10−39 ∞ (1/r2)

Table 3.1: Fundamental forces of nature.

3.3 Periodic Table of Particle Physics

As things stand today, the periodic table of the SM is complete. One part
of this periodic table are the spin-1/2 matter particles: the quarks and the
leptons and their anti-particles. The Table 3.2 summarises the details of the
currently available information on all the matter fermions.

Quarks Leptons
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Mu = 2 MeV Mν1 = 0− 0.13× 10−6 MeV
Md = 5 MeV Me = 0.511 MeV
Mc = 1, 300 MeV Mν2 = 0.009− 0.13× 10−6 MeV
Ms = 100 MeV Mµ = 106 MeV
Mt = 173.000 MeV Mν3 = 0.04− 0.14× 10−6 MeV
Mb = 4.200 MeV Mτ = 1.777 MeV

Table 3.2: Elementary fermions of the SM, all of spin 1/2. The three quark colours
are indicated explicitly, while leptons are colourless. Electric charges in units of the
positron charge, are displayed on the left side. The anti-particles form a similar
table with opposite charges.

Of course, a gauge �eld theoretic description of the interactions among these
elementary particles needs in the SM particle spectrum, also the gauge
bosons which would be the carrier of the various interactions. This leads
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to the second set of members of the 'periodic table' of particle physics, viz.
the spin-1 gauge bosons: the photon, W and Z bosons and gluons.

As we will discuss in detail later, gauge invariance, which guarantees the
renormalisability of this theory, would require that all of the gauge bosons
should be massless. Not only that, the same invariance would require the
matter fermions also to be massless. However, other than the gluon and the
photon all the other members of this periodic table are patently massive. In
fact, it is the mechanism of Spontaneous Symmetry Breaking (SSB), which
allows these particles to have non-zero masses and helps keep the theory still
consistent with gauge invariance. SSB of the EW gauge symmetry via the
Higgs mechanism, is the key ingredient of renormalisable gauge theories of
the EW interaction. This requires existence of yet another member of the
periodic table, which is the Higgs boson. This too has been included in the
list of the SM bosons in Table 3.3.

Electromagnetic and weak Strong Higgs
(Spin 1) (Spin 1) (Spin 0)
γ (photon) g (gluons) h (Higgs)

W±, Z (weak bosons)

Mγ = 0 Mg = 0 Mh = 125.4± GeV
Qγ = 0 Qg = 0 Qh = 0
MW = 80.404 GeV
QW = ±1
MZ = 90.1876 GeV
QZ = 0

Table 3.3: Elementary bosons of the SM. There are no separate anti-particles: W−

is the anti-particle of W+ and the rest are neutral. Q indicates the electromagnetic
charge of the boson in units of positron charge.

3.4 Composite Particles

Examples of composite particles are hadrons, nuclei, atoms and molecules.
The latter three are well known and will not be described here.

Hadrons are made up of bound quarks and interact via the strong force. They
can be either fermions or bosons, depending on the number of quarks that
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make them up. An odd number of bound quarks create a spin-1/2 or spin-
3/2 hadron, which is called a baryon, and an even number of quarks create
spin-0 or spin-1 hadrons, called mesons. Experimentally, only combinations
of three quarks or two quarks have been found, so the terms baryon and
meson often just refer to three or two bound quarks, respectively.

You can understand why mesons and baryons have the spin that they do
by considering how many spin-1/2 quarks compose them. A meson has two
quarks, and therefore the total spin of a meson is the sum of an even number
of half-integer spin particles, which will be integer spin. And because there
are only two of them, it is either spin 0 or 1. Baryons, on the other hand,
will have a linear combination of three particles with half-integer spin, which
will of course be half-integer: 1/2 or 3/2.

The most well-known examples of baryons are protons and neutrons. Protons
are made of two up quarks and one down quark, or |uud⟩, and neutrons are
made of two down and one up, or |udd⟩. The baryons are made of 'normal'
quarks only and their antimatter counterparts are made of the corresponding
antiquarks.

The mesons are made of a quark and an antiquark pair, though not neces-
sarily of the same generation. Examples are π+, |ud̄⟩ and K+, |us̄⟩.

One of the reasons for the "zoo" of particles discovered in the past century
is because of the numerous possible combinations of six quarks put into a
three-quark or two-quark hadron. Additionally, each of these combinations
can be in di�erent quantum mechanical states, thereby displaying di�erent
properties. For example, a rho meson ρ has the same combination of quarks
as a pion π, but the ρ is spin-1 whereas the pion is spin-0.

Exercise 3.1: Calculate the ratio of the gravitational attraction to the elec-
trical repulsion between two stationary electrons (Do you need to know how
far apart they are?).

Exercise 3.2: How many di�erent meson combinations can you make with
1, 2, 3, 4, 5, or 6 di�erent quark �avors? What's the general formula for n
�avors?

Exercise 3.3: How many di�erent baryon combinations can you make with
1, 2, 3, 4, 5, or 6 di�erent quark �avors? What's the general formula for n
�avors?
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Exercise 3.4: Using four quarks (u, d, s, and c), construct a table of all
the possible baryon species. How many combinations carry a charm of +1?
How many carry charm +2, and +3?

Exercise 3.5: Using four quarks (u, d, s, and c), construct a table of all
the possible meson species. How many combinations carry a charms of +1,
+2 and +3?

Exercise 3.6: Suppose that all quarks and leptons are composed of two
more elementary constituents - Preons: c (with charge −1/3) and n (with
charge zero) - and their respective antiparticles. You're allowed to combine
them in groups of three preons or three anti-preons (ccn, for example, or
nnn). Construct all of the eight quarks and leptons in the �rst generation
in this manner. (The other generations are supposed to be excited states.)
Notice that each of the quark states admits three possible permutations (ccn,
cnc, ncc, for example) - these correspond to the three colors. Mediators can
be constructed from three preons plus three anti-preons. W±, Z0, and γ
involve three preons and three anti=preons (W− = cccnnn, for instance).
Construct W+, Z0, and γ in this way. Gluons involve mixed combinations
(ccncnn, for instance). How many possibilities are there in all? Can you
think of a way to reduce this down to eight?

Exercise 3.7: A quark and an antiquark are bound together, in a state of
zero orbital angular momentum, to form a meson. What are the possible
values of the meson's spin?

Exercise 3.8: Suppose you combine three quarks in a state of zero orbital
angular momomentum. What are the possible spins of the resulting baryon?
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Chapter 4

Elements of the Scattering

Theory

4.1 Kinematics of the Minkowski Spacetime

In particle physics, the particles are treated relativistically, meaning E ≈
pc ≫ mc2 and thus special theory of relativity becomes an mathematical
tool in describing the particle kinematics.

Introducing the position 4-vector, xµ, one can show that the 4-dimensional
length element,

s ≡ (x0)2 − (x1)2 − (x2)2 − (x3)2 , (4.1)

is Lorentz Invariant. This is like r2 = x2 + y2 + z2 being invariant under
spatial rotation. The quantity s could be written in the form of a sum:
s = gµνx

µxν , where the metric gµν is de�ned as

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (4.2)

Let us de�ne covariant 4-vector xµ (index down), xµ = gµνx
ν , and con-

travariant 4-vector xµ (index up). Then

s = xµx
µ = xµxµ . (4.3)

31



32 CHAPTER 4. ELEMENTS OF THE SCATTERING THEORY

To each contravariant 4-vector aµ, a covariant 4-vector could be assigned
and vice-versa.

aµ = gµνaν , aµ = gµνa
ν , (4.4)

where gµν are the elements in g−1. Since g−1 = g, we have

gµν = gµν . (4.5)

Given any two 4-vectors, aµ and bµ,

aµbµ = aµb
µ = a0b0 − a1b1 − a2b2 − a3b3 (4.6)

is Lorentz invariant. The vector aµ is called time-like, if a2 > 0 , space-like
if a2 < 0 and light-like if a2 = 0.

The 3-velocity of a particle is given by v⃗ = dx⃗/dt, where dx⃗ is the distance
travelled in the laboratory frame and dt is the time measured in the same
frame. Proper velocity of the particle is given by η⃗ = dx⃗/dτ , where dx⃗ is the
distance travelled in the laboratory frame and dτ ≡ dt

√
1− β2 (β ≡ |v/c|)

is the proper time. Now

η⃗ =
dx⃗

dτ
=
dx⃗

dt

dt

dτ
= v⃗γ ⇒ η⃗ = γv⃗ . (4.7)

It is easy to work with the proper velocity, η⃗, as only dx⃗ transforms under
Lorentz transformation. Furthermore,

η0 =
dx0

dτ
=
d(ct)

dt/γ
= γc , (4.8)

hence
ηµ = γ (c, vx, vy, vz) . (4.9)

This is called the proper velocity 4-vector. Remember that the spatial com-
ponent brings up the negative sign for covariant tensor. Now

ηµηµ = γ2
(
c2 − v2x − v2y − v2z

)
= γ2c2

(
1− v2

c2

)
= c2 , (4.10)

which is Lorentz Invariant. This also proves that 4-vector scalar product is
Lorentz invariant.

Successive Lorentz boost in the same direction is represented by a single
boost, where the transformation velocity is given by

β′′ =
β + β′

1 + ββ′
. (4.11)
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The velocity, β, is not an additive quantity, i.e. non-linear in successive
transformation. Here comes the need of "Rapidity", y, to circumvent this
drawback, by de�ning

β = tanh(y) , y =
1

2
ln

(
1 + β

1− β

)
. (4.12)

One can show that rapidity is an additive quantity, i.e.

y′′ = y + y′ . (4.13)

Using the rapidity, a Lorentz transformation with �nite η, can be decomposed
into N successive transformations with rapidity ∆y = y/N . Solving β, γ in
terms of y, we have

β = tanh(y) , γ = cosh(y) , βγ = sinh(y) . (4.14)

Using y Lorentz boost can be written as:

x0
′

= cosh(y) x0 + sinh(y) x1 ,

x1
′

= sinh(y) x0 + cosh(y) x1 . (4.15)

In high-energy collider experiments, the secondary particles which are pro-
duced from the interaction, are boosted in the z-direction (along the beam
axis). The boosted angular distribution is better expressed as rapidity dis-
tribution. At high-energies, each particle has E ∼ pc, and the parallel mo-
mentum p|| = p cos(θ), and its rapidity is approximated by so-called pseudo-
rapidity:

η′ =
1

2
ln

(
1 + β||

1− β||

)
=

1

2
ln

(
E + p||c

E − p||c

)
∼ − ln

[
tan

(
θ

2

)]
. (4.16)

This fact is taken into account in designing detectors, which are divided into
modules that span the same solid angle in the η−ϕ (azimuthal angle) plane.

We know momentum = mass × velocity. And velocity can be "ordinary
velocity" or "proper velocity". Classically, both are equal (non-relativistic
limit). If p⃗ = mv⃗, the conservation of momentum is inconsistent with the
principle of relativity. In relativity, momentum is the product of mass and
proper velocity,

p⃗ ≡ mη⃗ = γmv⃗ =
mv⃗√

1− v2/c2
. (4.17)
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In 4-dimensional formalism this is the spatial component of pµ,

pµ = mηµ . (4.18)

The temporal component, p0 = γmc, constitutes the relativistic energy:

E ≡ γmc2 = mc2√
1− v2/c2

. (4.19)

Hence, the energy-momentum 4-vector:

pµ =

(
E

c
, px, py, pz

)
. (4.20)

Now

pµpµ =
E2

c2
− p⃗ 2 = (mηµ) (mηµ) = m2 (ηµηµ) = m2c2 . (4.21)

For ordinary massive particle p2 = m2 > 0, for massless particles like pho-
tons, gravitons etc. p2 = m2 = 0, for tachyons or virtual particles p2 < 0,
and pµ = 0 corresponds to the vacuum state.

Remember that the relativistic equations p⃗ = γmv⃗ and E = γm do not hold
good for massless particles and m = 0 is allowed only if the particle travels
with the speed of light. For massless particles, v = c and E = |p⃗|c.

4.2 Collider vs Fixed Target Experiment

4.2.1 Mandelstam Variables

Mandelstam variables s, t and u are often used in scattering calculations.
They are de�ned (for 1 + 2→ 3 + 4 scattering) as

s = (p1 + p2)
2 , t = (p1 − p3)2 , u = (p1 − p4)2 . (4.22)

This means that only two Mandelstam variables are independent. Their main
advantage is that they are Lorentz invariant which renders them convenient
for Feynman amplitude calculations. Only at the end we can exchange them
for 'experimenter's' variables E and θ.
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4.2.2 Symmetric Collisions (A+ A)

Consider the collision of two particles. The total 4-momentum of the system
is a conserved quantity in the collision.

In Laboratory System (LS), the particle with momentum p1, energy E1 and
mass m1 collides with a particle of mass m2 at rest. The 4-momenta of the
particles are:

p1 = (E1,p1) , p2 = (m2,0) . (4.23)

Then,
p1p2 = E1m2 , (4.24)

and
pµp

µ = (p1 + p2)
2 = m2

1 +m2
2 + 2E1m2 , (4.25)

hence

Ecm =
√
s =

√
m2

1 +m2
2 + 2Eprojm2 , (4.26)

where E1 = Eproj , the projectile energy in LS.

In Center of Mass (CM) system, the momenta of both the particles are equal
and opposite, the 4-momenta are:

p∗1 = (E∗
1 ,p

∗
1) , p∗2 = (E∗

2 ,−p∗
1) . (4.27)

Then,

pµp
µ = (p1 + p2)

2 = (E1 + E2)
2 − (p1 + p2)

2 = E2
cm ≡ s , (4.28)

√
s is the total energy in the CM, which is the invariant mass of the CM.

For the given system, the two particles p1 and p2 are equivalent to one single
particle with 4-momentum p1+p2 and mass Ecm. Generalizing this, one can
consider these individual particles to represent a system of particles.

Further, we know
p = mv⃗γ , and E = mγ , (4.29)

γ = 1/
√

1− β2. So, one obtains:

βcm =
p1 + p2

E1 + E2
, (4.30)
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which is the velocity of the CM seen from the LS. It is evident here that
the CM frame with an invariant mass

√
s moves in the laboratory in the

direction of p1 with a velocity corresponding to the Lorentz factor,

γcm =
1√

1− β2
=

E1 + E2√
(E1 + E2)2 − (p1 + p2)2

=

=
E1 +m2√

s
, ⇒

√
s =

Elab
γcm

, (4.31)

this is because E = γm and the repidity

ycm = cosh−1γcm . (4.32)

The center of mass, or center of momentum frame, is at rest and the total
momentum is zero. This makes it a suitable choice for solving kinematics
problems.

We know that for a collider with head-on collision (θ = 1800)

E2
cm = m2

1 +m2
2 + 2(E1.E2 + |p1||p2|) . (4.33)

For relativistic collisions, m1,m2 ≪ E1, E2,

E2
cm ≃ 4E1E2 . (4.34)

For two beams crossing at an angle θ,

E2
cm = 2E1E2(1 + cos θ) . (4.35)

The CM energy available in a collider with equal energies (E) for new particle
production rises linearly with E, i.e.

Ecm ≃ 2E . (4.36)

For a �xed-target experiment the CM energy rises as the square root of the
incident energy:

Ecm ≃
√
2m2E1 . (4.37)

Hence the highest energy available for new particle production is achieved
at collider experiments.

Most of the times the energy of the collision is expressed in terms of nucleon-
nucleon center of mass energy. In the nucleon-nucleon CM frame, two nuclei
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approach each other with the same boost factor γ. The nucleon-nucleon CM
is denoted by

√
sNN and is related to the total CM energy by

Ecm = A
√
sNN . (4.38)

This is for a symmetric collision with number of nucleons in each nuclei as A.
The colliding nucleons approach each other with energy

√
sNN/2 and with

equal and opposite momenta. The rapidity of the nucleon-nucleon center
of mass is yNN = 0 and taking m1 = m2 = mp, the projectile and target
nucleons are at equal and opposite rapidities,

yproj = −ytarget = cosh−1

√
sNN
2mp

= ybeam . (4.39)

For the Lorentz Factor we have:

γ =
E

M
=

Ecm
2A mp

=
A
√
sNN

2A mp
=

√
sNN

2 mp
=
Ecmbeam
mp

,

where E and M are Energy and Mass in CM respectively. Assuming mass
of a proton, mp ∼ 1 GeV, the Lorentz factor is of the order of beam energy
in CM for a symmetric collision.

4.2.3 Asymmetric Collisions (A+B)

The CM energy of a collision of two di�erent systems with charge Z1, Z2

and atomic numbers A1, A2 with Z = A = 1, for a proton is

√
sNN ≃ 2

√
spp +

√
spp

√
Z1Z2

A1A2
, (4.40)

where sub-index NN refers to the energy per nucleon inside the colliding
nucleus and √spp is the corresponding energy in pp collisions. The rapidity
shift in non-symmetric systems is given by

∆y ≃ 1

2
ln

[
Z1A2

Z2A1

]
. (4.41)

This is due to the fact that the center-of-mass frame of the pA collision
doesn't coincide with the laboratory center-of-mass frame. The rapidity
shift in p+ Pb collision is

∆y ≃ 1

2
ln

[
Z1A2

Z2A1

]
=

1

2
ln

[
82× 1

1× 208

]
= −0.465 . (4.42)
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This rapidity shift need to be taken into account for the comparison with
Pb+ Pb data.

At LHC, the maximum proton beam energy is 7 TeV, while the maximum Pb
beam energy is 2.75 TeV, Ecm = 8.775 TeV. The di�erence in available energy
is due to the charge-to-mass ratio, Z/A. More is the number of neutrons in
the nucleus, di�cult it is to accelerate to higher energies. Because of di�erent
energies, the two beams will also not have the same rapidity. For the proton
beam yp = 9.61 and for the Pb beam it is yPb = 8.67. Thus the center of
the collision is shifted away from ycm = 0 by

∆ycm =
1

2
(yp − yPb) = 0.47 . (4.43)

Exercise 4.1: Prove that s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

Exercise 4.2: A pion at rest decays into a muon plus a neutrino. What is
the speed of the muon?

Exercise 4.3: Suppose two identical particles, with equal velocities, collide
head-on. What is the kinetic energy of one in the rest system of the other?

Exercise 4.4: In a �xed-target pp experiment, what proton energy would
be required to achieve the same CM energy as the LHC, which is operating
at 14 TeV.

Exercise 4.5: Show that the process γ → e+e− cannot occur in the vacuum.

Exercise 4.6: For the decay a → 1 + 2, express the mass of the particle a
by the velocities of the daughter particles and by the angle between them.

Exercise 4.7: In the LS, p with total energy E collides with p at rest. Find
the minimum E such that process p+ p→ 2p+ 2p̄ is kinematically allowed.

Exercise 4.8: At the HERA collider, 27.5 GeV electrons were collided head-
on with 820 GeV protons. Calculate the CM energy.

Exercise 4.9: Find the energy of the photon after the Compton scattering
from an electron at rest.

Exercise 4.10: Suppose we interpret the electron as a classical solid sphere
spinning with angular momentum ~/2. What is the speed of a point on its
"equator"? It is known that electrons radius is less than 10−16 cm.
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Golden Rules for Particle

Reactions

5.1 Free Field Solutions

Processes in particle physics are mostly calculated in the framework of the
quantum �eld theory. However, predictions of quantum �eld theory pertain-
ing to the elementary particle interactions can often be calculated using a
relatively simple "recipe" � Feynman diagrams.

Before we turn to describing the method of Feynman diagrams, let us just
specify quantum �elds that take part in the elementary particle physics in-
teractions. All these are free �elds, and interactions are treated as their
perturbations. Each particle type (electron, photon, Higgs boson, ...) has
its own quantum �eld.

5.1.1 Spin 0: Scalar Field

E.g. Higgs boson, pions, ...

ϕ(x) =

∫
d3p√

(2π)32E

[
a(p⃗)e−ipx + ac†(p⃗)eipx

]
. (5.1)
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5.1.2 Spin 1/2: the Dirac Field

E.g. quarks, leptons, ...

Note that single-particle Dirac equation is not exactly right even for single-
particle systems (such as the Hydrogen atom) and unable to treat many-
particle processes, such as the β-decay n → p e−ν̄. So we have to upgrade
to quantum �eld theory.

Any Dirac �eld is some superposition of the complete set

u(p⃗, σ)e−ipx , v(p⃗, σ)eipx , (σ = 1, 2, p⃗ ∈ R3) (5.2)

and we can write it as:

ψ(x) =
∑
σ

∫
d3p√

(2π)32E

[
u(p⃗, σ)a(p⃗, σ)e−ipx + v(p⃗, σ)ac†(p⃗, σ)eipx

]
. (5.3)

Here 1/
√
(2π)32E is a normalization factor (there are many di�erent con-

ventions), and a(p⃗, σ) and ac†(p⃗, σ) are expansion coe�cients. To make this
a quantum Dirac �eld we promote these coe�cients to the rank of operators
by imposing the anticommutation relations

{a(p⃗, σ), a†(p⃗′, σ′)} = δσσ′δ3(p⃗− p⃗′) , (5.4)

and similarly for ac(p⃗, σ). For bosonic �elds we would have a commutation
relations instead. This is similar to the promotion of position and momen-
tum to the rank of operators by the [xi, pj ] = i~δij commutation relations,
which is why is this transition from the single-particle quantum theory to
the quantum �eld theory sometimes called second quantization.

Operator a†, when operating on vacuum |0⟩, creates one-particle state |p⃗, σ⟩,

a†(p⃗, σ)|0⟩ = |p⃗, σ⟩ , (5.5)

and this is the reason that it is named a creation operator. Similarly, a is
an annihilation operator

a(p⃗, σ)|p⃗, σ⟩ = |0⟩ , (5.6)

and ac† and ac are creation and annihilation operators for antiparticle states
(c in ac stands for 'conjugated').
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The fact that Dirac spinors satisfy the Klein-Gordon equation suggests the
ansatz

ψ(x) = u(p⃗)e−ipx , (5.7)

which after inclusion in the Dirac equation gives the momentum space Dirac
equation

(/p−m)u(p⃗) = 0 . (5.8)

This has two positive-energy solutions

u(p⃗, σ) = N

 χ(σ)

σ⃗ · p⃗
E +m

χ(σ)

 , (σ = 1, 2) (5.9)

where

χ(1) =

(
1
0

)
, χ(2) =

(
0
1

)
, (5.10)

and two negative-energy solutions which are then interpreted as positive-
energy antiparticle solutions

v(p⃗, σ) = −N

 σ⃗ · p⃗
E +m

(iσ2)χ(σ)

(iσ2)χ(σ)

 . (σ = 1, 2, E > 0) (5.11)

N is the normalization constant to be determined later. The momentum-
space Dirac equation for antiparticle solutions is

(/p+m)v(p⃗, σ) = 0 . (5.12)

It can be shown that the two solutions, one with σ = 1 and another with
σ = 2, correspond to the two spin states of the spin-1/2 particle.

Normalization: In non-relativistic single-particle quantum mechanics nor-
malization of a wavefunction is straightforward. Probability that the particle
is somewhere in space is equal to one, and this translates into the normal-
ization condition

∫
ψ∗ψ dV = 1. On the other hand, we will eventually use

spinors (5.9) and (5.11) in many-particle quantum �eld theory so their nor-
malization is not unique. We will choose normalization convention where we
have N particles in the unit volume:∫

unit volume

ρ dV =

∫
unit volume

ψ†ψ dV = N . (5.13)
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This choice is relativistically covariant because the Lorentz contraction of
the volume element is compensated by the energy change. There are other
normalization conventions with other advantages.

Parity and Bilinear Covariants: The parity transformation:

P : (x⃗→ −x⃗, t→ t) , ψ → γ0ψ . (5.14)

Any fermion current will be of the form ψ̄Γψ, where Γ is some four-by-four
matrix. For construction of interaction Lagrangian we want to use only those
currents that have de�nite Lorentz transformation properties. We �rst de�ne
two new matrices:

γ5 ≡ iγ0γ1γ2γ3 Dirac rep.
=

(
0 1
1 0

)
, {γ5, γµ} = 0 ,

σµν ≡ i

2
[γµ, γν ] , σµν = −σνµ . (5.15)

Now ψ̄Γψ will transform covariantly if Γ is one of the matrices given in the
following table. Transformation properties of ψ̄Γψ, the number of di�erent
γ matrices in Γ, and the number of components of Γ are also displayed.

Γ transforms as number of γ's number of components
1 scalar 0 1
γµ vector 1 4
σµν tensor 2 6
γ5γµ axial vector 3 4
γ5 pseudoscalar 4 1

This exhausts all possibilities. The total number of components is 16, mean-
ing that the set {1, γµ, σµν , γ5γµ, γ5} makes a complete basis for any four-
by-four matrix. Such ψ̄Γψ currents are called bilinear covariants.

5.1.3 Spin 1: Vector Field

Either for massive (e.g. W,Z weak bosons), or massless (e.g. photon),

Aµ(x) =
∑
λ

∫
d3p√

(2π)32E

[
ϵµ(p⃗, λ)a(p⃗, λ)e−ipx +

+ ϵµ∗(p⃗, λ)a†(p⃗, λ)eipx
]
, (5.16)
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where ϵµ(p⃗, λ) is a polarization vector. For massive particles it obeys

pµϵ
µ(p⃗, λ) = 0 (5.17)

automatically, whereas in the massless case this condition can be imposed
thanks to gauge invariance (Lorentz gauge condition). This means that
there are only three independent polarizations of a massive vector particle:
λ = 1, 2, 3 (or λ = +,−, 0). In massless case gauge symmetry can be further
exploited to eliminate one more polarization state leaving us with only two:
λ = 1, 2 (or λ = +,−).

Normalization of polarization vectors is such that

ϵ∗(p⃗, λ) · ϵ(p⃗, λ) = −1 . (5.18)

For a massive particle moving along the z-axis (p = (E, 0, 0, |p⃗|)) we can take

ϵ(p⃗,±) = ∓ 1√
2


0
1
±i
0

 , ϵ(p⃗, 0) =
1

m


|p⃗|
0
0
E

 . (5.19)

The obtained result obviously cannot be simply extrapolated to the massless
case via the limit m → 0. Gauge symmetry makes massless polarization
sum somewhat more complicated but for the purpose of the simple Feynman
diagram calculations it is permissible to use just the following relation∑

λ

ϵµ∗(p⃗, λ)ϵν(p⃗, λ) = −gµν . (5.20)

5.2 Di�erential Cross Section

Consider a classical measurement where a single particle is scattered o� a sin-
gle stationary target particle. Conventionally, a spherical coordinate system
is used, with the target placed at the origin and the z axis of this coordinate
system aligned with the incident beam. The angle θ is the scattering angle,
measured between the incident beam and the scattered beam, and the φ is
the azimuthal angle. The impact parameter b is the perpendicular o�set of
the trajectory of the incoming particle, and the outgoing particle emerges
at an angle θ. For a given interaction (Coulombic, magnetic, gravitational,
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contact, etc.), the impact parameter and the scattering angle have a de�-
nite one-to-one functional dependence on each other. Generally the impact
parameter can neither be controlled nor measured from event to event and
is assumed to take all possible values when averaging over many scattering
events.

The di�erential size of the cross section is the area element in the plane of
the impact parameter,

dσ = bdφdb . (5.21)

The di�erential angular range of the scattered particle at angle θ is the solid
angle element

dΩ = sinθdθdφ . (5.22)

The di�erential cross section is the quotient of these quantities, dσ/dΩ. It
is a function of the scattering angle (and therefore also the impact parame-
ter), plus other observables such as the momentum of the incoming particle.
The di�erential cross section is always taken to be positive, even though
larger impact parameters generally produce less de�ection. In cylindrically
symmetric situations (about the beam axis), the azimuthal angle φ is not
changed by the scattering process, and dσ/dΩ can be written as

dσ

d cos θ
=

1

2π

∫ 2π

0

dσ

dΩ
dφ . (5.23)

In situations where the scattering process is not azimuthally symmetric, such
as when the beam or target particles possess magnetic moments oriented
perpendicular to the beam axis, the di�erential cross section must also be
expressed as a function of the azimuthal angle.

For scattering of particles of incident �ux Finc o� a stationary target consist-
ing of many particles, the di�erential cross section dσ/dΩ at an angle (θ, φ)
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is related to the �ux of scattered particle detection Fout(θ, φ) in particles per
unit time by

dσ

dΩ
(θ, φ) =

1

nt∆Ω

Fout(θ, φ)

Finc
. (5.24)

Here ∆Ω is the �nite angular size of the detector, n is the number density
of the target particles, and t is the thickness of the stationary target. This
formula assumes that the target is thin enough that each beam particle will
interact with at most one target particle.

The total cross section σ may be recovered by integrating the di�erential
cross section dσ/dΩ over the full solid angle (4π steradians):

σ =

∮
4π

dσ

dΩ
dΩ =

∫ 2π

0

∫ π

0

dσ

dΩ
sin θ dθ dφ. (5.25)

It is common to omit the "di�erential" quali�er when the type of cross
section can be inferred from context. In this case, s may be referred to as
the integral cross section or total cross section. The latter term may be
confusing in contexts where multiple events are involved, since "total" can
also refer to the sum of cross sections over all events.

The di�erential cross section is extremely useful quantity in many �elds of
physics, as measuring it can reveal a great amount of information about the
internal structure of the target particles. For example, the di�erential cross
section of Rutherford scattering provided strong evidence for the existence of
the atomic nucleus. Instead of the solid angle, the momentum transfer may
be used as the independent variable of di�erential cross sections. Di�erential
cross sections in inelastic scattering contain resonance peaks that indicate
the creation of metastable states and contain information about their energy
and lifetime.

5.3 Fermi Golden Rules

Principal experimental observables of particle physics are: the scattering
cross section σ(1 + 2 → 1′ + 2′ + · · · + n′) and the decay width Γ(1 →
1′+2′+· · ·+n′). On the other hand, theory is de�ned in terms of Lagrangian
density of quantum �elds, e.g.

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − g

4!
ϕ4 .
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How to calculate σ's and Γ's from L?

To calculate rate of transition from the state |α⟩ to the state |β⟩ in the
presence of the interaction potential VI in non-relativistic quantum theory
we have the Fermi's Golden Rule:(

α→ β
transition rate

)
=

2π

~
|⟨β|VI |α⟩|2 ×

(
density of �nal
quantum states

)
. (5.26)

This is in the lowest order perturbation theory. For higher orders we have
terms with products of more interaction potential matrix elements ⟨|VI |⟩.

In quantum �eld theory there is a counterpart to these matrix elements �
the S-matrix :

⟨β|VI |α⟩+ (higher-order terms) −→ ⟨β|S|α⟩ . (5.27)

On one side, S-matrix elements can be perturbatively calculated (knowing
the interaction Lagrangian/Hamiltonian) with the help of the Dyson series:

S = 1− i
∫
d4x1H(x1)+

(−i)2

2!

∫
d4x1 d

4x2 T{H(x1)H(x2)}+ · · · , (5.28)

and on another, we have 'golden rules' that associate these matrix elements
with cross-sections and decay widths.

It is convenient to express these golden rules in terms of the Feynman invari-
ant amplitude M which is obtained by stripping some kinematical factors
o� the S-matrix:

⟨β|S|α⟩ = δβα − i(2π)4δ4(pβ − pα)Mβα

∏
i=α,β

1√
(2π)3 2Ei

. (5.29)

Now we have two rules:

• Partial decay rate of 1→ 1′ + 2′ + · · ·+ n′,

dΓ =
1

2E1
|Mβα|2 (2π)4δ4(p1 − p′1 − · · · − p′n)

n∏
i=1

d3p′i
(2π)3 2E′

i

; (5.30)

• Di�erential cross section for a scattering 1 + 2→ 1′ + 2′ + · · ·+ n′,

dσ =
1

uα

1

2E1

1

2E2
|Mβα|2 (2π)4 ×

× δ4(p1 + p2 − p′1 − · · · − p′n)
n∏
i=1

d3p′i
(2π)3 2E′

i

, (5.31)
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where uα is the relative velocity of particles 1 and 2:

uα =

√
(p1 · p2)2 −m2

1m
2
2

E1E2
, (5.32)

and |M|2 is the Feynman invariant amplitude averaged over unmeasured
particle spins (see Section 5.5.1). The dimension of M, in units of energy,
is for decays [M] = 3 − n, and for scattering of two particles [M] = 2 − n,
where n is the number of produced particles.

For 2→ 2 scattering we have in the center of the mass:

dσCM(1 + 2→ 3 + 4) =
1

64π2(E1 + E2)2
|p⃗3|
|p⃗1|
|Mβα|2 dΩ3 , (5.33)

where Ω3 is the spatial angle of the third particle with respect to the �rst
one (dΩ3 = dϕ3d cos θ3). So calculation of some observable quantity consists
of two stages:

1. Determination of |M|2. For this we use the method of Feynman dia-
grams to be introduced in the next section;

2. Integration over the Lorentz invariant phase space

dΘ = (2π)4δ4(p1 + p2 − p′1 − · · · − p′n)
n∏
i=1

d3p′i
(2π)3 2E′

i

.

5.4 Feynman Diagrams for ϕ4-model

Consider the example of calculations of Feynman diagrams for the ϕ4-theory
lagrangian:

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 − g

4!
ϕ4 . (5.34)

• Free (kinetic) Lagrangian (terms with exactly two �elds) determines
particles of the theory and their propagators. Here we have just one
scalar �eld:

φ
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• Interaction Lagrangian (terms with three or more �elds) determines
possible vertices. Here, again, there is just one vertex:

φ

φ

φ

φ

We need to construct all possible diagrams with �xed outer particles. For
example, for scattering of two scalar particles in this theory we would have:

M(1 + 2→ 3 + 4) = + + + . . .

1

2

3

4

t

In these diagrams time �ows from left to right. Some people draw Feynman
diagrams with time �owing up, which is more in accordance with the way
we usually draw space-time in relativity physics.

Since each vertex corresponds to one interaction Lagrangian (Hamiltonian)
term in (5.28), diagrams with loops correspond to higher orders of perturba-
tion theory. Here we will work only to the lowest order, so we will use tree
diagrams only.

To actually write down the Feynman amplitudeM, we have a set of Feyn-
man rules that associate factors with elements of the Feynman diagram. In
particular, to get −iM we construct the Feynman rules in the following way:

• the vertex factor is just the i times the interaction term in the (mo-
mentum space) Lagrangian with all �elds removed:

iLI = −i
g

4!
ϕ4

removing �elds−→

φ

φ

φ

φ

= −i g
4!

; (5.35)
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• the propagator is i times the inverse of the kinetic operator (de�ned
by the free equation of motion) in the momentum space:

Lfree
Euler eq.−→ (∂µ∂

µ +m2)ϕ = 0 . (5.36)

Going to the momentum space using the substitution ∂µ → −ipµ and
then taking the inverse gives:

(p2 −m2)ϕ = 0 → φ =
i

p2 −m2
(5.37)

(actually, the correct Feynman propagator is i/(p2 −m2 + iϵ), but for
our purposes we can ignore the in�nitesimal iϵ term);

• External lines are represented by the appropriate polarization vector or
spinor (the one that stands by the appropriate creation or annihilation
operator in the �elds (5.1), (5.3), (5.16) and their conjugates):

particle Feynman rule
ingoing fermion u
outgoing fermion ū
ingoing antifermion v̄
outgoing antifermion v
ingoing photon ϵµ

outgoing photon ϵµ∗

ingoing scalar 1
outgoing scalar 1

The tree-level contribution to the scalar-scalar scattering amplitude in this
ϕ4 theory would be just

− iM = −i g
4!
. (5.38)

Note that also

p
=
i
∑

σ u(p⃗, σ)ū(p⃗, σ)

p2 −m2
, (5.39)

i.e. the electron propagator is just the scalar propagator multiplied by the
polarization sum. It is nice that this generalizes to propagators of all par-
ticles. This is very helpful since inverting the photon kinetic operator is
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non-trivial due to gauge symmetry complications. Hence, propagators of
vector particles are

massive:
p, m

=

−i
(
gµν − pµpν

m2

)
p2 −m2

,

massless:
p

=
−igµν

p2
. (5.40)

This is in principle almost all we need to know to be able to calculate
the Feynman amplitude of any given process. Note that propagators and
external-line polarization vectors are determined only by the particle type
(its spin and mass) so that the corresponding rules above are not restricted
only to the ϕ4 theory and QED, but will apply to all theories of scalars,
spin-1 vector bosons and Dirac fermions (such as the standard model). The
only additional information we need are the vertex factors.

Almost in the preceding paragraph alludes to the fact that in general Feyn-
man diagram calculation there are several additional subtleties:

• In loop diagrams some internal momenta are undetermined and we
have to integrate over those. Also, there is an additional factor (-1)
for each closed fermion loop. Since we will consider tree-level diagrams
only, we can ignore this;

• There are some combinatoric numerical factors when identical �elds
come into a single vertex;

• Sometimes there is a relative (-) sign between diagrams;

• There is a symmetry factor if there are identical particles in the �nal
state.

Note that there are several computer programs that can perform some or all
of the steps in the calculation of Feynman diagrams. One such program is
FeynCalc package for Wolfram's Mathematica.

5.5 Calculating e+e− → µ+µ− in QED

There is only one contributing tree-level diagram:
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We write down the amplitude using the Feynman rules of QED and following
fermion lines backwards. Order of lines themselves is unimportant.

iM = [ū(p⃗3, σ3)(ieγ
ν)v(p⃗4, σ4)]

−igµν
(p1 + p2)2

×

× [v̄(p⃗2, σ2)(ieγ
µ)u(p⃗1, σ1)] , (5.41)

or, introducing abbreviation u1 ≡ u(p⃗1, σ1),

M =
e2

(p1 + p2)2
[ū3γµv4][v̄2γ

µu1] . (5.42)

5.5.1 Summing Over Polarizations

If we knew momenta and polarizations of all external particles, we could
calculateM explicitly. However, experiments are often done with unpolar-
ized particles so we have to sum over the polarizations (spins) of the �nal
particles and average over the polarizations (spins) of the initial ones:

|M|2 → |M|2 = 1

2

1

2

∑
σ1σ2︸ ︷︷ ︸

avg. over initial pol.

sum over �nal pol.︷︸︸︷∑
σ3σ4

|M|2 . (5.43)

Factors 1/2 are due to the fact that each initial fermion has two polarization
(spin) states.

In the calculation of |M|2 =M∗M, the following identity is needed

[ūγµv]∗ = [u†γ0γµv]† = v†γµ†γ0u = [v̄γµu] . (5.44)

Thus,

|M|2 = e4

4(p1 + p2)4

∑
σ1,2,3,4

[v̄4γµu3][ū1γ
µv2][ū3γνv4][v̄2γ

νu1] . (5.45)
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5.5.2 Casimir Trick

Sums over polarizations are easily performed using the following trick. First
we write

∑
[ū1γ

µv2][v̄2γ
νu1] with explicit spinor indices:

∑
σ1σ2

ū1αγ
µ
αβv2β v̄2γγ

ν
γδu1δ . (α, β, γ, δ = 1, 2, 3, 4) (5.46)

We can now move u1δ to the front (u1δ is just a number, element of u1 vector,
so it commutes with everything), and then use the completeness relations,

∑
σ1

u1δ ū1α = (/p1 +m1)δα ,∑
σ2

v2β v̄2γ = (/p2 −m2)βγ , (5.47)

which turn sum (5.46) into

(/p1 +m1)δα γ
µ
αβ (/p2 −m2)βγ γ

ν
γδ = Tr[(/p1 +m1)γ

µ(/p2 −m2)γ
ν ] . (5.48)

This means that

|M|2 =
e4

4(p1 + p2)4
Tr[(/p1 +m1)γ

µ(/p2 −m2)γ
ν ]×

× Tr[(/p4 −m4)γµ(/p3 +m3)γν ] . (5.49)

Thus we got rid o� all the spinors and we are left only with traces of γ
matrices. These can be evaluated using the relations from the following
section.

5.5.3 Traces and Contraction Identities of γ-Matrices

Traces and Contraction Identities are consequence of the anticommutation
relations {γµ, γν} = 2gµν , {γµ, γ5} = 0, (γ5)2 = 1.

Trace Identities:
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1. Trace of an odd number of γ's vanishes:

Tr(γµ1γµ2 · · · γµ2n+1) = Tr(γµ1γµ2 · · · γµ2n+1

1︷︸︸︷
γ5γ5)

(moving γ5 over each γµi ) = −Tr(γ5γµ1γµ2 · · · γµ2n+1γ5)

(cyclic property of trace) = −Tr(γµ1γµ2 · · · γµ2n+1γ5γ5)

= −Tr(γµ1γµ2 · · · γµ2n+1)

= 0;

2. Tr 1 = 4;

3. We have:

Trγµγν = Tr(2gµν − γνγµ) (2.)
= 8gµν − Trγνγµ =

= 8gµν − Trγµγν → 2Trγµγν = 8gµν → Trγµγν = 4gµν . (5.50)

This also implies:
Tr/a/b = 4a · b . (5.51)

Contraction Identities:

•
γµγµ =

1

2
gµν (γ

µγν + γνγµ)︸ ︷︷ ︸
2gµν

= gµνg
µν = 4 ;

•
γµ γαγµ︸ ︷︷ ︸
−γµγα+2gαµ

= −4γα + 2γα = −2γα .

5.5.4 Kinematics in the CM Frame

In e+e− coliders often pi ≫ me,mµ, i = 1, . . . , 4, so we can take

mi → 0 'high-energy' or 'extreme relativistic' limit.

Then

|M|2 = 8e4

(p1 + p2)4
[(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)] . (5.52)
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5.5.5 Integration Over 2-Particle Phase Space

Now we can use the 'golden rule' (5.31) for the 1 + 2 → 3 + 4 di�erential
scattering cross-section

dσ =
1

uα

1

2E1

1

2E2
|M|2 dΘ2 , (5.53)

where two-particle phase space to be integrated over is

dΘ2 = (2π)4δ4(p1 + p2 − p3 − p4)
d3p3

(2π)3 2E3

d3p4
(2π)3 2E4

. (5.54)

First we integrate over four out of six integration variables, and we do this
in general frame. δ-function makes the integration over d3p4 trivial giving

dΘ2 =
1

(2π)2 4E3E4
δ(E1 + E2 − E3 − E4) d

3p3︸︷︷︸
p⃗23d|p⃗3|dΩ3

. (5.55)

Now we integrate over d|p⃗3| by noting that E3 and E4 are functions of |p⃗3|

E3 = E3(|p⃗3|) =
√
p⃗23 +m2

3 , E4 =
√
p⃗24 +m2

4 =
√
p⃗23 +m2

4 , (5.56)

and by δ-function relation

δ(E1 + E2 −
√
p⃗23 +m2

3 −
√
p⃗23 +m2

4) =

= δ[f(|p⃗3|)] =
δ(|p⃗3| − |p⃗(0)3 |)
|f ′(|p⃗3|)||p⃗3|=|p⃗(0)3 |

. (5.57)

Here |p⃗3| is just the integration variable and |p⃗(0)3 | is the zero of f(|p⃗3|) i.e.
the actual momentum of the third particle. After we integrate over d|p⃗3| we
put |p⃗(0)3 | → |p⃗3|. Since

f ′(|p⃗3|) = −
E3 + E4

E3E4
|p⃗3| , (5.58)

we get

dLips2 =
|p⃗3|dΩ

16π2(E1 + E2)
. (5.59)

Now we again specialize to the CM frame and note that the �ux factor is

4E1E2uα = 4
√

(p1 · p2)2 −m2
1m

2
2 = 4|p⃗1|(E1 + E2) , (5.60)
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giving �nally
dσCM
dΩ

=
1

64π2(E1 + E2)2
|p⃗3|
|p⃗1|
|M|2 . (5.61)

Note that we kept masses in each step so this formula is generally valid for
any CM scattering. For our particular e−e+ → µ−µ+ scattering this gives
the �nal result for di�erential cross-section (introducing the �ne structure
constant α = e2/(4π))

dσ

dΩ
=

α2

16E2
(1 + cos2 θ) . (5.62)

Note that it is obvious that σ ∝ α2, and that dimensional analysis requires
σ ∝ 1/E2, so only angular dependence (1+ cos2 θ) tests QED as a theory of
leptons and photons.

5.5.6 Summary of Steps

To recapitulate, calculating (unpolarized) scattering cross-section (or decay
width) consists of the following steps:

1. drawing the Feynman diagram(s)

2. writing −iM using the Feynman rules

3. squaringM and using the Casimir trick to get traces

4. evaluating traces

5. applying kinematics of the chosen frame

6. integrating over the phase space

Exercise 5.1: Determine Dirac equations for ū(p⃗, σ) and v̄(p⃗, σ).

Exercise 5.2: Using the explicit expressions (5.9) and (5.11) show that∑
σ=1,2

u(p⃗, σ)ū(p⃗, σ) = /p+m ,
∑
σ=1,2

v(p⃗, σ)v̄(p⃗, σ) = /p−m .

Exercise 5.3: For a vector �eld calculate
∑

λ ϵ
µ∗(p⃗, λ)ϵν(p⃗, λ). Hint: Write

it in the most general form (Agµν +Bpµpν) and then determine A and B.
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Exercise 5.4: Determine the Feynman rules for the electron propagator
and for the only vertex of quantum electrodynamics.

Exercise 5.5: Express |M|2 for e−e+ → µ−µ+ scattering in terms of Man-
delstam variables.

Exercise 5.6: Draw Feynman diagram(s) and write down the amplitude for
Compton scattering γe− → γe−.

Exercise 5.7: Why we sum probabilities and not amplitudes?

Exercise 5.8: Calculate Tr(γµγνγργσ). Hint: Move γσ all the way to the
left, using the anticommutation relations.

Exercise 5.9:

1. Prove that Tr(γµ1γµ2 · · · γµ2n) has (2n− 1)!! terms.

2. Tr(γ5γµ1γµ2 · · · γµ2n+1) = 0. This follows from 1. and from the fact
that γ5 consists of even number of γ's.

3. Trγ5 = Tr(γ0γ0γ5) = −Tr(γ0γ5γ0) = −Trγ5 = 0.

4. Tr(γ5γµγν) = 0. (Same trick as above, with γα ̸= µ, ν instead of γ0.)

5. Tr(γ5γµγνγργσ) = −4iϵµνρσ, with ϵ0123 = 1. Careful: convention with
ϵ0123 = −1 is also in use.

Exercise 5.10:

1. Contract γµγαγβγµ.

2. Show that γµγαγβγγγµ = −2γγγβγα.

3. For e+e− → µ+µ− calculate traces in |M|2: Tr[(/p1+m1)γ
µ(/p2−m2)γ

ν ]
and Tr[(/p4 −m4)γµ(/p3 +m3)γν ].

4. Calculate |M|2 for e+e− → µ+µ−.

Exercise 5.11: Express |M|2 in terms of E and θ.

Exercise 5.12: Integrate (5.62) to get the total cross section σ.



Chapter 6

Conservation Laws and

Selection Rules

In developing the standard model for particles, certain types of interactions
and decays are observed to be common and others seem to be forbidden.
The study of interactions has led to a number of conservation laws which
govern them. These conservation laws are in addition to the classical conser-
vation laws such as conservation of energy, charge, etc., which still apply in
the realm of particle interactions. Strong overall conservation laws are the
conservation of baryon and lepton numbers. Speci�c quantum numbers have
been assigned to the di�erent fundamental particles, and other conservation
laws are associated with those quantum numbers.

6.1 Crossing Symmetry

Part of the high energy physicist's toolkit in anticipating what interactions
can be expected is "crossing symmetry". Any interaction which is observed
can be used to predict other related interactions by "crossing" any particle
across the reaction symbol and turning it into its antiparticle.

If a particle interaction
A+B → C +D (6.1)

is observed to occur, then related interactions can be anticipated from the

57
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fact that any of the particles can be replaced by its antiparticle on the other
side of the interaction. This is commonly known as "crossing symmetry".
The observation of the above interaction implies the existence of the following
interactions.

A → B̄ + C +D ,

A+ C̄ → B̄ +D ,

C̄ → Ā+ B̄ +D , (6.2)

C̄ + D̄ → Ā+ B̄ .

The overbar indicates the antiparticle. Crossing symmetry applies to all
known particles, including the photon which is its own antiparticle. One
example of the crossing principle is that of the relation between Compton
scattering and electron-positron annihilation.

Compton scattering : γ + e− → e− + γ ,

Pair annihilation : e− + e+ → γ + γ . (6.3)

By examination, it can be seen that these two interactions are related by
crossing symmetry. It could then be said that the observation of Compton
scattering implies the existence of pair annihilation and predicts that it will
produce a pair of photons.

Another example of crossing symmetry may have led Reines and Cowan to
their experiment for the detection of the neutrino. If you take the electron
product from the neutron decay reaction to the other side and convert it into
a positron, then you have the reaction which they used,

Neutron decey : n→ p+ e− + ν̄e ,

Neutrino detection : ν̄e + p→ n+ e+ . (6.4)

6.2 Totalitarian Principle

From what we observe with massive particles, it would seem that any local-
ized particle of �nite mass should be unstable, since the decay into several
smaller particles provides many more ways to distribute the energy, and thus
would have higher entropy. Some have adopted the description "totalitarian
principle" for this situation. It might be stated as "every process that is not
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forbidden must occur". From this point of view, any decay process which is
expected but not observed must be prevented from occurring by some con-
servation law. This approach has been fruitful in helping to determine the
rules for particle decay.

For example, with just conservation of energy and charge considered, one
might expect a proton to decay into a positive pion plus a gamma ray to
take away excess energy and conserve momentum:

p9 π+ + γ . (6.5)

The fact that neither this nor any other decay of the proton is observed
suggests that the decay of the proton is forbidden by a strong conservation
principle. This principle is called the conservation of baryon number, and
no observed particle decays violate it. The proton does not decay because it
is the least massive baryon, and has nowhere to go.

Another decay which was expected on energy and charge grounds was the
decay of the neutron into a proton and an electron. The decay of the neutron
is observed, but the fact that the electron does not have a de�nite energy
implies that there is a third particle in the decay, the antineutrino,

n 9 p+ e− ,

n → p+ e− + ν̄e . (6.6)

The fact that the �rst of these decays did not occur suggested a prohibiting
conservation law, which is called the conservation of lepton number.

Since the strengths of the interactions associated with particle decay descend
in the order strong, electromagnetic and weak, it might be presumed that
the strongest interaction would lead to the shortest lifetime, and that is what
is observed. From experiments we can establish time regimes for the three
types of interactions.

Interaction Approximate decay lifetime

Strong 10−23 s
Electromagnetic 10−16 s
Weak 10−10 s

In the spirit of the "totalitarian principle", if you observed a decay in the
10−16 s range you might guess that it is electromagnetic, and that some



60 CHAPTER 6. CONSERVATION LAWS AND SELECTION RULES

principle prevented it decay by the strong interaction. A 10−10 s decay
suggests that both strong and electromagnetic are somehow blocked.

One way to examine a decay is to list the quark content of each of the
particles. For this purpose, it is convenient to refer to the meson table:

and baryon table:

6.3 Conservation of Baryon Number

Each of the baryons is assigned a baryon number B = 1. This can be
considered to be equivalent to assigning each quark a baryon number of 1/3.
This implies that the mesons, with one quark and one antiquark, have a
baryon number B = 0. No known decay process or interaction in nature
changes the net baryon number.
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The neutron and all heavier baryons decay directly to protons or eventually
form protons, the proton being the least massive baryon. This implies that
the proton has nowhere to go without violating the conservation of baryon
number, so if the conservation of baryon number holds exactly, the proton is
completely stable against decay. One prediction of grand uni�cation of forces
is that the proton would have the possibility of decay, so that possibility is
being investigated experimentally.

Conservation of baryon number prohibits a decay of the type

p+ n → p+ µ+ + µ− ,

B = 1 + 1 ̸= 1 + 0 + 0 , (6.7)

but with su�cient energy permits pair production in the reaction

p+ n → p+ n+ p̄+ p ,

B = 1 + 1 ̸= 1 + 1− 1 + 1 . (6.8)

The fact that the decay
π− → µ− + ν̄µ (6.9)

is observed implied that there is no corresponding principle of conservation of
meson number. The pion is a meson composed of a quark and an antiquark,
and on the right side of the equation there are only leptons. (Equivalently,
you could assign a baryon number of 0 to the meson.)

6.4 Conservation of Lepton Number

The conservation of lepton number (L) is a little more complicated rule than
the conservation of baryon number because there is a separate requirement
for each of the three sets of leptons, the electron, muon and tau and their
associated neutrinos.

The �rst signi�cant example was found in the decay of the neutron. When
the decay of the neutron into a proton and an electron was observed, it
did not �t the pattern of two-particle decay. That is, the electron emitted
does not have a de�nite energy as is required by conservation of energy
and momentum for a two-body decay. This implied the emission of a third
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particle, which we now identify as the electron antineutrino,

n 9 p+ e− ,

n → p+ e− + ν̄e . (6.10)

The assignment of a lepton number of L = 1 to the electron and L = −1
to the electron antineutrino keeps the lepton number equal to zero on both
sides of the second reacton above, while the �rst reaction does not conserve
lepton number.

The observation of the following two decay processes leads to the conclu-
sion that there is a separate lepton number for muons which must also be
conserved,

π− → µ− + ν̄µ ,

µ− → e− + ν̄e + νµ . (6.11)

The �rst reaction above (decay of the pion) is known to be a two-body decay
by the fact that a well-de�ned muon energy is observed from the decay.
However, the decay of the muon into an electron produces a distribution of
electron energies, showing that it is at least a three-body decay. In order for
both electron lepton number and muon lepton number to be conserved, then
the other particles must be an electron anti-neutrino and a muon neutrino.

6.5 Isospin

Isospin is a term introduced to describe groups of particles which have nearly
the same mass, such as the proton and neutron. This doublet of particles is
said to have isospin 1/2, with projection +1/2 for the proton and −1/2 for
the neutron. The three pions compose a triplet, suggesting isospin 1. The
projections are +1 for the positive, 0 and −1 for the neutral and negative
pions. Isospin is used as an axis in particle diagrams, with strangeness being
the other axis. Isospin is not really spin, and doesn't have the units of
angular momentum - the spin term is tacked on because the addition of the
isospins follows the same rules as spin.

Isospin is a dimensionless quantity associated with the fact that the strong
interaction is independent of electric charge. Any two members of the proton-
neutron isospin doublet experience the same strong interaction: proton-
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proton, proton-neutron, neutron-neutron have the same strong force attrac-
tion.

At the quark level, the up and down quarks form an isospin doublet (I = 1/2)
and the projection I3 = +1/2 is assigned to the up quark and I3 = −1/2
to the down. (The subscript 3 is used here for the third component rather
than the z used with spin and orbital angular momentum because most of
the literature does so.) The other quarks are assigned isospin I = 0. Isospin
is related to other quantum numbers for the particles by

q

e
= I3 +

Y

2
, (6.12)

where q denotes charge (q/e is used to make it dimensionless), I3 is projection
of the isotopic spin, Y = S + B is called hypercharge and S and B are
strangeness and baryon number, respectively. This relationship is called
the Gell Mann-Nishijima formula. Some references use T for isospin, but it
appears that most use I for isospin and T for weak isospin.

Isospin is associated with a conservation law which requires strong interac-
tion decays to conserve isospin, as illustrated by the process,

uds uds

Σ0 = Λ0 + γ , (6.13)

I = 1 ̸= I = 0

which does not involve any transmutation of quarks, so would be expected
to decay by strong interaction. However, it does not conserve isospin, and is
observed to decay by the electromagnetic interaction, but not by the strong
interaction. The experimental discrimination is made by the observation of
its decay lifetime, presuming by the totalitarian principle that if it could
decay by the strong interaction, it would.

6.5.1 Strangeness

In 1947 during a study of cosmic ray interactions, a product of a proton
collision with a nucleus was found to live for a much longer time than ex-
pected: 10−10 seconds instead of the expected 10−23 seconds! This particle
was named the lambda particle (Λ0) and the property which caused it to
live so long was dubbed "strangeness" and that name stuck to be the name
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of one of the quarks from which the lambda particle is constructed. The
lambda is a baryon which is made up of three quarks: an up, a down and a
strange quark.

The shorter lifetime of 10−23 seconds was expected because the lambda as a
baryon participates in the strong interaction, and that usually leads to such
very short lifetimes. The long observed lifetime helped develop a new con-
servation law for such decays called the "conservation of strangeness". The
presence of a strange quark in a particle is denoted by a quantum number
S = −1. Particle decay by the strong or electromagnetic interactions pre-
serve the strangeness quantum number. The decay process for the lambda
particle must violate that rule, since there is no lighter particle which con-
tains a strange quark - so the strange quark must be transformed to another
quark in the process. That can only occur by the weak interaction, and that
leads to a much longer lifetime. The decay processes show that strangeness
is not conserved:

uds uud ūd

Λ0 = p + π− , (6.14)

S = −1 ̸= 0 + 0

The quark transformations necessary to accomplish these decay processes
can be visualized with the help of Feynmann diagrams.

The omega-minus, Ω−, a baryon composed of three strange quarks, is a
classic example of the need for the property called "color" in describing
particles. Since quarks are fermions with spin 1/2, they must obey the
Pauli Exclusion Principle and cannot exist in identical states. So with three
strange quarks, the property which distinguishes them must be capable of
at least three distinct values.

Conservation of strangeness is not in fact an independent conservation law,
but can be viewed as a combination of the conservation of charge, isospin,
and baryon number. It is often expressed in terms of hypercharge Y :

Y = S +B = 2(Q− I) , (6.15)

where Q, I, S and B are the electric charge, isotopic spin, strangeness and
baryon number, respectively.

Isospin and either hypercharge or strangeness are the quantum numbers often
used to draw particle diagrams for the hadrons.
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6.5.2 Charm

In 1974 a meson called the J/Ψ particle was discovered. With a mass of
3100 MeV, over three times that of the proton, this particle was the �rst
example of another quark, called the charm quark. The J/Ψ is made up of
a charm-anticharm quark pair.

The lightest meson which contains a charm quark is theD meson. It provides
interesting examples of decay since the charm quark must be transformed
into a strange quark by the weak interaction in order for it to decay.

One baryon with a charm quark, or having charm quantum number C = 1,
is a called a lambda with symbol Λ+

c . It has a composition udc and a mass
of 2281 MeV.

6.5.3 Beauty

In 1977, an experimental group at Fermilab led by Leon Lederman discovered
a new resonance at 9.4 GeV which was interpreted as a bottom-antibottom
quark pair and called the Upsilon meson, Υ. From this experiment, the
mass of the bottom quark is implied to be about 5 GeV. The reaction being
studied was

p+N → µ+ + µ− +X , (6.16)

where N was a copper or platinum nucleus. The spectrometer had a muon-
pair mass resolution of about 2%, which allowed them to measure an excess
of events at 9.4 GeV. This resonance has been subsequently studied at other
accelerators with a detailed investigation of the bound states of the bottom-
antibottom meson. Studies of the B-meson have also been productive. The
particles containing the bottom quark are assigned with the quantum number
beauty, B̃.

6.5.4 Truth

Convincing evidence for the observation of the top quark was reported by
Fermilab's Tevatron facility in April 1995. The evidence was found in the
collision products of 0.9 TeV protons with equally energetic antiprotons in
the proton-antiproton collider. The evidence involved analysis of trillions of
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1.8 TeV proton-antiproton collisions. The Collider Detector Facility group
had found 56 top candidates over a predicted background of 23 and the
D0 group found 17 events over a predicted background of 3.8. The value
for the top quark mass from the combined data of the two groups after the
completion of the run was 174.3±5.1 GeV. This is over 180 times the mass of
a proton and about twice the mass of the next heaviest fundamental particle,
the Z0 vector boson at about 93 GeV.

By introduction of the quantum number truth, T , for the particles contain-
ing t-quark, the expression for the hypercharge in the Gell Mann-Nishijima
formula obtains the form:

Y = B + S + C + B̃ + T . (6.17)

6.6 C, P and T Transformations

Many of the profound ideas in nature manifest themselves as symmetries. A
symmetry in a physical experiment suggests that something is conserved, or
remains constant, during the experiment. So conservation laws and symme-
tries are strongly linked.

Three of the symmetries which usually, but not always, hold are those of
charge conjugation (C), parity (P ), and time reversal (T ):

• Charge conjugation (C): reversing the electric charge and all the in-
ternal quantum numbers.

• Parity (P ): space inversion; reversal of the space coordinates, but not
the time.

• Time reversal (T ): replacing t by −t. This reverses time derivatives
like momentum and angular momentum.

6.6.1 Charge Conjugation

Classically, charge conjugation may seem like a simple idea: just replace pos-
itive charges by negative charges and vice versa. Since electric and magnetic
�elds have their origins in charges, you also must reverse these �elds.
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In quantum mechanical systems, charge conjugation has some further im-
plications. It also involves reversing all the internal quantum numbers like
those for lepton number, baryon number and strangeness. It does not a�ect
mass, energy, momentum or spin.

Thinking of charge conjugation as an operator, C, then electromagnetic pro-
cesses are invariant under the C operation since Maxwell's equations are
invariant under C. This restricts some kinds of particle processes. Das
and Ferbel proceed by de�ning a charge parity of ηC(γ) = −1 for a photon
since the C operation reverses the electric �eld. This constrains the elec-
tromagnetic decay of a neutral particle like the π0. The decay of the π0 is:
π0 → γ + γ. This implies that the charge parity or behavior under charge
conjugation for a π0 is:

ηC(π
0) = ηC(γ)ηC(γ) = (−1)2 = +1 . (6.18)

Charge conjugation symmetry would imply that the π0 will not decay by
π0 → γ, which we already know because it can't conserve momentum, but
the decay π0 → 3γ can conserve momentum. This decay cannot happen
because it would violate charge conjugation symmetry.

While the strong and electromagnetic interactions obey charge conjugation
symmetry, the weak interaction does not. As an example, neutrinos are found
to have intrinsic parities: neutrinos have left-handed parity and antineutrinos
right-handed. Since charge conjugation would leave the spatial coordinates
untouched, then if you operated on a neutrino with the C operator, you
would produce a left-handed antineutrino. But there is no experimental ev-
idence for such a particle; all antineutrinos appear to be right-handed. The
combination of the parity operation P and the charge conjugation operation
C on a neutrino do produce a right-handed antineutrino, in accordance with
observation. So it appears that while beta decay does not obey parity or
charge conjugation symmetry separately, it is invariant under the combina-
tion CP .

6.6.2 Parity

One of the conservation laws which applies to particle interactions is associ-
ated with parity. Parity involves a transformation that changes the algebraic
sign of the coordinate system. Parity is an important idea in quantum me-
chanics because the wavefunctions which represent particles can behave in
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di�erent ways upon transformation of the coordinate system which describes
them. The parity transformation changes a right-handed coordinate system
into a left-handed one or vice versa. Two applications of the parity transfor-
mation restores the coordinate system to its original state.

Quarks have an intrinsic parity which is de�ned to be+1 and for an antiquark
parity = −1. Nucleons are de�ned to have intrinsic parity +1. For a meson
with quark and antiquark with antiparallel spins (s = 0), then the parity is
given by

P = PqPq̄(−1)l , (6.19)

where l is orbital angular momentum.

The meson parity is given by

P = −(−1)l = (−1)l+1 . (6.20)

The lowest energy states for quark-antiquark pairs (mesons) will have zero
spin and negative parity and are called pseudoscalar mesons. The nine pseu-
doscalar mesons can be shown on a meson diagram. One kind of notation
for these states indicates their angular momentum and parity

jP = 0− . (6.21)

Excited states of the mesons occur in which the quark spins are aligned,
which with zero orbital angular momentum gives j = 1. Such states are
called vector mesons,

jP = 1− . (6.22)

The vector mesons have the same spin and parity as photons.

All neutrinos are found to be "left-handed", with an intrinsic parity of −1
while antineutrinos are right-handed, parity = +1.

Non-conservation of Parity

The electromagnetic and strong interactions are invariant under the par-
ity transformation. It was a reasonable assumption that this was just the
way nature behaved, oblivious to whether the coordinate system was right-
handed or left-handed. But for several years physicists had puzzled over the
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decay of the neutral kaons, which had equal mass but decayed to products
of opposite parity. In 1956, Lee and Yang predicted the non-conservation of
parity in the weak interaction. Their prediction was quickly tested when Wu
and collaborators studied the beta decay of Cobalt-60 in 1957.

By lowering the temperature of cobalt atoms to about 0.01K, Wu was able to
"polarize" the nuclear spins along the direction of an applied magnetic �eld.
The directions of the emitted electrons were then measured. Equal numbers
of electrons should be emitted parallel and antiparallel to the magnetic �eld
if parity is conserved, but they found that more electrons were emitted in
the direction opposite to the magnetic �eld and therefore opposite to the
nuclear spin.

This and subsequent experiments have consistently shown that a neutrino
always has its intrinsic angular momentum (spin) pointed in the direction
opposite its velocity. It is called a left-handed particle as a result. Anti-
neutrinos have their spins parallel to their velocity and are therefore right-
handed particles. Therefore we say that the neutrino has an intrinsic chiral-
ity.

The idea that nature at a very fundamental level can tell the di�erence
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between "left-handed" and "right-handed" systems is a radical one. It was
thought for a time that the combination of the parity operation (P ) and
"charge conjugation" (C) was an inviolate conservation law (CP invariance).
But the study of the Kaon decay in 1964 showed a violation of CP .

6.6.3 Time Reversal

In simple classical terms, time reversal just means replacing t by −t, invert-
ing the direction of the �ow of time. Reversing time also reverses the time
derivatives of spatial quantities, so it reverses momentum and angular mo-
mentum. Newton's second law is quadratic in time and is invariant under
time reversal. It's invariance under time reversal holds for either gravita-
tional or electromagnetic forces.

Very sensitive experimental tests have been done to put upper bounds on any
violation of time-reversal symmetry. One experiment described by Das and
Ferbel is the search for a dipole moment for the neutron. Even though the
neutron is neutral, it is viewed as made up of charged quarks and therefore
could conceivably have a dipole moment. Experimental evidence is consistent
with zero dipole moment, so time reversal symmetry seems to hold in this
case.

The small violation of CP symmetry suggests some departure from T sym-
metry in some weak interaction process since CPT invariance seems to be
on very �rm ground.

6.6.4 CP Invariance

The strong and electromagnetic interactions leave systems invariant under
any of the three operations applied alone, but the weak interaction does not.
The beta decay of cobalt-60 established the violation of parity in 1957, and
led to our understanding that the weak interaction violates both charge con-
jugation and parity invariance. However, the weak interaction does appear
to leave systems invariant under the combination CP . Examination of the
case of the neutrino is instructive at this point. The parity operation on
a neutrino would leave its spin in the same direction while reversing space
coordinates.

P |νL⟩ → |νL⟩ , P |νR⟩ → |νR⟩ . (6.23)
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Neither of these things is observed to happen in nature; neutrinos are always
left-handed, anti-neutrinos always right-handed. But if you add the charge
conjugation operation, the result of the combined operation gives you back
the original particle.

CP |νL⟩ → C|νL⟩ = |νL⟩ , CP |νR⟩ → C|νR⟩ = |νR⟩ . (6.24)

CP invariance was thought to be a general conservation principle until the
details of the neutral kaon decay process were examined by Cronin and Fitch.
After intense study over many years, the consensus is that CP is violated by
a small amount. In 2001 CP violation was con�rmed in B-meson decay. It
is thought possible by some investigators that in CP violation is to be found
the reason for the vast excess of matter over antimatter in the universe.

6.6.5 CPT Theorem

Conservation laws for parity, isospin, and strangeness have been developed
by detailed observation of particle interactions. The combination of charge
conjugation (C), parity (P ) and time reversal (T ) is considered to be a
fundamental symmetry operation - all physical particles and interactions
appear to be invariant under this combination. Called CPT invariance, this
symmetry plumbs the depths of our understanding of nature.

On the theoretical side, CPT invariance has received a great deal of atten-
tion. Georg Ludens, Wolfgang Pauli and Julian Schwinger independently
showed that invariance under Lorentz transformations implies CPT invari-
ance. CPT invariance itself has implications which are at the heart of our
understanding of nature and which do not easily arise from other types of
considerations.

• Integer spin particles obey Bose-Einstein statistics and half-integer
spin particles obey Fermi-Dirac statistics. Operators with integer spins
must be quantized using commutation relations, while anticommuta-
tion relations must be used for operators with half integer spin;

• Particles and antiparticles have identical masses and lifetimes. This
arises from CPT invariance of physical theories;

• All the internal quantum numbers of antiparticles are opposite to those
of the particles.
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Exercise 6.1: Why does the proton have a parity while the muon does not?

Exercise 6.2: A state containing only one strange particle: (a) can decay
into a state of zero strangeness; (b) can be created strongly from a state of
zero strangeness; (c) cannot exist.

Exercise 6.3: For each of the following decays state a conservation law that
forbids it: n→ p+ e−; n→ π+ + e−; n→ p+ π− and n→ p+ γ.

Exercise 6.4: Check that the Gell-Mann-Nishijima formula works for the
quarks u, d and s. Using the table of quark properties, and the quark isospin
assignments, deduce the generalized Gell-Mann-Nishijima formula expressing
Q in terms of B, I3, S, C, B and T .

Exercise 6.5: Is the neutrino an eigenstate of P? If so, what is its intrinsic
parity?

Exercise 6.6: Give a non-trivial (rate greater than 5%) decay mode for
each particle in the following list: n, π+, ρ0, K0, Λ0, ∆++, µ−, Ω−, J/Ψ.

Exercise 6.7: List all of the known leptons. How does µ+ decay? Consid-
ering this decay and the fact that νµ+ n→ e− + p is found to be forbidden,
discuss possible lepton quantum number assignments that satisfy additive
quantum number conservation laws. How could νµ produce a new charged
"heavy lepton"?

Exercise 6.8: Having 4.5 GeV free energy, what is the most massive isotope
one could theoretically produce from nothing?

Exercise 6.9: Which conservation law forbidders the decay K → πγ?

Exercise 6.10: There are no known mesons of electric charge two. Can you
give a simple explanation of this?

Exercise 6.11: Explain how the parity of pion can be measured by obser-
vation of the polarizations of the photons in π0 → γγ.

Exercise 6.12: To a very high accuracy, the cross section for e−p scattering
equals the cross section for e+p scattering. Is this equality a consequence of
a conservation law? If so, which one? If not, explain the observed equality.
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Chapter 7

Quantum Fields

7.1 Primary and Secondary Quantizations

In this lecture our main goal is to formulate a relativistic quantummechanical
theory of interactions. We start with the fundamental equation of quantum
mechanics, Schroedinger's equation,

HΨ = i~
∂Ψ

∂t
. (7.1)

We know that for a non-interacting, non-relativistic particle,

H =
p⃗ 2

2m
= − ~

2m
∇⃗2 , (7.2)

so

− ~
2m
∇⃗2Ψ = i~

∂Ψ

∂t
. (7.3)

Of course, in this case Ψ is a scalar �eld, and therefore only has one state. So,
it describes a spin-0 particle. Since Ψ does not have any spacetime indices,
it also transforms trivially under the Lorentz group.

Notice, however, that we have a fundamental barrier in making a relativistic
theory � the spatial derivative in (7.3) acts quadratically (∇⃗2), whereas the
time derivative is linear. Clearly, treating space and time di�erently in this
way is unacceptable for a relativistic theory. That is a hint of a much more

75
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fundamental problem with quantum mechanics; space is always treated as
an operator, but time is always treated as a parameter. This fundamental
asymmetry is what ultimately prevents a straightforward generalization to
relativistic quantum theory.

To �x this problem, we have two choices: either promote time to an operator
along with space, or demote space back to a parameter and quantize in a
new way.

The �rst option would result in the Hermitian operators X̂, Ŷ , Ẑ, and T̂ . It
turns out that this approach is very di�cult and less useful as far as building
a relativistic quantum theory. So, we will take the second option.

In demoting position to a parameter along with time, we obviously have
sacri�ced the operators which we imposed commutation relations on to get
a 'quantum' theory in the �rst place. Because we obviously can't impose
commutation relations on parameters (because they are scalars), quantiza-
tion appears impossible. So, we are going to have to make a fairly radical
reinterpretation.

Rather than letting the coordinates be Hermitian operators that act on the
state in the Hilbert space representing a particle, we now interpret the parti-
cle as the Hermitian operator, and this operator (or particle) will be param-
eterized by the spacetime coordinates. The physical state that the particle
operators act on is then the vacuum itself, |0⟩. So, whereas before you
acted on the 'electron' |Ψ⟩ with the operator x̂, now the 'electron' (param-
eterized by x) Ψ(xµ) acts on the vacuum |0⟩, creating the state Ψ(xµ)|0⟩.
In other words, the operator representing an electron excites the vacuum
(empty space) resulting in an electron. We will see that all quantum �elds
contain appropriate raising and lowering operators to do just this.

This approach, where the quantum mechanical entities are no longer the
coordinates acting on the �elds, but the �elds themselves, is called Quantum
Field Theory (QFT).

So, whereas before, quantization was de�ned by imposing commutation re-
lations on the coordinate operators [x, p] ̸= 0 (primary quantization), we
now quantize by imposing commutation relations on the �eld operators,
[Ψ1,Ψ2] ̸= 0, what sometimes is called as secondary quantization.

Because we must still write down the equations of motion which govern the
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dynamics of the �elds, we want to remind some classical equations governing
the �elds we want to work with (see Chapt. 2).

7.2 Quantization of Spin-0 Fields

As we said above, Schroedinger's equation (7.3) describes the time evolution
of a spin-0 �eld, or a scalar �eld. Generalizing to higher spins will come
later. Now, we see how to make this description relativistic.

The most obvious guess for a relativistic form is to simply plug in the stan-
dard relativistic Hamiltonian

H =
√
p⃗ 2c2 +m2c4 . (7.4)

Note that the Taylor expansion,√
1 + x2 ≈ 1 +

x

2
, (x≪ 1) (7.5)

gives the Hamiltonian for p⃗ 2 ≪ c2,

H ≈ mc2 + p⃗ 2

2m
, (7.6)

which is the standard non-relativistic form (plus a constant) we'd expect
from a low speed limit.

Plugging (7.4) into (7.3), we have

i~
∂ϕ

∂t
=

√
−~2c2∇⃗2 +m2c4 ϕ . (7.7)

But there are two problems with this:

1. The space and time derivatives are still treated di�erently, so this is
inadequate as a relativistic equation;

2. Taylor expanding the square root will give an in�nite number of deriva-
tives acting on ϕ, making this theory non-local.
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One solution is to square the operator on both sides, giving the Klein Gordon
equation:

−~2∂
2ϕ

∂t2
=
(
−~2c2∇⃗2 +m2c4

)
ϕ ⇒

(
−∂0∂0 + ∇⃗2 − m2c2

~2

)
ϕ = 0 . (7.8)

If we choose the so called 'natural units' or 'God units', where c = ~ = 1,
we have

(∂2 −m2)ϕ = 0 . (7.9)

The equation is nothing more than an operator version of the standard rel-
ativistic relation

E2 = m2c4 + p̄2c2 . (7.10)

Note that because we will be quantizing �elds and not coordinates, there
is absolutely nothing 'quantum' about the Klein-Gordon equation. It is,
at this point, merely a relativistic wave equation for a classical, spinless,
non-interacting �eld (see Sec. 2.2).

Finally, we note one major problem with the Klein-Gordon equation. When
we squared the Hamiltonian (7.4) to get

H2 = m2c4 + p⃗ 2c2 , (7.11)

the energy eigenvalues became

E = ±
√
m2c4 + p⃗ 2c2 . (7.12)

It appears that we have a negative energy eigenvalue! Obviously this is un-
acceptable in a physically meaningful theory, because negative energy means
that we don't have a true vacuum, and therefore a particle can cascade down
forever, giving o� an in�nite amount of radiation.

We will see that this problem plagues the spin-1/2 particles as well, so we
wait to talk about the solution until then.

7.3 Quantization of Spin 1/2 Fields

Finding equation (7.9) was easy because scalar �elds have no spacetime in-
dices and no spinor indices. A particle of spin 1/2 however, will have two
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complex components, one for spin +1/2, and the other for spin −1/2 (see
Sec. 2.5). So, we describe such a particle as the two-component Spinor,

ψ =

(
ψ1

ψ2

)
, (7.13)

where ψ1 and ψ2 are both ∈ C. So, we want some di�erential operator in the
form of 2× 2 matrices to act on such a �eld to form the equation of motion.

Following Dirac's approach, he reasoned that given such a 2 × 2 operator,
the equation of motion should somehow 'imply' the Klein-Gordon equation
(which merely makes the theory relativistic). So his goal (and our goal) is to
�nd an equation with a 2 × 2 matrix di�erential operator acting on ψ that
results in (7.9).

Dirac's approach was to �nd an operator of the form

̸D = γµ∂µ = γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3 , (7.14)

where the γ's are 2× 2 matrices, and the equation of motion is then

̸Dψ = −imψ . (7.15)

The challenge is in �nding the appropriate 2× 2 γ-matrices. Dirac reasoned
that, in order to be properly relativistic, operating twice with ̸D should give
the Klein-Gordon equation. In other words,

̸D = −im ⇒ ̸D ̸Dψ = −im̸Dψ ,

⇒ γµ∂µγ
ν∂νψ = −im(−imψ) ,

⇒ γµγν∂µ∂νψ = −m2ψ , (7.16)

⇒
(
γµγν∂µ∂ν +m2

)
ψ = 0 .

This will yield the Klein-Gordon equation if

γµγν = −ηµνI . (7.17)

Or, using the symmetry of the sum in (7.16), it will yield the Klein-Gordon
equation if we demand

1

2
(γµγν + γνγµ) = −ηµνI , (7.18)

Consider
{γµ, γν} = γµγν + γνγµ = −2ηµνI (7.19)
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If the γ-matrices satisfy (7.19), then (7.16) gives

(γµγν∂µ∂ν +m2)ψ = 0 ⇒ (−ηµν∂µ∂ν +m2)ψ = 0 , (7.20)

which is exactly the Klein-Gordon equation (7.9).

So, we have the Dirac equation(
̸D + im

)
ψ = 0 , (7.21)

but we still have a problem. Namely, there does not exist a set of 2 × 2
matrices that solve (7.19). Nor does there exist a set of 3 × 3 matrices.
The smallest possible size where this is possible is 4 × 4. Obviously, if we
want to describe a spin-1/2 particle with exactly 2 spin states, using 4 spin
components does not seem right. But, we will accept the necessity of 4× 4
Dirac matrices and move on.

Instead of using (ψ1, ψ2), we will de�ne the two 2-dimensional spinors

ψL ≡
(
ψ1

ψ2

)
and ψR ≡

(
ψ3

ψ4

)
(7.22)

and the 4-component spinor

ψ ≡
(
ψL
ψR

)
. (7.23)

Now it is possible to solve (7.19). Such a problem is actually very familiar
to algebraists, and we will not delve into the details of how this is done.
Instead, we merely state one solution (there are many, up to a similarity
transformation). We de�ne the 4 × 4 matrices,

γi =

(
0 −σi
σi 0

)
and γ0 =

(
0 σ0

σ0 0

)
, (7.24)

where σ0 is the 2 × 2 identity matrix, and σi are the Pauli spin matrices. It
should be no surprise that they show up in attempting to describe spin-1/2
particles. What is interesting is that we did not assume them � we derived
them using (7.19).

Now that we have an explicit form of the Dirac gamma matrices, we can
write out (7.21) explicitly:

0 0 ∂0 − ∂3 −∂1 + i∂2
0 0 −∂1 − i∂2 ∂0 + ∂3

∂0 + ∂3 ∂1 − i∂2 0 0
∂1 + i∂2 ∂0 − ∂3 0 0



ψ1

ψ2

ψ3

ψ4

 = −im


ψ1

ψ2

ψ3

ψ4

 .(7.25)
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Or, in terms of ψL and ψR,

iσ̄µ∂µψR = +mψL ,

iσµ∂µψL = +mψR , (7.26)

where we have de�ned the 4-vectors

σµ = (σ0, σ1σ2, σ3) and σ̄µ = (σ0,−σ1,−σ2,−σ3) . (7.27)

7.3.1 The Dirac Sea Interpretation of Antiparticles

Initially, it may seem that the impossibility of �nding a 2 × 2 matrix solution
to (7.19) means that we can't have �elds with 2 spinor states. However,we
aren't limited to scalars and spacetime 4-component spinors. We can also
have two �elds, ψL and ψR, which can be paired together to form two spin-
1/2 �elds in a 4-component spinor (ψL, ψR). So, Dirac was faced with the
challenge of both interpreting this, while at the same time dealing with the
negative energy states mentioned in section 7.2.

Dirac's solution, though today abandoned, was brilliant enough to mention.
He suggested that because spin-1/2 particles obey the Pauli Exclusion Prin-
ciple, there could be an in�nite number of particles already in the negative
energy levels, and so they are already occupied, preventing any more par-
ticles from falling down and giving o� in�nite energy. Thus, the negative
energy problem was solved.

Furthermore, he said that it is possible for one of the particles in this in�nite
negative sea to be excited and jump up into a positive energy state, leaving
behind a hole. This would appear to us, experimentally, as a particle with
the same mass, but the opposite charge. He called such particles Antiparti-
cles. For example, the antiparticle of the electron is the antielectron, or the
positron (same mass, opposite charge). The positron is not a particle in the
same sense as the electron, but rather is a hole in an in�nite sea of electrons.
And where this negative charge is missing, all that is left is a hole which
appears as a positively charged particle.

So, ψL describes a particle, and due to the in�nite sea of negative particles,
there can always be a hole, which will be described by ψR. Everything about
this worked out mathematically, and when antiparticles were detected about
5 years after Dirac's prediction of them, it appeared that Dirac's suggestion
was correct.
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However, there were two major problems with Dirac's idea, and they ulti-
mately proved fatal to the 'Dirac Sea' interpretation:

1. This theory, which was supposed to be a theory of single particles, now
requires an in�nite number of them;

2. Particles like photons, pions, mesons, or Klein-Gordon scalars don't
obey the Pauli Exclusion Principle, but still have negative energy
states, and therefore Dirac's argument doesn't work.

However, his labeling them 'antiparticles' has stuck, and we therefore still
refer to the right-handed part of the spin-1/2 �eld, ψR, as the antiparticle,
whereas the left-handed part, ψL, is still the particle.

For these reasons, we must have some other way of understanding the exis-
tence of the antiparticles.

7.4 The QFT Interpretation of Antiparticles

In presenting the problem of negative energy states, we have been somewhat
intentionally sloppy. To take stock, we have two equations of motion: the
Klein-Gordon (7.9) for scalar/spin-0 �elds, and the Dirac equation (7.21) for
spin-1/2 particles.

In our discussion of negative energy states, we were 'pretending' that the ψ's
and ϕ's have 'states' with negative energy. But, as we said in section 7.1,
QFT o�ers a di�erent interpretation of the �elds. Namely, the �elds are not
states � they are operators. And consequently they can't have energy. A
state is made by acting on the vacuum with either of the operators ϕ or ψ,
and then the state ϕ|0⟩ or ψ|0⟩ has some positive energy.

So, QFT allows us to see the antiparticle as a real, actual particle, rather
than the absence of a particle. And, we do not need the conceptually di�cult
idea of an in�nite sea of negative energy particles. The vacuum |0⟩, with no
particles in it, is now our state with the lowest possible energy level.

How exactly |0⟩ works will become clearer when we quantize. The point to
be understood for now is that QFT solves the problem of negative energy by
reinterpreting what is a state and what is an operator. The �elds ϕ and ψ
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are operators, not states, and therefore they do not have energy associated
with them (any more than the operator x̂ or p̂x did in non-relativistic quan-
tum mechanics). So, without any problems of negative energy, we merely
accept that nature, due to relativity, demands that particles come in parti-
cle/antiparticle pairs, and we move on.

7.5 Dirac Equation with Electromagnetic Field

In Sec. 2.1 we introduced the Lagrangian for an electromagnetic �eld. Our
goal now is to �nd a Lagrangian that describes the electromagnetic �eld and
a spin-1/2 particle that couples to the electromagnetic �eld, and addition-
ally the interaction between them. We start by writing down a Lagrangian
without any interaction, which is simply the sum of the two terms,

L = LD + LEM = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − JµAµ , (7.28)

were Jµ = ψ̄γµψ denotes the global U(1) current.

Because the Dirac part has no terms in common with the electromagnetic
part, the equations of motion and the conserved quantities for both ψ and
Aµ will be exactly the same, as if the other weren't present at all. In other
words, both �elds go about their way as if the other weren't there � there
is no interaction in this theory. Because this makes for a boring universe
(and horrible phenomenology), we need to �nd some way of coupling the
two �elds together to produce some sort of interaction.

Interaction is introduced in a physical theory by adding the Interaction Term
to the Lagrangian. So, the �nal Lagrangian will have the form

L = LD + LEM + Lint . (7.29)

We do this by coupling the electromagnetic �eld Aµ to the current resulting
from the local U(1) symmetry in LD. In other words, our interaction term
will be proportional to Aµjµ.

So, adding a constant of proportionality q (which we will see has the physical
interpretation of a coupling constant, weighting the probability of an inter-
action to take place, or equivalently the physical interpretation of electric
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charge), our Lagrangian is now

L = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − JµAµ − qjµAµ =

= ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − (Jµ + qψ̄γµψ)Aµ . (7.30)

Notice that L is still invariant under the global U(1), and that the La-
grangians (7.28) and (7.30) are the same except for a shift of the current,

Jµ → Jµ + qjµ . (7.31)

The fact that Jµ has shifted in (7.30) means that the spin-1/2 particle in
this theory contributes to the �eld, which is what we would expect it to do.

If we set q = e, the electric charge, this Lagrangian becomes upon quanti-
zation the Lagrangian of Quantum Electrodynamics (QED), which to date
makes the most accurate experimental predictions ever. Below we shall write
this lagrangian in more fundamental form.

Exercise 7.1: Derive the equation for a massive spin-1 �eld, �nd corre-
sponding propagator and the conditions on the polarization vector for its
plane-wave solution.

Exercise 7.2: Construct a Lagrangian for scalar QED, with a complex
scalar �elds and a photon �eld. Identify the interaction terms and derive the
Feynman rules.

Exercise 7.3: The Pauli-Lubanski vector is de�ned by

Wµ =
1

2
ϵµνρσM

νρpσ ,

where pσ = −i∂σ is the linear momentum and

Mνρ =
1

2
σνρ + i (xν∂ρ − xρ∂ν)

is the angular momentum. For spinor �elds the spin momentum here is
de�ned as:

σνρ =
i

2
[γν , γρ] .

Find the expression for W 2ψ(x), where ψ(x) is a solution of the Dirac equa-
tion.

Exercise 7.4: Find the Lagrangian density of a spinless Schrödinger �eld.



Chapter 8

Canonical Quantization

In quantum mechanics (not QFT), quantization is done by taking certain dy-
namical quantities and making use of the Heisenberg Uncertainty Principle.
Normally we take position x⃗ and momentum p⃗ and, according to Heisen-
berg, the measurement of the particle's position will a�ect its momentum
and vice-versa (primary quantization).

To make this more precise, we promote x and p from merely being variables
to being Hermitian operators x̂ and p̂ (which can be represented by matrices)
acting on some vector space. Calling a vector in this space |ψ⟩, physically
measurable quantities (like position or momentum) become the eigenvalues
of the operators x̂ and p̂,

x̂|ψ⟩ = x|ψ⟩ , p̂|ψ⟩ = p|ψ⟩ . (8.1)

Heisenberg Uncertainty says that measuring x will a�ect the value of p, and
vice-versa. It is the act of measuring which enacts this e�ect. It is not an en-
gineering problem in the sense that there is no better measurement technique
which would undo this. It is a fundamental fact of quantum mechanics (and
therefore the universe) that measurement of one variable a�ects another.

So, if we measure x (using x̂) and then p (using p̂), we will in general get
di�erent values for both than if we measured p and then x. More mathe-
matically, x̂p̂ ̸= p̂x̂. Put another way,

[x̂, p̂] ≡ x̂p̂− p̂x̂ ̸= 0 . (8.2)

85
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For reasons learned in a quantum course, the actual relation is

[x̂, p̂] = i~ , (8.3)

where ~ is Planck's Constant. We call (8.3) the Canonical Commutation
Relation, and it is this structure which allows us to determine the physical
structure of the theory.

More generally, we choose some set of operators that all commute with each
other, and then label a physical state by its eigenvectors. For example x̂, ŷ
and ẑ all commute with each other, so we may label a physical state by its
eigenvectors |ψr⟩ = |x, y, z⟩. Or, because p̂x, p̂y, and p̂z all commute, we may
call the state |ψp⟩ = |px, py, pz⟩. We may also include some other values like
spin and angular momentum, to have (for example) |ψ⟩ = |x, y, z, sz, Lz, . . .⟩.

As discussed in section 7.1, when we make the jump to QFT, the �elds are
no longer the states but the operators. We are therefore going to impose
commutation relations on the �elds, not on the coordinates.

Furthermore, whereas before the states were eigenvectors of the coordinate
operators, we now will expand the �elds in terms of the eigenvectors of the
Hamiltonian.

8.1 Canonical Quantization of Scalar Fields

We begin with the Klein-Gordon Lagrangian, which is modi�ed by an arbi-
trary constant Ω:

LKG = −1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 +Ω . (8.4)

Note that Ω has absolutely no a�ect whatsoever on the physics.

Quantization then comes about by de�ning the �eld momentum and Hamil-
tonian,

Π =
∂L
∂ϕ̇(x)

= ϕ̇ ,

H = Πϕ̇− L =
1

2
Π2 +

1

2
(∇⃗ϕ)2 + 1

2
m2ϕ2 − Ω . (8.5)
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Now, using the canonical commutation relations (8.3) as guides, we impose

[ϕ(t, x⃗), ϕ(t′, x⃗′)] = 0 ,

[Π(t, x⃗),Π(t′, x⃗′)] = 0 , (8.6)

[ϕ(t, x⃗),Π(t′, x⃗′)] = iδ(t− t′)δ(x⃗− x⃗′)

(where we have set ~ = 1).

We can see more clearly what this means if we expand the solutions of the
Klein-Gordon equation. One solution is plane waves, eik⃗·x⃗± iωt, where

ω = +

√
k⃗2 +m2 , (8.7)

and k⃗ is the standard wave vector.

So, we write the �eld ϕ as

ϕ(t, x⃗) =

∫
d3k⃗

f(k⃗)

[
a(k⃗)eik⃗·x⃗− iωt + b(k⃗)eik⃗·x+ iωt

]
, (8.8)

where f(x) is a redundant function which we have included for later conve-
nience. For now, both a(k⃗) and b(k⃗) are merely arbitrary coe�cients (inte-
gration constants) used to expand ϕ(t, x⃗) in terms of individual solutions.

We demand that ϕ(t, x⃗) be Hermitian. This requires

ϕ† = ϕ ⇒ ϕ⋆ = ϕ ⇒ b⋆(k⃗) = a(−k⃗) . (8.9)

Then, changing the sign of the integration variable k⃗ on the second term in
the integral allows us to use 4-vector notation, so

ϕ(x) =

∫
d3k⃗

f(k⃗)

[
a(k⃗)eik·x + a⋆(k⃗)e−ik·x

]
, (8.10)

where k · x = kµxµ.

Now notice that the integration measure, d3k⃗, is not invariant under Lorentz
transformations (because it integrates over the spatial part but not over the
time part). We therefore choose f(k⃗) to restore Lorentz invariance.

We know that the measure d3k would be invariant, as would δ-functions and
Θ (step) functions. So, consider the invariant combination

d4kδ(k2 +m2)Θ(k0) . (8.11)
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The δ-function merely requires that relativity hold, k2 + m2 is simply the
relativistic relation (7.4), and the Θ-function preserves causality. So this is
a physically acceptable Lorentz invariant integration measure.

Recall the general δ-function identity,∫ ∞

−∞
dxδ[g(x)] =

∑
i

1∣∣dg(x)/dx|x=xi∣∣ , (8.12)

where the xi's are the zeros of the function g(x). We can do the k0 integral
over measure (8.11), and using the fact that the zeros of

k2 +m2 = k⃗2 − k0k0 +m2 (8.13)

in terms of k0 are k0k0 = k⃗2 +m2 = ω2, we get

∫
d3k⃗dk0δ(k2 +m2)Θ(k0) =

∫
d3k⃗

2ω
. (8.14)

So, adding a factor of (2π)3 for later convenience, we take our invariant
measure to be d3k⃗/(2π)32ω. So �nally,

ϕ(x) =

∫
d̃k
[
a(k⃗)eik·x + a⋆(k⃗)e−ik·x

]
, (8.15)

where we have de�ned

d̃k ≡ d3k⃗

(2π)32ω
. (8.16)

The commutation relations we de�ned in (8.6) will now hold provided we
impose

[a(k⃗), a(k⃗′)] = 0 ,

[a†(k⃗), a†(k⃗′)] = 0 , (8.17)

[a(k⃗), a†(k⃗′)] = (2π)32ωδ3(k⃗ − k⃗′) .

We are using † instead of ⋆ to emphasize that, in the quantum theory, we
are talking about Hermitian operators. The operators a(k⃗) and a†(k⃗) are
scalars, so in this case a⋆ = a†.
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Furthermore, we can write the Hamiltonian H in terms of (8.15):

H =

∫
d3xH =

∫
d3x

(
1

2
Π2 +

1

2
(∇⃗ϕ)2 + 1

2
m2ϕ2 − Ω

)
=

= −
∫
d3xΩ+

1

2

∫
d̃kd̃k′d3x

[(
−iωa(k⃗)eik·x + iωa⋆(k⃗)e−ik·x

)
×

×
(
−iω′a(k⃗′)eik⃗

′·x + iω′a⋆(k⃗′)e−ik
′·x
)
+

+
(
ik⃗a(k⃗)eik·x − ik⃗a⋆(k⃗)e−ik·x

)(
ik⃗′a(k⃗′)eik

′·x − ik⃗′a⋆(k⃗′)e−ik′·x
)
+

+m2
(
a(k⃗)eik·x + a⋆(k⃗)e−ik·x

)(
a(k⃗′)eik

′·x + a⋆(k⃗′)e−ik
′·x
)]

=
1

2

∫
d̃kd̃k′d3x

[(
−ωω′a(k⃗)a(k⃗′)ei(k+k

′)·x + ωω′a(k⃗)a⋆(k⃗′)ei(k−k
′)·x+

+ ωω′a⋆(k⃗)a(k⃗′)e−i(k−k
′)· − ωω′a⋆(k⃗)a⋆(k⃗′)e−i(k+k

′)·x
)
+ (8.18)

+
(
−k⃗ · k⃗′a(k⃗)a(k⃗′)ei(k+k′)·x + k⃗ · k⃗′a(k⃗)a⋆(k⃗′)ei(k−k′)·x+

+ k⃗ · k⃗′a⋆(k⃗)a(k⃗′)e−i(k−k′)·x − k⃗ · k⃗′a⋆(k⃗)a⋆(k⃗′)e−i(k+k′)·x
)
+

+ m2
(
a(k⃗)a(k⃗′)ei(k+k

′)·x + a(k⃗)a⋆(k⃗′)ei(k−k
′)·x+

+a⋆(k⃗)a(k⃗′)e−i(k−k
′)·x + a⋆(k⃗)a⋆(k⃗′)e−i(k+k

′)·x
)]
− V Ω ,

where V is the volume of the space resulting from the
∫
d3x integral. Then,

from the fact that ∫
d3xeix⃗·y⃗ = (2π)3δ3(y⃗) , (8.19)

we have

H =
1

2
(2π)3

∫
d̃kd̃k′

[
δ3(k⃗ − k⃗′)

(
ωω′ + k⃗ · k⃗′ +m2

)
×

×
(
a⋆(k⃗)a(k⃗′)e−i(ω−ω

′)t + a(k⃗)a⋆(k⃗′)e−i(ω−ω
′)t
)
+

+ δ3(k⃗ + k⃗′)(−ωω′ − k⃗ · k⃗′ +m2)× (8.20)

×
(
a(k⃗)a(k⃗′)e−i(ω+ω

′)t + a⋆(k⃗)a⋆(k⃗′)ei(ω+ω
′)t
)]
− V Ω =

=
1

2

∫
d̃k

1

2ω

[(
ω2 + k⃗2 +m2

)(
a⋆(k⃗)a(k⃗) + a(k⃗)a⋆(k⃗)

)
+

+
(
−ω2 + k⃗2 +m2

)(
a(k⃗)a(−k⃗)e−2iωt+

+ a⋆(k⃗)a⋆(−k⃗)e2iωt
)]
− V Ω ,
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and �nally, using the de�nition of ω (equation (8.7)), this becomes

H =
1

2

∫
d̃k ω

(
a⋆(k⃗)a(k⃗) + a(k⃗)a⋆(k⃗)

)
− V Ω . (8.21)

Using (8.17), we can rewrite this as (switching from ⋆ to † to emphasize the
Hermitian nature):

H =
1

2

∫
d̃k ω

[
a†(k⃗)a(k⃗) + (2π)32ωδ3(k⃗ − k⃗) + a†(k⃗)a(k⃗)

]
− V Ω =

=

∫
d̃k ωa†(k⃗)a(k⃗) +

∫
d̃k ω(2π)3δ3(0)− V Ω =

=

∫
d̃kωa†(k⃗)a(k⃗) +

∫
d3k⃗

(2π)32ω
ω(2π)3δ3(0)− V Ω = (8.22)

=

∫
d̃kωa†(k⃗)a(k⃗) +

1

2
δ3(0)

∫
d3k⃗ − V Ω .

Notice that both the second and third terms are in�nite (assuming the vol-
ume V of the space we are in is in�nite). This may be troubling, but re-
member that Ω is an arbitrary constant we can set to be anything we want.
So, let's de�ne

Ω ≡ 1

2V
δ3(0)

∫
d3k⃗ , (8.23)

leaving

H =

∫
d̃k ωa†(k⃗)a(k⃗) . (8.24)

Remember that measurement can only detect changes in energy, and there-
fore the in�nity we subtracted o� does not a�ect the value we will measure
experimentally.

What we have done in (8.24), by subtracting o� the in�nite part in a way that
doesn't change the physics, is a very primitive example of Renormalization.
Often, for various reasons, measurable quantities in QFT are plagued by
di�erent types of in�nities. However, it is possible to subtract o� those
in�nities in a well-de�ned way, leaving a �nite part. It turns out that this
�nite part is the correct value seen in nature. The reasons for this are very
deep, and we will not discuss them (or general renormalization theory) in
much depth now. For correlating theoretical results with experiment, being
able to renormalize results correctly is vital. However, our goal in this section
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is not to understand the subtleties of renormalization, but to understand the
overall structure of particle physics.

So, we have our �eld expansion (8.15) and commutation relations (8.17).
Notice that (8.17) have the exact form of a simple harmonic oscillator, which
you learned about in introductory quantum mechanics. Therefore, because
they have the same structure as the harmonic oscillator, they will have the
same physics. By doing nothing but imposing relativity, we have found that
scalar �elds, which are Hermitian operators, act as raising and lowering (or
synonymously creation and annihilation) operators on the vacuum (just like
the simple harmonic oscillator).

Comparing (8.17) with the standard harmonic oscillator operators, it is clear
that a†k⃗ creates a ϕ particle with momentum k⃗ and energy ω, whereas a(k⃗)
annihilates a ϕ particle with momentum k⃗ and energy ω. A normalized state
will be

|⃗k⟩ =
√
2ωa†(k⃗)|0⟩ . (8.25)

The entire spectrum of states can be studied by acting on |0⟩ with creation
operators, and probability amplitudes for one state to be found in another,
⟨k⃗f |⃗ki⟩, are straightforward to calculate (and positive semi-de�nite). Nat-
urally this theory does not discuss any interactions between particles, and
therefore we will have to do a great deal of modi�cation before we are done.
But this simple exercise of merely imposing the standard commutation re-
lations (8.6) between the �eld and its momentum, we have gained complete
knowledge of the quantum mechanical states of the theory.

8.2 The Spin-Statistics Theorem

Notice that the states coming from (8.25) will include the two particle state

|⃗k; k⃗′⟩ = 2
√
ωω′ a†(k⃗)a†(k⃗′)|0⟩ . (8.26)

But the commutation relations (8.17) tell us that a†(k⃗)a†(k⃗′) = a†(k⃗′)a†(k⃗).
So, this theory also allows the state

|⃗k′; k⃗⟩ = 2
√
ω′ωa†(k⃗′)a†(k⃗)|0⟩ . (8.27)

Recall from a chemistry, or modern physics course, that particles with half-
integer spin obey the Pauli Exclusion Principle, whereas particles of integer
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spin do not. Our Klein-Gordon scalar �elds ϕ are spinless (j = 0), and
therefore we would expect that they do not obey Pauli exclusion. The fact
that our commutation relations have allowed both states (8.26) and (8.27)
is therefore expected. This is an indication that we quantized correctly.

But notice that this statistical result (that the scalar �elds do not obey Pauli
exclusion) is entirely a result of the commutation relations. Therefore, if we
attempt to quantize a spin-1/2 �eld in the same way, they will obviously not
obey Pauli exclusion either. We must therefore quantize spin-1/2 di�erently.

It turns out that the correct way to quantize spin-1/2 �elds is to use, instead
of commutation relations like we used for for scalar �elds, anticommutation
relations. If the operators of our spin-1/2 �elds obey

{a†1, a
†
2} = a†1a

†
2 = 0 ⇒ a†1a

†
2 = −a

†
2a

†
1 , (8.28)

then if we try to act twice with the same operator, we have

a†1a
†
1|0⟩ = −a

†
1a

†
1|0⟩ ⇒ a†1a

†
1|0⟩ = 0 . (8.29)

In other words, if we quantize with anticommutation relations, it is not
possible for two particles to occupy the same state simultaneously.

This relationship between the spin of a particle and the statistics it obeys
(which demands that integer spin particles be quantized by commutation re-
lations and half-integer spin particles to be quantized with anticommutation
relations) is called the Spin-Statistics Theorem.

Because particles obeying Pauli exclusion are said to have Bose-Einstein
statistics, and particles that do not obey Pauli exclusion are said to have
Fermi-Dirac statistics, we call particles with integer spin Bosons, and parti-
cles with half-integer spin Fermions.

8.2.1 Left-Handed and Right-Handed Fields

Recall that Dirac �elds are the 4-component spinor ψ = (ψL, ψR), where
ψL transforms under the left-handed (0, 1/2) representation of the Lorentz
group, and ψR transforms under the right-handed (1/2, 0) representation.

In general, we refer to these 2-component spinors asWeyl �elds (see Sec. 2.4).
So, the fermion is the spinor combination of two Weyl �elds, one being the
left-handed particle, and the other being the right-handed antiparticle.
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Also we had de�ned the �elds ψ̄ = ψ†γ0 = (ψ†
R, ψ

†
L). If we interpret ψ̄ as the

conjugate of ψ (which the form of the Dirac Lagrangian implies we should),
then we see that the right-handed �eld is the conjugate of the left, and vice
versa. Or, in other words,

ψ†
L = ψR and ψ†

R = ψL . (8.30)

We take advantage of the fact by writing all �elds in terms of left-handed
Weyl �elds. For example, given the two left-handed Weyl �elds χ and ξ, we
can form the 4-component spinor �eld ψ = (χ, ξ†), and so ψ̄ = (ξ, χ†). We
will refer to such a �eld as a Dirac Field, and denote it ψD (see Sec. 2.5).

On the other hand, we could de�ne a 4-component spinor in terms of a single
left-handed Weyl �eld χ, or ψ = (χ, χ†). But now notice that ψ̄ = (χ, χ†),
which is equal simply to the transpose of ψ. We refer to such a �eld (whose
conjugate is equal to its transpose) as a Majorana Field, and denote it ψM
(see Sec. 2.5).

Recall that an antiparticle has the same mass but opposite charge and oppo-
site handedness of its particle. So, working with the Dirac �eld ψD, we can
change the charge by merely swapping χ and ξ, using the Charge Conjugation
operator C de�ned by

CψD = C
(
χ
ξ†

)
=

(
ξ
χ†

)
. (8.31)

Also, consider the transpose of ψ̄D (which is just returning the conjugate of
ψD to column form). Acting on this with C gives

Cψ̄TD = C
(
ξ
χ†

)
=

(
χ
ξ†

)
= ψD . (8.32)

So, we have
CψD = ψ̄TD and Cψ̄TD = ψD . (8.33)

We therefore say that ψD and ψ̄TD are Charge Conjugate to each other.

However, notice that with the Majorana �eld,

CψM = C
(
χ
χ†

)
=

(
χ
χ†

)
= ψM , (8.34)
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and
Cψ̄TM = ψ̄TM = ψM . (8.35)

In summary, Dirac �elds are not equal to their charge conjugate, while Ma-
jorana �elds are. By analogy with scalars (where the complex conjugate of
a real number is equal to itself, whereas the complex conjugate of a complex
number is not), we often refer to Majorana �elds as Real, and to Dirac �elds
as Complex.

So, we can now write out the Lagrangian for Dirac and Majorana �elds in
terms of their Weyl �elds:

LD = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −m
(
χξ + χ†ξ†

)
, (8.36)

LM = iχ†σ̄µ∂µχ−
1

2
m
(
χχ+ χ†χ†

)
. (8.37)

8.3 Canonical Quantization of Fermions

The general solution to the Dirac equation is

ψD(x) =
2∑
s=1

∫
d̃k[bs(k⃗)us(k⃗)e

ik·x + d†s(k⃗)vs(k⃗)e
−ik·x] , (8.38)

where s=1, 2 are the two spin states, bs and d
†
s are (respectively) the lowering

operator for the particle and the raising operator for the antiparticle. The
charge conjugate of ψD will have the raising operator for the particle and
the lowering operator for the antiparticle. The us and vs are constant 4-
component vectors which act as a basis for all particle/antiparticle states in
the spinor space (for our purposes, they are merely present to make ψD a
4-component �eld).

We quantize, as we said in section 8.2, using anti-commutation relations.
Writing only the non-zero relation,

{ψα(t, x⃗), ψ̄β(t, x⃗)} = δ3(x⃗− x⃗′)(γ0)αβ . (8.39)

These imply that the only non-zero commutation relations in terms of the
operators are

{bs(k⃗), b†s′(k⃗
′)} = (2π)3δ3(k⃗ − k⃗′)2ωδss′ ,

{d†s(k⃗), ds′(k⃗′)} = (2π)3δ3(k⃗ − k⃗′)2ωδss′ . (8.40)



8.3. CANONICAL QUANTIZATION OF FERMIONS 95

These form the algebra of a simple harmonic oscillator, and we can therefore
�nd the entire spectrum of states by acting on |0⟩ with b†s and d†s.

Then, following a series of calculations nearly identical to the ones in section
8.1, we arrive at the Hamiltonian

H =

2∑
s=1

∫
d̃k ω[b†s(k⃗)bs(k⃗) + d†s(k⃗)ds(k⃗)]− λ , (8.41)

where λ is an in�nite constant we can merely subtract o� and therefore
ignore.

Comparing (8.24) and (8.41), we see that they both have essentially the same
form; ω (which is energy) to the left of the creation operator, which is to
the left of the annihilation operator. To understand the meaning of this, we
will see how it generates energy eigenvalues. We will use equation (8.24) for
simplicity. Consider acting with the Hamiltonian operator on some arbitrary
state |p⃗⟩ with momentum p⃗. Using (8.25),

H|p⃗⟩ =

∫
d̃kωka

†(k⃗)a(k⃗)|p⃗⟩ =
∫
d̃kωka

†(k⃗)a(k⃗)
√

2ωpa
†(p⃗)|0⟩ =

=

∫
d̃kωk

√
2ωpa

†(k⃗)
(
(2π)32ωpδ

3(k⃗ − p⃗) + a†(p⃗)a(k⃗)
)
|0⟩ =

=

∫
d̃kωk

√
2ωpa

†(k⃗)(2π)32ωpδ
3(k⃗ − p⃗)|0⟩ = (8.42)

=

∫
d3k⃗

(2π)32ωk
ωk
√

2ωpa
†(k⃗)(2π)32ωpδ

3(k⃗ − p⃗)|0⟩ =

=

∫
d3k⃗
√
2ωpa

†(k⃗)ωpδ
3(k⃗ − p⃗)|0⟩ =

= ωp
√

2ωpa
†|0⟩ = ωp|p⃗⟩ .

So, H|p⃗⟩ = ωp|p⃗⟩, where ωp = p⃗ 2 + m2, which is the relativistic equation
for energy as in equation (8.7). So, the Hamiltonian operator gives the
appropriate energy eigenvalue on our physical quantum states.

For the Dirac Hamiltonian the eigenvalue will be a linear combination of the
energies of each type of particle. If we denote the states as |p⃗b, sb; p⃗d, sd⟩,
where the �rst two elements give the state of a b type particle and the second
of the d type particle, we have

H|p⃗b, sb; p⃗d, sd⟩ = · · · = (ωpb + ωpd)|p⃗b, sb; p⃗d, sd⟩ . (8.43)
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For Majorana �elds we only have one type of particle,

ψM (x) =
2∑
s=1

∫
d̃k
[
bs(k⃗)us(k⃗)e

ik·x + b†s(k⃗)vs(k⃗)e
−ik·x

]
, (8.44)

and quantization with anticommutation relations will give

H =

2∑
s=1

∫
d̃k ω b†s(k⃗)bs(k⃗) . (8.45)

Exercise 8.1: Find vacuum expectation value of the scalar �eld Hamilto-
nian.

Exercise 8.2: Prove that the parity operator of a scalar �eld commutes
with its Hamiltonian.

Exercise 8.3: Suppose to the Lagrangian for the real scalar �eld, ϕ(x), one
adds the term J(x)ϕ(x), where J(x) is a real c-number function. Calculate
⟨0|ϕ(x)|0⟩ and the two-point function ⟨0|T (ϕ(x)ϕ(0))|0⟩ exactly. Treat the
term J(x)ϕ(x) as a perturbation and calculate these quantities to the lowest
order in J(x).

Exercise 8.4: If the Dirac �eld is quantized according to the Bose-Einstein
rather than Fermi-Dirac statistics, what would be the energy of the �eld?

Exercise 8.5: Express the Majorana �eld operator using creation and an-
nihilation operators of a Dirac �eld. Introduce creation and annihilation
operators for Majorana spinors and �nd corresponding anticomutation rela-
tions. Rewrite the QED Lagrangian density using Majorana spinors.

Exercise 8.6: Calculate the commutators between components of the elec-
tric and the magnetic �elds.

Exercise 8.7: Express the angular momentum of the photon �eld in terms
of the potentials in the Coulomb gauge.

Exercise 8.8: Quantize the electromagnetic �eld between two parallel, per-
fect conductor square plates.



Chapter 9

Path Integral Quantization

While the Canonical Quantization procedure giving us a tremendous amount
of information (the entire spectrum of states for particles), it is still lacking
quite a bit. As we said at the beginning of Sec. 7.1, we ultimately want a rela-
tivistic quantum mechanical theory of interactions. Canonical Quantization
has provided a relativistic quantum mechanical theory, but we aren't close
to being able to incorporate interactions into our theory. While it is possible
to incorporate interactions, it is very di�cult, and in order to simplify we
will need a new way of quantizing.

Perhaps the most fundamental experiment in quantum mechanics is the Dou-
ble Slit experiment. In brief, what this experiment tells us is that, when a
single electron moves through a screen with two slits, and no observation is
made regarding which slit it goes through, it actually goes through both slits,
and until a measurement is made (for example, when it hits the observation
screen behind the double slit), it exists in a superposition of both paths.

As a result, the particle exhibits a wave nature, and the pattern that emerges
on the observation screen is an interference pattern � the same as if a classical
wave was passing through the double slit�all paths in the superposition of
the single electron are interfering with each other, both destructively and
constructively. Once the electron is observed on the observation screen, it
collapses probabilistically into one of its possible states (a particular location
on the observation screen).

If, on the other hand, you set up some mechanism to observe which of the

97
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two slits the electron travels through, then the observation has been made
before the observation screen, and you no longer have the superposition, and
therefore you no longer see any indication of an interference pattern. The
electrons are behaving, in a sense, classically from the double slit to the
observation screen in this case.

The meaning of this is that a particle that has not been observed will actually
take every possible path at once. Once an observation has been made, there
is some probability associated with each path. Some paths are very likely,
and others are less likely (some are nearly impossible). But until observation,
it actually exists in a superposition of all possible states/paths.

So, to quantize, we will create a mathematical expression for a 'sum over all
possible paths'. This expression is called a Path Integral, and will prove to
be a much more useful way to quantize a physical system.

We begin this construction by considering merely the amplitude for a particle
at position q1 at time t1 to propagate to q2 at time t2. This amplitude will
be given by

⟨q2, t2|q1, t1⟩ = ⟨q2|eiH(t2−t1)|q1⟩ . (9.1)

To evaluate this, we begin by dividing the time interval t2 − t1 into N + 1
equal intervals of length

δt =
t2 − t1
N + 1

(9.2)

each. So, we can insert N complete sets of position eigenstates,

⟨q2, t2|q1, t1⟩ =
∫ ∞

−∞

N∏
i=1

dQi⟨q2|e−iHδt|QN ⟩⟨QN |e−iHδt|QN−1⟩ · · ·

· · · ⟨Q1|e−iHδt|q1⟩ . (9.3)

Let's look at a single one of these amplitudes. We know that in nearly all
physical theories, we can break the Hamiltonian up as

H =
P 2

2m
+ V (Q) . (9.4)
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So, using the completeness of momentum eigenstates,

⟨Qi+1|e−iHδt|Qi⟩ = ⟨Qi+1|e−i
(
P 2/2m+V (Q)

)
δt|Qi⟩ =

= ⟨Qi+1|e−iδtP
2/2me−iδtV (Q)|Qi⟩ =

=

∫
dP ′⟨Qi+1|e−iδtP

2/2m|P ′⟩⟨P ′|e−iδtV (Q)|Qi⟩ =

=

∫
dP ′e−iδtP

′2/2me−iδtV (Qi)⟨Qi+1|P ′⟩⟨P ′|Qi⟩ =

=

∫
dP ′e−iδtP

′2/2me−iδtV (Qi)
eiP

′Qi+1

√
2π

e−iP
′Qi

√
2π

=

=

∫
dP ′

2π
eiHδteiP

′(Qi+1−Qi) = (9.5)

=

∫
dP ′

2π
ei[P

′(Qi+1−Qi)−Hδt] =

=

∫
dP ′

2π
eiδt[P

′(Qi+1−Qi)/δt−H] .

And taking the limit as δt→ 0, (Qi+1 −Qi)/δt→ Q̇i. So,∫
dP ′

2π
e
iδt

[
P ′
(

Qi+1−Qi
δt

)
−H

]
=

∫
dP ′

2π
eidti+1[P

′Q̇i−H] , (9.6)

where the subscript on dt merely indicates where the in�nitesimal time in-
terval 'ends'. So, we can plug this into (9.3) and taking the limit as δt→ 0,

⟨q2, t2|q1, t1⟩ =

∫ ∞

−∞

N∏
i=1

dQi⟨q2|e−iHδt|QN ⟩⟨QN |e−iHδt|QN−1⟩ · · ·

· · · ⟨Q1|e−iHδt|q1⟩ = lim
N→∞

∫ ∞

−∞

N∏
i=1

dQi

∫
dP ′

i

2π
× (9.7)

×eidt2[P ′
N Q̇N−H]eidtN [P ′

N−1Q̇N−1−H] · · · eidt1[P ′
1Q̇1−H] =

=

∫ ∞

−∞
DpDq e−i

∫ t2
t1
dt(pq̇−H) ,

where

Dp =
∞∏
i=1

dpi , Dq =
∞∏
i=1

dqi . (9.8)

If p shows up quadratically (as it always does in p2/2m), or linearly (e.g.
�at wave phase, ipq), then we can merely do the Gaussian integral over p,
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using the Gaussian integral formula:∫ ∞

∞
dxe(−ax

2+bx) =

√
π

a
eb

2/4a , (9.9)

were a and b are some constants. This will result in an overall constant
which we merely absorb back into the measure when we normalize. Then,
recognizing that the integrand in the exponent is pq̇ −H = L, we have

⟨q2, t2|q1, t1⟩ =
∫
Dq ei

∫ t2
t1
dtL =

∫
DqeiS . (9.10)

Formally, the measure of (9.10) has an in�nite number of di�erentials, and
therefore evaluating it would require doing an in�nite number of integrals.
This is to be expected, since the point of the path integral is a sum over
every possible path, of which there are an in�nite number. So, because we
obviously can't do an in�nite number of integrals, we will have to �nd a
clever way of evaluating (9.10). But before doing so, we discuss what the
path integral means.

9.1 Interpretation of the Path Integral

Equation (9.10) says that, given an initial and �nal con�guration (q1, t1) and
(q2, t2), absolutely any path between them is possible. This is the content
of the Dq part: it is the sum over all paths. Then, for each of those paths,
the integral assigns a statistical weight of eiS to it, where the action S is
calculated using that path (recall our comments in section 1.1 about S being
a functional, not a function).

So, consider an arbitrary path q0, which receives statistical weight eiS[q0].
Now, consider a path q′ very close to q0, only varying by a small amount:
q′ = q0 + ϵδq0. This will have statistical weight

eiS[q0+ϵδq0] = eiS[q0]+iϵδq0δS[q0]/δq , (9.11)

where δS/δq is the Euler Lagrange derivative (1.6)

δS

δq
=

d

dt

∂S

∂q̇
− ∂S

∂q
. (9.12)
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To make our intended result more obvious, we do a Wick rotation, taking
t→ it, so dt→ idt, and

S =

∫
dtL → i

∫
dtL = iS , (9.13)

and eiS → e−S . Now, the path q′ = q0 + ϵδq0 gets weight

eS[q0]e−ϵδq0δS[q0]/δq . (9.14)

If δS/δq is very large, then the weight becomes exponentially small, i.e. the
larger the variation of the action is, the less probable that path is.

So the most probable path is the one for the smallest value of δS/δt, or the
path at which δS/δq = 0. And as we discussed in 1.1, this is the path of
Least Action. Thus, we have recovered classical mechanics as the �rst order
approximation of quantum mechanics.

So, the meaning of the path integral is that all imaginable paths are possi-
ble for the particle to travel in moving from one con�guration to another.
However, not all paths are equally probable. The likelihood of a given path
is given by the action exponentiated, and therefore the most probable paths
are the ones which minimize the action. This is the reason that, macroscop-
ically, the world appears classical. The likelihood of every particle in, say, a
baseball, simultaneously taking a path noticeably far from the path of least
action is negligibly small.

We will �nd that path integral quantization provides an extremely powerful
tool with which to create our relativistic quantum theory of interactions.

9.2 Expectation Values

Now that we have a way of �nding ⟨q2, t2|q1, t1⟩, the natural question to
ask next is how do we �nd expectation values like ⟨q2, t2|Q(t′)|q1, t1⟩ or
⟨q2, t2|P (t′)|q1, t1⟩. By doing a similar derivation as above, it is easy to
show that

⟨q2, t2|Q(t′)|q1, t1⟩ = · · · =
∫
Dq Q(t′)eiS . (9.15)

We will �nd that evaluating integrals of this form is simpli�ed greatly through
making use of Functional Derivatives. For some function f(x), the functional
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derivative is de�ned by

δ

δf(y)
f(x) ≡ δ(x− y) . (9.16)

Next, we modify our path integral by adding an Auxiliary External Source
function, so that

L → L+ f(t)Q(t) + h(t)P (t) . (9.17)

So we now have

⟨q2, t2|q1, t1⟩f,h =

∫
Dq e

∫
dt(L+fQ+hP ) , (9.18)

which allows us to write out expectation values in the simple form

⟨q2, t2|Q(t′)|q1, t1⟩ =
1

i

δ

δf(t′)
⟨q2, t2|q1, t1⟩f,h

∣∣∣∣
f,h=0

=

=

∫
DqQ(t′)eiS+i

∫
dt(fQ+hP )

∣∣∣∣
f,h=0

= (9.19)

=

∫
DqQ(t′)eiS ,

or

⟨q2, t2|P (t′)|q1, t1⟩ =
1

i

δ

δh(t′)
⟨q2, t2|q1, t1⟩f,h

∣∣∣∣
f,h=0

=

=

∫
DqP (t′)eiS+i

∫
dt(fQ+hP )

∣∣∣∣
f,h=0

= (9.20)

=

∫
DqP (t′)eiS .

So, once we have ⟨q2, t2|q1, t1⟩, we can �nd any expectation value we want
simply by taking successive functional derivatives.

9.3 Path Integrals with Fields

Because we can build whatever state we want by acting on the vacuum,
the important quantity for us to work with will be the Vacuum to Vacuum
expectation value, or VEV, ⟨0|0⟩, and the various expectation values we can
build through functional derivatives (⟨0|ϕϕ|0⟩, ⟨0|ψϕϕ|0⟩, etc.).
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For simplicity let's write the path integral a scalar boson ϕ,

⟨0|0⟩ =
∫
Dϕei

∫
d4x[− 1

2
∂µϕ∂µϕ− 1

2
m2ϕ2] ≡

∫
Dϕei

∫
d4xL0 . (9.21)

We will eventually want to �nd expectation values, so we introduce the
auxiliary �eld J , creating the Generating Functional:

Z0(J) ≡ ⟨0|0⟩J =

∫
Dϕei

∫
d4x(L0+Jϕ) . (9.22)

So, for example,

⟨0|ϕ|0⟩ = 1

i

δ

δJ
⟨0|0⟩J

∣∣
J=0

. (9.23)

Of course, we still have a path integral with an in�nite number of integrals
to evaluate. But, we are �nally able to discuss how we can do the evaluation.

Making use of the Fourier Transform of ϕ,

ϕ̃(k) =

∫
d4x e−ikxϕ(x) , ϕ(x) =

∫
d4k

(2π)4
eikxϕ̃(k) , (9.24)

we begin with the L0 part:

S0 =

∫
d4xL0 =

∫
d4x

(
−1

2
∂µϕ∂µϕ−

1

2
m2ϕ2

)
=

=

∫
d4x

[
−1

2
∂µ
(∫

d4k

(2π)4
eik·xϕ̃(k)

)
∂µ

(∫
d4k′

(2π)4
eik

′·xϕ̃(k′)

)
−

−1

2
m2

(∫
d4k

(2π)4
eik·xϕ̃(k)

)(∫
d4k′

(2π)4
eik

′·xϕ̃(k′)

)
=

=

∫
d4x

[
1

2

∫
d4kd4k′

(2π)8
eik·xeik

′·xϕ̃(k)ϕ̃(k′)(kµk′µ −m2)

]
= (9.25)

=
1

2

∫
d4kd4k′

(2π)8
ϕ̃(k)ϕ̃(k′)(kµk′µ −m2)

∫
d4xei(k+k

′)·x =

=
1

2

∫
d4kd4k′

(2π)8
ϕ̃(k)ϕ̃(k′)(kµk′µ −m2)(2π)4δ4(k + k′) =

= −1

2

∫
d4k

(2π)4
ϕ̃(k)(k2 +m2)ϕ̃(−k) .
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Then, transforming the auxiliary �eld part,∫
d4xJ(x)ϕ(x) =

∫
d4x

(∫
d4k

(2π)4
eik·xJ̃(k)

)(∫
d4k′

(2π)4
eik

′·xϕ̃(k′)

)
=

=

∫
d4kd4k′

(2π)8
J̃(k)ϕ̃(k′)

∫
d4xei(k+k

′)·x =

=

∫
d4kd4k′

(2π)8
J̃(k)ϕ̃(k′)(2π)4δ4(k + k′) = (9.26)

=

∫
d4k

(2π)4
J̃(k)ϕ̃(−k) .

Because the integral is over all kµ, we can rewrite this as∫
d4k

(2π)4
J̃(k)ϕ̃(−k) = 1

2

∫
d4k

(2π)4

(
J̃(k)ϕ̃(−k) + J̃(−k)ϕ̃(k)

)
(9.27)

(we did this to get the factor of 1/2 out front in order to have the same
coe�cient as the L0 part from above).

So,

S =
1

2

∫
d4k

(2π)4

[
−ϕ̃(k)(k2 +m2)ϕ̃(−k)+

+J̃(k)ϕ̃(−k) + J̃(−k)ϕ̃(k)
]
. (9.28)

Now, we make a change of variables,

χ̃(k) ≡ ϕ̃(k)− J̃(k)

k2 +m2
(9.29)

(Note that this leaves the measure of the path integral unchanged: Dϕ →
Dχ). Plugging this we have,

S =

∫
d4k

2(2π)4

[
−

(
χ̃(k) +

J̃(k)

k2 +m2

)
(k2 +m2)

(
χ̃(−k) + J̃(−k)

k2 +m2

)
+

+ J̃(k)

(
χ̃(−k) + J̃(−k)

k2 +m2

)
+ J̃(−k)

(
χ̃(k) +

J̃(k)

k2 +m2

)]
= (9.30)

=
1

2

∫
d4k

(2π)4

[
−χ̃(k)(k2 +m2)χ̃(−k) + J̃(k)J̃(−k)

k2 +m2

]
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(The point of all of this is that, in this form, we have all of the ϕ, or equiv-
alently χ, dependence in the �rst term, with no ϕ or χ dependence on the
second term). Finally, our generating functional (9.22) is

⟨0|0⟩J =

∫
Dχe

i
2

∫
d4k

(2π)4

[
−χ̃(k)(k2+m2)χ̃(−k)+ J̃(k)J̃(−k)

k2+m2

]
. (9.31)

Using some physical reasoning, we can see how to evaluate the in�nite num-
ber of integrals in this expression. Notice that if we set J = 0, we have a
free theory in which no interactions take place. This means that if we start
with nothing (the vacuum), the probability of having nothing later is 100%,

⟨0|0⟩J
∣∣
J=0

= 1 =

∫
Dχe

i
2

∫
d4k

(2π)4
[−χ̃(k)(k2+m2)χ̃(−k)]

. (9.32)

If that part is 1, then we have

⟨0|0⟩J =

∫
Dχe

i
2

∫
d4k

(2π)4
J̃(k)J̃(−k)

k2+m2 . (9.33)

Remarkably, the integrand has no χ dependence! Therefore, the in�nite
number of integrals over all possible paths becomes nothing more than a
constant we can absorb into the normalization, leaving

⟨0|0⟩J = e
i
2

∫
d4k

(2π)4
J̃(k)J̃(−k)

k2+m2 . (9.34)

We can Fourier Transform back to coordinate space to get

Z0(J) = ⟨0|0⟩J = e
i
2

∫
d4xd4x′J(x)∆(x−x′)J(x′) , (9.35)

where

∆(x− x′) ≡
∫

d4k

(2π)4
eik·(x−x

′)

k2 +m2
(9.36)

is called the Feynman Propagator for the scalar �eld. We can then �nd
expectation values by operating on this with δ/iδJ as described in Sec. 9.2.

We can repeat everything we have just done for fermions, and while it is a
great deal more complicated (and tedious), it is in essence the same calcula-
tion. We begin by adding the auxiliary function η̄ψ+ ψ̄η, to get expectation
values of ψ̄ and ψ by using δ/iδη and δ/iδη̄, respectively.
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We then Fourier Transform every term in the exponent and �nd that we can
separate out the ψ̄ and ψ dependence, allowing us to set the term which does
depend on ψ and ψ̄ equal to 1. Fourier Transforming back then gives

Z0(η, η̄) = ei
∫
d4xd4x′η̄(x)S(x−x′)η(x′) , (9.37)

where

S(x− x′) =
∫

d4k

(2π)4
(−γµkµ +m)

k2 +m2
eik·(x−x

′) (9.38)

is the Feynman propagator for fermion �elds.

Recall that we are calling the auxiliary �elds J , η, and η̄ Source Fields.
Comparing the form of the Lagrangian in equation (9.22) to (2.6) reveals
why. J , η, and η̄ behave mathematically as sources, giving rise to the �eld
they are coupled to, in the same way that the electromagnetic source Jµ

gives rise to the electromagnetic �eld Aµ. The meaning behind equations
(9.35) (and (9.37)) is that J (or η and η̄) act as sources for the �elds, creating
a ϕ (or ψ and ψ̄) at spacetime point x, and absorbing it at point x′. The
terms ∆(x − x′) and S(x − x′) then represent the expression giving the
probability amplitude ⟨0|0⟩ for that particular event to occur. In other words,
the propagator is the statistical weight of a particle going from x to x′.

9.4 Interacting Scalars and Feynman Diagrams

We can now consider how to incorporate interactions into our formalism,
allowing us to �nally have our relativistic quantum theory of interactions.

Beginning with the free scalar Lagrangian we can add an interaction term L1.
At this point, we only have one type of particle, ϕ, so we can only have ϕ's
interacting with other ϕ's. Terms proportional to ϕ or ϕ2 are either constant
or linear in the equations of motion, and therefore aren't valid candidates
for interaction terms. So, the simplest expression we can have is

L1 =
1

3!
gϕ3 , (9.39)

where 1/3! is a conventional normalization, and g is a Coupling Constant.
So our total Lagrangian is

L = L0 + L1 = −
1

2
∂µϕ∂µϕ−

1

2
m2ϕ2 +

1

6
gϕ3 , (9.40)
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and the path integral is

Z(J) = ⟨0|0⟩J =

∫
Dϕei

∫
d4x[L0+L1+Jϕ] =

=

∫
Dϕei

∫
d4xL1ei

∫
d4x[L0+Jϕ] = (9.41)

=

∫
Dϕei

∫
d4xL1Z0(J) .

But, recall that we can bring out a factor of ϕ from ⟨0|0⟩J using the functional
derivative δ/iδJ . So, we can make the replacement

L1(ϕ) → L1
(
1

i

δ

δJ

)
⇒ 1

6
gϕ3 → g

6

(
1

i

δ

δJ

)3

. (9.42)

Notice that once this is done, there is no longer any ϕ dependence in Z(J).
So, with the free theory, we were able to remove the ϕ dependence, leading
to (9.35). Here, we were able to remove it from the interaction term as
well. Once again, the in�nite number of integrals in (9.10) will merely give a
constant which we can absorb into the normalization. This leaves the result

Z(J) = e
i
6
g
∫
d4x

(
1
i

δ
δJ(x)

)3

Z0(J) =

= e
− 1

6
g
∫
d4x

(
δ

δJ(x)

)3

e
i
2

∫
d4xd4x′J(x)∆(x−x′)J(x′) . (9.43)

Now, we can do two separate Taylor expansions to these two exponentials,

Z(J) =

∞∑
V=0

1

V !

[
−g
6

∫
d4x

(
δ

δJ(x)

)3
]V
×

×
∞∑
P=0

1

P !

[
i

2

∫
d4yd4zJ(y)∆(y − z)J(z)

]P
. (9.44)

Recall that a functional derivative δ/iδJ , will remove a J term. Furthermore,
after taking the functional derivatives, we will set J = 0 to get the physical
result. For a term to survive, the 2P sources must all be exactly removed
by the 3V functional derivatives. Using (9.44), we can expand in orders of
g (the coupling constant), keeping only the terms which survive, and after
removing the sources, evaluate the integrals over the propagators ∆. Then
the value of the integral will be the physical amplitude for a particular event.
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In practice, a slightly di�erent formalism is used to organize and keep track
of each term in this expansion. Note that there will be P propagators ∆. We
can represent each of these terms diagrammatically, by making each source
a solid dot, each propagator a line, and let the g terms be vertices joining
the lines together. There will be a total of V vertices, each joining 3 lines
(matching the fact that we are looking at ϕ3 theory; there would be 4 lines
at each vertex for ϕ4 theory, etc.).

For example, for V = 0 and P = 1,

Z(J) =
i

2

∫
d4yd4zJ(y)∆(y − z)J(z) . (9.45)

We have two sources, one located at z and the other at y, so we draw two
dots, corresponding those locations. Then, the propagator ∆(y−z) connects
them together, so we draw a line between the two dots, i.e. the diagram is:

As another example, consider V = 0 and P = 2. Now,

Z(J) =
1

2!

(
i

2

)2 ∫
d4yd4zd4y′d4z′ ×

× [J(y)∆(y − z)J(z)]
[
J(y′)∆(y′ − z′)J(z′)

]
. (9.46)

This corresponds to 4 sources at y, z, y′ and z′, with propagator lines con-
necting y to z, and y′ to z′. But, there are no lines connecting an unprimed
source to a primed source, so this results in two disconnected diagrams:
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As another example, consider V = 1 and P = 2,

Z(J) = −g
6

∫
d4x

(
δ

δJ(x)

)3 1

2!

(
i

2

)2

×

×
∫
d4yd4zd4y′d4z′ [J(y)∆(y − z)J(z)]

[
J(y′)∆(y′ − z′)J(z′)

]
=

=
g

48

∫
d4xd4yd4zd4y′d4z′ × (9.47)

× δ(y − x)∆(y − z)δ(z − x)δ(y′ − x)∆(y′ − z′)J(z′) =

=
g

48

∫
d4xd4z′∆(x− x)∆(x− z′)J(z′) .

This will correspond to:

where the source J is located at the dot, and the vertex joining the line to
the loop is at x.

There are multiple possible diagrams for V = 1, P = 3,

And for V = 2, P = 4,

And for V = 3, P = 5
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and so on.

Through a series of combinatoric and physical arguments, it can be shown
that only connected diagrams will contribute, and the 1/P ! and 1/V ! terms
will always cancel exactly.

So, to calculate the amplitude for a particular interaction to happen (say
N ϕ's in and M ϕ's out), draw every connected diagram that is topologi-
cally distinct, and has the correct number of in and out particles. Then,
through a set of rules which you will learn formally in a QFT course, you
can reconstruct the integrals which we started with in (9.44).

When you take a course on QFT, you will spend a tremendous amount of
time learning how to evaluate these integrals for low order (they cannot be
evaluated past about second order in most cases). While this is extremely
important, it is not vital for the agenda of these notes, and we therefore do
not discuss how they are evaluated.

The idea is that each diagram represents one of the possible paths the particle
can take, along with the possible interactions it can be a part of. Because this
is a quantum mechanical theory, we know it is actually in a superposition
of all possible paths and interactions. We don't make a measurement or
observation until the particles leave the area in which they collide, so we
have no idea about what is going on inside the accelerator. We know that
if this goes in and this comes out, we can draw a particular set of diagrams
which have the correct input and output, and the nature of the interaction
terms (which determines what types of vertices you can have) tells us what
types of interactions we can have inside the accelerator. Evaluating the
integrals then tells us how much that particular event/diagram contributes
towards the total probability amplitude. So, if you want to know how likely
a certain incoming/outgoing set of particles is, write down all the diagrams,
evaluate the corresponding integrals, and add them up.
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As we pointed out above, the classical behavior (which is more probable) is
closer to the �rst order approximation of the quantum behavior. Therefore,
even though in general we can't evaluate the integrals past about second
order, the �rst few orders tell us to a reasonable (in fact, exceptional in most
cases) degree of accuracy what the amplitude is. If we want more accuracy,
we can seek to evaluate higher orders, but usually lower orders su�ce for
experiments at energy levels we can currently attain.

One of the di�culties encountered with evaluating these integrals is that you
almost always �nd that they yield in�nite amplitudes. Since an amplitude
(which is a probability) should be between 0 and 1, this is obviously un-
acceptable. The process of �nding the in�nite parts and separating them
from the �nite parts of the amplitude is a very well de�ned mathematical
construct called Renormalization. The basic idea is that any in�nite term
consists of a pure in�nity and a �nite part. For example, the in�nite sum:

∞∑
n=1

n = lim
x→0

1

x2
− 1

12
. (9.48)

There is a part which is a pure in�nity (the �rst term on the right hand
side), and a term which is �nite. While this may seem strange and extremely
unfamiliar (and a bit like hand waving), it is actually a very rigorous and
very well understood mathematical idea.

Much of what particle physicists attempt to do is �nd theories (and types of
theories) that can be renormalized and theories that cannot. For example,
the action which leads to General Relativity leads to a quantum theory
which cannot be renormalized. Renormalization is a fascinating and deep
topic, and will be covered in great depth in any standard QFT text or course.

9.5 Interacting Fermion Fields

The analysis we performed above for scalar �elds ϕ above is almost identical
for fermions, and we therefore won't repeat it. The main di�erence is that the
interaction terms will have a �eld ψ interacting with ψ̄, and so the vertices
will be slightly di�erent. We won't bother with those details.

Finally, we can have a Lagrangian with both scalars and fermions. Then,
naturally, you could have interaction terms where the scalars interact with
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fermions. While there are countless interaction terms of this type, the one
that will be the most interesting to us is the Yukawa term,

LYuk = gϕψ̄ψ . (9.49)

If we represent ϕ by a dotted line, ψ by a line with an arrow in the forward
time direction, and ψ̄ with an arrow going backwards in time, this interaction
term will show up in a Feynman diagram as

Once each diagram is drawn, there are well de�ned rules to write down an
integral corresponding to each diagram.

Exercise 9.1: Using the path integral representations �nd the transition
amplitude for a free particle moving in one dimension.

Exercise 9.2: Find the time spreading of the initially (t = 0) Gaussian
Schrödinger wave packet

Ψ(q, 0) =

(
1

2πσ2

)1/4

e−
(q−a)2

4σ2 ,

where a is some parameter and σ is a scalar �eld.

Exercise 9.3: Using the path integral �nd the transition amplitude for a
harmonic oscillator.

Exercise 9.4: Find the path integral representation of the partition function
for canonical ensemble.
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The relativistic �eld theory is full of in�nities which need to be taken care
of before the theoretical predictions can be compared with experimental
measurements.

The problem of in�nities �rst arose in the classical electrodynamics of point
particles. The mass of a charged particle should include the mass-energy in
its electrostatic �eld (electromagnetic mass). Assume that the particle is a
charged spherical shell of radius re. The mass-energy in the �eld is

mem =

∫
1

2
E2 dV =

∫ ∞

re

1

2

( q

4πr2

)2
4πr2 dr =

q2

8πre
,

which becomes in�nite as re → 0. This implies that the point particle would
have in�nite inertia, making it unable to be accelerated. Incidentally, the
value of re that makes mem equal to the electron mass is called the classical
electron radius,

re =
e2

4πε0mec2
= α

~
mec

≈ 2.8× 10−15 m ,

where α ≈ 1/137 is the �ne-structure constant, and ~/mec is the Compton
wavelength of the electron.

The total e�ective mass of a spherical charged particle includes the actual
bare mass of the spherical shell (in addition to the mass associated with its
electric �eld). If the shell's bare mass is allowed to be negative, it might be
possible to take a consistent point limit. This was called renormalization,
and Lorentz and Abraham attempted to develop a classical theory of the
electron this way.

When calculating the electromagnetic interactions of charged particles, it is
tempting to ignore the back-reaction of a particle's own �eld on itself. But
this back-reaction is necessary to explain the friction on charged particles
when they emit radiation. If the electron is assumed to be a point, the value
of the back-reaction diverges. The Abraham-Lorentz theory had a noncausal
"pre-acceleration". Sometimes an electron would start moving before the
force is applied. This early work was the inspiration for later attempts at
regularization and renormalization in QFT, which are conceptually distinct
concepts.

Regularization is the process by which one renders divergent quantities �nite
by introducing a parameter Λ such that the original divergent theory (the



116

theory which is ill-de�ned before regularization) corresponds to a certain
value of that parameter. Once you regularize your theory, you can calculate
any quantity you want in terms of the "bare" quantities appearing in the
original lagrangian (such as masses m, couplings λ, etc.) along with the
newly introduced regularization parameter Λ. The bare quantities are not
what is measured in experiments. What is measured in experiments are
corresponding physical quantities (the physical masses mp, couplings λp,
etc.).

Renormalization is the process by which you take the regularized theory, a
theory written in terms of bare quantities and the regularization parameter
(Λ, m, λ, · · · ), and you apply certain conditions (renormalization conditions)
which cause physical quantities you want to compute, such as scattering am-
plitudes, to depend only on physical quantities (mp, λp, · · · ), and in perform-
ing this procedure on a renormalizable QFT, the dependence on the cuto�
disappears. So, in a sense, renormalization can be thought of as more of a
procedure for writing your theory in terms of physical quantities than as a
procedure for "removing in�nities". The removing in�nite part is already
accomplished through regularization.

Eventhough the concept of renormalization is quite simple, the actual proce-
dure for carrying out the operation is quite complicated and intimidating. We
need to use some regularization procedure to make these divergent quantities
�nite before we can do mathematically meaningful manipulations. Note that
not every relativistic �eld theory will have this property that all divergences
can be absorbed into rede�nition of few physical parameters. Those which
have this property are called renormalizable theories and those which don't
are called unrenormalizable theories. This has become an important criteria
for choosing a right theory because we do not really know how to handle the
unrenormalizable theory.

Beware that what I have described here is not the whole conceptual story
of regularization and renormalization. More complete picture of how renor-
malization is thought about nowadays will be considered in this lecture.



Chapter 10

Regularization

In physics regularization is a method of modifying observables which have
singularities in order to make them �nite by the introduction of a suitable
parameter called regulator. The regulator, also known as a "cuto�", models
our lack of knowledge about physics at unobserved scales (e.g. scales of
small size or large energy levels). It compensates for (and requires) the
possibility that "new physics" may be discovered at those scales which the
present theory is unable to model, while enabling the current theory to give
accurate predictions as an "e�ective theory" within its intended scale of use.

Regularization was for many decades controversial even amongst its inven-
tors, as it combines physical and epistemological claims into the same equa-
tions. However, it is now well understood and has proven to yield useful,
accurate predictions.

Regularization procedures deal with in�nite, divergent, and nonsensical ex-
pressions by introducing an auxiliary concept of a regulator (for example,
the minimal distance in space, which is useful in case the divergences arise
from short-distance physical e�ects). The correct physical result is obtained
in the limit in which the regulator goes away, but the virtue of the regulator
is that for its �nite value, the result is �nite.

Regularization is the �rst step towards obtaining a completely �nite and
meaningful result; in QFT it must be usually followed by a related, but
independent technique called Renormalization. Renormalization is based
on the requirement that some physical quantities are equal to the observed
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values. Such a constraint allows one to calculate a �nite value for many other
quantities that looked divergent.

The existence of a limit and the independence of the �nal result from the
regulator are nontrivial facts. The underlying reason for them lies in univer-
sality as shown by Wilson and Kadano� considering the second order phase
transitions. Sometimes, taking the limit is not possible. This is the case
when we have a Landau pole and for nonrenormalizable couplings, like the
Fermi interaction. However, working with scales of the order of regulators
still give pretty accurate approximations. The physical reason why we can't
take the limit is the existence of new physics.

It is not always possible to de�ne a regularization such that the limit is
independent of the regularization. In this case, one says that the theory
contains an anomaly.

10.1 Realistic Regularization

Perturbative predictions by QFT are computed using the Feynman rules
and a regularization method to circumvent UV divergences. The method
results in regularized n-point Green's functions (propagators), and a suit-
able limiting procedure (a renormalization scheme) then leads to perturba-
tive S-matrix elements. These are independent of the particular regulariza-
tion method used, and enable one to model perturbatively the measurable
physical processes (cross sections, probability amplitudes, decay widths and
lifetimes of excited states). However, so far no known regularized n-point
Green's functions can be regarded as being based on a physically realistic
theory of quantum-scattering since the derivation of each disregards some of
the basic tenets of conventional physics (e.g. by not being Lorentz-invariant,
by introducing either unphysical particles with a negative metric or wrong
statistics, or discrete space-time, or lowering the dimensionality of space-
time, or some combination thereof, etc.). So the available regularization
methods are understood as formalistic technical devices, devoid of any di-
rect physical meaning.

As it seems that the vertices of non-regularized Feynman series adequately
describe interactions in quantum scattering, it is taken that their UV di-
vergences are due to the asymptotic, high-energy behavior of the Feynman
propagators. So it is a prudent, conservative approach to retain the vertices
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in Feynman series, and modify only the Feynman propagators to create a
regularized Feynman series.

10.1.1 Historical Remarks and Opinions

In 1949 Pauli conjectured there is a realistic regularization, which is im-
plied by a theory that respects all the established principles of contemporary
physics. So its propagators:

• Do not need to be regularized;

• Can be regarded as such a regularization of the propagators used in
QFTs that might re�ect the underlying physics.

The additional parameters of such a theory do not need to be removed (i.e.
no renormalization is needed) and may provide some new information about
the physics of quantum scattering, though they may turn out experimentally
to be negligible. By contrast, any present regularization method introduces
formal coe�cients that must eventually be disposed of by renormalization.

Dirac was persistently, extremely critical about procedures of renormaliza-
tion. So in 1963 :"... in the renormalization theory we have a theory that
has de�ed all the attempts of the mathematician to make it sound. I am
inclined to suspect that the renormalization theory is something that will
not survive in the future, ...". So he was expecting a realistic regularization.

Still is relevant Salam's remark (1972) about the skepticism on a realistic
regularization: "Field-theoretic in�nities �rst encountered in Lorentz's com-
putation of electron have persisted in classical electrodynamics for seventy
and in QED for some thirty-�ve years. These long years of frustration have
left in the subject a curious a�ection for the in�nities and a passionate belief
that they are an inevitable part of nature; so much so that even the sugges-
tion of a hope that they may after all be circumvented - and �nite values for
the renormalization constants computed - is considered irrational".

However, in 't Hooft's opinion: "History tells us that if we hit upon some
obstacle, even if it looks like a pure formality or just a technical complication,
it should be carefully scrutinized. Nature might be telling us something, and
we should �nd out what it is".
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By Dirac: "One can distinguish between two main procedures for a theoret-
ical physicist. One of them is to work from the experimental basis ... . The
other procedure is to work from the mathematical basis. One examines and
criticizes the existing theory. One tries to pin-point the faults in it and then
tries to remove them. The di�culty here is to remove the faults without
destroying the very great successes of the existing theory".

The di�culty with a realistic regularization is that nothing could be de-
stroyed by its bottom-up approach and it has not experimental basis.

Considering distinct theoretical problems, Dirac in 1963 suggested: "I believe
separate ideas will be needed to solve these distinct problems and that they
will be solved one at a time through successive stages in the future evolution
of physics. At this point I �nd myself in disagreement with most physicists.
They are inclined to think one master idea will be discovered that will solve
all these problems together. I think it is asking too much to hope that anyone
will be able to solve all these problems together. One should separate them
one from another as much as possible and try to tackle them separately. And
I believe the future development of physics will consist of solving them one
at a time, and that after any one of them has been solved there will still be
a great mystery about how to attack further ones".

According to Dirac: "Quantum electrodynamics is the domain of physics that
we know most about, and presumably it will have to be put in order before
we can hope to make any fundamental progress with other �eld theories,
although these will continue to develop on the experimental basis".

Dirac's two preceding remarks suggest that we should start searching for a
realistic regularization in the case of QED in the 4-dimensional Minkowski
spacetime, starting with the original QED Lagrangian density.

The path-integral formulation provides the most direct way from the La-
grangian density to the corresponding Feynman series. The free-�eld part of
the Lagrangian density determines the Feynman propagators, whereas the
rest determines the vertices. As the QED vertices are considered to ade-
quately describe interactions, it makes sense to modify only the free-�eld
part of the Lagrangian density so as to obtain such regularized Feynman se-
ries that the Lehmann-Symanzik-Zimmermann reduction formula provides a
perturbative S-matrix that: (a) Is Lorentz invariant and unitary; (b) Involves
only the QED particles; (c) Depends solely on QED parameters and those
introduced by the modi�cation of the Feynman propagators; (d) Exhibits the
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same symmetries as the QED perturbative S-matrix. Let us refer to such a
regularization as the minimal realistic regularization, and start searching for
the corresponding, modi�ed free-�eld parts of the QED Lagrangian density.

According to Bjorken and Drell, it would make physical sense to sidestep
UV divergences by using more detailed description than can be provided
by di�erential �eld equations. Feynman noted about the use of di�erential
equations: "... for neutron di�usion it is only an approximation that is
good when the distance over which we are looking is large compared with
the mean free path. If we looked more closely, we would see individual
neutrons running around". Then he wondered, "Could it be that the real
world consists of little X-ons which can be seen only at very tiny distances?
And that in our measurements we are always observing on such a large scale
that we can't see these little X-ons, and that is why we get the di�erential
equations? ... Are they also correct only as a smoothed-out imitation of a
really much more complicated microscopic world?"

Already in 1938, Heisenberg proposed that a QFT can provide only a large-
scale description of quantum dynamics, valid for distances larger than some
fundamental length, expected also by Bjorken and Drell in 1965. Feynman's
preceding remark provides a possible physical reason for its existence; either
that or it is just another way of saying the same thing (there is a fundamental
unit of distance) but having no new information.

The need for regularizations in any quantum theory of gravity is one of the
major motivation for physics beyond SM. In�nities of the non-gravitational
forces in QFT can be controlled via renormalization only, but additional
regularization (and hence new physics) is required uniquely for gravity. The
regularizers model break down of QFT at small scales and thus show clearly
the need for some other theory to come into play at these scales. Zee (2003)
considers this to be a bene�t of the regularization framework � theories can
work well in their intended domains but also contain information about their
own limitations and point clearly to where new physics is needed.

10.2 Dimensional Regularization

Dimensional regularization is a method introduced by Giambiagi and Bollini,
and independently and more comprehensively by 't Hooft and Veltman, for
regularizing integrals in the evaluation of Feynman diagrams, by assigning
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values to them that are meromorphic functions of a complex parameter d,
the analytic continuation of the number of spacetime dimensions.

Dimensional regularization writes a Feynman integral as an integral depend-
ing on the spacetime dimension d and the squared distances (xi−xj)2 of the
spacetime points xi appearing in it.

In Euclidean space, the integral often converges for Re(d) su�ciently large,
and can be analytically continued from this region to a meromorphic func-
tion de�ned for all complex d. In general, there will be a pole at the physical
value (usually 4) of d, which needs to be canceled by renormalization to
obtain physical quantities. Etingof (1999) showed that dimensional regu-
larization is mathematically well de�ned, at least in the case of massive
Euclidean �elds, by using the Bernstein-Sato polynomial to carry out the
analytic continuation.

Although the method is most well understood when poles are subtracted and
d is once again replaced by 4, it has also led to some successes when d is taken
to approach another integer value where the theory appears to be strongly
coupled, as in the case of the Wilson-Fisher �xed point. A further leap is
to take the interpolation through fractional dimensions seriously. This has
led some authors to suggest that dimensional regularization can be used to
study the physics of crystals that macroscopically appear to be fractals.

If one wishes to evaluate a loop integral which is logarithmically divergent
in four dimensions, like

∫
ddp

(2π)d
1

(p2 +m2)2
, (10.1)

one �rst rewrites the integral in some way so that the number of variables in-
tegrated over does not depend on d, and then we formally vary the parameter
d, to include non-integral values like d = 4− ϵ. This gives

∫ ∞

0

dp

(2π)4−ε
2π(4−ε)/2

Γ
(
4−ε
2

) p3−ε

(p2 +m2)2
=

2ε−4π
ε
2
−1

sin(πε2 )Γ(1− ε
2)
m−ε =

=
1

8π2ε
− 1

16π2

(
ln
m2

4π
+ γ

)
+O(ε) , (10.2)

where γ = 0.5772... .
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10.3 Pauli-Villars Regularization

Pauli-Villars regularization is a procedure that isolates divergent terms from
�nite parts in loop calculations in QFT in order to renormalize the theory.
Pauli and Villars published the method in 1949, based on earlier work by
Feynman, Stueckelberg and Rivier.

In this treatment, a divergence arising from a loop integral (such as vacuum
polarization or electron self-energy) is modulated by a spectrum of auxiliary
particles added to the Lagrangian or propagator. When the masses of the
�ctitious particles are taken as an in�nite limit (i.e. once the regulator is
removed) one expects to recover the original theory.

This regulator is gauge invariant due to the auxiliary particles being min-
imally coupled to the photon �eld through the gauge covariant derivative.
In QCD calculations it is not gauge covariant, so Pauli-Villars regularization
cannot be used and serves as an alternative to the more favorable dimen-
sional regularization in speci�c circumstances, such as in chiral phenomena,
where a change of dimension alters the properties of the Dirac γ-matrices.

Using the path-integral formalism, 't Hooft and Veltman had invented the
method of unitary regulators, which is a Lagrangian based Pauli-Villars
method with a discrete spectrum of auxiliary masses.

Pauli-Villars regularization consists of introducing a �ctitious mass term.
For example, we would replace a photon propagator

1

k2 + iϵ
, (10.3)

by
1

k2 + iϵ
− 1

k2 −M2 + iϵ
, (10.4)

where M can be thought of as the mass of a �ctitious heavy photon, whose
contribution is subtracted from that of an ordinary photon.

10.4 Lattice Regularization

Lattice �eld theory is the study of lattice models of QFT, that is, of �eld
theory on a spacetime that has been discretized onto a lattice. Although most
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lattice �eld theories are not exactly solvable, they are of tremendous appeal
because they can be studied by simulation on a computer. One hopes that,
by performing simulations on larger and larger lattices, while making the
lattice spacing smaller and smaller, one will be able to recover the behavior
of the continuum theory.

Just as in all lattice models, numerical simulation gives access to �eld con-
�gurations that are not accessible to perturbation theory, such as solitons.
Likewise, non-trivial vacuum states can be discovered and probed.

The method is particularly appealing for the quantization of a gauge theory.
Most quantization methods keep Poincaré invariance manifest but sacri�ce
manifest gauge symmetry by requiring gauge �xing. Only after renormaliza-
tion can gauge invariance be recovered. Lattice �eld theory di�ers from these
in that it keeps manifest gauge invariance, but sacri�ces manifest Poincaré
invariance � recovering it only after renormalization.

10.5 Zeta Function Regularization

Zeta function regularization is a type of summability method that assigns
�nite values to divergent sums or products, and in particular can be used
to de�ne determinants and traces of some self-adjoint operators. The tech-
nique is now commonly applied to problems in physics, but has its origins
in attempts to give precise meanings to ill-conditioned sums appearing in
number theory.

There are several di�erent summation methods called zeta function regular-
ization for de�ning the sum of a possibly divergent series a1 + a2 + · · · .

• One method is to de�ne its zeta regularized sum

ζA(s) =
1

as1
+

1

as2
+ · · · (10.5)

where the zeta function is de�ned for Re(s) and by analytic contin-
uation elsewhere. In the case when an = n, the zeta function is the
ordinary Riemann zeta function, and this method was used by Euler
to "sum" the series 1 + 2 + 3 + 4 + . . . to ζ(−1) = −1/12.
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Other values of s can also be used to assign for the divergent sums

1+1+1+1+. . .→ ζ(0) = −1/2 , 1+4+9+. . .→ ζ(−2) = 0 , (10.6)

and in general

∞∑
n=1

ns = 1s + 2s + 3s + · · · → ζ(−s) = −Bs+1

s+ 1
, (10.7)

where Bk is a Bernoulli number.

Hawking showed (1977) that in �at space, in which the eigenvalues
of Laplacians are known, the zeta function corresponding to the par-
tition function can be computed explicitly. Consider a scalar �eld ϕ
contained in a large box of volume V in �at spacetime at the temper-
ature T = β−1. The partition function is de�ned by a path integral
over all �elds ϕ on the Euclidean space obtained by putting τ = it,
which are zero on the walls of the box and which are periodic in τ with
period β. In this situation from the partition function he computes
energy, entropy and pressure of the radiation of the �eld ϕ. In case
of �at spaces the eigenvalues appearing in the physical quantities are
generally known, while in case of curved space they are not known: in
this case asymptotic methods are needed.

• Another method de�nes the possibly divergent in�nite product a1, a2,
· · · to be e−ζ

′A(0). Ray and Singer (1971) used this to de�ne the
determinant of a positive self-adjoint operator A (the Laplacian of a
Riemannian manifold in their application) with eigenvalues a1, a2, · · · ,
and in this case the zeta function is formally the trace of A-s. Mi-
nakshisundaram and Pleijel (1949) showed that if A is the Laplacian
of a compact Riemannian manifold then the Minakshisundaram-Pleijel
zeta function converges and has an analytic continuation as a mero-
morphic function to all complex numbers, and Seeley (1967) extended
this to elliptic pseudo-di�erential operators A on compact Riemannian
manifolds. So for such operators one can de�ne the determinant using
zeta function regularization.

Hawking (1977) suggested using this idea to evaluate path integrals
in curved spacetimes. He studied zeta function regularization in order
to calculate the partition functions for thermal graviton and matter's
quanta in curved background such as on the horizon of black holes
and on de Sitter background using the relation by the inverse Mellin
transformation to the trace of the kernel of heat equations.
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The �rst example in which zeta function regularization is available
appears in the Casimir e�ect, which is in a �at space with the bulk
contributions of the quantum �eld in three space dimensions. In this
case we must calculate the value of Riemann zeta function at −3,
which diverges explicitly. However, it can be analytically continued to
s = −3 where hopefully there is no pole, thus giving a �nite value to the
expression. A detailed example of this regularization at work is given
in the article on the detail example of the Casimir e�ect, where the
resulting sum is very explicitly the Riemann zeta-function (and where
the seemingly legerdemain analytic continuation removes an additive
in�nity, leaving a physically signi�cant �nite number).

An example of zeta-function regularization is the calculation of the vacuum
expectation value of the energy of a particle �eld in quantum �eld theory.
More generally, the zeta-function approach can be used to regularize the
whole energy-momentum tensor in curved spacetime.

The unregulated value of the energy is given by a summation over the zero-
point energy of all of the excitation modes of the vacuum:

⟨0|T00|0⟩ =
∑
n

~|ωn|
2

. (10.8)

Here, the sum (which may be an integral) is understood to extend over all
energy modes ±ωn; the absolute value reminding us that the energy is taken
to be positive. This sum, as written, is usually in�nite (ωn is typically linear
in n). The sum may be regularized by writing it as

⟨0|T00(s)|0⟩ =
∑
n

~|ωn|
2
|ωn|−s , (10.9)

where s is some parameter, taken to be a complex number. For large, real
s greater than 4 (for three-dimensional space), the sum is manifestly �nite,
and thus may often be evaluated theoretically.

The zeta-regularization is useful as it can often be used in a way such that
the various symmetries of the physical system are preserved. Zeta-function
regularization is used in conformal �eld theory, renormalization and in �xing
the critical spacetime dimension of string theory.

We can ask if are there any relation to the dimensional regularization orig-
inated by the Feynman diagram. But now we may say they are equivalent
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each other. However the main advantage of the zeta regularization is that
it can be used whenever the dimensional regularization fails, for example if
there are matrices or tensors inside the calculations.

10.5.1 Relation to Dirichlet Series

Zeta-function regularization gives an analytic structure to any sums over an
arithmetic function f(n). Such sums are known as Dirichlet series. The
regularized form,

f̃(s) =

∞∑
n=1

f(n)n−s , (10.10)

converts divergences of the sum into simple poles on the complex s-plane.
In numerical calculations, the zeta-function regularization is inappropriate,
as it is extremely slow to converge. For numerical purposes, a more rapidly
converging sum is the exponential regularization, given by

F (t) =

∞∑
n=1

f(n)e−tn . (10.11)

This is sometimes called the Z-transform of f , where Z = e−t. The ana-
lytic structure of the exponential and zeta-regularizations are related. By
expanding the exponential sum as a Laurent series

F (t) =
aN
tN

+
aN−1

tN−1
+ · · · (10.12)

one �nds that the zeta-series has the structure

f̃(s) =
aN

s−N
+ · · · . (10.13)

The structure of the exponential and zeta-regulators are related by means
of the Mellin transform. The one may be converted to the other by making
use of the integral representation of the Gamma function:

Γ(s+ 1) =

∫ ∞

0
xse−x dx , (10.14)

which lead to the identity

Γ(s+ 1)f̃(s+ 1) =

∫ ∞

0
tsF (t) dt , (10.15)

relating the exponential and zeta-regulators, and converting poles in the
s-plane to divergent terms in the Laurent series.
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10.5.2 Heat Kernel Regularization

Much of the early work establishing the convergence and equivalence of series
regularized with the heat kernel and zeta function regularization methods
was done by Hardy and Littlewood in 1916 and is based on the application
of the Cahen-Mellin integral. The e�ort was made in order to obtain values
for various ill-de�ned, conditionally convergent sums appearing in number
theory.

The sum
f(s) =

∑
n

ane
−s|ωn| (10.16)

is sometimes called a heat kernel or a heat-kernel regularized sum; this name
stems from the idea that the ωn can sometimes be understood as eigenvalues
of the heat kernel. In mathematics, such a sum is known as a generalized
Dirichlet series; its use for averaging is known as an Abelian mean. It is
closely related to the Laplace-Stieltjes transform, in that

f(s) =

∫ ∞

0
e−st dα(t) , (10.17)

where α(t) is a step function, with steps of an at t = |ωn|. A number of
theorems for the convergence of such a series exist. For example, by the
Hardy-Littlewood Tauberian theorem, if

L = lim sup
n→∞

log |
∑n

k=1 ak|
|ωn|

(10.18)

then the series for f(s) converges in the half-plane ℜ(s) > L and is uniformly
convergent on every compact subset of the half-plane ℜ(s) > L. In almost
all applications to physics, one L = 0.

10.6 Causal Perturbation Theory

Causal perturbation theory, which goes back to a work by Epstein and Glaser
(1973), is a mathematically rigorous approach to renormalization theory,
which makes it possible to put the theoretical setup of perturbative QFT on
a sound mathematical basis.
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When developing QED in the 1940s, Tomonaga, Schwinger, Feynman and
Dyson discovered that, in perturbative calculations, problems with diver-
gent integrals abounded. The divergences appeared in calculations involving
Feynman diagrams with closed loops of virtual particles. It is an important
observation that time-ordered products of distributions arise in a natural way
and may lead to UV divergences in the corresponding calculations. From the
mathematical point of view, the problem of divergences is rooted in the fact
that the theory of distributions is a purely linear theory, in the sense that
the product of two distributions cannot consistently be de�ned (in general),
as was proved by Schwartz in the 1950s.

Epstein and Glaser solved this problem for a special class of distributions that
ful�ll a causality condition, which itself is a basic requirement in axiomatic
QFT, they studied only theories involving scalar particles. Since then, the
causal approach has been applied also to a wide range of gauge theories,
which represent the most important QFTs in modern physics.

10.7 Hadamard Regularization

Hadamard regularization (also called Hadamard �nite part) is a method of
regularizing divergent integrals by dropping some divergent terms and keep-
ing the �nite part, introduced by Hadamard (1923, 1932). Riesz (1938, 1949)
showed that this can be interpreted as taking the meromorphic continuation
of a convergent integral.

If the Cauchy principal value integral

C
∫ b

a

f(t)

t− x
dt (a < x < b) (10.19)

exists, then it may be di�erentiated with respect to x to obtain the Hadamard
�nite part integral as follows:

d

dx

(
C
∫ b

a

f(t)

t− x
dt

)
= H

∫ b

a

f(t)

(t− x)2
dt . (a < x < b) (10.20)

Note that the symbols C and H are used here to denote Cauchy principal
value and Hadamard �nite-part integrals respectively.

The Hadamard �nite part integral above (for a < x < b) may also be given
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by the following equivalent de�nitions:

H
∫ b
a

f(t)
(t−x)2 dt = limε→0+

{∫ x−ε
a

f(t)
(t−x)2 dt+

∫ b
x+ε

f(t)
(t−x)2 dt−

2f(x)
ε

}
=

= limε→0+

{∫ b
a

(t−x)2f(t)
(t−x)2+ε2 dt−

πf(x)
2ε −

f(x)
2

(
1
b−x −

1
a−x

)}
. (10.21)

The de�nitions above may be derived by assuming that the function f(t) is
di�erentiable in�nitely many times at t = x (a < x < b), that is, by assuming
that f(t) can be represented by its Taylor series about t = x.

Integral equations containing Hadamard �nite part integrals (with f(t) un-
known) are termed hypersingular integral equations. Hypersingular integral
equations arise in the formulation of many problems in mechanics, such as
in fracture analysis.

Exercise 10.1: Calculate the Feynman integral in n dimensions:∫
dnk

(2π)n
1

(k2 + 2p · k +m2 + iϵ)2
,

using the dimensional regularization.

Exercise 10.2: Use the dimensional regularization to compute the one-loop
vacuum polarization in QED.

Exercise 10.3: In scalar electrodynamics two diagrams give contribution
to the polarization of vacuum. Using dimensional regularization derive the
expression for the divergent part of the vacuum polarization.



Chapter 11

Renormalization

The Theory of Renormalization is a prescription which consistently isolates
and removes all in�nities from the physically measurable quantities. Note
that the need for renomalization is quite general and is not unique to the
relativistic �eld theory. For example, consider an electron moving inside
a solid. If the interaction between electron and the lattice of the solid is
weak enough, we can use an e�ective mass m∗ to describe its response to
an externally applied force and this e�ective mass is certainly di�erent from
the mass m measured outside the solid. Thus the electron mass is changed
(renormalized) from m to m∗ by the interaction of the electron with the
lattice in the solid. In this simple case, both m and m∗ are measurable and
hence �nite. For the relativistic �eld theory, the situation is the same except
for two important di�erences:

1. The renormalization due to the interaction is generally in�nite (cor-
responding to the divergent loop diagrams). These in�nities, coming
from the contribution of high momentum modes are present even for
the cases where the interactions are weak;

2. There is no way to switch o� the interaction between particles and the
quantities in the absence of interaction � bare quantities are not mea-
surable. Roughly speaking, the program of removing the in�nities from
physically measurable quantities involves shu�ing all the divergences
into bare quantities. In other words, we can rede�ne the unmeasurable
quantities to absorb the divergences so that the physically measurable
quantities are �nite. The renormalized mass which is now �nite can

131
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only be determined from experimental measurement and cannot be
predicted from the theory alone.

There are two di�erent methods to carry out the renormalization program:
Conventional Renormalization, which is more intuitive but mathematically
complicated, and BPH Renormalization, which is simple to describe but not
so transparent. These two methods are in fact complementary to each other
and it is very useful to know both.

11.1 Conventional Renormalization

We will illustrate this scheme in the simple λφ4 theory where the Lagrangian
can be written as:

L = L0 + L1 , (11.1)

with

L0 =
1

2

[
(∂µφ0)

2 − µ20φ2
0

]
, L1 = −

λ0
4!
φ4
0 . (11.2)

Here µ0, λ0, φ0 are bare mass, bare coupling constant and bare �eld, respec-
tively. The propagator and vertex of this theory are given below,

Here p is the momentum carried by the line and µ20 is the bare mass in L0.

The two point function (propagator) de�ned by

i∆(p) =

∫
d4xe−ip·x ⟨0 |T (φ0 (x)φ0 (0))| 0⟩ , (11.3)

can be written in terms of one-particle-irreducible (1PI), using those graphs
which cannot be made disconnected by cutting any one internal line, i.e. can
be written as a geometric series

i∆(p) =
i

p2 − µ20 + iε
+

i

p2 − µ20 + iε

(
−iΣ

(
p2
)) i

p2 − µ20 + iε
+ · · · =

=
i

p2 − µ20 − Σ(p2) + iε
. (11.4)
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Here Σ
(
p2
)
is the 1PI self-energy graph. In one-loop, the 1PI 2-point and

4-point divergent graphs are:

For the self-energy the contribution is,

− iΣ
(
p2
)
= − iλ0

2

∫
d4l

(2π)4
i

l2 − µ20 + iε
, (11.5)

which diverges quadratically and for the 4-point functions we have

Γa = Γ (s) =
(−iλ0)2

2

∫
d4l

(2π)4
i

l2 − µ20 + iε

i

(l − p)2 − µ20 + iε
,

Γb = Γ (t) , Γc = Γ (u) , (11.6)

where s, t and u are the Mandelstam variables (see Sec. 4.2.1) and Γ(s)
diverges logarithmically.

Important feature to note about these integrals is that when we di�erenti-
ate them with respect to external momenta, the integral will become more
convergent. For example, if we di�erentiate Γ

(
p2
)
by p2, one �nds

∂

∂p2
Γ
(
p2
)

=
1

2p2
pµ

∂

∂pµ
Γ
(
p2
)
=

=
λ20
p2

∫
d4l

(2π)4
(l − p) · p
l2 − µ20 + iε

1[
(l − p)2 − µ20 + iε

]2 , (11.7)
which is �nite. This means that the divergences will reside only in the �rst
few terms in a Taylor expansion in the external momenta of the Feynman
diagram. In our case, we can write

Γ (s) = Γ (0) +
_

Γ (s) , (11.8)

where Γ(0) is logarithmic divergent and
_

Γ (s), which is the sum of all higher
derivative terms, is �nite. In other words, the �nite part

_

Γ(s) corresponds
to subtracting the divergent part Γ(0) from Γ(s) and is sometimes referred
to as the substraction.
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11.1.1 Mass and Wavefunction Renormalization

The self-energy contribution in (11.5) is quadratically divergent. To isolate
the divergences we use the Taylor expansion around some arbitrary value µ2,

Σ
(
p2
)
= Σ

(
µ2
)
+
(
p2 − µ2

)
Σ′ (µ2)+ Σ̃

(
p2
)
, (11.9)

where Σ
(
µ2
)
is quadratically divergent, and Σ′ (µ2) is logarithmically diver-

gent and Σ̃
(
p2
)
is �nite. The �nite part Σ̃

(
p2
)
will have the property,

Σ̃
(
µ2
)
= Σ̃′ (µ2) = 0 . (11.10)

Note that self-energy in 1-loop has the peculiar feature that it is independent
of the external momentum p2 and the Taylor expansion has only one term,
Σ
(
µ2
)
. However, the higher loop contribution depend on p2 and the Taylor

expansion is non-trivial. The propagator in (11.4) is then,

i∆(p) =
i

p2 − µ20 − Σ(µ2)− (p2 − µ2)Σ′ (µ2)− Σ̃ (p2) + iε
. (11.11)

The physical mass is de�ned as the position of the pole in the propagator.
Since up to this point µ2 is arbitrary, we can choose it to satisfy the relation,

µ20 +Σ
(
µ2
)
= µ2 . (11.12)

Then

i∆(p) =
i

(p2 − µ2) [1− Σ′ (µ2)]− Σ̃ (p2) + iε
, (11.13)

and using (11.10) we see that ∆(p) has a pole at p2 = µ2. Thus µ2 is the
physical mass and is related to the bare mass µ20 in (11.12). This is the mass
renormalization. Since Σ

(
µ2
)
is divergent, the bare mass µ20 must also be

divergent so that the combination µ20 + Σ
(
µ2
)
is �nite and measurable. In

other words, the bare mass µ20 has to diverge in such a way that its divergence
cancels the divergent loop correction to yield a �nite result. It amounts to
shu�ing the in�nities to unobservable quantities like bare mass µ20. This
is the part in renormalization theory which is very di�cult to comprehend
at the �rst sight. Nevertheless it is logically consistent and the rules are
very precise. Furthermore, the results after the renomalization have been
successfully checked by experiments. This gives us con�dence about the
validity of renormalization theory.
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To remove the divergent quantity Σ′ (µ2) we note that in 1-loop both Σ′ (µ2),
Σ̃
(
p2
)
are of order λ0, for convenience, we can make the approximation,

Σ̃
(
p2
)
≃
[
1− Σ′ (µ2)] Σ̃ (p2)+O

(
λ20
)
, (11.14)

and write the propagator as

i∆(p) =
iZφ

(p2 − µ2)− Σ̃ (p2) + iε
, (11.15)

where
Zφ =

[
1− Σ′ (µ2)]−1 ≃ 1 + Σ′ (µ2)+O

(
λ20
)
. (11.16)

Now the divergence is shu�ed into the multiplicative factor Zφ which can
be removed by de�ning a renormalized �eld φ as,

φ = Z−1/2
φ φ0 . (11.17)

The propagator for the renormalized �eld is then

i∆R(p) =

∫
d4xe−ip·x ⟨0 |T (φ (x)φ (0))| 0⟩ =

= iZ−1
φ ∆(p) =

i

(p2 − µ2)− Σ̃ (p2) + iε
, (11.18)

and it is completely �nite. Zφ is usually called the wavefunction renor-
malization constant. Thus another divergence is shu�ed into the bare �eld
operator φ0 which is also not measurable.

The new renormalized �eld operator φ should also be applied to the renor-
malized higher point Green's functions,

G
(n)
R (x1, x2, · · · xn) = ⟨0 |T (φ (x1)φ (x2) · · ·φ (xn))| 0⟩ =

= Z−n/2
φ ⟨0 |T (φ0 (x1)φ0 (x2) · · ·φ0 (xn))| 0⟩ =(11.19)

= Z−n/2
φ G

(n)
0 (x1, x2, · · ·xn) .

Here G(n)
0 (x1, x2, · · ·xn) is the unrenormalized n-point Green's function. Or

in momentum space

G
(n)
R (p1, p2, · · · pn) = Z−n/2

φ G
(n)
0 (p1, p2, · · · pn) , (11.20)
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where

(2π)4 δ4 (p1 + · · · pn)G(n)
R (p1, · · · pn) =

=

∫ ( n∏
i=1

dx4i e
−ipi·xi

)
G

(n)
R (x1, · · ·xn) . (11.21)

Similarly for G(n)
0 (p1, p2, · · · pn). To go from the connected Green's functions

to the 1PI (amputated) Green's functions, we need to eliminate the one-
particle reducible diagrams, and also to remove the propagators i∆R (pi) for
the external lines in 1PI Green's function G(n)

R (p1, · · · pn). As a result the
relation between 1PI Green's functions are of the form,

Γ
(n)
R (p1, p2, · · · pn) = Zn/2φ Γ

(n)
0 (p1, p2, · · · pn) . (11.22)

Note that the relations in (11.10) are direct consequence of the Taylor ex-
pansion around the point p2 = µ2 which is totally arbitrary. From the form
of the renormalized propagator in (11.18), we see that (11.10) are equivalent
to the relations

∆−1
R

(
µ2
)
= 0 ,

d

dp2
∆−1
R

(
p2
)∣∣∣∣
p2=µ2

= 1 . (11.23)

If we have chosen some other point, e.g. p2 = 0 for the Taylor expansion,
the �nite part Σ̃1

(
p2
)
will have the properties

Σ̃1(0) = Σ̃′
1(0) = 0 . (11.24)

Or in terms of renormalized propagator,

∆−1
R (0) = −µ2, d

dp2
∆−1
R

(
p2
)∣∣∣∣
p2=0

= 1 . (11.25)

Sometimes in the renormalization prescription we replace the statement Tay-
lor expansion around p2 = µ2, or p2 = 0 by relations expressed, in (11.10)
and (11.24), called the renormalization conditions. One important feature
to keep in mind is that in carrying out the renormalization program there
is an arbitrariness in choosing the points for the Taylor expansion. Di�er-
ent renormalization schemes seem to give rise to di�erent looking relations.
However, if these renormalization schemes make any sense at all, the physical
laws which are relations among physically measurable quantities should be
the same regardless of which scheme is used. This is the basic idea behind
the renormalization group equations.
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11.1.2 Coupling Constant Renormalization

The basic coupling in λφ4 theory is the 4-point function which in 1-loop has
the form, before renormalization,

Γ
(4)
0 (s, t, u) = −iλ0 + Γ (s) + Γ (t) + Γ (u) , (11.26)

where last three terms are logarithmic divergent. We will remove these diver-
gences by the rede�nition of the coupling constant. Note that the physical
coupling constant is measured in terms of two-particle scattering amplitude
which is essentially 1PI 4-point Green's function Γ

(4)
R (s, t, u) which is a func-

tion of the kinematical variables, s, t and u. For convenience, we can choose
the symmetric point,

s0 = t0 = u0 =
4µ2

3
(11.27)

to de�ne the coupling constant,

Γ
(4)
R (s0, t0, u0) = −iλ , (11.28)

where λ is the renormalized coupling constant. Since Γ(s) is only logarith-
mically divergent, we can isolate the divergence in one term in the Taylor
expansion,

Γ(s) = Γ (s0) + Γ̃(s) , (11.29)

where Γ̃(s) is �nite and Γ̃ (s0) = 0. Then

Γ
(4)
0 (s, t, u) = −iλ0 + 3Γ (s0) + Γ̃(s) + Γ̃(t) + Γ̃(u) . (11.30)

We can isolate the divergence by combining the �rst two term and de�ne the
vertex renormalization constant Zλ by

− iZλλ0 = −iλ0 + 3Γ (s0) . (11.31)

Then
Γ
(4)
0 (s, t, u) = −iZλλ0 + Γ̃(s) + Γ̃(t) + Γ̃(u) . (11.32)

The renomalized 4-point 1PI is then

Γ
(4)
R (s, t, u) = Z2

φΓ
(4)
0 (s, t, u) =

= −iZλZ2
φλ0 + Z2

φ

[
Γ̃(s) + Γ̃(t) + Γ̃(u)

]
. (11.33)
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We now de�ne the renomalized coupling constant λ as

λ = ZλZ
2
φλ0 , (11.34)

and from (11.16) we see that

Zφ = 1 +O (λ0) . (11.35)

Also Γ̃ is of order of λ20. The renomalized 4-point 1PI can be put into the
form,

Γ
(4)
R (s, t, u) = λ+

[
Γ̃(s) + Γ̃(t) + Γ̃(u)

]
+O

(
λ30
)
. (11.36)

Assuming that the coupling constant λ is measured in the scattering and
is �nite, we see that this 4-point function is completely free of divergences.
Equation (11.34) shows that the renormalization of coupling constant in-
volves wavefunction renormalization in addition to the vertex correction.

For the renormalization of connected Green's functions, we need to add one-
particle reducible diagrams and attach propagators for the external lines.
We want to show that the renormalized Green functions when expressed in
terms of renormalized quantities are completely �nite. We start with the
unrenormalized Green's function of the form,

G
(4)
0 (p1, · · · p4) = ∆(0) (pj)

{
− iλ0 + 3Γ (s0) + Γ̃(s) + Γ̃(t) + Γ̃(u) +

+ (−iλ0)
4∑

k=1

[
−iΣ

(
p2k
)
i∆(0) (pk)

]}
, (11.37)

where

∆(0) (pj) =
1

p2j − µ20 + iε
(11.38)

is the zeroth order bare propagator and the last terms here are coming from
the diagrams of the following type,

1P reducible 4-point function
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We can combine the �rst term and the last terms in G(4)
0 (p1, · · · p4) to get

(−iλ0)

{
1 +

4∑
k=1

[
Σ
(
p2k
)
∆(0) (pk)

]}
≃

≃ (−iλ0)

[
4∏

k=1

1

1− Σ
(
p2k
)
∆(0) (pk)

]
+O

(
λ30
)
=

= (−iλ0)
4∏

k=1

{
[
∆(0) (pk)

]−1 1[
p2k − µ20 − Σ

(
p2k
)]} = (11.39)

= (−iλ0)
4∏

k=1

{
[
∆(0) (pk)

]−1
∆(pk) ,

where
∆(pk) =

1[
p2k − µ20 − Σ

(
p2k
)] . (11.40)

Since the di�erence between ∆(pk) and ∆(0) (pk) is higher order in λ0, we
can make the approximation for the rest of the terms in (11.37),

∆(0) (pj)
[
3Γ (s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)

]
≃

≃
4∏
j=1

∆(pj)
[
3Γ (s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)

]
. (11.41)

The unrenormalized Green's function is then

G
(4)
0 (p1, · · · p4) =

[
4∏
j=1

∆(pj)

] [
−iλ0 + 3Γ (s0) + Γ̃(s) + Γ̃(t) + Γ̃(u)

]
=

=

[
4∏
j=1

∆(pj)

]
Γ
(4)
0 (s, t, u) . (11.42)

We now multiply the unrenormalized Green's function by the appropriate
factor of Zφ to get the renomalized one,

G
(4)
R (p1, · · · p4) = Z−2

φ G
(4)
0 (p1, · · · p4) = Z−2

φ

[
4∏
j=1

∆(pj)

]
Γ
(4)
0 (s, t, u) =

= Z−2
φ

[
Z4
φ

4∏
j=1

i∆R (pj)

]
Z−2
φ Γ

(4)
R (s, t, u) = (11.43)

=

[
4∏
j=1

i∆R (pj)

]
Γ
(4)
R (s, t, u) .
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Thus we have removed all the divergences in the connected 4-point Green's
function.

In summary, Green's functions can be made �nite if we express the bare
quantities in terms of the renormalized ones through the relations,

φ = Z−1/2
φ φ0 , λ = Z−1

λ Z2
φλ0 , µ2 = µ20 + δµ2 , (11.44)

where δµ2 = Σ
(
µ2
)
. For an n-point Green's function when we express the

bare mass µ0 and bare coupling λ0 in terms of the renormalized mass µ
and coupling λ, and multiply by Z−1/2

φ for each external line the result (the
renormalized n-point Green's function) is completely �nite,

G
(n)
R (p1, · · · pn;λ, µ) = Z−n/2

φ G
(n)
0 (p1, · · · pn;λ0, µ0,Λ) , (11.45)

where Λ is the cuto� needed to de�ne the divergent integrals. This feature,
in which all the divergences, after rewriting µ0 and λ0 in terms of µ and λ are
aggregated into some multiplicative constants, is called being multiplicatively
renormalizable.

11.2 BPH Renormalization

BPH renormalization (after Bogoliubov, Parasiuk, Hepp) is completely equiv-
alent to the conventional renormalization but organized di�erently. We will
illustrate this also in the simple λφ4 theory.

Start from the unrenormalized Lagrangian,

L0 =
1

2

[
(∂µφ0)

2 − µ20φ2
0

]
− λ0

4!
φ4
0 , (11.46)

where all the quantities are unrenormalized. We can rewrite this in terms of
renormalized quantities using (11.44),

L0 = L+∆L , (11.47)

where

L =
1

2

[
(∂µφ)

2 − µ2φ2
]
− λ

4!
φ4 (11.48)

has exactly the same form as the original Lagrangian, is called the renor-
malized Lagrangian, and by so called counterterm Lagrangian:

∆L =
(Zφ − 1)

2

[
(∂µφ)

2 − µ2φ2
]
+
δµ2

2
Zφφ

2 − λ (Zλ − 1)

4!
φ4 , (11.49)
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which contains all the divergent constants, Zφ, Zλ, δµ2.

The BPH renormalization scheme consists of the following steps;

1. Start with renormalized Lagrangian given in (11.48) to construct prop-
agators and vertices;

2. Isolate the divergent parts of 1PI diagrams by Taylor expansion. Con-
struct a set of counterterms ∆L(1) which is designed to cancel these
one-loop divergences;

3. A new Lagrangian L(1) = L + ∆L(1) is used to generate the 2-loop
diagrams and to construct the counterterms ∆L(2) which cancels the
divergences up to this order and so on, as this sequence of operations
is iteratively applied.

The resulting Lagrangain is of the form,

L(∞) = L+∆L , (11.50)

where the counterterm Lagrangian ∆L is given by,

∆L = ∆L(1) +∆L(2) + · · ·∆L(n) + · · · . (11.51)

We will now show that the counter term Lagrangian has the same structure
as that in (11.49).

11.2.1 Power Counting Method

This method will help to classify divergences systematically. For a given
Feynamn diagram, we de�ne super�cial degree of divergenceD as the number
of loop momenta in the numerator minus the number of loop momenta in
the denominator. For illustration we will compute D in λϕ4 theory. De�ne

B = number of external lines,
IB = number of internal lines,
n = number of vertices.

(11.52)

It is easy to see that the super�cial degree of divergence is given by

D = 4−B . (11.53)
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It is important to note that D depends only on the number of external lines,
B and not on n, the number of vertices. This is a consequence of λϕ4 theory
and might not hold for other interactions. From (11.53) we see that D ≥ 0
only for B = 2, 4 (B = even because of the symmetry ϕ → −ϕ). In the
analysis of divergences, we will use the super�cial degree of divergences to
construct the counterterms. The reason for this will be explained later.

1. B = 2,⇒ D = 2
Being quadratically divergent, the necessary Taylor expansion for the
2-point function is of the form,

Σ
(
p2
)
= Σ(0) + p2Σ′(0) + Σ̃

(
p2
)
, (11.54)

where Σ(0) and Σ′(0) are divergent and Σ̃
(
p2
)
, To cancel these diver-

gences we need to add two counterterms,

1

2
Σ(0)ϕ2 +

1

2
Σ′(0) (∂µϕ)

2 , (11.55)

which give the following contributions,

counterterms for 2-point function

2. B = 4, ⇒ D = 0
The Taylor expansion is

Γ(4) (pi) = Γ(4)(0) + Γ̃(4) (pi) , (11.56)

where Γ(4)(0) is logarithmically divergent which is to be cancelled by
conunterterm of the form

i

4!
Γ(4)(0)ϕ4 (11.57)

counterterms for 4-point function

The general counterterrm Lagrangian is then

∆L =
1

2
Σ(0)ϕ2 +

1

2
Σ′(0) (∂µϕ)

2 +
i

4!
Γ(4)(0)ϕ4 , (11.58)
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which is clearly the same as (11.49) with the identi�cation

Σ′(0) = (Zφ − 1) ,

Σ(0) = − (Zφ − 1)µ2 + δµ2 , (11.59)

Γ(4)(0) = −iλ (1− Zλ) . (11.60)

This illustrates the equivalence of BPH renormalization and conventional
renormalization.

11.2.2 More on BPH Renormalization

The BPH renormalization scheme looks very simple. It is remarkable that
this simple scheme can serve as the basis for setting up a proof for a certain
class of �eld theory. There are many interesting and useful features in BPH
which do not show themselves on the �rst glance and are very useful in the
understanding of this renormalization program. We will now discuss some
of them.

Convergence of Feynman Diagrams. In our analysis we have used the
super�cial degree of divergences D. To 1-loop order that super�cial degree of
divergence is the same as the real degree of divergence. When we go beyond
1-loop it is possible to have an overall D < 0 while there are real divergences
in the subgraphs. The real convergence of a Feynman graph is governed by
Weinberg's theorem: The general Feynman integral converges if the super-
�cial degree of divergence of the graph together with the super�cial degree
of divergence of all subgraphs are negative. To be more explicit, consider a
Feynman graph with n external lines and l loops. Introduce a cuto� Λ in
the momentum integration to estimate the order of divergence,

Γ(n) (p1, · · · , pn−1) =

∫ Λ

0
d4q1 · · · d4qiI (p1, · · · , pn−1; q1, · · · , qi) . (11.61)

Take a subset S = {q′1, q′2, · · · q′m} of the loop momenta {q1, · · · , qi} and scale
them to in�nity and all other momenta �xed. Let D (S) be the super�cial
degree of divergence associated with integration over this set, i.e.∣∣∣∣∫ Λ

0
d4q′1 · · · d4q′mI

∣∣∣∣ ≤ ΛD(s) {lnΛ} , (11.62)

where {lnΛ} is some function of lnΛ. Then the convergent theorem states
that the integral over {q1, · · · , qi} converges if the D (S)'s for all possible
choice of S are negative. For example the graph in the following �gure
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divergence in 6-point function

is a 6-point function with D = −2. But the integration inside the box with
D = 0 is logarithmically divergent. However, in the BPH procedure this
subdivergence is removed by lower order counter terms as shown below.

counterterm for 6-point function

Classi�cation of Divergent Graphs. It is useful to distinguish divergent
graphs with di�erent topologies in the construction of counterterms.

1. Primitively divergent graphs
A primitively divergent graph has a nonnegative overall super�cial de-
gree of divergence but is convergent for all subintegrations. Thus these
are diagrams in which the only divergences is caused by all of the loop
momenta growing large together. This means that when we di�erenti-
ate with respect to external momenta at least one of the internal loop
momenta will have more power in the denominator and will improve
the convergence of the diagram. It is then clear that all the divergences
can be isolated in the �rst few terms of the Taylor expansion.

2. Disjointed divergent graphs

Here the divergent subgraphs are disjointed. For illustration, consider
the 2-loop graph given below,

2-loop disjoint divergence

It is clear that di�erentiating with respect to the external momentum
will improve only one of the loop integration but not both. As a result,
not all divergences in this diagram can be removed by subtracting out
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the �rst few terms in the Taylor expansion around external momenta.
However, the lower order counter terms in the BPH scheme will come
in to save the day. The Feynman integral is written as

Γ(4)
a (p) ∝ λ3 [Γ(p)]2 , (11.63)

with

Γ(p) =
1

2

∫
d4l

1

l2 − µ2 + iε

1

[(l − p)2 − µ2 + iε]
, (11.64)

and p = p1 + p2. Since Γ(p) is logarithmic divergent, Γ(4)
a (p) cannot

be made convergent no matter how many derivatives act on it, even
though the overall super�cial degree of divergence is zero. However,
we have the lower order counterm −λ2Γ(0) corresponding to the sub-
straction introduced at the 1-loop level. This generates the additional
contributions given in the following diagrams,

2-loop graphs with counterms

which are proportional to −λ3Γ(0)Γ(p). Adding these 3 contributions,
we get

λ3 [Γ(p)]2 − 2λ3Γ(0)Γ(p) =

= λ3 [Γ(p)− Γ(0)]2 − λ3 [Γ(0)]2 , (11.65)

Since the combination in the �rst [· · · ] is �nite, the divergence in the
last term can be removed by one di�erentiation. Here we see that
with the inclusion of lower order counterterms, the divergences take
the form of polynomials in external momenta. Thus for graphs with
disjointed divergences we need to include the lower order counter terms
to remove the divergences by substractions in Taylor expansion.

3. Nested divergent graphs

In this case one of a pair of divergent 1PI is entirely contained within
the other as shown in the following diagram,

nested divergences
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After the subgraph divergence is removed by diagrams with lower or-
der counterterms, the overall divergences is then renormalized by a λ3

counter terms as shown below,

lower order counterterm

Again diagrams with lower-order counterterm insertions must be in-
cluded in order to aggregate the divergences into the form of polyno-
mial in external momenta.

4. Overlapping divergent graphs

These diagrams are those divergences which are neither nested nor
disjointed. These are most di�cult to analyze. An example of this is
shown below,

overlapping divergences

From these discussion, it is clear that BPH renormalization scheme is quite
useful in organizing the higher order divergences in a more systematic way
for the removing of divergences by constructing the counterterms.

The general analysis of the renormalization program has been carried out by
Bogoliubov, Parasiuk, Hepp. The result is known as BPH theorem, which
states: For a general renormalizable QFT, to any order in perturbation the-
ory, all divergences are removed by the counterterms corresponding to super-
�cially divergent amplitudes.

11.3 Power Counting and Renormalizability

We now discuss the problem of renormalization for more general interactions.
It is clear that it is advantageous to use the BPH scheme in this discussion.
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11.3.1 Theories with Fermions and Scalar Fields

We �rst study the simple case with fermion ψ and scalar �eld ϕ. Write the
Lagrangian density as

L = L0 +
∑
i

Li , (11.66)

where L0 is the free Lagrangian quadratic in the �elds and Li are the inter-
action terms e.g.

Li = g1
_

ψγµψ∂µϕ ; g2

(_
ψψ
)2

; g3

(_
ψψ
)
ϕ , · · · . (11.67)

Here ψ denotes a fermion �eld and ϕ a scalar �eld. De�ne the following
quantities

ni = number of i− th type vertices,

bi = number of scalar lines in i− th type vertex,

fi = number of fermion lines in i− th type vertex,

di = number of derivatives in i− th type of vertex,

B = number of external scalar lines, (11.68)

F = number of external fermion lines,

IB = number of internal scalar lines,

IF = number of internal fermion lines.

Counting the scalar and fermion lines, we get

B + 2 (IB) =
∑
i

nibi , (11.69)

F + 2 (IF ) =
∑
i

nifi , (11.70)

Using momentum conservation at each vertex we can compute the number
of loop integration L as

L = (IB) + (IF )− n+ 1 , n =
∑
i

ni , (11.71)

where the last term is due to the overall momentum conservation which does
not contain the loop integrations. The super�cial degree of divergence is
then given by

D = 4L− 2 (IB)− (IF ) +
∑
i

nidi . (11.72)
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Using the relations given in (11.69) and (11.70) we get

D = 4−B − 3

2
F +

∑
i

niδi , (11.73)

where
δi = bi +

3

2
fi + di − 4 (11.74)

is called the index of divergence of the interaction. Using the fact that
Lagrangian density L has dimension 4 and scalar �eld, fermion �eld and
the derivative have dimensions, 1, 3/2, and 1 respectively, we get for the
dimension of the coupling constant gi as

dim (gi) = 4− bi −
3

2
fi − di = −δi . (11.75)

We distinguish 3 di�erent situations;

1. δi < 0

In this case, D decreases with the number of i-th type of vertices and
the interaction is called super-renormalizable interaction. The diver-
gences occur only in some lower order diagrams. There is only one
type of theory in this category, namely ϕ3 interaction.

2. δi = 0

Here D is independent of the number of i-th type of vertices and in-
teractions are called renormalizable interactions. The divergence are
present in all higher-order diagrams of a �nite number of Green's func-
tions. Interactions in this category are of the form, gϕ4, f

(_
ψψ
)
ϕ.

3. δi > 0

Then D increases with the number of the i-th type of vertices and all
Green's functions are divergent for large enough ni. These are called
non-renormalizable interactions. There are plenty of examples in this

category, g1
_

ψγµψ∂µϕ, g2
(_
ψψ
)2
, g3ϕ5, · · · .

The index of divergence δi can be related to the operator's canonical dimen-
sion which is de�ned in terms of the high energy behavior in the free �eld
theory. For any operator A we write the 2-point function as

DA

(
p2
)
=

∫
d4xe−ip·x ⟨0 |T (A(x)A(0))| 0⟩ . (11.76)
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If the asymptotic behavior is of the form,

DA

(
p2
)
−→

(
p2
)−ωA/2 , as p2 −→∞ , (11.77)

then the canonical dimension is de�ned as

d (A) =
4− ωA

2
. (11.78)

Thus for the case of fermion and scalar �elds we have,

d (ϕ) = 1 , d (∂nϕ) = 1 + n ,

d (ψ) =
3

2
, d (∂nψ) =

3

2
+ n . (11.79)

Note that in these simple cases, these values are the same as those obtained
in the dimensional analysis in the classical theory and sometimes they are
also called the naive dimensions. As we will see later for the vector �eld, the
canonical dimension is not necessarily the same as the naive dimension.

For composite operators that are polynomials in the scalar or fermion �elds
it is di�cult to know their asymptotic behavior. So we de�ne their canonical
dimensions as the algebraic sum of their constituent �elds. For example,

d
(
ϕ2
)
= 2 , d

(_
ψψ
)
= 3 . (11.80)

For general composite operators that show up in the those interaction de-
scribed before, we have,

d (Li) = bi +
3

2
fi + di (11.81)

and it is related to the index of divergence as

δi = d (Li)− 4 . (11.82)

We see that a dimension 4 interaction is renormalizable and greater than 4
is non-renormalizable.

Counter Terms. Recall that we add counterterms to cancel all the diver-
gences in Green's functions with super�cial degree of divergences D ≥ 0.
For convenience we use the Taylor expansion around zero external momenta
pi = 0. It is easy to see that a general diagram with D ≥ 0, counter terms
will be of the form

Oct = (∂µ)
α (ψ)F (ϕ)B , (α = 1, 2, · · ·D) (11.83)
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and the canonical dimension is

dct =
3

2
F +B + α . (11.84)

The index of divergence of the counterterms is

δct = dct − 4 . (11.85)

Using the relation in (11.73) we can write this as

δct = (α−D) +
∑
i

niδi . (11.86)

Since α ≤ D, we have the result

δct ≤
∑
i

niδi . (11.87)

Thus, the counterterms induced by a Feynman diagrams have indices of
divergences less or equal to the sum of the indices of divergences of all inter-
actions δi in the diagram.

We then get the general result that the renormalizable interactions which
have δi = 0 will generate counterterms with δct ≤ 0. Thus if all the δi ≤ 0
terms are present in the original Lagrangain, so that the counter terms have
the same structure as the interactions in the original Lagragian, they may be
considered as rede�ning parameters like masses and coupling constants in the
theory. On the other hand non-renormalizable interactions which have δi > 0
will generate counterterms with arbitrary large δct in su�ciently high orders
and clearly cannot be absorbed into the original Lagrangian by a rede�nition
of parameters δct. Thus non-renormalizable theories will not necessarily be
in�nite; however the in�nite number of counterterms associated with a non-
renormalizable interaction will make it lack in predictive power and hence
be unattractive, in the framework of perturbation theory.

We will adopt a more restricted de�nition of renormalizability: a Lagrangian
is said to be renormalizable by power counting if all the counterterms in-
duced by the renormalization procedure can be absorbed by rede�nitions of
parameters in the Lagrangian. With this de�nition the theory with Yukawa
interaction

_

ψγ5ψϕ by itself, is not renormalizable even though the coupling
constant is dimensionless. This is because the 1-loop diagram shown below
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box diagram for Yukawa coupling

is logarithmically divergent and needs a counter term of the form ϕ4 which
is not present in the original Lagrangain. Thus Yukawa interaction with
additional ϕ4 interaction is renormalizable.

11.3.2 Theories with Vector Fields

Here we distinguish massless from massive vector �elds because their asymp-
totic behaviors for the free �eld propagators are very di�erent.

Massless vector �eld is usually associated with local gauge invariance as in
the case of QED. The asymptotic behavior of free �eld propagator for such
vector �eld is very similar to that of scalar �eld. For example, in the Feynman
gauge we have

∆µν(k) =
−igµν
k2 + iε

−→ O
(
k−2

)
, for large k2 , (11.88)

which has the same asymptotic behavior as for scalar �elds. Thus the power
counting for theories with massless vector �eld interacting with fermions
and scalar �elds is the same as before. The renomalizable interactions in
this category are of the type,

_

ψγµψA
µ , ϕ2AµA

µ , (∂µϕ)ϕA
µ . (11.89)

Here Aµ is a massless vector �eld and ψ a fermion �eld.

The free Lagrangian of massive vector �eld is of the form,

L0 = −
1

4
(∂µVν − ∂νVµ)2 +

1

2
M2
V V

2
µ , (11.90)

where Vµ is a massive vector �eld and MV is the mass of the vector �eld.
The propagator in momentum space is of the form,

Dµν (k) =
−i
(
gµν − kµkν/M2

V

)
k2 −M2

V + iε
−→ O(1) , as k →∞ . (11.91)



152 CHAPTER 11. RENORMALIZATION

This implies that canonical dimension of massive vector �eld is two rather
than one. The power counting is now modi�ed with super�cial degree of
divergence given by

D = 4−B − 3

2
F − V +

∑
i

ni (∆i − 4) , (11.92)

with

∆i = bi +
3

2
fi + 2vi + di . (11.93)

Here V is the number of external vector lines, vi is the number of vector �elds
in the i-th type of vertex and ∆i is the canonical dimension of the interaction
term in L. From the formula for ∆i we see that the only renormalizable
interaction involving massive vector �eld, ∆i ≤ 4, is of the form, ϕ2Aµ and is
not Lorentz invariant. Thus there is no nontrivial interaction of the massive
vector �eld which is renormalizabel. However, two important exceptions
should be noted;

1. In a gauge theory with spontaneous symmetry breaking, the gauge
boson will acquire mass in such a way to preserve the renormalizability
of the theory;

2. A theory with a neutral massive vector boson coupled to a conserved
current is also renormalizable. Heuristically, we can understand this as
follows. The propagator in (11.91) always appears between conserved
currents Jµ(k) and Jν(k) and the kµkν/M2

V term will not contribute
because of current conservation, kµJµ(k) = 0, or in the coordinate
space ∂µJµ(x) = 0. Then the power counting is essentially the same
as for the massless vector �eld case.

11.3.3 Renormalization of Composite Operators

In some cases, we need to consider the Green's function of composite opera-
tor, an operator with more than one �elds at the same space time. Consider a
simple composite operator of the form Ω(x) = 1

2ϕ
2(x) in λϕ4 theory. Green's

function with one insertion of Ω is of the form,

G
(n)
Ω (x;x1, x2, x3, ..., xn) = ⟨0|T

(
1

2
ϕ2(x)ϕ(x1)ϕ(x2)...ϕ(xn)

)
|0⟩ , (11.94)
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In momentum space we have

(2π)4δ4(p+ p1 + p2 + ...+ pn)G
(n)
ϕ2

(p; p1, p2, p3, ..., pn) =

=

∫
d4x e−ipx

∫ n∏
i=1

d4xie
−ipixiG

(n)
Ω (x;x1, x2, x3, ..., xn) . (11.95)

In perturbation theory, we can use Wick's theorem to work out these Green's
functions in terms of Feynman diagram. Example, to lowest order in λ the
2-point function with one composite operator Ω(x) = 1

2ϕ
2(x) is, after using

the Wick's theorem,

G
(2)
ϕ2

(x;x1, x2) =
1

2

⟨
0|T{ϕ2(x)ϕ(x1)ϕ(x2)}|0

⟩
=

= i∆(x− x1)i∆(x− x2) , (11.96)

or in momentum space

G
(2)
ϕ2

(p; p1, p2) = i∆(p1)i∆(p+ p1) . (11.97)

If we truncate the external propagators, we get

Γ
(2)
ϕ2

(p, p1,−p1 − p) = 1 . (11.98)

graphs for composite operator

To �rst order in λ, we have

G
(2)
ϕ2

(x, x1, x2) =
∫
⟨0|T

{
1
2ϕ

2(x)ϕ(x1)ϕ(x2)
−iλ
4! ϕ

4(y)
}
|0⟩d4y =

=
∫
d4y−iλ

2 [i∆(x− y)]2i∆(x1 − y)i∆(x2 − y) . (11.99)

The amputated 1PI momentum space Green's function is

Γ
(2)
ϕ2

(p; p1,−p−p1) =
−iλ
2

∫
d4l

(2π)4
i

l2 − µ2 + iϵ

i

(l − p)2 − µ2 + iϵ
. (11.100)
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To calculate this type of Green's functions systematically, we can add a term
χ(x)Ω(x) to L

L[χ] = L[0] + χ(x)Ω(x) , (11.101)

where χ(x) is a c-number source function. We can construct the generat-
ing functional W [χ] in the presence of this external source. We obtain the
connected Green's function by di�erentiating lnW [χ] with respect to χ and
then setting χ to zero.

Super�cial degrees of divergence for Green's function with one composite
operator is,

DΩ = D + δΩ = D + (dΩ − 4) , (11.102)

where dΩ is the canonical dimension of Ω. For the case of Ω(x) = 1
2ϕ

2(x),

dϕ2 = 2 and Dϕ2 = 2 − n ⇒ only Γ
(2)
ϕ2

is divergent. Taylor expansion takes
the form,

Γ
(2)
ϕ2

(p; p1) = Γ
(2)
ϕ2

(0, 0) + Γ
(2)
ϕ2R

(p, p1) . (11.103)

We can combine the counter term,

−i
2
Γ(2)ϕ2(0, 0)χ(x)ϕ2(x) , (11.104)

with the original term to write

−i
2
χϕ− i

2
Γ2
ϕ2(0, 0)χϕ

2 = − i
2
Zϕ2χϕ

2 . (11.105)

In general, we need to insert a counterterm ∆Ω into the original addition

L→ L+ χ(Ω +∆Ω) . (11.106)

If ∆Ω = CΩ, as in the case of Ω = 1
2ϕ

2, we have

L[χ] = L[0] + χZΩΩ = L[0] + χΩ0 , (11.107)

with
Ω0 = ZΩΩ = (1 + C)Ω . (11.108)

Such composite operators are said to be multiplicative renormalizable and
Green's functions of unrenormalized operator Ω0 is related to that of renor-
malized operator Ω by

G
(n)
Ω0

(x;x1, x2, ...xn) = ⟨0|T{Ω0(x)ϕ(x1)ϕ(x2)...ϕ(xn)}|0⟩ =

= ZΩZ
n/2
ϕ G

(n)
lR (x;x1, ...xn) . (11.109)
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For more general cases, ∆Ω ̸= CΩ and the renormalization may require
counterterms proportional to other composite operators.

As an example consider the case with 2 composite operatorsA andB. Denote
the counterterms by ∆A and ∆B. Including the counter terms we can write,

L[χ] = L[0] + χA(A+∆A) + χB(B +∆B) . (11.110)

Often the counterterms ∆A and ∆B are linear combinations of A and B,

∆A = CAAA+ CABB , ∆B = CBAA+ CBBB . (11.111)

We can write

L[χ] = L[0] + (χA χB) {C}
(
A
B

)
, (11.112)

where

{C} =
(

1 + CAA CAB
CBA 1 + CBB

)
. (11.113)

Diagonalize {C} by bi-unitary transformation

U{C}V + =

(
ZA′ 0
0 ZB′

)
. (11.114)

Then
L[χ] = L[0] + ZA′χA′A

′
+ ZB′χB′B

′
. (11.115)

Also (
A

′

B
′

)
= V

(
A
B

)
,

(
χA′ χB′

)
= (χA χB)U , (11.116)

and A
′
, B

′
are multiplicatively renormalizable.

11.3.4 Symmetry and Renormalization

For a theory with global symmetry, we require that the counter terms should
also respect the symmetry. For example, consider the Lagrangian given by

L =
1

2

[
(∂µϕ1)

2 + (∂µϕ2)
2
]
− µ2

2

(
ϕ21 + ϕ22

)
− λ

4

(
ϕ21 + ϕ22

)2
. (11.117)
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This Lagrangian has the O(2) symmetry given below

ϕ1 → ϕ′1 = cos θϕ1 + sin θϕ2 ,

ϕ2 → ϕ′2 = − sin θϕ1 + cos θϕ2 , (11.118)

The counter terms for this theory should have the same symmetry. For
example the mass counter term should be of the form δµ2

(
ϕ21 + ϕ22

)
, i.e. the

coe�cient of ϕ21 counter term should be the same as ϕ22 term. Then the only
other possible counter terms are of the form,

(∂µϕ1)
2 + (∂µϕ2)

2 ,
(
ϕ21 + ϕ22

)2
. (11.119)

For the case the symmetry is slightly broken an interesting feature occurs.
We will illustrate this with a simple case where the symmetry breaking as,

LSB = c
(
ϕ21 − ϕ22

)
. (11.120)

Since the index of divergence for LSB is δSB = −2, the super�cial degree
of divergence for graphs containing LSB is DSB = 4 − B1 − B2 − 2nSB,
where B1 and B2 are number of external ϕ1 and ϕ2 lines and nSB is the
number of times LSB appears in the graph. For the case nSB = 1, we have
DSB = 2 − B1 − B2. This means that DSB ≥ 0 only for B1 = 2, B2 = 0,
or B1 = 0, B2 = 2 and the counter terms we need are ϕ21, and ϕ22. The
combination ϕ21 + ϕ22 can be absorbed in the mass counter term while the
other combination ϕ21 − ϕ22 can be absorbed into LSB. This shows the when
the symmetry is broken, the counterterms we need will have the property
that, δCT ≤ δSB. Or in terms of operator dimension

dim (LCT ) ≤ dim (LSB) . (11.121)

Thus when dim (LSB) ≤ 3, the dimension of counter terms cannot be 4.
This situation is usually referred to as soft breaking of the symmetry. This
is known as the Szymanzik theorem. Note that for the soft breaking the cou-
pling constant gSB will have positive dimension of mass and will be negligible
when energies become much larger than gSB. In other words, the symmetry
will be restored at high energies.

11.3.5 Ward Identity

In case of global symmetry, we also have some useful relation for composite
operator like the current operator which generates the symmetry. We will
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give a simple illustration of this feature. The Lagrangian given in (11.117)
can be rewritten as

L = ∂µϕ
†∂µϕ− µ2ϕ†ϕ− λ

(
ϕ†ϕ

)2
, (11.122)

where ϕ = (ϕ1 + iϕ2) /
√
2. The symmetry transformation is then ϕ→ ϕ′ =

eiθϕ . This will give rise, through Noether's theorem, the current of the form,

Jµ = i
[(
∂µϕ

†
)
ϕ− (∂µϕ)ϕ

†
]

(11.123)

is conserved, ∂µJµ = 0. From the canonical commutation relation,[
∂0ϕ

†(
→
x, t), ϕ(

→
x
′
, t)
]
= −iδ3(→x −→

x
′
) , (11.124)

we can derive, [
J0(

→
x, t), ϕ(

→
x
′
, t)
]

= δ3(
→
x −→

x
′
)ϕ(

→
x
′
, t) , (11.125)[

J0(
→
x, t), ϕ†(

→
x
′
, t)
]

= −δ3(→x −→
x
′
)ϕ†(

→
x
′
, t) . (11.126)

Now consider the Green's function of the form,

Gµ (p, q) =

∫
d4xd4ye−iq·x−ip·y

⟨
0
∣∣∣T (Jµ(x)ϕ (y)ϕ†(0))∣∣∣ 0⟩ . (11.127)

Multiply qµ into this Green's function,

qµGµ (p, q) = −i
∫
d4xd4ye−iq·x−ip·y∂µx

⟨
0
∣∣∣T (Jµ(x)ϕ(y)ϕ†(0))∣∣∣ 0⟩ =

= −i
∫
d4xe−i(q+p)·x

⟨
0
∣∣∣T (ϕ (x)ϕ† (0))∣∣∣ 0⟩+ (11.128)

+i

∫
d4xe−ip·y

⟨
0
∣∣∣T (ϕ(y)ϕ†(0))∣∣∣ 0⟩ ,

where we have used the current conservation and commutators in (11.125)
and (11.125). The right-hand side here is just the propagator for the scalar
�eld,

∆(p) =

∫
d4xe−ip·x

⟨
0
∣∣∣T (ϕ(x)ϕ†(0))∣∣∣ 0⟩ , (11.129)

and we get
− iqµGµ(p, q) = ∆(p+ q)−∆(p) . (11.130)
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This is example of Ward identity.

This relation is derived in terms of unrenomalized �elds which satisfy the
canonical commutation relation. In terms of renormalized quantities,

GRµ (p, q) = Z−1
ϕ Z−1

J Gµ(p, q) , ∆R(p) = Z−1
ϕ ∆(p) , (11.131)

the Ward identity in (11.130) becomes

− iZJqµGRµ (p, q) = ∆R(p+ q)−∆R(p) . (11.132)

Since the right-hand side is cuto� independent, ZJ on the left-hand side is
also cuto� independent, and we do not need any counter terms to renormalize
Jµ(x). In other words, the conserved current Jµ(x) is not renormalized as
composite operator, i.e. ZJ = 1. Thus the relation for the renormalized
quantities takes the simple form,

− iqµGRµ (p, q) = ∆R(p+ q)−∆R(p) . (11.133)

Such a non-renormalization result holds for many conserved quantities.

Exercise 11.1: Use the power-counting argument to construct countert-
erms for QED.

Exercise 11.2: Consider theories with scalar, fermion and massless gauge
�elds in a d-dimensional space-time (d − 1 space coordinates and 1 time
coordinate). Express the super�cial degree of divergence of a diagram in
terms of the number of external fermion and boson lines.

Exercise 11.3: Consider massless two-dimensional QED (the Schwinger
model). (i) Calculate the vacuum polarization at one-loop; (ii) Find the full
photon propagator and read o� the mass of the photon.



Chapter 12

Renormalization Group

The Renormalization Group (RG) refers to a mathematical apparatus that
allows systematic investigation of the changes of a physical system as viewed
at di�erent scales. In particle physics, it re�ects the changes in the underlying
force laws (codi�ed in a quantum �eld theory), as the energy scale at which
physical processes occur varies, energy/momentum and resolution distance
scales being e�ectively conjugate under the uncertainty principle.

A change in scale is called a scale transformation. The RG is intimately
related to scale invariance and conformal invariance, symmetries in which a
system appears the same at all scales (so-called self-similarity).

Variation of the scale is similar to changing of the magnifying power of a
'microscope' viewing the system. In so-called renormalizable theories, the
system at one scale will generally be seen to consist of self-similar copies of
itself when viewed at a smaller scale, with di�erent parameters describing
the components of the system. The components, or fundamental variables,
may relate to atoms, elementary particles, atomic spins, etc. The parameters
of the theory typically describe the interactions of the components. These
may be variable couplings which measure the strength of various forces, or
mass parameters. The components themselves may appear to be composed
of more of the self-same components as one goes to shorter distances.

For example, in QED an electron appears to be composed of electrons,
positrons (anti-electrons) and photons, as one views it at higher resolution,
at very short distances. The electron at such short distances has a slightly
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di�erent electric charge than does the dressed electron seen at large dis-
tances, and this change, or running, in the value of the electric charge is
determined by the RG equation.

12.1 History of RG

The idea of scale transformations and scale invariance is old in physics. Scal-
ing arguments were commonplace for the Pythagorean School, Euclid and
up to Galileo. They became popular again at the end of the XIX century,
perhaps the �rst example being the idea of enhanced viscosity of Reynolds,
as a way to explain turbulence.

The RG was initially devised in particle physics, but nowadays its appli-
cations extend to solid-state physics, �uid mechanics, cosmology and even
nano-technology. An early article by Stueckelberg and Petermann (1953)
anticipates the idea in quantum �eld theory and opened the �eld conceptu-
ally. They noted that renormalization exhibits a group of transformations
which transfer quantities from the bare terms to the counter terms. They
introduced a function h(e) in QED, which is now called the beta function.

Gell-Mann and Low in 1954 restricted the idea to scale transformations in
QED and focused on asymptotic forms of the photon propagator at high
energies. They determined the variation of the electromagnetic coupling in
QED, by appreciating the simplicity of the scaling structure of that theory.
They thus discovered that the coupling parameter g(µ) at the energy scale
µ is e�ectively given by the group equation

g(µ) = G−1

{( µ
M

)d
G[g(M)]

}
, (12.1)

for some function G (nowadays called Wegner's scaling function) and a con-
stant d, in terms of the coupling g(M) at a reference scale M .

Gell-Mann and Low realized in these results that the e�ective scale µ is
arbitrary, and can vary to de�ne the theory at any other scale κ:

g(κ) = G−1

{(
κ

µ

)d
G[g(µ)]

}
= G−1

{( κ
M

)d
G[g(M)]

}
. (12.2)

The gist of the RG is the property: As the scale µ varies, the theory presents
a self similar replica of itself, and any scale can be accessed similarly from



12.1. HISTORY OF RG 161

any other scale, by group action, a formal transitive conjugacy of couplings
in the mathematical sense (Schröder's equation).

On the basis of this (�nite) group equation and its scaling property, Gell-
Mann and Low could then focus on in�nitesimal transformations, and in-
vented a computational method based on a mathematical �ow function ψ(g)
of the coupling parameter g, which they introduced. Like the function h(e)
of Stueckelberg and Petermann, their function determines the di�erential
change of the coupling g(µ) with respect to a small change in energy scale µ
through a di�erential equation, the renormalization group equation:

ψ(g) ≡ β(g) = ∂g

∂ lnµ
. (12.3)

The modern name is also indicated, the beta function, introduced by Callan
and Symanzik in 1970. The renormalization group prediction was con�rmed
40 years later at the LEP accelerator experiments: the �ne structure "con-
stant" of QED was measured to be about 1/127 at energies close to 200 GeV,
as opposed to the standard low-energy physics value of 1/137.

The RG emerges from the renormalization of the quantum �eld variables,
which normally has to address the problem of in�nities in a QFT (although
the RG exists independently of the in�nities). This problem of systemati-
cally handling the in�nities of QFT to obtain �nite physical quantities was
solved for QED by Feynman, Schwinger and Tomonaga, who received the
1965 Nobel Prize for these contributions. They e�ectively devised the theory
of mass and charge renormalization, in which the in�nity in the momentum
scale is cut o� by an ultra-large regulator, Λ (which could ultimately be taken
to be in�nite). The dependence of physical quantities, such as the electric
charge or electron mass, on the scale Λ is hidden, e�ectively swapped for the
longer-distance scales at which the physical quantities are measured. As a
result, all observable quantities end up being �nite instead, even for an in�-
nite Λ. Gell-Mann and Low realized in RG results that, while in�nitesimally
a tiny change in g is provided by the above RG equation given β(g), the self-
similarity is expressed by the fact that β(g) depends explicitly only upon the
parameter(s) of the theory, and not upon the scale µ. Consequently, the RG
group equation (12.3) may be solved for g(µ).

Understanding of the physical meaning and generalization of the renormal-
izations, which goes beyond the dilation group of conventional renormalizable
theories, considers methods where widely di�erent scales of lengths appear
simultaneously. It came from condensed matter physics: Kadano�'s paper
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in 1966 proposed the "block-spin" RG. The blocking idea is a way to de�ne
the components of the theory at large distances as aggregates of components
at shorter distances.

This approach covered the conceptual point and was given full computational
substance in the extensive important contributions of Wilson. The power of
Wilson's ideas was demonstrated by a constructive iterative renormalization
solution of a long-standing problem, the Kondo problem, in 1975, as well
as the preceding seminal developments of his new method in the theory
of second-order phase transitions and critical phenomena in 1971. He was
awarded the Nobel prize for these decisive contributions in 1982.

Meanwhile, the RG in particle physics had been reformulated in more prac-
tical terms by Callan and Symanzik in 1970. The beta function (12.3),
which describes the "running of the coupling" parameter with scale, was
also found to amount to the "canonical trace anomaly", which represents
the quantum-mechanical breaking of scale (dilation) symmetry in a �eld
theory (Remarkably, quantum mechanics itself can induce mass through the
trace anomaly and the running coupling). Applications of the RG to particle
physics exploded in number in the 1970s with the establishment of the SM.

In 1973, it was discovered that a theory of interacting colored quarks, called
QCD, had a negative beta function. This means that an initial high-energy
value of the coupling will eventuate a special value of µ at which the coupling
blows up (diverges). This special value is the scale of the strong interactions,
µ = ΛQCD and occurs at about 200 MeV. Conversely, the coupling becomes
weak at very high energies (asymptotic freedom), and the quarks become
observable as point-like particles, in deep inelastic scattering, as anticipated
by Feynman-Bjorken scaling. QCD was thereby established as the quantum
�eld theory controlling the strong interactions of particles.

Momentum space RG also became a highly developed tool in solid state
physics, but its success was hindered by the extensive use of perturbation
theory, which prevented the theory from reaching success in strongly corre-
lated systems. In order to study these strongly correlated systems, varia-
tional approaches are a better alternative.

The conformal symmetry is associated with the vanishing of the beta func-
tion. This can occur naturally if a coupling constant is attracted, by running,
toward a �xed point at which β(g) = 0. In QCD, the �xed point occurs at
short distances where g → 0 and is called a (trivial) ultraviolet �xed point.
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For heavy quarks, such as the top quark, it is calculated that the coupling
to the mass-giving Higgs boson runs toward a �xed non-zero (non-trivial)
infrared �xed point.

In string theory conformal invariance of the string world-sheet is a fundamen-
tal symmetry: β = 0 is a requirement. Here, β is a function of the geometry
of the space-time in which the string moves. This determines the space-
time dimensionality of the string theory and enforces Einstein's equations of
general relativity on the geometry.

The RG has become one of the most important tools of modern physics. It
is of fundamental importance to string theory and theories of grand uni�ca-
tion. Also serves as the modern key idea underlying critical phenomena in
condensed matter physics. The RG is often used in combination with the
Monte Carlo method.

12.2 Block Spin RG

Let us mention the Block Spin RG model, which was devised by Kadano�
in 1966.

Consider a 2D solid, a set of atoms in a perfect square array. Assume that
atoms interact among themselves only with their nearest neighbors, and that
the system is at a given temperature T . The strength of their interaction
is quanti�ed by a certain coupling J . The physics of the system will be
described by a certain formula, say the Hamiltonian H(T, J).
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Now proceed to divide the solid into blocks of 2× 2 squares; we attempt to
describe the system in terms of block variables, i.e., variables which describe
the average behavior of the block. Further assume that, by some lucky
coincidence, the physics of block variables is described by a formula of the
same kind, but with di�erent values for T and J : H(T ′, J ′). This isn't
exactly true, in general, but it is often a good �rst approximation.

Perhaps, the initial problem was too hard to solve, since there were too many
atoms. Now, in the renormalized problem we have only one fourth of them.
But why stop now? Another iteration of the same kind leads to H(T ′′, J ′′),
and only one sixteenth of the atoms. We are increasing the observation scale
with each RG step.

Of course, the best idea is to iterate until there is only one very big block.
Since the number of atoms in any real sample of material is very large, this
is more or less equivalent to �nding the long range behaviour of the RG
transformation which took (T, J)→ (T ′, J ′) and (T ′, J ′)→ (T ′′, J ′′). Often,
when iterated many times, this RG transformation leads to a certain number
of �xed points.

To be more concrete, consider a magnetic system (e.g., the Ising model), in
which the J coupling denotes the trend of neighbor spins to be parallel. The
con�guration of the system is the result of the tradeo� between the ordering
J term and the disordering e�ect of temperature.

For many models of this kind there are three �xed points:

1. T = 0 and J →∞. This means that, at the largest size, temperature
becomes unimportant, i.e., the disordering factor vanishes. Thus, in
large scales, the system appears to be ordered. We are in a ferromag-
netic phase.

2. T → ∞ and J → 0. Exactly the opposite; here, temperature domi-
nates, and the system is disordered at large scales.

3. A nontrivial point between them, T = Tc and J = Jc. In this point,
changing the scale does not change the physics, because the system is
in a fractal state. It corresponds to the Curie phase transition, and is
also called a critical point.

So, if we are given a certain material with given values of T and J , all we
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have to do in order to �nd out the large-scale behaviour of the system is to
iterate the pair until we �nd the corresponding �xed point.

12.3 Elementary Considerations

In more technical terms, let us assume that we have a theory described by
a certain function Z of the state variables {si} and a certain set of coupling
constants {Jk}. This function may be a partition function, an action, a
Hamiltonian, etc. It must contain the whole description of the physics of the
system.

Now we consider a certain blocking transformation of the state variables
{si} → {s̃i}, the number of s̃i must be lower than the number of si. Now let
us try to rewrite the Z function only in terms of the s̃i. If this is achievable
by a certain change in the parameters, {Jk} → {J̃k}, then the theory is said
to be renormalizable.

For some reason, most fundamental theories of physics such as QED, QCD
and electro-weak interaction, but not gravity, are exactly renormalizable.
Also, most theories in condensed matter physics are approximately renor-
malizable, from superconductivity to �uid turbulence.

The change in the parameters is implemented by a certain beta function,

{J̃k} = β{Jk} , (12.4)

which is said to induce a renormalization �ow (or RG �ow) on the J-space.
The values of J under the �ow are called running couplings.

As was stated in the previous section, the most important information in the
RG �ow are its �xed points. The possible macroscopic states of the system,
at a large scale, are given by this set of �xed points. If these �xed points
correspond to a free �eld theory, the theory is said to exhibit quantum trivial-
ity, possessing what is called a Landau pole, as in quantum electrodynamics.
For a ϕ4 interaction, Aizenman proved that this theory is indeed trivial, for
space-time dimension D ≥ 5. For D = 4, the triviality has yet to be proven
rigorously, but lattice computations have provided strong evidence for this.
This fact is important as quantum triviality can be used to bound or even
predict parameters such as the Higgs boson mass in asymptotic safety sce-
narios. Numerous �xed points appear in the study of lattice Higgs theories,
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but the nature of the quantum �eld theories associated with these remains
an open question.

Since the RG transformations in such systems are lossy (i.e. the number of
variables decreases), there need not be an inverse for a given RG transfor-
mation. Thus, in such lossy systems, the RG is, in fact, a semigroup.

12.4 Relevant Operators and Universality Classes

Consider a certain observable A of a physical system undergoing an RG
transformation. The magnitude of the observable as the length scale of the
system goes from small to large may be: (a) always increasing, (b) always
decreasing or (c) other. In the �rst case, the observable is said to be a
relevant observable; in the second, irrelevant and in the third, marginal.

A relevant observable is needed to describe the macroscopic behavior of the
system; an irrelevant observable is not. Marginal observables may or may
not need be taken into account. A remarkable broad fact is that most ob-
servables are irrelevant, i.e. the macroscopic physics is dominated by only
a few observables in most systems. As an example, in microscopic physics,
to describe a system consisting of a mole of 12C atoms we need of the order
of 1023 (Avogadro's number) variables, while to describe it as a macroscopic
system (12 grams of 12C) we only need a few.

Before Wilson's RG approach, there was an astonishing empirical fact to
explain: the coincidence of the critical exponents (i.e. the exponents of the
reduced-temperature dependence of several quantities near a second order
phase transition) in very disparate phenomena, such as magnetic systems,
super�uid transition (Lambda transition), alloy physics, etc. Thus, in gen-
eral, thermodynamic features of a system near a phase transition depend
only on a small number of variables, such as dimensionality and symmetry,
but are insensitive to details of the underlying microscopic properties of the
system.

This coincidence of critical exponents for ostensibly quite di�erent physical
systems is called universality and is now successfully explained by the RG:
essentially by showing that the di�erences among all such phenomena are, in
fact, traceable to such irrelevant observables, while the relevant observables
are shared in common.
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Thus, many macroscopic phenomena may be grouped into a small set of
universality classes, speci�ed by the shared sets of relevant observables.

12.5 Exact RG Equations

An Exact Renormalization Group Equation is one that takes irrelevant cou-
plings into account. There are several formulations.

1. The Wilson Exact Renormalization Group Equation is the simplest
conceptually, but is practically impossible to implement. Fourier trans-
form into momentum space after Wick rotating into Euclidean space,
insist upon a hard momentum cuto�, p2 ≤ Λ2, so that the only degrees
of freedom are those with momenta less than Λ. The partition function
is

Z =

∫
p2≤Λ2

Dϕ e−SΛ[ϕ] . (12.5)

For any positive Λ′ (less than Λ) de�ne SΛ′ (a functional over �eld con-
�gurations ϕ whose Fourier transform has momentum support within
p2 ≤ Λ′2) as

e−SΛ′ [ϕ] def
=

∫
Λ′≤p≤Λ

Dϕ e−SΛ[ϕ] . (12.6)

Obviously,

Z =

∫
p2≤Λ′2

Dϕ e−SΛ′ [ϕ] . (12.7)

In fact, this transformation is transitive. If you compute SΛ′ from SΛ
and then compute SΛ′′ from SΛ′ , this gives you the same Wilsonian
action as computing SΛ′′ directly from SΛ.

2. The Polchinski Exact RG Equation involves a smooth UV regulator
cuto�. Basically, the idea is an improvement over the Wilson's case.
Instead of a sharp momentum cuto�, it uses a smooth cuto�. Essen-
tially, we suppress contributions from momenta greater than Λ heavily.
The smoothness of the cuto�, however, allows us to derive a functional
di�erential equation in the cuto� scale Λ. As in Wilson's approach, we
have a di�erent action functional for each cuto� energy scale Λ. Each
of these actions are supposed to describe exactly the same model which
means that their partition functionals have to match exactly.
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In other words, for a real scalar �eld (generalizations to other �elds are
obvious),

ZΛ[J ] =

∫
Dϕ e−SΛ[ϕ]+J ·ϕ =

∫
Dϕ e−

1
2ϕ·RΛ·ϕ−SintΛ[ϕ]+J ·ϕ , (12.8)

and ZΛ is really independent of Λ. We have used the condensed de Witt
notation here. We have also split the bare action SΛ into a quadratic
kinetic part and an interacting part SintΛ. This split most certainly
isn't clean. The "interacting" part can very well also contain quadratic
kinetic terms. In fact, if there is any wave function renormalization,
it most certainly will. This can be somewhat reduced by introducing
�eld rescalings. RΛ is a function of the momentum p and the second
term in the exponent is

1

2

∫
ddp

(2π)d
ϕ̃∗(p)RΛ(p)ϕ̃(p) (12.9)

when expanded.

When p ≪ Λ, RΛ(p)/p
2 is essentially 1. When p ≫ Λ, RΛ(p)/p

2

becomes very huge and approaches in�nity. RΛ(p)/p
2 is always greater

than or equal to 1 and is smooth. Basically, this leaves the �uctuations
with momenta less than the cuto� Λ una�ected but heavily suppresses
contributions from �uctuations with momenta greater than the cuto�.
This is obviously a huge improvement over Wilson.

The condition that
d

dΛ
ZΛ = 0 (12.10)

can be satis�ed by (but not only by)

d

dΛ
SintΛ =

1

2

δSintΛ
δϕ

·
(
d

dΛ
R−1

Λ

)
· δSintΛ

δϕ
−

− 1

2
Tr

[
δ2SintΛ
δϕ δϕ

·R−1
Λ

]
. (12.11)

Distler claimed without proof that this Exact Renormalization Group
Equation is not correct nonperturbatively.

3. The E�ective Average Action Exact Renormalization Group Equation
involves a smooth IR regulator cuto�. The idea is to take all �uctu-
ations right up to an IR scale k into account. The e�ective average
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action will be accurate for �uctuations with momenta larger than k.
As the parameter k is lowered, the e�ective average action approaches
the e�ective action which includes all quantum and classical �uctua-
tions. In contrast, for large k the e�ective average action is close to
the "bare action". So, the e�ective average action interpolates between
the "bare action" and the e�ective action.

For a real scalar �eld, one adds an IR cuto�

1

2

∫
ddp

(2π)d
ϕ̃∗(p)Rk(p)ϕ̃(p) (12.12)

to the action S, where Rk is a function of both k and p such that for
p ≫ k, Rk(p) is very tiny and approaches 0 and for p ≪ k, Rk(p) &
k2. Rk is both smooth and nonnegative. Its large value for small
momenta leads to a suppression of their contribution to the partition
function which is e�ectively the same thing as neglecting large-scale
�uctuations.

One can use the condensed de Witt notation

1

2
ϕ ·Rk · ϕ (12.13)

for this IR regulator. So,

eWk[J ] = Zk[J ] =

∫
Dϕ e−S[ϕ]−

1
2
ϕ·Rk·ϕ+J ·ϕ , (12.14)

where J is the source �eld. The Legendre transform of Wk ordinarily
gives the e�ective action. However, the action that we started o� with
is really S[ϕ] + ϕ ·Rk · ϕ/2 and so, to get the e�ective average action,
we subtract o� ϕ ·Rk · ϕ/2. In other words,

ϕ[J ; k] =
δWk

δJ
[J ] (12.15)

can be inverted to give Jk[ϕ] and we de�ne the e�ective average action
Γk as

Γk[ϕ]
def
= {−W [Jk[ϕ]] + Jk[ϕ] · ϕ} −

1

2
ϕ ·Rk · ϕ. (12.16)
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Hence,

dΓk[ϕ]

dk
= −dWk[Jk]

dk
− δWk

δJ
· dJk
dk

+
dJk
dk
· ϕ− 1

2
ϕ · dRk

dk
· ϕ =

= − d

dk
Wk[Jk[ϕ]]−

1

2
ϕ · d

dk
Rk · ϕ =

=
1

2

⟨
ϕ · d

dk
Rk · ϕ

⟩
Jk[ϕ];k

− 1

2
ϕ · d

dk
Rk · ϕ = (12.17)

=
1

2
Tr

[(
δJk
δϕ

)−1

· d
dk
Rk

]
=

=
1

2
Tr

[(
δ2Γk
δϕδϕ

+Rk

)−1

· d
dk
Rk

]
,

thus
d

dk
Γk[ϕ] =

1

2
Tr

[(
δ2Γk
δϕδϕ

+Rk

)−1

· d
dk
Rk

]
(12.18)

is the Exact Renormalization Group Equation which is also known
as the Wetterich equation. As shown by Morris the e�ective action
Γk is in fact simply related to Polchinski's e�ective action Sint via a
Legendre transform relation.

As there are in�nitely many choices of Rk, there are also in�nitely
many di�erent interpolating Exact Renormalization Group Equations.
Generalization to other �elds, like spinorial �elds, is straightforward.

Although Polchinski's and the E�ective Average Action approaches look sim-
ilar, they are based upon very di�erent philosophies. In the E�ective Average
Action case, the bare action is left unchanged (and the UV cuto� scale is
also left unchanged) but the IR contributions to the e�ective action are sup-
pressed whereas in the Polchinski Exact Renormalization Group Equation,
the QFT is �xed once and for all but the "bare action" is varied at di�erent
energy scales to reproduce the prespeci�ed model. Polchinski's version is
certainly much closer to Wilson's idea in spirit. Note that one uses "bare
actions" whereas the other uses e�ective (average) actions.

Exercise 12.1: Derive the RG equation for ϕ4 theory.

Exercise 12.2: Find β-function for ϕ4 theory.

Exercise 12.3: Find β-function for QED.
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Chapter 13

Mathematical Descriptions of

Groups

Group theory is, in short, the mathematics of symmetry and we will explain
how it relates to physics. The most foundational idea here is: What doesn't
change when something else changes and a group is a precise and well-de�ned
way of specifying the things that change.

To begin with, we de�ne a Group (G, ⋆) as a set of objects (denoted G) and
some operation on those objects (denoted ⋆) subject to the following:

1. ∀ g1, g2 ∈ G, also g1 ⋆ g2 ∈ G (closure);

2. ∀ g1, g2, g3 ∈ G, then (g1 ⋆ g2) ⋆ g3 = g1 ⋆ (g2 ⋆ g3) (associativity);

3. ∃g ∈ G, denoted e, ∋ ∀gi ∈ G, e ⋆ gi = gi ⋆ e = gi (identity);

4. ∀g ∈ G, ∃h ∈ G ∋ h ⋆ g = g ⋆ h = e, (so h = g−1) (inverse).

Note that the de�nition of a group doesn't demand that gi ⋆ gj = gj ⋆ gi.
This is a very important point, but we will discuss it in more detail later.

Now we explain what this means. By 'objects' we literally mean anything.
We could be talking about Z or R, or we could be talking about a set of
Easter eggs all painted di�erent colors.
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The meaning of 'some operation', which we are calling ⋆, can literally be
anything you can do to those objects. A formal de�nition of what ⋆ means
could be given, but it will be easier to understand with examples.

Example 1: (G, ⋆) = (Z,+)

Consider the set G to be Z, and the operation to be ⋆ = +, or
simply addition.

We �rst check closure. If you take any two elements of Z and add
them together, is the result in Z? In other words, if a, b ∈ Z, is
a+ b ∈ Z? Obviously the answer is yes; the sum of two integers
is an integer, so closure is met.

Now we check associativity. If a, b, c ∈ Z, it is trivially true that
a+ (b+ c) = (a+ b) + c. So, associativity is met.

Now we check identity. Is there an element e ∈ Z such that
when you add e to any other integer, you get that same integer?
Clearly the integer 0 satis�es this. So, identity is met.

Finally, is there an inverse? For any integer a ∈ Z, will there be
another integer b ∈ Z such that a + b = e = 0? Again, this is
obvious, a−1 = −a in this case. So, inverse is met.

So, (G, ⋆) = (Z,+) is a group.

Example 2: (G, ⋆) = (R,+)

Obviously, any two real numbers added together is also a real
number.

Associativity will hold (of course).

The identity is again 0.

And �nally, once again, −a will be the inverse of any a ∈ R.

Example 3: (G, ⋆) = (R, ·) (multiplication)

Closer is met; two real numbers multiplied together give a real
number.

Associativity obviously holds.

Identity also holds. Any real number a ∈ R, when multiplied by
1 is a.
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Inverse, on the other hand, is trickier. For any real number, is
there another real number you can multiply by it to get 1? The
instinctive choice is a−1 = 1/a. But, this doesn't quite work
because of a = 0. This is the only exception, but because there's
an exception, (R, ·) is not a group.

Note that If we take the set R−{0} instead of R, then (R−{0}, ·)
is a group.

Example 4: (G, ⋆) = ({1}, ·)

This is the set with only the element 1, and the operation is
normal multiplication. This is indeed a group, but it is extremely
uninteresting, and is called the Trivial Group.

Example 5: (G, ⋆) = (Z3,+)

This is the set of integers mod 3, containing only the elements 0,
1, and 2 (3 mod 3 is 0, 4 mod 3 is 1, 5 mod 3 is 2, etc.)

You can check yourself that this is a group.

13.1 Finite Discrete Groups

From the examples above, several things should be apparent about groups.
One is that there can be any number of objects in a group. We have a special
name for the number of objects in the group's set. The Order of a group is
the number of elements in it.

The order of (Z,+) is in�nite (there are an in�nite number of integers), as
is the order of (R,+) and (R−{0}, ·). But, the order of ({1}, ·) is 1, and the
order of (Z3,+) is 3.

If the order of a group is �nite, the group is said to be Finite. Otherwise it
is In�nite.

It is also clear that the elements of groups may be Discrete, or they may be
Continuous. For example, (Z,+), ({1}, ·), and (Z3,+) are all discrete, while
(R,+) and (R− {0}, ·) are both continuous.



176 CHAPTER 13. MATHEMATICAL DESCRIPTIONS OF GROUPS

Now that we understand what a discrete �nite group is, we can talk about
how to organize one. Namely, we use what is called a Multiplication Table.

A multiplication table is a way of organizing the elements of a group as
follows:

(G, ⋆) e g1 g2 · · ·
e e ⋆ e e ⋆ g1 e ⋆ g2 · · ·
g1 g1 ⋆ e g1 ⋆ g1 g1 ⋆ g2 · · ·
g2 g2 ⋆ e g2 ⋆ g1 g2 ⋆ g2 · · ·
...

...
...

...
. . .

We state the following property of multiplication tables without proof. A
multiplication table must contain every element of the group exactly one time
in every row and every column. A few minutes thought should convince you
that this is necessary to ensure that the de�nition of a group is satis�ed.

As an example, we will draw a multiplication table for the group of order 2.
We won't look at speci�c numbers, but rather call the elements g1 and g2.
We begin as follows:

(G, ⋆) e g1

e ? ?
g1 ? ?

Three of these are easy to �ll in from the identity:

(G, ⋆) e g1

e e g1
g1 g1 ?

And because we know that every element must appear exactly once, the �nal
question mark must be e. So, there is only one possible group of order 2.

We will consider a few more examples, but we stress at this point that the
temptation to plug in numbers should be avoided. Groups are abstract
things, and you should try to think of them in terms of the abstract proper-
ties, not in terms of actual numbers.
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We can proceed with the multiplication table for the group of order 3. You
will �nd that, once again, there is only one option. (Doing this is instructive
and it would be helpful to work this out yourself.)

(G, ⋆) e g1 g2

e e g1 g2
g1 g1 g2 e

g2 g2 e g1

13.2 Group Actions

So far we have only considered elements of groups and how they relate to
each other. The point has been that a particular group represents nothing
more than a structure. There are a set of things, and they relate to each
other in a particular way. Now, however, we want to consider an extremely
simple version of how this relates to nature.

Example 6

Consider three Easter eggs, all painted di�erent colors (red, or-
ange, and yellow), which we denote R, O, and Y. Now, assume
they have been put into a row in the order (ROY). If we want
to keep them lined up, not take any eggs away, and not add any
eggs, what we can we do to them?

We can do any of the following:

1. Let e be doing nothing to the set, so e(ROY ) = (ROY );

2. Let g1 be a cyclic permutation of the three, g1(ROY ) = (OY R);

3. Let g2 be a cyclic permutation in the other direction, g2(ROY ) =
(Y RO);

4. Let g3 be swapping the �rst and second, g3(ROY ) = (ORY );

5. Let g4 be swapping the �rst and third, g4(ROY ) = (Y OR);

6. Let g5 be swapping the second and third, g5(ROY ) = (RY O).
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You will �nd that these 6 elements are closed, there is an identity,
and each has an inverse. We should be very careful to draw a
distinction between the elements of the group and the objects the
group acts on. The objects in this example are the eggs, and
the permutations are the results of the group action. Neither the
eggs nor the permutations of the eggs are the elements of the
group. The elements of the group are abstract objects which we
are assigning to some operation on the eggs, resulting in a new
permutation. We can draw a multiplication table:

(G, ⋆) e g1 g2 g3 g4 g5
e e g1 g2 g3 g4 g5
g1 g1 g2 e g5 g3 g4
g2 g2 e g1 g4 g5 g3
g3 g3 g4 g5 e g1 g2
g4 g4 g5 g3 g2 e g1
g5 g5 g3 g4 g1 g2 e

There is something interesting about this group. Notice that g3 ⋆ g1 = g4,
whereas g1 ⋆ g3 = g5. So, we have the surprising result that in this group it
is not necessarily true that gi ⋆ gj = gj ⋆ gi.

This leads to a new way of classifying groups. We say a group is Abelian if

gi ⋆ gj = gj ⋆ gi . (∀gi, gj ∈ G) (13.1)

If a group is not Abelian, it is Non-Abelian.

Another term commonly used is Commute. If

gi ⋆ gj = gj ⋆ gi , (13.2)

then we say that gi and gj commute. So, an Abelian group is Commutative,
whereas a Non-Abelian group is Non-Commutative.

The Easter egg group of order 6 above is an example of a very important
type of group. It is denoted S3, and is called the Symmetric Group. It is the
group that takes three objects to all permutations of those three objects.

The more general group of this type is Sn, the group that takes n objects
to all permutations of those objects. You can convince yourself that Sn will
always have order n! (n factorial).
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The idea above with the 3 eggs is that S3 is the group, while the eggs
are the objects that the group acts on. The particular way an element of S3
changes the eggs around is called the Group Action of that element. And each
element of S3 will move the eggs around while leaving them lined up. This
ties in to our overarching concept of 'what doesn't change when something
else changes'. The fact that there are 3 eggs with 3 particular colors lined
up doesn't change. The order they appear in, does.

13.3 Representations

We suggested above that you think of groups as purely abstract things rather
than trying to plug in actual numbers. Now, however, we want to talk about
how to see groups, or the elements of groups, in terms of speci�c numbers.
But, we will do this in a very systematic way. The name for a speci�c set of
numbers or objects that form a group is a Representation. The remainder of
this section (and the next) will primarily be about group representations.

We already discussed a few simple representations when we discussed (Z,+),
(R− {0}, ·), and (Z3,+). Let's focus on (Z3,+) for a moment (the integers
mod 3, where e = 0, g1 = 1, g2 = 2, with addition). Notice that we
could alternatively de�ne e = 1, g1 = e2πi/3, and g2 = e4πi/3, and let ⋆ be
multiplication. So, in the 'representation' with (0, 1, 2) and addition, we had
for example

g1 ⋆ g2 = (1 + 2) mod 3 = 3 mod 3 = 0 = e , (13.3)

whereas now with the multiplicative representation we have

g1 ⋆ g2 = e2πi/3 · e4πi/3 = e2πi = e0 = 1 = e . (13.4)

So the structure of the group is preserved in both representations.

We have two completely di�erent representations of the same group. This
idea of di�erent ways of expressing the same group is of extreme importance,
and we will be using it throughout the remainder of these lectures.

We now see a more rigorous way of coming up with representations of a
particular group. We begin by introducing some notation. For a group (G, ⋆)
with elements g1, g2, . . ., we call the Representation of that group D(G), so
that the elements of G are D(e), D(g1), D(g2) (where each D(gi) is a matrix
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of some dimension). We then choose ⋆ to be matrix multiplication. So,
D(gi) ·D(gj) = D(gi ⋆ gj).

It may not seem that we have done anything profound at this point, but we
most de�nitely have. Remember above that we encouraged seeing groups as
abstract things, rather than in terms of speci�c numbers. This is because a
group is fundamentally an abstract object. A group is not a speci�c set of
numbers, but rather a set of abstract objects with a well-de�ned structure
telling you how those elements relate to each other.

The beauty of a representation D is that, via normal matrix multiplication,
we have a sort of 'lens', made of familiar things (like numbers, matrices,
or Easter eggs), through which we can see into this abstract world. And
because D(gi) ·D(gj) = D(gi ⋆ gj), we aren't losing any of the structure of
the abstract group by using a representation.

So now that we have some notation, we can develop a formalism to �gure
out exactly what D is for an arbitrary group.

We will use Dirac vector notation, where the column vector

v̄ =


v1
v2
v3
...

 = |v⟩ (13.5)

and the row vector

v̄T =
(
v1 v2 v3 · · ·

)
= ⟨v| . (13.6)

So, the dot product between two vectors is

v̄T · ū =
(
v1 v2 v3 · · ·

)

u1
u2
u3
...

 = v1u1 + v2u2 + v3u3 + · · · ≡ ⟨v|u⟩ . (13.7)

Now, we proceed by relating each element of a �nite discrete group to one
of the standard orthonormal unit vectors:

e→ |e⟩ = |ê1⟩, g1 → |g1⟩ = |ê2⟩ , g2 → |g2⟩ = |ê3⟩ . (13.8)
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And we de�ne the way an element in a representation D(G) acts on these
vectors to be

D(gi)|gj⟩ = |gi ⋆ gj⟩ . (13.9)

Now, we can build our representation. We will (from now on unless other-
wise stated) represent the elements of a group G using matrices of various
sizes, and the group operation ⋆ will be standard matrix multiplication. The
speci�c matrices that represent a given element gk of our group will be given
by

[D(gk)]ij = ⟨gi|D(gk)|gj⟩ . (13.10)

As an example, consider again the group of order 2 (we wrote out the mul-
tiplication table above). First, we �nd the matrix representation of the
identity, [D(e)]ij ,

[D(e)]11 = ⟨e|D(e)|e⟩ = ⟨e|e ⋆ e⟩ = ⟨e|e⟩ = 1 ,

[D(e)]12 = ⟨e|D(e)|g1⟩ = ⟨e|e ⋆ g1⟩ = ⟨e|g1⟩ = 0 ,

[D(e)]21 = ⟨g1|D(e)|e⟩ = ⟨g1|e ⋆ e⟩ = ⟨g1|e⟩ = 0 , (13.11)

[D(e)]22 = ⟨g1|D(e)|g1⟩ = ⟨g1|e ⋆ g1⟩ = ⟨g1|g1⟩ = 1 .

So, the matrix representation of the identity is

D(e) =̇

(
1 0
0 1

)
. (13.12)

It shouldn't be surprising that the identity element is represented by the
identity matrix.

Next we �nd the representation of D(g1):

[D(g1)]11 = ⟨e|D(g1)|e⟩ = ⟨e|g1 ⋆ e⟩ = ⟨e|g1⟩ = 0 ,

[D(g1)]12 = ⟨e|D(g1)|g1⟩ = ⟨e|g1 ⋆ g1⟩ = ⟨e|e⟩ = 1 ,

[D(g1)]21 = ⟨g1|D(g1)|e⟩ = ⟨g1|g1 ⋆ e⟩ = ⟨g1|g1⟩ = 1 , (13.13)

[D(g1)]22 = ⟨g1|D(g1)|g1⟩ = ⟨g1|g1 ⋆ g1⟩ = ⟨g1|e⟩ = 0 .

So, the matrix representation of g1 is

D(g1) =̇

(
0 1
1 0

)
. (13.14)
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It is straightforward to check that this is a true representation,

e ⋆ e =

(
1 0
0 1

)(
1 0
0 1

)
=

(
1 0
0 1

)
= e X

e ⋆ g1 =

(
1 0
0 1

)(
0 1
1 0

)
=

(
0 1
1 0

)
= g1 X

g1 ⋆ e =

(
0 1
1 0

)(
1 0
0 1

)
=

(
0 1
1 0

)
= g1 X (13.15)

g1 ⋆ g1 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= e X

Instead of considering the next obvious example, the group of order 3, con-
sider the group S3 from above (the multiplication table is done above). The
identity representation D(e) is easy � it is just the 6 × 6 identity matrix.
We encourage you to work out the representation of D(g1) on your own, and
check to see that it is

D(g1) =̇



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 . (13.16)

All 6 matrices can be found this way, and multiplying them out will con�rm
that they do indeed satisfy the group structure of S3.

13.4 Reducibility and Irreducibility

You have probably noticed that equation (13.10) will always produce a set of
n× n matrices, where n is the order of the group. There is actually a name
for this particular representation. The n×n matrix representation of a group
of order n is called the Regular Representation. More generally, the m ×m
matrix representation of a group (of any order) is called the m-dimensional
representation.

But, as we have seen, there is more than one representation for a given group
(in fact, there are an in�nite number of representations).



13.4. REDUCIBILITY AND IRREDUCIBILITY 183

One thing we can immediately see is that any group that is Non-Abelian
cannot have a 1 × 1 matrix representation. This is because scalars (1 × 1
matrices) always commute, whereas matrices in general do not.

We saw above in equation (13.16) that we can represent the group Sn by
n!×n! matrices. Or, more generally, we can represent any group usingm×m
matrices, were m equals order (G). This is the regular representation. But it
turns out that it is usually possible to �nd representations that are 'smaller'
than the regular representation.

To pursue how this might be done, note that we are working with matrix
representations of groups. In other words, we are representing groups in
linear spaces. We will therefore be using a great deal of linear algebra to �nd
smaller representations. This process, of �nding a smaller representation, is
called Reducing a representation.

Given an arbitrary representation of some group, the �rst question that
must be asked is 'is there a smaller representation?' If the answer is yes,
then the representation is said to be Reducible. If the answer is no, then it
is Irreducible.

Before we dive into the more rigorous approach to reducibility and irre-
ducibility, let's consider a more intuitive example, using S3. In fact, we'll
stick with our three painted Easter eggs, R, O, and Y :

1. e(ROY ) = (ROY );

2. g1(ROY ) = (OY R);

3. g2(ROY ) = (Y RO);

4. g3(ROY ) = (ORY );

5. g4(ROY ) = (Y OR);

6. g5(ROY ) = (RY O).

We will represent the set of eggs by a column vector

|E⟩ =

RO
Y

 . (13.17)
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Now, by inspection, what matrix would do to |E⟩ what g1 does to (ROY )?
In other words, how can we �ll in the ?'s in? ? ?

? ? ?
? ? ?

RO
Y

 =

OY
R

 (13.18)

to make the equality hold? A few moments thought will show that the
appropriate matrix is 0 1 0

0 0 1
1 0 0

RO
Y

 =

OY
R

 . (13.19)

Continuing this reasoning, we can see that the rest of the matrices are

D(e)=̇

1 0 0
0 1 0
0 0 1

 , D(g1)=̇

0 1 0
0 0 1
1 0 0

 ,

D(g2)=̇

0 0 1
1 0 0
0 1 0

 , D(g3)=̇

0 1 0
1 0 0
0 0 1

 , (13.20)

D(g4)=̇

0 0 1
0 1 0
1 0 0

 , D(g5)=̇

1 0 0
0 0 1
0 1 0

 .

You can do the matrix multiplication to convince yourself that this is in fact
a representation of S3.

So, in equation (13.16), we had a 6 × 6 matrix representation. Here, we
have a new representation of consisting of 3 × 3 matrices. We have there-
fore 'reduced' the representation. In the next section, we will look at more
mathematically rigorous ways of reducing representations.

13.5 Algebraic De�nitions

Before moving on, we must spend this section learning the de�nitions of
several terms which are used in group theory.
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If H is a subset of G, denoted H ⊂ G, such that the elements of H form
a group, then we say that H forms a Subgroup of G. We make this more
precise with examples.

Example 7

Consider (as usual) the group S3, with the elements labeled as
before:

1. g0(ROY ) = (ROY );

2. g1(ROY ) = (OY R);

3. g2(ROY ) = (Y RO);

4. g3(ROY ) = (ORY );

5. g4(ROY ) = (Y OR);

6. g5(ROY ) = (RY O).

(where we are relabeling g0 ≡ e for later convenience). The
multiplication table is given above.

Notice that {g0, g1, g2} form a subgroup. You can see this by
noticing that the upper left 9 boxes in the multiplication table
(the g0, g1, g2 rows and columns) all have only g0's, g1's, and g2's.
So, here is a group of order 3 contained in S3.

Example 8

Consider the subset of S3 consisting of g0 and g3 only. Both
g0 and g3 are their own inverses, so the identity exists, and the
group is closed. Therefore, we can say that {g0, g3} ⊂ S3 is a
subgroup of S3.

In fact, if you write out the multiplication table for g0 and g3
only, you will see that it is exactly equivalent to the group of
order 2 considered above.

This means that we can say that S3 contains the group of order
2 (and we know from last time that there is only one such group,
though there are an in�nite number of representations of it). The
way we understand this is that the abstract entity S3, of which
there is only one, contains the group of order 2, of which there
is only one. However, the representations of S3, of which there
are an in�nite number, will each contain the group of order 2 (of
which there are also an in�nite number of representations).
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Example 9

Notice that the sets {g0, g3}, {g0, g4}, and {g0, g5} (all ⊂ S3), are
all the same as the group of order 2. This means that S3 actually
contains exactly three copies of the group of order 2 in addition
to the single copy of the group of order 3.

Again, this is speaking in terms of the abstract entity S3. We
can see this through the 'lens' of representation by the fact that
any representation of S3 will contain three di�erent copies of the
group of order 2.

Example 10

As a �nal example of subgroups, there are two subgroups of any
group, no matter what the group.

One is the subgroup consisting of only the identity, {g0} ⊂ G.
All groups contain this, but it is never very interesting.

Secondly, ∀G, G ⊂ G, and therefore G is always a subgroup of
itself. We call these subgroups the 'trivial' subgroups.

We now introduce another important de�nition. If G is a group, and H is a
subgroup of G (H ⊂ G), then

• The set gH = {g ⋆ h|h ∈ H} is called the Left Coset of H in G;

• The set Hg = {h ⋆ g|h ∈ H} is called the Right Coset of H in G.

There is a right (or left) coset for each element g ∈ G, though they are not
necessarily all unique. This de�nition should be understood as follows; a
coset is a set consisting of the elements of H all multiplied on the right (or
left) by some element of G.

Example 11

For the subgroup H = {g0, g1} ⊂ S3 discussed above, the left
cosets are

g0{g0, g1} = {g0 ⋆ g0, g0 ⋆ g1} = {g0, g1};
g1{g0, g1} = {g1 ⋆ g0, g1 ⋆ g1} = {g1, g2};
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g2{g0, g1} = {g2 ⋆ g0, g2 ⋆ g1} = {g2, g0};
g3{g0, g1} = {g3 ⋆ g0, g3 ⋆ g1} = {g3, g4};
g4{g0, g1} = {g4 ⋆ g0, g4 ⋆ g1} = {g4, g5};
g5{g0, g1} = {g5 ⋆ g0, g5 ⋆ g1} = {g5, g3}.

So, the left cosets of {g0, g1} in S3 are {g0, g1}, {g1, g2}, {g2, g0},
{g3, g4}, {g4, g5}, and {g5, g3}.

We can now understand the following de�nition. H is a Normal Subgroup of
G if ∀h ∈ H, g−1 ⋆h⋆g ∈ H. Or, in other words, if H denotes the subgroup,
it is a normal subgroup if gH = Hg, which says that the left and right cosets
are all equal.

As a comment, saying gH and Hg are equal doesn't mean that each indi-
vidual element in the coset gH is equal to the corresponding element in Hg,
but rather that the two cosets contain the same elements, regardless of their
order. For example, if we had the cosets {gi, gj , gk} and {gj , gk, gi}, they
would be equal because they contain the same three elements.

This de�nition means that if you take a subgroup H of a group G, and you
multiply the entire set on the left by some element of g ∈ G, the resulting
set will contain the exact same elements it would if you had multiplied on
the right by the same element g ∈ G. Here is an example to illustrate.

Example 12

Consider the order 2 subgroup {g0, g3} ⊂ S3. Multiplying on the
left by, say, g4, gives

g4 ⋆ {g0, g3} = {g4 ⋆ g0, g4 ⋆ g3} = {g4, g2} . (13.21)

And multiplying on the right by g4 gives

{g0, g3} ⋆ g4 = {g0 ⋆ g4, g3 ⋆ g4} = {g4, g1} . (13.22)

So, because the �nal sets do not contain the same elements,
{g4, g2} ̸= {g4, g1}, we conclude that the subgroup {g0, g3} is
not a normal subgroup of S3.

Example 13
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Above, we found that {g0, g1, g2} ⊂ S3 is a subgroup of order 3 in
S3. To use a familiar label, remember that we previously called
the group of order 3 (Z3,+). So, dropping the ′+′, we refer to
the group of order 3 as Z3.

Example 14

Consider the group of integers under addition, (Z,+). And, con-
sider the subgroup Zeven ⊂ Z, the even integers under addition.

Now, take some odd integer nodd and act on the left:

nodd + Zeven = {nodd + 0, nodd ± 2, nodd ± 4, . . .} (13.23)

and then on the right:

Zeven + nodd = {0 + nodd,±2 + nodd,±4 + nodd, . . .} . (13.24)

Notice that the �nal sets are the same (because addition is com-
mutative). So, Zeven ⊂ Z is a normal subgroup.

With a little thought, you can convince yourself that all subgroups of Abelian
groups are normal.

If G is a group and H ⊂ G is normal, then the Factor Group of H in
G, denoted G/H (read 'G mod H'), is the group with elements in the set
G/H ≡ {gH|g ∈ G}. The group operation ⋆ is understood to be

(giH) ⋆ (gjH) = (gi ⋆ gj)H . (13.25)

Example 15

Consider again Zeven. Notice that we can call Zeven = 2Z because
2Z = 2{0,±1,±2 ± 3, . . .} = {0,±2,±4, . . .} = Zeven. We know
that 2Z ⊂ Z is normal, so we can build the factor group Z/2Z as

Z/2Z = {0 + 2Z,±1 + 2Z,±2 + 2Z, . . .} . (13.26)

But, notice that

neven + 2Z = Zeven ,
nodd + 2Z = Zodd . (13.27)
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So, the group Z/2Z only has 2 elements; the set of all even inte-
gers, and the set of all odd integers. And we know from before
that there is only one group of order 2, which we denote Z2. So,
we have found that Z/2Z = Z2.

Example 16

Finally, we consider the factor groups G/G and G/e.

• G/G � The set G = {g0, g1, g2, . . .} will be the same coset
for any element of G multiplied by it. Therefore this factor
group consists of only one element, and therefore G/G = e,
the trivial group.

• G/e � The set {e} will be a unique coset for any element
of G, and therefore G/e = G.

Something that might help you understand factor groups better is this: the
factor group G/H is the group that is left over when everything in H is
'collapsed' to the identity element. If G and H are both groups (not nec-
essarily related in any way), then we can form the Product Group, denoted
K ≡ G⊗H, where an arbitrary element of K is (gi, hj). If the group oper-
ation of G is ⋆G, and the group operation of H is ⋆H , then two elements of
K are multiplied according to the rule

(gi, hj) ⋆K (gk, hl) ≡ (gi ⋆G gk, hj ⋆H hl) . (13.28)

13.6 Reducibility Revisited

Now that we understand subgroups, cosets, normal subgroups, and factor
groups, we can begin a more formal discussion of reducing representations.
Recall that in deriving equation (13.10), we made the designation

g0 → |ê1⟩ , g1 → |ê2⟩ , g2 → |ê3⟩ , · · · . (13.29)

This was used to create an order(G)-dimensional Euclidian space which,
while obviously not possessing any structure similar to the group, was and
will continue to be of great use to us.
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We have an n-dimensional space spanned by the orthonormal vectors |g0⟩,
|g1⟩, . . . , |gn−1⟩, where g0 is understood to always refer to the identity el-
ement. This brings us to the �rst de�nition of this section. For a group
G = {g0, g1, g2, . . .}, we call the Algebra of G the set

C[G] ≡
{ n−1∑

i=0

ci|gi⟩
∣∣∣∣ci ∈ C ∀i

}
. (13.30)

In other words, C[G] is the set of all possible linear combinations of the
vectors |gi⟩ with complex coe�cients.

We could have de�ned the algebra over Z or R, but we used C for generality
at this point.

Addition of two elements of C[G] is merely normal addition of linear combi-
nations,

n−1∑
i=0

ci|gi⟩+
n−1∑
i=0

di|gi⟩ =
n−1∑
i=0

(ci + di)|gi⟩ . (13.31)

This de�nition amounts to saying that, in the n-dimensional Euclidian space
we have created, with n = order(G), you can choose any point in the space
with complex coe�cients, and this will correspond to a particular linear
combination of elements of G.

Now that we have de�ned an algebra, we can talk about group actions.
Recall that the gi's don't act on the |gj⟩'s, but rather the representation
D(gi) does. We de�ne the action D(gi) on an element of C[G] as follows:

D(gi) ·
n−1∑
j=0

cj |gj⟩ = D(gi) · (c0|g0⟩+ c1|g1⟩+ · · ·+ cn−1|gn−1⟩) =

= c0|gi ⋆ g0⟩+ c1|gi ⋆ g1⟩+ · · ·+ cn−1|gi ⋆ gn−1⟩ =
n−1∑
j=0

cj |gi ⋆ gj⟩ .

Previously, we discussed how elements of a group act on each other, and we
also talked about how elements of a group act on some other object or set of
objects (like three painted eggs). We now generalize this notion to a set of q
abstract objects a group can act on, denoted M = {m0,m1,m2, . . . ,mq−1}.
Just as before, we build a vector space, similar to the one above used in
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building an algebra. The orthonormal vectors here will be

m0 → |m0⟩, m1 → |m1⟩, . . . mq−1 → |mq−1⟩ , (13.32)

This allows us to understand the following de�nition. The set

CM ≡
{ q−1∑

i=0

ci|mi⟩
∣∣∣∣ci ∈ C ∀i

}
(13.33)

is called the Module of M . (We don't use the square brackets here to dis-
tinguish modules from algebras). In other words, the space spanned by the
|mi⟩ is the module.

Example 17

Consider, once again, S3. However, we generalize from three eggs
to three 'objects' m0, m1, and m2. So, CM is all points in the
3-dimensional space of the form c0|m0⟩ + c1|m1⟩ + c2|m2⟩ with
ci ∈ C ∀i.
Then, operating on a given point with, say, g1 gives

g1(c0|m0⟩+ c1|m1⟩+ c2|m2⟩) =
= (c0|g1m0⟩+ c1|g1m1⟩+ c2|g1m2⟩)

and from the multiplication table we know

g1m0 = m1 , g1m1 = m0 , g1m2 = m2 .

So,

(c0|g1m0⟩+ c1|g1m1⟩+ c2|g1m2⟩) =
= c1|m0⟩+ c0|m1⟩+ c2|m2⟩ .

So, the e�ect of g1 was to swap c1 and c0. This can be visu-
alized geometrically as a re�ection in the c0 = c1 plane in the
3-dimensional module space. We can visualize every element of
G in this way. They each move points around the module space
in a well-de�ned way.

This allows us to give the following de�nition. If CV is a module,
and CW is a subspace of CV that is closed under the action of
G, then CW is an Invariant Subspace of CV .
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Example 18

We know that S3 acts on a 3-dimensional space spanned by

|m0⟩ = (1, 0, 0)T , |m1⟩ = (0, 1, 0)T , |m2⟩ = (0, 0, 1)T .

Now, consider the subspace spanned by

c(|m0⟩+ |m1⟩+ |m2⟩) , (13.34)

where c ∈ C, and c ranges over all possible complex numbers. If
we restrict c to R, we can visualize this as the set of all points in
the line through the origin de�ned by λ(̂i+ ĵ+ k̂) (where λ ∈ R).
You can write out the action of any element of S3 on any point
in this subspace, and you will see that they are una�ected. This
means that the space spanned by (13.34) is an invariant subspace.

As a note, all modules CV have two trivial invariant subspaces.

• CV is a trivial invariant subspace of CV ;

• Ce is a trivial invariant subspace of CV .

Finally, we can give a more formal de�nition of reducibility. If a represen-
tation D of a group G acts on the space of a module CM , then the repre-
sentation D is said to be Reducible if CM contains a non-trivial invariant
subspace. If a representation is not reducible, it is Irreducible.

In the regular representation of S3, you may have noticed that every 6 × 6
matrix appeared with non-zero elements only in the upper left 3×3 elements,
and the lower right 3 × 3 elements. The upper right and lower left are all
0. This means that, for every element of S3, there will never be any mixing
of the �rst 3 dimensions with the last 3. So, there are two 3-dimensional
invariant subspaces in the module for this particular representation of S3.

We can now begin to take advantage of the fact that representations live in
linear spaces with the following de�nition.

If V is any n-dimensional space spanned by n linearly independent basis
vectors, and U and W are both subspaces of V , then we say that V is the
Direct Sum of U and W if every vector v̄ ∈ V can be written as the sum
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v̄ = ū + w̄, where ū ∈ U and w̄ ∈ W , and every operator X acting on
elements of V can be separated into parts acting individually on U and W .
The notation for this is V = U ⊕W .

In order to make this clearer, if Xn is an n× n matrix, it is the direct sum
of m×m matrix Am and k × k matrix Bk, denoted Xn = Am ⊕Bk, if X is
in Block Diagonal form,

Xn =

(
Am 0
0 Bk

)
, (13.35)

where n = m + k, and Am, Bk, and the 0's are understood as matrices of
appropriate dimension.

We can generalize the previous de�nition as follows,

Xn = An1 ⊕Bn2 ⊕ · · · ⊕ Cnk
=


An1 0 · · · 0
0 Bn2 · · · 0
...

...
. . . · · ·

0 0
... Cnk

 , (13.36)

where n = n1 + n2 + · · ·+ nk.

Example 19

Let

A3 =

 1 1 −2
−1 5 π
−17 4 11

 , (13.37)

and let

B2 =

(
1 2
3 4

)
. (13.38)

Then,

B2 ⊕A3 =


1 2 0 0 0
3 4 0 0 0
0 0 1 1 −2
0 0 −1 5 π
0 0 −17 4 11

 . (13.39)

To summarize, we have talked about algebras, which are the vector spaces
spanned by the elements of a group, and about modules, which are the vector
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spaces that representations of groups act on. We have also de�ned invariant
subspaces: Given some space and some group that acts on that space, moving
the points around in a well-de�ned way, an invariant subspace is a subspace
which always contains the same points. The group doesn't remove or add
any points to that subspace. It merely moves the points around inside that
subspace. Then, we de�ned a representation as reducible if there are any
non-trivial invariant subspaces in the space that the group acts on.

What this amounts to is the following: a representation of any group is
reducible if it can be written in block diagonal form. But this leaves the
question of what we mean when we say 'can be written'. How can you
'rewrite' a representation? This leads us to the following de�nition. Given
a matrix D and a non-singular matrix S, the linear transformation,

D → D′ = S−1DS , (13.40)

is called a Similarity Transformation.

Then, we can give the following de�nition. Two matrices related by a simi-
larity transformation are said to be Equivalent.

Because similarity transformations are linear transformations, if D(G) is a
representation of G, then so is S−1DS for literally any non-singular matrix
S. To see this, if gi ⋆ gj = gk, then D(gi)D(gj) = D(gk), and therefore

S−1D(gi)S · S−1D(gj)S = S−1D(gi)D(gj)S = S−1D(gk)S . (13.41)

So, if we have a representation that isn't in block diagonal form, how can we
�gure out if it is reducible? We must look for a matrix S that will transform
it into block diagonal form.

Exercise 13.1: Draw multiplication table for the group of order 4 (Hint:
there are 4 possibilities).

Exercise 13.2: Write out elements of the multiplication table displayed for
the Example 6 in Sec. 13.2.

Exercise 13.3: Is the subgroup Z3 of S3 normal?

Exercise 13.4: Show that the subset, Zeven (the even integers), of the group
of integers under addition, (Z,+), forms the group.

Exercise 13.5: Show that Z/nZ = Zn.



Chapter 14

Lie Groups

Above we considered groups which are of �nite order and discrete, which
allowed us to write out a multiplication table. Now we want to examine a
di�erent type of group. Consider the unit circle, where each point on the
circle is speci�ed by an angle θ, measured from the positive x-axis.

We will refer to the point at θ = 0 as the 'starting point' (like ROY was
for the Easter eggs). Now, just as we considered all possible orientations
of (ROY ) that left the eggs lined up, we consider all possible rotations the
wheel can undergo. With the eggs there were only 6 possibilities. Now
however, for the wheel there are an in�nite number of possibilities for θ (any
real number ∈ [0, 2π)).

195
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And note that if we denote the set of all angles as G, then all the rotations
obey closure (θ1+θ2 = θ3 ∈ G, ∀θ1, θ2 ∈ G), associativity (as usual), identity
(0 + θ = θ + 0 = θ), and inverse (the inverse of θ is −θ).

So, we have a group that is parameterized by a continuous variable θ. So, we
are no longer talking about gi's, but about g(θ).

Notice that this particular group (the circle) is Abelian, which is why we
can (temporarily) use addition to represent it. Also, note that we obviously
cannot make a multiplication table because the order of this group is ∞.

One simple representation is the one we used above: taking θ and using
addition. A more familiar (and useful) representation is the Euler matrix,

g(θ) =̇

(
cos θ sin θ
− sin θ cos θ

)
, (14.1)

with the usual matrix multiplication:(
cos θ1 sin θ1
− sin θ1 cos θ1

)(
cos θ2 sin θ2
− sin θ2 cos θ2

)
=

=

(
cos θ1 cos θ2 − sin θ1 sin θ2 cos θ1 sin θ2 + sin θ1 cos θ2
− sin θ1 cos θ2 − cos θ1 sin θ2 − sin θ1 sin θ2 + cos θ1 cos θ2

)
= (14.2)

=

(
cos(θ1 + θ2) sin(θ1 + θ2)
− sin(θ1 + θ2) cos(θ1 + θ2)

)
.

This will prove to be a much more useful representation than θ with addition.

Groups that are parameterized by one or more continuous variables like
this are called Lie Groups. Of course, the true de�nition of a Lie group is
much more rigorous (and complicated), and that de�nition should eventually
be understood. However, the de�nition we have given will su�ce for the
purposes of these notes.

14.1 Classi�cation of Lie Groups

The usefulness of group theory is that groups represent a mathematical way
to make changes to a system while leaving something about the system un-
changed. For example, we moved (ROY ) around, but the structure '3 eggs
with di�erent colors lined up' was preserved. With the circle, we rotated it,
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but it still maintained its basic structure as a circle. It is in this sense that
group theory is a study of Symmetry. No matter which of 'these' transfor-
mations you do to the system, 'this' stays the same � this is symmetry.

To see the usefulness of this in physics, recall Noether's Theorem (section
1.2). When you do a symmetry transformation to a Lagrangian, you get a
conserved quantity. Recall that the transformation

x→ x+ ϵ (14.3)

was a symmetry because ϵ could take any value, and the Lagrangian was
unchanged (note that ϵ forms the Abelian group (R,+)).

So, given a Lagrangian, which represents the structure of a physical system,
a symmetry represents a way of changing the Lagrangian while preserving
that structure. The particular preserved part of the system is the conserved
quantity j we discussed in sections 1.2. And as you have no doubt noticed,
nearly all physical processes are governed by Conservation Laws: conserva-
tion of momentum, energy, charge, spin, etc.

So, group theory, and in particular Lie group theory, gives us an extremely
powerful way of understanding and classifying symmetries, and therefore con-
served charges. And because it allows us to understand conserved charges,
group theory can be used to understand the entirety of the physics in our
universe.

We now begin to classify the major types of Lie groups we will be working
with in these notes. To start, we consider the most general possible Lie group
in an arbitrary number of dimensions, n. This will be the group that, for
any point p in the n-dimensional space, can continuously take it anywhere
else in the space. All that is preserved is that the points in the space stay in
the space. This means that we can have literally any n×n matrix, or linear
transformation, as long as the matrix is invertible (non-singular). Thus, in
n dimensions the largest and most general Lie group is the group of all n×n
non-singular matrices. We call this group GL(n), or the General Linear
group. The most general �eld of numbers to take the elements of GL(n)
from is C, so we begin with GL(n,C). This is the group of all n × n non-
singular matrices with complex elements. The preserved quantity is that all
points in Cn stay in Cn.

The most obvious subgroup of GL(n,C) is GL(n,R), or the set of all n× n
invertible matrices with real elements. This leaves all points in Rn in Rn.
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To �nd a further subgroup, recall from linear algebra and vector calculus
that in n dimensions, you can take n vectors at the origin such that for a
parallelepiped, we could obtain:

Then, if you arrange the components of the n vectors into the rows (or
columns) of a matrix, the determinant of that matrix will be the volume of
the parallelepiped.

So, consider now the set of all General Linear transformations that transform
all vectors from the origin (or in other words, points in the space) in such a
way that the volume of the corresponding parallelepiped is preserved. This
will demand that we only consider General Linear matrices with determinant
equal to 1. Also, the set of all General Linear matrices with unit determinant
will form a group because of the general rule

det |A ·B| = det |A| · det |B| . (14.4)

So, if det |A| = 1 and det |B| = 1, then det |A ·B| = 1. We call this subgroup
of GL(n,C) the Special Linear group, or SL(n,C). The natural subgroup of
this is SL(n,R). This group preserves not only the points in the space (as
GL did), but also the volume, as described above.
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Now, consider the familiar transformations on vectors in n-dimensional space
of generalized Euler angles. These are transformations that rotate all points
around the origin. These rotation transformations leave the radius squared
(r2) invariant. And, because r̄2 = r̄T · r̄, if we transform with a rotation
matrix R, then r̄ → r̄′ = Rr̄, and r̄T → r̄′T = r̄TRT , so r̄′T · r̄′ = r̄TRT ·Rr̄.
But, as we said, we are demanding that the radius squared be invariant under
the action of R, and so we demand r̄TRT · Rr̄ = r̄T · r̄. So, the constraint
we are imposing is RT · R = I, which implies RT = R−1. This tells us that
the rows and columns of R are orthogonal. Therefore, we call the group
of generalized rotations, or generalized Euler angles in n dimensions, O(n),
or the Orthogonal group. We don't specify C or R here because it will be
understood that we are always talking about R.

Also, note that because

det |RT ·R| = det |I| , ⇒ (det |R|)2 = 1 , ⇒ det |R| = ±1 . (14.5)

We again denote the subgroup with det |R| = +1 the Special Orthogonal
group, or SO(n). To understand what this means, consider an orthogonal
matrix with determinant −1, such as

M =

1 0 0
0 1 0
0 0 −1

 , (14.6)

This matrix is orthogonal, and therefore is an element of the group O(3), but
the determinant is −1. This matrix will take the point (x, y, z)T to the point
(x, y,−z)T . This changes the handedness of the system (the right hand rule
will no longer work). So, if we limit ourselves to SO(n), we are preserving
the space, the radius, the volume, and the handedness of the space.

For vectors in C space, we do not de�ne orthogonal matrices (although we
could). Instead, we discuss the complex version of the radius, where instead
of r̄2 = r̄T · r̄, we have r̄2 = r̄† · r̄, where the dagger denotes the Hermitian
conjugate, r̄† = (r̄⋆)T , where ⋆ denotes complex conjugate.

So, with the elements in R being in C, we have r̄ → Rr̄, and r̄† → r̄†R†. So,
r̄† · r̄ → r̄†R† ·Rr̄, and by the same argument as above with the orthogonal
matrices, this demands that R† · R = I, or R† = R−1. We denote such
matrices Unitary, and the set of all such n× n invertible matrices form the
group U(n). Again, we understand the unitary groups to have elements in C,
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so we don't specify that. And, we will still have a subset of unitary matrices
R with det |R| = 1 called SU(n), the Special Unitary groups.

We can summarize the hierarchy we have just described in the following
diagram:

We will now describe one more category of Lie groups before moving on. We
saw above that the group SO(n) preserves the radius squared in real space.
In coordinates, this means that r̄2 = x21 + x22 + · · · + x2n, or more generally
the dot product x̄ · ȳ = x1y1 + x2y2 + · · ·+ xnyn is preserved.

However, we can generalize this to form a group action that preserves not
the radius squared, but the value (switching to initial notation for the dot
product)

xaya = −x1y1− x2y2− · · · − xmym+ xm+1ym+1 + · · ·+ xm+nym+n . (14.7)

We call the group that preserves this quantity SO(m,n). The space we are
working in is still Rm+n, but we are making transformations that preserve
something di�erent than the radius.

Note that SO(m,n) will have an SO(m) subgroup and an SO(n) subgroup,
consisting of rotations in the �rst m and last n components separately.

Finally, notice that the speci�c group of this type, SO(1, 3), is the group
that preserves the value s2 = −x1y1 + x2y2 + x3y3 + x4y4, or written more
suggestively, s2 = −c2t2 + x2 + y2 + z2. Therefore, the group SO(1, 3) is
the Lorentz Group. Any action that is invariant under SO(1, 3) is said to
be a Lorentz Invariant theory (as all theories should be). We will �nd that
thinking of Special Relativity in these terms will be much more useful.

It should be noted that there are many other types of Lie groups. We have
limited ourselves to the ones we will be working with in these notes.
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14.2 Generators

Now that we have a good 'birds eye view' of Lie groups, we can begin to pick
apart the details of how they work.

As we said before, a Lie group is a group that is parameterized by a set
of continuous parameters, which we call αi for i = 1, . . . , n, where n is the
number of parameters the group depends on. The elements of the group will
then be denoted g(αi).

Because all groups include an identity element, we will choose to parameter-
ize them in such a way that g(αi)

∣∣
αi=0

= e, the identity element. So, if we
are going to talk about representations, Dn(g(αi))

∣∣
αi=0

= I, where I is the
n× n identity matrix for whatever dimension (n) representation we want.

Now, take αi to be very small with δαi ≪ 1. So, Dn(g(0 + δαi)) can be
Taylor expanded:

Dn(g(δαi)) = I+ δαi
∂Dn(g(αi))

∂αi

∣∣
αi=0

+ · · · . (14.8)

The terms ∂Dn/∂αi
∣∣
αi=0

are extremely important, and we give them their
own expression:

Xi ≡ −i
∂Dn

∂αi

∣∣∣∣
αi=0

(14.9)

(we have included the −i in order to make Xi Hermitian, which will be
necessary later).

So, the representation for in�nitesimal δαi is then

Dn(δαi) = I+ iδαiXi + · · · (14.10)

(where we have switched our notation from Dn(g(α)) to Dn(α) for brevity).

The Xi's are constant matrices which we will determine later.

Now, let's say that we want to see what the representation will look like for a
�nite value of αi rather than an in�nitesimal value. A �nite transformation
will be the result of an in�nite number of in�nitesimal transformations. Or
in other words, αi = Nδαi as N → ∞. So, δαi = αi/N , and an in�nite
number of in�nitesimal transformations is

lim
N→∞

(1 + iδαiXi)
N = lim

N→∞

(
1 + i

αi
N
Xi

)N
. (14.11)
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If you expand this out for several values of N , you will see that it is exactly

lim
N→∞

(
1 + i

αi
N
Xi

)N
= eiαiXi (14.12)

We call the Xi's the Generators of the group, and there is one for each
parameter required to specify a particular element of the group. For example,
consider SO(3), the group of rotations in 3 dimensions. We know from vector
calculus that an element of SO(3) requires 3 angles, usually denoted θ, ϕ
and ψ. Therefore, SO(3) will require 3 generators, which will be denoted
Xθ, Xϕ, and Xψ. We will discuss how the generators can be found soon.

In general, there will be several (in fact, in�nite) di�erent sets of Xi's that
de�ne a given group (just as there are an in�nite number of representations of
any �nite group). What we will �nd is that up to a similarity transformation,
a particular set of generators de�nes a particular representation of a group.

So, Dn(αi) = eiαiXi for any group (the i index in the exponent is under-
stood to be summed over all parameters and generators). The best way to
think of the parameter space for the group is as a vector space, where the
generators describe the behavior near the identity, but form a basis for the
entire vector space. By analogy, think of the unit vectors î, ĵ, and k̂ in R3.
They are de�ned at the origin, but they can be combined with real num-
bers/parameters to specify any arbitrary point in R3. In the same way, the
generators are the 'unit vectors' of the parameter space (which in general is
a much more complicated space than Euclidian space), and the parameters
(like θ, ϕ, and ψ) specify where in the parameter space you are in terms of
the generators. That point in the parameter space will then correspond to
a particular element of the group.

We call the number of generators of a group (or equivalently the number of
parameters necessary to specify an element), the Dimension of the group.
For example, the dimension of SO(3) is 3. The dimension of SO(2) (rotations
in the plane) however is only 1 (only θ is needed), so there will be only one
generator.

14.3 Lie Algebras

An algebra is a space spanned by elements of the group with C coe�cients
parameterizing the Euclidian space we de�ned. Obviously we can't de�ne an
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algebra in the same way for Lie groups, because the elements are continuous.
But, as discussed in the last section, a particular element of a Lie group is
de�ned by the values of the parameters in the parameter space spanned by
the generators. We will see that the generators will form the algebras for Lie
groups.

Consider two elements of the same group with generators Xi, one with pa-
rameter values αi and the other with parameter values βi. The product of
the 2 elements will then be eiαiXieiβjXj . Because we are assuming this is a
group, we know that the product must be an element of the group (due to
closure), and therefore the product must be speci�ed by some set of param-
eters δk, so

eiαiXieiβjXj = eiδkXk . (14.13)

Note that the product won't necessarily simply be

eiαiXieiβjXj = ei(αiXi+βjXj) (14.14)

because the generators are matrices and therefore don't in general commute.

So, we want to �gure out what δi will be in terms of αi and βi. We do this
as follows.

iδiXk = ln(eiδkXk) = ln(eiαiXieβjXj ) =

= ln(1 + eiαiXieβjXj − 1) ≡ ln(1 + x) , (14.15)

where we have de�ned
x ≡ eiαiXieβjXj − 1 . (14.16)

We will proceed by expanding only to second order in αi and βj , though the
result we will obtain will hold at arbitrary order. By Taylor expanding the
exponential terms,

eiαiXieβjXj − 1 =

[
1 + iαiXi +

1

2
(iαiXi)

2 + · · ·
]
×

×
[
1 + iβjXj +

1

2
(iβjXj)

2 + · · ·
]
− 1 =

= 1 + iβjXj −
1

2
(βjXj)

2 + iαiXi − (14.17)

− αiXiβjXj −
1

2
(αiXi)

2 − 1 =

= i(αiXi + βjXj)− αiXiβjXj −

− 1

2

[
(αiXi)

2 + (βjXj)
2
]
.
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Then, using the general Taylor expansion

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · , (14.18)

and again keeping terms only to second order in α and β, we have

x− x2

2
=

[
i(αiXi + βjXj)− αiXiβjXj −

1

2

[
(αiXi)

2 + (βjXj)
2
]]
−

− 1

2

[
i(αiXi + βjXj)− αiXiβjXj −

1

2

[
(αiXi)

2 + (βjXj)
2
]]2

=

= i(αiXi + βjXj)− αiXiβjXj −
1

2

[
(αiXi)

2 + (βjXj)
2
]
−

− 1

2
[−(αiXi + βjXj)(αiXi + βjXj)] =

= i(αiXi + βjXj)− αiXiβjXj −
1

2

[
(αiXi)

2 + (βjXj)
2
]
+

+
1

2

[
(αiXi)

2 + (βjXj)
2 + αiβj(XiXj +XjXi)

]
= (14.19)

= i(αiXi + βjXj) +
1

2
αiβj(XjXi −XiXj) =

= i(αiXi + βjXj)−
1

2
αiβj [Xi, Xj ] =

= i(αiXi + βjXj)−
1

2
[αiXi, βjXj ] .

So �nally we can see

iδkXk = i(αiXi + βjXj)−
1

2
[αiXi, βj , Xj ] , (14.20)

or
eiαiXieiβjXj = ei(αiXi+βjXj)− 1

2
[αiXi, βjXj ] . (14.21)

Equation (14.21) is called the Baker-Campbell-Hausdor� formula, and it is
one of the most important relations in group theory and in physics. Notice
that, if the generators commute, this reduces to the normal equation for
multiplying exponentials. You can think of equation (14.21) as the general-
ization of the normal exponential multiplication rule.

Now, it is clear that the commutator [Xi, Xj ] must be proportional to some
linear combination of the generators of the group (because of closure). So,
it must be the case that

[Xi, Xj ] = ifijkXk (14.22)
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for some set of constants fijk. These constants are called the Structure
Constants of the group, and if they are completely known, the commutation
relations between all the generators are known, and so the entire group can
be determined in any representation you want.

The generators, under the speci�c commutation relations de�ned by the
structure constants, form the Lie Algebra of the group, and it is this com-
mutation structure which forms the structure of the Lie group.

14.4 The Adjoint Representation

We will talk about several representations for each group we discuss, but
we will mention a very important one now. We mentioned before that the
structure constants fijk completely determine the entire structure of the
group.

We begin by using the Jacobi identity,

[Xi, [Xj , Xk]] + [Xj , [Xk, Xi]] + [Xk, [Xi, Xj ]] = 0 (14.23)

(if you aren't familiar with this identity, try multiplying it out. You will �nd
that it is identically true � all the terms cancel exactly). But, from equation
(14.22), we can write

[Xi, [Xj , Xk]] = ifjka[Xi, Xa] = ifjkafiabXb . (14.24)

Plugging this into (14.23) we get

ifjkafiabXb + ifkiafjabXb + ifijafkabXb = 0 , ⇒
⇒ (fjkafiab + fkiafjab + fijafkab)iXb = 0 , ⇒ (14.25)

⇒ fjkafiab + fkiafjab + fijafkab = 0 .

So, if we de�ne the matrices

[T a]bc ≡ −ifabc , (14.26)

then it is easy to show that (14.25) leads to

[T a, T b] = ifabcT
c . (14.27)
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So, the structure constants themselves form a representation of the group, as
de�ned by (14.26). We call this representation the Adjoint Representation,
and it will prove to be extremely important.

Notice that the indices labeling the rows and columns in (14.26) each run
over the same values as the indices labeling the T matrices. This tells us
that the adjoint representation is made of n × n matrices, where n is the
dimension of the group, or the number of parameters in the group. For
example, SO(3) requires 3 parameters to specify an element (θ, ϕ, ψ), so the
adjoint representation of SO(3) will consist of 3× 3 matrices. SO(2) on the
other hand is Abelian, and therefore all of the structure constants vanish.
Therefore there is no adjoint representation of SO(2).

14.5 Root Space

We saw in the previous section that we can view the physical space that a
group is acting on by using the eigenvectors of the diagonal generators as a
basis. These eigenvectors can be arranged in order of decreasing eigenvalue.
Then, the non-diagonal generators can be used to form linear combinations
that act as raising and lowering operators, which transform one eigenvector to
another, changing the eigenvalue by an amount de�ned by the commutation
relations of the generators.

We now see that this generalizes very nicely.

An arbitrary Lie group is de�ned in terms of its generators. As we said at the
end of section 14.2, it is best to think of the generators as being analogous to
the basis vectors spanning some space. Of course, the space the generators
span is much more complicated than Rn in general, but the generators span
the space the same way. In this sense, the generators form a linear vector
space. So, we must de�ne an inner product for them. For reasons that are
beyond the scope of these notes, we will choose the generators and inner
product so that, for generators T a and T b,

⟨T a, T b⟩ ≡ 1

κ
Tr(T aT b) = δab , (14.28)

where κ is some normalization constant.

Also, in the set of generators of a Lie group, there will be a closed subalgebra
of generators which all commute with each other, but not with generators
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outside of this subalgebra. In other words, this is the set of generators which
can be simultaneously diagonalized through some similarity transformation.
For SU(2), we saw that there was only one generator in this subalgebra
which we chose to be J3

j (recall that a matrix will only commute with all
other matrices if it is equal to the identity matrix times a constant, whereas
two diagonal matrices will always commute regardless of what their diagonal
elements are).

Let's say that a particular Lie group has N generators total, or is an N -
dimensional group. Then, let's say that there are M < N generators in the
mutually commuting subalgebra. We call those M generators the Cartan
Subalgebra, and the generators in it are called Cartan Generators. We de�ne
the number M as the Rank of the group.

By convention we will label the Cartan generators H i (i = 1, . . . ,M) and
the non-Cartan generators Ei (i = 1, . . . , N −M). For example, with SU(2)
we had

H1 = J3
j , E1 = J1

j , E2 = J2
j . (14.29)

Before moving on, we point out that this should seem familiar. If you think
back to an introductory class in quantum mechanics, recall that we always
choose some set of variables that all commute with each other (usually we
choose either position or momentum because [x, p] ̸= 0). Then, we expand
the physical states in terms of the position or momentum eigenvectors. Here,
we are doing the exact same thing, only in a much more general context.

Now, the H i's are simultaneously diagonalized, so we will write the physical
states in terms of their eigenvalues. In an n-dimensional representation Dn,
the generators are n×n matrices, so the eigenvectors are n-dimensional. So,
there will be a total of n eigenvectors, and each will have one eigenvalue
with each of theM Cartan generators H i. So, for each of these eigenvectors,
which we temporarily denote |j⟩, for j = 1, . . . , n, we have theM eigenvalues
with M Cartan generators, which we call tij (where j = 1, . . . , n labels the
eigenvectors, and i = 1, . . . ,M labels the eigenvalues), and we form what is
called a Weight Vector

t̄j ≡


t1j
t2j
t3j
...
tMj

 , (14.30)



208 CHAPTER 14. LIE GROUPS

where j = 1, . . . , n. The individual components of these vectors, the tij 's, are
called the Weights.

So for a given representation Dn, we now denote the state |Dn; t̄j⟩ (instead
of |j⟩). So, our eigenvalues will be

H i|Dn; t̄j⟩ = tij |Dn; t̄j⟩. (14.31)

As we mentioned before, the adjoint representation is a particularly im-
portant representation. If you do not remember the details of the adjoint
representation, go reread the section 14.4. Here, the generators are de�ned
by equation (14.26), [T a]bc ≡ −ifabc. Recall that each index runs from 1 to
N , so that the generators in the adjoint representation are N ×N matrices,
and the eigenvectors are N -dimensional.

Also, as a point of nomenclature, weights in the adjoint representation are
called Roots, and the corresponding vectors (as in (14.30)) are called Root
Vectors.

This means that there is exactly one eigenvector for each generator, and
therefore one root vector for each generator. So, in equation (14.30), j =
1, . . . , N . We make this more obvious by explicitly assigning each eigenvec-
tor to a generator as follows. First, because we now have the same number
of generators, eigenvectors, and root vectors, we label the generators by the
root vectors T t̄j instead of T j . Also, we now refer to general eigenstates
as |Adj;T t̄j ⟩, where j = 1, . . . , N and t̄j is the M -dimensional root vec-
tor corresponding to T t̄j . And, we also divide the states |Adj;T t̄j ⟩ into
two groups: those corresponding to the M Cartan generators |Adj;H h̄j ⟩
(where j = 1, . . . ,M and h̄j is the M -dimensional root vector correspond-
ing to H h̄j ), and those corresponding to the N −M non-Cartan generators
|Adj;E ēj ⟩ (where j = 1, . . . N −M and ēj is the M -dimensional root vector
corresponding to E ēj ).

Don't be alarmed by the superscripts being vectors. We are using this no-
tation for later convenience, and T t̄i here means the same thing T j did
before (the jth generator). This notation, which we use only for the adjoint
representation, is simply taking advantage of the fact that in the adjoint rep-
resentation, the total number of generators, the number of eigenvectors of
the Cartan generators, the dimension of the representation, and the number
of weight/root vectors is the same.
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Also, with the adjoint representation states |Adj;T t̄j ⟩, we can use equation
(14.28) to de�ne the inner product between states as

⟨Adj;T t̄j |Adj;T t̄k⟩ = 1

κ
Tr(T t̄jT t̄k) = δjk . (14.32)

We will make use of this equation soon.

The matrix elements of a given generator will then be given by the familiar
equation

− ifabc = [T t̄a ]bc ≡ ⟨Adj;T t̄b |T t̄a |Adj;T t̄c⟩ . (14.33)

We want to know what an arbitrary generator T t̄a will do to an arbitrary
state |Adj;T t̄b⟩ in the adjoint representation. So,

T t̄a |Adj;T t̄b⟩ =
∑
c

|Adj;T t̄c⟩⟨Adj;T t̄c |T t̄a |Adj;T t̄b⟩ =

=
∑
c

|Adj;T t̄c⟩[T t̄a ]cb =

=
∑
c

|Adj;T t̄c⟩(−ifacb) = (14.34)

=
∑
c

ifabc|Adj;T t̄c⟩ .

And, because there is exactly one eigenvector for each generator, the state
|Adj;T t̄c⟩ corresponds to the generator T c. And because we know that

ifabcT
t̄c = [T t̄a , T t̄b ] , (14.35)

(where c is understood to be summed) by de�nition of the structure con-
stants, we can infer that

T t̄a |Adj;T t̄b⟩ =
∑
c

ifabc|Adj;T t̄c⟩ = |Adj; [T t̄a , T t̄b ]⟩ , (14.36)

where [T t̄a , T t̄b ] is simply the commutator.

Let's apply this to combinations of the two types of generators we have,H h̄a 's
and E ēa 's. If we have a Cartan generator acting on a state corresponding to
a Cartan generator, we have (from equation (14.31))

H h̄a |Adj;H h̄b⟩ = hab |Adj;H h̄b⟩ . (14.37)
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But from (14.36) we have

H h̄a |Adj;H h̄b⟩ = |Adj; [H h̄a ,H h̄b ]⟩ . (14.38)

By de�nition, the Cartan generators commute, so [H t̄a ,H t̄b ] ≡ 0, and there-
fore

h̄b ≡ 0 . (14.39)

So we can drop them from our notation, leaving the eigentstates correspond-
ing to non-Cartan generators denoted |Adj;Hj⟩.

On the other hand, if we have a Cartan generator acting on an eigenstate
corresponding to a non-Cartan generator, equation (14.31) gives

Ha|Adj;E ēb⟩ = eab |Adj; [Ha, E ēb ]⟩ . (14.40)

And equation (14.36) gives

Ha|Adj;E ēb⟩ = |Adj; [Ha, E ēb ]⟩ . (14.41)

Now, we don't know a priori what [Ha, E ēb ] is, but comparing (14.40) and
(14.41), we see

|Adj; eabE ēb⟩ = |Adj; [Ha, E ēb ]⟩ . (14.42)

And because we know that each of these vectors corresponds directly to the
generators, we have the �nal result

[Ha, E ēb ] = eabE
ēb . (14.43)

Let us �nd out what a non-Cartan generator does to a given eigentstate.
Consider an arbitrary state |Adj;T t̄b⟩ with Hc eigenvalue tcb. We can act on
this with E ēa to create the new state E ēa |Adj;T t̄b⟩. So what will the Hc

eigenvalue of this new state be? Using (14.43),

HcE ēa |Adj;T t̄b⟩ = (HcE ēa − E ēaHc + E ēaHc)|Adj;T t̄b⟩ =
= ([Hc, E ēa ] + E ēaHc)|Adj;T t̄b⟩ =
= (ecaE

ēa + E ēatcb)|Adj;T t̄b⟩ = (14.44)

= (tcb + eca)E
ēa |Adj;T t̄b⟩ =

= (t̄b + ēa)
cE ēa |Adj;T t̄b⟩ .

So, by acting on the one of the eigenstates with a non-Cartan generator E ēa ,
we have shifted theHc eigenvalue by one of the coordinates of the root vector.
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What this means is that the non-Cartan generators play a role analogous to
the raising and lowering operators in SU(2) (see below), except instead of
merely shifting the state 'up' and 'down', it moves the states around through
some M -dimensional space.

From this, we can also see that if there is an operator that can transform from
one state to another, there must be a corresponding operator that will make
the opposite transformation. Therefore, for every operator E ēa , we expect
to have the operator E−ēa , and corresponding eigenstate |Adj;E−ēa⟩.

Finally, consider the state E ēa |Adj;E−ēa⟩. We know from (14.36) that

E ēa |Adj;E−ēa⟩ = |Adj; [E ēa , E−ēa ]⟩ . (14.45)

The eigenvalue of this state can be found using equation (14.44):

HbE ēa |Adj;E−ēa⟩ = (−ēa + ēa)
bE ēa |Adj;E−ēa⟩ ≡ 0 . (14.46)

But according to equation (14.39), states with 0 eigenvalue are states cor-
responding to Cartan generators. Therefore we conclude that the state
E ēa |Adj;E−ēa⟩ is proportional to some linear combination of the Cartan
states,

E ēa |Adj;E−ēa⟩ =
∑
b

Nb|Adj;Hb⟩ , (14.47)

where the Nb's are the constants of proportionality. To �nd the constants
Nb, we follow an approach similar to the one we used in deriving (15.36).
Taking the inner product and using (14.36),

⟨Adj;Hc|E ēa |Adj;E−ēa⟩ =
∑
b

Nb⟨Adj;Hc|Adj;Hb⟩ =

=
∑
b

Nbδ
cb = Nc , ⇒ (14.48)

⇒ ⟨Adj;Hc|Adj; [E ēa , E−ēa ]⟩ = Nc .

Then, using (14.32)

⟨Adj;Hc|Adj; [E ēa , E−ēa ]⟩ =
1

κ
Tr(Hc[E ēa , E−ēa ]) =

=
1

κ
Tr(E−ēa [Hc, E ēa ]) =

=
1

κ
ecaTr(E

−ēaE ēa) = (14.49)

= ecaδ
aa =

= eca .



212 CHAPTER 14. LIE GROUPS

So,
Nc = eca . (14.50)

And therefore equation (14.47) is now

E ēa |Adj;E−ēa⟩ = |Adj; [E ēa , E−ēa ]⟩ = eba|Adj;Hb⟩ , (14.51)

where the sum over b is understood. This leads to our �nal result,

[E ēa , E−ēa ] = ebaH
b . (14.52)

Though we did all of this using the adjoint representation we have seen
before, this structure is the same in any representation, and therefore ev-
erything we have said is valid in any Dn. We worked in the adjoint simply
because that makes the results easiest to obtain. The extensive use we
made of labeling the eigenvectors with the generators can only be done in
the adjoint representation because only in the adjoint does the number of
eigenvectors equal the number of eigenstates. However, this will not be a
problem.

The important results from this section are (14.43) and (14.52), which are
true in any representation. Part of what we will do later is �nd these struc-
tures in other representations.

14.6 Casimir Operators

A Casimir invariant, or Casimir operator, is a distinguished element of the
center of the universal enveloping algebra of a Lie algebra (universal envelop-
ing algebra is the most general algebra that contains all representations of
the Lie algebra). The Casimir element is named after Hendrik Casimir, who
identi�ed them in his description of rigid body dynamics in 1931.

The most commonly-used Casimir operator is the quadratic invariant, which
is the simplest to de�ne. However, one may also have Casimir invariants of
higher order, which correspond to homogeneous symmetric polynomials of
higher order.

Suppose that g is an n-dimensional semisimple Lie algebra (a Lie algebra
which is a direct sum of simple Lie algebras). Let B be a nondegenerate
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bilinear form on g that is invariant under the adjoint action of g on itself,
meaning that

B(adXY, Z) +B(Y, adXZ) = 0 (14.53)

for all X, Y , Z in g. Let {Xi}ni=1 be any basis of g, and {Xi}ni=1 be the dual
basis of g with respect to B. The Casimir element C for B is the element of
the universal enveloping algebra U(g) given by the formula

C =
n∑
i=1

XiX
i . (14.54)

Although the de�nition relies on a choice of basis for the Lie algebra, it is
easy to show that C is independent of this choice. On the other hand, C
does depend on the bilinear form B. The invariance of B implies that the
Casimir element commutes with all elements of the Lie algebra g, and hence
lies in the center of the universal enveloping algebra U(g).

In other words, it is a member of the algebra of all di�erential operators that
commutes with all the generators in the Lie algebra. In fact all quadratic
elements in the center of the universal enveloping algebra arise this way.
However, the center may contain other, non-quadratic, elements.

The Casimir operator must explicitly commute with the Lie bracket, i.e. one
must have that

[C(m), Xi] = 0 (14.55)

for all basis elements Xi of the algebra.

For a semi-simple Lie algebra the dimension of the center of the universal
enveloping algebra is equal to its rank, so number of Casimir operators of a
Lie algebra is equal to its rank.

A prototypical example is the Casimir invariant is squared angular momen-
tum operator, which is a Casimir invariant of the three-dimensional rotation
group. The Lie algebra of SO(3), the rotation group for three-dimensional
Euclidean space, is simple of rank 1. So it has a single independent Casimir,
which is simply the sum of the squares of the generators Lx, Ly, Lz of the
algebra.

That is, the Casimir invariant is given by

L2 = L2
x + L2

y + L2
z . (14.56)
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The invariance of the Casimir operator implies that it is a multiple of the
identity operator I. This constant can be computed explicitly, giving the
following result

L2 = L2
x + L2

y + L2
z = ℓ(ℓ+ 1)I . (14.57)

In quantum mechanics, the scalar value ℓ is referred to as the total angular
momentum. For �nite-dimensional matrix-valued representations of the ro-
tation group, ℓ always takes on integer values (for bosonic representations)
or half-integer values (for fermionic representations).

Another important example is the rank-2 Poinkaré group, which has two
Casimir operators � one second order (Klein-Gordon operator) and one
fourth order (square of the Pauli-Lubanski vector, see the Exercise: 7.3).
Eigenvalues of these operators correspond to the particle mass and spin,
respectively.

Exercise 14.1: Work out the symmetry group of a square. How many
elements does it have? Construct the multiplication table, and determine
whether or not the group is Abelian.

Exercise 14.2: Show that any n×n unitary matrix U †U = 1 can be written
as U = eiH , where H is hermitian, H† = H, and that detU = 1 implies that
H is traceless.

Exercise 14.3: Show that SU(n) group has n2 − 1 independent group
parameters and the maximum number of mutually commuting matrices is
(n− 1).



Chapter 15

Examples of Lie Groups

Before getting back to physics, we give a spoiler of how Lie theory is used
in physics. What we are going to �nd is that some physical interaction
(electromagnetism, weak force, strong force) will ultimately be described by
a Lie group in some particular representation.

The particles that interact with that force will be described by the eigen-
vectors of the Cartan generators of the group, and the eigenvalues of those
eigenvectors will be the physically measurable charges. Clearly, the number
of charges associated with the interaction is equal to the number of dimen-
sions of the representation. For example, you likely are aware that the strong
force has 3 charges, called 'colors' (red, green, and blue). So, the strong force
(we will see) will be in a 3-dimensional representation of the group that de-
scribes it. We will �nd that all forces carrying particles (photons, gluons,
W and Z bosons) will be described by the generators of their respective
Lie group. The Cartan generators will be force-carrying particles which can
interact with any particle charged under that group by transferring energy
and momentum, but do not change the charge (photons and Z bosons). This
makes sense because Cartan generators are not raising or lowering operators.
On the other hand, the non-Cartan generators will be force carrying parti-
cles which interact with any particle charged under that group by not only
transferring energy and momentum, but also changing the charge (W bosons
and gluons).

We won't be able to come back to discussing how this works until some
examples are worked out, otherwise this may not be clear.

215
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15.1 SO(2)

We start by looking at an extremely simple group, SO(2). This is the group
of rotations in the plane that leaves

r̄2 = x2 + y2 =
(
x y

)
·
(
x
y

)
= v̄T · v̄ (15.1)

invariant. So for some generator X (which we will now �nd) of SO(2),

v̄ → R(θ)v̄ = eiθX v̄ , v̄T → v̄T eiθX
T
. (15.2)

So, expanding to �rst order only,

v̄T eiθX
T
eiθX v̄ = v̄T (1 + iθXT + iθX)v̄ = v̄T · v̄ + v̄T iθ(X +XT )v̄ . (15.3)

And because we demand that r2 be invariant, we demand that

X +XT = 0⇒ X = −XT . (15.4)

So, X must be antisymmetric. Therefore we take

X ≡ 1

2

(
0 1
−1 0

)
(the 1/2 is included to balance the i we inserted in equation (14.9) to ensure
that X is Hermitian).

So, an arbitrary element of SO(2) will be

eiθX = e
iθ 1

i

 0 1
−1 0


= e

θ

 0 1
−1 0


=

=

(
0 1
−1 0

)0

+ θ

(
0 1
−1 0

)1

+
1

2
θ2
(

0 1
−1 0

)2

+ · · · = (15.5)

=

(
1 0
0 1

)
+ θ

(
0 1
−1 0

)
− 1

2
θ2
(
1 0
0 1

)
− 1

3!
θ3
(

0 1
−1 0

)
+ · · · =

=

(
1− 1

2θ
2 + · · · θ − 1

3!θ
3 + · · ·

−(θ − 1
3!θ

3 + · · · ) 1− 1
2θ

2 + · · ·

)
=

(
cos θ sin θ
− sin θ cos θ

)
,

which is exactly what we would expect for a matrix describing rotations in
the plane.
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Also, notice that because SO(2) is Abelian, the commutation relations triv-
ially vanish ([X,X] ≡ 0), and so all of the structure constants are zero.

Now that we have found an explicit example of a generator, and seen an
example of how generators relate to group elements, we move on to slightly
more complicated examples.

15.2 SO(3)

We could easily generalize the argument from the proceeding section and
�nd the generators of SO(3) in the same way, but in order to illustrate more
clearly how generators work, we will approach SO(3) di�erently by working
backwards. Above, we found the generators and used them to calculate the
group elements. Here, we begin with the known group elements of SO(3),
which are just the standard Euler matrices for rotations in 3-dimensional
space:

Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 , (15.6)

Ry(ψ) =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 , (15.7)

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (15.8)

Now, recall the de�nition of the generators, equation (14.9). We can use it
to �nd the generators of SO(3), which we will denote Jx, Jy, and Jz.

Jx =
1

i

dRx(ϕ)

dϕ

∣∣∣∣
ϕ=0

=
1

i

0 0 0
0 − sinϕ cosϕ
0 − cosϕ sinϕ

∣∣∣∣
ϕ=0

=

=
1

i

0 0 0
0 0 1
0 −1 0

 . (15.9)
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And similarly

Jy =
1

i

0 0 −1
0 0 0
1 0 0

 , Jz =
1

i

 0 1 0
−1 0 0
0 0 0

 . (15.10)

You can plug these into the exponentials with the appropriate parameters
(ϕ, ψ, or θ) and �nd that eiϕJx , eiψJy , and eiθJz reproduce (15.6), (15.7), and
(15.8), respectively.

Furthermore, you can multiply out the commutators to �nd

[Jx, Jy] = iJz , [Jy, Jz] = iJx , [Jz, Jx] = iJy , (15.11)

or
[Ji, Jj ] = iϵijkJk , (15.12)

which tells us that the structure constants for SO(3) are

fijk = ϵijk , (15.13)

where ϵijk is the totally antisymmetric tensor. The structure constants being
non-zero is consistent with SO(3) being a non-Abelian group.

15.3 SU(2)

We will approach SU(2) yet another way: by starting with the structure
constants. It turns out they are the same as the structure constants for
SO(3):

fijk = ϵijk . (15.14)

To see why, recall that SU(2) are rotations in two complex dimensions. The
most general form of such a matrix U ∈ SU(2) is

U =

(
a b
c d

)
. (15.15)

The 'Special' part of SU(2) demands that the determinant be equal to 1, or

ad− bc = 1 , (15.16)
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and the 'Unitary' part demands that

U−1 = U † . (15.17)

So,

U−1 =

(
d −b
−c a

)
= U † =

(
a⋆ c⋆

b⋆ d⋆

)
, (15.18)

or in other words,

U =

(
a b
−b⋆ a⋆

)
, (15.19)

where we demand
|a|2 + |b|2 = 1 . (15.20)

Both a and b are in C, and therefore have 2 real components each, so U has
4 real parameters. The constraint (15.20) �xes one of them, leaving 3 real
parameters, just like in SO(3). This is a loose explanation of why SU(2) and
SO(3) have the same structure constants. They are both rotational groups
with 3 real parameters.

This also tells us that SU(2) will have 3 generators.

15.3.1 SU(2) and Physical States

The elements of any Lie group (in a d-dimensional representation consisting
of d×d matrices) will act on vectors, just like the 3×3 matrices representing
S3 acted on (R O Y )T in section 13.4. The most natural way to understand
the space a Lie group acts on is to study the eigenvectors and eigenvalues
of the generators of the representation you are using (the reason for this is
beyond the scope of these notes at this point, but will become more clear as
we proceed). These eigenvectors will obviously form a basis of the eigenspace
of the physical space the group is acting on.

Using similarity transformations, one or more of the generators of a Lie group
can be diagonalized. For now, trust us that with SU(2), it is only possible to
diagonalize one of the three generators at a time (you may convince yourself
of this by studying the commutation relations). We will call the generators
of SU(2) J1, J2, and J3, and by convention we take J3 to be the diagonal
one. So, consequently, the eigenvectors of J3 will be the basis vectors of the
physical vector space upon which SU(2) acts.
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Now, we know that J3 (whatever it is ... we don't know at this point) will
in general have more than one eigenvalue. Let's call the greatest eigenvalue
of J3 (whatever it is) j, and the eigenvectors of J3 will be denoted |j;m⟩
(the �rst j is merely a label � the second value describes the vector), where
m is the eigenvalue of the eigenvector. The eigenvector corresponding to the
greatest eigenvalue j will obviously then be |j; j⟩. So,

J3|j; j⟩ = j|j; j⟩ , (15.21)

or more generally
J3|j;m⟩ = m|j;m⟩ . (15.22)

Now let's assume that we know |j; j⟩. There is a trick we can employ to
�nd the rest of the states. De�ne the following linear combinations of the
generators:

J± ≡ 1√
2
(J1 ± iJ2) . (15.23)

Now, using the fact that the SU(2) generators obey the commutation rela-
tions in equation (15.13), it is easy to show the following relations,

[J2, J±] = ±J± and [J+, J−] = J3 . (15.24)

Notice that, because by de�nition J i are all Hermitian, we have

(J−)† = J+ . (15.25)

Consider some arbitrary eigenvector |j;m⟩. We know from (15.22) that the
eigenvalue of this will bem. But now let's create some new state by acting on
|j;m⟩ with either of the operators (15.23). The new state will be J±|j;m⟩,
but what will the J3 eigenvalue be? Using the commutation relations in
(15.24),

J3J±|j;m⟩ = (±J± + J±J3)|j;m⟩ = (m± 1)J±|j;m⟩ . (15.26)

So, the vector J+|j;m⟩ is the eigenvector with eigenvalue m + 1, and the
vector J−|j;m⟩ is the eigenvector with eigenvalue m− 1.

If we have some arbitrary eigenvector |j;m⟩, we can use J± to move up or
down to the eigenvector with the next highest or lowest eigenvalue. For this
reason, J± are called the Raising and Lowering operators. They raise and
lower the eigenvalue of the state by one.
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Clearly, the eigenvector with the greatest eigenvalue j, with eigenvector |j; j⟩,
cannot be raised any higher, so we de�ne

J+|j; j⟩ ≡ 0 , (15.27)

We will see that there is also a lowest eigenvalue j′, so we similarly de�ne

J−|j; j′⟩ ≡ 0 . (15.28)

Now, considering once again |j; j⟩. We know that if we operate on this state
with J−, we will get the eigenvector with the eigenvalue j−1. But, we don't
know exactly what this state will be (knowing the eigenvalue doesn't mean
we know the actual state). But, we know it will be proportional to |j; j−1⟩.
So, we set

J−|j; j⟩ = Nj |j; j − 1⟩ , (15.29)

where Nj is the proportionality constant. To �nd Nj , we take the inner
product (and using (15.25)):

⟨j; j|J+J−|j; j⟩ = |Nj |2⟨j; j − 1|j; j − 1⟩ . (15.30)

But we can also write

⟨j; j|J+J−|j; j⟩ = ⟨j; j|(J+J− − J−J+)|j; j⟩ =
= ⟨j; j|

[
J+, J−] |j; j⟩ = (15.31)

= ⟨j; j|J3|j; j⟩ = j⟨j; j|j; j⟩ = j ,

where we used (15.27) to get the �rst equality, and (15.24) to get the third
equality. We also assumed that |j; j⟩ is normalized.

So, (15.31) tells us

⟨j; j − 1|j; j − 1⟩ = 1 ⇐⇒ Nj ≡
√
j . (15.32)

And our normalized state is therefore

J−

Nj
|j; j⟩ = J−

√
j
|j; j⟩ = |j; j − 1⟩ . (15.33)
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Repeating this to �nd Nj−1, we have

|Nj−1|2 ⟨j; j − 2|j; j − 2⟩ = ⟨j; j − 1|J+J−|j; j − 1⟩ =

=

⟨
j; j

∣∣∣∣J+

√
j
J+J−J

−
√
j

∣∣∣∣j; j⟩ =
1

j
⟨j; j|J+J+J−J−|j; j⟩ =

=
1

j
⟨j; j|J+(J3 + J−J+)J−|j; j⟩ =

=
1

j
⟨j; j|(J+J3J− + J+J−J+J−)|j; j⟩ = (15.34)

=
1

j
⟨j; j|(J+(−J− + J−J3) + J+J−(J3 + J−J+))|j; j⟩ =

=
1

j
[⟨j; j|(−J+J− + jJ+J− + jJ+J−)|j; j⟩] =

=
1

j
⟨j; j|(−[J+, J−] + 2j[J+, J−])|j; j⟩ =

=
1

j
⟨j; j|(−J3 + 2jJ3)|j; j⟩ = 1

j
(2j2 − j) = 2j − 1 .

So,
Nj−1 =

√
2j − 1 . (15.35)

We can continue this process, and we will �nd that the general result is

Nj−k =
1√
2

√
(2j − k)(k + 1) , (15.36)

and the general states are de�ned by

|j; j − k⟩ = 1

Nj−k
(J−)k|j; j⟩ . (15.37)

Notice that these expressions recover (15.32) and (15.34) for k = 0 and k = 1,
respectively.

Furthermore, notice that when k = 2j,

Nj−2j =
1√
2

√
(2j − 2j)(2j + 1) ≡ 0 . (15.38)

So, the state |j; j − k⟩
∣∣
k=2j

= |j;−j⟩ is the state with the lowest eigenvalue,
and by de�nition J−|j;−j⟩ ≡ 0.
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So, in a general representation of SU(2), we have 2j + 1 states:

{j, j − 1, j − 2, . . . ,−j + 2,−j + 1,−j} . (15.39)

This therefore demands that j = n/2 for some integer n. In other words,
the highest eigenvalue of an SU(2) eigenvector can be 0, 1/2, 1, 3/2, 2, etc.

Furthermore, using these states, it is easy to show

⟨j;m′|J3|j;m⟩ = mδm′,m ,

⟨j;m′|J+|j;m⟩ =
1√
2

√
(j +m+ 1)(j −m)δm′,m+1 , (15.40)

⟨j;m′|J−|j;m⟩ =
1√
2

√
(j +m)(j −m+ 1)δm′,m−1 .

15.3.2 SU(2) for j = 1/2

We will skip the j = 0 case because it is trivial (though we will discuss it
later when we return to physics).

For j = 1/2, the two eigenvalues of J3 will be 1/2 and 1/2− 1 = −1/2. So,
denoting the J3 generator of SU(2) when j = 1/2 as J3

1/2, we have

J3
1/2 =

(
1/2 0
0 1/2

)
. (15.41)

Now, inverting (15.23) to get

J1 =
1√
2
(J− + J+) and J2 =

i√
2
(J− − J+) , (15.42)

and using the standard matrix equation [Jaj ]m′,m = ⟨j,m′|Ja|j,m⟩, and the
explicit products in (15.40), we can �nd (for example)⟨

1

2
;−1

2

∣∣∣∣J1

∣∣∣∣12;−1

2

⟩
=

⟨
1

2
;−1

2

∣∣∣∣ 1√
2
(J− + J+)

∣∣∣∣12;−1

2

⟩
= · · · = 0 . (15.43)

So [J1]11 = 0. Then,⟨
1

2
;−1

2

∣∣∣∣J1

∣∣∣∣12; 12
⟩

=

⟨
1

2
;−1

2

∣∣∣∣ 1√
2
(J− + J+)

∣∣∣∣12; 12
⟩

= · · · = 1

2
. (15.44)
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So [J1]12 = 1/2.

We can continue this to �nd all the elements for each generator for j = 1/2.
The �nal result will be

J1
1/2 =

1

2

(
0 1
1 0

)
=
σ1

2
,

J2
1/2 =

1

2

(
0 −i
i 0

)
=
σ2

2
, (15.45)

J3
1/2 =

1

2

(
1 0
0 −1

)
=
σ3

2
,

where the σi matrices are the Pauli Spin Matrices.

This is no accident! We will discuss this in more detail later, but for now re-
call that we said that SU(2) is the group of transformations in 2-dimensional
complex space (with one of the real parameters �xed, leaving 3 real param-
eters).

We are going to see that SU(2) is the group which represents quantum me-
chanical spin, where j is the value of the spin of the particle. In other words,
particles with spin 1/2 are described by the j = 1/2 representation (the
2 × 2 representation in (15.45)), and particles with spin 1 are described by
the j = 1 representation, and so on. In other words, SU(2) describes quan-
tum mechanical spin in 3 dimensions in the same way that SO(3) describes
normal 'spin' in 3 dimensions. We will talk about the physical implications,
reasons, and meaning of this later. However, as a warning, be careful at this
point not to think too much in terms of physics.

You have likely covered SU(2) in great detail in a quantum mechanics course
(though you may not have known it was called 'SU(2)'), but the approach
we are taking here has a di�erent goal than what you have likely seen before.

The properties of SU(2) we are seeing here are actually very speci�c and
simpli�ed illustrations of much deeper concepts in Lie groups, and in order
to understand particle physics we must understand Lie groups in this way.
So for now, try to �ght the temptation to merely understand everything we
are doing in terms of the physics you have seen before and learn this as
we are presenting it: pure mathematics. We will focus on how it applies
to physics later, in its fuller and more fundamental way than introductory
quantum mechanics makes apparent.
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15.3.3 SU(2) for j = 1

You can follow the same procedure we used above to �nd

J1
1 =

1√
2

0 1 0
1 0 1
0 1 0

 ,

J2
1 =

1√
2

0 −i 0
i 0 −i
0 i 0

 , (15.46)

J3
1 =

1 0 0
0 0 0
0 0 −1

 .

Notice that only J3
1 is diagonal (as before), and that the eigenvalues are

{1, 0,−1}, or {j, j − 1, j − 2 = −j} as we'd expect.

15.3.4 SU(2) for Arbitrary j

For any given j, we have 3 generators J1
j , J

2
j , and J3

j , and for whatever
dimension (d = 2j + 1) the physical space we are working in, we have d
eigenvectors

|j; j⟩ =


1
0
0
...
0

 , |j; j − 1⟩ =


0
1
0
...
0

 , · · · |j;−j⟩ =


0
0
0
...
1

 , (15.47)

with eigenvalues {j, j − 1, j − 2, · · · ,−j}, respectively.

Then, for any j, we can form the linear combinations

J±
j ≡

1√
2
(J1
j ± iJ2

j ) . (15.48)

For example, for j = 1/2 these are

J+
1/2 =

1√
2

[
1

2

(
0 1
1 0

)
+
i

2

(
0 −i
i 0

)]
=

1√
2

(
0 1
0 0

)
, (15.49)
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and similarly

J−
1/2 = · · · =

1√
2

(
0 0
1 0

)
. (15.50)

So, the two j = 1/2 eigenvectors will be∣∣∣∣12; 12
⟩

=

(
1
0

)
, and

∣∣∣∣12;−1

2

⟩
=

(
0
1

)
. (15.51)

So,

J+
1/2

∣∣∣∣12; 12
⟩

=
1√
2

(
0 1
0 0

)(
1
0

)
= 0 ,

J−
1/2

∣∣∣∣12;−1

2

⟩
=

1√
2

(
0 0
1 0

)(
0
1

)
= 0 , (15.52)

and similarly

J−
1/2

∣∣∣∣12; 12
⟩

=

∣∣∣∣12;−1

2

⟩
, J+

1/2

∣∣∣∣12;−1

2

⟩
=

∣∣∣∣12; 12
⟩
, (15.53)

which is exactly what we would expect.

The same calculation can be done for the j = 1 case and we will �nd the
same results, except that the j = 1 state (the �rst eigenvector) can be lowered
twice. The �rst time J−

1/2 acts it takes it to the state with eigenvalue 0, and
the second time it acts it takes it to the state with eigenvalue −1. Acting a
third time will destroy the state (take it to 0). Analogously, the lowest state,
with eigenvalue j = −1 can be raised twice.

We can do the same analysis for any j = integer or half integer.

As we said before, we interpret j as the quantum mechanical spin of a par-
ticle, and the group SU(2) describes that rotation. It is important to rec-
ognize that quantum spin is not a rotation through spacetime (it would be
described by SO(3) if it was), but rather through the mathematically con-
structed spinor space. We will talk more about this space later.

So for a given particle with spin, we can talk about both its rotation through
physical spacetime using SO(3), as well as its rotation through complex
spinor space using SU(2). Both values will be physically measurable and
will be conserved quantities. The total angular momentum of the particle
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will be the combination of both spin and spacetime angular momentum.
Again, we will talk much more about the spin of physical particles when we
return to a discussion of physics. We only mention this now to give a preview
of where this is going.However, spin is not the only thing SU(2) describes.
We will also �nd that it is the group which governs the weak nuclear force
(whereas U(1) describes the electromagnetic force, and SU(3) describes the
strong force ... much, much more on this later).

15.3.5 Adjoint Representation of SU(2)

We now illustrate what we did in section 14.5 with SU(2). We will work in
the adjoint representation to make the correspondence with section 14.5 as
transparent as possible. SU(2) has 3 generators, and therefore the adjoint
representation will consist of 3 × 3 matrices. This is simply the j = 1
representation, which we wrote out in equation (15.46).

First, it is easy to verify that (14.28) and (14.32) hold for κ = 2. Next we
look at the eigenstates. We know they will be the normal vectors

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 (15.54)

(we will relabel them to be consistent with section 14.5 shortly).

Obviously only J3
1 is diagonal, so SU(2) has rank M = 1. We de�ne

H1 = J3
1 =

1 0 0
0 0 0
0 0 −1

 ,

E1 = J1
1 =

1

2

0 1 0
1 0 1
0 1 0

 , (15.55)

E2 = J2
1 =

1

2

0 −i 0
i 0 −i
0 i 0

 .

Because the rank is 1, the root vectors will be 1-dimensional vectors, or
scalars. We �nd them easily by �nding the eigenvalues of each eigenvector
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with H1:

H1v1 = (+1)v1, H1v2 = (0)v2 , H1v3 = (−1)v3 . (15.56)

So the root vectors are

t̄1 = t1 = +1 , t̄2 = t2 = 0 , t̄3 = t3 = −1 . (15.57)

We can graph these on the real line as shown below,

Now our initial guess will be to associate v3 with J3
1 = H1, and then v1 = E1

and v2 = E2. But we want to exploit what we learned in section 14.5, and
therefore we must make sure that (14.43) and (14.52) hold.

Starting with (14.43), we check (leaving the tedious matrix multiplication
up to you)

[H1, E1] = · · · = 1

2

 0 1 0
−1 0 1
0 −1 0

 (15.58)

[H1, E2] = · · · = − i
2

0 1 0
1 0 1
0 1 0

 (15.59)

But we have a problem.According to (14.43), [H1, Ei] should be proportional
to Ei, but this is not the case here. However notice that in (15.58),

1

2

 0 1 0
−1 0 1
0 −1 0

 = iE2 , (15.60)
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and in (15.59),

− i

2

0 1 0
1 0 1
0 1 0

 = −iE1 . (15.61)

Writing this more suggestively,

[H1, E1] = iE2 , [H1, iE2] = E1 . (15.62)

So, if we take the linear combinations of equations (15.62), we get

[H1, αE1 ± βiE2] = βE1 ± αiE2 , (15.63)

which has the correct form of equation (14.43) as long as α = β. Therefore
we are now working with the operators

E± ≡ α(E1 ± iE2) . (15.64)

Now we seek to impose (14.52). We start by evaluating

[E+, E−] = α2[E1 + iE2, E1 − iE2] =

= α2
(
[E1, E1]− i[E1, E2] + i[E2, E1] + [E2, E2]

)
= (15.65)

= −2iα2[E1, E2] = · · · = −2iα2iH1 = 2α2H1 ,

Then, from equations (15.57) and the de�nition of E±, we see that

± e11 = ±(t1 − t2) = ±(1− 0) = ±1 . (15.66)

So we therefore set

α2 =
1

2
⇒ α =

1√
2
, (15.67)

and we �nd that the appropriate non-Cartan generators (including the 1 to
be consistent with the notation in section 14.5) are

E±1 =
1√
2
(E1 ± iE2) (15.68)

which is exactly what we had in equation (15.23) above. So, we have de-
rived the trick used to understand quantum mechanical spin in introductory
quantum courses!
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15.3.6 SU(2) for Arbitrary j . . . Again

Now that we have our operators in the adjoint representation, we can con-
sider any arbitrary representation. As we saw in section 15.3.4, we can form
the linear combinations in equation (15.68) for any j = integer or half inte-
ger. The weight vectors will always look like displayed those in the diagram
on page 228 (in other words, raising and lowering operators always raise or
lower their eigenvalue by 1).

The space of physical states, on the other hand, changes for each represen-
tation. For j = 1

2 , we have

For j = 1,

For j = 3/2,
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and so on.

Notice that the vectors graphed in the diagram on the page 228 are the exact
vectors required to move from point to point in each of these graphs. This
is obviously not a coincidence.

15.4 SU(3)

Now that we have said pretty much everything we can about SU(2), which
is only Rank 1 (and therefore not all that interesting), we move on to SU(3).
However, we will expedite the process by stating the structure constants up
front. The non-zero structure constants are:

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
,

f458 = f678 =

√
3

2
, (15.69)

f123 = 1 .

The most convenient representation is the Fundamental Representation (con-
sisting of 3× 3 matrices). They are

T a =
1

2
λa , (a = 1, . . . , 8) (15.70)
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where

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (15.71)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

Only two of these are diagonal, λ3 and λ8. So, SU(3) is a rank 2 group.

Working in the adjoint representation of SU(3) would involve 8×8 matrices,
which would obviously be very tedious. So, we exploit the fact that the tech-
niques we developed in section 14.5 are valid in any representation, and stick
with the Fundamental Representation de�ned by the generators in (15.71).

Proceeding as in section 15.3.5, we note that the eigenvectors will again be

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 . (15.72)

Then, the Cartan generators are

H1 =
1

2

1 0 0
0 −1 0
0 0 0

 , H2 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 , (15.73)

and the non-Cartan Generators are simply

E1 = T 1, E2 = T 2, E3 = T 4, E4 = T 5, E5 = T 6, E6 = T 7. (15.74)

So we have 6 eigenvalues to �nd,

H1v1 =

(
1

2

)
v1 , H1v2 =

(
− 1

2

)
v2 , H1v3 = (0)v3 ,

H2v1 =

(
1

2
√
3

)
v1 , H2v2 =

(
1

2
√
3

)
v2 , H2v3 =

(
− 1√

3

)
v3 . (15.75)
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The weight vectors will be 2-dimensional (because the rank is 2):

t̄1 =
(
1
2

1
2
√
3

)T
, t̄2 =

(
−1

2
1

2
√
3

)T
, t̄3 =

(
0 − 1√

3

)T
. (15.76)

We can graph these in R2 as shown below,

Repeating nearly the identical argument we started with equation (15.58)
and repeating it for all 6 non-Cartan generators, we �nd that in order to
maintain (14.43) and (14.52), we must work with the operators

1√
2
(T 1 ± iT 2) =

1√
2
(E1 ± iE2) ,

1√
2
(T 4 ± iT 5) =

1√
2
(E3 ± iE4) , (15.77)

1√
2
(T 6 ± iT 7) =

1√
2
(E5 ± iE6) .

The weight vectors associated with these will be, respectively,

± (t̄1 − t̄2) = ±
(
1
0

)
, ± (t̄1 − t̄3) = ±

(
1
2√
3
2

)
, ± (t̄2 − t̄3) = ±

(
−1

2√
3
2

)
.

So, the non-Cartan generators are

E
±

1
0


, E

±

 1/2√
3/2


, E

±

−1/2√
3/2


. (15.78)
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We are no longer in the adjoint representation. What we did here is more
general; we chose them to be the di�erences in the three weight vectors in
equation (15.76), so that these vectors would naturally transform from one
eigenvector to another (just as the raising and lowering operators do, as
we found for SU(2) and more generally in section 14.5). The remarkable
property of Lie groups is that this is always possible in any representation.

We can graph the 6 vectors in (15.78), along with the two Cartan weight
vectors, which we know from (14.39) are 0:

And again, just as with SU(2), notice that the 6 non-zero vectors are the
exact vectors that would be necessary to move from point to point on the
above diagram. So once again, we see that the non-Cartan generators act as
raising and lowering operators which transform between the eigenstates of
the Cartan generators. Notice that there were 6 non-Cartan generators, and
they formed linear combinations to form 6 raising and lowering operators.

Exercise 15.1: The third Pauli matrix σ3 is in the group O(2) or in SO(2)?

Exercise 15.2: Suppose ψ1 and ψ2 are the bases for the spin-1/2 represen-
tation of SU(2) having eigenvalues of ±1/2 for the diagonal generator T3,
T3ψ1 = ψ1/2 and T3ψ2 = −ψ2/2. Calculate the eigenvalues of T3 operating
on ψ∗

1 and ψ∗
2, respectively.

Exercise 15.3: The ρ vector meson has isospin 1 (it has three charge states:
ρ+, ρ0, ρ−). Construct the SU(2) invariant ρππ coupling.
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Chapter 16

Anatomy of Experiments

In this lecture we will try to describe the main landscape of experimental
high energy physics today.

16.1 Accelerators and Laboratories

Currently the only possibility to investigate properties of elementary parti-
cles is to study their collisions. In general, the heavier the particle you want
to produce, the higher must be the energy of the collision. In quantum-
mechanical terms, a particle of momentum p has an associated wavelength
λ given by the de Broglie formula λ = h/p, where h is the Planck constant.
At large wavelengths (low momomenta) you can only hope to resolve rela-
tively large structures; in order to examine something extremely small, you
need comparably short wavelengths, and hence high momenta. If you like,
consider this a manifestation of the uncertainty principle (∆x∆p ≥ h/4π) �
to make ∆x small, ∆p must be large. The conclusion is the same: to probe
small distances you need high energies.

A particle accelerator is a machine that uses electromagnetic �elds to propel
charged particles to nearly light speed (having high energies) and to con-
tain them in well-de�ned beams. In experimental particle physics currently
accelerators are shaped in one of two ways:

• Linear Colliders: An example of such an accelerator is the Stanford

237
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Linear Accelerator Center (SLAC);

• Circular or Synchrotron Accelerators: These provide higher energies
than a Linear ones, such as the Large Hadron Collider at CERN.

Accelerators can also be arranged to provide collisions of two types:

• Fixed Target Experiments: When particles are shot at a �xed target;

• Colliding Beam Experiments: When two beams of particles are made
to cross each other.

16.1.1 Luminosity

Important parameters in colliders are the energy of the beams and the rate
of collisions, R, or the luminosity L. The rate of collisions is de�ned as:

R =
dN

dt
= Lσ , (16.1)

where dN/dt is the number of hard collision events produced per second,
and σ is the cross section of the process. Integrating over time, we get:

NEP = σ ×
∫
Ldt , (16.2)

where NEP are the number of produced hard collision events (Events Pro-
duced) of the process with cross section σ and

∫
Ldt is the integrated lumi-

nosity which is provided by the accelerator in a given time period. Unfortu-
nately, a given high energy physics detector does not observe every collision
event that is produced. For example, the trigger is ine�cient, as is the iden-
ti�cation of the �nal state particles, and some fraction of the events may be
produced beyond the detector acceptance. These ine�ciencies need to be
experimentally evaluated and once accounted for the expression becomes:

NEO = σ ×
∫
Ldt× ϵ , (16.3)

where NEO is now the number of Events Observed in the detector, and ϵ is
the total e�ciency of identifying the collision event of interest.
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The units of a cross section are the same as the units of area and are typically
represented by a barn (1 barn = 1024 cm2), for example, mb; νb; nb, etc.
The units of instantaneous luminosity are the same as the units of [1/(cross
section × time)], for example cm−2s−1. Integrated luminosity has units of
[1/cross section], for example cm−2, or pb−1, fb−1, etc.

Next, let us consider an alternate expression for luminosity:

L = f
n1n2

4πσxσy
≈ f nbN

2

4πσxσy
. (16.4)

where n1 and n2 are the numbers of particles in each of the colliding bunches,
f is the frequency with which they collide, σx and σy represent the size of
the transverse beam (e.g. the RMS if we assume a Gaussian shaped beam),
nb is the number of bunches and N is the number of particles per bunch.
So in order to increase the luminosity, it is important to squeeze as many
colliding particles in as small a transverse beam spot as possible.

16.1.2 Particle Physics Laboratories

Nowadays the world's major particle physics laboratories are:

• CERN (European Organization for Nuclear Research) at Franco-Swiss
border, near Geneva. Its main project is now the Large Hadron Collider
(LHC), which had its �rst beam circulation on 10 September 2008, and
is now the world's most energetic collider of protons. It also became the
most energetic collider of heavy ions after it began colliding lead ions.
Earlier facilities include the Large Electron-Positron Collider (LEP),
which was stopped on 2 November 2000 and then dismantled to give
way for LHC; and the Super Proton Synchrotron, which is being reused
as a pre-accelerator for the LHC.

• DESY (Deutsches Elektronen-Synchrotron) in Hamburg, Germany. Its
main facility is the Hadron Elektron Ring Anlage (HERA), which col-
lides electrons and positrons with protons.

• Brookhaven National Laboratory (Long Island, US). Its main facility is
the Relativistic Heavy Ion Collider (RHIC), which collides heavy ions
such as gold ions and polarized protons. It is the world's �rst heavy
ion collider and the world's only polarized proton collider.
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• Fermi National Accelerator Laboratory (Fermilab) in Batavia, US. Its
main facility until 2011 was the Tevatron, which collided protons and
antiprotons and was the highest-energy particle collider on earth until
the LHC surpassed it on 29 November 2009.

• SLAC National Accelerator Laboratory (Menlo Park, US). Its 2-mile-
long linear particle accelerator began operating in 1962 and was the
basis for numerous electron and positron collision experiments until
2008. Since then the linear accelerator is being used for the Linac Co-
herent Light Source X-ray laser as well as advanced accelerator design
research. SLAC sta� continue to participate in developing and building
many particle detectors around the world.

• Budker Institute of Nuclear Physics (Novosibirsk, Russia). Its main
projects are now the electron-positron colliders VEPP-2000, operated
since 2006, and VEPP-4, started experiments in 1994. Earlier facilities
include the �rst electron-electron beam-beam collider VEP-1, which
conducted experiments from 1964 to 1968; the electron-positron collid-
ers VEPP-2, operated from 1965 to 1974; and its successor VEPP-2M,
performed experiments from 1974 to 2000.

• Institute of High Energy Physics (IHEP) in Beijing, China. IHEP
manages a number of China's major particle physics facilities, includ-
ing the Beijing Electron Positron Collider (BEPC), the Beijing Spec-
trometer (BES), the Beijing Synchrotron Radiation Facility (BSRF),
the International Cosmic-Ray Observatory at Yangbajing in Tibet,
the Daya Bay Reactor Neutrino Experiment, the China Spallation
Neutron Source, the Hard X-ray Modulation Telescope (HXMT), the
Accelerator-driven Sub-critical System (ADS) and the Jiangmen Un-
derground Neutrino Observatory (JUNO).

• KEK (Tsukuba, Japan). It is the home of a number of experiments,
such as the K2K (a neutrino oscillation experiment) and Belle (an
experiment measuring the CP violation of B mesons).

16.1.3 What is After LHC?

A serious question confronting the experimental community is: what is the
next machine after the LHC that we will want to build? Let us present some
of the ideas and proposals being discussed.
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The most serious option for a next machine after the LHC is an e+e− linear
collider. This is a machine that would start with a CM energy of 500 GeV
and might eventually be upgraded to 1.5 TeV. If the minimal supersymmetric
SM is right, this machine could be a gold mine since most of the Higgses and
superpartners would be accessible even at 500 GeV center of mass energy.
While the discovery of SUSY might still take place at LHC, the e+e− linear
collider o�ers a much cleaner experimental environment to fully study the
SUSY particle spectrum. If, however, the minimal supersymmetric model is
wrong, then this machine needs to push to the highest center of mass energies
of over 1 TeV in order to extend our physics reach past what already will be
learned from the LHC.

Another option that is being discussed as a future machine is an even higher
energy proton-proton collider, with 100 TeV of energy in the CM. This would
be a frontier machine that would push to the highest possible energy that is
achievable by present technology.

A �nal option being discussed is a µ+µ− collider. One wins with muons
over electrons since electron colliders are limited by radiation which is much
suppressed for muons because of their larger mass. The talk is of a muon
collider with 4 TeV in the CM.

16.2 Detectors

When the beams collide at an accelerator, physics happens: particles that
we want to study emerge. The interaction region is instrumented with a
detector that is designed to record as much information as possible about
what is emerging from the beam collision.

The goal of every collider experiment is to completely surround the collision
by arranging layers of di�erent types of detectors. The form of the detector
depends in its gross geometry on the accelerator type. At storage rings where
the Lab frame is also the CM frame for the interaction, outgoing particles
from the interaction are nearly isotropically distributed about the collision
point and detectors re�ect that fact. The detectors try to surround as much
of the solid angle around the interaction point as possible, given practical
and �nancial constraints.

It is not possible to describe a generic detector. Each detector is individu-
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ally designed to match the machine at which it runs; however, all detectors
are composed from a fairly consistent set of building blocks which can be
easily described, although the execution or techniques used on di�erent ex-
periments will vary widely.

The particle detectors have the following general features, starting from cen-
ter moving outwards:

• Tracking Detectors within a Magnetic Field: measures the charge, tra-
jectory and momentum of charged particles;

• Electromagnetic Calorimeter: measures the energy and position of elec-
tromagnetic particles;

• Hadronic Calorimeter: measures the energy and position of hadronic
particles;

• Muon Chambers: measures the trajectory and momentum (along with
the tracking detector) of muons.

Also there are Particle Identi�cations of various sorts to distinguish di�erent
types of hadrons, particularly pions and kaons.

Below you can see the schematic drawings of the CMS (left) and ATLAS
(right) detectors at CERN.

I will brie�y discuss the various detector elements, mentioned above, and
how they are most commonly used.
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16.2.1 Tracking Detectors

A charged particle tracker, usually a drift chamber, is at the heart of most
experiments. The main goal of tracking detectors is to measure the momen-
tum, charge and trajectory of charged particles. Ideally, we want tracking
detectors to contain as little material as possible in order to minimize mul-
tiple scattering.

There are two main technologies of tracking detectors in particle physics:

• Gas/Wire Drift Chambers: These devices are made of wires in a volume
�lled with a gas, such as Argon-Ethane. They measure where a charged
particle has crossed, when it ionizes the gas. There is an electrical
potential applied to the wires, so atomic electrons knocked o� the
atoms in the gas drift to a positively charged sense wire. The chamber
are connected to electronics which measure the charge of the signal and
when it appears. To reconstruct the tracks of the charged particles
several chamber planes are necessary. Advantages to drift chambers
is their low thickness and are the traditionally preferred technology
for large volume detectors. Typical single hit resolutions range from
100− 200 µm. An example of such a device is the CDF experiment's
Central Outer Tracker (COT) which has approximately 30,000 wires.
To measure the position of a track, a clock is started when the particle
is produced (at the beam crossing) and stopped when the pulse height
on a wire exceeds a preset value. Associated with each wire there will
then be a time ti. Using di = vDti where vD is the drift velocity of
electrons in the gas, one can infer the distance from the wire to where
the track ionization segment came from. By joining hits, one de�nes
the track of the incident charged particle.

• Silicon Detectors: Precision silicon tracking devices work on the same
physics principle as gas chambers, although the anode and cathode in
a silicon detector are no longer wires but electrodes etched on a thin
silicon wafer. Silicon detectors are usually placed right around the
beam pipe and provide high resolution position measurements on tracks
close to the interaction point. Silicon detectors are semi-conductor
detectors which are modi�ed by doping. For example, doping with
Antimony gives an n-type semi-conductor or with Boron which gives
a p-type semi-conductor. This doped silicon is then used to create a
p−n junction, to which a very large reverse-bias voltage is applied. This
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creates a "depletion zone" and once the silicon device is fully depleted
we are left with an electric �eld. When charged particles cross the
detector they ionize the depletion zone and create an electrical signal.
Silicon detectors come in two varieties, either metal strips:

or pixels:

which provide much higher granularity and a higher precision set of
measurements. These detectors are radiation hard and are important
for detection secondary vertices close to the primary interaction. Sili-
con is now the dominant sensor material in use for tracking detectors
at the LHC.

The entire tracking volume is usually enclosed in a uniform magnetic �eld
B and from the curvature of tracks one measures the particle's momentum.
The momentum and charge of the particle is measured using a few points
of the particle's track (trajectory), which we can use to reconstruct the cur-
vature of the track. The transverse momentum (pT ) of charged particles is
proportional to the radius of curvature and to the B �eld. In particular,

pT = 0.3qBr , (16.5)
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where the reconstructed track pT is measured in GeV/c, B is in Tesla, the
total particle charge is qe (e is the magnitude of the electron charge) and r
is measured in meters and is the radius of curvature of the track.

Drift chambers are the most versatile of all detector elements. In addition
to measuring momentum and charge, tracks left by charged particles can be
extrapolated back to the interaction point. Tracks with signi�cant impact
parameters to the beam crossing point, or that can be combined to form a
displaced vertex.

16.2.2 Electromagnetic Calorimeters

Most experiments have some form of electromagnetic calorimeter. Electro-
magnetic calorimeters are designed to measure the energy of electromagnetic
particles (both charged and neutral) and their position. This is done by con-
structing them using a heavy, high Z material to initiate an electromagnetic
shower to totally absorb the energy and stop the particles. The important
parameter for the material used in electromagnetic calorimeters is the radi-
ation length X0, and have typical values of 15 − 30 X0. Additionally, it is
key to have as little material before the calorimeter as possible (this means
the tracker) so that the particles do not radiate before they reach it.

The relative energy uncertainty (or resolution), σE , of calorimeters decreases
with the energy E of the particle and can be parameterized as follows:

σE
E

=
a√
E
⊕ b⊕ c

E
, (16.6)

where a is referred to as the stochastic term and quanti�es statistics related
�uctuations, b is the constant term and c is primarily due to noise (for
example, in the electronics). The three terms in this equation are added in
quadrature (denoted by the symbol ⊕).

There are two types of calorimeter detectors:

• Homogeneous Calorimeters are generally made of an inorganic heavy,
high Z material which is also scintillating. The idea is to create an
entire volume to generate the electromagnetic signal, as seen in the
�gure below:
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Examples of these calorimeters include a variety of crystals such as
CsI, NaI, and PbWO, and ionizing noble liquids such as liquid Ar.
The entire photons shower is contained in the uniform crystal blocks
with dimensions typically 5 cm × 5 cm × 30 cm deep. Adjacent blocks
are summed to reconstruct the shower. Energy resolutions of these
types of detectors are typically σE/E ∼ 1%.

• Sampling Calorimeters are made of an active medium which generates
signal and a passive medium which functions as an absorber (typically
a lead-scintillator sandwich) as seen in the �gure:

Examples of active medium materials are scintillators, ionizing noble
liquids, and a Cherenkov radiator. The passive material is one of high
density, such as lead, iron, copper, or depleted uranium. Energy reso-
lutions of sampling calorimeter detectors are typically σE/E ∼ 10%.

The scintillating light created in calorimeters is interpreted as a signal using
photo-multiplier tubes (PMT's) and translated as the energy of the particle.

Electromagnetic calorimeters are also very powerful as e− detectors. An
electron is identi�ed by matching the energy of a shower in the calorime-
ter to the momentum measured on a charged track pointing to the cluster.
Electrons are easily separated from hadrons and muons, which deposit much
less energy.

16.2.3 Hadron Calorimeters

The purpose of hadronic calorimeters is to measure the energy of heavy
hadronic particles. They are similar to electromagnetic calorimeters but big-
ger. Hadron calorimeters typically are sampling calorimeters and tend to be
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larger and coarser in sampling depth than electromagnetic calorimeters, and
therefore have larger energy resolutions. For example, the stochastic term
is usually in the 30− 50% or even higher. When a strongly interacting par-
ticle goes through material, there are elastic and inelastic interactions with
nuclei in the material, producing secondary hadrons. Hadron calorimeters
typically use a sampling technique with plates of a dense high Z material,
such as uranium or iron sandwiching a scintillating material, or ionization
detector where the shower is sampled. Again, the idea is to get a particle to
give up all its energy in the calorimeter. Typical hadronic interaction lengths
of materials, such as iron are 15− 20 cm, and many interaction lengths are
needed for an e�cient detector. Since the hadron calorimeter in a collid-
ing beam detector has to go outside the drift chamber and electromagnetic
calorimeter, this can be a lot of iron!

The most important use of a hadron calorimeter is to measure the energy of
dense jets of particles.

An important use of both electromagnetic and hadron calorimeters is to
detect neutrinos in an event. Neutrinos will leave no measurable signal in
the detector, so the only hope is to detect them indirectly. The experiments
use a missing momentum technique. I mentioned that at a hadron machine,
the CM of the parton-parton collision is not necessarily the Lab frame. Since
fragments of the parent proton and antiproton escape down the beam pipe
in the very forward direction, there is no way to use conservation of total
momentum in the event to infer the momentum of the unobserved neutrino.
However, the components of the momentum in the plane transverse to the
beam line (pT ) can be measured for all the observed decay products by
using the vector sum over the energy deposited in the calorimeters, and
that should be zero before and after the collision. Therefore, the neutrino
transverse momentum can be inferred as the negative of the vector sum of
all the transverse momenta detected in the event.

16.2.4 Muon Detectors

Muons are extraordinarily penetrating and therefore the detectors for iden-
tifying them are the outer-most layer of a collider detector. Any charged
particle that makes it through that many interaction lengths of material is
identi�ed as a muon. These detectors are made up of several layers of track-
ing chambers. Their primary purpose is to measure the momentum and
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charge of muons. The measurements from the muon chambers are combined
with the tracks reconstructed with the inner tracker to fully reconstruct the
muon trajectory.

Muon chambers in LHC experiments are made from a series of di�erent types
of tracking chambers for precise measurements and some examples include:

• Drift Tubes (DT's): Wire chamber devices, so when muons traveling
through kick o� atomic electrons in the gas and drift to the positively
charged wire.

• Cathode Strip Chambers (CSC's): Wires crossed with metallic strips
in a gas volume, so when muons traverse the detectors electrons drift
to the positively charged wire as described above. Additionally, the
positive ions in the gas drift to the metallic strips and induce a charged
pulse perpendicular to the wire, giving a two dimensional coordinate
of the traveling muon.

• Resistive Plate Chambers (RPC's): Oppositely charged parallel plates
containing a gas volume, creating drift electrons when muons cross the
detector.
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16.2.5 Particle Identi�cation

Many experiments �nd it useful to distinguish protons, pions and kaons.
There are currently experiments with very sophisticated particle identi�ca-
tion systems based on di�erences in the pattern of Cerenkov radiation emit-
ted by the various particle species. Low energy experiments can get some
information from time of �ight or ionization losses in their drift chambers,
but the information is limited.

Figure below shows a schematic of a transverse slice of the CMS detector at
CERN outlining the identi�cation of various particles.

• Electrons and Photons: Electrons are identi�ed as an energy deposit
in the electromagnetic calorimeter, and is required to have a shower
shape (energy loss) consistent with an electromagnetic shower. It is
also required to have little or no energy in the hadronic calorimeter.
Since electrons are charged particles it needs to be associated with a
track reconstructed in the tracker, and is therefore required to have a
matched position measurement in the calorimeter with the one from
the track. If the electromagnetic luster of energy does not have a track
pointing to it, then it becomes a candidate for being a photon.

• Muons: Muon identi�cation begins by reconstructing a track in the
muon system which is then matched with a track in the inner tracker.
Additionally, since muons are minimum ionizing particles, they are
expected to deposit little or no energy in the calorimeters.
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• Jets: Jets are created when a quark or gluon is knocked out of the
proton and due to parton con�nement subsequently a hadron is cre-
ated. This hadron forms a jet once it decays and fragments into many
particles (hadronization), which are essentially collimated object. The
reconstruction of a jet is the experimentalists representation of a par-
ton. There are several algorithms for reconstructing jets but overall
what these reconstruction algorithms do is attempt to group the parti-
cles from the hadronization process together and measure the energy of
the parton. There are two main categories of jet algorithms that exper-
imentalists and theorist use to reconstruct jets: (i) Cone algorithms,
when one draws circles of ∆R around clusters of energy according to
some rule, and (ii) Recursive luster reconstruction such as the anti-kT
algorithm, which is now the default jet algorithm of choice for the LHC
experiments.

Measuring the jet energy has several challenges since it is impossible
to determine which particles came from which hadronization process.
There are several e�ects which contribute to the complication of the
jet energy measurement, such as multiple pp interactions, spectator
partons interacting and noise in the calorimeters. However, experi-
mentalists have ways of correcting for such e�ects and this calibration
the jet energy is generally called the Jet Energy Scale (JES) and often
depends on the pT and the η of the jet.

• b-Hadrons: There is a special category of jets coming from b hadrons
which are long-lived (∼ 450 µm) and massive. There are two standard
techniques for identifying a b hadron decay, referred to as b-tagging.
One can look for displaced tracks forming a secondary vertex away
from the primary vertex of the interaction. Alternatively one can iden-
tify soft leptons (electrons or muons) inside the jet, which would be a
signature speci�c to semi-leptonic b decays.

• Tau Leptons: The identi�cation of tau leptons is for hadronically de-
caying taus, which decay ∼ 49% of the time to a single charged hadron
and neutrinos and ∼ 15% of the time to three charged hadrons and
neutrinos. Leptonically decaying taus are indistinguishable from "nor-
mal" electrons and muons. The reconstruction algorithms for taus
assume that taus form narrow jets in the calorimeter. First one forms
a ∆R cone around clusters of energy and tracks (a signal cone) and a
second larger ∆R one around the signal cone (an isolation cone) where
there is little or no calorimeter and track activity. In the signal cone,
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one or three tracks are required as well as electromagnetic energy in
the calorimeters from neutral particles (such as π0s).

• Neutrinos: Neutrinos are weakly interacting particles and pass through
all the material in the LHC detectors. They are identi�ed indirectly by
the imbalance of energy in calorimeters. This missing energy is one of
the most interesting and most di�cult quantities for experimentalists.
Various e�ects could contribute to the complications of the measure-
ment such as dead calorimeter cells or a jet whose hardest hadron
enters a crack (between cells) in the calorimeter or an improperly cal-
ibrated calorimeter. Therefore, we need to carefully understand this
quantity as it is very important for searches of new physics processes
which would produce additional weakly interacting particles.

16.2.6 Selection of Events and Triggers

The �rst thing that the experiment has to decide is whether or not an inter-
action of interest has occurred at a particular beam crossing, or beam spill.
This decision is crucial. If something interesting happens, then the event will
be read out, which takes time (meaning subsequent events will be missed).
In the trade, the process by which the experiment decides whether or not
an event is interesting is called the trigger. Too loose or indiscriminate of a
trigger will result in lots of dead time for the experiment, so good data will
be lost. Too tight or selective of a trigger means interesting physics may be
thrown away.

For e+e− machines, triggering for most types of events is quite straight for-
ward. Cross sections are low. Fairly simple requirements requiring evidence
of a minimum number of charged tracks in the detector, or a minimum
threshold for energy deposited in the calorimeter, will yield a trigger that
is essentially without dead time, but still preserves 99% e�ciency for e+e−

annihilation events.

For pp machines and �xed target experiments, the trigger is di�cult and
must be carefully thought through. Kinematics helps because heavy objects
will not have signi�cant boost in the Lab frame. When a heavy object is
produced, its decay products can have a lot of energy transverse to the beam
direction, while the uninteresting events send most of the beam energy down
the beam pipe. It is only by a careful selection process that these events can
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be identi�ed. However, it is an amusing exercise to speculate what is going
on in individual events. Looking at event pictures is fun, instructive, and
keeps us attached to the real world, but it is not how we do physics!

At design a CM energy of 14 TeV and a luminosity of 1033 cm−2s−1, the
total cross section at the LHC is ∼ 108 nb. The rate for all collisions will be
around 40 MHz. Since it is not possible to record every collision event, quick
decisions need to be made a priori selecting the interesting events worthy
of analysis. This �lter, or trigger, needs to single out rare processes and
reduce the common processes. We also want to keep less interesting events
for "standard-candle" measurements (such as jet and W boson and Z boson
production cross sections), calibrations, and so on. It is critical to consider
carefully the make-up of the trigger and make wise choices, otherwise the
events will be thrown away forever.

A typical trigger table will contain triggers on: electroweak particles (pho-
tons, electrons, muons, taus) at as low an energy as possible, very high-energy
partons (jets), and apparent invisible particles.

Theory very often plays a role in guiding these choices, therefore it is impor-
tant to have good communication between theorists and experimentalists.

The LHC experiments have two levels of triggers:

• L1, which bases its decision on hardware electronics;

• L2, which based on software programming (the high level trigger, or
HLT).

Recall, the starting trigger rate is 40 MHz, which gets reduces after the L1
trigger to a rate of around 100 kHz. The HLT trigger further prunes this
down to roughly 150− 200 Hz, which is the event rate that the experiments
record. Therefore, the �nal decision of the trigger is to keep ∼ 1/200, 000
events occur every second, there is no room for mistakes.

One should be very aware that all measurements are distorted by the trigger
selection thresholds and any measurement must account for the e�ciency of
the trigger and that resulting distortion. Therefore, it is necessary to include
"backup" or "monitoring" trigger for measuring the e�ciencies of the more
interesting triggers to be used for physics analysis.



16.3. DATA ANALYSIS 253

16.3 Data Analysis

A typical experiment may have millions of events recorded, but physics anal-
ysis may end up with a few hundred events. An analysis searching for a rare
process may end up with a sample of only 10 or 20 events. One has to de-
velop a procedure to select events characteristic of the physics process one
wants to study but without unnecessary bias. This is an extraordinary chal-
lenge, especially when one considers the magnitude of the winnowing that
must occur.

The LHC produces roughly 15 petabytes (15 million gigabytes) of data an-
nually. Finally, there is the challenging task of distributing the recorded data
around the world for analysis. The LHC has a tiered computing model to
distribute this data around the world, referred to as the Grid.

16.3.1 Monte Carlo

The primary tool that experimenters have to help them develop a selection
procedure is called the Monte Carlo (MC). The MC has two parts: the
physics simulation and the detector simulation.

A ubiquitous problem in particle physics is the following: given a source
located some distance from a detector, predict the number of counts that
should be observed within the solid angle spanned by the detector (or within
a bin of its phase-space acceptance), as a function of the properties of the
source, the intervening medium, and the e�ciency of the detector. Essen-
tially, the task is to compute integrals of the form

NCount(∆Ω) =

∫
∆Ω

dΩ
dσ

dΩ
, (16.7)

with dσ a di�erential cross section for the process of interest.

In particle physics, phase space has three dimensions per �nal-state parti-
cle (minus four for overall 4-momentum conservation). Thus, for problems
with more than a few outgoing particles, the dimensionality of phase space
increases rapidly.

The task of a MC Event Generator is to simulate and calculate everything
that happens in a high-energy collision. Starting from a di�erential cross
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Relative uncertainty with n points 1-Dim d-Dim neval/point

Trapezoidal Rule 1
n2

1
n2/d 2d

Simpson's Rule 1
n4

1
n4/d 3d

Monte Carlo 1√
n

1√
n

1

Table 16.1: Relative uncertainty after n evaluations, in 1 and d dimensions,
for two traditional numerical integration methods and stochastic MC. The
last column shows the number of function evaluations that are required per
point, in d dimensions.

section that describes our best understanding of the physics happening at
a given energy. An event generator will generate 4-momentums for a prop-
erly distributed sample of events according to whatever model (such as the
SM) we speci�ed. The SM tells us how to distribute the 4-vectors of initial
particles. We then need some model of intermediate processes according to
whatever we know about their branching ratios and lifetimes. This proce-
dure keeps going until one has a set of 4-vectors for long-lived particles that
will actually end up in the detector.

A word of warning : obviously, the physics given by MC requires some com-
promises to be made, it is only as good as the physics we put into it! If we
have neglected some physics in the MC that is present in the data, we will
get discrepancies between what the MC thinks we should be seeing in our
data, and the data we collect. It is always important to understand what
the limitations in the physics inputs to simulations are.

The standard 1d numerical-integration methods give very slow convergence
rates for higher-dimensional problems. For illustration, a table of conver-
gence rates in 1 and d dimensions is given in Tab. 16.1, comparing the
Trapezoidal (2-point) rule and Simpson's (3-point) rule to random-number-
based MC. In 1d, the 1/n2 convergence rate of the Trapezoidal rule is much
faster than the stochastic 1/

√
n of random-number MC, and Simpson's rule

converges even faster. However, as we go to d dimensions, the convergence
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"This risk, that convergence is only given
with a certain probability, is inherent in
Monte Carlo calculations and is the rea-
son why this technique was named af-
ter the world's most famous gambling
casino. Indeed, the name is doubly ap-
propriate because the style of gambling
in the Monte Carlo casino, not to be con-
fused with the noisy and tasteless gam-
bling houses of Las Vegas and Reno, is
serious and sophisticated."

Figure 16.1: Left: The casino in Monaco. Right: Extracted from F. James,
"Monte Carlo theory and practice", Rept. Prog. Phys. 43 (1980) 1145.

rate of the n-point rules all degrade with d (while the number of function
evaluations required for each "point" simultaneously increases). The MC
convergence rate, on the other hand, remains the simple stochastic 1/

√
n,

independent of d, and each point still only requires one function evaluation.

These are the main reasons that MC is the preferred numerical integration
technique for high-dimensional problems. In addition, the random phase-
space vectors it generates can be re-used in many ways, for instance as input
to iterative solutions, to compute many di�erent observables simultaneously,
and/or to hand "events" to propagation and detector-simulation codes.

Therefore, virtually all numerical cross section calculations are based on MC
techniques in one form or another, the simplest being the Rambo algorithm,
which can be expressed in about half a page of code and generates a �at scan
over n-body phase space. Strictly speaking, Rambo is only truly uniform
for massless particles. Its massive variant makes up for phase-space biases
by returning weighted momentum con�gurations.

In some cases, e.g. in QCD, simple algorithms like Rambo become in-
e�cient and one needs to introduce generic (i.e. automated) importance-
sampling methods, such as o�ered by the Vegas algorithm. This is still the
dominant basic technique, although most modern codes do employ several
additional re�nements, such as several di�erent copies of Vegas running in
parallel (multi-channel integration), to further optimise the sampling. Alter-
natively, a few algorithms incorporate the singularity structure explicitly in
their phase-space sampling, called Sarge, or by using all-orders Markovian
parton showers to generate them (Vincia).



256 CHAPTER 16. ANATOMY OF EXPERIMENTS

The price of using random numbers is that we must generalise our notion of
convergence. In calculus, we say that a sequence {A} converges to B if an
n exists for which the di�erence |Ai>n − B| < ϵ for any ϵ > 0. In random-
number-based techniques, we cannot completely rule out the possibility of
very pathological sequences of "dice rolls" leading to large deviations from
the true goal, hence we are restricted to say that {A} converges to B if an n
exists for which the probability for |Ai>n − B| < ϵ, for any ϵ > 0, is greater
than P , for any P ∈ [0, 1]. This risk, that convergence is only given with a
certain probability, is the reason why MC techniques were named after the
famous casino in Monaco, illustrated in Fig. 16.1.

The second part of the Monte Carlo is to simulate how events will appear in
the detector (the detector simulation). Here one takes the 4-vectors of the
stable (long lived) particles produced by the physics simulation and prop-
agates them through the detector. The detector simulation, for example,
simulates the multiple Coulomb scattering and energy losses as the particle
passes through the beam pipe. It propagates the particle through the drift
chamber and generates MC data as simulated signals on drift chamber sense
wires. It simulates the electromagnetic showers in the calorimeter and so on.
The detector simulation is hugely expensive in terms of computer time.

The great value of MC is that one can generate a sample of "fake data"
or "MC data" to test an analysis procedure on. One can determine the
e�ect that analysis selection criteria will have on e�ciency, one can study
potential backgrounds. The most important function of MC is that one can,
in an unbiased way, come up with criteria to select a signal. It is easy when
one is looking for rare processes with small numbers of signal events and
with large backgrounds to end up enhancing a statistical �uctuation. The
only way to avoid that is to use MC data to determine event selection and
background suppression techniques before ever looking at the data.

16.3.2 What Can Go Wrong

Experimental result can be made to look much better with di�erent binning.
That is considered cheating if it a�ects the signal yield extracted by the
analysis. The yields should be tested that they were independent of bin size.
The evaluation of the background can be done in many di�erent ways (from
data and MC) and one needs to check the result are stable when the cuts
are changed. These are all checks you should expect to see experimenters



16.3. DATA ANALYSIS 257

do. So what are the questions you should ask when deciding whether to
believe a marginal (3�4 σ) result or in deciding whether you believe the level
of precision on a more signi�cant result:

• How were event selection criteria determined?

• How was the background evaluated?

• What happens when the event selection cuts are varied?

• What is the error on the e�ciency and how was it determined?

There are some other pitfalls you should be aware of:

1. Sometimes experimenters do not understand their detectors as well as
they think they do.

2. Physicist are prone to over-averaging, where many measurements are
averaged, weighted by their combined statistical and systematic error.
The Particle Data Group contributes to this problem in some ways by
making the data so easily available.

A famous example of over averaging was the τ 1-prong problem. The
τ lepton can decay just like the muon (τ → eνν̄, τ → µνν̄), but it
can also decay to hadrons. In 1984, it was noticed that if one took the
world averages for the measured τ branching ratios and used theoretical
predictions to constrain poorly measured modes, then the measured
inclusive 1-prong branching ratio was signi�cantly larger than the sum
of the exclusive modes. In 1992 one saw that, taking world averages,
one found a signi�cant discrepancy in the inclusive rate and the sum
of the exclusive rates.

For years there were speculations about new physics and unseen decay
modes. The problem, however, was caused by averaging many exper-
iments with large errors and extracting an average with rather small
errors. It is very dangerous to take results from 10 di�erent measure-
ments with roughly equal precision and then average them to get a
factor of three smaller error. If errors were statistical only, there would
not be a di�culty. The problem comes from systematic errors which
may be correlated experiment to experiment. Systematic errors are
hard to evaluate and correlations are hard to spot. For example, there
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may be unknown correlated errors due to incorrect inputs or overlooked
backgrounds. So global averages need to be done with great care.

3. A third pitfall that a�ects experimenters more than theorists is the
enormous temptation to stop at the "right answer". We very often
have a preconceived prejudice on what a result should be. A good
experimenter does many of the systematic studies and checks before
looking at the actual number he or she is getting.

4. Finally, theorists tend to fall into the "single event" pit. What does
it mean to �nd a single event? In 1964, the Ω− was discovered with
the observation of one event. However, there was an enormous amount
of information in the bubble chamber photograph that captured that
one event. The decay was fully reconstructed K−p → Ω−K+K0,
Ω− → Ξ0π−, Ξ0 → Λ0π0, Λ0 → π−p, π0 → γ1γ2, γ1 → e+e−,
γ2 → e+e−, except for the K0. They were able to claim discovery
because there was so much information in the event that the probabil-
ity for the background to produce such an event was vanishingly small.
However, for modern collider experiments, it is impossible to have the
same level of information. The crucial issue is not how many events one
�nds, but how well the background can be evaluated and understood,
and what is the probability that a background process could imitate
the event one is looking for.

Exercise 16.1: Imagine a hadron collider such as the LHC runs for one year
with and instantaneous luminosity of 1031cm−2s−1, how much integrated
luminosity will be delivered to an experiment?

Exercise 16.2: In 100 pb−1 of data, how many pp̄ → tt̄ events will be
produced at the LHC at

√
s = 7 TeV ?

Exercise 16.3: What size beam spot is needed for the luminosity L =
1× 1034 cm−2s−1 at the LHC?

Exercise 16.4: How would you detect 500 MeV γ-rays? With: (a) Hydro-
gen bubble chamber; (b) Shower counter; (c) Geiger counter.

Exercise 16.5: The energy loss of an energetic muon in matter is due mainly
to collisions with: (a) nucleons; (b) nuclei; (c) electrons.

Exercise 16.6: How are the pions, muons and electrons distinguished in
photographic emulsions and in bubble chambers?



Chapter 17

Limitations of Particle

Accelerators

17.1 Limit I: The Geography

Beyond physical and technical limits there is a serious boundary condition for
accelerators � the landscape. For a given technology, pushing the particle
energy of a storage ring to higher values will necessitate larger machines
and we may suddenly encounter the problem that our device no longer �ts
even in the entire region surrounding our facility. As regards LHC, the
largest storage ring at present, the space between Lake Geneva and the
Jura mountains de�ned the size of the tunnel for the present LHC. As a
consequence, the maximum feasible beam energy available for high-energy
physics experiments is determined by the geographical boundary conditions.

259
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Certainly, there are extremely high particle energies in cosmic rays, but you
will agree that the accelerators driving these are also much larger!

17.2 Limit II: Voltage Breakdown in DC Accelera-

tors

Let us take a brief look at the path paved by the ingenious scienti�c devel-
opments dating back to the discovery of the nucleus by Rutherford. Using
alpha particles on the level of MeV is not ideal for precise, triggerable and
healthy experiments. So Rutherford discussed with two colleagues, Cockcroft
and Walton, the possibility of using arti�cially accelerated particles. Based
on this idea, within only four years Cockcroft and Walton invented the �rst
particle accelerator ever built, and in 1932 they gave the �rst demonstration
of the splitting of a nucleus (lithium) by using a 400 keV proton beam.

Cockcroft and Walton were awarded the Nobel Prize for their invention.
Their acceleration mechanism was based on a recti�er or Greinacher circuit,
consisting of a number of diodes and capacitors that transformed a relatively
small AC voltage to a DC potential which corresponds, depending on the
number of diode/capacitor units used, to a multiple of the applied basic
potential. The particle source was a standard hydrogen discharge source
connected to the high-voltage part of the system, and the particle beam was
accelerated to ground potential, hitting the lithium target. A photograph of
a Cockcroft-Walton generator that was used at CERN for many years as a
pre-accelerator for the proton beams (the device has since been replaced by
the more compact and e�cient RFQ technique) is presented below.
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In parallel to Cockcroft and Walton, but based on a completely di�erent
technique, another type of DC accelerator had been invented: Van de Graa�
designed a DC accelerator that used a mechanical transport system to carry
charges, sprayed on a belt or chain, to a high-voltage terminal.

In general these machines can reach higher voltages than the Cockcroft-
Walton devices, but they are more limited in terms of particle intensity.
Common to all DC accelerators is the limitation on the achievable beam
energy due to high-voltage breakdown e�ects (discharges). Without using
an insulating gas (SF6 in most cases), electric �elds will be limited to about
1 MVm−1, and even with the most sophisticated devices, acceleration volt-
ages on the order of MV cannot be overcome. In fact, the example of a Van
de Graa� accelerator below.

This is the reliable machine for precise measurements in atomic and nuclear
physics, shows an approach that has been applied in a number of situations:
injecting a negative ion beam (even H− is used) and stripping the ions in the
middle of the high-voltage terminal allows one to pro�t from the potential
di�erence twice and thus to make another step of gain in beam energy.

17.3 Limit III: Size of the AC Accelerating Struc-

tures

Given the obvious limitations of the DC machines described above, the next
step forward is natural. In 1928, Widerøe developed the concept of a AC
accelerator. Instead of rectifying the AC voltage, he connected a series of
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acceleration electrodes in an alternating manner to the output of an AC
supply. The schematic layout is shown below,

where the direction of the electric �eld is indicated. In principle, this device
can produce step by step a multiple of the acceleration voltage, as long as
for the negative half-wave of the AC voltage the particles are shielded from
the decelerating �eld. The energy gain after the n-th step is therefore

En = n · q · U0 · sinψs , (17.1)

where n denotes the acceleration step, q the charge of the particle, U0 the
applied voltage per gap, and ψs the phase between the particle and the
changing AC voltage.

A key quantity in such a Widerøe structure is the length of the drift tubes
that will protect the particles from the negative half-wave of the sinusoidal
AC voltage. For a given frequency of the applied radio-frequency (RF) volt-
age, the length of the drift tube is de�ned by the speed of the particle and
the duration of the negative half-wave of the sinusoidal voltage.

The time-span of the negative half-wave is de�ned by the applied frequency,
∆t = τrf/2, so for the length of the n-th drift tube we get

ln = vn ·
τrf
2
. (17.2)

Given the kinetic energy of the particle,

Ekin =
1

2
mv2 , (17.3)
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we obtain directly that

ln =
1

νrf
·
√
nqU0 sinψs

2m
, (17.4)

which de�nes the design concept of the machine. On the photo of Unilac at
the Institute for Heavy Ion Research (Darmstadt, Germany) clearly visible
are the structure of the drift tubes and their increasing length as a function
of the particle energy.

Two remarks should be made in this context.

• The short derivation here is based on the classical approach, and in
fact these accelerators are usually optimum for `low-energetic' proton
or heavy-ion beams. Typical beam energies (referring to protons) are
on the order of 10 MeV; for example, the present Linac 2 at CERN
delivers the protons for LHC operation with an energy of 50 MeV,
corresponding to a relativistic β of 0.31.

• For higher energies, even in the case of protons or ions, the speed will
at some point approach the speed of light, and the length of the drift
tubes and hence the dimension of the whole accelerator will reach a
size that may no longer be feasible. More advanced ideas are needed in
order to keep the machine within reasonable dimensions, and the next
natural step in the historical development was to introduce magnetic
�elds and bend the particle beam into a circle.
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17.4 Limit IV: Magnetic Guide Field

A signi�cant step forward in achieving high beam energies involves the use
of circular structures. In order to apply over and over again the accelerating
�elds, we try to bend the particles onto a circular path and so bring them
back to the RF structure where they will receive the next step-up in energy.
To do this, we introduce magnetic (or electric) �elds that will de�ect the
particles and keep them on a well-de�ned orbit during the complete acceler-
ation process. The Lorentz force that acts on a particle will therefore have
to compensate exactly the centrifugal force due to the bent orbit. In general,
we can write

F = q · (E+ v ×B) . (17.5)

For high-energy particle beams, the velocity v is close to the speed of light
and so represents a nice ampli�cation factor whenever we apply a magnetic
�eld. As a consequence, it is much more convenient to use magnetic �elds
for bending and focusing the particles.

Therefore, neglecting electric �elds for the moment, we write the Lorentz
force and the centrifugal force of the particle on its circular path as

FLorentz = e · v ·B ,

FCentrifugal =
γm0v

2

ρ
, (17.6)

where ρ is the radius of the particles orbit. Assuming an idealized homo-
geneous dipole oriented along the particle orbit, we de�ne the condition for
a perfect circular orbit as equality between these two forces; this yields the
following condition for the idealized ring:

p

e
= B · ρ , (17.7)

where we refer to protons and have accordingly set q = e. This condition
relates the so-called beam rigidity Bρ to the particle momentum that can be
carried in the storage ring, and it will ultimately de�ne, for a given magnetic
�eld of the dipoles, the size of the storage ring.

In reality, instead of a continuous dipole �eld the storage ring will be built
out of several dipoles, powered in series to de�ne the geometry of the ring.
For a single magnet, the particle trajectory is shown schematically below.
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In the free space outside the dipole magnet, the particle trajectory follows
a straight line. As soon as the particle enters the magnet, it is bent onto a
circular path until it leaves the magnet at the other side.

The overall e�ect of the main bending (or "dipole") magnets in the ring is to
de�ne a more or less circular path, which we will call the "design orbit". By
de�nition, this design orbit has to be a closed loop, and so the main dipole
magnets in the ring have to de�ne a bending angle of exactly 2π overall. If
α denotes the bending angle of a single magnet, then

α =
ds

ρ
=
B ds

B · ρ
. (17.8)

We therefore require that ∫
B dl

B · ρ
= 2π . (17.9)

Thus, a storage ring is not a "ring" in the true sense of the word but more a
polygon, where "poly" means the discrete number of dipole magnets installed
in the "ring".

In the case of the LHC, the dipole �eld has been pushed to the highest
achievable values; 1232 superconducting dipole magnets, each of length 15 m,
de�ne the geometry of the ring and, via (17.9), the maximum momentum
for the stored proton beam. Using the equation given above, for a maximum
momentum of p = 7 TeV we obtain a required magnetic �eld of

B =
2π · 7000 · 109 eV

1232 · 15 m · 2.99792 · 108 ms−1
, (17.10)

or
B = 8.33 T , (17.11)
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to bend the beams. The photo below shows the LHC dipole magnets, built
out of superconducting NbTi �laments, which are operated at a temperature
of T = 1.9 K.

In addition to the main bending magnets that guide the beam onto a closed
orbit, focusing �elds are needed to keep the particles close together. In
modern storage rings and light sources, the particles are kept in the machine
for many hours, and a carefully designed focusing structure is needed to
maintain the necessary beam size at di�erent locations in the ring.

Following classical mechanics, linear restoring forces are needed, just as in
the case of a harmonic pendulum. Quadrupole magnets provide the corre-
sponding property: they create a magnetic �eld that depends linearly on the
particle amplitude, i.e. the distance of the particle from the design orbit:

Bx = g · y , By = g · x . (17.12)

The constant g is called the gradient of the magnetic �eld and characterizes
the focusing strength of the magnetic lens in both transverse planes. For
convenience it is (like the dipole �eld) normalized to the particle momentum.
The normalized gradient is denoted by k and de�ned as:

k =
g

p/e
=

g

Bρ
. (17.13)

Now that we have de�ned the basic building blocks of a storage ring, we need
to arrange them in a so-called magnet lattice and optimize the �eld strengths
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in such a way as to obtain the required beam parameters. An example of
what such a magnet lattice looks like is given below.

This photograph shows the dipole (orange) and quadrupole (red) magnets in
the TSR storage ring in Heidelberg. Eight dipoles are used to bend the beam
in a `circle', and the quadrupole lenses between them provide the focusing
to keep the particles within the aperture limits of the vacuum chamber.
As the case of the LHC, the quadrupole magnet, as dipole one, is built in
superconducting technology.

A general design principle of modern synchrotrons or storage rings should
be pointed out here. In general, these machines are built following a so-
called separate-function scheme: every magnet is designed and optimized
for a certain task, such as bending, focusing, chromatic correction, and so
on. We separate the magnets in the design according to the job they are
supposed to do; only in rare cases a combined-function scheme is chosen,
where di�erent magnet properties are combined in one piece of hardware.
To express this mathematically, we use the general Taylor expansion of the
magnetic �eld,

B(x)

p/e
=

1

ρ
+ k · x+

1

2!
mx2 +

1

3!
nx3 + · · · . (17.14)

Following the arguments above, for the moment we take into account only
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constant (dipole) or linear (quadrupole) terms. The higher-order �eld con-
tributions is treated as small perturbations.

The particles will now follow the "circular" path de�ned by the dipole �elds,
and in addition will undergo harmonic oscillations in both transverse planes.
The situation is shown schematically below.

An ideal particle will follow the design orbit that is represented by the circle
in the diagram. Any other particle will perform transverse oscillations un-
der the in�uence of the external focusing �elds, and the amplitude of these
oscillations will ultimately de�ne the beam size.

Unlike a classical harmonic oscillator, however, the equations of motion in
the horizontal and vertical planes di�er somewhat. Assuming a horizontal
focusing magnet, the equation of motion is

x′′ + x ·
(

1

ρ2
+ k

)
= 0 , (17.15)

where k is the normalized gradient introduced above and the 1/ρ2 term rep-
resents the so-called weak focusing, which is a property of the bending mag-
nets. In the vertical plane, on the other hand, due to the orientation of the
�eld lines and by Maxwell's equations, the forces instead have a defocusing
e�ect; also, the weak focusing term disappears:

y′′ − y · k = 0 . (17.16)

The principal problem arising from the di�erent directions of the Lorentz
force in the two transverse planes of a quadrupole �eld is sketched below,
showing �eld con�guration in a quadrupole magnet and the direction of the
focusing and defocusing forces in the horizontal and vertical planes.
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It is the task of the machine designer to �nd an adequate solution to this
problem and to de�ne a magnet pattern that will provide an overall focusing
e�ect in both transverse planes.

Following closely the example of the classical harmonic oscillator, we can
write down the solutions of the above equations of motion. For simplicity,
we focus on the horizontal plane; a "focusing" magnet is therefore focusing
in this horizontal plane and at the same time defocusing in the vertical plane.
Starting with initial conditions for the particle amplitude x0 and angle x′0
in front of the magnet element, we obtain the following relations for the
trajectory inside the magnet:

x(s) = x0 · cos
(√
|K| s

)
+ x′0 ·

1√
|K|

sin
(√
|K| s

)
,

x′(s) = −x0 ·
√
|K| sin

(√
|K| s

)
+ x′0 · cos

(√
|K| s

)
. (17.17)

Here the parameter K combines the quadrupole gradient and the weak fo-
cusing e�ect, K = k − 1/ρ2. Usually these two equations are combined into
a more elegant and convenient matrix form:(

x
x′

)
s

= Mfoc

(
x
x′

)
0

, (17.18)

where the matrix Mfoc contains all the relevant information about the mag-
net element,

Mfoc =

(
cos(

√
|K| s) 1√

|K|
sin(

√
|K| s)

−
√
|K| sin(

√
|K| s) cos(

√
|K| s)

)
. (17.19)

Schematic principle of the e�ect of a focusing quadrupole magnet is visualized
below.
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In the case of a defocusing magnet, we obtain analogously that(
x
x′

)
s

= Mdefoc

(
x
x′

)
0

, (17.20)

with

Mdefoc =

(
cosh(

√
|K| s) 1√

|K|
sinh(

√
|K| s)√

|K| sinh(
√
|K| s) cosh(

√
|K| s)

)
. (17.21)

The schematic principle of the e�ect of a defocusing quadrupole magnet is:

For completeness, we also include the case of a �eld-free drift, with K = 0.

Mdrift =

(
1 s
0 1

)
. (17.22)

This matrix formalism allows us to combine the elements of a storage ring
in an elegant way and it is straightforward to calculate the particle trajecto-
ries. As an example, we consider the simple case of an alternating focusing
and defocusing lattice, a so-called FODO lattice: a simple periodic chain
of bending magnets and focusing/defocusing quadrupoles forming the basic
structure of a storage ring.
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As we know the properties of elements in the accelerator, we can construct
the corresponding matrices and calculate step by step the amplitude and an-
gle of a single particle's trajectory around the ring. Even more conveniently,
we can multiply out the di�erent matrices and, given initial conditions x0
and x′0, obtain directly the trajectory at any location in the ring:

Mtotal = Mfoc ·Mdrift ·Mdipole ·Mdrift ·Mdefoc · · · . (17.23)

The trajectory thus obtained is shown schematically below.

We emphasize the following facts in this context:

• At each moment, or in each lattice element, the trajectory is a part of
a harmonic oscillation;

• Due to the di�erent restoring or defocusing forces, the solution will
look di�erent at each location;
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• In the linear approximation that we make use of in this context, all
particles experience the same external �elds, and their trajectories will
di�er only because of their di�erent initial conditions;

• There seems to be an overall oscillation in both transverse planes while
the particle is travelling around the ring. Its amplitude stays well
within the boundaries set by the vacuum chamber.

Coming closer to a real existing machine, we show the orbit measured during
one of the �rst injections into the LHC storage ring.

The horizontal oscillations are plotted in the upper half of the �gure and the
vertical oscillations in the lower half (scale ±10 mm). Each histogram bar
indicates the value recorded by a beam position monitor at a certain location
in the ring, and the orbit oscillations are clearly visible. By counting (or
�tting) the number of oscillations in transverse planes, we obtain values of

Qx = 64.31 , Qy = 59.32 . (17.24)

These values, which describe the eigenfrequencies of the particles, are called
the horizontal and vertical tune, respectively. Knowing the revolution fre-
quency, we can easily calculate the transverse oscillation frequencies, which
for this type of machine usually lie in the range of ∼kHz.

As the tune characterizes the particle oscillations under the in�uence of ex-
ternal �elds, it is one of the most important parameters of the storage ring.
Therefore it is usually displayed at all times by the control system of such a
machine. As an example, see the tune diagram of the HERA proton ring;
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It was obtained via a Fourier analysis of the spectrum measured from the
signal of the complete particle ensemble. The peaks indicate the two tunes
in the horizontal and vertical planes of the machine, and in a su�ciently
linear machine a fairly narrow spectrum is obtained.

Let us ask the question what the trajectory of the particle will look like for
the second turn, or the third, or after an arbitrary number of turns. As we
are dealing with a circular machine, the amplitude and angle, x and x′, at
the end of the �rst turn will be the initial conditions for the second turn,
and so on. After many turns the overlapping trajectories begin to form a
pattern, which indeed looks like a beam:

There are a larger and smaller beam size but still remaining well-de�ned in
its amplitude by the external focusing forces.

A mathematical function, which we call β or amplitude function, can be
de�ned that describes the envelope of the single-particle trajectories. With
this new variable, we can rewrite the equation for the amplitude of a particle's
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transverse oscillations as

x(s) =
√
ϵ · β(s) cos(ψ + ϕ) , (17.25)

where ψ(s) is the phase of the oscillation, ϕ is its initial condition, and ϵ is
a characteristic parameter of the single particle or, if we are considering a
complete beam, of the ensemble of particles. Indeed, ϵ describes the space
occupied by the particle in the transverse (here simpli�ed two-dimensional)
(x, x′) phase space. More speci�cally, the area in (x, x′) space that is covered
by the particle is given by

A = π · ϵ , (17.26)

and, as long as we consider conservative forces acting on the particle, this
area is constant according to Liouville's theorem. Here we take these facts as
given, but we point out that, as a direct consequence, the so-called emittance
ϵ cannot be in�uenced by whatever external �elds are applied; it is a property
of the beam, and we have to take it as given and handle it with care.

To following the usual textbook treatment of accelerators, we can draw in
phase space the ellipse of the particle's transverse motion:

While the shape and orientation are determined by the optics function β and
its derivative, α = −1

2β
′, the area covered is constant.

Let us talk a bit more about the beam as an ensemble of many (typically
1011) particles. Referring to (17.25), at a given position in the ring the beam
size is de�ned by the emittance ϵ and the function β. Thus, at a certain
moment in time the cosine term in (17.25) will be 1 and the trajectory
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amplitude will reach its maximum value. Now, if we consider a particle
at one standard deviation (σ) of the transverse density distribution, then
using the emittance of this reference particle we can calculate the size of
the complete beam, in the sense that the complete area (within 1σ) of all
particles in (x, x′) phase space is surrounded (and thus de�ned) by our 1σ
candidate. Thus the value

√
ϵ · β(s) will de�ne the 1σ beam size in the

transverse plane.

As an example, we use the values for the LHC proton beam: in the periodic
pattern of the arc, the beta function is β = 180 m and the emittance at
�at-top energy is roughly ϵ = 5 × 10−10 radm. The resulting typical beam
size is therefore 0.3 mm.

Clearly we would not design a vacuum aperture of the machine based on a 1σ
beam size. Typically, an aperture requirement is 12σ, allowing for tolerances
from magnet misalignments, optics errors and operational �exibility. Below
the LHC vacuum chamber is shown (including the beam screen used to
protect the cold bore from synchrotron radiation), which corresponds to
a minimum beam size of 18σ.

17.5 Limit V: Energy of Fixed-Target Colliders

The easiest way to perform physics experiments with particle accelerators
is to bang the accelerated beam onto a �xed target and analyze the result-
ing events. While nowadays in high-energy physics we do not apply this
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technique any more, it still plays an essential role in the regime of atomic
and nuclear physics experiments. The advantage is that it is quite simple
once the accelerator has been designed and built, and the particles produced
are easily separated due to the kinematics of the reaction. The situation is
illustrated below.

The particle "a" that is produced and accelerated in the machine is directed
onto the particle "b", which is at rest in the laboratory frame. The particles
produced from this collision are labelled "c" and "d" in this example.

While the set-up of such a scheme is quite simple, it is worth taking a closer
look at the available energy in CM system. Considering the system of two
particles colliding, we can write

(Ecm
a +Ecm

b )2− (pcma + pcmb )2c2 = (Elab
a +Elab

b )2− (plaba + plabb )2c2 . (17.27)

In the CM system we get, by de�nition,

pcma + pcmb = 0 , (17.28)

while in the Lab frame where particle "b" is at rest we have simply

plabb = 0 . (17.29)

The equation for the invariant mass therefore simpli�es to

W 2 = (Ecm
a + Ecm

b )2 = (Elab
a +mb · c2)2 − (plaba · c2) . (17.30)

In other words, the energy that is available in the CM system depends on
the square root of the energy of particle "a", which is the energy provided
by the particle accelerator:

W ≈
√
2Elab

a ·mb · c2 , (17.31)

a quite unsatisfactory situation!
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To meet the demand for higher and higher energies in particle collisions,
the design of modern high-energy accelerators has naturally concentrated
on the development of particle colliders, where two counter-rotating beams
are brought into collision at one or several interaction points. See schematic
diagram of the collision of two particles with equal energy:

If we calculate the available energy in the CM system for the case of two
colliding beams of identical particles, we get

(pcma + pcmb )2 = 0 (17.32)

and, by symmetry, also
(plaba + plabb )2 = 0 . (17.33)

So the full energy delivered to the particles in the accelerator is available
during the collision process:

W = Elab
a + Elab

b = 2Elab
a . (17.34)

A `typical' example of a high-energy physics event in such a collider ring (a
Higgs particle measured in the ATLAS detector) is shown below.

17.6 Limit VI: The Unavoidable Particle Detectors

While it is quite clear that a particle collider ring is a magni�cent machine in
the quest for higher energies, there is a small problem involved, namely the



278 CHAPTER 17. LIMITATIONS OF PARTICLE ACCELERATORS

instalations of particle detectors. In the arc of the storage ring we can usually
�nd a nice pattern of magnets providing us with a well-de�ned beam size,
expressed as the beta function. However, special care has to be taken when
our colleagues from high-energy physics wish to install a particle detector.
Especially when working at the energy frontier, just like for the accelerators,
these devices tend to expand considerably in size with the energies required.
Below the largest particle detector installed in a storage ring is shown as
an impressive example: the ATLAS detector at the LHC, which is 46 m in
length and has an overall weight of 7000 t.

The storage ring has to be designed to provide the space needed for the
detector hardware and at the same time create the smallest achievable beam
spots at the collision point, which is usually right in the center of the detector.
Unfortunately these requirements are a bit contradictory. The equation for
the luminosity of a particle collider depends on the stored beam currents and
the transverse spot size of the colliding beams at the interaction point:

L =
1

4πe2f0b
· I1I2
σ∗xσ

∗
y

. (17.35)

At the same time, however, the beta function in a symmetric drift grows
quadratically as a function of the distance between the beam waist and the
�rst focusing element, i.e.

β(s) = β∗ +
s2

β∗
. (17.36)

The smaller the beam at the interaction point, the faster it will grow until
we can apply � outside of the detector region � the �rst quadrupole lenses.
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As a consequence, this trend sets critical limits on the achievable quadrupole
aperture or, for a given aperture, the achievable quadrupole gradient. The
focusing lenses right before and after the interaction point, being placed as
closed as possible to the detector, are generally the most critical and most
expensive magnets in the machine, and their aperture requirement ultimately
determines the luminosity that can be delivered by the storage ring.

17.7 Limit VII: The Rareness of Searched Events

The rate of events produced in a particle collision process depends not only
on the performance of the colliding beams but �rst and foremost on the
probability of creating such an event, the so-called cross-section of the pro-
cess. In the case of the Higgs particle, which is without doubt the highlight
of LHC Run 1, the overall cross-section is displayed below.

Without going into details, we can state that the cross-section for Higgs
production is on the order of Σreact ≃ 1 pb. During the three years of LHC
Run 1, i.e. the period 2011�2013, an overall luminosity of∫

Ldt = 25 fb−1 (17.37)

was accumulated. Combining these two numbers using the fact that the
event rate of a reaction is:

R = L · Σreact , (17.38)

we get a total number of `some thousand' Higgs particles produced � for a
Nobel prize-winning event just at the edge of reliable statistics. Therefore,
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the particle colliders have to be optimized not only for the highest achievable
energies but also for maximum stored beam currents and small spot sizes at
the interaction points so as to optimize the luminosity of the machine.

17.8 Limit VIII: Luminosity of a Collider Ring

The design goal of a collider is to prepare, accelerate and store two counter-
rotating particle beams in order to pro�t best from the energy of the two
beams during the collision process. Still, there is a price to pay: unlike in
�xed-target experiments, where the `particle' density of the target material is
extremely high, in the case of two colliding beams the event rate is basically
determined by the transverse particle density that can be achieved at the
interaction points. Assuming Gaussian density distributions in transverse
planes, the performance of such a collider is described by the luminosity

L =
1

4πe2f0b
· I1I2
σ∗xσ

∗
y

. (17.39)

While the revolution frequency f0 and the bunch number b are ultimately
determined by the size of the machine, the stored beam currents I1 and I2
and the beam sizes σ∗x and σ

∗
y at the interaction points have their own limita-

tions. The most serious limitation comes from the beam�beam interaction it-
self. During the collision process, individual particles of the counter-rotating
bunches feel the space charge of the opposing bunch. In the case of a pp
collider, this strong �eld acts like a defocusing lens, and has a strong impact
on the tune of bunches. The situation is shown schematically below.

Two bunch trains collide at the interaction points, and during the collision
process a direct beam�beam e�ect is observed. In addition to that, before
and after the actual collision, long-range forces exist between bunches that
have a nonlinear component; see the �gure:
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As a consequence, the tune of the beams is not only shifted with respect to
the natural tune of the machine but also spread out, as di�erent particles
inside bunches see di�erent contributions from the beam-beam interaction.

Therefore, in the tune diagram, we no longer obtain a single spot representing
the ensemble of particles, but rather a large array that depends in shape,
size and orientation on the particle densities, the distance of the bunches at
the long-range encounters, and the single-bunch intensities. The e�ect has
been calculated for the LHC and is displayed in the diagram:

In a number of cases a useful approximation can be applied, as for distances
of about 1− 2 σ. Accordingly, a tune shift can be calculated to characterize
the strength of the beam-beam e�ect in a collider. Given the parameters
described above, and introducing the classical particle radius rp, the ampli-
tude function β∗ at the interaction points and the Lorentz factor γ, we can
express the tune shift due to the linearized beam-beam e�ect as

∆Qy =
β∗y · rp ·Np

2π γ(σx + σy)σy
. (17.40)
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In the case of the LHC, the design value of the beam-beam tune shift is
∆Q = 0.0033, and in daily operation the machine is optimized to run close
to this value, which places the ultimate limit on achievable bunch intensities
in the collider.

17.9 Limit IX: Power Loss in Synchrotron Radia-

tion

In proton or heavy-ion storage rings, the design can more or less follow the
rules discussed above. But the situation changes drastically as the particles
become more and more relativistic. Bent on a circular path, electrons in
particular will radiate an intense light, the so-called synchrotron radiation,
which will have a strong in�uence on the beam parameters as well as on the
design of the machine.

Summarizing the situation brie�y here, the power loss due to synchrotron
radiation depends on the bending radius and the energy of the particle beam:

Ps =
2

3
α~c2

γ4

ρ2
, (17.41)

where α represents the �ne structure constant and ρ the bending radius in the
dipole magnets of the ring. As a consequence, the particles will lose energy
turn by turn. To compensate for these losses, RF power has to be supplied
to the beam at any moment. An example that illustrates the problem nicely
is shown in the �gure:

It plots the horizontal orbit of the former Large Electron�Positron Collider
(LEP) storage ring. The electrons, travelling from right to left in the plot,
lose a considerable amount of energy in each arc and hence deviate from the
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ideal orbit towards the inner side of the ring. The e�ect on the orbit is large:
up to 5 mm orbit deviation was observed. In order to compensate for these
losses, four RF stations were installed in the straight sections of the ring to
supply the necessary power.

The strong dependence of the synchrotron radiation losses on the relativistic
γ factor sets severe limits on the beam energy that can be carried in a
storage ring of a given size. The push for ever higher energies means either
that storage rings even larger than LEP need to be designed or, to avoid
synchrotron radiation, linear accelerating structures should be developed.

Currently, the next generation of particle colliders is being studied. The ring
design of the future circular collider (FCC) in the Geneva region foresees a
100 km ring to carry electrons (and positrons) of up to 175 GeV energy. The
size of this storage ring is far beyond the dimensions of anything that has
been designed up to now. A sketch of the machine layout is given below,
where the yellow dashed circle delineates the 100 km ring and the white
circle represents the little LHC machine.

For the maximum projected electron energy of E = 175 GeV, synchrotron
radiation would cause an energy loss of 8.6 GeV, or an overall power of
47 MW of the radiated light at full beam intensity.

To summarize, for future lepton ring colliders synchrotron radiation losses
set a severe limit on the achievable beam energy; and very soon the size of the
machines will become uneconomical. For a given limit in synchrotron radia-
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tion power, the dimensions of the machine would have to grow quadratically
with the beam energy. Linear colliders are therefore proposed as the pre-
ferred way to go. In this case, the maximum achievable acceleration gradient
is the key issue. New acceleration methods, namely plasma-based set-ups in
which gradients have been observed that are much higher than those seen
with conventional techniques, are a most promising concept for the design
of future colliders. An impressive example is shown below:

within a plasma cell of only a few centimeters in length, electrons are ac-
celerated to several GeV. The gradients achievable are orders of magnitude
higher than in any conventional machine. Still, there are problems to over-
come, such as issues with overall e�ciency, beam quality (mainly the energy
spread of the beam), and the achievable repetition rate. Nevertheless, we
are convinced that this is a promising �eld worthy of much further study.

17.10 Limit X: Gradients in Linear Structures

Lepton colliders su�er from the severe limitation caused by synchrotron ra-
diation losses, and at a certain point the construction of large facilities would
not seem reasonable. To avoid the problem of synchrotron radiation, linear
structures that were discussed earlier and used in the infancy of particle
accelerators have become in vogue again. Still, the advantage of circular
colliders cannot be completely ignored: even with a modest acceleration
gradient in the RF structures, the particles will get turn by turn a certain
boost in energy and will at some point reach the desired �at-top energy in
the ring. In a linear accelerator, this kind of repetitive acceleration is by
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design not possible; within a single pass through the machine, the particles
will have to be accelerated to full energy. In order to keep the structure
compact, the highest acceleration gradients will therefore be needed. One
of the most prominent designs proposed for a possible future collider is the
CLIC design, the linear collider along the Jura Mountains in the Geneva
region. Within one passage through the 25 km long accelerator, the electron
beam will get up to 3 TeV , and the same is true for the opposing positron
beam. An artist's rendering of this machine is shown below.

A picture of the CLIC test facility CTF3 is shown below.

On the right-hand side is an electron microscope photo of the surface after a
voltage breakdown. A little crater can be seen, indicating possible damage to
the surface and, as a consequence, deterioration of the achievable gradient
which has to be avoided under all circumstances. Although considerably
higher than the typical values in circular machines, the gradient Eacc =
100 MVm−1 in a linear machine still leads to a design of overall length
approximately 50 km for a maximum achievable energy of Emax = 3 TeV.

The main parameters of the CLIC design are listed in Tab. 17.1. The acceler-
ating gradient, i.e. the energy gain per meter, is especially to be emphasized;
it has been pushed to the maximum value that is technically feasible, and
the limit is ultimately due to the breakdown of the electric �eld in the ac-
celerating structure.
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Table 17.1: Main parameters of the CLIC study
500 GeV 3 TeV

Site length 13 km 48 km
Loaded acceleration gradient (MVm−1) 12
Beam power per beam (MW) 4.9 14
Bunch charge (109 e+/e) 6.8 3.7
Horiz./vert. emittance (10−6/10−9m) 2.4/25 0.66/20
Beta function (mm) 10/0.07
Beam size at IP: horizontal/vertical (nm) 45/1
Luminosity (cm−2 s−1) 2.3× 1034 5.9× 1034

Exercise 17.1: The Princeton synchrotron has been used to accelerate
highly charged nitrogen ions. If this synchrotron can produce protons of
total energy 3 GeV , what is the maximum kinetic energy of 14N ions?

Exercise 17.2: A certain e−e+ pair produced cloud chamber tracks of ra-
dius of curvature 3 cm in a plane perpendicular to the applied magnetic �eld
0.11 Tesla. What was the energy of the γ-ray which produced the pair?

Exercise 17.3: A proton and a electron with the total energy 1.4 GeV
each, transverse two scintillation counters 10 m apart. What are the times
of �ight of these particles?

Exercise 17.4: Brie�y describe the cyclotron and the synchrotron, con-
trasting them. Tell why one does not use: cyclotrons to accelerate protons
to 2 GeV and synchrotrons to accelerate electrons to 30 GeV ?

Exercise 17.5: A relativistic proton loses 1.8 MeV when penetrating a
1 cm thick scintillator. What is the most likely mechanism: (a) Ionization,
excitation; (b) Compton e�ect; (c) Pair production.

Exercise 17.6: The e�ciency of a proportional counter for charged particles
is ultimately limited by: (a) Signal-to-noise ratio; (b) Total ionization; (c)
Primary ionization.

Exercise 17.7: The light emission in organic scintillators is caused by tran-
sitions between: (a) Levels of delocalized electrons; (b) Vibrational levels;
(c) Rotational levels.



Chapter 18

History of Validation of SM

In 1967, Weinberg published a paper where he stated: "Leptons interact only
with photons, and with the intermediate bosons that presumably mediate
weak interactions. What could be more natural than to unite these spin-one
bosons into a multiplet of gauge �elds"? Most of the ingredients of what
would become the SM were in place in the early 1970's, and in 1971�72
t'Hooft and Veltman showed that the theory was renormalizable.

18.1 Discovery of Neutral Currents

A stunning feature of the SM was that it predicted a new interaction: the
weak Neutral Current (NC). This was the �rst time a fundamental interac-
tion was predicted before it was observed. It was clearly a triumph in 1981
to see W 's and Z's directly, but it was the observation of the NC that con-
vinced most physicist that the SM was right. The NC couplings are entirely
decided by the (anti)fermion charge and sin θW . Neutrino scattering with
nuclei o�er possibility of studying NC interactions of quarks. These typically
have higher event rates compared to the pure leptonic scattering processes
due to the possibility of using nuclear targets. However, analysis of these
processes requires an understanding and knowledge of the proton structure.
Hence the cleanest probe of the NC couplings can come from analyzing pure
leptonic reactions.

The easiest way to look for evidence of NC is to make Z's directly (e+e− →

287
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Z0) or (qq̄ → Z0). However, there was no machine capable of doing that in
the early 1970's. The mass of the Z0 is approximately 92 GeV. None of the
machines available in the 1970's could produce 92 GeV in the CM system!
Some of the experimental facilities operating in the early 1970's were:

• SLAC: A linear accelerator that could produce a 22 GeV e− beam.
They were also just turning on an e+e− storage ring SPEAR with a
maximum energy of 2.6× 2.6 GeV (5.2 GeV in the CM).

• FNAL: Just turning on with 200 GeV p beam (increased to 400 GeV
by end of the decade). 200 GeV p on a �xed target gives approximately
20 GeV in the CM (Ecm =

√
2Elabm) so again they were not able to

produce Z bosons directly.

• CERN: A proton synchrotron produced a 28 GeV p beam which could
be used to make a 28 × 28 GeV pp collider (ISR). In the late 1970's,
CERN upgraded the ISR to a 270× 270 GeV pp̄ storage ring which is
where the Z was directly produced and detected for the �rst time.

• BNL A 33 GeV p beam on �xed target.

To study the properties of the weak NCs it was necessary �rst to establish
its existence. To that end, it was necessary to predict the characteristics of
the events that would result from interactions of νµ, ν̄µ and ν̄e beams with
electrons, as that would be the cleanest probe.

Let us list di�erent types of elastic scattering processes involving just leptons
that can take place through weak Charged Current (CC) and NC interactions
using the ν beams and the electron targets. These are:

1. νµ + e− → νe + µ−, which can take place only through the CC inter-
action;

2. νµ + e− → νµ + e− and ν̄µ + e− → ν̄µ + e−, which can take place only
through the NC interaction;

3. νe + e− → νe + e−; ν̄e + e− → ν̄e + e−, which can take place both
through the NC and CC interactions.

Calculation of the scattering amplitudes of various NC and CC processes
listed above proceeds using the usual rules of QFT. For the low energies of
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ν-beams that were available then, the MW , MZ → ∞ approximation could
be used.

Table 18.1 shows the di�erential cross-section in terms of the variable y =
Ee/Eν and the integrated cross-section.

Process dσ/dy σ

νµ + e− → µ− + νe A s(gνL)
2(geL)

2 A s (gνL)
2(geL)

2

νµ + e− → νµ + e− A s(gνL)
2
[
(geL)

2+ A s (gνL)
2[(geL)

2+
+(1− y)2(geR)2

]
+1

3(g
e
R)

2]

ν̄µ + e− → ν̄µ + e− A s (gνL)
2
[
(geR)

2+ A s (gνL)
2
[
1
3(g

e
L)

2+
+(1− y)2(geL)2

]
+(geR)

2
]

νe + e− → νe + e− A s (gνL)
2
[
(geL + 1)2+ A s (gνL)

2
[
1
3(g

e
R)

2+
+(1− y)2(geR)2

]
+(geL + 1)2

]
ν̄e + e− → ν̄e + e− A s (gνL)

2
[
(geR)

2+ A s (gνL)
2
[
1
3(g

e
L + 1)2+

+(1− y)2(geL + 1)2
]

+(geR)
2
]

Table 18.1: The di�erential and total cross-sections for a few ν, ν̄ induced
CC and NC processes, with A = 4G2

µ/π.

A few comments are in order. The above expressions use ρ = 1 as well as
the fact that values of gL, gR for the µ and the e are the same. All the
neutrino induced cross-sections are indeed proportional to the square of the
CM energy s. The variable y is related to the scattering angle θ in the CM
frame. One can see after some manipulations that the angular distribution
of the scattered charged lepton is di�erent for the case of ν and ν̄. In the �rst
row we have written the cross-section for the CC process: νµ+e− → µ−+νe,
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so that one can indeed see that the size of the expected cross-sections for
the NC processes are of the same order of magnitude as the CC process and
depend on sin θW .

Note the last two rows of Tab. 18.1. As one changes from the νµ, ν̄µ beams
to νe, ν̄e beams the factors of (geL)

2 in the total cross-section expressions gets
changed to (geL + 1)2. Further, note also the di�erent weights of the (geL)

2

and (geR)
2 contributions as one changes from ν to ν̄ beams.

Both these observations tell us that the contours of constant cross-section for
these four processes are ellipses in the gA - gV plane with di�erent centers and
with major axes of di�ering orientations. Thus a measurement of these cross-
sections can then help us determine geV , g

e
A, albeit up to sign ambiguities.

Note also from the table that as one changes from ν to ν̄, the terms in the
angular distribution proportional to (geL)

2 and (geR)
2 get interchanged. This

behavior can be understood very easily in terms of the chirality conservation
of the gauge interaction and the angular momentum conservation. As a
result, one can write the weak NC cross-sections for all the di�erent pairs
of fermions rather easily by inspection. In particular, the same table can
be used to calculate the cross-section for the weak NC induced processes
with nucleon (nuclear) targets as well. The hadronic weak NC events arise
from the scattering of the u, d, s quarks in the nucleon (nucleus). In the
parton model the net rate is then given by the incoherent sum over all the
quarks contained in the nucleon (nucelus). Using the information on the
momentum distributions of quarks/antiquarks in the nucleon (nucleus), it is
also possible to estimate the expected cross-section. Again these too depend
only on sin2 θW as far as the EW model parameters are concerned.

At the time of the discovery of weak NCs in hadronic and leptonic produc-
tion, theoretical estimates were available for the upper limit on the ratio
of NC to CC elastic scattering. This was obtained by using experimental
knowledge of the form factor of the proton and neutron. The same was also
available for the inelastic process of the inclusive production of hadrons us-
ing the language of structure functions of the target nucleus. Two points are
worth noting here. While the use of nuclear targets increased the expected
rates for NC induced hadron production, establishing that the events are
indeed due to weak NC was di�cult because of the large neutron induced
background. The pure leptonic processes on the other hand, were predicted
to be very rare and hence di�cult to observe, but could unambiguously prove
existence of weak NC as soon as even one event was observed.
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NCs were discovered in 1973 in the study of elastic scattering of νµ and ν̄µ
o� nuclear targets. The experiment discovered evidence for the NC induced
hadronic processes

νµ +N → νµ + hadrons ; ν̄µ +N → ν̄µ + hadrons . (18.1)

as well as pure leptonic processes,

ν̄µ + e− → ν̄µ + e− , (18.2)

using the giant bubble chamber Gargamelle. Below you can see the photo
of observation of the �rst leptonic interaction induced by weak NC. In fact
the discovery came in an experiment which had been designed to study the
CC interactions:

νµ +N → µ− + hadrons ; ν̄µ +N → µ+ + hadrons . (18.3)

Thus the experiment could easily extract the ratio of the CC to NC events,
after the observation of NC in hadronic events. The experiment had seen
∼ 100 events of di�erent categories (NC and CC) containing hadrons, with

NC

CC

∣∣∣∣∣
ν

= 0.21± 0.03 ;
NC

CC

∣∣∣∣∣
ν̄

= 0.45± 0.09 . (18.4)

As already mentioned, the same experiment also found evidence for the pure
leptonic process, where the νµ was scattered o� the atomic electron.

The �gure below shows the image of the �rst unambiguous, weak NC event
ever observed.
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The incoming antineutrino, interacts with an atomic electron and knocks it
forward. The electron is identi�ed from the characteristic shower created by
the electron-positron pairs. This was a considered to be clear evidence for
the weak NC. The theoretical predictions summarized in Tab. 18.1 were used
to justify the interpretation. With just one ν̄ event, the experiment could
only quote a range 0.1 < sin2 θW < 0.6 at 90% c.l. The number of hadronic
NC events on the other hand, was big enough to extract a value of sin2 θW
to be in the range of 0.3 - 0.4. This was the �rst qualitative validation of
the prediction of NCs.

As we mentioned above no machine could produce Z bosons directly in the
early 1970's and the �rst observation of NC had to be indirect. The most
sensitive technique was neutrino scattering, where a νµ scattered o� the
quarks in a nuclear target. The hadrons in the �nal state could be detected
(the incoming and outgoing ν were invisible to the detector), and the absence
of a muon meant it was a NC event. The rate for the NC process could be
compared to the rate for the corresponding CC process where in addition to
the hadrons from the breakup of the nucleon, an accompanying muon could
be seen. Below you can see the diagrams for NC (a), and CC (b), neutrino
scattering.

I

Z
o

( a ) Ne

( b ) Cha

It is straightforward to work out the cross sections for ν and ν̄ scattering
o� nucleons. The ratios of cross sections are what can be experimentally
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measured most precisely and the experimentally accessible quantities are:

Rν ≡
σ(νN → νX)

σ(νN → µ−X)
=

1

2
− sin2 θW +

20

27
sin4 θW ,

Rν̄ ≡
σ(ν̄N → ν̄X)

σ(ν̄N → µ+X)
=

1

2
− sin2 θW +

20

9
sin4 θW . (18.5)

Measuring absolute cross sections involves a detailed knowledge of the �ux
of the incident ν beam and that is hard to know; however, in the ratio, both
the �ux and the poorly known energy spectrum of the ν beam cancel.

By just seeing νN → νX reactions, one observes NC for the �rst time which
is a great achievement; however, one can also use the cross section ratio to
extract sin2 θW (or whatever your favorite third SU(2)×U(1) parameter is;
the convention was to use sin2 θW until LEP came on line and now MZ is
standard). Once sin2 θW is known, all the SM couplings are determined and
by measuring Rν and Rν̄ one gets a wonderful consistency check. If both give
the same value of sin2 θW , it is an indication one has chosen the right gauge
structure (for example, SU(2)L × SU(2)R × U(1) would predict di�erent
relations between Rν and Rν̄) and one is starting to test the predictive
power of the theory.

To make neutrinos, one starts with a proton beam on a target that produces
lots of secondary particles; in particular, lots of kaons and pions will be
produced. The kaons and pions are selected for sign and then allowed to
decay, (π → µνµ, K → µνµ, K → πµνµ,) and neutrinos are produced. Muon
neutrinos are strongly favored by helicity, and neutrinos or antineutrinos are
selected by the charge of the meson. The experiments are hard. The major
obstacle is just rate. The νN scattering cross section is proportional to
G2
FMpEν and GF is a small number so the cross section is small.

σνNCC ∼ 6× 10−6 nb

nucleon

Eν
GeV

. (18.6)

Working at the highest possible ν beam energy is clearly an advantage.
FNAL with its 200 GeV p beam had a great advantage for making high
energy neutrinos over CERN with 30 GeV p, but CERN got there �rst.

The detector that made the discovery was the 12' Gargamelle bubble cham-
ber. The central part of the detector was a big tank of supersaturated Freon.
When a charged particle passed through the supersaturated gas, it left an
ionization trail. The gas was expanded suddenly after the beam pulse and
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bubbles formed along the ionization trail. The bubble tracks were then
photographed, scanned, and measured by hand for evidence of interesting
physics processes. An important feature of the detector was the ability to
identify NC events by having good solid angle coverage for muons so a muon
could not escape undetected.

( a )

( b )

( c )
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Targ

Liqu

Incident
(Invisibl )

Incident
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Incident
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Neutron

Unseen !

Hadrons
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The �gure above illustrates what CC, NC and background events would look
like in the detector. (a) � NC event. The incoming and escaping neutrinos
are invisible and the signal is the observation of a hadronic cluster. (b) � CC
event. The exiting muon is observed. (c) � Background event. An incoming
neutrino interacts in the material of the chamber wall, producing a neutral
hadron which cannot be detected and a muon that escapes. The neutral
hadron can then interact in the chamber and look like a NC event. The most
worrisome background was a ν interacting in the material of the chamber
wall, producing a neutral hadron and an escaping muon. The neutral hadron
could then interact in the chamber and look like NC event. The experiment
took some 300,000 pictures, 83,000 with the ν beam and 207,000 with the
ν̄ beam. They collected twice as many events for the ν̄ beam since the
scattering cross section was approximately one third the ν cross section due
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to helicity e�ects.

The experimenters spent a great deal of e�ort studying possible backgrounds
to the NC sample from neutral hadrons. One particularly convincing check
was that background from neutral hadrons was expected to show attenuation
along the length of the chamber and they were able to show that their NC
candidates had a uniform distribution along the chamber length. From the
ratio of the number of NC to CC events, they were able to conclude "sin2 θW
is in the range 0.3�0.4". They conservatively claimed "if the events are due
to NC, then Rν and Rν̄ are compatible with the same value of sin2 θW ".
This experiment has been repeated many times since 1973.

18.2 The Discovery of Neutrinoless NC

NCs were discovered by neutrino scattering experiments. The coupling that
was observed was consistent with the SM predictions; however, there are
many other terms in the SM Lagrangian involving NC apart from neutrino-
quark interactions. In particular, there are NC terms in the Lagrangian that
do not involve neutrinos (e.g. electron-quark scattering through Z exchange).
These terms are particularly interesting because electron-quark scattering
can take place via Z or γ exchange and the two processes can interfere.

Below you can see the diagrams of the two processes: (a) Z exchange and
(b) γ exchange, which can contribute to electron-quark NC scattering.
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e

I

e

I

e
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e q

( b )
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This interference allows one to explore the parity violating nature of the NC
interaction.

There were two approaches that experimentalists used to probe the electron-
quark coupling. The �rst approach was to scatter high-energy polarized
electrons o� of a nuclear target. This was �rst done at SLAC. The other
was to use atoms. The e− in an atom interacts with the nucleus both via
the usual EM interaction and by Z exchange. The immediate consequence
is that the atomic Hamiltonian does not conserve parity. Everything you
learned about stationary states of atomic systems being eigenstates of the
parity operator was incorrect (although a good approximation)!

In the late 1970's, experiments in atomic bismuth failed to detect parity vi-
olation, in contradiction with the SM expectation. The early atomic physics
results were wrong. Later experiments in the early 1980's agreed with the SM
predictions but by that time the SLAC experiment had already con�rmed
the SM predictions for electron-quark couplings in 1978�79.

The basic idea of the electron-quark scattering experiments is that the scat-
tering cross section is the square of the sum of the weak and EM amplitudes,
AWK and AEM , which can interfere:

σ ∼ |AEM +AWK |2 = A2
EM

(
1 +

2AEMAWK

A2
EM

+
A2
WK

A2
EM

)
. (18.7)

At low Q2 (Q2 < 10 GeV2), AEM ≫ AWK and the last term can be dropped.
The interference term, however, can be detected.

If we treat the NC as current-current interaction with vector (V ) and axial
vector (A) parts (recall the CC is V − A but the NC is much more compli-
cated) then

AWK = JeJq = (VeVq +AeAq) + (VeAq +AeVq) , (18.8)

where the subscripts e and q refer to the electron and quark currents. The
�rst term is a scalar,

(VeVq +AeAq) = Ascal
WK , (18.9)

and is extraordinarily di�cult to detect. The second term,

(VeAq +AeVq) = Aps−scal
WK , (18.10)

however, is a pseudoscalar and has a very nice signature because it changes
sign under parity transformation. It is straightforward to show that if we
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de�ne the asymmetry, δ, as the di�erence in the scattering cross section for
left and right handed scattering divided by the sum, then:

δ =
σR − σL
σR + σL

=
2(Aps−scal

WK AEM)

A2
EM

, (18.11)

where σR, σL are the cross sections for right and left handed coordinate
systems and the handedness of the coordinate system is determined by, for
example, the longitudinal polarization of the incoming e− beam.

The asymmetry is small! At Q2 ∼ 10 GeV2, the ratio of the weak and
electromagnetic amplitudes can be estimated:

AEM ∼ 4παEM
q2

,

AWK ∼ GF , (18.12)

δ ∼ GF q
2

4παEM
∼ 10−4 .

In the SLAC experiment that discovered neutrinoless NC, high-energy po-
larized electrons were scattered o� of an unpolarized deuterium target. The
scattered electrons were detected at a �xed scattering angle in the lab which
corresponds to a �xed energy of the scattered electron. It is straightforward
(but tedious) to start from the SM Lagrangian and calculate the expression
for the asymmetry in scattering left versus right handed electrons.

To measure an asymmetry of 10−4 to 10% precision, one needs 1010 events.
Clearly one cannot count scattered electrons one by one. The experiment
used a slightly di�erent philosophy from the usual single particle counting
techniques common in high energy physics. Instead of counting the scattered
electrons individually, the detector integrated the signal and measured a
current of scattered electrons on each beam pulse.
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Figure above shows an overview of the SLAC polarized electron scattering
experiment that discovered neutrinoless NC. At the gun end of the Linac,
they started with a polarized e− source. The polarized e− source was really
very cute. Usually in a linear accelerator, one uses a thermionic cathode
which is heated up and electrons are boiled o�, collected, and used to pro-
duce an unpolarized beam. To make polarized electrons, they replaced the
thermionic cathode with a gallium arsenide crystal. The electrons were po-
larized by optically pumping electrons from the j = 3/2 valance band to
j = 1/2 conduction band of the crystal with a circularly polarized laser
beam (710 nm light). Starting from the valance band a circularly polarized
photon has ∆jZ = +1 or − 1. The Clebsch-Gordon coe�cients are favor-
able and one gets 3 times as many electrons in one mj level as the other in
the upper state conduction band, which polarizes the upper state. Below is
illustrated schematically the energy levels of the conduction band and va-
lence band of GaAs, a circularly polarized laser which induces transitions
can polarize the upper state as shown.

I I

EJ = 1 / 2

Conduction Band

J = 3 / 2

Valence Band

E
F

1.4 eV

k

+ 1 / 2
J = 1 / 2

(3) (1) (1) (3)

J = 3 / 2
+ 3 / 2 + 1 / 2 1 / 2

I 1 / 2

3 / 2

To get the electrons out of the crystal conduction band, they coated the
surface with cesium and oxygen which produced a negative work function.
The electrons could escape and their polarization was preserved. The circular
polarization of the laser controlled the polarization of the e− beam and it
could be changed on a pulse by pulse basis in a random way. This technique
theoretically could produce an electron beam with 50% polarization. In
practice, the average electron beam polarization was 37%.
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The beam was then accelerated down the Linac with very little loss of po-
larization. At the end of the Linac, the beam was de�ected into the beam
switchyard onto the deuterium target.

The scattered e− �ux was measured with 2 independent detectors, both
measuring the total charge passing through them. The polarization of the
spent beam was determined with a Móller polarimeter, taking advantage
of the asymmetry in the cross section for a longitudinally polarized electron
scattering on polarized target electrons. The parity violating asymmetry that
was the signature for NC was computed by counting electrons scattered into
the detector when the electron beam was left handed versus right handed.

The challenge of this type of experiment is not just to measure an asymmetry
of one part in 104, but to convince that you are measuring the correct asym-
metry! A great attention was paid to ensure that all possible instrumental
asymmetries were at the 10−5 level or smaller. The �nal result was

sin2 θW = 0.222± 0.018 . (18.13)

It was a demonstration of the power of the SM that with a single value of
the parameter sin2 θW , it could account in detail for the strengths of very
disparate processes: both the SLAC polarized electron scattering experiment
and the neutrino scattering experiments. And that is why, with the SLAC
result, the high energy community was convinced, even before the Z was
found, that the SM was correct and that SU(2)L × U(1) was the correct
gauge group to describe the world around us.

18.3 Observation of Charm

Soon after the observation of the weak NC, the charm quark was also discov-
ered with mass very close to that predicted by the analysis of the ∆S = 2,
K0 - K̄0 mixing caused by FCNC. As we understand now, in view of the
very large mass of the top quark, it was somewhat 'fortuitous' that the
charm quark contribution to the ∆S = 2 mass di�erence was the dominant
one. Be as it may, this was an extremely important second validation of
the correctness of the gauge theory of EW interactions based on the gauge
group SU(2)L×U(1)Y . Note that one of the validation came from tree level
couplings and the other from loop induced e�ects.
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18.4 Fixing of sin2 θW and Prediction of MW ,MZ

The same leptonic couplings which contribute to the NC scattering processes
involving ν's can also make their presence felt in processes like

e+ + e− → µ+ + µ− . (18.14)

This proceeds through a γ∗ exchange in the s-channel and a Z/Z∗ exchange
shown below.

Whether the Z will be on shell or o� shell of course depends on the CM
energy.

The cross-section for this process can be easily computed. Electromagnetic
interactions being the same for the left and right chiral fermions, γ∗ exchange
diagram gives a forward-backward symmetric contribution whereas both, the
square of the amplitude of the Z exchange diagram itself and the interference
term, will give contributions which are forward backward asymmetric. Hence
the presence of the weak NC will manifest itself in the form of a forward-
backward asymmetry in (say) µ production. Both the size and sign of this
asymmetry depends on the CM energy of the process

√
s = 2Eb where Eb is

the beam energy, relative to the mass of the Z boson.

In fact if θ is the angle made by the outgoing lepton with the incoming
lepton, then one can show that

dσ(e+e− → µ+µ−)

d cos θ
=
πα2

em

2s

[
A(1 + cos2 θ) +B cos θ

]
, (18.15)

where

A = 1 + 2ℜe(χ)g2V + |χ|2(g2V + g2A)
2 ,

B = 4ℜe(χ)g2A + 8|χ|2g2V g2A , (18.16)

χ =

(
GµM

2
Z

2
√
2πα

)
s

s−M2
Z + iMZΓZ

.
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Here gV , gA denote the vector and the axial vector NC couplings for e and
µ, ΓZ is the width of Z. In the chosen normalization, deviation of A from
1 and that of B from zero is then indication of the contribution of the weak
NC to the process. Both A and B contain terms linear in ℜe|χ| and g2V or
g2A. Hence, even for small values of |χ|, both the total cross-section and the
angular distribution can be used to probe the weak NC contribution. B is
zero without the Z contribution. It is however nonzero for both, the inter-
ference terms containing ℜe(χ) and the square of the Z-exchange diagram
alone, containing |χ|2. Hence the angular distribution contains an asymmet-
ric term at all s. If we analyze these expressions we �nd that the results for
this asymmetry are very di�erent for

√
s≪MZ and

√
s =MZ .

The forward-backward asymmetry, AµFB de�ned as the ratio of the di�erence
of cross-sections with the µ− in the forward and the backward hemisphere
and the total cross-section, is then expected to be nonzero due to the Z
contribution and the interference term. It is clear that this is also the same
as charge asymmetry between the muons in the forward hemisphere. Thus
one has two asymmetries AµFB and AµC :

AµFB =
σ(cos θµ > 0)− σ(cos θµ < 0)

σ(cos θµ > 0) + σ(cos θµ < 0)
,

AµC =
σ(µ−)− σ(µ+)
σ(µ−) + σ(µ+)

, (18.17)

and these are equal. The reason for the equality of these two asymmetries is
the CP invariance of the gauge Lagrangian, even if the Z has parity violating
interactions. Using (18.15) and (18.16) one can calculate the AµFB, which
in general depends on s. For two di�erent values of s of interest, it can be
shown that:

AµFB

∣∣∣∣
s≪M2

Z

= − 3√
2

Gµs

e2
g2A

1

1− 4Gµs√
2e2
g2V

,

AµFB

∣∣∣∣
s=M2

Z

∼
g2Ag

2
V(

g2A + g2V
)2 . (18.18)

In the �rst case MZ drops out as we have made an approximation where
s≪M2

Z . In the second case in (18.18), while writing the value for
√
s =MZ ,

we have used the fact that MZ/ΓZ ≫ 1 and hence the dependency on the
precise value of MZ drops out. The small width is guaranteed by the weak
nature of the NC couplings of the Z with the fermions. The factor in the
denominator of χ gives a characteristic resonant shape to the cross-section



302 CHAPTER 18. HISTORY OF VALIDATION OF SM

for the process e+e− → µ+µ−, the interference term being negative causing
the cross-section to reduce below the value expected for the γ exchange alone
and to start rising again as

√
s approaches MZ .

For
√
s≪MZ the value of A di�ers from 1, the value expected in QED, by

Gµg
2
V s/
√
2παem. Further the coe�cient of the asymmetric, linear term in

cos θ is given by the same expression with the replacement of g2V by g2A. Thus
it is possible to get information on both g2V and g2A from measurements of A
and B even with beam energies that are much lower than MZ . Since Gµ ∼
10−5/M2

p , the e�ects can become substantial only when s ∼ O(104 GeV2).
Indeed the �rst hints of weak NC in this process were obtained in e+e−

collisions with
√
s ∼ 35 GeV.

It is worth noting at this point that the calculation of cross-section for quark
production via γ/Z exchange proceeds exactly in the same manner, except
the expressions will involve gqA, g

q
V in addition to geV , g

e
A in (18.15) and

(18.16). All the observations about e+e− → γ/Z → µ+µ− then apply for
the e+e− → γ/Z → qq̄ → hadrons as well.

Note that just like the various cross-sections in Tab. 18.1, the asymmetries
of (18.17) and (18.18) too, depend only on one unknown quantity, sin2 θW
through the vector and axial vector NC couplings of the charged lepton. The
above expressions tell us therefore, that a study of the leptonic scattering
processes given in the Tab. 18.1 along with the energy dependence of the
FB asymmetry and that of the cross-section for the reaction given in (18.15)
and (18.16), can provide information about sin2 θW much before reaching the
beam energies close to MZ . If all the measurements of the leptonic cross-
sections as well as the asymmetries yielded a unique value of sin θW , which
is the only free parameter of the model, this can then provide a quantita-
tive validation of the Electroweak model. It is interesting to note that the
energy dependence of the cross-section σ(e+e− → µ+µ−) can also provide
indirect information about MZ , much before the energy values close to MZ

are reached.

Note that production of hadrons by weak NC processes while being very
useful for validation of the weak NC due to the large rates possible with nu-
clear targets, also needed knowledge about the nuclear structure functions
to interpret the data. Both the theoretical and experimental understanding
of this structure at that time was somewhat rudimentary. Hence the vali-
dation of the SM would be much more unambiguous, if one would extract
sin2 θW using pure leptonic processes alone, the ν-charged lepton scattering
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and e+e− collisions.

The above �gure shows compilation of extractions of gV , gA and hence
sin2 θW values from pure leptonic processes. These results were among
the early quantitative validation of the SM. As explained above the lep-
tonic processes were better suited for a clean and unambiguous extraction
of sin2 θW . Further, the CM energies of the early ν experiments were lim-
ited to s < 200 GeV2, whereas the e+e− experiments at PETRA at DESY
(Hamburg) had s ∼ 1400 GeV2. The e+e− experiments could also probe the
NC couplings of the quarks as well, by studying the hadron production along
with the µ+µ− pair production. Thus the information about the weak NCs
at the e+e− colliders was a value addition to the analysis, even though the
beam energies were much below than those required to produce an 'on-shell'
Z boson. The left panel shows results on the deviation from the QED expec-
tations of the angular distribution for the µ i.e. evidence for both: a nonzero
value of B and value of A di�erent from 1. It was indeed comparable to
the deviation of few percent to be expected at these energies as was argued
above. The plot shows comparisons with predictions of the EW model (see
(18.18)) for di�erent values sin2 θW showing clear sensitivity to the same.
Indeed this as well as measurements of µ charge asymmetry de�ned in the
(18.17) for a limited region in the forward hemisphere and the cross-section
measurement were used to delineate a region in the gA - gV plane that was
allowed by the data at 95% c.l. This is indicated by the grey shaded region
in the right panel of the �gure. Superimposed on this grey area are also the
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regions in the same plane allowed by measurements of ν̄ee−, ν̄µe− and νµe−

scattering. We notice from Tab. 18.1 that all the cross-section expressions
de�ne di�erent ellipses in the gA - gV plane. The area between two ellipses
is the region allowed at 68% c.l. by the measurement of the cross-section for
that particular neutrino scattering reaction.

We see from the right panel that if one uses just the elastic ν-charged lepton
scattering data, there is a twofold ambiguity in the values of gA and gV that
are consistent with the totality of the available data. This is indicated by the
two dark black regions. This ambiguity is removed on using the e+e− → l+l−

data. The solution with negative gA and positive gV , corresponding to the
dark region in the upper left corner of the grey shaded square region, is chosen
uniquely, after we add determination of gV , gA from the e+e− measurements.
This dark region in the upper left corner corresponds to sin2 θW = 0.234 ±
0.011. This was the unique value of sin2 θW consistent with all the 'leptonic'
NC measurements mentioned before. One could also use only the e+e−

data. Combining all the e+e− → l+l− measurements with those for e+e− →
q+q−, sin2 θW was determined to be sin2 θW = 0.27± 0.08. Clearly the two
determinations are consistent with each other. These measurements thus
conclusively proved existence of the weak NC as predicted by the SM. One
could then use the value of sin θW so determined, to further make predictions
for the W , Z masses as well as their phenomenology.

The weak neutral couplings of the electron can also be probed by studying
interference between the t-channel γ∗ and Z exchange in the Deep Inelastic
Scattering (DIS) processes indicated in the �gure below, showing weak NC
contributions to the deep inelastic scattering with polarised e− beams.
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This is very similar to the e+e− → l+l− case. However, in this case one needs
to have longitudinally polarized electron beams, to be able to see the e�ect
experimentally. The diagram with γ∗ exchange will give a symmetric result
for both left and right polarized e− but the Z treats them di�erently. Recall
here that geL and geR have di�erent values. Thus there will be a polarization
asymmetry in the cross-section. At lower energies and hence smaller values
of the invariant mass −Q2 of the exchanged γ∗/Z∗, it is the interference
term between the two diagrams which dominates the size of the observed
polarization asymmetry and hence the evidence for parity violation. The
interference e�ect can be shown to be ∼ Gµs in this case as well and is linear
in geV . As mentioned before, for the value of sin θW realized in nature the
vector coupling of the electron is very small. Hence an asymmetry which is
linear in this small parameter, provides a more sensitive probe of geV than
the one provided by the asymmetry AµFB of (18.17). Measurements of this
asymmetry also yielded a value of sin2 θW consistent with the determination
from the pure leptonic probes.

Finally the best determination of sin2 θW came from high statistics data on
ν-induced Deep Inelastic Scattering and polarised e-Deuterium scattering
(both not discussed here at all) and the value was:

sin2 θW = 0.224± 0.015, ρ = 0.0992± 0.017 ,

sin2 θW = 0.229± 0.009 assuming ρ = 1 . (18.19)

In the �rst case both ρ and sin2 θW were taken to be unknown and �tted to
the data and in the second case ρ was �xed at 1. Thus ρ was determined
to be ∼ 1 as expected in the EW model. Assuming this, around 1981 one
could then predict:

MW ≃ 78.15± 1.5 GeV , MZ ≃ 89± 1.3 GeV . (18.20)

This then sets the goal posts to design experiments which could produce
W , Z directly and study them. In principle, the predictions above receive
radiative corrections. We will come to that in the next section.

So the take home message of the above discussion is that the early ν ex-
periments as well scattering experiments with polarized electron beams and
nuclear targets, along with the e+e− → l+l− experiments, tested the struc-
ture of the NC couplings of the leptons and those of the quarks predicted by
the EW model. The experiments conclusively proved that all the measure-
ments were consistent with a unique value of the one undetermined parame-
ter of the model sin2 θW . This then also predicted a narrow range of possible
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masses for both the W and the Z bosons. Inter alia, these measurements
also established ρ ≃ 1, consistent with the EW prediction again. Thus at
this stage, apart from the direct veri�cation of the tree level ZWW coupling
which must exist in this gauge theory, all the other tree level predictions of
the model seemed to have been tested.

Given the knowledge of the quark content of the p available from the DIS
experiments, it was also possible to predict the rate of production of these
bosons in the process

p+ p̄→W +X → l + νl +X ,

p+ p̄→ Z +X → l+ + l− +X . (18.21)

In fact the CERN super proton synchrotron (SPS) was converted into Spp̄S,
to collide protons on antiprotons, so as to have enough energy to produce
the W,Z in the pp̄ collisions. The observation of the W and the Z bosons
in the UA-1 and UA-2 experiments, with mass values and production rates
which agreed with these predictions, was a very important step in con�rming
the correctness of the Electroweak model. Later data con�rmed the V �A
coupling of the W bosons to fermions from the angular distribution of the
events, even though the original observation had only a handful of these: 6
in UA-1 and 4 for UA-2.

The masses of the W and the Z measured in the UA2 experiment, for ex-
ample, were

MW = 80 + 10− 6 GeV , MZ = 91.9± 1.3 (stat)± 1.4 (syst) GeV .
(18.22)

The larger errors for MW re�ect the uncertainties in the measurement of
'missing' transverse momentum due to the ν which evades detection. For
MZ , the �rst number indicates the statistical error and the second system-
atic. The use of �nal state containing leptons allowed for much more accurate
determination of the invariant mass in the case of the Z boson. These masses
were certainly consistent with the predictions: see, for example (18.20). One
can in principle extract ρ and sin2 θW from this 'direct' measurement of
masses (in particular the accurate measurement of MZ) and compare these
with the values obtained from the earlier 'indirect' information from ν scat-
tering, for further tests of the SM. This already used the more accurate
predictions using energy dependence of the couplings as well EW corrections
to the weak processes used to extract sin2 θW . We will discuss this in the
context of precision testing of the SM.
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18.5 Direct Evidence for the ZWW Coupling

Before moving on to the discussion of calculation and validation of loop
e�ects in the precision measurements of the EW observables, we need to dis-
cuss the validation of the existence of another tree level coupling of the gauge
bosons, the triple gauge boson ZW+W− coupling which is characteristic of
the non-abelian nature of the gauge theory. As already discussed, contri-
bution of the Z exchange diagram is crucial in curing the bad high energy
behavior of the e++e− →W+W− cross-section. W+W− pair production in
e+e− collisions was studied at LEP-II where the centre of mass energy was
increased from the Z-pole value of 91 GeV to the two W threshold of 161
GeV and then �nally to 209 GeV. The �gure below shows the LEP-II data
on energy dependence of the W+W− cross-section, along with the theory
prediction.

The data is well described by the solid line which represents the sum of the
contribution of the νe exchange diagram and Z/γ exchange diagrams shown
in the left and the central panel of the �gure. One sees that the contribution
to the cross-section of just the νe exchange diagram of the left most panel,
shown by the blue dashed curve, rises very fast with energy. The cross-
section after including contribution of the s-channel γ exchange alone, where
the ZWW coupling is put to zero in the diagram in the central panel of the
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�gure above, is shown by the red dashed curve. This addition tames the bad
high energy behavior to some extend but not completely. Only after adding
the s-channel Z-exchange diagram does the cross-section have a good high
energy behavior, shown by the blue-green solid curve which also describes
the data well. Thus we see that the temperate energy dependence of the
e+ + e− → W+W− cross-section shown by the data, is 'direct' proof of the
ZW+W− triple gauge boson coupling.

The threshold rise of this cross-section also o�ers an accurate determination
of W mass and the width:

MW = 80.376± 0.033 GeV , ΓW = 2.195± 0.083 GeV . (18.23)

The same experiment o�ered a precision measurement of the hadronic decay
width of the W as well. These measurements served later as an input to the
precision analysis of the EW observables which we will discuss in the next
section.

Note further also that since the energy dependence of the total cross-section
is crucially decided by the ZW+W− coupling, it is possible to use the en-
ergy dependence and the angular dependence of the process to probe any
possible deviations of the ZWW vertex from the SM structure and value.
This process can therefore be successfully used to look for deviations of this
coupling from the SM prediction. In view of the important role played by
the ZWW coupling in curing the bad high energy behavior of the W -pair
production cross-section, it is theoretically very important to probe its possi-
ble deviations from the SM predictions so as to get indications, if any, of the
physics beyond the SM (BSM physics). Measurements of the cross-section
and angular distributions of the producedW at LEP-II, constrained strongly
any anomalous ZWW couplings; i.e. couplings which di�er from the SM in
either structure or strength.

18.6 Precision Testing of SM

Thus we see that the various lepton-lepton and lepton-hadron scattering ex-
periments along with the pp̄ experiments helped establish the correctness
of Electroweak model predictions at the tree level. These tested the tree
level SM predictions for the new NC couplings of the Z boson with all the
known fermions as in terms of the single 'free' parameter of the model. The
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prediction of SU(2)L symmetry for the structure and strength of the ZWW
vertex was also tested. Last but not the least the experiments also tested the
correctness of the tree level predictions for theW and Z masses. This indeed
established the SU(2)L × U(1)Y structure of the EW gauge theory. How-
ever, even with the somewhat imprecise determined values of W,Z masses,
the need for including the e�ects of loop corrections, an essential feature of
QFT's, on all these tree level predictions was already clear. Since the e�ect
of radiative corrections on the extraction of sin2 θW is di�erent for di�erent
processes, it is necessary to correct the experimentally extracted value for
these e�ects, before the sin2 θW extracted from various observables can be
compared at high precision.

18.6.1 Radiative Corrections and ρ/sin2 θW

In case of the SM, a QFT with SSB, renormalisability of the theory guaran-
tees that the loop corrections to the tree level relations, will be �nite and can
be computed order by order in perturbation theory. Precision measurements
can then test these corrected relations and hence the correctness of these cal-
culations of loop e�ects. This can then help establish the renormalisability
of the SU(2)L × U(1)Y gauge theory of EW interactions. Below follows an
extremely sketchy discussions of the issues involved.

Some of the one loop diagrams EW corrections to vertices and two point
functions in the SM are shown in the above �gure. The two diagrams in the
top row and the diagram on the left in the lower panel are the ones that
need to be considered while calculating the loop corrections to the masses
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MW ,MZ . The diagram on the right in the lower panel is an example of
diagrams that give rise to corrections to the Zff̄ vertex. The dominant
corrections come from loops containing quarks of the third generation viz.
t, b. We already notice that corrections to the W and the Z mass will be
di�erent, since the former involves a tb loop, whereas the latter involves the
tt̄, bb̄ loops. As a result the corrections to sin2 θW from these diagrams,
for example, will be di�erent for the CC and NC processes. One needs to
take into account radiative corrections to the weak processes used to extract
sin2 θW as well as the energy dependence of the couplings and hence of
sin2 θW . The latter too is an integral part of QFT. The extraction of sin2 θW
from weak processes, taking into account all the weak corrections yielded

sin2 θW (MW ) = 0.215± 0.010 . (18.24)

In the calculation one now needs to use αem(MW ) = 1/127.49 instead of the
value αem = 1/137.03. The expression for MW (MW ) then becomes

MW (MW ) =

√
π√
2Gµ

αem(MW )

sin2 θW (MW )
=

38.6

sin θW (MW )
GeV . (18.25)

This then gives,

MW = 83.5± 2.2 GeV , MZ = 94.2± 1.8 GeV . (18.26)

Thus loop e�ects change the predicted values in (18.20) by ∼ 5%. This
sets the scale for the precision with which one needs to measure the masses
of W and Z to be able to test theory at loop level. The UA-1 and UA-
2 measurements were clearly consistent with these predictions within the
accuracy of the measurement as well as predictions. These loop corrected
predictions for MW and MZ were used to extract both sin θW (MW ) and ρ
just from the measured masses of the W and Z in the UA-2 experiment,
yielding

sin2 θW = 0.226± 0.014 , ρ = 1.004± 0.052 . (18.27)

This value of ρ is consistent with the expectation of the SM i.e. the Elec-
troweak model where W/Z masses are generated via SSB. These values are
also consistent with the corresponding determinations from the lower en-
ergy ν experiments (see (18.19)). Agreement of these two independent de-
terminations of ρ and sin2 θW (MW ) from two completely di�erent sets of
measurements, already showed consistency of the measurements with theory
predictions at loop level.
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Diagrams shown above cause ρ to change from 1, the prediction at tree level,
since the corrections are di�erent for M2

W and M2
Z . In fact, one can write

∆ρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

, (18.28)

where ΣV and (V =W/Z) are the one loop corrections to the propagator. As
emphasized above these are di�erent for W and Z and hence ∆ρ is di�erent
from 0. At one loop one gets, keeping only the dominant corrections ∝M2

t ,

ρcorr = 1 +∆ρ ≃ 1 +
3GµM

2
t

8π2
√
2
. (18.29)

Thus one sees that the relation ρ =
M2
W

M2
Z cos2 θW

= 1 gets corrected by loop

e�ects. The corrections are �nite as advertised before: a result of the renor-
malizability of the EW theory. Assuming the (at that time) unknown Mt to
be as large as the largest mass in the theory, ∼ O(MW ), one �nds correc-
tions to the tree level value of unity of ρ, to ∼ few parts in 1000. Thus one
would need a high precision measurements of MW and MZ to get a preci-
sion value of ρ which can then be contrasted with above prediction given in
(18.29). This can then be used to estimate Mt and comparing it with the
experimentally observed value of the t quark mass.

In reality, indeed this is what happened. The precision measurements at the
Z pole in e+e− → Z → ff̄ , to be discussed momentarily, indicated a value
for the top mass Mt ≃ 2MW before the top quark was actually discovered.
Agreement of the measured mass of the t at the Tevatron with this value was
then a big success story, testing the SM at loop level. For the much higher
value of the mass that the t quark has in real life compared to theMW taken
in the numerical estimation above, corrections to ρ in reality are about 1 part
in 100 and hence measurable in precision experiments. For future reference,
let me also add here that the corrections to M2

V , from the third diagram in
the �gure above involving the V H loop, depend on the Higgs mass Mh only
logarithmically.

A detailed discussion of the theoretical signi�cance of all important quadratic
dependence of these corrections on Mt, the logarithmic dependence on Mh

and the non-decoupling nature of the corrections to the Zbb̄ vertex from the
tt̄ loop, are beyond the scope of the discussion in these lectures. The former
comes from violation of the SU(2)L invariance, re�ected in the mass di�er-
ence between the two members of the doublet : the t and the b. ∆ρ is in fact
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proportional to M2
t −M2

b . The loops involving h and the V give contribu-
tions to ∆ρ which depend on the Higgs mass, but the accidental Custodial
Symmetry, guarantees that this dependence will be only logarithmic. This is
consistent with the so called Veltman screening theorem. The corrections to
the Zbb̄ vertex, originating from the triangle diagram, one of which is shown
in �gure above, also depend on Mt quadratically. This quadratic depen-
dence, on the other hand has a di�erent source. It arises from contributions
of the longitudinalW bosons in the loop. In a non-unitary gauge this can be
seen as coming from the unphysical Goldstone bosons ϕ±, which are 'eaten
up' to become the longitudinal degree of freedom of theW -boson. This then
clearly explains the non-decoupling nature of the correction, coming from
the proportionality of tϕ± coupling ht or equivalently Mt. Even when we do
not discuss these issues in detail, su�ce it be said that theM2

t dependence of
the vertex correction is the telltale sign of the SSB via the Higgs mechanism.
Since the origins of the M2

t dependence, or equivalently the non-decoupling
nature of the corrections, are quite di�erent for the∆ρ and δgZµµ and further
only the ∆ρ receives contribution from the Higgs, it is quite important to
con�rm both of these independently. Let us now follow the story of precision
measurements and comparison with the precision predictions further.

Note here that these corrections can be calculated only if theory is renormal-
izable. The renormalizability of a gauge �eld theory with SSB was proved
by 't Hooft. This theory necessarily has a physical scalar, the Higgs boson
in the spectrum. As we will see shortly, the precision measurements at the
LEP-I of the Z properties along with weak NC couplings of all the fermions,
as well as precision measurements of the properties of the W at LEP-200,
tested these corrections. A test at the loop level of the various relations,
could then indicate the need for a �nite mass for the Higgs and thus could
be an indirect proof for the Higgs! However, we have seen that even with a
quadratic dependence of ∆ρ on Mt and the large mass Mt, the e�ects are
only 1 part in 100, it is clear that with the logarithmic dependence of these
corrections on Mh, this program would require indeed very high precision
measurements.

18.6.2 Precision Measurements at LEP

Let us �rst begin by a discussion of precision measurements of the mass and
the coupling of the Z boson at LEP 1 and the SLC in e+e− → Z → ff̄ .
The four LEP experiments studied decays of about 17 Million Z, whereas



18.6. PRECISION TESTING OF SM 313

the SLC studied about 600,000 Z decays, but with polarized e+/e− beams.
At the end of the day these experiments determined the mass and the width
of the Z boson and also the values of ρ and e�ective value of sin2 θW , to a
great accuracy using only the leptonic sector. The use of 'e�ective' implies
that radiative corrections have been suitably included while extracting these
values.

MZ = 91.1875± 0.0021 GeV , ΓZ = 2.4952± 0.0023 GeV ,

ρl = 1.0050± 0.0010 , sin2 θefflept = 0.23153± 0.00016 . (18.30)

As already explained these high precision measurements require also high
precision calculations, to test the SM at high accuracy. Higher order QCD
corrections play a highly important and nontrivial role while using results
from the hadronic decays of the Z. One also requires an excellent under-
standing of QCD to calculate correctly the observables from quark �nal states
in terms of what the detectors actually observe the jets. This ushered in an
era of extremely close and extensive collaboration between experimentalists
and theorists resulting in a number of LEP Yellow Reports. These provide
the best summary of both the theoretical and experimental issues involved
in studies at LEP.

The �gure below shows a compilation of the cross-section for the process
e+ + e− → hadrons, spanning the entire energy range from PEP/PETRA
to LEP II. Solid line is theory prediction, including the electromagnetic and
the QCD radiative corrections.
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Recall the expression for the cross-section for e+e− → µ+µ− given in (18.16).
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The initial fall o� of the cross-section re�ects the 1/s dependence of the �rst
γ exchange diagram. One can then see the onset of the rise in the cross-
section due to interference between the γ and Z exchange contributions.

Recall that it is these interference terms, at energies quite far away from
the Z resonance, that had allowed the �rst glimpse of e�ects of weak NC
in the process e+e− → µ+µ−. Thus we see that the Z resonance makes its
presence felt much before the resonant energy is reached, by just the shape
of the cross-section curve. This line shape of the Z resonance depends on
ΓZ , MZ , partial decay width Γ(Z → ff̄) and through them on gV , gA of the
electron and the fermions in the �nal state being considered.

The extremely accurate measurements ofMZ , ΓZ mentioned above, were ex-
tracted by �tting the shape of this curve near resonance, taking into account
e�ects such as the initial state radiation etc. This precision study of the line
shape of Z was made possible by the unprecedented energy resolution of the
collider LEP-I. The thin solid line is then the theoretical prediction for the
cross-section including the QED and QCD radiative correction. The asym-
metric shape of the curve near the resonance is the e�ect of the initial state
radiation. The agreement between the data and theory needs no comment.

Recall now the discussion in Sec. 18.4 and (18.16) � (18.18). One can extend
constructions of these asymmetries of (18.16) � (18.18), for all the fermionic
�nal states accessible in the Z decay, the leptons e, µ, τ and the quarks
b, c. Looking at the expressions in (18.16) � (18.18) one can see that a preci-
sion measurement of these asymmetries as well as partial widths, lead to an
accurate determination of gfV and gfA. The Z-decay data from SLC, which
employed linearly polarized e−/e+ beams, allowed for constructing polarisa-
tion asymmetries just like the forward-backward asymmetry of (18.18). This
too is a measure of parity violation, with the additional advantage that it
involves gV linearly instead of the quadratic dependence in (18.18). This
linear dependence is similar to the case of polarization asymmetries in case
of polarized electron-Deuterium scattering mentioned before.

Recall also that for the value of sin2 θW of (18.19) which is rather close to
0.25, the vector coupling of the electron involving (4 sin2 θW − 1) is very
small. Hence this linear dependence of the asymmetries on gV allowed the
experiments at the SLC to reach a competitive accuracy for the extraction
of gA and gV with the much smaller luminosity and hence smaller number
of the Z decays (600,000 versus 17 million at LEP) available there.
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The �gure above shows values of geV and geA obtained using the LEP-I data,
juxtaposed with the data from elastic ν scattering from 1987. Compare the
size of the region in the gV - gA plane selected by all the measurements
(shown in an inset at the left). We see that at the Z pole the weak NC
couplings of the Z with the fermions, were tested to about one part in 1000.

It goes without saying that with such precision in measurements, if one
were to repeat the earlier exercise of extracting the value sin2 θW , ρ from
them, such as given in (18.30), one has to use theoretical predictions which
include all the relevant higher order corrections. This was already discussed
in Sec. 18.6.1. Since these corrections have a dependency on the masses of the
particles like theW , t and the Higgs, if the measurements are precise enough
then they can be sensitive to these masses. The precision measurements of
EW observables then indicate 'indirectly', in the framework of the SM, the
values of the masses of these particles preferred by the precision EW data. A
comparison of these masses determined 'indirectly', with the ones measured
directly, can then be a powerful precision test of the SM.

18.6.3 Precision Testing and Indirect Bounds

The EW part of the SM has following free parameters: g1, g2, v and λ. At
tree level all the couplings of the gauge bosons to fermions as well as to
each other and their masses are completely given in terms of the �rst three
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parameters in this list. With the very precise knowledge of MZ provided by
the LEP-I, it made sense to trade the g1, g2 and v for MZ , αem and Gµ, to
express all the EW observables as functions of these three chosen quantities.

A large number of EW observables have been measured very accurately,
beginning from the total width of Z boson, the various forward-backward
and polarization asymmetries on the Z-pole, masses MW , Mt, polarized
e-Deuterium scattering, atomic parity violation etc. All these observables
depend on Gµ,MZ and αem through their dependencies on gfA, g

f
V , MV as

well as on αs andMt,Mh through the higher order QCD and EW corrections.

Precision calculation for all these EW observables, including the 1 loop EW
radiative corrections in the framework of the SM, are available. The idea is
to make then a �t to the measured values of the EW observables and test the
SM predictions. In these �ts, one keepsMt,MW andMh as free parameters.
As already noted the radiative corrections depend on Mt quadratically and
Mh logarithmically. Then compare the MW , Mt values so obtained with
experimentally determined values of the same, thus providing a test of the
SM. Afterwards one can perform the exercise by varying the Higgs mass,
�nd the value of Mh that minimizes the χ2 and then �nd the limits on the
Higgs mass for which the data will be consistent with the SM predictions.

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [ GeV]mZ [ GeV] 91.1875 ± 0.0021 91.1874

ΓZ [ GeV]ΓZ [ GeV] 2.4952 ± 0.0023 2.4959

σhad [ nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ )Al(Pτ ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [ GeV]mW [ GeV] 80.385 ± 0.015 80.377

ΓW [ GeV]ΓW [ GeV] 2.085 ± 0.042 2.092

mt [ GeV]mt [ GeV] 173.20 ± 0.90 173.26

March 2012
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The �gure above shows the result of such an exercise. The �gure lists the
measured values of a variety of EW obsevables, most of which we have dis-
cussed. The various R-ratios: Rb, Rc, Rl etc. are a measure of the relative
production of the various �nal states and hence of the partial decay width of
the Z into them. Al(Pτ ) is the polarization asymmetry for the τ 's produced
in e+e− → Z → τ+τ− on the Z�pole. The second column shows the result
of the SM �t for the observable and the third column the pull which is the
di�erence between the measurement and the �t value normalized by the er-
ror of the measurement. The pull is less than three for all the observables
and above 2 for only one of the measurements AbFB.

This particular �t is the last one before the discovery of the Higgs at the
LHC, using the most accurate measurement ofMW from the Tevatron, which
has an error of 0.15 GeV, again a 'one per mille' measurement. The χ2 of
this �t is not very small, mainly due to the discrepancy between the best �t
values and measured values for Ab from LEP as well as at the SLC. Hence
before the 'direct' discovery of the Higgs there were a few physicists who
used to be a little uncomfortable about the goodness of the �t and accepting
this as 'the proof' for the correctness of the SM at loop level.

Note the values in the last two rows. The measured values and the best �t
values of MW , Mt agree with each other to a great precision and the pull is
is rather small, providing thus a stringent test of the SM at loop level. This
is the agreement between the Mt predicted 'indirectly' from the LEP EW
precision measurements and the 'direct' measurement from the Tevatron,
that was alluded to before a few times. In fact this spectacular agreement
was the QFD (Quantum Flavor Dynamics) equivalent of testing the (g−2)µ
prediction with the measurement in QED. The important role played by
renormalizabilty and loop corrections in this context can be understood by
doing a small numerical exercise of predicting MW from the very accurately
measured values αem = 1/137.0359895(61), Gµ = 1.16637(1)×10−5 GeV−2,
MZ = 91.1875 ± 0.0021 GeV and the tree level relations given by the SM
among these quantities and MW . By using the tree level relation MZ =
MW

cos θW
we can write:

Gµ√
2
=

g22
8M2

W

=
παem

2M2
W (1−M2

W /M
2
Z)

. (18.31)

This gives, M tree
W = 80.939 GeV. Compare this now with the value of MW

given in the second column of the table above,M expt
W = 80.385±0.015 GeV.
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Of course, this points out the need for calculating loop corrections to the
tree level relations. Renormalizability guarantees that all the corrections are
�nite and can be computed. Hence the value of MW obtained 'indirectly'
from the �ts using theoretical predictions which include these loop correc-
tions, then famously agrees with the 'direct' measurement as shown in the
table above. Agreement with the SM would have been impossible unless the
predicted values included higher order corrections calculated in perturbation
theory.

The �t values and the pull for Mt, MW depends on the value of Mh, albeit
very weakly, due to the logarithmic dependence onMh of the EW corrections
toMW ,MZ etc. Some of these e�ects can be seen from the two �gures below
made before the Higgs discovery (March 2012).
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This plot shows the dependence of the �t values for MW , Mt for di�erent
values of Mh. The long lopsided ellipse used the EW observables measured
at LEP-I and the SLC, to determine allowed regions in the Mt�MW plane
at 95% c.l. Using the MW measurements at the LEP-II/Tevatron as input,
one now obtains the small blue ellipse which is consistent with the precision
measurements. The dark green (grey) region and the large red ellipse show
that with results from LEP-I alone, the measurements were not sensitive
to Mh at all. On the other hand, the highly accurate LEP-II/Teavtron
measurements of MW and the Tevatron measurement of Mt is consistent
with somewhat small values of the Higgs mass at the left most boundary
of the green(grey) region. This was also consistent with the exclusion (from
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direct searches at the LHC) of a SM Higgs over a very large range as indicated
by the Mh values labeling the inclined lines in the region shaded in yellow
(a shade of lighter gray).

The above plot shows the same information in a di�erent format, where we
show a plot of ∆χ2 as a function of Mh. In fact the fact that this minimum
of ∆χ2 occurs at a nonzero, �nite mass Mh is already an indication of the
'existence' of the Higgs and hence a feather in the cap of the SM. The
dotted and solid black lines are the best �t with and without including the
theory errors. The region shaded in light blue (grey) indicates e�ect of
the theoretical uncertainties as well as uncertainties in the EW �t. In the
absence of any information from 'direct' searches for the Higgs, the indirect
constraints will allow a region around the minimum of χ2 (Mh ≃ 90 − 100
GeV) upto Mh values where ∆χ2 is 9: the 3σ value. Remaining values of
Mh will be disfavored by this 'indirect' search. The ∆χ2 ≤ 9 corresponds to
an allowed mass range 40 − 45 ∼ Mh ∼ 180 − 200 GeV at 3σ. However a
lot of this 'allowed' region is ruled out from direct searches at the LEP, at
the Tevatron and at the LHC. These bounds are indicated by the vertical
red lines in this �gure. The region ruled out by LEP is indicated by the
dark grey region hatched with slanted lines. The region ruled out by the
hadronic collider Tevatron is indicated by the cross-hatched region. The
above mentioned red lines mark the edges of these regions giving us the pre-
LHC exclusion. The region excluded by the LHC in March 2012 is indicated
by light grey region marked by lines slanted in a direction opposite to the
LEP exclusion region.

As one can see from this �gure, before the LHC direct search constraints,
the allowed mass range for the Higgs was 115 ≤ Mh ∼ 150 − 160 and
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180 ∼ Mh ∼ 200 GeV. The LHC experiments ruled out existence of an
SM Higgs in a major part of this range. As a result in March 2012, the
mass value allowed for a SM Higgs by a combination of the EW precision
measurements and 'direct' collider constraints was as indicated by the small
white slit around 125 GeV. Failure to �nd a Higgs in this small 'allowed'
mass range would then have meant the death for the SM. Indeed a new
boson was found with properties very similar to a SM Higgs in precisely this
mass range. This discussion should make it very clear to us that the value
of the mass of the observed Higgs boson itself tested the SM at loop level to
a very great accuracy.

In fact it won't be out of place to recapitulate at this point how the SM was
validated and tested at various levels by discovery of new particles whose
masses were predicted: either in terms of a free parameter of the model
which could be determined from experiments OR `indirectly' by comparing
loop e�ects on physical observables with their precision measurement.

• Observation of suppression of FCNC implied that the quarks must
come in isospin doublets. Thus charm was predicted since the existence
of the s quark was known and top was predicted to be present once the
b was found. Further, the very demand of cancellation of anomalies so
as avoid these spoiling the renormalizability, implied existence of third
generation of quarks and leptons once the τ was found.

• One could get indirect information onMc,Mt from �avor changing NC
processes induced by loops. Agreement of this 'indirect' information
with 'direct' measurements 'proved' the correctness of description of
EW interactions in terms of a gauge theory.

• CP violation in meson systems could be explained in terms of the SM
parameters and measured CKM mixing in quark sector only if three
generations of quarks exist.

• MW , MZ was predicted in terms of sin θW and direct observation of
the W , Z at the predicted mass tested the particle content and tree
level coupling of the matter fermions with the gauge bosons W , Z.

• Study of energy dependence of the e+e− →W+W− process gave direct
evidence for the tree level ZWW coupling and also for the role played
by this vertex in taming the bad high energy behavior of the cross-
section.
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• Further, Teavtron found evidence for 'direct' production of the top
quark at the mass Mt which was in agreement with the value obtained
`indirectly' from precision measurement ofMW ,MZ , considering e�ect
of radiative corrections to these masses.

• Last but not the least the existence of a minimum of ∆χ2 at a �nite
nonzero mass for the SM �ts to the EW precision measurements, gave
an 'indirect' proof of the existence of the Higgs. Before the 'direct'
discovery of the Higgs this was also an 'indirect' probe of the couplings
of the Higgs with gauge bosons and the t quarks. Further, the same �ts
gave an 'indirect' determination of Mh which now agrees completely
with the measured mass of the observed Higgs.

Now we can turn once again to the discussion of the above plots. As was
already indicated by the �rst plot, the 'directly' measured value of the Higgs
mass

Mh = 125.09± 0.24 GeV (18.32)

is right in the 'allowed' white slit and indeed con�rms the SM at loop level
most spectacularly. At this point, it is worth noting that if we improve upon
the accuracy of measurements of Mt, Mw and Mh we can indeed hope to
look for e�ects by loops of heavy particles which are not present in the SM
but are expected to exist in various extensions of the SM, which are in turn
postulated to address various shortcomings of the SM!

As already mentioned, the Higgs mass range allowed by the EW precision
measurements can change when one goes away from the SM. In fact before
the 'direct' discovery of the Higgs, a lot of e�ort had gone on, in constructing
models which would allow one to avoid these constraints, should experiments
reveal a Higgs boson not consistent with the bounds from the EW precision
measurements.

Of course, not only that many of these are not required, but some are now
even ruled out, by the observation of the light state. An example of one such
model is the SM with a fourth sequential generation of fermions, leptons and
quarks. Since in the SM there is no guiding principle for total number of
generations of fermions, except that they should be the same for quarks and
leptons, this in principle is the simplest extension of the SM by addition of
more matter particles to it. Observation of the low mass ∼ 125 GeV scalar
ruled out this extension very conclusively.



322 CHAPTER 18. HISTORY OF VALIDATION OF SM

18.7 Mass of the Higgs

As we saw above the EW precision measurements did put 'indirect' bounds
on the Higgs mass. However, theoretically there is no information on the
mass of the Higgs in the SM, as it is determined by λ an arbitrary parameter.
Recall Mh and λ are related by

M2
h = 2λv2 . (18.33)

The observed mass of the Higgs determines the self-coupling λ:

λ = 0.5M2
h/v

2 ≃ 0.13 . (18.34)

This is the last free parameter of the SM that needed to be determined. Thus
the only part of the scalar potential now that needs to be experimentally
veri�ed 'directly' is the triple Higgs and the quartic Higgs couplings. Now
that one 'knows' the value of λ one can assess the possibilities of measuring
it at current and future colliders. One might ask the question whether this is
the only nontrivial information about the SM that we can extract from the
observed value of the mass of the Higgs. Asked di�erently, can one use this
observed value ofMh to infer something about the SM as well as the physics
beyond the SM, the BSM. Since in these lectures we restrict ourselves to the
SM, I will only talk about the possible implication of the observed Higgs
mass for the SM itself.

While the SM has no 'prediction' for Mh, requirement of theoretical consis-
tencies imply bounds on the same. These theoretical limits on the mass of
the Higgs boson come from demanding good high energy behavior of scatter-
ing amplitudes in the SU(2)L ×U(1)Y gauge theory and from the quantum
corrections that the self-coupling λ receives. These limits are thus essentially
an artifact of the quantum �eld theoretical description. Let us discuss this
one by one.

18.7.1 Unitarity Bound

Various contributing diagrams for he high energy behavior of the scattering
amplitude W+W− → W+W− are shown below. The �rst panel shows
diagrams involving h bosons contributing to W +W →WW scattering.
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The s-channel diagram will of course contribute only forW+W− →W+W−

scattering. The second panel shows the all the diagrams which involve ex-
change of the gauge bosons Z and γ as well as the one involving pure gauge
vertex.

Each of these diagrams gives a contribution which grows as sα with α = 1, 2,
where s is the centre of mass energy of the WW . This divergence appears
in the scattering of longitudinal W 's. However in the SM all the divergent
terms in the WW →WW amplitude cancel among each other.

The contribution of the h exchange diagrams as well as that from the dia-
grams with pure gauge vertices play an essential role in this cancellation as
mentioned before. The cancellation of the power divergences is independent
of the Higgs mass and thus the requirement of non-divergent behavior does
not single out any scale. Among the non-divergent part of the amplitude
A(WW → WW ), left over after all this cancellations, the contributions
of the Higgs exchange diagrams dominate and are dependent on the Higgs
mass. The non-divergent part of this invariant amplitude can be written as

A(W+
LW

−
L →W+

LW
−
L ) = −

√
2GµM

2
h

(
s

s−M2
h

+
t

t−M2
h

)
. (18.35)
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From a partial wave analysis of this amplitude one can show that this am-
plitude will violate tree level unitarity if

Mh >

(
8π
√
2

3Gµ

)1/2

∼ 1000 GeV . (18.36)

Thus, the theory will be strongly interacting ifMh were to exceed this value.
As things stand, the observed value of Mh implies λ ≃ 0.13, far from the
strongly interacting region and also safe from any unitarity violation. Thus
the observed mass of the Higgs boson satis�es the unitarity bound.

18.7.2 Triviality Bound

E�ect of loop corrections to the self-coupling λ in a scalar �eld theory, in the
presence of a high scale and additional interactions with gauge bosons and
matter, with an aim to examine whether one could constrain the scalar mass
and other high scale masses from pure theoretical considerations. Triviality
bound results from considering loop corrections to the scalar potential. One
demands that the quartic coupling λ in the Higgs potential reproduced below,

Vh = λvh3 +
λ

4
h4 , (18.37)

remains perturbative as well as positive at all energy scales under loop cor-
rections. The corrections come from two sets of diagrams shown somewhat
schematically in �gures below. The �rs diagram shows loop corrections to
the quartic coupling λ from the Higgs sector itself.

The second diagram shows contributions to the running of λ from fermion
and gauge loops. So the diagrams shown in the top panel are applicable
to any scalar with quartic self-interaction. The ones in the lower panel are
speci�c to a gauge theory.
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The triviality bound comes from demanding that λ should always remain
perturbative. To understand the origin of this bound let us consider the
case of large Mh. Since M2

h = λv2, at large mh and hence large λ, loop
corrections are dominated by the h�loops shown in the �rst panel above. A
straightforward evaluation of this gives us

dλ(Q2)

d logQ2
=

3

4π
λ2(Q2) . (18.38)

Solving this, one gets

λ(Q2) =
λ(v2)

[1− 3
4π2λ(v2) log(

Q2

v2
)]
. (18.39)

A look at (18.39) shows us that at large Q2 ≫ v2, λ(Q2) can develops a pole,
the so called Landau pole, at some high scale Q depending on the value λ at
the EW scale v. If we demand that λ remains always in perturbative regime,
then the only solution would be λ = 0. This would then mean that the theory
will be trivial. That of course does not make for a sensible theory. Thus the
starting value of λ(v) and hence Mh is not allowed by these considerations.

One can understand this in yet another way. If we demand that the scale at
which λ blows up is above a given scale Λ, then using (18.39) we �nd that
for a given value of Mh and hence λ(v), the scale at which the Landau pole
lies will be given by

ΛC = v exp

(
2π2

3λ

)
= v exp

(
4π2v2

3M2
h

)
. (18.40)

Thus, for example, using ΛC = Λ = 1016 GeV, we will �nd Mh ∼ 200 GeV.

This bound is called the triviality bound. In simple terms it means that the
value of λ at the EW scale (and hence the massMh) should be small enough
so that λ(Q2) does not develop a pole up to a scale Q = ΛC . Hence, if Mh

were found to have a mass larger than the triviality bound, it would have
meant existence of new physics below the scale ΛC . This thus tells us that
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just the mass of the h can give us an indication about the scale at which SM
must be complemented by additional new physics. The mass of the Higgs
being only 125.09 GeV this is rather an academic discussion as this small
value of the coupling λ at the EW scale, implies that the loop e�ects will
not be driving the self-coupling λ toward the Landau pole at an energy scale
of interest. There are other issues that we need to address given that the
observed mass is so small. But we will not discuss them here.

18.7.3 Stability Bound

henMh is small and λ is not large, the fermion/gauge boson loops are impor-
tant. Even more important is that the fermions loops come with a negative
sign. This means that if the fermion mass is large enough the loop correc-
tions may drive λ negative at some scale, unless the starting value of λ(v)
is large enough. These considerations will imply a lower bound for λ(v) and
hence for Mh. This limit on Mh is called the vacuum stability bound. Now
one works in the limit of small λ, opposite to the one used when considering
the triviality bound.

Hence the contribution of the h-loops shown in the �rst panel above can be
neglected, the equation for energy dependence of λ now can be written as:

dλ(Q2)

d log(Q2)
≃ 1

16π2
[12λ2 + 6λf2t − 3f4t −

3

2
λ(3g22 + g21) +

+
3

16
(2g42 + (g22 + g21)

2)] . (18.41)

Here

ft =

√
2Mt

v
(18.42)

is the Yukawa coupling for the top. Since

Mt ∼ 173GeV , v ≃ 246GeV , (18.43)

one can see that the Yukawa coupling is ≃ 1. Thus it will dominate the scale
dependence of λ. At small Mh and hence small λ(v), λ can turn negative at
some value of Q.

Recall the Higgs potential. A negative value of λ will mean an unbounded
potential and clearly the vacuum will be unstable. The condition for non-
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negativity of λ and hence vacuum stability, is

M2
h >

v2

8π2
log(Q2/v2)

[
12m2

t /v
4 − 3

16
(2g42 + (g22 + g21)

2)

]
. (18.44)

Again, depending upon the scale up to which we demand the potential to
be positive de�nite, we �nd that the starting value λ(v) (and hence Mh) has
to be above a critical value dependent on the scale. If we demand that the
λ(Q) is positive up to ΛC we then get a lower bound on Mh. For example
choosing, ΛC = 103 GeV we get Mh ∼ 70 GeV. This bound is called the
stability bound.

In the above analysis we have demanded that λ(Λ) does not become negative
so that the potential is stable. This is the condition for absolute stability
of vacuum. However, Planck scale dynamics might stabilise the vacuum for
|Φ≫ v and we might be living in a metastable vacuum which has a life time
bigger than that of the Universe.

The cartoon shown below indicates such a situation.

One can then obtain lower bounds on the Higgs mass demanding that vacuum
is metastable with a lifetime bigger than the lifetime of the Universe. Clearly
evaluation of these bounds cannot be presented in the simplistic analysis
given here.

A complete analysis in fact gives the vacuum stability bounds on the Higgs
mass taking into account the e�ect of renormalization group evolution (RGE)
as well as that of metastability of the vacuum.

The �gure below shows the stability bounds onMh as a function of the scale,
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indicated by the pale yellow green area, as a function of scale at which the
instability sets in.
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Bounds are shown for absolute stability as well as metastability. The spread
is due to the theoretical uncertainties, major ones being the top mass un-
certainty and the missing higher order contributions to the equations. RGE
takes into account not just the one loop corrections, but also includes the
resummation of leading logarithmic corrections.

As one can see even from the simple minded analysis presented here, the
bound depends critically on the value of ft and hence on Mt. If one overlays
the bounds on the Higgs mass obtained 'indirectly' from the EW precision
analysis as well as the LEP/Teavtron/LHC searches then we realize that the
thin white silver which was still allowed by March 2013 corresponds to the
boundary of the pale yellow-green region indicating the stability bound. Due
to the �nite width of these bands caused by various uncertainties mentioned
above, the observed mass of the Higgs Mh may or may not be consistent
with the hypothesis that the SM remains consistent all the way to Planck
scale. Given that everything depends logarithmically on di�erent scales and
with the high accuracy of the experimental measurement of Mh, the need to
do the evolution of λ taking into account higher order e�ects is thus clear.

In fact the need for more accurate calculation was already apparent, even
before the Higgs discovery, with the rather low values of Mh indicated by
the 'indirect' limits. The need for accuracy in the theoretical prediction of
stability bound is thus very apparent. In May 2012, with the discovery of the
Higgs imminent, an NNLO analysis of the problem became available, which
reduced the theoretical error on the bounds coming from the unknown higher
order corrections to ∼ 1 GeV.
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However, there still remains a sizable error due to the errors in experimentally
determined parameters Mt, αs. The �gure below shows behavior of λ(µ) as
a function of the energy scale µ.

One now sees clearly that the scale at which λ becomes zero and hence the
vacuum unstable, depends critically on Mt and the strong coupling αs. For
example, for the central value of Mt used, µ value at which λ becomes zero
changes by at least an order of magnitude as αs is varied within errors. The
dependence on Mt is even stronger. We will comment later on the range of
Mt used in this analysis. According to this analysis the absolute stability of
the vacuum up to Planck scale Mpl is guaranteed for,

Mh [GeV] > 129.4 + 1.4

(
Mt [GeV]− 173.1

0.7

)
−

−0.5
(
αs(MZ)− 0.1184

0.0007

)
± 1.0 th. (18.45)

In this analysis the error on pole mass of the top was taken to be ∆mt =
±0.7 GeV . Taking into account the errors, (18.45) then means that for
mh < 126 GeV, vacuum stability of the SM all the way to Planck Scale
is excluded at 98% c.l. Clearly, this value is far too close to the observed
value of 125.09± 0.24 GeV to require careful considerations of various issues
before we draw conclusions about the validity of the SM at high scale. For
the measured value of the Higgs mass, the exact scale where λ crosses zero,
though not Mpl seems close to it and depends entirely on the exact value of
Mt and Mh. Indeed these considerations may be relevant for consideration
of BSM or models of in�ation etc.
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The same can be seen clearly from the �gure above. This shows the results
of this NNLO analysis of the region in Mh - Mt plane from the vacuum
stability considerations. The left panel shows the regions in the Mt - Mh

plane where the vacuum is absolutely stable, metastable and unstable. To
understand the role and size of various 'experimental' uncertainties the right
panel shows a zoom in of the region around the experimentally determined
Mh�Mt values. The grey areas show allowed regions at 1,2 and 3 σ. The
three curves on the boundary of two regions correspond to three values of αs.
Superimposed on it are the contours of constant value of the high scale where
the instability occurs. We see that the experimentally determined values lie
right on the boundary of the stable/metastable region. The answer to the
question as to whether or not, the experimentally determined value of Mh is
consistent with SM vacuum being (meta)stable all the way to Planck scale,
very much depends on Mt values.

Let us discuss this issue in a little more detail. The stability bounds used
errors on mt as measured at the hadronic colliders the Tevatron and the
LHC. This is the so called Monte Carlo or kinematic mass, which is a pa-
rameter in the Monte Carlos used while analyzing the data and studying
the top quark production at the colliders. Conversion of this parameter into
the pole mass, which is the parameter required in these theoretical consid-
erations and for the RGE, has uncertainties coming from hadronisation and
fragmentation models, underlying event etc. These are typically non pertur-
bative in character. Another way to extract the pole mass in a well-de�ned
manner is to extract MMS

t , the mass of the top quark in the MS scheme
from the measurement of the top quark cross-sections at the Tevatron and
the NNLO calculation of the same. The procedure to convert this mass to
the pole mass Mt(Mt), leads to uncertainties in Mt larger than the 0.7 GeV
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taken in (18.45). This exercise, using the available information in 2012 led
to an estimate of the pole mass for the top:

Mpole
t = 173.3± 2.8 GeV . (18.46)

Compare this with the error of 0.7 GeV that was used in the estimate. The
vacuum stability constraint now becomes Mh > 129.4 ± 5.6 GeV instead of
the one in (18.45). This observation then can weaken the conclusion about
the high scale upto which the SM remains valid without getting into con�ict
with stability. The future International Linear Collider (ILC) can measure
the top mass Mt to a high accuracy of 100 MeV. What is more important is
the fact that the determination of the t mass at the ILC comes directly from
measurement of the tt̄ production cross-section in e+e− collisions, near the
tt̄ threshold. This can be measured very accurately and has been computed
theoretically to a high precision as well. This measurement can be converted
into the pole mass in an unambiguous way. The �gure below shows how
such a precision measurement of the mass at the ILC can really shed light
on whether the currently measured higgs mass points to the NEED of BSM
physics at any particular high scale.

In the above �gure, the bigger blue circle has been drawn assuming an LHC
accuracy of t mass measurement of 1 GeV. However, a reduction of this error
to about 500MeV looks possible and is an active area of research. These
kind of investigations are just the next logical step in our e�orts to test the
SM through a combination of the 'direct' and 'indirect' observations.
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18.8 Discovery of the Higgs Boson

Because the Higgs boson decays very quickly, particle detectors cannot detect
it directly. Instead the detectors register all the decay products (the decay
signature) and from the data the decay process is reconstructed. If the
observed decay products match a possible decay process (known as a decay
channel) of a Higgs boson, this indicates that a Higgs boson may have been
created. In practice, many processes may produce similar decay signatures.
Fortunately, the SM precisely predicts the likelihood of each of these, and
each known process, occurring. Because Higgs boson production in a particle
collision is very rare (1 in 10 billion at the LHC), and many other possible
collision events can have similar decay signatures, the data of hundreds of
trillions of collisions needs to be analyzed and must "show the same picture"
before a conclusion about the existence of the Higgs boson can be reached.

The �rst extensive search for the Higgs boson was conducted at the LEP at
CERN in the 1990s. At the end of its service in 2000, LEP had found no
conclusive evidence for the Higgs. This implied that if the Higgs boson were
to exist it would have to be heavier than 114.4 GeV.

The search continued at Fermilab (US), where the Tevatron (the collider
that discovered the top quark in 1995) had been upgraded for this purpose.
There was no guarantee that the Tevatron would be able to �nd the Higgs,
but it was the only supercollider that was operational since the LHC was
still under construction and the planned Superconducting Super Collider
had been cancelled in 1993 and never completed. The Tevatron was only
able to exclude further ranges for the Higgs mass, and was shut down on 30
September 2011. The �nal analysis of the data excluded the possibility of a
Higgs boson with a mass between 147 GeV and 180 GeV. In addition, there
was a small (but not signi�cant) excess of events possibly indicating a Higgs
boson with a mass between 115 GeV and 140 GeV.

To �nd the Higgs boson, a more powerful accelerator with higher luminosity
and advanced computing facilities were needed to process the vast amount
of data (25 petabytes per year as of 2012) produced by the collisions. For
the announcement of 4 July 2012, a new collider, LHC, was constructed at
CERN with a planned eventual collision energy of 14 TeV (over seven times
any previous collider) and over 3 × 1014 LHC proton-proton collisions were
analyzed by the LHC Computing Grid, the world's largest computing grid
(as of 2012), comprising over 170 computing facilities in a worldwide network



18.8. DISCOVERY OF THE HIGGS BOSON 333

across 36 countries.

The LHC was designed speci�cally to be able to either con�rm or exclude the
existence of the Higgs boson. Built in a 27 km tunnel under the ground near
Geneva originally inhabited by LEP, it was designed to collide two beams of
protons, initially at energies of 3.5 TeV per beam (7 TeV total), or almost 3.6
times that of the Tevatron, and upgradeable to 2×7 TeV (14 TeV total). As
one of the most complicated scienti�c instruments ever built, its operational
readiness was delayed for 14 months by a magnet quench event nine days after
its inaugural tests, caused by a faulty electrical connection that damaged over
50 superconducting magnets and contaminated the vacuum system.

Data collection at the LHC �nally commenced in March 2010. By December
2011 the two main particle detectors at the LHC, ATLAS and CMS, had
narrowed down the mass range where the Higgs could exist to around 116−
130 GeV (ATLAS) and 115−127 GeV (CMS). There had also already been
a number of promising event excesses that had "evaporated" and proven to
be nothing but random �uctuations. However, from around May 2011, both
experiments had seen among their results, the slow emergence of a small
yet consistent excess of γ and 4-lepton decay signatures and several other
particle decays, all hinting at a new particle at a mass around 125 GeV. By
around November 2011, the anomalous data at 125 GeV was becoming "too
large to ignore" (although still far from conclusive), and the team leaders at
both ATLAS and CMS each privately suspected they might have found the
Higgs.

On November 28, 2011, at an internal meeting of the two team leaders and
the director general of CERN, the latest analyses were discussed outside
their teams for the �rst time, suggesting both ATLAS and CMS might be
converging on a possible shared result at 125 GeV, and initial preparations
commenced in case of a successful �nding.

While this information was not known publicly at the time, the narrowing of
the possible Higgs range to around 115−130 GeV and the repeated observa-
tion of small but consistent event excesses across multiple channels at both
ATLAS and CMS in the 124 − 126 GeV region (described as "tantalizing
hints" of around 2− 3σ) were public knowledge with "a lot of interest".

It was therefore widely anticipated around the end of 2011, that the LHC
would provide su�cient data to either exclude or con�rm the �nding of a
Higgs boson by the end of 2012, when their 2012 collision data (with slightly
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higher 8 TeV collision energy) had been examined.

On 22 June 2012 CERN announced an upcoming seminar covering tentative
�ndings for 2012, and shortly afterwards (from around 1 July 2012 according
to an analysis of the spreading rumour in social media) rumours began to
spread in the media that this would include a major announcement, but it
was unclear whether this would be a stronger signal or a formal discovery.
Speculation escalated to a "fevered" pitch when reports emerged that Peter
Higgs, who proposed the particle, was to be attending the seminar, and that
"�ve leading physicists" had been invited - generally believed to signify the
�ve living 1964 authors - with Higgs, Englert, Guralnik, Hagen attending
and Kibble con�rming his invitation (died in 2011).

On 4 July 2012 both of the CERN experiments announced they had inde-
pendently made the same discovery: CMS of a previously unknown boson
with mass 125.3±0.6 GeV and ATLAS of a boson with mass 126.0±0.6 GeV.
Using the combined analysis of two interaction types (known as 'channels'),
both experiments independently reached a local signi�cance of 5σ - implying
that the probability of getting at least as strong a result by chance alone is
less than 1 in 3 million. When additional channels were taken into account,
the CMS signi�cance was reduced to 4.9σ.

The �gure below displays the Feynman diagrams showing the cleanest chan-
nels associated with the low-mass (∼ 125 GeV) Higgs boson candidate ob-
served by ATLAS and CMS at the LHC.

The dominant production mechanism at this mass involves two gluons from
each proton fusing to a Top-quark Loop, which couples strongly to the Higgs
�eld to produce a Higgs boson. Left (Diphoton channel): Boson subsequently
decays into two γ-ray photons by virtual interaction with a W boson loop
or top quark loop. Right (4-Lepton "golden channel"): Boson emits two Z
bosons, which each decay into two leptons (electrons, muons). Experimental
analysis of these channels reached a signi�cance of more than 5σ in both
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experiments.

On 31 July 2012, the ATLAS collaboration presented additional data analysis
on the "observation of a new particle", including data from a third channel,
which improved the signi�cance to 5.9σ (1 in 588 million chance of obtaining
at least as strong evidence by random background e�ects alone) and mass
126.0± 0.4(stat)± 0.4(sys) GeV, and CMS improved the signi�cance to 5σ
and mass 125.3± 0.4(stat)± 0.5(sys) GeV.

Following the 2012 discovery, it was still uncon�rmed whether or not the
125 GeV particle was a Higgs boson. On one hand, observations remained
consistent with the observed particle being the SM Higgs boson, and the
particle decayed into at least some of the predicted channels. Moreover,
the production rates and branching ratios for the observed channels broadly
matched the predictions by the SM within the experimental uncertainties.
However, the experimental uncertainties currently still left room for alter-
native explanations, meaning an announcement of the discovery of a Higgs
boson would have been premature. To allow more opportunity for data
collection, the LHC's proposed 2012 shutdown and 2013-14 upgrade were
postponed by 7 weeks into 2013.

In January 2013, CERN director-general stated that based on data analysis
to date, an answer could be possible 'towards' mid-2013, and the deputy
chair of physics at Brookhaven National Laboratory stated in February 2013
that a "de�nitive" answer might require "another few years" after the col-
lider's 2015 restart. In early March 2013, CERN Research Director stated
that con�rming spin-0 was the major remaining requirement to determine
whether the particle is at least some kind of Higgs boson.

On 14 March 2013 CERN con�rmed that: "CMS and ATLAS have com-
pared a number of options for the spin-parity of this particle, and these all
prefer no spin and even parity (two fundamental criteria of a Higgs boson
consistent with the SM). This, coupled with the measured interactions of
the new particle with other particles, strongly indicates that it is a Higgs
boson". This also makes the particle the �rst elementary scalar particle to
be discovered in nature.

In July 2017, CERN con�rmed that all measurements still agree with the
predictions of the SM, and called the discovered particle simply "the Higgs
boson". As of April 2018, the LHC has continued to produce �ndings that
con�rm the 2013 understanding of the Higgs �eld and particle.
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The LHC's experimental work since restarting in 2015 has included probing
the Higgs �eld and boson in details, and con�rming whether less common
predictions were correct. In particular, exploration since 2015 has provided
strong evidence of the predicted direct decay into fermions such as pairs of
bottom quarks (3.6σ), described as an important milestone in understanding
its short lifetime and other rare decays, and also to con�rm decay into pairs
of tau leptons (5.9σ). This was described by CERN as being "of paramount
importance to establishing the coupling of the Higgs boson to leptons and
represents an important step towards measuring its couplings to third gen-
eration fermions, the very heavy copies of the electrons and quarks, whose
role in nature is a profound mystery". In July 2018, the ATLAS and CMS
experiments reported observing the Higgs boson decay into a pair of bottom
quarks, which makes up approximately 60% of all of its decays.

Exercise 18.1: Why the detection of the reaction ν̄µ + e− = ν̄µ + e− was
the evidence of discovery of NC wile ν̄e + e− = ν̄e + e− was not.

Exercise 18.2: In the OPAL experiment at LEP, the e�ciencies for se-
lecting W+W− → lνq1q2 and W+W− → q1q̄2q3q̄4 events were 83.8% and
85.9% respectively. After correcting for background, the observed numbers
of lνq1q2 and q1q̄2q3q̄4 events were respectively 4192 and 4592. Determine
the measured value of the W -boson hadronic branching ratio BR(W → qq̄′)
and its statistical uncertainty.

Exercise 18.3: A beam of negative muons can be stopped in matter because
a muon may be: (a) transformed into an electron by emitting a photon; (b)
absorbed by a proton, which goes into an excited state; (c) captured by an
atom into a bound orbit about the nucleus.

Exercise 18.4: The straggling of heavy ions at low energy is mostly a
consequence of: (a) �nite momentum; (b) �uctuating state of ionization; (c)
multiple scattering.

Exercise 18.5: The scattering of an energetic charged particle in matter is
due mostly to interactions with: (a) electrons; (b) nuclei; (c) quarks.

Exercise 18.6: At low E/p the drift velocity of electrons in gases follows
the relation v ∝ E/p. This can be explained by the fact that: (a) the
electrons each gains an energy eE

∫
ds; (b) the electrons thermalize com-

pletely in inelastic encounters with the gas molecules; (c) the cross section
is independent of electron velocity.
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Chapter 19

Gauge Interactions

Now we are ready to start study the Standard Model of Particle Physics
(SM), which (except for gravity) appears to be the theory which explains
our universe. To state the SM in the simplest possible terms, it is:

A Yang-Mills (Gauge) Theory with Gauge Group SU(3) ×
SU(2) × U(1)Y with 15 Weyl fermions, in three copies, of the
representation (3, 2, 1/6)⊕(1, 2,−1/2)⊕(3̄, 1,−2/3)⊕(3̄, 1, 1/3)⊕
(1, 1, 1) (corresponding to the left quark and lepton doublets,
right up-type and down-type quarks and right charged leptons,
respectively) and a single copy of a complex scalar �eld in the
representation (1, 2,−1/2).

19.1 Gauging the Symmetry

First let us mention the Gauge Principle, which is the basis of the theoretical
description of three of the fundamental interactions, strong, weak and elec-
tromagnetic, among the quarks, leptons and the force carrying gauge bosons.
QED is the �rst gauge theory to be established. We therefore can begin our
discussion of gauge theories by looking at QED.

Consider the free Dirac Lagrangian, which is invariant under the global U(1)
transformation

ψ → eiαψ . (19.1)
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We are going to make this symmetry Local, so that α depends on spacetime,
α = α(xµ), and then try to force the Lagrangian to maintain its invariance
under the local U(1) transformation. Making a global symmetry local is
referred to as Gauging the Symmetry.

We start by making the local U(1) transformation:

L = ψ̄(iγµ∂µ −m)ψ → L = ψ̄e−α(x)(iγµ∂µ −m)eiα(x)ψ , (19.2)

and because the di�erential operators will now act on α(x) as well as ψ, we
get extra terms:

L → ψ̄e−α(x)(iγµ∂µ −m)eiα(x)ψ =

= ψ̄(iγµ∂µ −m)ψ − ψ̄γµψ∂µα(x) = (19.3)

= ψ̄[iγµ∂µ −m− γµ∂µα(x)]ψ .

If we want to demand that L still be invariant under this local U(1) trans-
formation, we must �nd a way of canceling the ψ̄γµψ∂µα(x) term. We do
this in the following way.

De�ne some arbitrary �eld Aµ which under the U(1) transformation eiα(x)

transforms according to

Aµ → Aµ −
1

q
∂µα(x) . (19.4)

We call Aµ the Gauge Field for reasons that will be clear soon, and q is
a constant we have included for later convenience. We introduce Aµ by
replacing the standard derivative ∂µ with the Covariant Derivative,

Dµ ≡ ∂µ + iqAµ . (19.5)

To say that a particle 'carries charge' mathematically means that it has the
corresponding term in its covariant derivative. So, if a particle's covariant
derivative is equal to the normal di�erential operator ∂µ, then the particle
has no charge, and it will not interact with anything. But if it carries charge,
it will have a term corresponding to that charge in its covariant derivative.
This will become clearer as we proceed.

So, our Lagrangian is now

L = ψ̄(iγµDµ −m)ψ = ψ̄ [iγµ(∂µ + iqAµ)−m]ψ =

= ψ̄ (iγµ∂µ −m− qγµAµ)ψ . (19.6)
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Under the local U(1) we have

L = ψ̄e−iα(x)
{
iγµ∂µ −m− qγµ

[
Aµ −

1

q
∂µα(x)

]}
eiα(x)ψ =

= ψ̄ [iγµ∂µ −m− γµ∂µα(x)− qγµAµ + γµ∂µα(x)]ψ = (19.7)

= ψ̄ (iγµ∂µ −m− qγµAµ)ψ = ψ̄ (iγµDµ −m)ψ .

So, the addition of the �eld Aµ has indeed restored the U(1) symmetry.
Notice that now it is not only invariant under this local U(1), but also still
under the global U(1) we started with, with the same conserved U(1) current

jµ = ψ̄γµψ . (19.8)

This allows us to rewrite the Lagrangian as

L = ψ̄(iγµDµ −m)ψ = ψ̄(iγµ∂µ −m)ψ − qjµAµ . (19.9)

But we have a problem. If we want to know what the dynamics of Aµ will
be, we naturally take the variation of the Lagrangian with respect to Aµ.
But because there are no derivatives of Aµ, the Euler-Lagrange equation is

∂L
∂Aµ

= −qψ̄γµψ = 0 . (19.10)

But
− qψ̄γµψ = −qjµ . (19.11)

So the equation of motion for Aµ says that the current vanishes, or that

jµ = 0 , (19.12)

and so the Lagrangian is reduced back to the free Dirac lagrangian, which
was not invariant under the local U(1).

We can state this problem in another way. All physical �elds have some sort
of dynamics. If they don't then they are a constant background �eld that
never changes and does nothing. As it is written, equation (19.9) has a �eld
Aµ, but it has no kinetic term, and therefore no dynamics. So, to �x this
problem we must include some sort of dynamics, or kinetic terms, for Aµ.

For an arbitrary �eld Aµ, the appropriate gauge-invariant kinetic term is

Lgauge = −
1

4
FµνF

µν , (19.13)
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where

Fµν ≡ i

q
[Dµ, Dν ] (19.14)

and q is the constant of proportionality introduced in the transformation of
Aµ in equation (19.4). Dµ is the covariant derivative de�ned in (19.5).

Writing out (19.14) and using an arbitrary test function f(x),

Fµνf(x) =
i

q
[Dµ, Dν ]f(x) =

=
i

q
[(∂µ + iqAµ)(∂ν + iqAν)− (∂ν + iqAν)(∂µ + iqAµ)] f =

=
i

q

[
∂µ∂νf + iq∂µ(Aνf) + iqAµ∂νf − q2AµAνf− (19.15)

−∂ν∂µf + iq∂ν(Aµf) + iqAν∂µf − q2AνAµf
]
=

= (∂µAν − ∂νAµ + iq[Aµ, Aν ]) f(x) .

But for each value of µ, Aµ is a scalar function, so the commutator term
vanishes, leaving (dropping the test function f)

Fµν =
i

q
[Dµ, Dν ] = ∂µAν − ∂νAµ . (19.16)

So, writing out the entire Lagrangian we have

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν . (19.17)

Finally, because Aµ is obviously a physical �eld, we can naturally assume
that there is some source term causing it, which we simply call Jµ. This
makes our �nal Lagrangian

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν − JµAµ . (19.18)

So we started with a Lagrangian for a spin-1/2 particle, which had a global
U(1) symmetry. Then, we promote the U(1) symmetry to a local symmetry
(we gauged the symmetry), and then imposed what we had to impose to
get a consistent theory. The gauge �eld Aµ was forced upon us, and the
form of the kinetic term for Aµ is demanded automatically by geometric
considerations.
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The gauge symmetry in electromagnetism is a sort of remnant of the much
deeper and more fundamental U(1) structure of the theory. In other words,
we started with a non-interacting particle, and by specifying U(1) we have
created a theory with not only that same particle, but also electromagnetism.
The Aµ �eld, which upon quantization will be the photon, is a direct conse-
quence of the U(1).

Theories of this type, where we generate forces by specifying a Lie group,
are called Gauge Theories, or Yang-Mills Theories.

19.2 Non-Abelian Case

We are now ready to generalize what we did in section 19.1 to an arbitrary
Lie group. Consider a Lagrangian L with N scalar (or spinor) �elds ϕi (i =
1, . . . , N) that is invariant under a continuous SO(N) or SU(N) symmetry,

ϕi → Uijϕj , (19.19)

where Uij is an N ×N matrix of SO(N) or SU(N).

In section 19.1, we saw that if the group is U(1), gauging it demands the
introduction of the gauge �eld Aµ to preserve the symmetry, which shows
up in the covariant derivative Dµ = ∂µ − ieAµ. To say a �eld carried some
sort of charge means that it has the corresponding term in its covariant
derivative. We then added a kinetic term for Aµ as well as an external
source Jµ. Then, higher order interaction terms can be included in whatever
way is appropriate for the theory.

To generalize this, let's say for the sake of concreteness that our Lie group is
SU(N). An arbitrary element of SU(N) is eigθ

a(x)Ta
, where g is a constant

we have added for later convenience, θa are the N2 − 1 parameters of the
group (see the Exercise 14.3), and the T a are the generator matrices for the
group. Notice that we have gauged the symmetry (in that θ(x) is a function
of spacetime).

By de�nition, we know that the generators T a will obey the commutation
relations

[T a, T b] = ifabcT
c , (19.20)

where fabc are the structure constants of the group.
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When gauging the U(1) in section 19.1, the transformation of the gauge �eld
was given by equation (19.4). For the more general transformation (19.19),
the gauge �eld transforms according to

Aµ → U(x)AµU †(x) +
i

g
U(x)∂µU †(x) , (19.21)

where we have removed the initial notation and it is understood that matrix
multiplication is being discussed. If U(x) is an element of U(1) (so it is
eigθ(x)), then this transformation reduces to

Aµ → eigθ(x)Aµe−igθ(x) +
i

g
eigθ(x) [−ig∂µθ(x)] e−igθ(x) =

= Aµ + ∂µθ(x) . (19.22)

For general SU(N), the U 's are elements of a non-Abelian group, and the
Aµ's are matrices of the same size.

Generalizing, we �nd that a general element of the SU(N) is (changing
notation slightly)

U(x)e−igΓ
a(x)Ta

, (19.23)

with N2 − 1 real parameters Γa. We then build the covariant derivative in
the exact same way as in equation (19.5) by adding a term proportional to
the gauge �eld

Dµ = IN×N∂µ − igAµ (19.24)

(Remember that each component of Aµ is an N × N matrix. They were
scalars for U(1) because U(1) is a 1 × 1 matrix). Or, acting on the �elds,
the covariant derivative is

(Dµϕ)j = ∂µϕj(x)− ig[Aµ(x)]jkϕk(x) , (19.25)

where k is understood to be summed on the last term. It will be understood
from now on that the normal partial derivative term (the �rst term) has an
N ×N identity matrix multiplied by it.

Then, just as in (19.14), we have the �eld strength

Fµν(x) ≡
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (19.26)

where the commutator term doesn't vanish for arbitrary Lie group as it did
for Abelian U(1).
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Recall that for U(1), Fµν is invariant under the gauge transformation on its
own, because the commutator term vanishes. In general, however, the com-
mutator term does not vanish, and we must therefore be careful in writing
down the correct kinetic term. It turns out that the correct choice is

Lkinetic = −
1

2
Tr(FµνF

µν) . (19.27)

So, starting with a non-interacting Lagrangian that is invariant under the
global SU(N), we can gauge the SU(N) to create a theory with a gauge �eld
(or synonymously a 'force carrying� �eld) Aµ, which is an N × N matrix.
So, every Lie group gives rise to a particular gauge �eld (which is a force
carrying particle, like the photon), and therefore a particular force.

For this reason, we discuss forces in terms of Lie groups, or synonymously
Gauge Groups. Each group de�nes a force, e.g. U(1) represents the electro-
magnetic force (as we have seen in section 19.1), while SU(2) describes the
weak force, and SU(3) describes the strong color force.

19.3 Representations of Gauge Groups

As we discussed above, given a set of structure constants fabc, which de�ne
the Lie algebra of some Lie group, we can form a representation of that group,
which we denote R. So, R will be a set of D(R)×D(R) matrices, where D
is the dimension of the representation R. We then call the generators of the
group (in the representation R) T aR, and they naturally obey

[T aR, T
b
R] = ifabcT

c
R . (19.28)

One representation which exists for any of the groups we have considered is
the representation of SO(N) or SU(N) consisting of N × N matrices. We
denote this as the Fundamental Representation. Clearly, the fundamental
representations of SO(2), SO(3), SU(2), and SU(3) are the 2 × 2, 3 × 3,
2×2, and 3×3matrix representations, respectively. So, the fundamental rep-
resentation of SU(2) will be denoted 2, and the generators for SU(2) in the
fundamental representation will be denoted T a2 . Obviously, the fundamental
representation of SU(3) will be 3 with generators T a3 .

Furthermore, let's say we have some arbitrary representation generated by
T aR, obeying (19.28). We can take the complex conjugate of the commutation
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relations to get
[T ⋆aR , T ⋆bR ] = −ifabcT ⋆cR . (19.29)

So, notice that if we de�ne the new set of generators

T ′a
R ≡ −T ⋆aR , (19.30)

then the T ′a
R will obey the correct commutation relations, and will therefore

form a representation of the group as well. If it turns out that

T ′a
R = −(T aR)⋆ = T aR , (19.31)

or if there is some unitary similarity transformation

T aR → U−1T aRU (19.32)

such that
T ′a
R = −(T aR)⋆ = T aR , (19.33)

then we call the representation Real, and the complex conjugate of the T aR's
is the same representation. However, if no such transformation exists, then
we have a new representation, called the Complex Conjugate representation
to R, or the Anti-R representation, which we denote R̄. For example, there
is the fundamental representation of SU(3), denoted 3, generated by T a3 ,
and then there is the anti-fundamental representation 3̄, generated by T a

3̄
.

The representations of a group which will be important to us are the funda-
mental, anti-fundamental, and adjoint.

Exercise 19.1: Construct the covariant derivative for scalar �elds in the
adjoint representation.

Exercise 19.2: Consider two sets of scalar �elds, ϕ1 and ϕ2, which trans-
form as vector representations under the O(n) group and construct the co-
variant derivative for ϕ1.

Exercise 19.3: Show that any Hermitian 3× 3 matrix can be written as a
linear combination of the unit matrix and the eight Gell-Mann matrices.

Exercise 19.4: Suppose it is given an eight dimensional vector: Gνa (a =
1, 2, ..., 8). Write out the form of the covariant derivatives using the matrix
notation.



Chapter 20

The Uni�cation Scheme

20.1 Fermi's Theory for Weak Interactions

Fermi's theory of β decay was the blueprint of the early theoretical de-
scription of the weak interactions, which are responsible not just for the
radioactive β decays of nuclei, but also for the strangeness conserving and
strangeness changing weak decays of the mesons and baryons. This culmi-
nated in the famous V − A theory of weak interactions, according to which
the muon decay,

µ− → νµ + e− + ν̄e , (20.1)

for example, could be described by an e�ective Hamiltonian

Hµ decay
eff = −Gµ√

2

[
Jρ+†
νe J+

νµ,ρ + h.c.
]
, (20.2)

where the Charged Current (CC) is de�ned as:

J+
ρ = ψ̄1γ

ρ(1− γ5)ψ2 ≡ JCCρ . (20.3)

In the same way, the β decay of the neutron could be described by an e�ective
interaction given by

Hβdecayeff = −GF√
2

[
Jρ+†
eν J+

pn,ρ + h.c.
]
, (20.4)

with
Jρ+pn = ψ̄p(1− 1.26γ5)γ

µψn . (20.5)

347
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Generic four fermion interaction responsible for the weak processes (left
panel) and the basic process describing the β decay (right panel).

It was established that when written in terms of the quarks which make up
the mesons and baryons, all the weak processes could be described in terms
of a four fermion, current-current interaction depicted in left panel of the
Figure above, which shows a transition 1 → 2̄ + 3 + 4. For example, the
basic transition describing the n decay

n(udd)→ p(uud) + e− + ν̄e , (20.6)

is given by the current-current interaction depicted in the right panel.

The crux of V − A theory is that only the left chiral fermions are involved
in this weak Hamiltonian. The e�ective Hamiltonian is then written as:

H4fermion
eff = −Gµ√

2

[
Jµ+†
24 J+

31,µ + h.c.
]
=

= −4Gµ√
2

[(
ψ̄3Lγ

µψ1L

) (
ψ̄4Lγµψ2L

)
+ h.c.

]
. (20.7)

The appearance

ψL =
1

2
(1− γ5)ψ (20.8)

in (20.7), indicates that only left chiral fermions are involved in this weak
CC. As we will see later, it is this fact that decides the representation of the
SU(2)L gauge group to which the various fermion �elds belong.

20.2 Decay Constants

We understand the electromagnetic interaction in terms of the electromag-
netic current

Jemµ = ψ̄LγµψL + ψ̄RγµψR (20.9)
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and the electromagnetic �eld Aµ. The corresponding vertex is depicted in
the left panel of the Figure below. The form of e�ective Hamiltonian (20.7)
means that one can similarly think of the weak current J±

µ coupled to a
charged gauge boson W±

µ . The basic transition brought about by the CC
could then be depicted as shown in the right panel of the Figure.

The electromagnetic charge of f ′ di�ers from that of f by one unit and in
case f is strange quark, the strangeness changes by one unit as well. In that
case this current indicates a transition which brings about ∆S = ∆Q = 1,
where S and Q stand for the strangeness and the electromagnetic charge
respectively. While the decay of a neutron n involves the current Jµ+ud , the
decay of Λ for example, involves the current Jµ+us . The strength of the four-
fermion interaction is then decided by gweak of the Figure above.

Experimentally measured values of Gµ and GF , of (20.2) and (20.4), were
somewhat di�erent from each other, though very close, GF ∼ 0.98 Gµ. For
the e�ective Hamiltonian for Λ decay the corresponding coe�cient GΛ was
yet again di�erent from both Gµ and GF , being 0.20 Gµ. The near equal-
ity between Gµ and GF was an indication that the vector current was not
a�ected by the strong interactions of n and p and is the same for e− → ν
transition as for n→ p. This was called the conserved vector current hypoth-
esis.

20.3 Quark Mixing

It was Cabibbo's observation that conservation hypothesis could be consis-
tent with a completely universal charged weak current, i.e. a current which
has the same strength for the leptons as well as the quarks and also for
∆S = 0 and ∆S = 1 alike, if in case of quarks, the basic CC in the Figure
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of the previous section describes a transition

f ′ = u , f = d′ = d cos θc + s sin θc , (20.10)

with sin θc ∼ 12◦. This means that the interaction eigenstate d′ is a lin-
ear combination of the mass eigenstates d and u. Clearly, the orthogonal
combination

s′ = −d sin θc + s cos θc , (20.11)

is an interaction eigenstate coupling with aW± and a new quark with charge
+2/3. This thus indicates existence of the fourth quark: the charm quark c.

As we will see later existence of the fourth quark ensures �avor conservation
of the weak Neutral Currents (NC) at tree level automatically. This then
helps one understand the experimentally observed suppression of the �avor
changing NCs which will be discussed in detail later. Thus the states to be
identi�ed with the interaction eigenstates would be:(

u′

d′

)
=

(
u

d cos θc + s sin θc

)
;(

c′

s′

)
=

(
c

−d sin θc + s cos θc

)
. (20.12)

At this point let us also mention one more feature of the phenomenology of
quark mixing which will be relevant later. In fact, the physics of the K0,
K̄0 mesons not only revealed the existence of suppressed nature of the �avor
changing NCs but also CP violation in K0 - K̄0 system. This CP violation
can also be understood as coming from the above quark-mixing but only if
the mixing matrix involves a phase. For this to be possible we have to have
at least three generations of quarks. This was noted by Kobayashi-Maskawa.
This makes it possible to understand the CP violation observed in the neutral
meson system, in the context of a gauge theory of EW interactions, in terms
of the mixing in the quark sector. However, this requires existence of at least
three generations. Thus, one sees that in some sense, the need to understand
the observed phenomenology of �avor changing NCs and CP violation, in
the framework of a gauge theory, the existence of the c and the t quark was
predicted.

For future reference note that the connection between the mass eigenstates
u, d, c, s, t and b and the interaction eigenstates u′, d′, c′, s′, t′ and b′ is
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given by u′ = u, c′ = c, t′ = t and d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 , (20.13)

where Vud etc. in (20.13) are elements of so called Kobayashi-Maskawa ma-
trix. This describes the interaction eigenstates in terms of the mass eigen-
states.

20.4 Intermediate Bosons

Let us note that the same four fermion interaction that describes the decay
(20.1) can also describe, for example, the scattering processes such as

νµ + e− → νe + µ− , (20.14)

corresponding to 1 = e−, 2 = νµ, 3 = νe and 4 = µ− in the left panel of
the Figure in Sec. 20.1. The same e�ective Hamiltonian as in (20.7) then
also describes this scattering process as well. If one calculates the total
cross-section one gets,

σtot =
G2
µs

π
=

2G2
µmeEνµ
π

. (20.15)

This linear rise of scattering cross-section with s, the square of the center of
mass energy or alternatively Eνµ , is a re�ection of the 'point-like' nature of
the Fermi interaction of (20.7).

It can be seen, by doing a partial wave analysis of the scattering amplitude,
that this behavior implies violation of unitarity when

√
s ≥ 300 GeV . (20.16)

Of course, in practical terms it corresponds to a

Eνµ ≥ 108 GeV (20.17)

and hence not very relevant. However, it is the principle that matters.

A cure to the unitarity problem of the current-current interaction was of-
fered by Schwinger, who postulated the existence of a massive, charged boson
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(called the weak-boson W±). This is the same W± we have already intro-
duced while writing the weak vertex in the Figure of Sec. 20.2. Thus the
point interaction of (20.7) can be understood as an exchange of aW± boson,
in the limit of the said mass MW being much bigger than all the energies in
the system. This is depicted in the Figure below.

The observed short range of the weak force causing the β decay, indicated
that the W± boson is massive, unlike the photon mediating the electromag-
netic interaction which is massless. To summarize, we see that the require-
ment that unitarity bound be respected, indicates the existence of a massive
charged vector boson W± and the four-fermion weak interactions can be
understood as caused by an exchange of this massive boson. The 'massive'
nature of the exchanged boson was also consistent with the observed 'short'
range of the weak interactions. However, if it is a gauge boson, then the
massive nature will also break gauge invariance! Further, the massive nature
of the gauge boson causes problems such as bad high energy behavior of
scattering amplitudes as well as non renormalisability of the theory. How a
massive gauge boson is to be accommodated in the framework of a gauge
theory is going to be the topic of discussion in the next lecture.

Exercise 20.1: A muon at rest lives 10−6 sec and its mass is 100 MeV. How
energetic must a muon be to reach the earth's surface if it is produced high
in the atmosphere (say ∼ 104 m up)?

Exercise 20.2: Suppose to a zeroth approximation that the earth has a
1-gauss magnetic �eld pointing in the direction of its axis, extending out to
104 m. How much, and in what direction, is a muon of energy E normally
incident at the equator de�ected by the �eld?

Exercise 20.3: Estimate the attenuation (absorption/scattering) of a beam
of 50-keV X-rays in passage through a layer of human tissue (no bones!) one
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centimeter thick.

Exercise 20.4: Suppose there exists a neutral particle ψ, which is the strong
isospin singlet. What value you expect for the coupling constants of this
particle with protons and neutrons?
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Chapter 21

Particle Content and Currents

In this chapter we want to write down the particle content for the EW
(Glashow-Salam-Weinberg) model along the all interactions among them.

As we mentioned above the gauge group for the EW model is SU(2)L ×
U(1)Y . The subscript Lmeans that the gauge transformations corresponding
to this gauge group are non-trivial only for the left (chiral) fermions and
the right fermions remain unchanged under it. The direct product means
that these two groups are independent, i.e. the left fermions belonging to
a given representation of SU(2)L will all have the same value of the charge
under U(1)Y . Thus only the left chiral fermions belong to the nontrivial
representation of the SU(2)L group and the right chiral fermions are singlets
under the SU(2)L gauge group. Therefore these have no interactions with
the gauge bosons corresponding to the SU(2)L gauge group.

21.1 Gauge Bosons

For the SU(2) group, each representation is labelled by two quantum num-
bers TL and T3L, where TL takes integral or half integer values (0, 1/2, 1,
3/2... etc.) and for a given TL, T3L takes values from −TL to +TL in steps
of 1. Thus number of �elds belonging to representation labelled by TL is
then 2TL + 1. For singlet representation TL = 0 and for the doublet it is
1/2. Thus a doublet of SU(2)L contains two members with T3L = ±1/2.
The gauge bosons belong to the T = 1 representation (called the adjoint

355
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representation) and hence they are three in number called W a
µ (a = 1, 2, 3).

The U(1)Y gauge group has only one generator, like the QED. We denote
the corresponding single gauge boson as Bµ. The corresponding current
is JYµ and the charge is called hypercharge. The electromagnetic charge of
a fermion is independent of its chirality. On the other hand, the two left
fermions of di�erent electromagnetic charges have to have the same U(1)Y
charge. Thus it is clear that the U(1)Y cannot be identi�ed with U(1)em, i.e.
the hypercharge is di�erent from the electromagnetic charge. Thus U(1)em
arises out of a linear combination of U(1)Y and a U(1) subgroup of SU(2)L.

The gauge groups, the corresponding spin-1 gauge bosons W a
µ and Bµ and

the couplings are indicated in the table below.

Gauge Group Gauge Boson Fields Coupling
SU(2)L W a

µ (a = 1, 2, 3) g2
U(1)Y Bµ g1

21.2 Fermions

If the left fermions belong to the doublet representation of SU(2)L, the
corresponding gauge CC, JWµ , has the same form as the JCCµ of (20.3), of the
V −A current Lagrangian describing the charge changing weak interactions.

Let Y/2 denote the charge of the fermion under the U(1)Y gauge group. The
corresponding transformation is given by

ψ → e−i(g1Y/2)αY (x) ψ , (21.1)

where as for a SU(2)L doublet the gauge transformation is given by

Ψ =

(
f1
f2

)
→ Ψ′ = e−ig2(τ

a/2)αa(x)Ψ . (21.2)

f1 and f2 are the T3L = ±1/2 members of this doublet Ψ respectively. τa/2
are the generators T a for the 2-dimensional fundamental representation.

The fermion content of the EW model is written in the table below.
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Quarks Leptons(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

uR, cR, tR eR, µR, τR
dR, sR, bR

+ anti-quarks + anti-leptons

All the left chiral fermions belong to the doublet representation, with the
up-type quarks and neutrinos having T3L = 1/2 and down-type quarks and
negatively charged leptons having T3L = −1/2. Note that according to this
table there are no right handed neutrinos in the particle spectrum of the
SM. The colour gauge group SU(3)c commutes with the EW gauge group:
SU(2)L × U(1)Y . Hence the EW interactions of a quark are independent of
its colour. Therefore we suppress here the colour index.

21.3 Neutral Bosons Mixing

As already discussed U(1)em is a linear combination of U(1)Y and a U(1)
subgroup of SU(2). This is really the essence of EW uni�cation and is
embodied in Glashow's observation:

Qf = T3L +
Y

2
. (21.3)

Here Qf is the electromagnetic charge in units of |e|, where e is electron
charge, T3L and Y/2 denote the SU(2)L and U(1)Y charges respectively.
Writing the electromagnetic charge as a linear combination of T3L and the
hyper-charge Y , embodies the fact that the carrier of electromagnetic inter-
actions, the photon Aµ will appear as a linear combination of the neutral
vector bosonW 3

µ and the U(1)Y gauge boson Bµ. We can discuss this mixing
without making any explicit reference to the Higgs sector. This is what we
will do �rst and then summarize the details of the SSB. Note that the three
gauge boson �elds W 1

µ , W
2
µ , W

3
µ : all couple only to left handed fermions and

Bµ couples to both the left handed and right handed fermions. Bµ and W 3
µ

mix, giving one zero mass eigenstate γ. One then identi�es the other one
with a new neutral vector boson called Z.

Note here that one can discuss this simply at the level of currents which give
interactions among matter and gauge bosons in terms of the gauge principle,
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without making any reference to a speci�c model which will generate these
mixing and masses. The essence of this mixing is to de�ne two �elds Aµ and
Zµ as a linear combination of Bµ and W 3

µ as:

Aµ = cos θWBµ + sin θWW
3
µ , Zµ = − sin θWBµ + cos θWW

3
µ . (21.4)

Here, θW , called the weak mixing angle, is just an arbitrary parameter de-
noting the mixing between the W 3

µ and Bµ.

21.4 Currents

To see how the electric charge e is related to g1, g2 and sin θW , let us construct
the currents, JWµ and JYµ , the way electromagnetic current was constructed.
To do this we need to know the Y values for the di�erent fermion �elds
written in the table above. Let us consider a single generation of leptons:
e−, νe. From (21.3) we see that the lepton doublet

L1L =

(
νe
e−

)
L

(21.5)

has Y = −1 and e1R = eR which is an SU(2)L singlet has to have Y = −2.
Let us indicate the three lepton doublets written in the last three columns
of the fermions table by Li with i = 1, 2, 3 respectively. We also use QiL
with i = 1, 2, 3 to indicate the quark doublets, as written in the �rst three
columns of the same table. For the quark doublets Qi the hypercharge Y
has value 1/3. For all the right handed quarks the hypercharge is twice the
quark charge and Y = 2Qq, since the value of T3L is zero for all the right
handed �elds.

To construct the physical currents of the EW model, let us start from the
kinetic part of the Lagrangian for all fermions. For the SU(2)L×U(1)Y gauge
theory the partial derivative is to be replaced by the covariant derivative,
which can be written in terms of the hyper charges for the fermions. For a
fermion f which is a member of the doublet Ψ this is given by:

∂µΨL → DµΨL = ∂µΨL − i
g1YΨ
2

BµΨL − ig2W a
µ

τa

2
ΨL . (21.6)

where ΨL = LiL, QiL and YΨ is the hypercharge for the doublet Ψ. For the
case of SU(2)L singlets the covariant derivative is given by

DµfR = ∂µfR − i
g1YfR
2

BµfR . (21.7)
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The kinetic terms for all the fermions can be written as:

Lkin =
3∑
i=1

[
iLiL ∂ LiL + ieiR ∂ e

i
R + iQ′i

L ∂Q
′i
L + iu

′i
R ∂ u

′i
R + id′iR ∂ d

′i
R

]
. (21.8)

Since there are no right handed neutrinos in the strictest version of the SM,
for the lepton sector the mass basis and interaction basis are the same. Using
the expressions for the covariant derivative Dµ of (21.6) and (21.7), along
with (20.13), we �nd the interaction Lagrangian to be

∆Lint =
1

2
g1J

µYBµ + g2

[
1

2
√
2
(Jµ+W+

µ + Jµ−W−
µ ) + Jµ 3W 3

µ

]
, (21.9)

where:

Jµ+ = 2
(
ν̄iL γ

µeiL + ūiL γ
µVijd

j
L

)
= (Jµ−)† ,

JµY = −ν̄iL γµνiL − ēiL γµeiL − 2ēiR γ
µeiR +

1

3
ūiLγ

µuiL +

+
1

3
d̄′iLγ

µd′iL +
4

3
ūiRγ

µuiR −
2

3
d̄′iRγ

µd′iR , (21.10)

Jµ3 =
1

2
ν̄iL γ

µνiL −
1

2
ēiL γ

µeiL +
1

2
ūiL γ

µuiL −
1

2
d̄′iL γ

µd′iL ,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) ,

where Vij denotes the Kobayashi-Maskawa matrix.

The couplings in (21.9) must be rewritten so that one linear combination
of Bµ, W 3

µ couples to the electromagnetic current and an orthogonal one
couples to Jµ 3. For this purpose we may ignore the terms in ∆L depending
on W±. For the remaining part, we may think of the physical �elds Aµ,
Zµ as the result of a rotation in the Bµ, W 3

µ plane, as already discussed in
(21.4). We write the inverse rotation:

W 3
µ = cos θWZµ + sin θWAµ , Bµ = − sin θWZµ + cos θWAµ . (21.11)

Inserting into the Lagrangian (21.9), we �nd:

∆L(Bµ,W 3
µ) =

[
1

2
g1 cos θW JµY + g2 sin θW Jµ 3

]
Aµ +

+

[
−1

2
g1 sin θW JµY + g2 cos θW Jµ 3

]
Zµ . (21.12)
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The expression in the �rst bracket in (21.12) must be equal to eJµ emAµ
where e is the unit of electric charge and Jµ em is given by an expression for
all the charged fermions and can be written as

Jem
µ = −ēiLγµeiL − ēiRγµeiR +

2

3

(
ūiLγµu

i
L + ūiRγµu

i
R

)
−

− 1

3

(
d̄′iLγµd

′i
L + d̄′iRγµd

′i
R

)
. (21.13)

This can happen only if e = g1 cos θW = g2 sin θW . It follows that:

tan θW =
g1
g2

, e =
g1g2√
g21 + g22

. (21.14)

Inserting this into (21.12) we learn that the coupling of the Z-boson is:

1√
g21 + g22

(
−1

2
g21J

µY + g22J
µ 3

)
Zµ ≡ gzJµNCZµ . (21.15)

Thus the weak neutral current is given by:

gzJ
NC
µ =

1√
g21 + g22

(
−1

2
g21J

Y
µ + g22J

3
µ

)
, (21.16)

where gz is the coupling constant we associate to the Z-boson. This is a
convention, because only the combination gzJNC

µ appears in formulae. For
convenience we choose: gz = g2/ cos θW =

√
g21 + g22. With this, the weak

neutral current is:

JZ
µ = JNC

µ = −1

2

g21
g21 + g22

JYµ +
g22

g21 + g22
J3
µ =

= −1

2
sin2 θWJ

Y
µ + cos2 θWJ

3
µ = J3

µ − sin2 θWJ
em
µ , (21.17)

where we have written two di�erent forms that are both useful.

Taking a look at the �rst of (21.10) show us that the charged currents Jµ±

involve only the left chiral fermions and have the so called V(ector)−A(xial
vector) structure. Jem

µ given by (21.13) has pure vector nature. Eqs. (21.10)
and (21.17) clearly show that, unlike the W± bosons, the Z-boson does not
have V −A couplings with the fermions. It must be kept in mind that when
coupling it to Zµ, this current should be multiplied by gz = g2/ cos θW .
Note that the expression of the current will remain the same even when it is
written in terms of the mass eigenstates di of instead of d′i.
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The weak NC can also be written in terms of the T3 and Y of the various
fermions and also as a combination of V and A currents as follows.

JZ
µ =

∑
f

[
f̄γµfLg

f
L + f̄γµfRg

f
R

]
=

[
1

2
gfV f̄γµf −

1

2
gfAf̄γµγ5f

]
. (21.18)

Here the sum is over all fermions f i = ui, di, ei, νi (i = 1, 2, 3). The couplings
gfL, g

f
R, g

f
V and gfA can be read o� from (21.10) and (21.17) to be

gfL = T3(fL)− sin2 θW Qf , gfV = T3(fL) + T3(fR)− 2 Qf sin
2 θW ,

gfR = T3(fR)− sin2 θW Qf , gfA = T3(fL)− T3(fR) . (21.19)

In the above equation, we have written down T3(fR) explicitly, which in
the EW model is zero, with a view to generalize the expressions for the
weak neutral current, should the fermions belong to other representations of
SU(2)L × U(1)Y , other than the one in the EW model. Recall that Qf is
the electromagnetic charge of the fermion in units of positron charge. The
values of gfA, g

f
V , g

f
L and gfR for the fermions of the EW model are given in

the table:

f ν e− u d

gfL
1
2 −1

2 + sin2 θW
1
2 −

2
3 sin

2 θW −1
2 + 1

3 sin
2 θW

gfR 0 sin2 θW −2
3 sin

2 θW
1
3 sin

2 θW

gfA
1
2 −1

2
1
2 −1

2

gfV
1
2 −1

2 + 2 sin2 θW
1
2 −

4
3 sin

2 θW −1
2 + 2

3 sin
2 θW

21.5 Strengths of the CC and NCs

Note now that the form for the NC of (21.18) is exactly the same, for all the
fermions of a given electrical charge and given values of the SU(2)L quantum
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numbers. Since in the EW model, all the quarks or leptons of a given electric
charge and handedness belong to the same representation of SU(2) the weak
NC automatically conserves '�avor', be it the leptonic one or the quark one.
This is indeed quite reassuring since the experiments had shown that while
'�avor' changing charged weak current (21.10) exist, decays caused by '�avor'
changing weak NC, which are either forbidden or suppressed by orders of
magnitude. Their absence at the tree level is automatically guaranteed in
the EW model, just by the particle content.

We see that in the EW model, the weak NC couplings are completely deter-
mined by g2 and sin θW . The weak NC involving νi is pure left handed just
like the corresponding charged current, where (as for the charged fermions)
the V −A mixture depends on the electromagnetic charge of the fermion be-
cause the relative weight of L and R currents is decided by the hypercharge
Y .

While the strength of the axial current is completely decided by the T3
value of f iL, the vector coupling depends on the weak mixing angle θW . The
experimentally determined value of sin2 θW ∼ 0.23. As a result the weak NC
coupling of the charged lepton (e, µ, τ) is in fact close to zero.

The interaction of all the quarks and leptons with the EW gauge bosons is
encoded in the currents Jem

µ , J±
µ and JZ

µ given by (21.13), �rst of (21.10)
and (21.18). In low energy reactions, the appropriate way to adjudge the
strength of processes mediated by the weak NC is to derive the current-
current form of the interaction Lagrangian starting from (21.18). This is
done by considering the matrix element of a four fermion scattering process
and taking the limit in which the mass of the exchanged gauge boson is
in�nite.

Let us consider the scattering process f1+f2 → f1+f2, through the exchange
of a massive W± (i.e. via CC), as indicated in the �gure below.
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The e�ective current-current Lagrangian for this scattering process can be
written as:

LCC
eff = − g22

8M2
W

J+
µ J

−µ = −Gµ√
2
J+
µ J

−µ , (21.20)

with J±
µ as given by (21.10). On comparing with the current-current inter-

actions of the pre gauge theory days, one then gets:

Gµ√
2
=

g22
8M2

W

=
e2

8M2
W sin2 θW

, (21.21)

where
GµVud = GF . (21.22)

It can be noted here that since | sin θW | < 1, the experimentally measured
value of Gµ and e, tells us that MW > 37.43 GeV. For the limiting value of
sin θW ∼ 1 we get MW ∼ 100 GeV.

One can similarly write down the e�ective NC interaction e�ective La-
grangian under the approximation that the Z boson mass is large, by con-
sidering the four-fermion scattering process shown in the Figure below.
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This is given by

LNC
eff = −g

2
z

2

∑
f

JZ,f
µ

∑
f

Jµ,Z,f

 . (21.23)

If one calculates the matrix elements for scattering process (20.14) taking
place via the interaction of (21.20) and (21.23) respectively,MCC andMNC ,
it can be seen that their ratio is given in terms of MZ , MW and sin θW as:

MNC

MCC
=

M2
W

M2
Z cos2 θW

≡ ρ . (21.24)

This e�ective Lagrangian involves couplings g2, g1 and MW , MZ . We can
use the two measured couplings Gµ and αem along with ρ and one arbitrary
parameter of the model the weak mixing angle sin θW . MW , MZ are then
given in terms of these and we have traded g1, g2 for Gµ and αem.

Note also that in these discussions we have completely sidestepped the issue
of how the non-zero masses for the gauge bosons and the fermions written
can be made consistent with gauge invariance. In case of the gauge bosons
the loss of gauge invariance also means loss of renormalizability and hence
consequently of the ability to make any predictions. So one of the problems
to be addressed is how to generate the mass terms below in a gauge invariant
manner.

Lmass =
1

2
M2
ZZµZ

µ +M2
WW

+
µ W

−µ +
∑
i

mi

[
ψ̄iLψiR + ψ̄iRψiL

]
. (21.25)

It should be noted that the sum in (21.25) is over all the fermions except the
neutrinos which are assumed to be massless here in this discussion.

Exercise 21.1: Assume a universal V−A interaction, compute (or estimate)
the ratio of rates: Γ(π− → µ−ν̄)/Γ(π− → e−ν̄). How would this ratio change
if the universal weak interaction coupling were scalar? Pseudoscalar?

Exercise 21.2: Check the unitarity condition for the Kobaiashi-Maskava
matrix. Which elements are restricted due to unitarity requirement?

Exercise 21.3: Find the explicit form for the spinor left-right projection
operators: P 2

L, P
2
R, PLPR, PL + PR.

Exercise 21.4: Write out covariant derivatives for the left and right lep-
tons.
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Chapter 22

The Mechanism of SSB

Spontaneous Symmetry Breaking (SSB) refers to the fact that the lowest
energy state, the vacuum, may not be invariant under all symmetries of the
theory, in other words, several vacua are possible. In this lecture we shall
consider SSB and corresponding mass generation mechanism, which play
signi�cant roles in both particle physics and condensed matter physics.

22.1 The Beginnings of SSB

Historically, the concept of SSB �rst emerged in condensed matter physics.
The prototype case is the 1928 Heisenberg theory of the ferromagnet as an in-
�nite array of spin 1/2 magnetic dipoles, with spin-spin interactions between
nearest neighbors such that neighboring dipoles tend to align. Although the
theory is rotationally invariant, below the critical Curie temperature Tc the
actual ground state of the ferromagnet has the spin all aligned in some par-
ticular direction (i.e. a magnetization pointing in that direction), thus not
respecting the rotational symmetry. What happens is that below Tc there
exists an in�nitely degenerate set of ground states, in each of which the spins
are all aligned in a given direction. A complete set of quantum states can
be built upon each ground state. We thus have many di�erent "possible
worlds" (sets of solutions to the same equations), each one built on one of
the possible orthogonal (in the in�nite volume limit) ground states.

The same picture can be generalized to QFT, the ground state becoming

367
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the vacuum state. This means that there may exist symmetries of the laws
of nature which are not manifest to us because the physical world in which
we live is built on a vacuum state which is not invariant under them. In
other words, the physical world of our experience can appear to us very
asymmetric, but this does not necessarily mean that this asymmetry belongs
to the fundamental laws of nature. SSB o�ers a key for understanding (and
utilizing) this physical possibility.

The concept of SSB was transferred from condensed matter physics to QFT
in the early 1960s, thanks especially to works by Nambu and Jona-Lasinio.
The idea of SSB was introduced and formalized in particle physics on the
grounds of an analogy with the breaking of (electromagnetic) gauge symme-
try in the 1957 theory of superconductivity by Bardeen, Cooper and Schri-
e�er. The application of SSB to particle physics in the 1960s and successive
years led to profound physical consequences and played a fundamental role
in the edi�cation of the SM.

Let us mention the main results that obtain in the case of the spontaneous
breaking of a continuous internal symmetry in QFT:

• Goldstone theorem. In the case of a global continuous symmetry, mass-
less bosons (known as "Goldstone bosons") appear with the sponta-
neous breakdown of the symmetry according to a theorem �rst stated
by Goldstone in 1960. The presence of these massless bosons, �rst seen
as a serious problem since no particles of the sort had been observed
in the context considered, was in fact the basis for the solution � by
means of the so-called Higgs mechanism (see the next point) � of an-
other similar problem, that is the fact that the 1954 Yang-Mills theory
of non-Abelian gauge �elds predicted unobservable massless particles,
the gauge bosons;

• Higgs mechanism. According to a "mechanism" established in a general
way in 1964 independently by (i) Higgs, (ii) Brout and Englert, (iii)
Guralnik, Hagen and Kibble, in the case that the internal symmetry
is promoted to a local one, the Goldstone bosons "disappear" and the
gauge bosons acquire a mass. The Goldstone bosons are "eaten up" to
give mass to the gauge bosons, and this happens without (explicitly)
breaking the gauge invariance of the theory.

Note that this mechanism for the mass generation for the gauge �elds
is also what ensures the renormalizability of theories involving massive
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gauge �elds (such as the Glashow-Weinberg-Salam EW theory devel-
oped in the second half of the 1960s), as �rst generally demonstrated
by Veltman and 't Hooft in the early 1970s;

• Dynamical symmetry breaking. In such theories as the uni�ed model
of EW interactions, the SSB responsible (via the Higgs mechanism)
for the masses of the gauge vector bosons is because of the symmetry-
violating vacuum expectation values of scalar �elds (the so-called Higgs
�elds) introduced ad hoc in the theory.

For di�erent reasons (�rst of all, the initially ad hoc character of these
scalar �elds for which there was no experimental evidence until the re-
sults obtained in 2012 at the LHC) some attention has been drawn to
the possibility that the Higgs �elds could be phenomenological rather
than fundamental, that is bound states resulting from a speci�ed dy-
namical mechanism.

SSB allows symmetric theories to describe asymmetric reality. In short,
SSB provides a way of understanding the complexity of nature without re-
nouncing fundamental symmetries. But why should we prefer symmetric
to asymmetric fundamental laws? In other words, why assume that an ob-
served asymmetry requires a cause, which can be an explicit breaking of the
symmetry of the laws, asymmetric initial conditions, or SSB?

Note that this assumption is very similar to the one expressed by Curie
in his famous 1894 paper. Curie's principle: the symmetries of the causes
must be found in the e�ects (or equivalently, the asymmetries of the e�ects
must be found in the causes), when extended to include the case of SSB, is
equivalent to a methodological principle according to which an asymmetry of
the phenomena must come from the breaking (explicit or spontaneous) of the
symmetry of the fundamental laws. What the real nature of this principle is
remains an open issue.

Finally, let us mention the argument that is sometimes made in the literature
that SSB implies that Curie's principle is violated because a symmetry is
broken "spontaneously", that is without the presence of any asymmetric
cause. Now it is true that SSB indicates a situation where solutions exist
that are not invariant under the symmetry of the law (dynamical equation)
without any explicit breaking of this symmetry. But, as we will see, the
symmetry of the "cause" is not lost, it is conserved in the ensemble of the
solutions (the whole "e�ect").
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22.2 Breaking Global U(1)

Before studding the details of the SSB let us consider some examples of SSB
in �eld theory.

Suppose we have a complex scalar bosons, ϕ and ϕ†, with the Lagrangian,

L = −1

2
∂µϕ†∂µϕ−

1

2
m2ϕ†ϕ . (22.1)

Naturally we can write this as

L = −1

2
∂µϕ†∂µϕ− V (ϕ†, ϕ) , (22.2)

where
V (ϕ†, ϕ) =

1

2
m2ϕ†ϕ . (22.3)

This Lagrangian has the U(1) symmetry we discussed in 19.1.

We can graph V (ϕ†, ϕ), plotting V vs. |ϕ|,

We see a 'bowl' with Vmin at |ϕ|2 = 0. The vacuum of any theory ends up
being at the lowest potential point, and therefore the vacuum of this theory
is at ϕ = 0, as we would expect.

Now, let's change the potential. Consider

V (ϕ†, ϕ) =
1

2
λm2(ϕ†ϕ− Φ2)2 , (22.4)

where λ and Φ are real constants. Notice that the Lagrangian will still have
the global U(1) symmetry from before. But, now if we graph V (ϕ) in the
Re(ϕ) - Im(ϕ) plain, we get,
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where now the vacuum Vmin is represented by the circle at |ϕ| = Φ. In other
words, there are an in�nite number of vacuums in this theory. Because the
circle drawn in the �gure above represents a rotation through �eld space,
this degenerate vacuum is parameterized by eiα, the global U(1). There will
be a vacuum for every value of α, located at |ϕ| = Φ.

In order to make sense of this theory, we must choose a vacuum by hand.
Because the theory is completely invariant under the choice of the U(1)-
phase in eiα, we can choose any α and de�ne that as our true vacuum. So,
we choose α to make our vacuum at ϕ = Φ, or where ϕ is real and equal to
Φ. We have thus, in a sense, Gauged Fixed the symmetry in the Lagrangian,
and the U(1) symmetry is no longer manifest.

Now we need to rewrite this theory in terms of our new vacuum. We therefore
expand around the constant vacuum value Φ to have the new �eld

ϕ ≡ Φ+ h+ iβ , (22.5)

where h and β are new real scalar �elds (so ϕ† = Φ+ h− iβ). We can now
write out the Lagrangian as

L = −1

2
∂µ(h− iβ)∂µ(h+ iβ)−

−1

2
λm2

[
(Φ + h− iβ)(Φ + h+ iβ)− Φ2

]2
=

= −1

2
∂µh∂µh−

1

2
4λm2Φ2h2 − 1

2
∂µβ∂µβ − (22.6)

−1

2
λm2

(
4Φh3 + 4Φhβ2 + h4 + h2β2 + β4

)
.

This is now a theory of a massive real scalar �eld h (with mass =
√
4λm2Φ2),

a massless real scalar �eld β, and �ve di�erent types of interactions (one
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allowing three h's to interact, the second allowing one h and two β's, the
third allowing four h's, the fourth allowing two h's and two β's, and the last
allowing four β's). In other words, there are �ve di�erent types of vertices
allowed in the Feynman diagrams for this theory.

Furthermore, notice that this theory has no obvious U(1) symmetry. For
this reason, writing the �eld in terms of �uctuations around the vacuum we
choose is called 'breaking' the symmetry. The symmetry is still there, but it
can't be seen in this form.

Finally, notice that breaking the symmetry has resulted in the addition of
the massless �eld β. It turns out that breaking global symmetries as we have
done always results in a massless boson. Such particles are called Goldstone
Bosons.

22.3 Breaking Local U(1)

In the previous section, we broke a global U(1) symmetry. In this section, we
will break a local U(1) and see what happens. We begin with the Lagrangian
for a complex scalar �eld with a gauged U(1):

L = −1

2

[
(∂µ − iqAµ)ϕ† (∂µ + iqAµ)ϕ

]
− 1

4
FµνF

µν − V (ϕ†, ϕ) , (22.7)

where we have taken the external source Jµ = 0. Let's once again assume
V (ϕ†, ϕ) has the form of equation (22.4), so the vacuum has the U(1) degen-
eracy at |ϕ| = Φ.

Because our U(1) is now local, we choose α(x) so that not only is the vacuum
real, but also so that ϕ is always real. We therefore expand

ϕ = Φ+ h , (22.8)

where h is a real scalar �eld representing �uctuations around the vacuum we
chose. Now,

L = −1

2
[(∂µ − iqAµ) (Φ + h) (∂µ + iqAµ) (Φ + h)]− 1

4
FµνF

µν −

−1

2
λm2

[
(Φ + h) (Φ + h)− Φ2

]2
= (22.9)

= −1

2
∂µh∂µh−

1

2
4λm2Φ2h2 − 1

4
FµνFµν −

1

2
q2Φ2A2 + Lint ,
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where the allowed interaction terms in Lint include a vertex connecting an
h and two Aµ's, four h's, and three h's.

Before breaking we had a complex scalar �eld ϕ and a massless vector �eld
Aµ with two polarization states (because it is a photon). Now, we have a
single real scalar h with mass =

√
4λm2Φ2 and a �eld Aµ with mass = qΦ.

In other words, our force-carrying particle Aµ has gained mass! We started
with a theory with no mass, and by merely breaking the symmetry, we have
introduced mass into our theory.

This mechanism for introducing mass into a theory, called the Higgs Mech-
anism, was �rst discovered by Higgs in 1960s, and the resulting �eld h is
called the Higgs Boson.

So, whereas the consequence of global symmetry breaking is a massless boson
called a Goldstone boson, the consequence of a local symmetry breaking is
that the gauge �eld, which came about as a result of the symmetry being
local, acquires mass.

22.4 SSB in Non-Abelian Gauge Theory

As we already know, given a �eld transforming in a particular representation
R, the gauge �elds Aµ will be D(R)×D(R) matrices.

Once we know what representation we are working in, and therefore know
the generators T aR, it turns out that it is always possible to write the gauge
�elds in terms of the generators. We can think of the generators as basis
vectors which span the parameter space for the group. Because the gauge
�elds live in the N × N space as well, we can write them in terms of the
generators. That is, instead of the gauge �elds being N × N matrices on
their own, we will use the N × N matrix generators as basis vectors, and
then the gauge �elds can be written as scalar coe�cients of each generator:

Aµ = AµaT
a
R, (22.10)

where a is understood to be summed, and each Aµa is now a scalar function
rather than a D(R) × D(R) matrix (the advantage of this is that we can
continue to think of the gauge �elds as scalars with an extra index, rather
than as matrices).
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As a note, we haven't done anything particularly profound here. We are
merely writing each component of the D(R) × D(R) matrix Aµ in terms
of the D(R) ×D(R) generators, allowing us to work with a scalar �eld Aµa
rather than the matrix �eld Aµ.

We now actually view each Aµa as a separate �eld. So, if a group has N
generators, we say there are N gauge �elds associated with it, each one
having 4 spacetime components µ. In matrix components, we will have

(Aµ)ij = (AµaT
a
R)ij . (22.11)

Then, the covariant derivative will be

(Dµϕ)j = ∂µϕj(x)− ig[Aµa(x)T aR]jkϕk(x) . (22.12)

We may assume that the �eld strength Fµν can also be expressed in terms
of the generators, so that we have

Fµν = Fµνa T a , (22.13)

or
(Fµν)ij = (Fµνa T a)ij . (22.14)

Now, we can write the Lagrangian of non-Abelian vector �eld in terms of
the new basis:

LKin = −1

2
Tr(FµνF

µν) = −1

2
Tr(Fµνa T aFµνbT

b) =

= −1

2
Fµνa FµνbTr(T

aT b) = (22.15)

= −1

4
Fµνa F aµν .

We have raised the index a on the second �eld strength term simply to
explicitly imply the summation over it. The fact that it is raised doesn't
change its value in this case; it is merely notational.

Furthermore, we can invert the expression (22.13):

Fµν = Fµνa T a ⇒ FµνT b = Fµνa T aT b ,

⇒ Tr(FµνT b) = Fµνa Tr(T aT b) =
1

2
Fµνb , (22.16)

⇒ Fµνa = 2Tr(FµνT a) .
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Above we broke the U(1) symmetry, which only had one generator. However,
if we break larger groups we may only break part of it. For example, we will
see that SU(3) has an SU(2) subgroup. It is actually possible to break only
the SU(2) part of the SU(3). So, three of the SU(3) generators are broken
(the three corresponding to the SU(2) subgroup/subalgebra), and the other
�ve are unbroken. Because we are now writing our gauge �elds using the
generators as a basis, this means that three of the gauge �elds are broken,
while �ve of the gauge �elds are not.

Finally, recall from Sec. 22.3 that breaking a local symmetry results in a
gauge �eld gaining mass. We seek now to elucidate the relationship between
breaking a symmetry and a �eld gaining mass. First, we can summarize
as follows: Gauge �elds corresponding to broken generators get mass, while
those corresponding to unbroken generators do not. The unbroken generators
form a new gauge group that is smaller than the original group that was
broken.

In Sec. 22.3, we saw that breaking a symmetry gave the gauge �eld mass.
We can note also the opposite e�ect � giving a gauge �eld mass will break
the symmetry.

To make this clearer, we begin with a very simple example, then move on to
a more complicated example.

22.5 Simple Examples of SSB

Consider a theory with three real massless scalar �elds ϕi (i = 1, 2, 3) and
with Lagrangian

L = −1

2
∂µϕi∂µϕ

i , (22.17)

which is clearly invariant under the global SO(3) rotation

ϕi → Rijϕj , (22.18)

where Rij is an element of SO(3), because the Lagrangian is a dot product
in �eld space, and we know that dot products are invariant under SO(3).

Now, let's say that one of the �elds, say ϕ1, gains mass. The new Lagrangian
will then be

L = −1

2
∂µϕi∂µϕ

i − 1

2
m2ϕ21 . (22.19)
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So this Lagrangian is no longer invariant under the full SO(3) group, which
mixes any two of the three �elds. Rather, it is only invariant under rotations
in �eld space that mix ϕ2 and ϕ3 or SO(2). In other words, giving one �eld
mass broke SO(3) to the smaller SO(2).

As another simple example consider the model with �ve massless complex
scalar �elds ϕi, with the Lagrangian

L = −1

2
∂µϕ†i∂µϕ

i . (22.20)

This will be invariant under any SU(5) transformation. Then let's say we
give two of the �elds, ϕ1 and ϕ2 (equal) mass. The new Lagrangian will be

L = −1

2
∂µϕ†i∂µϕ

i − 1

2
m(ϕ†1ϕ1 + ϕ†2ϕ2) . (22.21)

So now, we no longer have the full SU(5) symmetry, but we do have the
special unitary transformations mixing ϕ3, ϕ4, and ϕ5. This is an SU(3)
subgroup. Furthermore, we can do a special unitary transformation mixing
ϕ1 and ϕ2. This is an SU(2) subgroup. So, we have broken

SU(5) → SU(3)⊗ SU(2) . (22.22)

Before considering a more complicated example of this, we further discuss
the connection between symmetry breaking and �elds gaining mass.

When we introduced SSB, recall that we shifted the potential minimum from
Vmin at ϕ = 0 to Vmin at |ϕ| = Φ. But we were discussing this in very classical
language. We can interpret all of this in a more 'quantum' way in terms of
Vacuum Expectation Values (VEV). As we said, the vacuum of a theory is
de�ned as the minimum potential �eld con�guration. For the Vmin at ϕ = 0
potential, the VEV of the �eld ϕ was at 0, or

⟨0|ϕ|0⟩ = 0 . (22.23)

However, for the Vmin at |ϕ| = Φ potential, we have

⟨0|ϕ|0⟩ = Φ . (22.24)

So, in quantum mechanical language, symmetry breaking occurs when a �eld,
or some components of a �eld, take on a non-zero VEV.



22.6. BREAKING OF SU(N) 377

This seems to be what is happening in nature. At higher energies, there is
some Master Theory with some gauge group de�ning the physics, and all of
the �elds involved have zero VEV's. At lower energies, for whatever reason
(the reason for this is not well understood at the time of this writing), some
of the �elds take on non-zero VEV's, which break the symmetry into smaller
groups, giving mass to certain �elds through the Higgs Mechanism discussed
in Sec. 22.3. We call the theory with the unbroken gauge symmetry at higher
energies the more fundamental theory (analogous to equation (22.2)), and
the Lagrangian which results from breaking the symmetry (analogous to
(22.6)) the Low Energy E�ective Theory.

This is how mass is introduced into the SM. It turns out that if a theory
is renormalizable one can prove that any lower energy e�ective theory that
results from breaking the original theory's symmetry is also renormalizable,
even if it doesn't appear to be. Because the actions that appear to describe
the universe at the energy level we live at (and the levels attainable by current
experiment) are not renormalizable when they have mass terms. We work
with a larger theory which has no massive particles but can be renormalized,
and use the Higgs Mechanism to give various particles mass. So, whereas
the physics we see at low energies may not appear renormalizable, if we can
�nd a renormalizable theory which breaks down to our physics, we are safe.

Now, we consider a slightly more complicated (and realistic) example of
symmetry breaking.

22.6 Breaking of SU(N)

Consider the gauge group SU(N), acting on N complex scalar �elds ϕi
(i = 1, . . . , N) in the fundamental representation N. As in Sec. 22.3, where
we made use of the U(1) symmetry to make the VEV real, we can use SU(N)
to not only make the VEV real, but also to rotate it to a single component
of the �eld, ϕN ,

⟨0|ϕi|0⟩ = 0 , (i = 1, . . . , N − 1)

⟨0|ϕN |0⟩ = Φ . (22.25)

So, we expand ϕN around this new vacuum:

ϕi = ϕi , (i = 1, . . . , N − 1)

ϕN = Φ+ χ . (22.26)
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This means that, in the vacuum con�guration, the �elds will have the form
ϕ1
ϕ2
...
ϕN


vac

=


0
0
...
Φ

 . (22.27)

How will the action of SU(N) be a�ected by this VEV? If we consider a
general element of SU(N) acting on this,

U11 U12 · · · U1N

U21 U22 · · · U2N
...

...
. . . · · ·

UN1 UN2
... UNN



0
0
...
Φ

 =


U1N

U2N
...

UNN

 . (22.28)

So, only elements of SU(N) with non-zero elements in the last column will
be a�ected by this VEV. But the other N − 1 elements' rows and columns
are una�ected. This means that we have an SU(N − 1) symmetry left. Or
in other words, we have broken SU(N)→ SU(N − 1) with this VEV.

Let's consider a speci�c example of the SU(3) case. Notice that exactly
three generators of this group have all zeros in the last column: λ1, λ2, and
λ3. We expect these three to give an SU(2) subgroup. Looking at the upper
left 2× 2 boxes in those three generators, we can see that they are the Pauli
matrices, the generators of SU(2). So, if we give a non-zero VEV to the �elds
transforming under SU(3), we see that they do indeed break the SU(3) to
SU(2). The other �ve generators of SU(3) will be a�ected by the VEV, and
consequently the corresponding �elds will acquire mass.

Exercise 22.1: Why within the SSB mechanism with complex scalar �elds
VEVs are assumed to be real parameters?

Exercise 22.2: Suppose we add a cubic term, ∼ ϕ3 to the Higgs potential
U(ϕ). Show that the degeneracy in the minimum of U(ϕ) is now removed.
Find the true minimum of the potential. Also, show that, as a function of
the parameter in front of cubic term, the VEV changes discontinuously from
-VEV to +VEV as this parameter changes from positive to negative values
going through 0.

Exercise 22.3: Explain why the Higgs potential can contain terms with
only even powers of the �eld.



Chapter 23

SSB in Condensed Matter

As we mentioned in previous chapter, �rst examples of SSB appeared in
condensed matter physics, and the idea was transplanted into particle physics
by analogy. The simple forms of SSB is realized in condensed matter theory.
In this Chapter we shall brie�y mention several such models. We shall largely
restrict ourselves to continuous transitions for which relevant experiments
have been performed.

23.1 Ginzburg-Landau Model of Superconductivity

In the Ginzburg-Landau Model for low-Tc superconductors the scalar e�ec-
tive order parameter �eld ϕ is derived from the L = S = 0 Cooper pairs of
electrons (with momenta close to the Fermi surface) as

ϕ ∼ ⟨ψ↓ψ↑⟩L=S=0 . (23.1)

This is an Abelian Higgs model with the free energy in the absence of external
�elds:

F =

∫
d3x

[
~2

2m∗

∣∣∣∣(− i∇− e∗

~c
A

)
ϕ

∣∣∣∣2 + λ(|ϕ|2 − η2)2
]
, (23.2)

where e∗ = 2e, m∗ = 2me characterize the Cooper pair. The Meissner e�ect,
whereby the magnetic �eld penetrates into the bulk superconductor, has its
penetration length determined by the mass of the vector �eld in the broken

379
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phase. Whether this is a Type-I or Type-II superconductor depends on the
ratio κ of this length to the coherence length (the London length) of the
order parameter ϕ, determined by the Higgs mass. Large κ is Type-II, small
κ is Type-I.

23.2 High-Tc Superconductors

High-Tc superconductivity is a complicated phenomenon. For our purposes,
we adopt an idealized explicitly broken SO(5) model in two dimensions. The
basic idea is that doping an antiferromagnetic leads to d-wave superconduc-
tivity. The bosonic e�ective order parameters are, again, constructed from
fermionic bilinears.

We begin with a global O(3)AF LσM for anti-ferromagnetism with order
parameter �eld (staggered magnetism) n⃗ with potential

V (n⃗) =
λ

4
(n⃗2 − 1)2 . (23.3)

The O(3)AF symmetry is broken to O(2) by any ground state in the manifold
M = S2. We can work equivalently with a NLσM, in which n⃗ is constrained
to |n⃗| = 1. This is extended to a �ve-component order parameter �eld
N⃗ = (ϕ1, n1, n2, n3, ϕ2), with O(5)-invariant potential

V (N⃗) =
λ

4
(N⃗2 − 1)2 . (23.4)

We can work equivalently with a NLσM, in which |N⃗ | = 1. Ultimately we
shall couple ϕ = (ϕ1 + iϕ2) locally to the EM �eld as in Low-Tc supercon-
ductors.

In the �rst instance M = S4. We break the O(5) invariance explicitly to
O(3)AF × SO(2) by the addition of antiferromagnetic and doping terms to
the potential, most simply as

V (ϕ, η⃗) =
1

2
aS |ϕ|2 +

1

2
aAn⃗

2 +
b

4
(|ϕ|2 + n⃗2)2 , (23.5)

where aS , aR < 0. We then couple ϕ to EM as

F =

∫
d2x

[
~2

2m∗

∣∣∣∣(− i∇− e∗

~c
A

)
ϕ

∣∣∣∣2 + ~2

2m∗ (∇n⃗)
2 + V (ϕ, n⃗)

]
. (23.6)
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Increasing the doping drives |aS | > |aR|, making the U(1) ∼ SO(2) super-
conducting direction the global minimum. That is,

O(5) → O(3)AF × SO(2)→ SO(2) , (23.7)

withM = S1. This U(1) ∼ SO(2) is then broken as for the low-temperature
superconductors. The nature of the transition is more complicated than the
Type-I or Type-II options of the low-temperature case.

23.3 Super�uid 3He

3He is a Fermi Liquid, which can become super�uid by the formation of
p-wave (L = S = 1) 'Cooper pairs' of 3He atoms. L and S are uncoupled
at short distances, to give a global symmetry group

G = SO(3)L × SO(3)S × U(1)N . (23.8)

The e�ective order parameters form a 3× 3 matrix Aαi(x), formed from the
Fermi bilinears ⟨ψ(x)ψ(x)⟩L=S=1. The label i = 1, 2, 3 is the orbital angular
momentum label and a = 1, 2, 3 the spin label. The U(1)N describes the
overall phase freedom. Above the transition all the elements of the matrix
have zero values. Below the transition, some of these quantities become non-
zero. The symmetry of the order parameter after the transition corresponds
to the manifold of symmetries which remain unbroken.

The free energy of these states can be expressed in the framework of the
phenomenological Ginzburg-Landau theory by a potential

VGL(A) = −αA∗
a,iAa,i + β1A

∗
a,iA

∗
a,iAb,jAb,j +

+β2A
∗
a,iAa,iA

∗
b,jAb,j + β3A

∗
a,iA

∗
b,iAa,jAb,j + (23.9)

+β4A
∗
a,iAb,iA

∗
b,jAa,j + β5A

∗
a,iAb,iAb,jA

∗
a,j .

The di�erent possible symmetries of the order parameter Aai are identi�ed
with local minima and saddle points in this 18-dimensional energy surface.
There are two stable phases;

• The A phase, in which

SO(3)S × SO(3)L × U(1)N → SO(2)Sz × U(1)Lz−N/2 × Z2 .
(23.10)
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The manifold of ground states is

MA = G/HA = S2 × SO(3)/Z2 . (23.11)

The order parameter in the A phase ground state is anisotropic in both
spin and orbital spaces (the 'axial' state).: most simply, it takes the
form

A0
a,i = ∆A ẑa(x̂i + iŷi) , (23.12)

where x̂, ŷ, ẑ are unit vectors in the x, y, z directions respectively.

• The B phase, in which the orbital and spin angular momenta are locked
together as

SO(3)S × SO(3)L × U(1)N → SO(3)S+L . (23.13)

The manifold of ground states is now

MB = G/HB = S1 × SO(3) . (23.14)

As a result, Aa,i resembles a rotation matrix. Speci�cally, in the bulk
B phase, Aa,i reduces to the arbitrary orthogonal rotation matrix Ra,i,

Aa,i = ∆Ra,ie
iΦ . (23.15)

The energy balance between theA andB phases is determined by the relation
between the parameters βi. At zero pressure, the B phase corresponds to the
absolute minimum, while at pressures above 20 bar there is a temperature
range in which the A phase is preferred.

23.4 Super�uid 4He:

This is the global O(2) Goldstone model with the complex order parameter
�eld

ϕ = ρeiθ . (23.16)

In the 2-�uid model ns = ρ2 is the super�uid density and

vs =
~
m
∇θ (23.17)

the super�uid velocity. The Goldstone mode describes sound.
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23.5 Other Systems

There are other systems whose transitions are understood well, which po-
tentially have parallels with the early universe. In particular, we would cite:

• Uniaxal nematic liquid crystals, for which the order parameter in the
nematic phase is the non-oriented director vector with ground state
manifold RP 2 = S2/Z2. The transition is �rst order. However, when
considering symmetry breaking at the interface of an isotropic-nematic
transition the anchoring of the director at the interface forces it to lie on
a cone, whereby the order parameter space is a circle S1, corresponding
to the familiar U(1) breaking.

• Bose-Einstein condensates (BEC), which allow for a great variety of
symmetry breaking if species of atoms are mixed. For example, con-
sider two-species BEC (two di�erent ultra-cold atomic gases in a trap)
with order parameter �elds ϕa(x) (a = 1, 2). The trap-independent
part of the potential can be written as

V = λ1(|ϕ1|2 − η21)2 + λ2(|ϕ2|2 − η22)2 + β|ϕ1|2|ϕ2|2 , (23.18)

with tunable parameters, which is no more than (23.5) rewritten for
SO(4). For a single species (1st term) we have an O(2) symmetry that
is totally broken, as in 4He, and for two species an O(2)×O(2) sym-
metry, broken to O(2), with similarity to the breaking of the residual
symmetry in igh-Tc superconductors.

In next section we shall consider the example of SSB in non-relativistic clas-
sical theory.

23.6 SSB in Classical Mechanics

The U(1) gauge �eld is usually induced from the gauge principle in a quan-
tum theory. However, the gauge principle is alive also for the symmetry of
translation in a non-relativistic classical theory and without any phase vari-
able one can obtain the gauge �eld. Using this �eld theory it can be obtained
the SSB and Higgs mechanism which is similar to the super-conductivity.
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Let us start with N non-relativistic free particles in D-dimensional space
with the Lagrangian:

L (z(t), ż(t)) =
m

2

N∑
k=1

ż2k . (23.19)

Then we can construct the conserved current �eld as

j(x, t) =

N∑
k=1

żk(t)δ
D (x− zk(t)) , ρ(x, t) =

N∑
k=1

δD (x− zk(t)) , (23.20)

where we take the convention zk ̸= zm if k ̸= m. Using above current �eld,
we can change the free particle's action into the form:

L =

∫
dDx

[
m

2ρ
j2 + α(∇ · j+ ρ̇)

]
, (23.21)

where the �rst term reduces to the original Lagrangian by putting the form of
current and after the space integration. The second term insures the current
conservation and α is the Lagrange multiplier �eld. Since this action has no
local gauge invariance, the system is second class and its constraint analysis
is done straightforward.

The Euler-Lagrange equation leads to three equations

∇ · j+ ρ̇ = 0 , ∇α =
m

ρ
j , α̇ = − m

2ρ2
j2 . (23.22)

By using the second equation of above ones, we can change the Lagrangian
into the form

L =

∫
dDx

[
−ρα̇− ρ

2m
(∇α)2

]
. (23.23)

This is equal to the Lagrangian for Schrödinger �eld

L =

∫
dDx

[
i~Ψ∗∂tΨ−Ψ∗ĤΨ

]
, Ĥ = − ~2

2m
∇2 , (23.24)

with
Ψ ∼

√
ρ(t) eiα(x,t)/~, (23.25)

where we take the approximation that ρ changes slowly in space, and we
have neglected the total derivative. From (23.24) we can �nd correspondence
between Lagrange multiplier �eld α and quantum mechanical phase variable.
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Now we go back to Lagrangian (23.21). This Lagrangian has the symmetry
of global translation for multiplier �eld.

δα(x, t) = C , (23.26)

where C is constant. The Noether current for this translation is the current
appearing in action as dynamical variable. Let us extend this translation to
the local one. The local translation,

δα(x, t) = θ(x, t) , (23.27)

does not change the action only when we extend the derivative for α �eld as

∂µα(x, t) → Dµα(x, t) ≡ ∂µα(x, t) +Aµ(x, t) , (23.28)

where the transformation law for Aµ is

δAµ(x, t) = −∂µθ(x, t) . (23.29)

We used here the relativistic notation. Notice that this is not the usual
covariant derivative, and Dµα(x, t) is not only covariant but also invariant
under the local translation. Using the notation

jµ = (ρ, j1, j2, j3) , (23.30)

our local gauge invariant action takes the form:

S =

∫
dDxdt

[
m

2ρ
j2 − jµAµ + α∂µj

µ

]
. (23.31)

So we get the usual gauge coupling.

Solving the constraint (current conservation), we �nd the solution as the form
of currents (23.20), and by putting them into the above action we obtain the
gauge coupled action for particles.

S =

∫
dt

N∑
k=1

[m
2
ż2k − żik Ai(zk, t)−A0(zk, t)

]
. (23.32)

In this way we can introduce U(1) gauge �eld by gauge principle completely
in classical theory. The local symmetry is not the U(1) transformation but
1-dimensional translation. The reason why the multiplier �eld corresponds
to the phase is the following. In quantum theory the translation of phase
induced the current conservation, and in our case the same job is done by
the multiplier �eld. So they are corresponding each other in the sense of
gauge transformation.
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23.6.1 Field Equations

We consider the free �eld equation given by the action,

S =

∫
dDxdt

[
−ρα̇− ρ

2m
(∇α)2

]
. (23.33)

The Euler-Lagrange equations give

α̇+
1

2m
(∇α)2 = 0 ,

ρ̇+
1

m
∇ · (ρ∇α) = 0 . (23.34)

The solution of the �rst non-linear equation has the form:

α(x, t) = 2mC (|x⃗− x⃗0| − Ct) +D , (23.35)

where x⃗0, C, D are the integration constant. By using the notation r =
|x⃗− x⃗0|, the solution of the second equation in (23.34) is given as,

ρ(x, t) =

∫
dω
A(ω)

r2
eiω(t−r/2C). (r ̸= 0) (23.36)

The green function, which is described by

˙ρG +
1

m
∇ · (ρG∇α) = δ3 (x⃗− x⃗0) δ(t) , (23.37)

is given as

ρG(x⃗, x⃗0, t) =
1

8πC
√
2mr2

δ
(
t− r

2C

)
. (23.38)

This solution says that particle density moves at the constant speed 2C
which is determined by the initial condition. This is essentially classical
picture, and much di�erent from the Schrödinger equation, where the equa-
tion is di�usion type and propagation belongs to that one. If we work with
Schrödinger equation, we should add −~2(∇ρ)2/8mρ to the action (23.33).
Then the �rst equation of (23.34) changes to include ρ dependent term to
be highly non-linear equation, even though the Schrödinger equation for the
function (23.25) is simple linear one.
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23.6.2 SSB and Higgs Mechanism

Let us include the gauge �eld into the action as above,

S =

∫
dDxdt

[
−ρα̇− ρ

2m
(∇α−A(x, t))2 + ρA0

]
, (23.39)

where we write A = Ak = −Ak in usual relativistic manner. The Noether
current corresponds to the translation invariance is

j0 = ρ ,

j =
ρ

m
(∇α−A) . (23.40)

Therefore the Noether charge Q is given by

Q =

∫
d3x ρ(x) , (23.41)

and induce the in�nitesimal translation of α.

Let us consider the quantization of this �eld theory. The canonical momen-
tum conjugate to density ρ is the "classical-phase" α and we get

[ρ(x), α(y)] = i~δ3(x− y) . (23.42)

This relation induce the relation

⟨0|[Q,α(x)]|0⟩ = i~ = const . (23.43)

This means the SSB and Nambu Goldstone boson is the α �eld.

If we add the kinetic term of gauge �eld in (23.33), we can perform the gauge
transformation for gauge �eld freely. The gauge transformation

Aµ → A′
µ = Aµ + ∂µα , (23.44)

"gauge out" the α �eld, and the action (23.33) takes the form:

S =

∫
dDxdt

[
− ρ

2m
A2(x, t)− ρA0 − 1

4
FµνFµν

]
. (23.45)

ρ is no more dynamical variable. The equation for gauge �eld shows that it
gets the mass

M =

√
ρ q2

m
, (23.46)
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where we add the electric charge q to the gauge coupling. This is the plasma
frequency.

Even if we do not gauge out the α �eld, the electric current has the form:

jq = −
ρ̄ q2

m
(A−∇α) , (23.47)

and taking rotation, we obtain

∇× jq = −
ρ̄ q2

m
B . (23.48)

This is the same as the London equation for super-conductors. Here we gave
the condition by hand

ρ = ρ̄+ δρ ∼ ρ̄ = const . (23.49)

So we have the anti-magnetism just like super-conductivity. Note that this
analogy is not complete, our classical �eld theory should be compared to
the charged boson models rather than super-conductivity theory, since for
fermions the ansatz (23.25) cannot be applied.

Exercise 23.1: Within the scalar QED with Higgs phenomena consider the
static case ∂tϕ = ∂tA

i = 0 and A0 = 0.
(a) Find the equation of motion for Ai and expression for the current with
SSB (the London equation), from which follows the Meissner e�ect;
(b) The resistivity for the system ρ is de�ned by E⃗ = ρJ⃗ . Show that, in this
case of spontaneous symmetry breaking, ρ = 0, and we have superconduc-
tivity.



Chapter 24

Higgs Mechanism in SM

In SM gauge invariance (and therefore renormalizability) does not allow mass
terms in the Lagrangian for the gauge bosons or for chiral fermions. Massless
gauge bosons are not acceptable for the weak interactions, which are known
to be short-ranged. Hence, the gauge invariance must be broken sponta-
neously, which preserves the renormalizability. The idea is that the lowest
energy (vacuum) state does not respect the gauge symmetry and induces
e�ective masses for particles propagating through it.

24.1 Gauge Bosons Masses

Let us introduce the complex vector

v = ⟨0|ϕ|0⟩ = const , (24.1)

which has components that are the Vacuum Expectation Values (VEV) of
the various complex scalar �elds. As it was discussed in previous sections v
is determined by rewriting the Higgs potential as a function of v,

V (ϕ)→ V (v) , (24.2)

and choosing v such that V is minimized. That is, we interpret v as the lowest
energy solution of the classical equation of motion. The quantum theory is
obtained by considering �uctuations around this classical minimum,

ϕ = v + ϕ′ . (24.3)

389
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Note that it su�ces to consider constant v because any space or time depen-
dence of v would increase the energy of the solution. Also, one can take

⟨0|Aµ|0⟩ = 0 , (24.4)

because any non-zero vacuum value for a higher-spin �eld would violate
Lorentz invariance. However, these extensions are involved in higher energy
classical solutions (topological defects), such as monopoles, strings, domain
walls, and textures.

The single complex Higgs doublet in the SM can be rewritten in a Hermitian
basis as

ϕ =

(
ϕ+

ϕ0

)
=

(
1√
2
(ϕ1 − iϕ2)

1√
2
(ϕ3 − iϕ4)

)
, (24.5)

where
ϕi = ϕ†i (24.6)

represent four Hermitian �elds. In this new basis the Higgs potential becomes

V (ϕ) =
1

2
µ2

(
4∑
i=1

ϕ2i

)
+

1

4
λ

(
4∑
i=1

ϕ2i

)2

, (24.7)

which is clearly O(4) invariant. Without loss of generality we can choose the
axis in this four-dimensional space so that

⟨0|ϕi|0⟩ = 0 , (i = 1, 2, 4)

⟨0|ϕ3|0⟩ = v . (24.8)

Thus,

V (ϕ)→ V (v) =
1

2
µ2v2 +

1

4
λv4 , (24.9)

which must be minimized with respect to v. Two important cases are illus-
trated in Figure below.

φ

ν− ν

V (φ)
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• For µ2 > 0 (dashed line) the minimum occurs at v = 0. That is, the
vacuum is empty space and SU(2)×U(1) is unbroken at the minimum;

• For µ2 < 0 (solid line) the v = 0 symmetric point is unstable, and the
minimum occurs at some nonzero value of v which breaks the SU(2)×
U(1) symmetry.

The extremum point is found by requiring

V ′(v) = v(µ2 + λv2) = 0 , (24.10)

which has the solution

v =

√
−µ2
λ

(24.11)

at the minimum. The solution for −v can also be transformed into this
standard form by an appropriate O(4) transformation. The dividing point
µ2 = 0 cannot be treated classically. It is necessary to consider the one loop
corrections to the potential, in which case it is found that the symmetry is
again spontaneously broken.

We are interested in the case µ2 < 0, for which the Higgs doublet is replaced
by its classical value (in �rst approximation),

ϕ → 1√
2

(
0
v

)
≡ v . (24.12)

The isotopical spin generators L1 and L2, and the generator L3 − Y are
spontaneously broken, e.g.

L1v ̸= 0 . (24.13)

On the other hand, the vacuum carries no electric charge,

Qv = (L3 + Y )v = 0 , (24.14)

so the U(1)em of electromagnetism is not broken. Thus, the EW SU(2) ×
U(1) group is spontaneously broken to the U(1)em subgroup,

SU(2)× U(1)Y → U(1)em . (24.15)

To quantize around the classical vacuum, write

ϕ = v + ϕ′ , (24.16)
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where ϕ′ are quantum �elds with zero vacuum expectation value. To dis-
play the physical particle content it is useful to rewrite the four Hermitian
components of ϕ′ in terms of a new set of variables using the Kibble trans-
formation:

ϕ =
1√
2
ei

∑
ξiLi

(
0

v +H

)
. (24.17)

H is a Hermitian �eld which will turn out to be the physical Higgs scalar.

If we had been dealing with a global SSB the three Hermitian �elds ξi would
be the massless pseudo scalar Nambu-Goldstone bosons that are necessarily
associated with broken symmetry generators. However, in a gauge theory
they disappear from the physical spectrum. To see this it is useful to go to
the unitary gauge

ϕ → ϕ′ = e−i
∑
ξiLi

ϕ =
1√
2

(
0

v +H

)
, (24.18)

in which the Goldstone bosons disappear. In this gauge, the scalar covariant
kinetic energy term takes the simple form

(Dµϕ)
†Dµϕ =

1

2
(0 v)

[g2
2
τ iW i

µ +
g1
2
Bµ

]2( 0
v

)
+H terms ,

⇒ M2
WW

+µW−
µ +

M2
Z

2
ZµZµ +H terms , (24.19)

where the kinetic energy and gauge interaction terms of the physical H
particle have been omitted. Thus, SSB generates mass terms for the W and
Z gauge bosons

W± =
1√
2
(W 1 ∓ iW 2) ,

Z = − sin θWB + cos θWW
3 . (24.20)

The photon �eld
A = cos θWB + sin θWW

3 (24.21)

remains massless. The masses are

MW =
g2v

2
(24.22)

and
MZ =

√
g21 + g22

v

2
=

MW

cos θW
, (24.23)
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where the weak angle is de�ned by

tan θW ≡
g1
g2

⇒ sin2 θW = 1−
M2
W

M2
Z

. (24.24)

One can think of the generation of masses as due to the fact that the W
and Z interact constantly with the condensate of scalar �elds and therefore
acquire masses, in analogy with a photon propagating through a plasma.
The Goldstone boson has disappeared from the theory but has reemerged as
the longitudinal degree of freedom of a massive vector particle.

It will be seen below that
GF√
2
∼ g22

8M2
W

, (24.25)

where
GF = 1.16637(5)× 10−5 GeV −2 (24.26)

is the Fermi constant determined by the muon lifetime. The weak scale v is
therefore

v =
2MW

g
≃ (
√
2GF )

−1/2 ≃ 246 GeV . (24.27)

Similarly,
g2 =

e

sin θW
, (24.28)

where e is the electric charge of the positron. Hence, to lowest order

MW =MZ cos θW ∼
(πα/

√
2GF )

1/2

sin θW
, (24.29)

where
α ∼ 1

137.036
(24.30)

is the �ne structure constant. Using

sin2 θW ∼ 0.23 , (24.31)

obtained from NC scattering, one expects

MW ∼ 78 GeV, MZ ∼ 89 GeV . (24.32)

These predictions are increased by ∼ (2− 3) GeV by loop corrections.

The W and Z were discovered at CERN in 1983. Subsequent measurements
of their masses and other properties have been in excellent agreement with
the SM expectations (including the higher-order corrections). The current
values are

MW = 80.398± 0.025 GeV , MZ = 91.1876± 0.0021 GeV . (24.33)
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24.2 The Higgs Sector in Lagrangian

The Higgs is a scalar �eld in the (2,−1/2) representation of SU(2)⊗ U(1).
We know that the Higgs Lagrangian will have the kinetic term and some
potential:

Lϕ = (Dµϕ)†Dµϕ− V (ϕ) =M2
WW

µ+W−
µ

(
1 +

H

v

)2

+

+
1

2
M2
ZZ

µZµ

(
1 +

H

v

)2

+
1

2
(∂µH)2 − V (ϕ) . (24.34)

This includes the W and Z mass terms and also the ZZH2, W+W−H2

and the induced ZZH and W+W−H interactions (as shown in the �gure
below). The last two terms are the canonical Higgs kinetic energy term and
the potential.

After symmetry breaking the Higgs potential in unitary gauge becomes

V (ϕ) = −µ
4

4λ
− µ2H2 + λvH3 +

λ

4
H4 . (24.35)

The �rst term in the Higgs potential V is a constant,

⟨0|V (v)|0⟩ = −µ
4

4λ
. (24.36)



24.3. YUKAWA INTERACTIONS 395

It re�ects the fact that V was de�ned so that

V (0) = 0 , (24.37)

and therefore
V < 0 (24.38)

at the minimum. Such a constant term is irrelevant to physics in the absence
of gravity, but will be seen later to be one of the most serious problems of the
SM when gravity is incorporated because it acts like a cosmological constant
much larger (and of opposite sign) than is allowed by observations.

The second term in the Higgs potential (24.35) represents a (tree-level) mass

MH =
√
−2µ2 =

√
2λ v , (24.39)

for the Higgs boson. The weak scale is given in (24.27), but the quartic
Higgs coupling λ is unknown, so MH is not predicted. A priori, λ could be
anywhere in the range 0 ≤ λ <∞, but from the observed Higgs mass value,
MH ≈ 125 GeV, from (24.27) and (24.39) one can obtain λ ≈ 0.13.

The third and fourth terms in (24.35) represent the induced cubic and quartic
interactions of the Higgs scalar, shown in the table and �gure above.

24.3 Yukawa Interactions

The Yukawa interaction in the unitary gauge becomes

−LYukawa →
N∑

m,n=1

ū0mLΓ
u
mn

(
v +H√

2

)
u0mR + (d, e, ν) terms + h.c. =

= ū0L (M
u + huH)u0R + (d, e, ν) terms + h.c. , (24.40)

where
u0L =

(
u01Lu

0
2L · · ·u0FL

)T
(24.41)

is an N -component column vector, with a similar de�nition for u0R. M
u is

an N ×N fermion mass matrix

Mu
mn =

1√
2
Γumnv (24.42)
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induced by spontaneous symmetry breaking, and

hu =
Mu

v
=
g2M

u

2MW
(24.43)

is the Yukawa coupling matrix.

In general M is not diagonal, Hermitian, or symmetric. To identify the
physical particle content it is necessary to diagonalizeM by separate unitary
transformations AL and AR on the left- and right-handed fermion �elds. In
the special case that Mu is Hermitian one can take

AL = AR . (24.44)

Then,

Au†L M
uAuR =Mu

D =

 mu 0 0
0 mc 0
0 0 mt

 (24.45)

is a diagonal matrix with eigenvalues equal to the physical masses of the
charge-2/3 quarks.

From (24.45) and its conjugate one has

Âu†L M
uMu†ÂuL = Âu†RM

u†MuÂuR =Mu2
D . (24.46)

But MM † and M †M are Hermitian, so AL,R can then be constructed by
elementary techniques, up to overall phases that can be chosen to make the
mass eigenvalues real and positive, and to remove unobservable phases from
the weak CC.

Similarly, one diagonalizes the down quark, charged lepton, and neutrino
mass matrices by

Ad†LM
dAdR =Md

D ,

Ae†LM
eAeR =M e

D , (24.47)

Aν†L M
νAνR =Mν

D .

In terms of these unitary matrices we can de�ne mass eigenstate �elds

uL = Au†L u
0
L = (uL cL tL)

T , (24.48)

with analogous de�nitions for

uR = Au†R u
0
R , dL,R = Ad†L,Rd

0
L,R ,

eL,R = Ae†L,Re
0
L,R , νL,R = Aν†L,Rν

0
L,R . (24.49)



24.3. YUKAWA INTERACTIONS 397

Typical estimates of the quark masses are

mu ∼ 1.5− 3 MeV , md ∼ 3− 7 MeV ,

ms ∼ 70− 120 MeV , mc ∼ 1.5− 1.8 GeV, (24.50)

mb ∼ 4.7− 5.0 GeV , mt = 170.9± 1.8 GeV .

These are the current masses: for QCD their e�ects are identical to bare
masses in the QCD Lagrangian. They should not be confused with the con-
stituent masses of order 300 MeV generated by the spontaneous breaking of
chiral symmetry in the strong interactions. Including QCD renormalizations,
the u, d, and s masses are running masses evaluated at 2 GeV2, while mc,b,t

are pole masses.

So far we have only allowed for ordinary Dirac mass terms of the form ν̄0mLν
0
nR

for the neutrinos, which can be generated by the ordinary Higgs mechanism.
Another possibility are lepton number violating Majorana masses, which
require an extended Higgs sector or higher-dimensional operators. It is not
clear yet whether Nature utilizes Dirac masses, Majorana masses, or both.
What is known, is that the neutrino mass eigenvalues are tiny compared
to the other masses, . O(0.1) eV, and most experiments are insensitive to
them. In describing such processes, one can ignore Γν , and the νR e�ectively
decouple. Since

Mν ∼ 0 (24.51)

the three mass eigenstates are e�ectively degenerate with eigenvalues 0, and
the eigenstates are arbitrary. That is, there is nothing to distinguish them
except their weak interactions, so we can simply de�ne νe, νµ, ντ as the
weak interaction partners of the e, µ, and τ , which is equivalent to choosing

AνL ≡ AeL (24.52)

so that
νL = Ae†L ν

0
L . (24.53)

Of course, this is not appropriate for physical processes, such as oscillation
experiments, that are sensitive to the masses or mass di�erences.

In terms of the mass eigenstate fermions,

− LYukawa =
∑
i

miψ̄iψi

(
1 +

g2
2MW

H

)
=
∑
i

miψ̄iψi

(
1 +

H

v

)
. (24.54)
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The coupling of the physical Higgs boson to the ith fermion is g2mi/2MW ,
which is very small except for the top quark. The coupling is �avor-diagonal
in the minimal model: there is just one Yukawa matrix for each type of
fermion, so the mass and Yukawa matrices are diagonalized by the same
transformations.

In generalizations in which more than one Higgs doublet couples to each
type of fermion there will in general be �avor-changing Yukawa interactions
involving the physical neutral Higgs �elds. There are stringent limits on such
couplings; for example, the KL −KS mass di�erence implies

h

MH
< 10−6GeV−1 , (24.55)

where h is the d̄s Yukawa coupling.

Exercise 24.1: Let ϕi be the scalar �elds in the vector representation of
the SU(n) group.
(a) Write down the SU(n) invariant scalar potential for ϕi;
(b) Work out the possible pattern for the spontaneous symmetry breaking
for ϕi. How many Goldstone bosons are there in this case?
(c) Discuss the possible spontaneous symmetry breaking pattern for the case
where there are two such scalar �elds ϕ1i and ϕ

2
i .

Exercise 24.2: Suppose ϕji are scalar �elds in the adjoint representation of
an SU(n) group.
(a) Write down the scalar potential for ϕji ;
(b) Work out the possible pattern for the SSB for ϕji .

Exercise 24.3: According to theWeinberg-Salam model, the Higgs bosonH
couples to every elementary fermion ψ in the form: emψ/mWHψ̄ψ, where e
is the charge of the electron, and mW is the mass of theW boson. Assuming
that the Higgs boson decays primarily to the known quarks and leptons,
calculate its lifetime in terms of the Higgs mass.

Exercise 24.4: Find the HZZ coupling.

Exercise 24.5: Draw the lowest-order Feynman diagrams for the processes
e+e− → HZ and e+e− → Hνeν̄e, which are the main Higgs production
mechanism at a future high-energy linear collider.

Exercise 24.6: Calculate the partial decay width of a Higgs boson into a
fermion-antifermion pair.
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Chapter 25

The SM Lagrangian

As it was already mentioned in previous lectures the SM is based on the
SU(3)× SU(2)× U(1) Lagrangian, which can be written in the form:

LSU(3)×SU(2)×U(1) = Lgauge + Lϕ + Lf + LYukava . (25.1)

The strong interaction part (QCD) is an SU(3) gauge theory, which will
be considered in the next lecture. Here we will descuse in details the four
constituents of (25.1) for EW, i.e. SU(2)× U(1) theory.

25.1 The Gauge Part

The gauge part of the the SM Lagrangian (25.1) can be written as the sum
of the kinetic terms for the gauge bosons of the QCD and EW model,

Lgauge = LQCD
gauge + LEWgauge . (25.2)

QCD will be considered in the next lecture. The EW gauge part (without
gluons),

LEWgauge = −
1

4
W a
µνW

µν
a −

1

4
BµνB

µν , (a = 1, 2, 3) (25.3)

contains the SU(2) and U(1) strength tensors:

Bµν = ∂µBν − ∂νBµ ,
W a
µν = ∂µW

a
ν − ∂νW a

µ − g2ϵabcW b
µW

c
ν , (25.4)
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where W a
µ and Bµ are respectively the corresponding gauge �elds, g2 is the

SU(2) gauge coupling and ϵabc is the totally antisymmetric symbol. The
coupling for the U(1) gauge �eld Bµ will be denoted below by g1. The
SU(2) �elds, W a

µ , have three and four-point self-interactions. Bµ has no
self-interactions and is a U(1) �eld associated with the weak hypercharge

Y = Q− T 3
L , (25.5)

where Q and T 3
L are respectively the electric charge operator and the third

component of the weak SU(2) isotopic spin. The Bµ and Wµ
3 �elds will

eventually mix to form the photon and Z boson.

25.2 The Scalar Part

The scalar part of the Lagrangian (25.1) is:

Lϕ = (Dµϕ)†Dµϕ− V (ϕ) , (25.6)

where ϕ is a complex Higgs scalar, which is a color singlet and an SU(2)L
doublet, given by

ϕ =

(
ϕ1
ϕ2

)
≡
(
ϕ+

ϕ0

)
, (25.7)

i.e. we have four real scalar �elds.

In (25.6) V (ϕ) is the Higgs potential. The combination of SU(2) × U(1)
invariance and renormalizability restricts V to the form

V (ϕ) = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2 . (25.8)

As we already noted in the previous lecture, compared to the Lagrangian for
a free complex scalar �eld, this potential has the wrong sign for the quadratic
term. So µ is not the mass and we cannot interpret the excitations of the
�eld ϕ as propagating degrees of freedom. But it is precisely this wrong
sign that is required for the SSB to occur. For the quartic self-interaction
between the scalar �elds vacuum stability requires λ > 0.

The minimum of the potential (25.8) occurs for

ϕ†ϕ =
µ2

2λ
≡ v2

2
. (25.9)
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The SU(2) symmetry is broken when the vacuum �eld con�guration chooses
a particular direction in the ϕ1, ϕ2 space. The choice of the representation
of the Higgs �eld decides pattern of symmetry breaking. For the case under
consideration, SU(2)L × U(1)Y , the unbroken symmetry should correspond
to the U(1)em invariance since the photon is massless. Glashow's partial
symmetry breaking formula (25.5) helps us decide which of the four scalar
�elds can acquire a nonzero VEV. The charge operator Q should annihilate
the vacuum and hence only the electrically neutral, real scalar �eld can have a
nonzero VEV. The required symmetry breaking pattern is guaranteed (with
the choice Yϕ = 1) by

⟨0|ϕ|0⟩ = ⟨ϕ⟩0 =
1√
2

(
0
v

)
. (25.10)

As follows from (25.9), v = µ2/
√
λ. Since ϕ is a SU(2)L doublet, this choice

for the VEV means that the vacuum con�guration breaks the symmetry
and chooses a particular minimum from amongst the continuum of minima.
Since the electromagnetic charge still annihilates the vacuum, the symmetry
breaking pattern is

SU(2)L × U(1)Y → U(1)em . (25.11)

One can rewrite ϕ(x) in terms of some �elds θa(x) and h(x) (all of which
have vacuum expectation value to be 0),

ϕ(x) =
1√
2

(
θ2 + iθ1

v + h− iθ3

)
. (25.12)

If θa(x) and h(x) are small then we get

ϕ(x) =
1√
2
eiθaτ

a/v

(
0

v + h(x)

)
. (25.13)

This is then an expansion of the �eld ϕ in terms of the �uctuations around
the minimum. One recognizes the exponential factor outside as that for a
gauge transformation for a SU(2)L doublet. We see that by doing a gauge
transformation

ϕ′ = −eiθaτa/vϕ (25.14)

we get,

ϕ′(x) =
1√
2

(
0

v + h(x)

)
. (25.15)
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This gauge is called the Unitary gauge, (25.10) also means that the VEV is
zero for h(x). The three scalar degrees of freedom θa in fact have disappeared
from the spectrum in this gauge. Indeed these three �elds correspond to three
Goldstone bosons corresponding to the three generators of the symmetry
group that are broken spontaneously.

25.2.1 Masses of Gauge Bosons

Let us now evaluate the kinetic term of the scalar Lagrangian (25.6) in the
unitary gauge using ϕ′ from (25.15). We use

Dµϕ = ∂µϕ− i
g1
2
Bµϕ− ig2W a

µ

τa

2
ϕ . (25.16)

This covariant derivative gives rise to terms quadratic in the gauge boson
�elds which are given as below:∣∣∣∣∣

(
g1
2
Bµ + g2

τa

2
W a
µ

)
1√
2

(
0
v

) ∣∣∣∣∣
2

=

=
g22v

2

8

(
W a
µW

aµ
)
+
g21v

2

8
BµB

µ − g1g2v
2

4
W 3
µB

µ =

=
g22v

2

4
W+
µ W

−µ +
v2

8

(
g1Bµ − g2W 3

µ

)2
= (25.17)

=
g22v

2

4
W+
µ W

−µ +
(g21 + g22)v

2

8
ZµZ

µ .

So three of the four gauge bosons become massive: the W±
µ and one linear

combination of Bµ and W 3
µ , which we call Zµ, and the orthogonal linear

combination Aµ remains massless. This also tells us

M2
W =

g22v
2

4
,

M2
Z =

(g21 + g22)v
2

4
=

M2
W

cos2 θW
, (25.18)

where the weak angle θW is de�ned by:

tan θW ≡
g1
g2

⇒ sin2 θW = 1−
M2
W

M2
Z

. (25.19)
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Another fact worth noticing is that the value of the VEV, v, gets determined
in terms of measured value of Gµ. Using the expression for MW in (25.18)
and that for

Gµ ≈ 1.17× 10−5 GeV −2 , (25.20)

we get

v =

(
1√
2Gµ

)1/2

≃ 246 GeV . (25.21)

Using the expression
g2 =

e

sin θW
(25.22)

in terms of the positron charge e and sin θW and (25.18), one can then see
that,

MW =

√
π√
2Gµ

αem

sin2 θW
=

37.3

sin θW
GeV ;

MZ =
37.3

sin θW cos θW
GeV . (25.23)

Now everything in the EW model is predicted in terms of the two known
constants αem, Gµ and one free parameter sin2 θW .

We further notice from (25.18) that the ratio

ρ =
M2
W

M2
Z cos2 θW

(25.24)

is predicted to be unity in the EW model.

We can conclude that one should expect the neutrino induced scattering
processes via NC interactions to happen at rates similar to those via CC
interactions. This conclusion is of course independent of the actual values of
MW and MZ with the proviso that the energies are much smaller compared
to these masses. Thus the EW model not only predicted the existence of a
weak neutral gauge boson and weak neutral current processes mediated by
it, but it also predicted their strength to be O(Gµ).

After working out the remaining terms also in terms of the �eld ϕ′ in the
unitary gauge we get,

LUϕ′ =

[
M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

](
1 +

h

v

)2

+

+
1

2
(∂µh)

2 + µ2h2 − λvh3 − λ/4h4 = LV V h + Lh . (25.25)
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The �rst two terms are the mass terms for the W and Z, as well as the
term describing the interaction between a pair of gauge bosons and the h.
The form of this term makes it very clear that the strength of the V V h cou-
pling is simply proportional to the mass of the corresponding gauge boson.
This proportionality between the mass and the coupling is the most critical
prediction of the SSB.

The remaining terms describe now a real, scalar �eld which is a propagating
degree of freedom with mass Mh =

√
2µ2. Since v =

√
µ2/λ, the mass of

the Higgs boson is given in terms of self-coupling λ. This being an arbitrary
parameter of the Higgs potential, not �xed by any condition, Mh too is a
free parameter of the SM, with no prediction for it.

In the unitary gauge now the propagating degrees of freedom are the three
massive gauge bosons W±, Z, one massless gauge boson γ and one propa-
gating massive scalar. A massless vector boson has two degrees of freedom
corresponding to the two degrees of polarization it can have whereas a mas-
sive gauge boson has three degrees of freedom as it can also have longitudinal
polarization. Out of the four scalar degrees of freedom only one, h, is left
in the particle spectrum and the other three provide the remaining degrees
of freedom corresponding to the longitudinal polarization necessary for the
three gauge bosons to be massive.

The total number of bosonic degrees of freedom before SSB are twelve:
eight corresponding to four massless gauge boson �elds W a

µ , Bµ and the
four scalars in ϕ.

After the SSB one has again twelve bosonic degrees of freedom: nine corre-
sponding to the three massive gauge bosons W±, Z, two corresponding to
the massless photon γ and one corresponding to the massive neutral scalar
h. In the unitary gauge the particle spectrum contains only the physical
�elds and the Goldstone boson �elds θa (a = 1, 2, 3) of (25.12), are absent
from the spectrum. The same is depicted somewhat pictorially below:

Lmassless
gauge + Lϕ Lmassive

gauge + Lh
SSB

4 massless 4 scalar → 3 massive, 1 massless 1 physical
gauge bosons �elds Unitary gauge bosons scalar

gauge
8 d.o.f. 4 d.o.f. 11 d.o.f 1 d.o.f.
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25.3 The Fermion Part

The fermion term in the SM Lagrangian (25.1),

Lf = LLeptonskinetic + LQuarks
kinetic , (25.26)

is constructed by the kinetic terms of the left(right) chiral projections of
leptons and quark,

ψL(R) ≡
1

2
(1∓ γ5)ψ . (25.27)

The left-handed quarks and leptons transform as SU(2) doublets, while the
right-handed �elds are singlets.

25.3.1 The Lepton Sector

A Lepton is a spin-1/2 particle that does not interact with the SU(3) color
group (the strong force). In SM there are six Flavors of leptons arranged
into three Families, or Generations. The �rst generation consists of the
electron (e) and the electron neutrino (νe), the second generation the muon
(µ) and the muon neutrino (νµ), and the third the tau (τ) and tau neutrino
(ντ ). Each family behaves exactly the same way, so we will only discuss one
generation in this section (e and νe). To incorporate the physics of the other
families, merely change the e to either a µ, or τ , and the νe to a νµ, or ντ .

The neutrinos don't really interact with anything on their own (which is why
they are incredibly di�cult to detect). For this reason, neutrinos don't have
their own place in a representation of SU(3)× SU(2)× U(1). Electrons on
the other hand, do interact with other things on their own, and we therefore
see them in the (1, 1) representation. However, the neutrino does interact
with other things as part of an SU(2) doublet with the electron,

l =

(
νe
e

)
. (25.28)

This is why it is arranged with the electron under the (2,−1/2) representa-
tion of SU(2)× U(1).

To make this point clear let us start with two �elds, ē (positron) and l, where
ē is a single left-handed Weyl �eld, and l is de�ned in (25.28). As we have
said, l is in the (2,−1/2) representation, ē is in the (1, 1) representation,
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and νe has no representation of its own. We can write down the covariant
derivative for each �eld,

(Dµl)i = ∂µli − ig2W a
µ (T

a)ijlj − ig1BµYlli , (25.29)

Dµē = ∂µē− ig1BµYēē . (25.30)

The �eld ē has no SU(2) term in its covariant derivative because the 1
representation of SU(2) is the trivial representation � this means it doesn't
carry SU(2) charge. Also, we know for the hyper-charge that

Yl = −
1

2

(
1 0
0 1

)
, (25.31)

and

Yē = (1)

(
1 0
0 1

)
. (25.32)

Following the Lagrangian for the spin-1/2 �elds, we can write out the kinetic
term for both (massless) �elds:

LLeptonskinetic = il†iσ̄µ(Dµl)i + iē†σ̄µDµē . (25.33)

Now we want a kinetic term for the neutrino. It is believed that neutrinos
are described by Majorana �elds, so we begin with the �eld

N ′ =

(
νe
ν†e

)
. (25.34)

Now, we employ a trick. The kinetic term for Majorana �elds has only one
term (because Majorana �elds have only one Weyl spinor), whereas the Dirac
�eld sums over both Weyl spinors composing it. So, instead of working with
the Majorana �eld N ′, we can instead work with the Dirac �eld

N =

(
νe
0

)
. (25.35)

So, the Dirac kinetic term iN̄γµ∂µN will clearly result in the correct kinetic
term from (25.33), or iν†σ̄µ∂µν.

Now, continuing with the symmetry breaking, we want to write the covariant
derivative (25.29) and (25.30) in terms of our low energy gauge �elds.
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The gauge �elds corresponding to Cartan generators (Aµ and Zµ) act as
force carrying particles, but do not change the charge of the particles they
interact with. On the other hand, the non-Cartan generators' gauge �elds
(W±

µ ) are force carrying particles which do change the charge of the particle
they interact with. Therefore, to make calculations simpler, we will break
the covariant derivative up into the non-Cartan part and the Cartan part.

The non-Cartan part of the covariant derivative (25.29) is

g2(W
1
µT

1 +W 2
µT

2) =
1

2
g2

[
W 1
µ

(
0 1
1 0

)
+W 2

µ

(
0 −i
i 0

)]
=

=
1

2
g2

(
0 W 1

µ − iW 2
µ

W 1
µ + iW 2

µ 0

)
= (25.36)

=
g2√
2

(
0 W+

µ

W−
µ 0

)
,

and the Cartan part is

g2W
3
µT

3 + g1BµY = e
sw

(swAµ + cwZµ)T
3 + e

cw
(cwAµ − swZµ)Y =

= e (Aµ + cot θwZµ)T
3 + e (Aµ − tan θwZµ)Y = (25.37)

= e(T 3 + Y )Aµ + e
(
cot θwT

3 − tan θwY
)
Zµ ,

where we used the notation

sw = sin θW , cw = cos θW . (25.38)

We have noted before that Aµ is the photon, or the electromagnetic �eld, and
e is the electromagnetic charge. Therefore, the linear combination T 3 + Y
must be the generator of electric charge. Notice that the electromagnetic
generator is in a linear combination of the two Cartan generators of SU(2)×
U(1).

We know that T 3 = σ3/2, and Yl and Yē are de�ned in equations (25.31)
and (25.32), so we can write

T 3l =
1

2

(
1 0
0 −1

)(
νe
e

)
=

1

2

(
νe
−e

)
,

Yll = −1

2

(
1 0
0 1

)(
νe
e

)
= −1

2

(
νe
e

)
. (25.39)
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We know that ē carries no T 3 charge, so its T 3 eigenvalue is 0, while Yē is
+1. So, summarizing all of this,

T 3νe = +
1

2
νe , T 3e = −1

2
e , T 3ē = 0 ,

Y νe = −
1

2
νe , Y e = −1

2
e , Y ē = +ē . (25.40)

Then de�ning the generator of electric charge to be

Q ≡ T 3 + Y , (25.41)

we have
Qνe = 0 , Qe = −e , Qē = +ē . (25.42)

So the neutrino νe has no electric charge, the electron e has negative electric
charge, and the antielectron, or positron, has plus one electric charge � all
exactly what we would expect.

The primary idea is that electrons/positrons and neutrinos all interact with
the SU(2) × U(1) gauge particles, the W±

µ , Zµ, and Aµ. The Zµ and Aµ
(the Cartan gauge particles) interact but do not a�ect the charge. On the
other hand, theW±

µ act as SU(2) raising and lowering operators. The SU(2)
doublet state acted on by these raising and lowering operators is the doublet
in equation (25.28). TheW+

µ interacts with a left-handed electron, raising its
electric charge from minus one to zero, turning it into a neutrino. However
W+
µ does not interact with left-handed neutrinos. On the other hand, W−

µ

will lower the electric charge of a neutrino, making it an electron. But W−
µ

will not interact with an electron. This does not mean that no vertex in the
Feynman diagrams will include a W−

µ and an electron �eld, but rather that
if you collide an electron and a W−

µ , there will be no interaction.

25.3.2 The Quark Sector

A Quark is a spin-1/2 particle that interacts with the SU(3) color force. Just
as with leptons, there are six �avors of quarks, arranged in three families or
generations. Following very closely what we did with the leptons, we work
with only one generation. Extending to the other generators is then trivial.
To begin, de�ne three �elds: q, ū, and d̄, in the representations (3, 2, 1/6),
(3̄, 1,−2/3), and (3̄, 1, 1/2) of SU(3)×SU(2)×U(1). The �eld q will be the
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SU(2) doublet

q =

(
u
d

)
. (25.43)

This is exactly analogous to equation (25.28).

Again, following what we did with the leptons, we can write out the covariant
derivative for all three �elds:

(Dµq)αi = ∂µqαi − ig3W a
µ (T

a
2 )
β
αqβi − ig2W a

µ (T
a
2 )
j
i qβj − ig1

(
1
6

)
Bµqαi ,

(Dµū)
α = ∂µū

α − ig3W a
µ (T

a
3 )
α
β ū

β − ig1
(
−2

3

)
Bµū

α , (25.44)

(Dµd̄)
α = ∂µd̄

α − ig3W a
µ (T

α
3 )

α
β d̄

β − ig1
(
1
3

)
Bµd̄

α ,

where i is an SU(2) index and α is an SU(3) index. The SU(3) index is
lowered for the 3 representation and raised for the 3̄ representation.

Using the non-Cartan and Cartan parts of the covariant derivatives in terms
of the lower energy SU(2)× U(1) gauge �elds,

g2W
1
µT

1 + g2W
2
µT

2 =
g2√
2

(
0 W+

µ

W−
µ 0

)
,

g2W
3
µT

3 + g1BµY = eQAµ +
e

swcw
(T 3 − s2wQ)Zµ , (25.45)

it is again straightforward to �nd the electric charge eigenvalue for each
quark �eld:

Qu = +
2

3
u , Qd = −1

3
, Qū = −2

3
ū , Qd̄ = +

1

3
d̄ . (25.46)

The primary idea to take away is that the SU(2) doublet (25.43) behaves
exactly as the lepton doublet in (25.28) when interacting with the 'raising'
and 'lowering' gauge particles W±

µ . This is why the u and d are arranged in
the SU(2) doublet q in (25.43), and why q carries the SU(2) index i in the
covariant derivative (25.44), whereas ū and d̄ carry only the SU(3) index.

The SU(3) index runs from 1 to 3, and the 3 values are conventionally
denoted red, green, and blue (r, g, b). These obviously are merely labels and
have nothing to do with the colors in the visible spectrum.

The eight gauge �elds associated with the eight SU(3) generators are called
Gluons, and they are represented by the matrices. We label each gluon as
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follows:

gβα =

rr̄ rḡ rb̄
gr̄ gḡ gb̄
br̄ bḡ bb̄

 , (25.47)

so that the upper index is the anti-color index, and denotes the column of
the matrix, and the lower index is the color index denoting the row of the
matrix. Then consider the gluon

gḡr ∝

0 1 0
0 0 0
0 0 0

 , (25.48)

and the quarks

qr =

1
0
0

 , qg =

0
1
0

 , qb =

0
0
1

 . (25.49)

It is easy to see that this gluon will interact as

gḡrqr = 0 , gḡrqg = qr , gḡrqb = 0 . (25.50)

Or in other words, the gluon with the anti-green index will only interact
with a green quark. There will be no interaction with the other quarks.
Multiplying this out, and looking more closely at the behavior of the SU(3)
generators and eigentstates, you can work out all of the interaction rules
between quarks and gluons. You will see that they behave exactly according
to the root space of SU(3).

25.4 The Yukava Couplings

We already has discussed the idea of renormalization. We said that certain
theories can be renormalized and others cannot. It turns out that while the
theory we have outlined so far is renormalizable, if we try to add mass terms
for l (left lepton doublets) and ē (right anti-singlets) �elds, the theory breaks
down. Therefore we cannot add a mass term. But, we know experimentally
that electrons and neutrinos have mass. To incorporate mass into the theory
we must use the Higgs mechanism by adding of a Yukawa term,

LLeptonsYukawa = −yϵijϕilj ē+ h.c. , (25.51)



25.4. THE YUKAVA COUPLINGS 413

where y is another coupling constant, ϵij is the totally antisymmetric tensor,
and h.c. is the Hermitian conjugate of the �rst term.

Now that we have added LYukawa to the Lagrangian, we want to break the
symmetry exactly as we did in the previous lecture. First, we replace ϕ1
with (v + h)/

√
2 and ϕ2 with 0. So,

LLeptonsYukawa = −yϵijϕilj ē+ h.c. = −y(ϕ1l2 − ϕ2l1)ē+ h.c. =

= − 1√
2
y(v + h)l2ē+ h.c. = (25.52)

= − 1√
2
y(v + h)(eē+ ēe) = − 1√

2
y(v + h)ĒE ,

where

E =

(
e
ē†

)
(25.53)

is the Dirac �eld for the electron (e is the electron and ē† is the antielectron,
or positron). We see that in (25.52) it is a mass term for the electron and
positron.

Just as with leptons, we cannot write down a mass term for quarks, but we
can include a Yukawa term coupling these �elds to the Higgs:

LQuarks
Yukawa = −y

′ϵijϕiqαj d̄
α − y′′ϕ†iqαiūα + h.c. . (25.54)

As with the leptons, we can break the symmetry and writing out this Yukawa
term, we get

LQuarks
Yukawa = − 1√

2
(v + h)

[
y′(dαd̄

α + d̄†αd
†α) + y′′(uαū

α + ū†αu
†α)
]
=

= − 1√
2
(v + h)

(
y′D̄αDα + y′′ŪαUα

)
, (25.55)

where we have de�ned the Dirac �elds for the up and down quarks:

Dα ≡
(
dα
d̄†α

)
, Uα ≡

(
uα
ū†α

)
. (25.56)

Notice that, whereas both the up and down quarks were massless before
breaking, they have now acquired masses

md =
y′v√
2
, mu =

y′′v√
2
. (25.57)
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To resume, the last term in the EW Lagrangian (25.1) can be written in the
form:

LYukava = LLeptonsYukava + LQuarks
Yukava =

= −
F∑

m,n=1

[
Γumnq̄

m
L ϕ̄u

n
R + Γdmnq̄

m
L ϕd

n
R+ (25.58)

+ Γemn l̄
m
L ϕe

n
R + Γνmn l̄

m
L ϕ̄ν

n
R

]
+ h.c. ,

where the matrices Γmn describe the Yukawa couplings between the single
Higgs doublet, ϕ, and the various �avors m and n of quarks and leptons.
One needs representations of Higgs �elds with the hyper-charge +1/2 and
−1/2 to give masses to the down quarks and electrons (+1/2), and to the up
quarks and neutrinos (−1/2). The representation ϕ† has the hyper-charge
−1/2, but transforms as the 2̄ rather than the 2. However, in SU(2) the 2̄
representation is related to the 2 by a similarity transformation, and

ϕ̄ ≡ iτ2ϕ† = (ϕ0
†
,−ϕ−) (25.59)

transforms as a 2. All of the masses can therefore be generated with a
single Higgs doublet if one makes use of both ϕ and ϕ̄. The fact that the
fundamental and its conjugate are equivalent does not generalize to higher
unitary groups.

Exercise 25.1: Find the gauge boson propagator in momentum space in
axial and Coulomb gauges.

Exercise 25.2: Find the transformation which brings the equation for a
complex scalar �eld ϕ in the electromagnetic �eld of the form Aν = (A0, 0)
to the equation of ϕ∗.

Exercise 25.3: Draw all possible lowest-order Feynman diagrams for the
processes: e+e− → µ+µ−; e+e− → νµν̄µ; νµe− → νµe

− and ν̄ee− → ν̄ee
−.

Exercise 25.4: Explain why the decay D0 → K−π+ is possible, while
D0 → K+π− is not allowed.



Chapter 26

Interactions

Now let us write out in details interacting terms of gauge bosons and fermions
within the SM.

26.1 Charged Currents

In the EW model the interaction of the W±
µ bosons to fermions is given by

L = − g2

2
√
2

(
JµWW

−
µ + Jµ†WW+

µ

)
, (26.1)

where the weak charge-raising current is

Jµ†W =
N∑
m=1

[
ν̄mγ

µ(1− γ5)em + ūmγ
µ(1− γ5)dm

]
=

= (ν̄eν̄µν̄τ )γ
µ(1− γ5)Vℓ

 e−

µ−

τ−

+ (ū c̄ t̄)γµ(1− γ5)Vq

 d
s
b

 . (26.2)

Jµ†W has a V − A form, i.e. it violates parity and charge conjugation maxi-
mally. The vector and axial fermion gauge interaction vertices for d̄juiW−

vertex is the same as for ūidjW+ except

Vqij →
(
V †
q

)
ji
= V ∗

qij . (26.3)

415
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The lepton-W± vertices are obtained from the quark ones by ui → νi, dj →
e−j and Vq → Vℓ.

The mismatch between the unitary transformations relating the weak and
mass eigenstates for the up and down-type quarks leads to the presence of the
N×N unitary matrix Vq ≡ Au†L AdL in the CC. This is the Cabibbo-Kobayashi-
Maskawa matrix, which is ultimately due to the mismatch between the weak
and Yukawa interactions. For N = 2 families Vq takes the familiar form

VCabibbo =

(
cos θc sin θc
− sin θc cos θc

)
, (26.4)

where sin θc ≃ 0.22 is the Cabibbo angle. This form gives a good zeroth-
order approximation to the weak interactions of the u, d, s and c quarks;
their coupling to the third family, though non-zero, is very small. Including
these couplings, the 3-family Kobayashi-Maskawa matrix is

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ∼
 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (26.5)

where the Vij may involve a CP -violating phase. The second form, with
λ = sin θc is an easy to remember approximation to the observed magnitude
of each element, which displays a suggestive but not well understood hier-
archical structure. These are order of magnitude only; each element may be
multiplied by a phase and a coe�cient of O(1).

As we know, an arbitrary N × N unitary matrix involves N2 real param-
eters. In this case 2N − 1 of them are unobservable relative phases in
the fermion mass eigenstate �elds, leaving N(N − 1)/2 rotation angles and
(N − 1)(N − 2)/2 observable CP -violating phases. There are an additional
N − 1 Majorana phases in Vℓ for Majorana neutrinos.

In (26.2) Vℓ ≡ Aν†L A
e
L is the analogous leptonic mixing matrix. It is critical

for describing neutrino oscillations and other processes sensitive to neutrino
masses. However, for processes for which the neutrino masses are negligible
we can e�ectively set Vℓ = I. More precisely, Vℓ will only enter such processes
in the combination V †

ℓ Vℓ = I, so it can be ignored.

In interactions mediated by the exchange of a W±
µ :
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in the limit |Q2| ≪ M2
W the momentum term in the W -propagator can be

neglected. This leads to an e�ective zero-range (four-fermi) interaction

− Lcceff =
GF√
2
JµWJ

†
Wµ , (26.6)

where the Fermi constant is identi�ed as

GF√
2
≃ g22

8M2
W

=
1

2v2
. (26.7)

Thus, the Fermi theory is an approximation to the SM valid in the limit of
small momentum transfer.

The weak CC interaction as described by (26.6) has been successfully tested
in a large variety of weak decays, including β, K, hyperon, heavy quark, µ,
and τ decays. Weak CC e�ects have also been observed in higher orders,
such as in K0 − K̄0, D0 − D̄0, and B0 − B̄0 mixing, and in CP violation in
K and B decays. For these higher order processes the full theory must be
used because large momenta occur within the loop integrals.

26.1.1 QED Part

The SM incorporates all of the successes of QED, which is based on the
U(1)em subgroup that remains unbroken after spontaneous symmetry break-
ing. The relevant part of the Lagrangian density is

L = − g1g2√
g21 + g22

JµQ(cos θWBµ + sin θWW
3
µ) , (26.8)

where the linear combination of neutral gauge �elds is just the photon �eld
Aµ. This reproduces the QED interaction provided one identi�es the com-
bination of couplings e = g2 sin θW as the electric charge of the positron,
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where tan θW ≡ g1/g2. The electromagnetic current is given by

JµQ =
N∑
m=1

[
2

3
ūmγ

µum −
1

3
d̄mγ

µdm − ēmγµem
]
. (26.9)

It takes the same form when written in terms of either weak or mass eigen-
states because all fermions which mix with each other have the same electric
charge. Thus, the electromagnetic current is automatically �avor-diagonal.

QED is the most successful theory in physics when judged in terms of the
theoretical and experimental precision of its tests. The approximate agree-
ment of these determinations, which involves the calculation of the electron
anomalous magnetic moment ae = (ge − 2)/2 to high order, validates not
only QED but the entire formalism of gauge invariance and renormalization
theory. Other basic predictions of gauge invariance (assuming it is not spon-
taneously broken, which would lead to electric charge non-conservation), are
that the photon mass mγ and its charge qγ (in units of e) should vanish.
The current upper bounds are extremely impressive mγ < 1 × 10−18 eV ,
qγ < 5 × 10−30, based on astrophysical e�ects (the survival of the Solar
magnetic �eld and limits on the dispersion of light from pulsars).

26.2 Neutral Currents

The third class of gauge interactions is the weak NC, which was predicted
by the SU(2)× U(1) model. The relevant interaction is

L = −
√
g21 + g22
2

JµZ
(
− sin θWBµ + cos θWW

3
µ

)
= − g2

2 cos θW
JµZZµ , (26.10)

where the combination of neutral �elds is the massive Z-boson �eld, the
value of which strength in is conveniently rewritten using

cos θW =
g2√
g21 + g22

. (26.11)

The weak NC is given by

JµZ =
∑
m

[
ūmLγ

µumL − d̄mLγµdmL + ν̄mLγ
µνmL − ēmLγµemL

]
−

−2 sin2 θWJµQ . (26.12)
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Like the electromagnetic current JµZ is �avor-diagonal in the SM; all fermions
which have the same electric charge and chirality and therefore can mix with
each other have the same SU(2) × U(1) assignments, so the form is not
a�ected by the unitary transformations that relate the mass and weak bases.
It was for this reason that the GIM mechanism was introduced into the
model, along with its prediction of the charm quark. Without it the d and s
quarks would not have had the same SU(2)×U(1) assignments, and �avor-
changing neutral currents would have resulted. The absence of such e�ects is
a major restriction on many extensions of the SM involving exotic fermions.

The NC has two contributions. The �rst only involves the left-chiral �elds
and is purely V − A. The second is proportional to the electromagnetic
current with coe�cient sin2 θW and is purely vector. Parity is therefore
violated in the neutral current interaction, though not maximally.

On the Figure above you can see the typical neutral current interaction
mediated by the exchange of the Z, which reduces to an e�ective four-fermi
interaction in the limit that the momentum transfer Q can be neglected. gZ
is de�ned as

√
g21 + g22.

In an interaction between fermions in the limit that the momentum transfer
is small compared to MZ one can neglect the Q2 term in the propagator,
and the interaction reduces to an e�ective four-fermi interaction

− LNCeff =
GF√
2
JµZJZµ . (26.13)

The coe�cient is the same as in the charged case because

GF√
2
=

g22
8M2

W

=
g21 + g22
8M2

Z

. (26.14)

That is, the di�erence in Z-couplings compensates the di�erence in masses
in the propagator.
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The weak NC was discovered at CERN in 1973 and at Fermilab shortly there-
after, and since that time Z exchange and γ −Z interference processes have
been extensively studied in many interactions, including νe→ νe, νN → νN
and νN → νX polarized e−-hadron and µ-hadron scattering; atomic parity
violation; and in e+e− and Z-pole reactions. Along with the properties of
the W and Z they have been the primary quantitative test of the uni�ca-
tion part of the EW model. The results of these experiments have been in
excellent agreement with the predictions of the SM, indicating that the ba-
sic structure is correct to �rst approximation and constraining the e�ects of
possible new physics.

26.3 Anomaly Cancellation

As we have seen above, the EW model contains both the vector and the
axial vector currents. This causes a problem when we try to renormalize
the theory and do loop computations. The gauge invariance of axial vector
currents of the type

J5
µ = ψ̄γµγ5ψ

′ (26.15)

(ψ′ = ψ for neutral currents), is not preserved by dimensional regularization
due to the presence of γ5 in the current. This means that even though,
∂µJ

µ
5 = 0 classically, at loop level due to the non-invariance of the regulator,

∂µJ
µ
5 ̸= 0 and develops a nonzero term on the right hand side. Hence,

this axial gauge current is no longer conserved. The current is said to be
`anomalous'.

As we know from Noether's theorem if the current is not conserved, it means
gauge invariance is broken. Gauge symmetry along with Higgs mechanism
is needed to have a consistent quantum theory with massive gauge bosons.
Thus if the theory has an anomalous current (or has anomaly) the theory may
not make sense at quantum level. It was shown by Adler and Bell-Jakciw,
that there is only one type of loop diagram with a logarithmic divergence
which can make ∂µJ

µ
5 non-vanishing and poses a danger to the conservation

of the axial gauge current. This is a triangle diagram with a fermion loop
and two gauge boson legs and one current insertion; equivalently one can also
consider a fermion loop with three gauge boson legs. In the EW model with
its SU(2)L gauge bosons which have couplings only to left chiral fermions and
the U(1)Y gauge bosons which have unequal couplings to the left and right
chiral fermions, these triangle diagrams are in general not zero. Further, one
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can show that the anomalous contribution is independent of the mass of the
fermions in the internal loop.

There are in fact four types of triangle diagrams we need to consider out of
which three are shown in the Figure below.

∂µJ
µa
5

W c
ν

W
b
ρ

∂µJ
Bµ
5

W b
ν

W
a
ρ

∂µJ
Bµ
5

Bν

Bρ

Consider the diagram in the left most panel which contains matrix element
of a pure V −A current insertion along with two SU(2)L gauge boson legs.
Only left handed fermions contribute to this anomaly and it can be shown
that

∂µJ
µa
5 ∼ trτa{τ b, τ c}ϵαρβνF bαρF cβν . (26.16)

Here the 'tr' refers to the trace over representation matrices and indicates
the sum over all the fermions in the representation. Since {τ b, τ c} = 2δbc

and τa are traceless matrices this anomaly is zero identically. In fact, the
diagram with just one SU(2)L V − A current insertion not shown here will
also give zero contribution to the anomaly due to the traceless property of
τa (a = 1, 2, 3) matrices.

The central diagram also gets contribution only from the left chiral fermions
and is given by

∂µJ
µ
5 ∼ tr(YL)ϵ

αρβνF aαρF
a
βν . (26.17)

The notation tr(YL) indicates that only the left chiral fermions contribute
to this quantity and sum is to be taken over one SU(2)L representation.

The contribution of the rightmost diagram is given by:

∂µJ
µ
5 ∼ tr

(
Y 3
L − Y 3

R

)
ϵαρβνBαρBβν . (26.18)

We see that for a single lepton generation the anomaly of (26.17) is pro-
portional to 2 × YL = −2. Summing over all the lepton doublets it will
have a value −6. However, one notices that, for a single quark genera-
tion it is 2 × 1/3. The three colors add another factor of 3. Thus we �nd
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tr(YL)|l+tr(YL)|q = −2+3×2×1/3 = 0. Thus this anomaly vanishes iden-
tically for the particle content of the left chiral fermions in the EW model.
Further, we also notice that while (2Y l

L)
3 − (Y e

R)
3 = −2 + 8 = 6 is not zero,

it is again compensated by the value for the quark doublets which is

3×

[
− 2

27
−
(
4

3

)3

+

(
2

3

)3
]
= −6 . (26.19)

Thus again tr
(
Y 3
L − Y 3

R

)
|l+tr

(
Y 3
L − Y 3

R

)
|q = 6−6 = 0. Hence contributions

to both the anomalies, from loops of fermions of one quark and one lepton
doublet of the EW model, are equal and opposite in sign. This means that
the numbers of the lepton and quark doublets have to be exactly equal so
that the anomalies do not spoil the gauge invariance of the EW model and
hence the renormalizability.

To conclude, the SM is anomaly free for the assumed fermion content. There
are no SU(3)3 anomalies because the quark assignment is non-chiral, and no
SU(2)3 anomalies because the representations are real. The SU(2)2Y and
Y 3 anomalies cancel between the quarks and leptons in each family, by what
appears to be an accident. The SU(3)2Y and Y anomalies cancel between
the L and R �elds, ultimately because the hypercharge assignments are made
in such a way that U(1)Q will be non-chiral.

Exercise 26.1: Find an expression for the νµe− NC cross section in terms
of the laboratory frame neutrino energy.

Exercise 26.2: Write out vertex factors for the �ve following interactions:
dL+W

+ → uL; dL+Z → dL; uL+Z → uL; uL+γ → uL and uLr+grb → uLb.

Exercise 26.3: A beam of unpolarized electrons:
(a) Can be described by a wave function that is an equal superposition of
spin-up and spin-down wave functions;
(b) Cannot be described by a wave function;
(c) Neither of the above.

Exercise 26.4: Assume that the same basic weak interaction is responsible
for the beta decay processes n→ pe−ν̄ and Σ→ Λe−ν̄, and that the matrix
elements describing these decays are the same. Estimate the decay rate of
the Σ-decay, given the lifetime of a free neutron is about 103 seconds.



Chapter 27

Predictions of the SM

Let us summarize some of the qualitative and quantitative implications of
the SU(2)L × U(1)Y invariance. Note that almost all of them are result of
the invariance and hence not speci�c to the actual mechanism of symmetry
breaking as long as it preserves the symmetry.

1. First and foremost, this is a uni�cation of weak and electromagnetic
interaction: i.e. e, g1, g2 all are of similar order and the apparent
di�erence in strengths of electromagnetic interactions (αem and Gµ),
is only caused by the large value of the masses of the weak gauge bosons
compared to that of the massless photon. The model predicts existence
of a new weak gauge boson Zµ and that of the weak NC mediated by
it, analogous to the weak CC mediated by the W±

µ . Further, the
strength of this new weak interaction is similar to that of the CC weak
interaction. This is particularly transparent once we use the ρ = 1
prediction (25.24) of the EW model whereinW/Z masses are generated
by SSB using a Higgs doublet.

2. Further, �avor changing NCs are absent at tree level if and only if all
the quarks of a given electrical charge belong to the same representa-
tion of SU(2)L. Thus the experimentally observed absence of �avor
changing NC requires existence of the charm quark c, in addition to
the already known u, d and s quarks and one could also `predict' the
mass of the c quark from the measured K0�K̄0 mass di�erence.

3. Since Gµ and the electron charge e are measured experimentally, the

423
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model has two free parameters, sin θW andMW . If one assumes g2 = e,
i.e. sin θW = 1, then we get MW ∼ O(100)GeV . However, when
the gauge boson masses are generated through the SSB, MW can be
expressed in terms of Gµ, αem and sin2 θW .

4. The model predicts precise nature of theWWZ coupling, the strength
being given by g2.

5. Couplings of all the fermions with the gauge boson Zν are determined
in terms of sin θW , once the representations of the two gauge groups
to which the fermions belong are speci�ed.

6. Requirement of anomaly cancellation, necessary for the renormalizabil-
ity, predicts that the number of lepton and quark generation seen in
nature should be equal. So while the model cannot predict how many
families of quarks and leptons there should be, it predicts their equality.

7. The conditions of anomaly cancellation and observed closeness of ρ to
unity, then gives strong constraints on new particles that one can be
added to the spectrum of the EW model.

8. As already stated in the previous lecture, generation of gauge bosons
masses via SSB provides some more relations among physical quantities
and hence reduces the number of free parameters of the model to one,
that parameter being sin θW .

Thus this model could be easily subjected to experimental tests. This is
what we will discuss in this lecture.

27.1 High Energy Scattering

We saw how the postulate of massive vector boson was inspired by the de-
mand to restore unitarity to the neutrino induced processes. For exam-
ple, the amplitude (say) for νe → νe scattering calculated in Fermi theory
(current-current interactions) violates tree level unitarity for

√
s ∼ 300 ∼

G
−1/2
µ GeV. Hence, one could also take this value as an upper bound on the

mass of the 'massive' W±
µ boson.

However, theories with massive vector bosons have problems with gauge in-
variance and hence renormalizability. The SSB via Higgs mechanism solved
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the problem by generating these masses in a gauge invariant manner. This
then meant that the theory has renormalizability even with massive gauge
bosons. In fact, as we will discuss below, we can see explicitly that gauge
invariance also renders nice high energy behavior to all the scattering ampli-
tudes of the EW theory.

The existence of massive vector gauge bosons restore unitary behavior to
processes like νµ+e− → µ−+νe. But now due to the same non zero mass of
the W±

µ bosons, amplitudes for processes involving longitudinal W 's have a
bad high energy behaviour. For example, the matrix element for the process
νeν̄e → W+W− through a t-channel exchange of an e, shown in the left
panel of the Figure below,

+

W
−

W
+

νe

ν̄e

Z

W
+

W
−

νe

ν̄e

e
−

grows too fast with energy and violates unitarity. One can show that

M(νeν̄e →W+W−) ∼ 8
g22
M2
W

Ep′ sin θ , (27.1)

where E is the energy of the incoming νe and p′, θ are the momentum and
the angle of scattering of the W boson in the �nal state. Here we write only
the dominant term of the amplitude involving the longitudinal gauge bosons,
which is the one with bad high energy behavior. If one does a partial wave
analysis of this amplitude, one �nds that this amplitude will violate partial
wave unitarity, for s ∼ M2

W /2g
2
2. However, what is interesting is that the

contribution to the matrix element of the process νeν̄e →W+W−, from the
s channel exchange of a Z boson, shown in the right panel of the Figure
above has exactly the same magnitude as the t channel contribution written
above but opposite in sign. This happens only if the strength and structure
of the couplings of the Z with a ν andW pair is exactly the same as given by
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the SU(2)L × U(1) theory. Thus the violation of unitarity in the amplitude
νeν̄e →W+W− due to the longitudinal gauge boson scattering is cured in a
gauge theory.

In fact, the EW model contains more such amplitudes which, in principle,
could have had bad high energy behavior but which are rendered safe by the
particle content and the coupling structure of the SM. It was demonstrated
that in the EW model where the masses are generated through SSB by
a Higgs doublet, all such amplitudes satisfy tree level unitarity. In fact
the leading divergence of the M(WW → WW ) which goes like s2 and
hence is much worse, is also cured by the Z exchange contribution and the
contribution of the quartic coupling among the W bosons which arise from
the non-Abelian gauge invariance of the theory. Further, the divergent term
proportional to s is cancelled by the contribution of the process W+W− →
h→ W+W−, where the Higgs boson is exchanged in the s-channel. Also if
one were to calculate high energy behavior of the amplitude of the precess
e+e− →W+W−:

+

W−

W+

e+

e−

γ/Z

W+

W−

e+

e−

νe

e
−

e
+

h

W
+

W
−

then the same cancellation between the divergent parts of the t-channel and
s-channel amplitudes is seen to take place.

After this observation, a variety of authors investigated the conditions neces-
sary for cancellation of these divergences so that the amplitudes will satisfy
tree level unitarity. In fact their analysis indicated that this requires exis-
tence of partial wave contributions in the spin 1 and spin 0 channel, with
the couplings of these particles exchanged in the s-channel to be precisely
those that are given the SM. Recall here that this proportionality of the
coupling of the Higgs to the masses of the particles to which it couples is the
key prediction of the SSB by Higgs mechanism. The other couplings are of
course given by the gauge invariance itself. Thus one could have derived the
existence of the Higgs boson as well as the structure of the couplings of the
fermions and the gauge bosons to it, without making any reference to the
Higgs mechanism and hence the renormalizability.
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The fact that the two di�erent requirements, unitarity and renormalizability,
lead us to the same result, indicates that there must be a deep connection
between the two. In fact, for the νeν̄e →W+W− scattering, there is a resid-
ual logarithmic violation of unitarity that is left after all the cancellations,
which gets cancelled by the scale dependence of g2 which is a loop e�ect
which can be computed reliably only in a renormalizable theory.

27.2 Observations Meet Predictions

To start, let us just brie�y take a look how the establishment of the SM
has been a synergistic activity between theoretical and experimental devel-
opments. We saw already how the form of the pre-gauge theory, e�ective
Hamiltonian description of weak interactions, obtained phenomenologically
from the data hinted at a possible gauge theoretic description of the same.
Equally interesting are the hints at existence of new particles given by the
theory. While some of the members of this periodic table, like the µ, were
unlooked for and some like the ν were met with quite a bit of disbelief when
postulated theoretically, for most of the recent additions their existence and
in some cases even their masses were predicted if the EW interactions were
to be described by a renormalizable gauge theory.

In fact, the existence of strange particles which contain the strange quarks,
coupled with experimental features such as the suppression of the �avor
changing NC in EW processes alluded to before, indicated the existence of the
charm quark, as already indicated above. Further, the small mass di�erence
between KL and KS (or alternatively the K0�K̄0 mixing) could be used to
obtain an estimate of its mass. Accidental discovery of some members of the
third lepton and quark family, combined with the requirement of anomaly
cancellation, an essential feature for a renormalizable theory, meant that the
remaining members of the same family had to exist. Hence t and the ντ
were hunted for very actively once the b and the τ made their appearance!
The properties of a renormalizable quantum �eld theory were the essential
reasons behind the belief in these predictions. The mass of the t quark could
also be predicted in the SM, using experimental information on neutral B
meson mixing and properties of the Z boson, as we will see below.

The story is not very di�erent for the EW gauge bosons. As was already men-
tioned, requiring consistency of the pre gauge theory description of the weak
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interactions with unitarity, had indicated a nonzero mass for the charged
W± but had not indicated what the mass would be, except that it should be
much larger than the typical energy scales involved in the weak decays. It
is the uni�ed description of the EW interactions that actually gave a lower
limit on its mass. Note that the correctness of the V − A nature of weak
interactions and pure vector nature of the electromagnetic interactions pre-
dicted existence of a neutral boson other than the photon. The masses of
the W and the new Z boson required in the uni�ed EW theory, were all
predicted in terms of the life time of the µ and the weak mixing angle θW
which was a free parameter in the model. This could be determined from
measurements of rates of various weak processes.

Not just this, the SM also had predicted existence of yet another boson,
this time with spin 0 � the Higgs boson. The mass of the Higgs boson,
however, is a free parameter in the framework of the SM. Comparisons of the
EW observables with precision measurements can constrain the Higgs mass
through the corrections caused by the loop e�ects which can be computed
in a renormalizable quantum �eld theory. One can also put limits on this
parameter from theoretical considerations of consistency of the SM as a �eld
theory at high scales: the triviality and vacuum stability, discussed in the
previous lecture.

Let us discuss in detail the case of the t quark which is quite interesting.
The existence of the t quark and the information on its mass came from
a variety of theoretical and phenomenological observations in �avor physics
and physics of theW/Z bosons. As already mentioned the explanation of the
experimentally observed CP violation in terms of the quark mixing matrix
requires at least three generations of quarks. This mixing is described by
the Kobayashi-Maskawa mixing matrix. So in that sense existence of the
t and b was indicated by this observation. The requirement of anomaly
cancellation for the gauge theory of EW interactions to be renormalizable,
further indicated existence of an additional generation of leptons, τ and ντ
as well. Experimental manifestation of B0�B̄0 oscillations was a harbinger
of the presence of the t quark. Further indications for the expected mass
actually came from precision measurements of many EW observables, i.e.
properties of the Z and the W boson and the quantum corrections caused
to them by loops containing top quarks.

Experimental observation of the t quark, with a mass value consistent with
the implications of the EW precision measurements, provided a test of the
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description, at loop level, of EW interaction in terms of an SU(2)L×U(1)Y
gauge �eld theory with SSB. The remarkable agreement between directly
measured and the 'indirectly' extracted values around the time of the dis-
covery, was a test of the SM at loop level.

Once this was achieved, the same information could be used to obtain con-
straints on the Higgs mass, now looking at quantum corrections to the W
and Z mass as well as to the Z couplings, caused by loops containing the
Higgs boson. Finally �nding a Higgs boson in 2012 with a mass consistent
with these constraints was the biggest success of the SM. Knowledge of QCD
was essential in making precision predictions for the Higgs signal and hence
to this mass determination. Consistency of the values obtained in theoreti-
cal �ts with each other and with the experimental measurements, leaves us
with no doubt about the correctness of the SM. This tests the correctness of
quantum corrections to MW coming from the loops containing the t and h;
hence of the quantum �eld theoretic description of the EW interactions as a
gauge theory.

Alongside this spectacular testimonial of the correctness of the EW part of
the SM, is also the equally impressive demonstration of a highly accurate
description of all the CP violating phenomena in terms of the �avor mixing
in the quark sector. In the three �avor picture the 3×3 Kobayashi-Maskawa
matrix is unitary. Making detailed �ts of theoretical predictions to a large
variety of data on meson mixing and decays, to determine the elements of the
Kobayashi-Maskawa matrix with high precision, is an involved exercise as it
requires a synthesis of a variety of theoretical tools and high precision data.
Since for many of these observables their relationship with the parameters
of the SM is given by loop computations, this success too provides a test of
the SM as a quantum gauge �eld theory.

27.3 Free Parameters in the SM

The SM is a gauge theory where the requirement of local gauge invariance
under chiral isospin transformations results in the minimal couplings to the
matter �elds. The gauge bosons of the theory acquire a mass via the Higgs
mechanism which leads to the prediction of a massive scalar boson in the
model. The fermions in the model acquire mass via a Yukawa coupling to this
Higgs �eld. It is worth keeping in mind that the process by which the gauge
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bosons acquire a mass derives from the very elegant procedure of spontaneous
symmetry breaking and the existence of a �nite vacuum expectation value
for the Higgs �eld, so we at least think we understand the origins of the
gauge boson masses. The fermion masses are introduced in a totally ad hoc
fashion into the model.

The correct gauge group to describe nature is not predicted by the model.
The simplest choice consistent with existing phenomenology was suggested
in 1968 by Weinberg to be SU(2)L × U(1) and re�ected the known V − A
nature of the charged weak interactions. This choice is consistent with all
experimental data to date but keep in mind that with this choice, the most
striking feature of the weak interactions is simply inserted by hand. Once
the gauge group is known, there are 19 free parameters in the model that
must be determined. These are listed in the Table below.

Number Symbol Description Value
me Electron mass 511 keV

3 lepton mµ Muon mass 105.7 MeV
masses mτ Tau mass 1.78 GeV

mu Up quark mass 1.9 MeV
md Down quark mass 4.4 MeV

6 quark ms Strange quark mass 87 MeV
masses mc Charm quark mass 1.32 GeV

mb Bottom quark mass 4.24 GeV
mt Top quark mass 173.5 GeV
θ12 CKM 12-mixing angle 13.10

3 quark θ23 CKM 23-mixing angle 2.40

mixing angles θ13 CKM 13-mixing angle 0.20

2 imaginary δ CKM CP violation phase 0.995
quark phase θQCD QCD vacuum angle 0

g1 or g′ U(1) gauge coupling 0.357
3 gauge g2 or g SU(2) gauge coupling 0.652
couplings g3 or gs SU(3) gauge coupling 1.221
2 Higgs v Higgs vacuum expectation value 246 GeV

parameters MH Higgs mass 125.09 GeV

For each commuting set of generators of the group, we have an indepen-
dent coupling, so there are three gauge couplings g1, g2, and g3 (gs) to be
determined experimentally. Here we included g3 because the Yang-Mills La-
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grangian can be extended to include an SU(3) color symmetry to describe
QCD.

The experimentally accessible quantities are the coupling constants GF , gs
and αem, the gauge boson masses, MW and MZ , and Higgs mass MH . The
model parameters and the experimental measurables are easily related by
the following set of equations:

M2
W =

g22v
2

4
, M2

Z =
g22v

2

2 cos2 θW
,

e = g2 sin θW , GF =
g22

8M2
W

=
1

2v2
,

tan θW =
g2
g1

, sin2 θW = 1−
M2
W

M2
Z

, (27.2)

αem =
g1g2√
g21 + g22|

.

Very often experimental results are characterized in terms of sin2 θW , which
determines the mixing between the neutral SU(2) and U(1) gauge �elds that
result in the physical photon and the Z boson.

When the matter �elds of quarks and leptons are introduced the number
of free parameters proliferates appallingly. The fermion-gauge couplings are
totally determined by αem, gs, GF and MZ ; however, the fermion masses
coming from the Yukawa coupling of the fermions to the Higgs are all free
parameters.

We have another set of parameters to introduce in the form of a rotation
matrix. It appears that quark �avor eigenstates of strong interactions are not
eigenstates of the weak interactions and we need to experimentally determine
the 3× 3 mixing matrix that rotates one basis into the other. This rotation
matrix is called the Kobayashi-Maskawa matrix and it is thought to contain
the origins of CP violation. Finally, if neutrinos have mass (and we have no
good reason to think they don't) we have to be prepared for the neutrinos
to mix as well and there is an equivalent 3 × 3 Kobayashi-Maskawa matrix
for lepton sector.

In order for the SM to be completely de�ned, all these parameters must be
measured. Once the model is de�ned, we can test it and in fact a major
part of every high energy physics experiment now has involved testing the
predictive power of the SM.
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At the end let us note that, in general, one needs to add to the free parameters
in the Table the masses and mixing angles of the three known neutrinos,
which are just as arbitrary as the others within the con�nes of the SM. This
adds 9 parameters to the 19 listed (3 neutrino masses, 3 neutrino mixing
angles and 3 neutrino phases).

Exercise 27.1: The leptonic decays µ+ → e+ν̄ν and τ+ → e+ν̄ν both are
proceed via the same interaction. If the µ+ mean life is 2.2×10−6 s, estimate
the τ+ mean life if the experimental branching ratio for τ decay is 16%.

Exercise 27.2: Find the mean distance (in the Lab frame) the τ+ will
travel before decay if it was produced at 29 GeV in the collider process:
e+e− → τ+τ−.

Exercise 27.3: How many visible photons (∼ 5, 000 Å) does a 100-Watt
bulb with 3% e�ciency emit per second?

Exercise 27.4: Derive the relationship among the particle velocity v, the
index of refraction n of the medium, and the angle θ at which the Cherenkov
radiation is emitted relative to the line of �ight of the particle.

Exercise 27.5: Hydrogen gas at one atmosphere and 200 C has an index
of refraction n = 1 + 1.35 × 10−4 . What is the minimum kinetic energy in
MeV which an electron would need in order to emit Cherenkov radiation in
traversing this medium?

Exercise 27.6: A Cherenkov-radiation particle detector is made by �tting a
long pipe of one atmosphere and 200 C hydrogen gas with an optical system
capable of detecting the emitted light and of measuring the angle of emission
θ to an accuracy of δθ = 10−3 radian. A beam of charged particles with
momentum 100 GeV are passed through the counter. Since the momentum
is known, measurement of the Cherenkov angle miens a measurement of the
rest mass m0. For a particle with m0 near 1 GeV, and to �rst order in small
quantities, what is the fractional error (i.e. δm0/m0) in the determination
of m0 with the Cherenkov counter?

Exercise 27.7: Show that the velocity of the Z0 in the 1-particle creation
processes on e+e− colliders is much larger than W± bosons.

Exercise 27.8: Calculate what the sun's spectrum would be if the mass of
the W -boson were decreased by a factor of two and what it would be if the
mass of the W -boson were increased by a factor of two.
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Chapter 28

History and Outlook

The strong force holds most ordinary matter together because it con�nes
quarks into hadrons such as the proton and neutron. In addition, the strong
force binds neutrons and protons to create atomic nuclei. Most of the mass
of a common proton or neutron is the result of the strong force �eld energy;
the individual quarks provide only about 1% of the mass of a proton.

The strong interaction is observable at two ranges: on a larger scale, about
1 − 3 fm (1 fm = 10−15 m), it is the force that binds nucleons together to
form the nucleus of an atom. On the smaller scale, less than about 0.8 fm
(the radius of a nucleon), it is the force (carried by gluons) that holds quarks
together to form protons, neutrons, and other hadron particles. In the latter
context, it is often known as the color force.

The strong force inherently has such a high strength that hadrons bound
by the strong force can produce new massive particles. Thus, if hadrons
are struck by high-energy particles, they give rise to new hadrons instead of
emitting freely moving radiation. This property of the strong force is called
color con�nement, and it prevents the free "emission" of the strong force:
instead, in practice, jets of massive particles are produced.

Strong interactions is mediated by the exchange of massless particles called
gluons that act between quarks, antiquarks, and other gluons. Gluons are
thought to interact by way of a type of charge called color charge. Color
charge is analogous to electromagnetic charge, but it comes in three types
(± red, ± green, ± blue) rather than one, which results in a di�erent type
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of force, with di�erent behavior.

Quarks are massive spin-1/2 fermions which carry a color charge whose gaug-
ing is the content of QCD. Quarks are represented by Dirac �elds in the
fundamental representation 3 of the gauge group SU(3). They also carry
electric charge (either −1/3 or +2/3) and participate in weak interactions as
part of weak isospin doublets. They carry global quantum numbers includ-
ing the baryon number, which is 1/3 for each quark, hypercharge and one
of the �avor quantum numbers. Every quark has its own antiquark. The
charge of each antiquark is exactly the opposite of the corresponding quark.

Gluons are spin-1 bosons which also carry color charges, since they lie in
the adjoint representation 8 of SU(3). They have no electric charge, do not
participate in the weak interactions, and have no �avor. They lie in the
singlet representation 1 of all these symmetry groups.

The rules of quark-gluon interactions are detailed in Quantum Chromo Dy-
namics (QCD), an important part of the SM of particle physics. QCD, which
will be considered in this lecture, is a type of non-Abelian gauge theory with
SU(3) symmetry group.

28.1 The Yukawa Model

Let us start a brief historical survey in QCD with the mention of the Ruther-
ford experiment, indicated how compact the atomic nucleus is. After the dis-
covery of the neutron by Chadwick, it became necessary to understand how
the nucleus is built out of protons and neutrons. The mechanism introduced
by Yukawa, the exchange of a massive boson, turned out to be successful,
with the discovery of the pion in 1947.

Among the theoretical activity stimulated by the Yukawa model, two points
at least deserve attention.

• The mass of the Yukawa boson was constrained by the ratio of the
3-body to the 2-body binding energy;

• At �rst sight, three potentials were needed to build the nucleus: pp,
pn and nn, and it was natural to seek for some simpli�cation.
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A tempting scenario will be that where solely the proton-neutron interaction
exists, but this was clearly contradicted by the data on proton scattering.
What eventually prevailed was isospin symmetry. With the proton and the
neutron forming a doublet, there are only two potentials in the limit where
isospin is conserved, one for total isospin I = 0, and another one for I = 1.

In 1947 it was discovered the pion and was seen in three charge states (π+,
π0 and π−), forming an isospin triplet. Hence in 1947, we had 5 hadrons: 2
nucleons and 3 pions. But already two more were expected, as the existence
of antimatter was predicted as a consequence of the Dirac equation, and
the positron was discovered in cosmic rays by Anderson. The antiproton
and the antineutron were anticipated as well. A dedicated accelerator was
built at Berkeley and the antiproton was, indeed, discovered in 1955, and
the antineutron shortly after.

With 7 hadrons, 2 nucleons, 2 antinucleons, and 3 pions, the world of
hadronic physics was reasonably sized, and it was necessary to work on
the interaction among these few hadrons. However, several complications
occurred almost simultaneously.

• First, the Yukawa picture of nuclear forces, though very e�cient for
the long-range part, faced di�culties at shorter distances. More at-
traction was needed, and also some spin-orbit component, that neither
pion-exchange nor iterated pion-exchange were able to provide. An
explicit scalar and vector exchange were needed. While the former was
about isospin independent, and thus provided by the exchange of an
isoscalar scalar meson, the latter was sought to be di�erent in np vs.
pp scattering, and thus called for both an isoscalar and an isovector
vector meson. The ω and ρ were thus predicted!

• Second, the interaction of pions with nucleons was shown to produce
new particles, nucleon resonances, in particular the ∆(1232), which
has isospin 3/2, i.e. exists in four possible electric charges. Similarly,
proton-nucleon or proton-nucleus scattering, or proton-antiproton an-
nihilation were able to produce several new mesons, which were desired
to improve the theory of nuclear forces. These hadrons are not stable,
with for instance ∆→ N + π, or ρ→ π + π, but were named hadrons
as well, baryons or mesons. The ∆, at �rst sight, appears as a conse-
quence of the interaction between π and N , and the ρ as a resonance
of the ππ interaction.
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Chew and collaborators generalised the scenario, and suggested the
concept of nuclear democracy : everything is made of everything and
any hadron is both a building block and the result of the interaction
of the other hadrons. For instance, ∆ is made of Nπ, Nππ, etc.,
and, as well N is made of ∆π, etc. This gives an in�nite set of cou-
pled equations, of which it was hoped one could extract a �nite set
as a �rst tractable approximation to the spectrum and to the dynam-
ics. The success was, however, extremely limited. Ball, Scotti and
Wong, for instance, stressed that describing mesons as resulting of the
nucleon�antinucleon interaction hardly gives the observed "exchange
degeneracy" (named after the phenomenology of high-energy scatter-
ing), the property that an isoscalar and an isovector mesons with the
same quantum numbers have very often the same mass. In the baryon
sector, the next state after the∆ with isospin I = 3/2 and spin J = 3/2
was sometimes predicted to have I = 5/2 and J = 5/2!

• Third came strangeness. New particles were observed in the 1950s and
1960s, decaying weakly though massive enough to decay to existing
particles, and produced by pairs with strict rules: K+ together with
Λ for instance, but never K− together Λ. A new quantum number,
strangeness S, was introduced to summarize the properties of these new
particles: strangeness is conserved in production processes by strong
interaction, and thus Λ (S = −1) can be produced in association with
K+ (S = 1), but not K− which has S = −1. On the other hand,
strangeness is not conserved in the decay by weak interaction, as Λ→
N + π, or Λ → p + e− + ν̄. The weak interaction of strange particle
was beautifully linked to that involved in ordinary beta decay.

28.2 The Sakata Model

It was observed that strange particles do not di�er much form the non-
strange ones. For instance, the mass of the Λ baryon is about 1.1 GeV,
just slightly above that of the nucleon at 0.94 GeV, and the mass of the K∗

(0.89 GeV), is close to that of the vector mesons ρ and ω (about 0.78 GeV).
It was thus tempting to put strange and non-strange particles in multiplets
generalizing isospin. Since isospin is built on the SU(2) group, the minimal
extension is SU(3). Later, it was renamed SU(3)F, to di�erentiate it from
the SU(3) group associated with color. However, there was the exceptions
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of the π meson, with a mass of about 0.14 GeV (signi�cantly lighter than
the mass of the K, about 0.49 GeV) and the light scalar mesons with long-
standing questions about their structure.

A speci�c model was proposed by Sakata, with (n, p, Λ) as the building
blocks of matter, and mesons as baryon-antibaryon pairs. We already men-
tioned that this picture of mesons is di�cult to accommodate with the long-
range baryon-baryon interaction as given in the Yukawa picture. But the
Sakata model had also problems with baryons. There are too many baryons
with low mass. Take for instance the lowest baryons with spin J = 1/2. Be-
sides p, n and Λ, there is a triplet de singly-strange (S = −1) baryons (Σ+,
Σ0 and Σ−) of mass about 1.3 GeV, and a pair of doubly strange (S = −2)
baryons (Ξ0 and Ξ−) with mass about 1.5 GeV. In the Sakata model, they
should belong to higher representation, and, in a dynamical picture, contain
an additional baryon-antibaryon pair. This was hard to believe.

28.3 The Eightfold Way

To take care of the problems in Sakata model, Ne'emann and Gell-Mann
suggested to keep the SU(3) group as the basic symmetry, but to put the
known J = 1/2 baryons in an octet representation.

The group SU(3) has eight generators, instead of three for SU(2) (I± and
I3). Each multiplet can be characterized by the dimension of the represen-
tation and two generators that commute, which are usually taken as I3 and
strangeness S, or equivalently the hypercharge de�ned as Y = B + S, where
B is the baryon number.
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SU(3) is rather good symmetry. Its breaking can be described by simple
terms, treated at �rst order, which are proportional to some generators of
the group. More elaborate mechanisms were proposed for breaking SU(3).
One example is the famous Gell-Mann-Okubo formula for the baryon masses

M =M0 + aY +B
[
I(I + 1)− Y 2/4

]
, (28.1)

where M0, a and B are empirical constants related to a given multiplet.
From (28.1) one can get the relation

2 (MN +MΞ) = 3MΛ +MΣ , (28.2)

where MN stands for nucleon mass, which is in surprisingly good agreement
with experiment.

When the eightfold way was proposed, only 9 baryons with spin J = 3/2
were known, with a low mass: four ∆ of charge ranging from −1 to +2,
three Σ∗ with strangeness S = −1 and two Ξ∗ with strangeness S = −2.
At the 1962 Rochester Conference held in Geneva, Gell-Mann pointed out
they would �t very well a decuplet representation of SU(3), provided the last
member does also exist. He named it Ω−, as a kind of ultimate achievement,
in the biblical sense. The masses of the 9 existing members being observed
to grow linearly with strangeness, i.e. following the pattern

MΩ− −MΞ∗ =MΞ∗ −MΣ∗ =MΣ∗ −M∆ , (28.3)

known as the "equal spacing rule of the decuplet". By includingMΩ−−MΞ∗

in this equality, it was predicted the mass of the Ω− at about 1.67 GeV.
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Some physicists were skeptical about the possibility of producing and detect-
ing easily the Ω−. It was nevertheless seen in an experiment at Brookhaven
led by Samios, with exactly the mass predicted by Gell-Mann. This was at
the end of 1963, and published in 1964.

The Eightfold Way organizes into an octet the mesons, as well. The pseu-
doscalar mesons (π, η, K, K̄) were accommodated in an octet and a singlet.
As there is presumably mixing between the singlet and the isoscalar member
of the octet, it became customary to talk about "nonet". The same holds
for the vector mesons. On the �gure below shown the octet and singlet of
pseudoscalar (left) and vector (right) mesons.

28.3.1 The Fundamental Representation: Quarks

The Eightfold Way thus introduced the hadronic octets, singlets and decu-
plets, but not triplet, which corresponds to the fundamental representation
of SU(3) group. Gell-Mann proposed that the fundamental representation
is populated by three yet not discovered (or hypothetical) particles. He of
course was fully aware that any representation can be built by combining the
fundamental representation, 3, and its conjugate, 3̄, in the same way that
any value of the spin can be built by adding elementary spins 1/2. The basic
reduction of products of the 3 and 3̄ representations that are important for
the quark model are:

3× 3× 3 = 1 + 8 + 8 + 10 , 3× 3̄ = 1 + 8 . (28.4)

The word quark was taken from the sentence Three Quarks for Muster Mark
in Joyce's "Finnegans Wake". In another context (see next section), the
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word ace was suggested, but did not prevail. The individual quarks were
sometimes named p, n and λ, in reference to the Sakata model, but quickly
the naming scheme u, d, s was adopted by the community.

The properties of the three quarks are summarized in the table:

q b I I3 Y S Q

u 1
3

1
2

1
2

1
3 0 2

3

d 1
3

1
2 -12

1
3 0 -13

s 1
3 0 0 - 2

3 - 1 2
3

and in the diagram below.

Historians could debate endlessly whether the pioneers considered quarks
as a handy mathematical tool to build the representation of SU(3), or had
already in mind a physical interpretation of the quarks as the constituents of
the hadrons. Anyhow, this was one of the major breakthroughs in physics.

28.4 The OZI Rule

Another approach was followed by Zweig. In 1962 it was discovered the ϕ
meson, of mass about 1.02 GeV. It is an isoscalar, vector meson, like the ω,
but with peculiar decay patterns. While it could easily decay into pions, it
prefers the KK̄ channels, for which the phase-space is meagre (the K has
a mass of about 0.49 GeV). Zweig's explanation is that this favoured decay
is dictated by ϕ meson content. He named the constituent aces, but we
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will call them quarks to conform to the current usage. The idea is that the
decay preferentially keeps the existing content. In the modern language, the
ϕ decay is described by the diagrams below, Zweig forbidden (left, centre)
or allowed (right).

φ

π

ρ

φ
π

ρ

φ

K

K

Zweig thereby invented the "Zweig rule", also called Okubo-Iizuka-Zweig
(OZI), or (A�Z) rule since many authors contributed, from Alexander to
Zweig. As we shall see shortly, a nice surprise was that the rule works even
better for heavier quarks.

The rule governing the ϕ decay was extended to other decays and to reaction
mechanisms. Quark lines should not start from and end in the same hadron,
i.e. disconnected diagrams are suppressed. Instead quark lines should better
link two hadrons in the initial or �nal state.

The OZI rule then got variants. It is sometimes argued that the dominant
processes correspond to planar diagrams, while non-planar (but still con-
nected) diagrams are suppressed. For instance, there are dozens of measured
branching ratios for antinucleon-nucleon annihilation at rest or in �ight. In
the diagrams above, the rearrangement diagram (left) clearly keeps the ini-
tial constituents, while the diagram on the right is more planar. Clearly, the
former does not produce enough kaons, while the second predicts much more
kaons than observed.

Note that antiproton annihilation is an indirect evidence for quarks, but this
was understood much after the �rst measurements. If guidance is sought
from QED, annihilation has a rather small cross section, because it is a
very short-range process. The results obtained at Berkeley for the elastic
and annihilation cross-sections of antiproton scattering on nucleons indi-
cated that the latter is larger. To reproduce these results with an empirical
(complex) potential, one needs a large size for the annihilation part, about
0.8 fm or more. This was a puzzle. One now understands that the proton
and the antiproton are composite, with a size of the order of 0.5 − 1 fm.
Hence, when they overlap, they can rearrange their constituents into quark-
antiquark pairs. This is similar to the rearrangement collisions in molecular
physics, but has little to do with e+e− annihilation in QED.
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The hierarchy of the possible diagrams (displayed above) contributing to
baryon-antibaryon annihilation requires an extension of the Zweig rule that
remains a little controversial.

28.5 Quark Approaches

To understand the structure of baryons made of quarks, in 1965 Greenberg
suggested a kind of harmonic oscillator as a �rst approximation to describe
the quark motion. He addressed the problem of the statistics and suggested
a para-statistics that eventually became the color degree of freedom.

The work of Dalitz was done almost simultaneously. He constructed his �rst
version of the harmonic oscillator model of baryons. As Greenberg, he faced
the problem of the statistics of the quark.

Dalitz's work was the starting point of a series of studies about baryons in the
harmonic oscillator model with contributions by Horgan, Hey, Kelly, Rein-
ders, Gromes, Stamatescu, Stancu, Cutosky, Isgur snd Karl, etc. Potential
models not based on harmonic con�nement were proposed somewhat later.
Note also the contribution by Becchi and Morpurgo about the possibility of
describing hadrons made of quarks in a non-relativisitic approximation.

28.5.1 Heavy Quarks

The physics of kaons has been very stimulating along the years: strangeness
led to the quarks, the θ − τ puzzle led to parity violation and to K0K̄0

mixing, whose detailed scrutiny revealed CP violation. Another problem
in the weak decay of kaons inspired Glashow, Illiopoulos and Maiani, who
predicted a fourth quark, named charmed quark and abbreviated as c, whose
mass should not be too high. In some processes, diagrams involving u and
diagrams involving c quarks cancel out. This is the GIM mechanism.
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A new spectroscopy was thus predicted, with charmed mesons such as (cū)
and (cc̄), or charmed baryons such as (csu), double-charm baryons, etc. How-
ever, when in November 1974 (this was sometimes called the October rev-
olution), the J/ψ was discovered simultaneously at SLAC and Brookhaven,
and the ψ′ shortly after at SLAC, they were not immediately recognized as
(cc̄), i.e. charmonium. The surprise was that they are extremely narrow
resonances. We now understand that the Zweig rule works better when the
quark become heavier. The spectrum of charmonium was completed with
various P state, the ψ′′ = ψ(3770) which is a D state, and after some time,
with the spin-singlet states. Charmed mesons and baryons were discovered
as well, and this sector is now rather rich.

Explicit quark models were developed to describe the (cc̄) spectrum. The
charmonium gave a decisive impulse to the quark model in the meson sector.
Thanks to Regge and others, we had already an idea about sequences of
mesons with increasing spin J . In the quark model, this corresponds to
orbital excitations of the quark-antiquark motion. With charmonium, the
new feature is that: (i) The levels are better seen, since the lowest states are
narrow; (ii) There is a clear evidence for the radial degree of freedom.

At the time of the discovery of charm, in the 1970s, there were already spec-
ulations about a symmetry between quarks and leptons. The light quarks
(u, d) are the partners of (e−, νe) and (c, s) quarks belong in the family of
(µ−, νµ). Note that the leptons are ahead. The µ− was discovered in 1936,
and was completely unexpected. The τ lepton was discovered at SLAC in
1977. The partners of the (τ−, ντ ) pairs were thus anticipated and named
(t, b), as top and bottom. And a spectroscopy of hadrons containing b or t,
or both, was predicted. However, at a Conference in Hamburg, a German
minister who had some knowledge of English, suggested to replace bottom
by beauty. And top was renamed truth, but this is not very often used.

In 1977, Lederman, who missed the charmonium by a small margin, did
an experiment similar to Ting's, but with a more powerful beam and an
improved detector. In 1977 he announced the discovery of the Υ and Υ′

particles, immediately interpreted as (bb̄) bound states. Lederman noticed
that, within the precision of his measurement for the masses,

Υ′ −Υ ≃ ψ′ − J/ψ , (28.5)

and submitted to local theorists the question whether there exists a poten-
tial such that changing the reduced mass keep the spacings ∆E unchanged
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(remember that ∆E ∝ m for the Coulomb potential and ∆E ∝ 1/
√
m for

the harmonic oscillator). Quigg and Rosner found that the logarithmic po-
tential has this property for all spacings. In fact, the logarithmic potential
was already used in empirical speculations about the bottomonium bb̄, but
this property was not stressed clearly enough.

28.5.2 A First Hint of Colour

The story of the color degree of freedom arguably can be started with the
discovery of ∆++ baryon in 1951. The eightfold way refers to the classi�-
cation of the lowest-lying pseudoscalar mesons and spin-1/2 baryons within
octets in SU(3)-�avour space (u, d, s). The ∆++ is part of a spin-3/2 baryon
decuplet, a tenfold way in this terminology.

In the context of the quark model - which �rst had to be developed, suc-
cessively joining together the notions of spin, isospin, strangeness, and the
eightfold way - the �avor and spin content of the ∆++ baryon is:∣∣∆++

⟩
= |u↑ u↑ u↑⟩ , (28.6)

clearly a highly symmetric con�guration. However, since the ∆++ is a
fermion, it must have an overall antisymmetric wave function.

In the beginning of 1965, Bogolyubov, Struminsky and Tavkhelidze wrote a
preprint (with a discussion of the earlier idea of Struminsky) on the neces-
sity of additional quark quantum degree of freedom in connection with Ω−

hyperon. The situation with Ω− (composed of three s quarks with parallel
spins) also was peculiar, as for the case of ∆++ � without additional degree
of freedom such combination is forbidden by the Pauli exclusion principle.

In 1964-65 Greenberg and Han-Nambu independently resolved the problem
of ∆++ by proposing that quarks possess an additional SU(3) gauge degree
of freedom, later called color charge. The ∆++ wave function can now be
made antisymmetric by arranging its three quarks antisymmetrically in this
new degree of freedom, ∣∣∆++

⟩
= ϵijk |ui↑ uj↑ uk↑⟩ , (28.7)

hence solving the mystery. Han and Nambu noted that quarks might interact
via an octet of vector gauge bosons: the gluons.
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More direct experimental tests of the number of colors, NC , were provided
�rst by measurements of the decay width of π0 → γγ decays, which is
proportional to N2

C , and later by the famous R-ratio in e+e− collisions

R =
σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
, (28.8)

which is proportional to NC .

28.6 Development of QCD

Since free quark searches consistently failed to turn up any evidence for the
new particles, and because an elementary particle back then was de�ned as
a particle which could be separated and isolated, Gell-Mann often said that
quarks were merely convenient mathematical constructs, not real particles.
The meaning of this statement was usually clear in context: He meant quarks
are con�ned, but he also was implying that the strong interactions could
probably not be fully described by QFT.

Feynman argued that experiments showed quarks are real particles: he called
them partons (since they were parts of hadrons). By particles, Feynman
meant objects which travel along paths, elementary particles in a �eld theory.

The di�erence between Feynman's and Gell-Mann's approaches re�ected a
deep split in the theoretical physics community. Feynman thought the quarks
have a distribution of position or momentum, like any other particle, and he
(correctly) believed that the di�usion of parton momentum explained di�rac-
tive scattering. Although Gell-Mann believed that certain quark charges
could be localized, he was open to the possibility that the quarks themselves
could not be localized because space and time break down. This was the
more radical approach of S-matrix theory.

Bjorken proposed that point-like partons would imply certain relations in
deep inelastic scattering of electrons and protons, which were veri�ed in
experiments at SLAC in 1969. This led physicists to abandon the S-matrix
approach for the strong interactions.

In 1973 the concept of color as the source of a "strong �eld" was developed
into the theory of QCD by Fritzsch and Leutwyler, together with Gell-Mann.
In particular, they employed the general �eld theory developed in 1954 by
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Yang and Mills, in which the carrier particles of a force can themselves radiate
further carrier particles (this is di�erent from QED, where the photons that
carry the electromagnetic force do not radiate further photons).

The discovery of asymptotic freedom in the strong interactions by Gross,
Politzer and Wilczek allowed physicists to make precise predictions of the
results of many high energy experiments using the QFT technique of per-
turbation theory. Evidence of gluons was discovered in three-jet events at
PETRA in 1979. These experiments became more and more precise, culmi-
nating in the veri�cation of perturbative QCD at the level of a few percent
at the LEP in CERN.

The other side of asymptotic freedom is con�nement. Since the force between
color charges does not decrease with distance, it is believed that quarks and
gluons can never be liberated from hadrons. This aspect of the theory is
veri�ed within lattice QCD computations, but is not mathematically proven.
One of the Millennium Prize Problems announced by the Clay Mathematics
Institute requires a claimant to produce such a proof. Other aspects of non-
perturbative QCD are the exploration of phases of quark matter, including
the quark-gluon plasma.

The relation between the short-distance particle limit and the con�ning long-
distance limit is one of the topics recently explored using string theory, the
modern form of S-matrix theory.

28.7 Distinguished Properties

As it was already mentioned QCD exhibits two peculiar properties: asymp-
totic freedom and color con�nement. Let's brie�y describe these features.

28.7.1 Color Con�nement

Color Con�nement is a consequence of the constant force between two color
charges as they are separated: In order to increase the separation between
two quarks within a hadron, ever-increasing amounts of energy are required.
Eventually this energy produces a quark-antiquark pair, turning the initial
hadron into a pair of hadrons instead of producing an isolated color charge.
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Although analytically unproven, color con�nement is well established from
lattice QCD calculations and decades of experiments.

Detailed computations with the QCD Lagrangian show that the e�ective po-
tential between a quark and its anti-quark in a meson contains a term that
increases in proportion to the distance between the quark and anti-quark
(∝ r), which represents some kind of "sti�ness" of the interaction between
the particle and its anti-particle at large distances, similar to the entropic
elasticity of a rubber band. This leads to con�nement of the quarks to the in-
terior of hadrons, i.e. mesons and nucleons, with typical radii corresponding
to former "bag models" of the hadrons. The order of magnitude of the "bag
radius" is ∼ 1 fm. Moreover, the above-mentioned sti�ness is quantitatively
related to the so-called "area law" behavior of the expectation value of the
Wilson loop, which is proportional to the area enclosed by the loop.

Note that Wilson loop is an important theoretical concept in QCD. In lattice
approach, the �nal term of the QCD Lagrangian is discretized via Wilson
loops, and more generally the behavior of Wilson loops can distinguish con-
�ned and decon�ned phases.

28.7.2 Asymptotic Freedom and Duality

QCD has the property of asymptotic freedom, i.e. the running coupling
becomes weak at high energies, or short distances. At low energies, or large
distances, QCD becomes strongly coupled (infrared slavery), presumably
leading to the con�nement of quarks and gluons. The asymptotic freedom
of QCD was discovered in 1973 by David Gross and Frank Wilczek, and
independently by David Politzer in the same year. For this work all three
shared the 2004 Nobel Prize in Physics.

Asymptotic freedom means that at large energy, or short distances, there is
practically no interaction between quarks and gluons, as the energy scale of
those interactions increases (and the corresponding length scale decreases).
This is in contrast (one would say dual) to what one is used to, since usually
one connects the absence of interactions with large distances. As mentioned
by Wegner, a solid state theorist, who introduced 1971 simple gauge in-
variant lattice models, the high-temperature behavior of the original model,
e.g. the strong decay of correlations at large distances, corresponds to the
low-temperature behavior of the dual model, namely the asymptotic decay
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of non-trivial correlations, e.g. short-range deviations from almost perfect
arrangements, for short distances.

28.8 The Strong Coupling

To �rst approximation, QCD is scale invariant, if one 'zooms in' on a QCD
jet, one will �nd a repeated self-similar pattern of jets within jets, reminis-
cent of fractals. In the context of QCD, this property was originally called
light-cone scaling, or Bjørken scaling. This type of scaling is closely related
to the class of angle-preserving symmetries, called conformal symmetries.
In physics today, the terms conformal and scale invariant are used inter-
changeably. Strictly speaking, conformal symmetry is more restrictive than
just scale invariance, but examples of scale-invariant �eld theories that are
not conformal are rare. Conformal invariance is a mathematical property of
several QCD-like theories which are now being studied (such as N = 4 SUSY
relatives of QCD). It is also related to the physics of so-called unparticles.

If the strong coupling did not run, Bjørken scaling would be absolutely true
and QCD would be a theory with a �xed coupling, the same at all scales.
This simpli�ed picture already captures some of the most important proper-
ties of QCD. In the limit of exact Bjørken scaling (QCD at �xed coupling)
properties of high-energy interactions are determined only by dimensionless
kinematic quantities, such as scattering angles (pseudo-rapidities) and ratios
of energy scales. Originally, the observed approximate agreement with this
was used as a powerful argument for point-like substructure in hadrons; since
measurements at di�erent energies are sensitive to di�erent resolution scales,
independence of the absolute energy scale is indicative of the absence of other
fundamental scales in the problem and hence of point-like constituents. For
applications of QCD to high-energy collider physics, an important conse-
quence of Bjørken scaling is thus that the rate of bremsstrahlung jets, with
a given transverse momentum, scales in direct proportion to the hardness of
the fundamental partonic scattering process they are produced in associa-
tion with. This agrees well with our intuition about accelerated charges; the
harder you 'kick' them, the harder the radiation they produce.

For instance, in the limit of exact scaling, a measurement of the rate of 10-
GeV jets produced in association with an ordinary Z boson could be used
as a direct prediction of the rate of 100-GeV jets that would be produced in
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association with a 900-GeV Z ′ boson, and so forth. Our intuition about how
many bremsstrahlung jets a given type of process is likely to have should
therefore be governed �rst and foremost by the ratios of scales that appear
in that particular process, as has been highlighted in a number of studies
focusing on the mass and p⊥ scales appearing, e.g. beyond the SM physics
processes Bjørken scaling is also fundamental to the understanding of jet
substructure in QCD.

On top of the underlying scaling behavior, the running coupling will intro-
duce a dependence on the absolute scale, implying more radiation at low
scales than at high ones. The running is logarithmic with energy, leads to
the asymptotic freedom. More correctly, it is the potential which grows
linearly, while the force becomes constant.

Among the consequences of asymptotic freedom is that perturbation theory
becomes better behaved at higher absolute energies, due to the e�ectively
decreasing coupling. Perturbative calculations for our 900-GeV Z ′ boson
from before should therefore be slightly faster converging than equivalent
calculations for the 90-GeV one. Furthermore, since the running of αs ex-
plicitly breaks Bjørken scaling, we also expect to see small changes in jet
shapes and in jet production ratios as we vary the energy. For instance,
since high-p⊥ jets start out with a smaller e�ective coupling, their intrinsic
shape (irrespective of boost e�ects) is somewhat narrower than for low-p⊥
jets, an issue which can be important for jet calibration.

As a �nal remark on asymptotic freedom, note that the decreasing value of
the strong coupling with energy must eventually cause it to become compa-
rable to the EW one at some energy scale. Beyond that point, which may
lie at energies of order 1015 − 1017 GeV (though it may be lower if as yet
undiscovered particles generate large corrections to the running), we do not
know what the further evolution of the combined theory will actually look
like, or whether it will continue to exhibit asymptotic freedom.

It is sometimes stated that QCD only has a single free parameter, the strong
coupling. However, even in the perturbative region, the beta function de-
pends explicitly on the number of quark �avors, as we have seen, and thereby
also on the quark masses. Furthermore, in the non-perturbative region the
value of the perturbative coupling gives little or no insight into the behav-
ior of the full theory. Instead, universal functions (such as parton densities,
form factors, fragmentation functions, etc.), e�ective theories (such as the
Operator Product Expansion, Chiral Perturbation Theory, or Heavy Quark
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E�ective Theory), or phenomenological models (such as Regge Theory or
the String and Cluster Hadronisation Models) must be used, which in turn
depend on additional non-perturbative parameters.

For some of these questions, such as hadron masses, lattice QCD can fur-
nish important additional insight, but for multi-scale and/or time-evolution
problems, the applicability of lattice methods is still severely restricted; the
lattice formulation of QCD requires a Wick rotation to Euclidean space.
The time-coordinate can then be treated on an equal footing with the other
dimensions, but intrinsically Minkowskian problems, such as the time evo-
lution of a system, are inaccessible. The limited size of current lattices also
severely constrain the scale hierarchies that it is possible to '�t' between the
lattice spacing and the lattice size.

28.9 Methods of QCD

When probed at very short wavelengths, QCD is essentially a theory of free
'partons' (quarks and gluons), which only scatter o� one another through
relatively small quantum corrections, that can be systematically calculated.
But at longer wavelengths, of order the size of the proton ∼ 1 fm = 10−15 m,
we see strongly bound towers of hadron resonances emerge, with string-like
potentials building up if we try to separate their partonic constituents. Due
to our inability to perform analytic calculations in strongly coupled �eld
theories, QCD is therefore still only partially solved.

The consequence for collider physics is that some parts of QCD can be cal-
culated in terms of the fundamental parameters of the Lagrangian, whereas
others must be expressed through models or functions whose e�ective pa-
rameters are not a priori calculable but which can be constrained by �ts
to data. However, even in the absence of a perturbative expansion, there
are still several strong theorems which hold, and which can be used to give
relations between seemingly di�erent processes. This is the reason it makes
sense to measure the partonic substructure of the proton in ep collisions
and then re-use the same parametrizations for pp collisions. Thus the loss
of a factorized perturbative expansion is not equivalent to a total loss of
predictivity.

An alternative approach would be to give up on calculating QCD and use
leptons instead. Formally, this amounts to summing inclusively over strong-
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interaction phenomena, when such are present. While such a strategy might
succeed in replacing what we do know about QCD by 'unity'.

Furthermore, QCD is the richest gauge theory we have so far. Its emergent
phenomena, unitarity properties, color structure, non-perturbative dynam-
ics, quantum vs. classical limits, interplay between scale-invariant and scale-
dependent properties, and its wide range of phenomenological applications,
are still very much topics of active investigation.

In addition, or perhaps as a consequence, the �eld of QCD is currently expe-
riencing something of a revolution. On the perturbative side, new methods
to compute scattering amplitudes with very high particle multiplicities are
being developed, together with advanced techniques for combining such am-
plitudes with all-orders re-summation frameworks. On the non-perturbative
side, the wealth of data on soft-physics processes from the LHC is forcing
us to reconsider the reliability of the standard fragmentation models, and
heavy-ion collisions are providing new insights into the collective behavior
of hadronic matter. The study of cosmic rays impinging on the Earth's at-
mosphere challenges our ability to extrapolate fragmentation models from
collider energy scales to the region of ultra-high energy cosmic rays. And
�nally, dark matter annihilation processes in space may produce hadrons,
whose spectra are sensitive to the modeling of fragmentation.

Detailed analysis of the content of the QCD is complicated and various tech-
niques have been developed. Some of them are discussed brie�y below:

• Perturbative QCD. This approach is based on asymptotic freedom,
which allows perturbation theory to be used accurately in experiments
performed at very high energies. Although limited in scope, this ap-
proach has resulted in the most precise tests of QCD to date.

• Lattice QCD. Among non-perturbative approaches to QCD, the most
well established one is lattice QCD. This approach uses a discrete set
of spacetime points (called the lattice) to reduce the analytically in-
tractable path integrals of the continuum theory to a very di�cult
numerical computation which is then carried out on supercomputers.
While it is a slow and resource-intensive approach, it has wide appli-
cability, giving insight into parts of the theory inaccessible by other
means, in particular into the explicit forces acting between quarks and
antiquarks in a meson. However, the numerical sign problem makes it
di�cult to use lattice methods to study QCD at high density and low
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temperature (e.g. nuclear matter or the interior of neutron stars).

• 1/Nc expansion. A well-known approximation scheme, the 1/Nc ex-
pansion, starts from the idea that the number of colors Nc is in�nite,
and makes a series of corrections to account for the fact that it is not.
Until now, it has been the source of qualitative insight rather than
a method for quantitative predictions. Modern variants include the
AdS/CFT approach.

• E�ective theories. For speci�c problems e�ective theories may be writ-
ten down which give qualitatively correct results in certain limits. In
the best of cases, these may then be obtained as systematic expansions
in some parameter of the QCD Lagrangian.

One such e�ective �eld theory is Chiral Perturbation Theory, which is
the QCD e�ective theory at low energies. More precisely, it is a low
energy expansion based on the chiral SSB of QCD, which is an exact
symmetry when quark masses are equal to zero, but for the u, d and s
quark, which have small mass, it is still a good approximate symmetry.
Depending on the number of quarks which are treated as light, one uses
either SU(2) or SU(3) chiral models.

Other e�ective theories are Heavy Quark E�ective Theory (which ex-
pands around heavy quark mass near in�nity), and Soft-Collinear Ef-
fective Theory (which expands around large ratios of energy scales).
In addition to e�ective theories, models like the Nambu-Jona-Lasinio
model and the chiral model are often used when discussing general
features.

28.10 Con�rmation and Outlook

A large body of experimental evidence for QCD has been gathered over the
years. In particular, several good quantitative tests of perturbative QCD
exist:

• The running of the QCD coupling;

• Scaling violation in polarized/unpolarized deep inelastic scatterings;

• Vector boson productions at colliders (included Drell-Yan process);
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• Direct photons productions in hadronic collisions;

• Jet cross sections in colliders;

• Event shape observables;

• Heavy-quark productions in colliders.

Quantitative tests of non-perturbative QCD are fewer, because the predic-
tions are harder to make. The best is probably the running of the QCD
coupling as probed through lattice computations of heavy-quarkonium spec-
tra. There is a claim about the mass of the heavy meson Bc. Other non-
perturbative tests are currently at the level of 5% at best. Continuing work
on masses and form factors of hadrons and their weak matrix elements are
promising candidates for future quantitative tests. The whole subject of
quark matter and the quark-gluon plasma is a non-perturbative test bed for
QCD which still remains to be properly exploited.

One qualitative prediction of QCD is that there exist composite particles
made solely of gluons called glueballs that have not yet been de�nitively
observed experimentally. A de�nitive observation of a glueball with the
properties predicted by QCD would strongly con�rm the theory. In prin-
ciple, if glueballs could be de�nitively ruled out, this would be a serious
experimental blow to QCD. But scientists are unable to con�rm or deny the
existence of glueballs de�nitively, despite the fact that particle accelerators
have su�cient energy to generate them.

On the way from the early days of the quark model to the recent state of
art, there are many beautiful and decisive contributions. Let us list of few
items that remains about 50 years after the �rst speculations on quarks:

• SU(3)F symmetry. The SU(3) �avor symmetry is now becoming some-
what controversial. Sometimes, it is almost exact, e.g. the case for the
decay rates of J/ψ. In other cases, SU(3)F looks badly broken. For in-
stance, if one looks at K to π production in high-energy collisions, one
�nds a large "strangeness suppression". Perhaps the elementary cou-
plings for uū or ss̄ production are very similar, but the small di�erences
in masses are ampli�ed by a tunneling factor which is exponential.

• From �avor symmetry to �avor independence. In hadron models, it is
delicate to attempt a blind extension of SU(3)F to SU(4) or SU(5) to
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include charm and beauty. The breaking is too large to be treated as a
perturbation. A new understanding of the symmetry has been provided
by the quark model. The basic interaction is �avor independent, or
has a well-de�ned �avor dependence in the spin-spin and spin-orbit
terms. Then the same basic interaction is used to build the various
(qq̄′) mesons and (qq′q′′) baryons.

• The bootstrap, or nuclear democracy concept. This idea was concep-
tually superb, but operationally somewhat ine�cient. Still, a kind of
duality exists: for instance, it is natural to consider the ∆ baryon in
some context as the partner of N = (qqq) nucleon with all quark spins
aligned, but to describe the pion-nucleus scattering, there is nothing
better than ∆ as a π − N resonance. When the quark model was
invented, it was considered as a relief, with at last a systematic and
coherent scheme to describe the hadrons. Nowadays, for any hadron
a of any mass m, one �nds a pair of existing hadrons b and c and an
e�ective Lagrangian coupling a, b and c, such that a appears as a kind
of molecule. The overall picture is seemingly lost.

• From quark models to QCD. This will be covered in some of the next
chapters. It is fascinating how a somewhat empirical model, but based
on the acute observation of facts, became a beautiful theory.

• A premium to simplicity. The quark model, even in its simplest variant,
works rather well. Presumably, the quark model incorporates a lot of
subtle dynamical e�ects in an e�ective way, and enables one to make
successful predictions.

• Hadron dynamics beyond hadron decay. An ambitious application of
the quark model deals with the hadron-hadron interaction. This is
the continuum part of the sections devoted to loop corrections and to
multiquark spectroscopy.

Exercise 28.1: By considering the symmetry of the wave function, explain
why the existence of the Ω−(sss)L = 0 baryon provides evidence for a degree
of freedom in addition to space + spin + �avor.

Exercise 28.2: Why can't the "ninth gluon" be the photon?



Chapter 29

Structure of QCD

As we mention in previous chapter, necessity of the theory for strong inter-
actions had raised in 1950s, when experimental particle physics discovered
a large and ever-growing number of hadrons. It seemed that such a large
number of particles could not all be fundamental. At �rst the particles were
classi�ed by charge and isospin by Wigner and Heisenberg; then, in 1953-
56, according to strangeness by Gell-Mann and Nishijima. To gain greater
insight, the hadrons were sorted into groups having similar properties and
masses using the eightfold way, invented in 1961 by Gell-Mann and Ne'eman.
Gell-Mann and Zweig, correcting an earlier approach of Sakata, went on to
propose in 1963 that the structure of the groups could be explained by the
existence of three �avors of smaller particles inside the hadrons: the quarks.

29.1 Symmetries of the Model

QCD is a gauge theory of the SU(3) gauge group obtained by taking the
color charge to de�ne a local symmetry. This symmetry acts on the dif-
ferent colors of quarks, and this is an exact gauge symmetry mediated by
the gluons. SU(3) is the Special Unitary group in 3 (complex) dimensions,
whose elements are the set of unitary 3× 3 matrices with determinant one.
Since there are 9 linearly independent unitary complex matrices (a complex
N ×N matrix has 2N2 degrees of freedom, on which unitarity provides N2

constraints), one of which has determinant −1, there are a total of 8 in-
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dependent directions in this matrix space, corresponding to eight di�erent
generators as compared with the single one of QED. For SU(3) the dimension
of the adjoint, or vector representation is equal to the number of generators,
N2 − 1 = 8, while the dimension of the fundamental representation is the
degree of the group, N = 3.

In the context of QCD, we normally represent SU(3) group using the fun-
damental representation, in which its generators λa (a = 1, 2, ...8) appear as
a set of eight traceless and hermitian Gell-Mann matrices:

λi =

(
σi 0
0 0

)
, λ4 =

 0 0 1
0 0 0
1 0 0

 , (i = 1, 2, 3)

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 ,

where σi denotes three 2 × 2 Pauli matrices. These matrices can operate
both on each other (representing combinations of successive gauge trans-
formations) and on a set of 3-vectors, the latter of which represent quarks
in color space; the quarks are triplets under SU(3). The matrices can be
thought of as representing gluons in color space (or, more precisely, the gauge
transformations carried out by gluons), hence there are eight di�erent gluons,
which are octets under SU(3).

The structure constants of SU(3) are
listed to the right. They de�ne the ad-
joint representation and are related to
the fundamental representation gener-
ators via the commutator relations

λaλb − λbλa = ifabcλc (29.1)

(a, b, c = 1, ..., 8). Thus one can ex-
press color space on a basis of λa or
via the structure constants.

SU(3) Structure Constants

f123 = 1

f147 = f246 = f257 = f345 =
1
2

f156 = f367 = −1
2

f458 = f678 =
√
3
2

Antisymmetric in all indices

All other fabc = 0

QCD exhibits also the second, di�erent SU(3) symmetry. Since the strong
interaction does not discriminate between di�erent �avors of quark, there
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is also a �avor symmetry which rotates di�erent �avors of quarks to each
other, or SU(3)F , which is an approximate symmetry of the vacuum of QCD,
and is not a fundamental symmetry at all. This symmetry is an accidental
consequence of the small mass of the three lightest quarks and is broken
by the di�ering these masses. The approximate �avor symmetries do have
associated gauge bosons, observed particles like ρ and Ω, but these particles
are nothing like the gluons and they are not massless. They are emergent
gauge bosons in an approximate string description of QCD.

In the QCD vacuum there are vacuum condensates of all the quarks whose
mass is less than the QCD scale. This includes the up and down quarks, and
to a lesser extent the strange quark, but not any of the others. The vacuum
is symmetric under SU(2) isospin rotations of up and down, and to a lesser
extent under rotations of up, down and strange, or full �avor group SU(3)F ,
and the observed particles make isospin and SU(3)F multiplets.

Note that there are additional global symmetries whose de�nitions require
the notion of chirality, discrimination between left and right-handed.

29.1.1 Color States

The underlying SU(3) group theory can be used to �nd out which color
states we can obtain by combinations of the red (R), green (G) and blue
(B) quarks and gluons. The simplest example of this is the combination of
a quark and antiquark. We can form a total of nine di�erent color-anticolor
combinations, which fall into two irreducible representations of SU(3):

3× 3 = 8⊕ 1 . (29.2)

The singlet here corresponds to the symmetric wave function

1√
3

(∣∣RR̄⟩+ ∣∣GḠ⟩+ ∣∣BB̄⟩) , (29.3)

which is invariant under SU(3) transformations (the de�nition of a singlet).
The other eight linearly independent combinations (which can be represented
by one for each Gell-Mann matrix, with the singlet corresponding to the
identity matrix) transform into each other under SU(3). Thus, although we
sometimes talk about color-singlet states as being made up (e.g. red-antired)
that is not quite precise language. The actual state

∣∣RR̄⟩ is not a pure color
singlet. Although it does have a non-zero projection onto the singlet wave
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function above, it also has non-zero projections onto the two members of
the octet that correspond to the diagonal Gell-Mann matrices, λ3 and λ8.
Intuitively, one can also easily realise this by noting that an SU(3) rotation
of
∣∣RR̄⟩ would in general turn it into a di�erent state, say

∣∣BB̄⟩, whereas a
true color singlet would be invariant. Finally, we can also realise from (29.2)
that a random (color-uncorrelated) quark-antiquark pair has a 1/N2 = 1/9
chance to be in an overall color-singlet state; otherwise it is in an octet.

Similarly, there are also nine possible quark-quark (or antiquark-antiquark)
combinations, six of which are symmetric under interchange of the two quarks
and three of which are antisymmetric:

6 =



|RR⟩
|GG⟩
|BB⟩

1√
2
(|RG⟩+ |GR⟩)

1√
2
(|GB⟩+ |BG⟩)

1√
2
(|BR⟩+ |RB⟩)


, 3̄ =


1√
2
(|RG⟩ − |GR⟩)

1√
2
(|GB⟩ − |BG⟩)

1√
2
(|BR⟩ − |RB⟩)

 . (29.4)

The members of the sextet transform into (linear combinations of) each
other under SU(3) transformations, and similarly for the members of the
antitriplet, hence neither of these can be reduced further. The breakdown
into irreducible SU(3) multiplets is therefore

3× 3 = 6⊕ 3 . (29.5)

Thus, an uncorrelated pair of quarks has a 1/3 chance to add to an overall
anti-triplet state (corresponding to coherent superpositions like R+G = B);
otherwise it is in an overall sextet state. In the context of hadronisation
models, this coherent superposition of two quarks in an overall antitriplet
state is sometimes called a diquark (at low mqq) or a string junction (at high
mqq); it corresponds to the antisymmatric R + G = B combination needed
to create a baryon wavefunction.

Note that the emphasis on the quark-(anti)quark pair being uncorrelated is
important; production processes that correlate the produced partons, like
Z → qq̄ or g → qq̄, will project out speci�c components (here the singlet and
octet, respectively). Note also that if the quark and antiquark are on opposite
sides of the universe (i.e. living in two di�erent hadrons), the QCD dynamics
will not care what overall color state they are in. So for the formation of
multi-partonic states in QCD the spatial part of the wave functions (causality
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at the very least) will also play a role. Here, we are considering only the color
part of the wave functions. Some additional examples are

8× 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 ,

3× 8 = 15⊕ 6⊕ 3 ,

3× 6 = 10⊕ 8 , (29.6)

3× 3× 3 = (6⊕ 3)× 3 = 10⊕ 8⊕ 8⊕ 1 .

Physically, the 27 in the �rst line corresponds to a completely incoherent
addition of the color charges of two gluons; the decuplets are slightly more
coherent (with a lower total color charge), the octets yet more, and the singlet
corresponds to the combination of two gluons that have precisely equal and
opposite color charges, so that their total charge is zero.

29.2 The Lagrangian of QCD

QCD, the fundamental theory of the strong interactions describing a huge
variety of phenomena in hadronic and nuclear physics, is an SU(3) gauge
theory described by the Lagrangian density that �ts into a single line

L = −1

4
F aµνF

aµν + ψ̄iq(iγ
µ)(Dµ)ijψ

j
q −Mψ̄iqψqi . (29.7)

Here

F aµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (a, b, c = 1, . . . , 8)

Dµ = ∂µ1−
i

2
λaGaµ , (29.8)

where F aµν is the �eld strength tensor for the gluon �elds Gaµ with (adjoint)
color index a and Dµ is the covariant derivative in QCD. The quantity gs
denotes the strong coupling (related to αs by g2s = 4παs) and λa are the
3×3 Gell-Mann matrices (29.1), which are the generators of the SU(3) color
group, and are normalized by

Trλaλb = 2δab . (29.9)

In (29.7), the Dirac-spinor ψiq with (fundamental) color index i,

ψq = (ψqR, ψqG, ψqB)
T , (29.10)
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is a vector in the �avor space, with the components describing u, d, s, c, b
and t quarks. Further,M denotes the quark mass matrix

M = diag (mu,md,ms,mc,mb,mt) . (29.11)

There are no bare mass terms for the quarks in (29.7). These would be
allowed by QCD alone, but are forbidden by the chiral symmetry of the EW
part of the SM. The quark masses are generated by SSB, i.e. by the standard
Higgs mechanism or similar.

The Lagrangian of QCD is invariant under local SU(3) color gauge group
transformations

ψ′(x) = Λ(x)ψ(x) , ψ̄′(x) = ψ̄(x)Λ(x)† ,

G′
µ(x) = Λ(x)Gµ(x)Λ(x)

† − ∂µΛ(x)Λ(x)† , (29.12)

where Λ(x) ∈ SU(3). Under these transformations, the stress tensor trans-
forms covariantly

F ′
µν(x) = Λ(x)Fµν(x)Λ(x)

† , (29.13)

where we de�ned the matrix-valued �elds

Fµν = − i
2
λaF aµν = ∂µGν − ∂νGµ + gs[Gµ, Gν ] .

(
Gµ = − i

2
λaGaµ

)
(29.14)

Note that the color transformations are diagonal in the �avor space (color
and �avor transformations do not mix) and the coupling constant gs is �avor-
independent.

According to the rules of QFT and the associated Feynman diagrams, the
F 2 term in the QCD Lagrangian (29.7) gives rise to three basic interactions:
a quark may emit (or absorb) a gluon, a gluon may emit (or absorb) a
gluon, and two gluons may directly interact, shown schematically in the
�gure below.
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This contrasts with QED, in which only the �rst kind of interaction occurs,
since photons have no charge. Diagrams involving Faddeev-Popov ghosts
must be considered too (except in the unitarity gauge).

An example of the color �ow for a quark-gluon interaction in color space
is given in the �gure below, illustrating a quark-quaek-gluon vertex before
summing/averaging over colors: a gluon in a state represented by λ1 interacts
with quarks in the red and green states, ψR and ψG.

G1
µ

ψG ψR

∝ − i
2gs ψ̄R λ1 ψG =

= − i
2gs (1 0 0)

 0 1 0
1 0 0
0 0 0

  0
1
0

 .

Normally, of course, we sum over all the color indices, so this example merely
gives a pictorial representation of what one particular (non-zero) term in the
color sum looks like.

QCD is a gauge theory and to carry out the quantization gauge �xing is
necessary. It means that the QCD Lagrangian given in (29.7) has to be
supplemented by a gauge-�xing term and, eventually, by a ghost Lagrangian
(in the non-ghost-free gauges, e.g. in the covariant gauge)

LQCD → LQCD + Lg.fix. + Lghost . (29.15)

We shall not address this (standard) issue explicitly, since it is not important
for the discussion which will be carried out below.

Finally, note that the Lagrangian of QCD contains in addition the so-called
θ-term

Lθ = −
θ

32π2
ϵµναβF aµνF

a
αβ , (29.16)

which is related to the axial anomaly and leads to CP violation in QCD.
The physical value of the θ-parameter is, however, very small. The necessity
to explain why it should be naturally small, constitutes the essence of the
so-called strong CP problem (see the next lecture).
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29.3 Color Factors

In QCD calculations we often encounter the some color SU(3) theoretical
factors. Typically, we do not measure color in the �nal state � instead we
average over all possible incoming colors and sum over all possible outgo-
ing ones, wherefore QCD scattering amplitudes (squared) in practice always
contain sums over quark �elds contracted with Gell-Mann matrices. These
contractions in turn produce traces which yield the color factors that are
associated to each QCD process, and which basically count the number of
paths through color space, Nc, that the process at hand can take. Let us con-
sider some processes with di�erent Nc, taking account of which is important
in QCD calculations.

A very simple example of a color factor is given by the decay process

Z → qq̄ . (29.17)

This vertex contains a simple δij in color space; the outgoing quark and anti-
quark must have identical (anti-)colors. Squaring the corresponding matrix
element and summing over �nal-state colors yields,

e+e− → Z → qq̄ ⇒
∑
colors

|M |2 ∝ δijδji = Tr{δ} = Nc = 3 , (29.18)

since i and j are quark (i.e. 3-dimensional fundamental) indices. This factor
corresponds directly to the 3 di�erent paths through color space that the
process at hand can take; the produced quarks can be red, green, or blue.

A next-to-simplest example is given by

qq̄ → γ∗/Z → ℓ+ℓ− , (29.19)

which is just a crossing of the previous one. By crossing symmetry, the
squared matrix element, including the color factor, is exactly the same as
before, but since the quarks are here incoming, we must average rather than
sum over their colors, leading to

qq̄ → Z → e+e− ⇒ 1

9

∑
colors

|M |2 ∝ 1

9
δijδji =

1

9
Tr{δ} = 1

3
, (29.20)

where the color factor now expresses a suppression which can be interpreted
as due to the fact that only quarks of matching colors are able to collide and
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produce a Z boson. The chance that a quark and an antiquark picked at
random from the colliding hadrons have matching colors is 1/Nc.

Similarly,
ℓq → ℓq (29.21)

via t-channel photon exchange (usually called deep inelastic scattering with
'deep' referring to a large virtuality of the exchanged photon), constitutes
yet another crossing of the same basic process. The color factor comes out
as unity, i.e. for this case Nc = 1.

Another example is a gluon self-interaction vertex. Below it is illustrated
the interaction between gluons in the states λ2, λ4, and λ6 represented by
the structure constant f246, before summing/averaging over colors.

G4
ν(k2)

G6
ρ(k1) G2

µ(k3)

∝ −gs f246 [(k3 − k2)ρgµν +
+(k2 − k1)µgνρ +
+(k1 − k3)νgρµ] .

This vortex to be compared with the quark-gluon one given in the previous
section. We remind the reader that gauge boson self-interactions are a hall-
mark of non-Abelian theories and that their presence leads to some of the
main di�erences between QED and QCD.

29.4 Renormalization of QCD

The fundamental parameters of QCD are the coupling constant gs and the
quark masses. All physical observables should be expressed in terms of these
parameters. In order to make these observables �nite, the bare parameters
that enter the Lagrangian should be renormalized. QCD is a renormalizable
theory. This means that it su�ces to renormalize a �nite number of param-
eters in the Lagrangian, as well as the �elds, in order to make all physical
observables �nite.



466 CHAPTER 29. STRUCTURE OF QCD

29.4.1 The Example from QED

As a simple example, we �rst consider charge renormalization in QED, which
is an Abelian counterpart of QCD. The renormalized coupling in QED, er(µ)
(with the scale µ), obeys the Renormalization Group (RG) equation

µ
der
dµ

= β(er) ,

β(e) =
e3

12π2
+O(e5) . (29.22)

As we see, the coe�cient at lowest-order is positive, so the charge grows
with the increase of µ (at least, for small values of charge, where lowest-
order perturbation theory is applicable). The solution of the lowest-order
RG equation is given by

1

e2r(µ)
− 1

e2r(µ0)
= − 1

6π2
ln

µ

µ0
. (29.23)

Here, µ0 is some scale, where the initial condition for the RG equation is set.

The solution of the di�erential equation can be written in a form which
makes the presence of a (perturbative) Landau pole explicitly,

e2r(µ) =
e2r(µ0)

1− e2r(µ0)

6π2
ln

µ

µ0

=
6π2

ln
ΛQED

µ

. (29.24)

Here we have de�ned the dimensionful quantity ΛQED according to

ΛQED = µ0e
6π2/e2r(µ0) . (29.25)

It can be straightforwardly checked that ΛQED is RG-invariant

µ0
dΛQED

dµ0
= ΛQED − µ20

12π2

e3r(µ0)

der(µ0)

dµ0
e6π

2/e2r(µ0) = 0 . (29.26)

This result is very remarkable. In fact, it shows that a scale-dependent di-
mensionless coupling constant er(µ0) can be traded versus the RG-invariant
dimensionful coupling constant ΛQED. This becomes clear from the last equa-
tion in (29.24), which does not contain the coupling constant at all. Putting
it di�erently, ΛQED plays the role of a coupling constant. This phenomenon
goes under the name of dimensional transmutation.
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QED is not a con�ning theory � electrons, positrons and photons exist in
the asymptotic state. The only relevant scale in QED is the electron mass.
Setting

µ0 = me ≃ 0.5 MeV ,
e2r(µ0)

4π
≃ 1

137
, (29.27)

one may estimate the size of ΛQED. This estimate results in

ΛQED ≃ 10277 GeV , (29.28)

which is much larger than the Planck mass, MPlanck ≃ 1019 GeV. Hence, to
a very good approximation, QED is a local theory. Even if a Landau pole
appears at µ = ΛQED, this is very far away from any measurable energy.

29.4.2 RG in QCD

One can repeat the above arguments in case of QCD. The RG equation for
the coupling constant looks as follows

µ
dgr(µ)

dµ
= β(gr) , (29.29)

where the perturbative expansion of the β-function now starts with the term
with a negative coe�cient

β(g) = −β0
g3

16π2
− β1

g5

(16π2)2
+O(g7) ,

β0 =
11

3
Nc −

2

3
Nf , (29.30)

β1 =
34

3
N2
c −

10

3
NcNf −

(N2
c − 1)Nf

Nc
.

Here, Nc = 3 and Nf stand for the number of colors and number of �avors,
respectively. One sees that, if Nf is su�ciently small, then β0 > 0 and the
renormalized coupling constant gr(µ) decreases as µ → ∞. This behavior
amounts to the asymptotic freedom of the theory and is inherent to non-
Abelian theories. As we have seen, QED, which is an Abelian theory, does
not possess the property of asymptotic freedom.

Below you can see dependence of the strong coupling constant

αs(E) =
g2r (E)

4π
. (29.31)

on the energy.
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At small energies, the coupling constant of QCD grows and the theory be-
comes non-perturbative. Moreover, QCD is a con�ning theory: instead of
quarks and gluons, only colorless bound states thereof are observed in exper-
iment. A typical mass scale of such states is of order of the nucleon mass,
i.e. around 1 GeV.

The analog of the Λ-parameter in QCD to all orders in the strong coupling
constant is de�ned by

ΛQCD = µ0

(
β0g

2
r

16π2

)−β1/2β2
0

e
− 16π2

2β0g
2
r
−
∫
dg′

(
1

β(g′)+
16π2

β0g
′3−

β1
β20g

′

)
. (29.32)

Note that (29.26) is obtained from (29.32) in the lowest order in perturbation
theory, if the pertinent value for β0 in QED is used. Note also that the
subtraction in (29.32) in the integral regularizes the integrand at g′ = 0,
where β(g′) has a cubic singularity. The other factors, which enter the
expression in (29.32), are chosen so that the quantity ΛQCD is RG-invariant
to all orders in perturbation theory

µ0
dΛQCD

dµ0
= 0 . (29.33)

Using now the lowest-order result, assuming µ0 ≃ 1 GeV (the typical mass
of the QCD bound states), setting Nf = 3 according to the number of quark
�avors lighter than 1 GeV, and taking αS(E = 1 GeV) ≃ 0.4, we get a rough
estimate

ΛQCD ≃ 200 MeV . (29.34)
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Hence, in di�erence to QED, QCD is essentially non-local at low energies.

One may wonder, why, in analogy to QED, one did not use quark masses
(the only parameters with the dimension of mass in the Lagrangian), in order
to �x the QCD scale. In QCD, the renormalized masses obey RG equations

µ
dmf

r (µ)

dµ
= −γ(gr)mf

r (µ) , (f = u, d, s, c, b, t) (29.35)

where the γ-function has the following perturbative expansion

γ(g) = γ0
g2

16π2
+ γ1

g4

(16π2)2
+O(g6) ,

γ0 =
3(N2

c − 1)

Nc
, (29.36)

γ1 = 3

(
N2
c − 1

2Nc

)2

+
97

6
(N2

c − 1)− 5Nc(N
2
c − 1)

3Nc
.

Note that the γ-function does not depend on the quark �avor that re�ects the
fact that strong interactions are �avor-blind. Consequently, the renormalized
quark masses run with the scale µ, but the ratios mf

r (µ)/m
f ′
r (µ) are scale-

independent in QCD.

The range of the quark mass values varies from a few MeV (u and d quarks)
to ≃ 100 MeV (s-quark) and higher (according to the commonly used con-
vention, we �x the scale µ = 2 GeV). Since the quarks of higher masses can
not play any role in low-energy physics we are primarily interested in, below
we shall concentrate on three light �avors only.

The answer to the question that was posed above lies in a peculiar character
of the QCD spectrum. Namely, the light quark masses at the scale of order of
few GeV are much smaller than the typical hadron masses (say, the nucleon
mass). So, in the �rst approximation, one may put all quark masses to zero.
The low-energy spectrum does not change dramatically � say, the nucleon
mass shifts downwards by approximately 100 MeV. Consequently, the low-
energy hadron spectrum is mainly determined through the interaction energy
of the gluon �eld inside the hadrons and not the quark masses. Reversing
the argument, it is natural to use the low-lying hadron masses to �x the
strength of gluonic interactions, which is encoded in the quantity ΛQCD.

There is however one important exception from this picture, related to the
phenomenon of the chiral SSB in QCD, which manifests itself in the emer-
gence of an octet of pseudoscalar Goldstone bosons: pions, kaons and eta.
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The masses of these particles are proportional to the quark masses and vanish
in the chiral limit, mf

r → 0.

To summarize, dimensional transmutation in QCD introduces the RG in-
variant scale ΛQCD in QCD which is a substitute of the scale-dependent,
dimensionful coupling constant gr(µ) and is determined by the low-lying
hadronic spectrum in QCD. A typical size of the hadronic scale is given by
the nucleon mass (around 1 GeV) that leads to ΛQCD ≃ 200 MeV. Only the
octet of Goldstone bosonsis much lighter, owing to the (approximate) chiral
symmetry of QCD.

QCD as a �eld theory becomes non-local below the hadronic scale ∼ 1 GeV.
Quarks and gluons are not the appropriate degrees of freedom any more,
paving the way for the description in terms of the hadronic �elds. Since
the Goldstone bosons are the only hadrons whose masses are far below the
hadronic scale, the e�ective theory of QCD at low energies is primarily the
theory of Goldstone bosons, and incorporates the restrictions, stemming from
chiral symmetry, in an essential manner.

Exercise 29.1: Explain why each of the following particles cannot exist
according to the quark model.
(a) A baryon of spin 1;
(b) An antibaryon of electric charge +2;
(c) A meson with charge +1 and strangeness −1;
(d) A meson with opposite signs of charm and strangeness.

Exercise 29.2: Let ψT = (u, d, s) be an SU(3) tripler. Decompose the
product ψ∗

i ψj (where i, j = 1, 2, 3) into irreducible representations of SU(3).

Exercise 29.3: Find the overall "color factor" for qq → qq if QCD corre-
sponded to a SU(2) color symmetry.

Exercise 29.4: Calculate the octet qq̄ color factor using the states: (a) BḠ;
(b) (RR̄−BB̄)/

√
2; (c) (RR̄+BB̄ − 2GḠ)/

√
6.

Exercise 29.5: Calculate αs at 10 and 100 GeV.

Exercise 29.6: From the expression for the running of αs with Nf = 3,
determine the value of energy at which αs appears to become in�nite.



Chapter 30

Symmetry Breaking Patterns

in QCD

30.1 Chiral Symmetry in QCD

In this section, we consider the implications of chiral symmetry in QCD. In
the following, the gluonic part of the QCD Lagrangian will not play a role
and we shall concentrate on the fermionic part which is given by

LF = ψ̄(iγµDµ −M)ψ . (30.1)

In addition, we shall restrict ourselves to the light �avors Nf = 3

M = diag (mu,md,ms) , ψ(x) =

u(x)d(x)
s(x)

 , (30.2)

since, at low energies, the heavy quark degrees of freedom decouple from the
theory.

At the next step, let us decompose the fermion �eld ψ(x) into the left- and
right-hand components, according to

ψL(x) =
1
2 (1− γ5)ψ(x) , ψR(x) =

1
2 (1 + γ5)ψ(x) ,

ψ(x) = ψL(x) + ψR(x) . (30.3)

471
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The fermionic part of the Lagrangian in terms of the left- and right-hand
�elds has the form:

LF = ψ̄L(iγ
µDµ)ψL + ψ̄R(iγ

µDµ)ψR − ψ̄LMψR − ψ̄RMψL . (30.4)

From this expression it is immediately clear that, if the quarks are massless,
M = 0, then LF is invariant under the global group UL(Nf )× UR(Nf )

ψL(x) 7→ gLψL(x) , gL ∈ UL(Nf ) ,

ψR(x) 7→ gRψR(x) , gR ∈ UR(Nf ) . (30.5)

Note that the transformations from the group UL(Nf )×UR(Nf ) do not touch
the gluon �eld, which is �avor blind. Thus, the gluonic (and ghost) part of
the Lagrangian is trivially invariant under the above transformations.

The symmetry of the Lagrangian results in the conservation of the left- and
right-hand currents. Non-singlet currents are de�ned as

Liµ = ψ̄LγµT
iψL = ψ̄γµ

1

2
(1− γ5)T iψ ,

Riµ = ψ̄RγµT
iψR = ψ̄γµ

1

2
(1 + γ5)T

iψ , (30.6)

where T i (i = 1, . . . N2
f − 1) are the generators of the SU(Nf ) group. The

singlet currents take the form

L0
µ = ψ̄γµ(1− γ5)ψ ,

R0
µ = ψ̄γµ(1 + γ5)ψ , (30.7)

IfM = 0, then

∂µLiµ = ∂µRiµ = ∂µL0
µ = ∂µR0

µ = 0 , (30.8)

for a moment, we neglect the anomalies.

The vector- and axial-vector currents are de�ned by

V i
µ =

1

2
(Riµ + Liµ) , Aiµ =

1

2
(Riµ − Liµ) ,

V 0
µ =

1

2
(R0

µ + L0
µ) , A0

µ =
1

2
(R0

µ − L0
µ) . (30.9)

If M = 0, these currents are conserved along with the left- and right-hand
currents.
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Assume now that the quark masses are nonzero. Calculating the derivative

∂µV i
µ = ψ̄

1

2
T iγµ∂

µψ + (∂µψ̄)γµ
1

2
T iψ , (30.10)

and using equation of motion

iγµ
(
∂µ −

i

2
λaDa

µ

)
ψ −Mψ = 0 , (30.11)

we obtain

∂µV i
µ = −iψ̄1

2
[T a,M]ψ . (30.12)

Analogously,

∂µAiµ = −iψ̄1

2
{T a,M}γ5ψ . (30.13)

This means that the non-singlet vector current is broken by the di�erences
in the quark masses (mu = md = ms ̸= 0) � it stays conserved. On the
contrary, the axial-vector current is violated by the quark masses itself � if
the quark masses are nonzero, then it is not conserved.

An important remark is in order. To calculate the divergences of the currents,
one has used the equations of motion. However, in �eld theory, the products
of di�erent operators that enter equations of motion, are singular, and such
calculations, in general, cannot be done without a speci�c care. Carrying
out calculations with more mathematical rigor (see below), it turns out that
the divergence of the singlet axial-vector current contains a term that does
not vanish even in the limitM→ 0

∂µA0
µ = 2iψ̄Mγ5ψ −

Nf

(4π)2
ϵµναβtrc

(
FµνFαβ

)
, (30.14)

where trc denotes the trace over color indices. The last term in the above
expression goes under the name of axial anomaly.

Finally, note that the singlet vector current V 0
µ is always conserved, that

corresponds to the conservation of the number of quarks minus the number
of the antiquarks. The zeroth component of this current is proportional to
the baryon number density.
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30.1.1 Chiral SSB

As discussed in the previous section, owing to the anomaly, the symmetry
of the Lagrangian (massless case) is broken down to

UL(Nf )× UR(Nf ) → SUL(Nf )× SUR(Nf )× UV (1) (30.15)

(Another diagonal subgroup, UA(1), is violated by the anomaly). Next, we
wish to answer the question: what is the symmetry of Nature, which is
described by this Lagrangian?

In the beginning, let us restrict ourselves �rst to the subgroup SUL(Nf ) ×
SUR(Nf ) and consider the conserved charges

QiV (t) =

∫
d3xV i

0 (x, t) ,
(
i = 1, · · · , N2

f − 1
)

QiA(t) =

∫
d3xAi0(x, t) . (30.16)

In the massless case, we have

Q̇iV,A(t) = i[H,QiV,A(t)] = 0 . (30.17)

Here, H denotes the Hamiltonian of the system. Since the QiV,A(t) do not
depend on the time, we further drop the argument t in this expression.

Consider now a generic conserved charge Qi(t) (denotes either QiV or QiA),
which commutes with the Hamiltonian. It is possible to have two di�er-
ent modes of realization of the above symmetry, depending on whether the
corresponding charges annihilate the vacuum:

• Wigner-Weyl mode: Qi(t)|0⟩ = 0;

• Nambu-Goldstone mode: Qi(t)|0⟩ ̸= 0.

Consider �rst the symmetry realization in the Wigner-Weyl mode. Assume
that there is a mass gap in the theory, and consider the one-particle state
with a mass m in the rest-frame. Since Qi commutes with the Hamiltonian,

HQi|p = 0⟩ = QiH|p = 0⟩ = mQi|p = 0⟩ . (30.18)

This means that Qi|p = 0⟩ is also a one-particle state with the same mass
� in other words, the massive particles form the symmetry multiplets, where
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the individual states are labeled by some index α. Introducing the creation
operator, one may write

Qia†α(p = 0)|0⟩ = [Qi, a†α(p = 0)]|0⟩+ a†α(p = 0)Qi|0⟩ =
= Ciαβa

†
α(p = 0)|0⟩ . (30.19)

Here, we have used the condition

Qi|0⟩ = 0 (30.20)

and the fact that, acting with an operator Qi on any member of a multiplet,
we can only get a linear combination (with some coe�cients Ciαβ) of all states
in this multiplet but nothing else. From this we �nally conclude that in the
Wigner-Weyl mode the symmetry is realized linearly by an operator

U(ω) = eiωQ , (30.21)

where the components of the vector ω are the parameters of a symmetry
transformation. In a given multiplet, where the individual states form a
basis of an (irreducible) representation, the matrices of this irreducible rep-
resentation are given by

T (ω)αβ = ei(ω
iCi)αβ . (30.22)

In case of the chiral symmetry, the implications are far-reaching. Assume
that chiral symmetry in QCD is realized in the Wigner-Weyl mode. Since
under parity QiA 7→ −QiA, one should have the multiplets with opposite par-
ity and with the same mass in QCD. If the quark masses are turned on, the
masses in these multiplets would become slightly di�erent but, in case of
small quark masses, the pattern should be easily recognizable. This, how-
ever, is not what one observes in experiment. For example, the lightest
pseudoscalar bosons (pions) have the mass around 140 MeV, whereas the
lightest scalar boson has the mass around 450 MeV and the width above
500 MeV. The similar picture emerges for other multiplets. For example, the
lowest excited state of the nucleon with negative parity, the S11(1535) with
the quantum numbers 1/2−, lies approximately 600 MeV above the nucleon
ground state. It is evident that the symmetry pattern of the QCD spectrum
at low energies cannot be consistently described within this picture.

Let us now consider the alternative picture, where the charges Qi do not
annihilate the vacuum. This is equivalent to the statement that there exists
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some operator B, for which

⟨0|BQi|0⟩ =
∑
n

∫
dx⟨0|B|n⟩⟨n|ji0(x, t)|0⟩ =

=
∑
n

(2π)3δ3(Pn)e
iEnt⟨0|B|n⟩⟨n|ji0(0)|0⟩ ̸= 0 , (30.23)

where jiµ(x) denotes the current associated with the conserved charge Qi,
and Pnµ = (En,Pn) is the four-momentum of the state |n⟩.

On the other hand, since Qi is conserved, one may write

d

dt
⟨0|BQi|0⟩ =

∑
n

(2π)3δ3(Pn)iEne
iEnt⟨0|B|n⟩⟨n|ji0(0)|0⟩ = 0 . (30.24)

This is possible, only if the states |n⟩, which are produced by acting of Qi

on the vacuum state, are massless:

En(Pn = 0) = 0 . (30.25)

Consequently, in this case the massless Nambu-Goldstone bosons emerge in
the spectrum. Each symmetry generator Qi, which does not annihilate the
vacuum, gives rise to one massless boson. One speaks about the chiral SSB.

Note that, if the symmetry is spontaneously broken, a special care should be
taken, working out the in�nite-volume limit in the theory, which is de�ned in
a �nite volume. For example, since the massless Goldstone bosons have in�-
nite correlation length, they cannot emerge in a �nite volume. Consequently,
a correct treatment of the SSB implies considering �rst the in�nite-volume
limit and then the limit where the explicit symmetry breaking parameters
(e.g., the quark masses) tend to zero. These limits cannot be interchanged.

In QCD, the symmetry is spontaneously broken for the axial charges

QiA|0⟩ ̸= 0 . (30.26)

Instead of parity doublets, eight Goldstone bosons (pions, kaons and eta)
arise in result of spontaneous symmetry breaking. These (pseudoscalar)
bosons would have exactly zero mass in the chiral limit

mu,md,ms → 0 . (30.27)

The measured masses emerge in result of the explicit symmetry breaking by
quark masses.
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The SSB is signaled, for example, by the fact that

⟨0|ψ̄(0)ψ(0)|0⟩ = ⟨0|ψ̄L(0)ψR(0) + ψ̄R(0)ψL(0)|0⟩ ̸= 0 . (30.28)

This quantity is invariant under the vector sub-group gL = gR, but not
under general chiral transformations. Consequently, having this quantity
non-vanishing is a su�cient but not a necessary condition of the spontaneous
chiral symmetry breaking.

On the other hand, if the axial-vector symmetry is spontaneously broken

QiA|0⟩ ̸= 0 , (30.29)

then, as seen from (30.23), the matrix elements of the axial-vector current
between the vacuum and the one-Goldstone-boson state does not vanish.
Namely, in QCD, a necessary and su�cient condition for the SSB is the non-
vanishing value of the pion decay constant in the chiral limit. This quantity
is de�ned through the matrix element of the axial-vector current between
the vacuum and the one-pion state

⟨0|Akµ(x)|πi(q)⟩ = iqµδikFπe
−iqx , F0 = lim

M→0
Fπ . (30.30)

The quantity F0 represents the true order parameter in QCD, with F0 ̸= 0
corresponding to the spontaneously broken phase. The quark condensate de-
�ned by (30.28), if non-vanishing, also serves as an order parameter. How-
ever, vanishing of the quark condensate does not necessarily mean the ab-
sence of the chiral SSB.

If the singlet axial-vector current were also conserved in the chiral limit, there
would be an associated ninth Goldstone boson in the spectrum. However, the
conservation of the singlet current is broken by anomaly, and the would-be
Goldstone boson η′ has a mass around 1 GeV.

Finally, note that the vector symmetry in QCD, unlike the axial-vector sym-
metry, is not spontaneously broken

QiV |0⟩ = 0 . (30.31)

This follows from the Vafa-Witten theorem.
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30.2 Hadron Masses

We assume that the quark masses are small as compared to the QCD scale
and calculate the �rst-order perturbation to the hadron masses in the chiral
limit. The QCD Hamiltonian can be written in the following form

HQCD = H0 +HI ,

HI =

∫
d3x

[
muū(x)u(x) +mdd̄(x)d(x) +mss̄(x)s(x)

]
,(30.32)

where H0 denotes the Hamiltonian in the chiral limit. Let now |p, n⟩ be the
covariantly normalized 1-particle eigenstates states of H0 with a mass Mn

H0|p, n⟩ = En(p)|p, n⟩ ,
(
⟨p′, n|p, n⟩ = (2π)3δ3(p′ − p)2En(p)

)
(30.33)

where En(p) =
√
M2
n + p2.

Calculating the energy shift at the �rst order, we have

⟨p′, n|HI |p, n⟩ = (2π)3δ3(p′ − p)⟨p′, n|muūu+mdd̄d+mss̄s|p, n⟩ =
= δEn(p)(2π)

3δ3(p′ − p)2En(p) . (30.34)

From the above relation, one immediately obtains

2En(p)δEn(p) = δM2
n = ⟨p, n|muūu+mdd̄d+mss̄s|p, n⟩ . (30.35)

If the mass Mn does not vanish in the chiral limit, one may write

M2
n =

0

M2
n +muB

u
n +mdB

d
n +msB

s
n + · · · ,

Bf
n = lim

M→0
⟨p, n|ψ̄fψf |p, n⟩ . (f = u, d, s) (30.36)

Note that the quantities
0
Mn and Bf

n depend only on a single parameter
ΛQCD.

The equation (30.36) can be presented in a form linear in hadron masses

Mn =
0
Mn +muB̃

u
n +mdB̃

d
n +msB̃

s
n + · · · . (30.37)

The relation between the parameters Bf
n and B̃f

n can be easily established.
This procedure, however, fails, if we are dealing with the Goldstone bosons,
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for which the quantity
0
Mn vanishes. In this case, one has to use the quadratic

form given in (30.36).

Next, one may use the fact that in the chiral limit QCD has exact SUV (3)
symmetry. Writing

ūu = u0 +
1

2
u3 +

1

2
√
3
u8 ,

d̄d = u0 − 1

2
u3 +

1

2
√
3
u8 ,

s̄s = u0 − 1√
3
u8 , (30.38)

where ui = ψ̄λiψ (i = 1, . . . , 8) and u0 = (ūu+ d̄d+ s̄s)/3, it is straightfor-
ward to check that ui transforms like a SUV (3)-octet, whereas u0 is a scalar.
Since the states |p, n⟩, which are the eigenstates of the QCD Hamiltonian in
the chiral limit, also form the SUV (3)-multiplets, one may use the Wigner-
Eckart theorem, to relate the matrix elements Bf

n with a di�erent n and f .
For example, in case of the Goldstone bosons the result is particularly simple

M2
π = 2m̂B0 + · · · ,

M2
K = (m̂+ms)B0 + · · · ,

M2
η =

2

3
(m̂+ 2ms)B0 + · · · , (30.39)

where we additionally assumed isospin symmetry to be exact mu = md = m̂.
The ellipses stand for the higher-order terms in the quark masses. As seen,
all masses in the multiplet are expressed in terms of a single matrix element

B0 = ⟨π0|ūu|π0⟩ . (30.40)

This fact is a consequence of an exact SUV (3) symmetry of the theory in the
chiral limit.

Finally, it is immediately seen that the famous Gell-Mann-Okubo formula is
readily reproduced at the lowest order in the quark mass expansion

4M4
K −M2

π − 3M2
η = 0 . (30.41)

This relation is ful�lled in Nature within a few percent accuracy.
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30.3 The Example of σ-model

The non-linear σ-model served as the dominant prototype of SSB of O(4)
down to O(3): the three axial generators broken are the simplest manifesta-
tion of chiral symmetry breaking, the surviving unbroken O(3) representing
isospin. The model was introduced by Gell-Mann and Lévy (1960), who
named it after a �eld corresponding to a spinless meson called σ in their
model, a scalar meson introduced earlier by Schwinger.

30.3.1 Lagrangian of the σ-model

In this section, we construct a simple renormalizable model, which follows
the same symmetry pattern as QCD at low energies. Although this is not a
full-�edged low-energy e�ective �eld theory of QCD, since it does not contain
all operators with the pertinent symmetries, it is a �rst (very instructive)
step towards the construction of such an e�ective �eld theory.

In the following, for simplicity, we restrict ourselves to the two lightest �avors
Nf = 2. Consider �elds forming a 4-vector (σ,π), where σ and π are a scalar
�eld and a triplet of the pseudoscalar �elds, transforming as quark bilinears
ψ̄ψ and ψ̄iγ5τψ, respectively (here, τ stands for the Pauli isospin matrices).

It is useful to introduce a 2× 2 matrix

Σ = σ1+ iπτ . (30.42)

Under the SUL(2)× SUR(2) transformations, the matrix Σ transforms as

Σ 7→ gRΣg
†
L . (30.43)

Under the in�nitesimal transformations

gL = 1+ iα− iβ , (α = ατ , β = βτ )

gR = 1+ iα+ iβ , (30.44)

the �elds transform as

σ 7→ σ − 2βiπi ,

πi 7→ πi − 2ϵijkαjπk + 2βiσ . (30.45)
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The Lagrangian of the linear σ-model is given by

L =
1

4
⟨∂µΣ∂µΣ†⟩− µ

2

4
⟨ΣΣ†⟩− λ

16
⟨ΣΣ†⟩2+ c

4
⟨Σ+Σ†⟩ = L0+ cL1 , (30.46)

where ⟨· · · ⟩ denotes the trace. It is clear that L0 is invariant under the
SUL(2)× SUR(2) group, whereas the term cL1 breaks this symmetry down
to the diagonal SUV (2) subgroup. This terms serves as an analog for an
explicit chiral symmetry breaking term in QCD, which is proportional to
the quark masses.

In terms of the component �elds the Lagrangian takes the form

L =
1

2
(∂π)2 +

1

2
(∂σ)2 − µ2

2
(π2 + σ2)− λ

4
(π2 + σ2)2 + cσ . (30.47)

The vector and axial-vector currents, obtained by using the Noether theorem,
are given by

V i
µ = ϵijkπj∂µπ

k ,

Aiµ = σ∂µπ
i − πi∂µσ . (30.48)

If c ̸= 0, the axial-vector current is not conserved

∂µAiµ = −cπi . (30.49)

As we have learned, in order to establish, how the symmetries are realized in
a theory, the study of the symmetries of the Lagrangian is not enough. The
symmetry of the ground state in the theory should be studied as well. In the
tree approximation, the ground state is obtained by minimizing the classical
potential of the �elds. Since we do not wish to allow for the spontaneous
breaking of parity, one has to assume that the vacuum expectation value of
the pseudoscalar �eld π is zero. Consequently, the potential to be minimized
will depend on the �eld σ alone (for a moment, we consider a case with c = 0,
where symmetry is not explicitly broken)

V (σ) =
µ2

2
σ2 +

λ

4
σ4 . (30.50)

One has to distinguish between two cases: µ2 > 0 and µ2 < 0 (we remind the
reader that λ > 0 always, in order to ensure that the potential is bound from
below). In the �rst case, the minimum of the potential occurs at σ = 0. The
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masses of the pion and σ are both equal to µ, and the symmetry is realized in
the Wigner-Weyl mode. The second case is more interesting. The equation
for a local extremum is given by

V ′(σ) = µ2σ + λσ3 = 0 . (30.51)

Now the solution σ = 0 corresponds to a local maximum of the potential.
The minima occur at σ = ±v, where v2 = −µ2/λ > 0. Introducing the
shift σ → σ+ v, so that the new �eld σ has a vanishing vacuum expectation
value ⟨0|σ|0⟩ = 0, and expanding the Lagrangian in the vicinity of a new
minimum, one, up to an inessential constant, gets

L0 =
1

2
(∂π)2 +

1

2
(∂σ)2 − (µ2 + 3λv2)

2
σ2 − (µ2 + λv2)

2
π2 −

−λvσ(π2 + σ2)− λ

4
(π2 + σ2)2 . (30.52)

From this expression, one can immediately read o� the masses

M2
π = µ2 + λv2 = 0 ,

M2
σ = µ2 + 3λv2 = −2µ2 > 0 . (30.53)

Consequently, when the symmetry is spontaneously broken, v ̸= 0, the pion
becomes a Goldstone boson, with a vanishing mass. The σ particle remains
massive.

In the shifted �elds, the axial-vector current takes the form

Aiµ = v∂µπ
i + (σ∂µπ

i − πi∂µσ) . (30.54)

In the tree approximation, the matrix element of the axial-vector current
between the vacuum and a one-pion state is given by

⟨0|Aiµ(x)|πj(q)⟩ = ⟨0|v∂µπi(x) + · · · |πj(q)⟩ =
= −ipµvδije−ipx + · · · = ipµFπδ

ije−ipx . (30.55)

From this expression, we may immediately identify

Fπ = −v + · · · . (30.56)

Next, we consider the case when an explicit symmetry breaking parameter
c ̸= 0. The minimum of the potential is at

V ′(σ)

∣∣∣∣
σ=v

= µ2v + λv3 − c = 0 . (30.57)
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The solution of this equation is given by

v = ±
√
−µ2
λ
− c

2µ2
+O(c2) . (30.58)

The pion mass M2
π = µ2 + λv2 does not vanish, when c ̸= 0. Instead,

vM2
π = −FπM2

π = µ2v + λv3 = c . (30.59)

From this, we �nally obtain that, in the tree approximation,

M2
π = − c

Fπ
. (30.60)

Together with (30.49) this leads to the PCAC condition

∂µAiµ =
πi

FπM2
π

. (30.61)

30.3.2 Pion-pion Scattering at Tree Level

It is very instructive to consider ππ scattering within the linear σ-model.
The scattering amplitude for the process

πi(p1) + πj(p2)→ πk(p3) + πl(p4) , (30.62)

owing to the Lorentz invariance and Bose-symmetry, has the following gen-
eral representation

T ij,kl(p1, p2, p3, p4) = δijδklA(s, t, u) + δikδjlA(t, u, s) +

+δilδjkA(u, s, t) . (30.63)

Diagrams, contributing to the ππ scattering amplitude in the linear σ-model
at the tree approximation, are shown in the �gure below.

�� + + +

π π

π π π π

π π ππ

π π π

π

π

π
σ

σ σ
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After a straightforward calculation, carried out with the use of the La-
grangian displayed in (30.52), we obtain

A(s, t, u) = A(s) =
4λ2v2

M2
σ − s

− 2λ . (30.64)

If the symmetry breaking term c = 0, the pions are massless and the elastic
threshold is located at s = 4M2

π = 0. It can be straightforwardly veri�ed
that in this case the amplitude A(s) vanishes at threshold

A(s) =
(4λ2v2 − 2λM2

σ) + 2λs

M2
σ − s

=
2λs

M2
σ − s

. (30.65)

In other words, the diagrams with the σ exchange and the local four-pion
interaction exactly cancel at threshold. This cancellation is a direct con-
sequence of chiral symmetry, because, due to chiral symmetry, the Gold-
stone bosons have derivative interactions, vanishing at the vanishing four-
momenta. This leads to the so-called Adler zeros in the amplitudes with
Goldstone bosons.

If c ̸= 0, the amplitude takes the form

A(s) =
2λ(s−M2

π)

M2
σ − s

. (30.66)

An important remark is in order. We have seen that the pions are Goldstone
bosons, whose mass is protected by chiral symmetry. The mass of the σ is
not, and there exists no particular reason, why it's mass should be small.
For this reason, it is reasonable to investigate the limitMπ ≪Mσ, where the
σ-meson decouples from physics at low energies. This makes sense from the
phenomenological point of view as well, since experimentally a narrow low-
lying chiral partner of pions is not observed. Performing the limit Mσ →∞
in (30.66), we immediately obtain

A(s) =
s−M2

π

F 2
π

+O(M−4
σ ) . (30.67)

Note that the result is universal: in the large-Mσ limit, it does not contain
the parameters of the linear σ-model anymore. Rather, the �nal result is
expressed in terms of the physical observables Mπ and Fπ. As we shall see
later, (30.67) is a consequence of chiral symmetry alone and holds in QCD
as well.
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30.3.3 Large -Mσ Limit in the Linear σ-model

It is convenient to work in the vector notations. We introduce the vector

ϕA = (σ,π) . (A = 0, 1, 2, 3) (30.68)

The Lagrangian L0, given in (30.46), in terms of the �eld ϕA is rewritten in a
form which is manifestly invariant with respect to the O(4) = SU(2)×SU(2)
group

L0 =
1

2
∂µϕ

T∂µϕ− µ2

2
ϕTϕ− λ

4
(ϕTϕ)2 , (30.69)

where the superscript T denotes transposed.

We proceed further by equipping this Lagrangian with external sources.
Namely, we de�ne the covariant derivative

∇µϕA = ∂µϕ
A + FABµ ϕB , (A,B = 0, 1, 2, 3) (30.70)

where the external vector and axial-vector sources are related to the anti-
symmetric tensor FABµ is the following manner

F 0i
µ = −F i0µ = aiµ , (i, j = 1, 2, 3)

F ijµ = −ϵijkvkµ . (30.71)

In addition, we introduce the four-vector f = (s,p), consisting of the scalar
and the pseudoscalar sources. The modi�ed Lagrangian is given by

L =
1

2
∇µϕT∇µϕ−

µ2

2
ϕTϕ− λ

4
(ϕTϕ)2 + fTϕ+ h trFµνFµν , (30.72)

where
Fµν = [∇µ,∇ν ] . (30.73)

The last term is added to the Lagrangian, in order to ensure the �niteness
of all Green's functions in the theory. Namely, if such term is not added,
some Green's functions with 2, 3, 4 external vector and axial-vector legs
would be divergent. Note that the constant h multiplies the operator which
contains external sources only and therefore contributes a polynomial to all
Green functions. Such constants are hereafter referred to as 'high-energy
constants'.
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This Lagrangian is invariant under the transformations

ϕ0 7→ ϕ0 − 2βiϕi ,

ϕi 7→ ϕi − 2ϵijkαjϕk + 2βiϕ0 ,

s 7→ s− 2βipi ,

pi 7→ pi − 2ϵijkαjpk + 2βjs ,

aiµ 7→ aiµ + 2∂µβ
i − 2ϵijkβjvkµ − 2ϵijkαjakµ ,

viµ 7→ viµ + 2∂µα
i + 2ϵijkαjvkµ + 2ϵijkβjakµ . (30.74)

Consequently, for such a choice of the external sources, the generating func-
tional of the linear σ-model obeys exactly the same Ward identities under
SUL(2)× SUR(2) transformations as the generating functional in QCD

Zσ(s, p, v, a) = Zσ(s+ δs, p+ δp, v + δv, a+ δa) . (30.75)

Further, in analogy with the previous section, we �nd it useful to investigate
the limit of large Mσ, where only the pion degrees of freedom survive in the
theory. Here, we do this in tree approximation, where it su�ces to substitute
the solutions of the classical equations of motion into the Lagrangian. These
equations take the following form

∇µ∇µϕc = f − µ2ϕc − λ(ϕTc ϕc)ϕc . (30.76)

In order to solve this equation by iterations, it is convenient to use the
following parameterization of the classical �eld

ϕAc = −vRUA , (UTU = 1) (30.77)

where v = −
√
−µ2/λ and R is the 'radial' �eld. In this parameterization,

the equations of motion can be rewritten as

2R+R(UT∇µ∇µU) = χT0 U − µ2R(1−R2) ,

R(∇µ∇µU − U(UT∇µ∇µU)) = χ0 − U(χTU)− 2∂µR∇µU ,(30.78)

where
χA0 = −1

v
fA . (30.79)

We are going to �nd a solution of this equation in a form of expansion in the
inverse powers of µ2 (equivalently, of M2

σ). At lowest order, the solution is
trivial:

R = 1 . (30.80)
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At higher orders,

R = 1 + δR1 + δR2 + · · · .
(
δRn = O(µ−2n)

)
(30.81)

The solutions at lowest order can be easily found, solving the equations of
motion iteratively

δR1 = − 1

2µ2
(χT0 U +∇µUT∇µU) ,

δR2 = −3

2
δR2

1 −
1

2µ2
δR1(∇µUT∇µU) + total derivative , (30.82)

and so on.

Note that the iterative procedure imposes counting rules on the external
sources. Namely, the expansion is carried out in the dimensionless parameter
p/µ, where p denotes the (small) momentum of the pion. The �elds R and
U count both as O(p0) and the derivative ∂µ = O(p). Then, the consistent
counting is achieved, if we assign

vµ = O(p) ,

aµ = O(p) , (30.83)

χ0 = O(p2) .

On the other hand, the classical action functional in terms of the �elds R
and U can be rewritten in the following manner

S(ϕc) =

∫
d4xL(ϕc) =

= −µ
2

2λ

∫
d4x

(
R(χT0 U)− µ2

2
R4 + h trFµνFµν

)
. (30.84)

Substituting the expansion (30.81) we get

S(ϕc) = −µ
2

λ

∫
d4x

{(
1

2
∇µUT∇µU + χT0 U

)
+

h

F 2
π

trFµνFµν −

− 1

4µ2
(χT0 U +∇µUT∇µU)2 +O(p6)

}
. (30.85)

Finally, expressing µ2 through Fπ, we obtained the desired Lagrangian up-
to-and-including order p4

S(ϕc) = F 2
π

∫
d4x

{(
1

2
∇µUT∇µU + χT0 U

)
+

h

F 2
π

trFµνFµν +

+
1

4λF 2
π

(χT0 U +∇µUT∇µU)2 +O(p6)

}
. (30.86)
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As anticipated, the �nal result contains only the pion �elds, encoded in
U and the external sources s, p, v and a. The σ-meson has disappeared.
The e�ective Lagrangian contains a tower of operators at O(p2), O(p4), etc.
The coe�cients of these operators are all determined through the tree-level
matching in terms of the parameters µ2, λ and h of the original model.

In general, it can be shown that there are 8 independent constants at this
order. The coe�cients of the operators, which contain the �eld U , are called
low-energy constants, in di�erence with, e.g. the high-energy constant h,
which multiplies the operator depending only of the external sources.

Finally, note that, due to the condition

U0U0 + U iU i = 1 , (30.87)

the SUL(2)× SUR(2) symmetry on the �elds U is realized in the non-linear
manner (cf. with (30.74))

U i 7→ U i − 2ϵijkαjUk + 2βi
√
1− U iU i . (30.88)

The non-linear transformation law is the price to pay for having eliminated
the σ-meson from the theory.

Exercise 30.1: Write the QCD Lagrangian for the three light quarks (u, d,
s), which is invariant under the U(3)L ×U(3)R transformation.
(a) Determine corresponding to this symmetry conserved left- and right-
handed currents;
(b) In the massless case calculate the conserved vector and axial-vector cur-
rent densities;
(c) In massive quarks case calculate the divergencies of left- and right-handed
as well as vector and axial-vector currents.

Exercise 30.2: Show that the Lagrangian of the linear σ-model is invariant
under the isospin and axial isospin transformations.

Exercise 30.3: Find the new minimum for the e�ective σ-model potential
when there exists a symmetry-breaking term into Lagrangian.
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Chapter 31

Problems with SM

The SM is a mathematically-consistent renormalizable �eld theory which
predicts or is consistent with all experimental facts. In addition:

• The SM successfully predicted the existence and form of the weak NCs;

• The SM predicted the existence and masses of the W and Z bosons;

• The SM predicted the existence of the charm quark, as necessitated by
the GIM mechanism;

• The CC weak interactions, as described by the generalized Fermi the-
ory, were successfully incorporated in the SM, as was quantum electro-
dynamics.

• The consistency between theory and experiment was indirectly tested
by the radiative corrections and ideas of renormalization and allowed
the successful prediction of the top quark mass.

Although the original formulation did not provide for massive neutrinos, they
are easily incorporated by the addition of right-handed states νR (Dirac) or
as higher-dimensional operators, perhaps generated by an underlying seesaw
(Majorana).

When combined with QCD for the strong interaction, the SM is almost
certainly the approximately correct description of the elementary particles
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and their interactions down to at least 10−16 cm, with the possible exception
of the Higgs sector or new very weakly coupled particles.

When combined with general relativity for classical gravity the SM accounts
for most of the observed features of Nature (though not for the dark matter
and energy).

However, the theory has far too much arbitrariness to be the �nal story. For
example, the minimal version of the SM has 20 free parameters (for massless
neutrinos) and another 7 (9) for massive Dirac (Majorana) neutrinos. These
are 12 fermion masses (including the neutrinos), 6 mixing angles, 2 CP
violation phases (plus 2 possible Majorana phases), 3 gauge couplings, MH ,
v, θQCD,MPl, ΛCosm, minus one overall mass scale since only mass ratios are
physical, not counting electric charge (i.e. hypercharge) assignments. Most
physicists believe that this is just too much for the fundamental theory.

The foremost arguments in favor that the SM is not a complete theory of
Nature and the existence of New Physics are that SM:

1. Has too much free parameters;

2. Does not include gravity, and therefore it cannot be valid at energy
scales close the Planck scale;

3. Cannot explain the small (taking into account quantum corrections)
value of the Higgs boson mass;

4. Cannot account for neutrino masses;

5. Have no good candidate for the Dark Matter and Dark Energy.

The complications of the SM can also be described in terms of a number of
problems indicated in following subsections.

31.1 The Gauge Problem

The gauge symmetry of SM is complicated direct product of three groups,
SU(3)×SU(2)×U(1), with separate gauge couplings. There is no explana-
tion for why only the EW part is chiral (parity-violating).
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Similarly, the SM incorporates but does not explain another fundamental fact
of nature: charge quantization, i.e. why all particles have charges which are
multiples of e/3. This is important because it allows the electrical neutrality
of atoms,

|Qp| = |Qe| . (31.1)

The complicated gauge structure of the SM suggests the existence of some
underlying uni�cation of the interactions, such as one would expect in a
superstring or GUT. Charge quantization can be explained in such theories,
though the "wrong" values of charge emerge in some constructions due to
di�erent hypercharge embeddings or non-canonical values of Y (e.g. some
string constructions lead to exotic particles with charges of ±e/2).

Charge quantization may also be explained, at least in part, by the existence
of magnetic monopoles or the absence of anomalies (the absence of anomalies
is not su�cient to determine all of the Y assignments without additional
assumptions, such as family universality), but either of these is likely to �nd
its origin in some kind of underlying uni�cation.

31.2 The Fermion Problem

All matter under ordinary terrestrial conditions can be constructed out of
the fermions of the �rst family,

(νe, e
−, u, d) . (31.2)

Yet we know from laboratory studies that there are more two heavier copies
of the �rst family:

(νµ, µ
−, c, s) , (ντ , τ

−, t, b) , (31.3)

with no obvious role in Nature. The SM gives no explanation for the exis-
tence of these heavier families and no prediction for their numbers.

Furthermore, there is no explanation or prediction of the fermion masses,
which are observed to occur in a hierarchical pattern which varies over 5
orders of magnitude between the t quark and the e−, or of the quark and
lepton mixings.

Even more mysterious are the neutrinos, which are many orders of magnitude
lighter still. It is not even certain whether the neutrino masses are Majorana
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or Dirac. A related di�culty is that, while the CP violation observed in
the laboratory is well accounted for by the phase in the Kobayashi-Maskawa
matrix, there is no SM source of CP breaking adequate to explain the baryon
asymmetry of the universe.

There are many possible suggestions of new physics that might shed light
on these questions. The existence of multiple families could be due to large
representations of some string theory or GUT, or they could be associated
with di�erent possibilities for localizing particles in some higher dimensional
space. The latter could also be associated with string compacti�cations,
or by some e�ective brane world scenario. The hierarchies of masses and
mixings could emerge from wave function overlap e�ects in such higher-
dimensional spaces.

Another interpretation, also possible in string theories, is that the hierarchies
are because some of the mass terms are generated by higher dimensional
operators and therefore suppressed by powers of ⟨0|S|0⟩/MX , where S is
some SM singlet �eld and MX is some large scale such as MPl. The allowed
operators could perhaps be enforced by some family symmetry. Radiative
hierarchies, in which some of the masses are generated at the loop level, or
some form of compositeness are other possibilities.

Despite all of these ideas there is no compelling model and none of these
yields detailed predictions. Grand uni�cation by itself doesn't help very
much, except for the prediction ofmb in terms ofmτ in the simplest versions.

The small values for the neutrino masses suggest that they are associated
with Planck or grand uni�cation physics, as in the seesaw model, but there
are other possibilities.

Almost any type of new physics is likely to lead to new sources of CP vio-
lation.

31.3 The Hierarchy Problem

In the SM one introduces an elementary Higgs �eld to generate masses for
the W , Z, and fermions. However, there is a complication. The tree-level
(bare) Higgs mass receives quadratically-divergent corrections from the loop
diagrams, including self-interactions, interactions with gauge bosons, and
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interactions with fermions, see the �gure below.

One �nds
M2
H = (M2

H)bare +O(λ, g2, h2)Λ2 , (31.4)

where Λ is the next higher scale in the theory.

If there were no higher scale one could simply interpret Λ as an UV cuto�
and take the view that MH is a measured parameter, with (MH)bare not
observable. However, the theory is presumably embedded in some larger
theory that cuts o� the momentum integral at the �nite scale of the new
physics.

There is no analogous �ne-tuning associated with logarithmic divergences,
such as those encountered in QED, because

α ln

(
Λ

me

)
< O(1) , (31.5)

even for Λ = MPl. For example, if the next scale is gravity Λ is the Planck
scale

MPl = G
−1/2
N ∼ 1019 GeV . (31.6)

In a GUT one would expect Λ to be of order the uni�cation scale

MX ∼ 1014 GeV . (31.7)

Hence, the natural scale for MH is O(Λ), which is much larger than the
expected value.

There must be a �ne-tuned and apparently highly contrived cancellation
between the bare value and the correction, to more than 30 decimal places
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in the case of gravity. If the cuto� is provided by a GUT there is a separate
hierarchy problem at the tree-level. The tree-level couplings between the
Higgs �eld and the superheavy �elds lead to the expectation that MH is
close to the uni�cation scale unless unnatural �ne-tunings are done, i.e. one
does not understand why (MW /MX)

2 is so small in the �rst place.

One solution to this Higgs/hierarchy problem is TeV scale SUSY, in which
the quadratically-divergent contributions of fermion and boson loops cancel,
leaving only much smaller e�ects of the order of SUSY-breaking (however,
SUSY GUTs still su�er from the tree-level hierarchy problem).

There are also non-SUSY extended models in which the cancellations are
between bosons or between fermions. This class includes Little Higgs models,
in which the Higgs is forced to be lighter than new TeV scale dynamics
because it is a pseudo-Goldstone boson of an approximate underlying global
symmetry, and Twin-Higgs models.

Another possibility is to eliminate the elementary Higgs �elds, replacing
them with some dynamical symmetry breaking mechanism based on a new
strong dynamics. In technicolor, for example, the SSB is associated with the
expectation value of a fermion bilinear, analogous to the breaking of chiral
symmetry in QCD. Extended technicolor, top-color, and composite Higgs
models all fall into this class.

Large and/or warped extra dimensions can also resolve the di�culties, by
altering the relation between MPl and a much lower fundamental scale, by
providing a cuto� at the inverse of the extra dimension scale, or by using
the boundary conditions in the extra dimensions to break the EW symmetry
(Higgsless models). Deconstruction models, in which no extra dimensions
are explicity introduced, are closely related.

Most of the models mentioned above have the potential to generate �avor
changing NC and CP violation e�ects much larger than observational limits.
Pushing the mass scales high enough to avoid these problems may con�ict
with a natural solution to the hierarchy problem, i.e. one may reintroduce
a little hierarchy problem. Many are also strongly constrained by precision
EW physics.

In some cases the new physics does not satisfy the decoupling theorem, lead-
ing to large oblique corrections. In others new tree-level e�ects may again
force the scale to be too high. The most successful from the precision EW
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point of view are those which have a discrete symmetry which prevents ver-
tices involving just one heavy particle, such as R-parity in SUSY, T -parity
in some little Higgs models, and KK-parity in universal extra dimension
models.

A very di�erent possibility is to accept the �ne-tuning, i.e. to abandon the
notion of naturalness for the weak scale, perhaps motivated by anthropic
considerations. This could emerge, for example, in split SUSY.

31.4 The Strong CP Problem

Another �ne-tuning problem is the strong CP problem. One can add to the
QCD Lagrangian an additional term,

θQCD
32π2

g2sGG̃ (31.8)

which breaks P , T and CP symmetry. Here

G̃iµν =
1

2
ϵµναβG

αβi , (31.9)

is the gluons dual �eld strength tensor. This term, if present, would induce
an electric dipole moment dN for the neutron. The rather stringent limits
on the dipole moment lead to the upper bound

|θQCD| < 10−11 . (31.10)

The question is, therefore, why is θQCD so small? It is not su�cient to just
say that it is zero (i.e. to impose CP invariance on QCD) because of the
observed violation of CP by the weak interactions.

As discussed in previous lectures, this is believed to be associated with phases
in the quark mass matrices. The quark phase rede�nitions which remove
them lead to a shift in θQCD by O(10−3) because of the anomaly in the
vertex coupling the associated global current to two gluons. Therefore, an
apparently contrived �ne-tuning is needed to cancel this correction against
the bare value.

Solutions include the possibility that CP violation is not induced directly
by phases in the Yukawa couplings, as is usually assumed in the SM, but is
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somehow violated spontaneously. θQCD then would be a calculable parame-
ter induced at loop level, and it is possible to make θQCD su�ciently small.
However, such models lead to di�cult phenomenological and cosmological
problems. Alternately, θQCD becomes unobservable (i.e. can be rotated
away) if there is a massless u quark. However, most phenomenological esti-
mates are not consistent with mu = 0.

Another possibility is the Peccei-Quinn mechanism, in which an extra global
U(1) symmetry is imposed on the theory in such a way that θQCD becomes a
dynamical variable which is zero at the minimum of the potential. The SSB
of this symmetry, along with explicit breaking associated with the anomaly
and instanton e�ects, leads to a very light pseudo-Goldstone boson known
as an axion. Laboratory, astrophysical, and cosmological constraints suggest
the range 109−1012 GeV for the scale at which the U(1) symmetry is broken.

31.5 The Gravity Problem

Gravity is not fundamentally uni�ed with the other interactions in the SM,
although it is possible to graft on classical general relativity by hand. How-
ever, general relativity is not a quantum theory, and there is no obvious way
to generate one within the SM context. Possible solutions include Kaluza-
Klein and supergravity theories. These connect gravity with the other in-
teractions in a more natural way, but do not yield renormalizable theories
of quantum gravity. More promising are superstring theories (which may
incorporate the above), which unify gravity and may yield �nite theories of
quantum gravity and all the other interactions.

String theories are perhaps the most likely possibility for the underlying the-
ory of particle physics and gravity, but at present there appear to be a nearly
unlimited number of possible string vacua (the landscape), with no obvious
selection principle. As of this writing the particle physics community is still
trying to come to grips with the landscape and its implications. Superstring
theories naturally imply some form of supersymmetry, but it could be bro-
ken at a high scale and have nothing to do with the Higgs/hierarchy problem
(split SUSY is a compromise, keeping some aspects at the TeV scale).

In addition to the fact that gravity is not uni�ed and not quantized there
is another di�culty, namely the cosmological constant, ΛCosm. The cosmo-
logical constant can be thought of as the energy of the vacuum. However,
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we saw in previous lectures that the spontaneous breaking of SU(2)× U(1)
generates a value

⟨0|V (v)|0⟩ = −µ
4

4λ
(31.11)

for the expectation value of the Higgs potential at the minimum. This is a c-
number which has no signi�cance for the microscopic interactions. However,
it assumes great importance when the theory is coupled to gravity, because it
contributes to the cosmological constant. The cosmological constant becomes

ΛCosm = Λbare + ΛSSB , (31.12)

where
Λbare = 8πGNV (0) (31.13)

is the primordial cosmological constant, which can be thought of as the value
of the energy of the vacuum in the absence of SSB.

In SM it is implicitly assumed

Λbare = 0 , (31.14)

while ΛSSB is the part generated by the Higgs mechanism:

|ΛSSB| = 8πGN |⟨0|V |0⟩| ∼ 1056Λobs . (31.15)

Assuming that the dark energy is due to a cosmological constant, this value
is some 1056 times larger in magnitude than the observed one,

Λobs ∼
(0.0024 eV)4

8πGN
, (31.16)

and it is of the wrong sign. This is clearly unacceptable. Technically, one
can solve the problem by adding a constant +µ4/4λ to the Higgs potential
V , so that V is equal to zero at the minimum, i.e.

Λbare =
2πGNµ

4

λ
. (31.17)

However, with our current understanding there is no reason for Λbare and
ΛSSB to be related. The need to invoke such an incredibly �ne-tuned can-
cellation to 50 decimal places is probably the most unsatisfactory feature of
the SM.
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The problem becomes even worse in superstring theories, where one expects
a vacuum energy of O(M4

P ) for a generic point in the landscape, leading to

Λobs & 10123|Λobs| . (31.18)

The situation is almost as bad in GUTs.

So far, no compelling solution to the cosmological constant problem has
emerged. One intriguing possibility invokes the anthropic (environmental)
principle, i.e. that a much larger or smaller value of |ΛCosm| would not have
allowed the possibility for life to have evolved because the Universe would
have expanded or recollapsed too rapidly. This would be a rather meaningless
argument unless:

• Nature somehow allows a large variety of possibilities for |ΛCosm| (and
possibly other parameters or principles) such as in di�erent vacua;

• There is some mechanism to try all or many of them.

In recent years it has been suggested that both of these needs may be met.
There appear to be an enormous landscape of possible superstring vacua,
with no obvious physical principle to choose one over the other. Something
like eternal in�ation could provide the means to sample them, so that only
the environmentally suitable vacua lead to long-lived Universes suitable for
life.

These ideas are highly controversial and are currently being heatedly de-
bated.

31.6 The New Ingredients

It is now clear that the SM requires a number of new ingredients:

1. A mechanism for small neutrino masses. The most popular possibility
is the minimal seesaw model, implying Majorana masses, but there are
other plausible mechanisms for either small Dirac or Majorana masses.

2. A mechanism for the baryon asymmetry. The SM has neither the
non-equilibrium condition nor su�cient CP violation to explain the
observed asymmetry between baryons and antibaryons in the Universe.
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The third necessary ingredient for creation of the baryon asymmetry,
baryon number non-conservation, is present in the SM because of non-
perturbative vacuum tunneling (instanton) e�ects. These are negligible
at zero temperature where they are exponentially suppressed, but im-
portant at high temperatures due to thermal �uctuations (sphaleron
con�gurations), before or during the EW phase transition.

One possibility involves the out of equilibrium decays of superheavy
Majorana right-handed neutrinos (leptogenesis), as expected in the
minimal seesaw model. Another involves a strongly �rst order EW
phase transition (EW baryogenesis). This is not expected in the SM,
but could possibly be associated with loop e�ects in the minimal SUSY
extension (MSSM) if one of the scalar top quarks is su�ciently light.
However, it is most likely in extensions of the MSSM involving SM
singlet Higgs �elds that can generate a dynamical v term, which can
easily lead to strong �rst order transitions at tree-level.

Such extensions would likely yield signatures observable at the LHC.
Both the seesaw models and the singlet extensions of the MSSM could
also provide the needed new sources of CP violation.

Other possibilities for the baryon asymmetry include the decay of a
coherent scalar �eld, such as a scalar quark or lepton in SUSY (the
A�eck-Dine mechanism), or CPT violation.

Finally, one cannot totally dismiss the possibility that the asymmetry
is simply due to an initial condition on the big bang. However, this
possibility disappears if the universe underwent a period of in�ation.

3. Explanation of the dark energy. In recent years a remarkable con-
cordance of cosmological observations involving the cosmic microwave
background radiation, acceleration of the Universe as determined by
Type Ia supernova observations, large scale distribution of galaxies and
clusters, and big bang nucleosynthesis has allowed precise determina-
tions of the cosmological parameters: the Universe is close to �at, with
some form of dark energy making up about 70% of the energy den-
sity. Dark matter constitutes ∼ 25%, while ordinary matter (mainly
baryons) represents only about 5%.

The mysterious dark energy, which is the most important contribution
to the energy density and leads to the acceleration of the expansion
of the Universe, is not accounted for in the SM. It could be due to
a cosmological constant that is incredibly tiny on the particle physics
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scale, or to a slowly time varying �eld (quintessence). Is the acceler-
ation somehow related to an earlier and much more dramatic period
of in�ation? If it is associated with a time-varying �eld, it could be
connected also with a possible time variation of coupling "constants".

4. Explanation the dark matter. Similarly, the SM has no explanation for
the observed dark matter, which contributes much more to the mat-
ter in the Universe than the stu� we are made of. It is likely, though
not certain, that the dark matter is associated with elementary parti-
cles. An attractive possibility is weakly interacting massive particles
(WIMPs), which are typically particles in the 102 − 103 GeV range
with weak interaction strength couplings, and which lead naturally to
the observed matter density.

These could be associated with the lightest SUSY partner (usually a
neutralino) in SUSY models with R-parity conservation, or analogous
stable particles in Little Higgs or universal extra dimension models.
There are a wide variety of variations on these themes, e.g. involving
very light gravitinos or other SUSY particles.

There are many searches for WIMPs going on, including direct searches
for the recoil produced by scattering of Solar System WIMPs, indirect
searches for WIMP annihilation products, and searches for WIMPs
produced at accelerators.

Axions, perhaps associated with the strong CP problem or with string
vacua, are another possibility. Searches for axions produced in the Sun,
in the laboratory, or from the early universe are currently underway.

5. Suppressions of �avor changing NCs, proton decay, and electric dipole
moments. The SM has a number of accidental symmetries and features
which forbid proton decay, preserve lepton number and lepton family
number (at least for vanishing neutrino masses), suppress transitions
such asK+ → π+νν̄ at tree-level, and lead to highly suppressed electric
dipole moments for the e−, n, atoms, etc.

However, most extensions of the SM have new interactions which vi-
olate such symmetries, leading to potentially serious problems with
�avor changing NC and electric dipole moments. There seems to be a
real con�ict between attempts to deal with the Higgs/hierarchy prob-
lem and the prevention of such e�ects.

Recently, there has been much discussion of minimal �avor violation,
which is the hypothesis that all �avor violation, even that which is as-
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sociated with new physics, is proportional to the SM Yukawa matrices,
leading to a signi�cant suppression of �avor changing e�ects.

Exercise 31.1: Find the relation of the mixed angle with the mass eigen-
values in the model with 2× 2 hermitian fermion mass matrix of the form:

M =

(
0 a
a∗ b

)
.

Exercise 31.2: Show that if there were a set of scalars transforming as a
doublet under the weak SU(2) symmetry and as a triplet under the color
SU(3), then both the baryon number B and the lepton number L are not
conserved. However, the linear combination B − L is conserved.

Exercise 31.3: Why in the SM it is forbidden the transition of the Z par-
ticle into two Higgs bosons.

Exercise 31.4: Consider a model with two left-handed leptons, two right-
handed lepton doublets, two left-handed neutral leptons and usual Higgs
SU(2)× U(1) doublet. Find the expressions of weak eigenstates in terms of
mass eigenstates.

Exercise 31.5: Compute the e�ective Lagrangian for the transition

µ− + e+ → µ+ + e−

in the modi�ed SM with massive neutrinos.

Exercise 31.6: Neutrons are neutral particle just as neutral K-mesons.
Why is it not meaningful to introduce linear combinations of n1 and n2,
similar to the K0

1 and K0
2?

Exercise 31.7: If the baryon number is conserved, the neutron oscillation,
n → n̄, is forbidden. The experimental limit on the time scale of such
oscillations in free space and zero magnetic �eld is

τn−n̄ ≥ 3× 106 s .

Let H0 be the Hamiltonian of the world in the absence of any interaction
which mixes n and n̄. Then

H0|n⟩ = mn|n⟩ , H0|n̄⟩ = mn|n̄⟩
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for states at rest. Let H ′ be the interaction which turns n into n̄ and vice
versa:

H ′|n⟩ = ϵ|n̄⟩ , H ′|n̄⟩ = ϵ|n⟩ ,

where ϵ is real and H ′ does not �ip spin.

(a) Start with a neutron at t = 0 and calculate the probability that it will be
observed to be an antineutron at time t. When the probability is �rst equal
to 50%, call that time τn−n̄. In this way convert the experimental limit on
τn−n̄ into a limit on ϵ;

(b) Reconsider the problem in the presence of the earth's magnetic �eld

B = 0.5 Gs .

The magnetic moment of the neutron is

µn ≈ −6× 10−18 MeV/Gs .

The magnetic moment of the antineutron is opposite. Begin with a neutron
at t = 0 and calculate the probability it will be observed to be an antineutron
at time t. Ignore possible radioactive transitions.



Chapter 32

Flavor and CP Violation in

EFT

As it was mentioned in the �rst chapter of this lecture, several observations
suggest to replace the SM by a new theory already around the TeV scale.
Given that non-renormalizable terms must be added to the SM Lagrangian,
i.e. the SM probably is only an e�ective low energy theory.

If we assume that the new degrees of freedom, which complete the theory
of Nature, are heavier than the SM particles, we can integrate them out
and describe physics beyond the SM by means of an E�ective Field Theory
(EFT) approach. Then the SM Lagrangian becomes the renormalizable part
of this generalized Lagrangian which includes an in�nite sum of operators
with dimension d ≥ 5, constructed in terms of SM �elds and suppressed
by inverse powers of the new physics scale Λ ≫ v. This approach is a
generalization of the Fermi theory of weak interactions, where the dimension
six four-fermion operators describing weak decays are the results of having
integrated out the W boson.

The generic Lagrangian in EFT approach to the SM reads

Leff = LSM +

d≥5∑
n

cdn
Λd−4

O(d)
n (SM), (32.1)

where O(d)
n (SM) are operators of dimension d ≥ 5 containing SM �elds only

and compatible with the SM gauge symmetry.

505
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32.1 The Flavor Sector of the SM

Flavor physics is the study of di�erent generations, or '�avors', of quarks and
leptons, their spectrum and their transitions. In SM there are six di�erent
types of quarks: up (u), down (d), strange (s), charm (c), bottom (b) and
top (t) and three di�erent type of charged leptons: electron, muon and tau.
We know that in the SM

mt ≫ mc ≫ mu , mb ≫ ms ≫ md , (32.2)

and that the same hierarchies hold for the Higgs Yukawa couplings with
quarks and leptons. Our lack of understanding of why nature has exactly
three generations of quarks and leptons and why their properties (masses
and mixing angles) are described by such hierarchical values is the so called
SM �avor puzzle. In the limit of unbroken EW symmetry none of the basic
constituent of matter would have a non-zero mass. The SM �avor puzzle
is, therefore, intimately related to the other big open question in particle
physics, i.e. what is the exact mechanism behind SSB.

Once the SM quark and lepton masses (as well as quark mixing angles, plus
a phase) have been �xed, the SM is a highly predictive theory for �avor
transitions. Particularly, any �avor transition has to involve the exchange
of at least a W boson and therefore �avor changing neutral transitions can
only arise (at least) at the loop-level.

In the last few years tremendous progress has been reached in testing the
mechanism of quark �avor mixing by several experiments, LHCb and B-
factories (Belle and Babar) as well as the high energy experiments (ATLAS
and CMS), �nding good agreement with the SM expectations. At the same
time, there are a few �avor measurements that could be interpreted as tan-
talizing hints for deviations if compared to the SM predictions. Particularly,
there have been a lot of attention on the anomalies in angular observables in
the decay Bd → K∗µµ (involving a b→ s �avor transition), as observed by
the LHCb collaboration, as well as on the observables testing lepton �avor
universality, BR(B → Kµµ)/BR(B → Kee), as observed at LHCb and on
the rare decays B → Dτντ and B → D∗τντ by Belle, Babar, and LHCb.

Present and future �avor measurements will be able to probe new physics.
Observing new sources of �avor mixing is, in fact, a natural expectation
for any extension of the SM with new degrees of freedom not far from the
TeV scale. While direct searches of new particles at high energies provide
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information on the mass spectrum of the possible new degrees of freedom,
the indirect information from low energy �avor observables translates into
unique constraints on their couplings.

The SM Lagrangian can be divided in three main parts: the gauge, the
Higgs, and the �avor sector. The �rst two parts are highly symmetric,

Lgauge+Higgs = i
∑
ψ

ψ̄iγνDνψi −
1

4
GaµνG

µν
a −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν +

+ |Dµϕ|2 + (µ2|ϕ|2 − λ|ϕ|4) , (32.3)

and fully determined by a small set of free parameters: the three gauge
couplings, g1, g2 and gs, corresponding to the SM gauge groups SU(3) ×
SU(2) × U(1)Y , the Higgs mass and the vacuum expectation value v (or,
equivalently, the Higgs mass term, µ, and the quartic coupling, λ). In (32.3)
G, W , and B are the SU(3), SU(2), and U(1)Y gauge �elds, respectively,
and we have de�ned the quark and lepton �eld content as

ψi ≡ QiL , LiL , uiR , diR , eiR , (32.4)

with

QiL = (3, 2, 16) , LiL = (1, 2,−1
2) ,

uiR = (3, 1, 23) , diR = (3, 1,−1
3) , eiR = (1, 1,−1) , (32.5)

where i = 1, 2, 3 is the �avor (or generation) index and the three numbers
refer to the representation under the SM gauge group.

The Lagrangian (32.3) possesses a large �avor symmetry that can be decom-
posed as

SU(3)5 × U(1)5 = SU(3)3q × SU(3)2ℓ ×
×U(1)B × U(1)L × U(1)Y × (32.6)

×U(1)QCD × U(1)e ,

which contains SU(3) quark and lepton subgroups. The three U(1) sym-
metries (labeled by B, L and Y ) can be identi�ed with baryon and lepton
numbers and hypercharge, the latter of which is broken spontaneously by
the Higgs �eld. The two remaining U(1) groups (labeled by QCD and e) can
be identi�ed with the Peccei-Quinn symmetry and with a global rotation of
a single SU(2) singlet eR.
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The �avor sector of the SM Lagrangian breaks the SU(3)5 symmetry through
the Yukawa interactions

LYukawa = −Y d
ijQ̄

i
LϕD

j
R − Y

u
ij Q̄

i
Lϕ̃U

j
R − Y

e
ijL̄

i
Lϕe

j
R + h.c. , (32.7)

where ϕ = (1, 2, 1/2) is the Higgs �eld, ϕ̃ is its conjugate representation
(ϕ̃ = iσ2ϕ

†) and Y d,u,e are the three Yukawa couplings.

The diagonalization of each Yukawa coupling requires a bi-unitary transfor-
mation. Particularly, in the absence of right-handed neutrinos the lepton
sector Yukawa can be fully diagonalized by the transformation

UeLYeU
†
eR = diag(y1e , y

2
e , y

3
e) =

√
2

v
diag(me,mµ,mτ ) . (32.8)

In the quark sector, it is not possible to simultaneously diagonalize the two
Yukawa matrices Yu and Yd without breaking the SU(2) gauge invariance.
If, for example, we choose the basis in which the up Yukawa is diagonal, then

Yu = diag(y1u, y
2
u, y

3
u) =

√
2

v
(mu,mc,mt) ,

Yd = V · diag(y1d, y2d, y3d) =
√
2

v
V · (md,ms,mb) , (32.9)

where V = UuLU
†
dL denotes the Kobayashi-Maskawa matrix.

On the �gure below you can see the list of the most sensitive observables used
to determine the several elements of the Kobayashi-Maskawa 3× 3 matrix.

In the SM the SU(2) gauge symmetry is broken spontaneously by the Higgs
�eld and therefore, we can equivalently rotate both left-handed up and
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down quarks independently, diagonalizing simultaneously up and down quark
masses. By performing these transformations, the Kobayashi-Maskawa de-
pendence moves into the couplings of up and down quarks with theW boson.
In particular, the CC part of the quark covariant derivative in (32.3) can be
rewritten in the mass eigenstate basis as

− g

2
Q̄iLγ

µW a
µτ

aQiL
mass−basis−−−−−−−→ − g√

2
(ūL c̄L t̄L) γ

µW+
µ V

 dL
sL
bL

 . (32.10)

This equation shows that the appearance of W boson �avor changing cou-
plings, which is the only �avor changing interaction in the SM.

We can therefore conclude that, in the SM:

1. The only interactions mediating �avor changing transitions are the
charged interactions;

2. There are no tree-level �avor changing neutral interactions.

In spite of the �rst point here, it must be stressed that the Kobayashi-
Maskawa matrix, V , originates from the Yukawa sector and in absence of
Yukawa couplings, Vij = δij , therefore we have no �avor changing transitions.

32.1.1 Meson Mixing and the GIM Mechanism

In the SM, in order for a �avor transition to take place, the exchange of at
least a virtual W is necessary. From the other hand, �avor changing NC
process is a process in which the electric charge does not change between
initial and �nal states. As a consequence, in the SM such processes have a
reduced rate relative to a normal weak interaction process. Flavor chang-
ing NC are, however, not only suppressed by the loop, but also by the so
called Glashow-Iliopoulos-Maiani (GIM) mechanism. We will explain this
mechanism through the discussion of meson mixing.

Let us take the K (ds̄) and K̄ (d̄s) meson system. These two �avor eigen-
states are not mass eigenstates and, therefore, they mix. The leading order
contributions to the mixing arise from box diagrams mediated by the ex-
change of the W boson and the up quarks. The corresponding e�ective
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Hamiltonian responsible of this mixing is given by

G2
Fm

2
W

16π2

∑
i

F (xi, xi)λ
2
i +

∑
i ̸=j

F (xi, xj)λiλj

 [s̄γµ(1− γ5)d]2 . (32.11)

Here i and j runs over u, c and t, F (xi, xj) are loop functions, xq ≡ m2
q/m

2
W

and λi = V ∗
isVid. In the limit of exact �avor symmetry (md = ms = mb) the

several diagrams cancel, thanks to the unitarity of the Kobayashi-Maskawa
matrix. This is the so called GIM mechanism, that can be applied not only
to the Kaon mixing system but to all SM �avor transitions.

Historically, in 1970, at the time the GIM mechanism was proposed, only
three quarks (up, down, and strange) were thought to exist. The GIMmecha-
nism however, required the existence of a fourth quark, the charm, to explain
the large suppression of �avor changing NC processes.

The breaking of the �avor symmetry induces a mass di�erence between the
quarks, so the sum of the diagrams responsible for meson mixing will be
non-zero. One can use the unitarity relations to eliminate the terms in the
e�ective Hamiltonian that depend on λu, obtaining

G2
Fm

2
W

16π2
[
S0(xt)λ

2
t + S0(xc)λ

2
c + 2S0(xc, xt)λcλt

]
[s̄γµ(1− γ5)d]2 , (32.12)

with S0(xi) and S0(xi, xj) given by the combinations

S0(xi) ≡ F (xi, xi) + F (xu, xu)− 2F (xi, xu) ,

S0(xi, xj) ≡ F (xi, xj) + F (xu, xu)− F (xi, xu)− F (xj , xu) .(32.13)

All terms of the e�ective Hamiltonian (32.12) are suppressed not only the
loop factor, but also the small Kobayashi-Maskawa elements, particularly
suppressing the top loop contribution, and the small mass ratio m2

c/m
2
W in

the case of the charm loop contribution, as predicted by the GIM mechanism.

32.2 CP Violation in Meson Decays

The time evolution of the Kaon anti-Kaon system, ψ = (K, K̄), can be
described by the equation

i
dψ(t)

dt
= Ĥψ(t) , (32.14)
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where the e�ective Hamiltonian reads

Ĥ = M̂ − i Γ̂
2
=

(
M − iΓ/2 M12 − iΓ12/2

M∗
12 − iΓ∗

12/2 M − iΓ/2

)
, (32.15)

with M and Γ the average mass and width of the two Kaons, respectively.
The two eigenstates of the system (heavy and light, or, equivalently, long
and short) have a mass and width given by

MH,L =M ± Re(Q) , ΓH,L = Γ∓ 2Im(Q) ,

where

Q =

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗
12

)
, (32.16)

and are a linear combination of the two K and K̄ states

|KH,L⟩ = p|K⟩ ∓ q|K̄⟩ , q

p
= − 2M∗

12 − iΓ∗
12

2Re(Q) + 2i Im(Q)
. (32.17)

The di�erence in mass of the two Kaon states, ∆MK , can be computed from
the e�ective Hamiltonian in (32.12) by

mK∆MK = 2mKRe(M12) = Re(⟨K̄|HK |K⟩) , (32.18)

with mK the average Kaon mass. Lattice QCD is essential to compute the
matrix element of the four quark operator calculated between two quark
bound states. We have

⟨K̄|(s̄γµ(1− γ5)d)2|K⟩ =
8

3
BK(µ)F 2

Km
2
K , (32.19)

with FK the Kaon decay constant and BK(µ) the Kaon bag parameter,
evaluated at the scale µ. Putting these pieces together and including QCD
corrections, one can �nd

M12 =
G2
F

12π2
F 2
KB̂KmKm

2
W

[
(λ∗c)

2η1S0(xc) +

+(λ∗t )
2η2S0(xt) + 2λ∗cλ

∗
t η3S0(xc, xt)

]
, (32.20)

where η1,2,3 are QCD correction factors and we have de�ned the renormal-
ization group invariant parameter

B̂K =
BK(µ)

αs(µ)2/9

[
1 +

αs(µ)

4π
J3

]
, (32.21)
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with J3 ∼ 1.9.

All CP -violating observables inK and K̄ (and in any meson system,M−M̄)
decays to �nal states f and f̄ can be expressed in terms of phase-convention-
independent combinations of Af , Āf , Af̄ and Āf̄ , together with q/p of
(32.17), in the case of neutral-mesons, where we de�ne

Af = ⟨f |H|M⟩ , Āf = ⟨f |H|M̄⟩ ,
Af̄ = ⟨f̄ |H|M⟩ , Āf̄ = ⟨f̄ |H|M̄⟩ . (32.22)

We distinguish three types of CP -violating e�ects in a meson M decays to
a �nal state f :

(a) CP violation in mixing :

De�ned by |q/p| ̸= 1 and arising when the two neutral mass eigenstate
admixtures cannot be chosen to be CP -eigenstates;

(b) CP violation in the decay of mesons:

De�ned by |Āf̄/Af | ̸= 1;

(c) CP violation in interference between a decay without mixing, M → f ,
and a decay with mixing M → M̄ → f :
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This is de�ned by Im(qĀf/pAf ) ̸= 0.

One example of CP violation in mixing (a) is the asymmetry in charged-
current semi-leptonic neutral meson decays for which the 'wrong sign' decays
(i.e. decays to a lepton of charge opposite to the sign of the charge of the
original b quark) are allowed only if there is a mixing between the meson
and the anti-meson. For example, for a Bd meson

adSL =
Γ(B̄d(t)→ ℓ+νX)− Γ(B̄d(t)→ ℓ−ν̄X)

Γ(B̄d(t)→ ℓ+νX) + Γ(B̄d(t)→ ℓ−ν̄X)
=

1− |q/p|4

1 + |q/p|4
. (32.23)

D0 collaboration performed several measurements of these asymmetries in B
decays. Combining all measurements, there is a long-standing anomaly with
the SM prediction in the asSL − adSL plane with a signi�cance at the level of
∼ 2 − 3σ, mainly arising from the D0 measurement of the like-sign dimuon
charge asymmetry.

In charged meson decays, where mixing e�ects are absent, the CP violation
in decay (b) is the only possible source of CP asymmetries. For example, in
the B meson system:

af± =
Γ(B+ → f+)− Γ(B− → f−)

Γ(B+ → f+) + Γ(B− → f−)
=

1− |Āf−/Af+ |2

1 + |Āf−/Af+ |2
. (32.24)

These asymmetries are di�erent from zero only if at least two terms of the
amplitude have di�erent weak phases and di�erent strong phases. Strong
phases do not violate CP . Their origin is the contribution from intermediate
on-shell states in the decay process that is an absorptive part of an amplitude.
Non-zero CP asymmetries have been observed in a few B meson decay modes
by the LHCb collaboration: B+ → K+K−K+ and B+ → K+K−π+.

CP violation in interference (c) is measured through the decays of neutral
mesons and anti-mesons to a �nal state that is a CP eigenstate (fCP )

afCP
=

Γ(M̄(t)→ fCP )− Γ(M(t)→ fCP )

Γ(M̄(t)→ fCP ) + Γ(M(t)→ fCP )
≃ −

≃ Im(λCP ) sin(∆MM t) , (32.25)

where we have de�ned

λCP =
qĀf
pAf

(32.26)

and ∆MM is the di�erence in mass of the meson anti-meson system. This
type of CP violation has been observed in several B meson decays, as for
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example in Bd → J/ψKS at Babar, Belle and by now by the LHCb, as well,
leading to the measurement of the β angle of the Kobayashi-Maskawa matrix

aJ/ΨKs
≃ sin(2β) sin(∆Mdt) . (32.27)

The Feynman diagrams contributing to this asymmetry are given in the
�gure below, where we show the tree (left panel) and the penguin (right
panel) contributions to Bd → ΨKS .

The current world average on the angle β is

sin(2β) = 0.69± 0.02 . (32.28)

The corresponding CP asymmetry in Bs decay is Bs → ψϕ. The SM pre-
diction is suppressed compared to the β angle by λ2, leading to

βSMs = 0.01882± 0.0004 . (32.29)

A summary of all mixing angle measurements in the Bs − B̄s system is

βs = −
1

2
ϕcc̄ss = −0.00165± 0.00165 . (32.30)

32.3 Flavor Transitions

An essential feature of �avor physics is its capability to probe very high
scales, beyond the kinematical reach of high energy colliders. At the same
time, �avor physics can teach us about properties of TeV-scale new physics
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(i.e. how new particles couple to the SM degrees of freedom), o�ering com-
plementarity with searches of new physics at colliders.

As we mentioned above, �avor changing neutral processes in the SM are
highly suppressed, both because they arise at least at the loop-level and
because of the GIM mechanism that introduces the dependence of these
processes on the small Kobayashi-Maskawa o�-diagonal elements and on the
small quark masses. Then �avor transitions o�er a unique opportunity to
test the new physics �avor structure. Generically beyond SM models predict
too large contributions to �avor transitions (the new physics �avor problem)
leading us to conclude that, if TeV-scale new physics exists, it must have a
highly non generic �avor structure, as for example it can obey to theMinimal
Flavor Violation (MFV) principle.

Let us mention some experiments that are running, and will be running in
the coming years, to explore �avor violation transitions. Some of the golden
channels are:

• More precise measurement of the clean rare decays Bs → µ+µ− and
Bd → µ+µ− at LHCb, ATLAS and CMS. The ratio of branching ratios
will give us more insights on the validity of the MFV ansatz;

• Additional tests of the lepton universality relations in B decays at
LHCb and Belle II:

Γ(B → Jee)

Γ(B → Jµµ)
. (J = K,K∗, Xs,Kπ, ...) (32.31)

These are particularly clean tests of the SM, as the theory predictions
are known to a very good precision and are not a�ected by hadronic
uncertainties;

• Better measurements of B → Dτν and B → D∗τν, to con�rm or
disprove the present anomaly in these decays, as observed at Belle,
Babar and LHCb;

• Measurements of B → K(∗)νν and K → πνν at Belle II and KOTO,
respectively;

• Additional searches of top and Higgs �avor violating couplings at LHC.

These channels (and several others) will be able either to set interesting
constraints on new physics, or to shed light into the existence of new degrees
of freedom beyond the SM.
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32.3.1 The New Physics Flavor Puzzle

Let us discuss the �avor constraints on a new physics scale,

Λ≫ v , (32.32)

associated to the higher dimensional operators contributing to �avor transi-
tions.

Generically, one would expect the in (32.1) the Wilson coe�cients

cdn = O(1) , (32.33)

however several of these operators contribute to �avor-changing processes
and should be very suppressed to be in agreement with low energy �avor
experiments. This is often denoted as the new physics �avor puzzle.

As an example, we consider the dimension 6 operators contributing to Kaon
mixing:

OVLL
1 = (s̄γµPLd)

2 ,

OLR
1 = (s̄γµPLd)(s̄γ

µPRd) ,

OLR
2 = (s̄PLd)(s̄PRd) ,

OSLL
1 = (s̄PLd)

2 , (32.34)

OSLL
2 = (s̄γµνPLd)(s̄γ

µνPLd) ,

plus the corresponding ones with the exchange

PL → PR .

(
PL,R =

1

2
(1∓ γ5)

)
(32.35)

The only operator that arises in the SM is OVLL
1 .

As an example, a toy model containing a TeV scale new Z ′ gauge boson with
coupling

g′Z ′
µ[s̄γ

µ(1− γ5)d] (32.36)

would produce a contribution to the operator OVLL
1 and, therefore, to the

di�erence in mass of Kaon and anti-Kaon system that is equal to

∆MK = ∆MSM
K +

8

3
mKF

2
KB̂K

(g′)2

m2
Z′

, (32.37)
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where ∆MSM
K is the value predicted by the SM. For TeV-scale Z ′s coupled to

a bottom and a strange quark with a EW strength coupling, the second piece
of this equation is ∼ 4 orders of magnitude larger than the SM contribution,
and therefore, such gauge bosons are completely ruled out by Kaon mixing
measurements.

This shows the tension between a generic new physics at around the TeV scale
with EW-strength �avor violating couplings and low energy �avor measure-
ments (new physics �avor puzzle).

A summary of the bounds for the four neutral meson systems (K, Bd, Bs
and D) is shown in the table below.

Bounds on Λ in TeV Bounds on c6n
Operator (c6n = 1) (Λ = 1 TeV)

Re Im Re Im

(s̄Lγ
µdL)

2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9

(s̄R dL)(s̄LdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11

(c̄Lγ
µuL)

2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7

(c̄R uL)(c̄LuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8

(b̄Lγ
µdL)

2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6

(b̄R dL)(b̄LdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7

(b̄Lγ
µsL)

2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5

(b̄R sL)(b̄LsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6

These bounds, assuming an e�ective coupling c6n/Λ
2, quoted for Λ are ob-

tained setting |c6n| = 1; those for cNew Phys. are obtained setting Λ = 1 TeV.
We de�ne

qL,R ≡ PL,Rq . (32.38)

In the �rst two entries the bounds on the new physics scale, Λ, having �xed
the absolute value of the corresponding Wilson coe�cient (c6n of (32.1)) to
one (the �rst column is for c6n = 1, the second one for c6n = i); the last two
columns represent, instead, the bound on real part and on the imaginary
part of the Wilson coe�cient, �xing the new physics scale to 1 TeV.

A few comments are in order. The bounds are weakest (strongest) for Bs (K)
mesons, as mixing is the least (most) suppressed in the SM in that case. The
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bounds on the operators with a di�erent chirality (left-right or right-left) are
stronger, especially in the Kaon case, because of the larger hadronic matrix
elements. Throughout the table, bounds on the new physics scale Λ exceed
the TeV scale by several orders of magnitude. Therefore, we can conclude
that, if new physics exists at around the TeV scale, it has to possess a highly
non-generic �avor structure, to explain cdn ≪ 1.

32.3.2 The Minimal Flavor Violation Ansatz

TeV scale new physics could be invariant under some �avor symmetry, more
easily in agreement with low energy �avor measurements. One example of
a class of such models are theories with Minimal Flavor Violation (MFV).
Under this assumption, �avor violating interactions are linked to the known
structure of the SM Yukawa couplings also beyond the SM.

More speci�cally, the MFV ansatz can be implemented within the generic
e�ective Lagrangian (32.1), as well as to UV complete models, and it consists
of two ingredients: a �avor symmetry and a set of symmetry-breaking terms.

The symmetry is the SM global symmetry in absence of Yukawa couplings.
Since this global symmetry, and particularly the SU(3) subgroups controlling
quark �avor-changing transitions, is broken within the SM, it cannot be
promoted to an exact symmetry of the new physics model. Particularly,
in the SM we can formally recover the �avor invariance under Gflavor by
promoting the Yukawa couplings Yd, Yu and Ye to dimensionless auxiliary
�elds (spurions) transforming under

SU(3)3q = SU(3)Q × SU(3)U × SU(3)D (32.39)

and under
SU(3)2ℓ = SU(3)L × SU(3)e (32.40)

as

YQ ∼ (3, 1, 3̄)SU(3)3q
, Yu ∼ (3, 3̄, 1)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2ℓ
.

(32.41)

Employing an e�ective �eld theory language, a theory satis�es the MFV
ansatz, if all higher-dimensional operators, constructed from SM and Yu,d,e
�elds, are invariant under the �avor group, Gflavor.
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The invariance under CP of the new physics operators may or may not be
imposed in addition to this criterion. In the down quark sector, the several
operators will be combinations of the invariants

Q̄LYuY
†
uQL , D̄RY

†
d YuY

†
uQL , D̄RY

†
d YuY

†
uYdDR . (32.42)

As an example, let us take the operators in (32.34) and impose the MFV
hypothesis. The corresponding Wilson coe�cients cannot be generic order
one numbers, since the operators are not invariant under the �avor symmetry
Gflavor. The leading term for the �rst operator reads

(cVLL
1 )MFVOVLL

1 = Zy4t (V
∗
tsVtd)

2(s̄γµPLd)
2 , (32.43)

where yt is the SM top Yukawa (= mt/v) and Z is a (�avor independent)
coe�cient, generically of O(1). Thanks to the suppression by the small
Kobayashi-Maskawa elements Vts and Vtd, the bound on the scale Λ of this
operator is relatively weak

Λ & 5 TeV , (32.44)

to be compared to the bound of 1.6× 104 TeV, as shown in the table above.

The other operators have a much smaller Wilson coe�cient as they are sup-
pressed by either the strange Yukawa square (OSLL

1 ,OSLL
2 ) or the product

of down and strange Yukawas (OLR
1 ,OLR

2 ), resulting also in weak bounds on
the new physics scale Λ.

This structure can be generalized to any higher dimensional operator medi-
ating a �avor transition. Thus, generically in MFV models, �avor changing
operators automatically have their SM-like suppressions, proportional to the
same Kobayashi-Maskawa elements and quark masses as in the SM and this
can naturally address the new physics �avor puzzle, as the new physics scale
of MFV models can be O(1 TeV) without violating �avor physics bounds.

To conclude, the MFV ansatz is remarkably successful in satisfying the con-
straints from low energy �avor observables. However, it does not address the
question: Why do quark and lepton masses, as well as quark mixing, have
such a hierarchical pattern (SM �avor puzzle), since it simply states that the
new physics �avor violation has to have the same structure of the SM �avor
violation.
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32.3.3 EFTs for Rare B Decays

Rare Bd and Bs decays based on the b → s �avor changing NC transition
are very sensitive to beyond the SM physics, as they are much suppressed
in the SM. Recent measurements at the LHC, complementing earlier B-
factory results, have hugely increased the available experimental information
on these decays. We will focus on the golden channels: the Bs and Bd decays
to two muons as they are among the rarest B decays.

In the SM, these decays are dominated by the Z penguin and box diagrams
involving top quark exchanges. The resulting e�ective Hamiltonian depends,
therefore, on the loop function Y (xt), with xt ≡ m2

t /m
2
W and reads

Heff = −GF√
2

α

π sin2 θ
V ∗
tbVtsY (xt)(b̄γµPLs)(µ̄γµγ5µ) + h.c. , (32.45)

with s replaced by d in the case of Bd → µ+µ−. Evaluating the two matrix
elements of the quark and muon currents leads to the branching ratio,

BR(Bs → µ+µ−) =
G2
F

π

( α

4π sin2 θ

)2
|V ∗
tbVts|2Y 2(xt)×

×m2
µmBs

√
1−

4m2
µ

m2
Bs

FBsτBs , (32.46)

and analogously for the Bd decay. In this equation, mBs is the mass of the Bs
meson, τBs its life time (1.6 ps), and FBs the corresponding decay constant.

The main theoretical uncertainties in this branching ratio result from the
uncertainties in the decay constant (∼ 4% for Bd and ∼ 3% for Bs, using
the latest lattice computations) and in the Kobayashi-Maskawa elements Vtd
and Vts (both at the level of several %).

Inserting numbers and including the O(α) and O(α2
s) corrections, the SM

predictions read

BR(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9 ,

BR(Bd → µ+µ−)SM = (1.06± 0.09)× 10−10 . (32.47)

As shown by (32.46), the tiny branching ratios of these decays in the SM are
due to the loop, Kobayashi-Maskawa and helicity (by the small muon mass)
suppressions. Extensions of the SM do not necessarily contain any of these
suppression mechanisms, in particular the helicity suppression.
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Experimentally, searches for Bs,d → µ+µ− have been performed by 11 ex-
periments, spanning more than three decades. The �rst hint for a non-zero
Bs decay was reported in 2011 by the CDF collaboration. This was followed
by several measurements by ATLAS, CMS and LHCb. Currently we have
more than 6σ evidence for Bs → µ+µ− showing a good agreement with the
SM prediction.

Several additional operators can contribute to the Bs,d decays in beyond SM
theories: O′

10, obtained from the SM operator in (32.45) with PL → PR and

OS = (b̄PLs)(µ̄µ) , OP = (b̄PLs)(µ̄γ5µ) , (32.48)

and the corresponding prime operators obtained by PL → PR. Using these
additional operators, one can compute the ratio

Γ(Bs → µ+µ−)

Γ(Bs → µ+µ−)SM
≃

(
|Ss|2 + |Ps|2

)( 1

1 + ys

)
×

×
(
1 + ys

Re(P 2
s )− Re(S2

s )

|Ss|2 + |Ps|2

)
, (32.49)

where ys = (8.8 ± 1.4)% (yd ∼ 0 for the Bd system) have to be taken into
account when comparing experimental and theoretical results, and

Ss ≡
mBs

2mµ

(CSs − C ′S
s )

CSM10 s,d

√
1−

4m2
µ

m2
Bs

, (32.50)

Ps ≡
mBs

2mµ

(CPs − C ′P
s )

CSM10 s,d

+
(C10

s − C ′
10 s)

CSM10 s

, (32.51)

with the several Wilson coe�cients de�ned using the normalization

Heff = −4GF√
2
VtbV

∗
ts

e2

16π2

∑
i

(CiOi + C ′
iO′

i) + h.c. . (32.52)

Similar expressions hold for the Bd system. It is evident that the helicity
suppression of the branching ratio can be eliminated thanks to the scalar and
pseudoscalar operators and, therefore, large enhancements can be obtained.
Comparing with the latest measurement of Bs → µ+µ−, one can �nd the
bounds on the Wilson coe�cients of the scalar and pseudoscalar operators.

As it is well known, the measurement of the ratio between BR(Bs → µ+µ−)
and BR(Bd → µ+µ−) gives a very clean probe of new sources of �avor vio-
lation beyond the Kobayashi-Maskawa matrix. Indeed, in all MFV models,
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the ratio is determined by

Γ(Bd → µ+µ−)

Γ(Bs → µ+µ−)
=
τBd

τBs

mBd

mBs

F 2
Bd

F 2
Bs

|Vtd|2

|Vts|2
∼ 0.03 , (32.53)

and has a relatively small theoretical uncertainty at the level of ∼ 5%. In the
coming years LHCb, ATLAS and CMS collaborations will be able to produce
a more accurate test of this relation and, therefore, of the MFV ansatz.

32.3.4 Top and Higgs Flavor Violating Signatures

So far we have discussed low energy �avor observables that have been/will be
measured by B-factories and by the LHCb. High energy �avor measurements
by the ATLAS and CMS collaborations provide a complementary tool to test
the underlying �avor structure of Nature. Particularly, in the last few years,
a tremendous progress has been achieved in the measurement of Higgs and
top �avor violating couplings. This is the topic of this section.

The top quark is the only quark whose Yukawa coupling to the Higgs boson
is order of unity and the only one with a mass larger than the mass of
the weak gauge bosons. Thanks to its heavy mass, the top mainly decays
to a W boson and a bottom quark, with an extremely small life time of
approximately 5 × 10−25 s. This is shorter than the hadronization time,
making it impossible for the top quark to form bound states. For these
reasons the top quark plays a special role in the SM and in many extensions
thereof. An accurate knowledge of its properties can bring key information
on fundamental interactions at the EW scale and beyond. So far, the �avor
conserving properties of the top are known with a very good accuracy. Less
is known about the �avor changing top couplings.

The �avor changing decays of the top quark are suppressed by the GIM
mechanism, similarly to what happens to the other quarks. The decay of a
top quark to a Z boson or a photon and an up or charm quark occurs only
through higher-order diagrams. These processes should be compared to the
tree-level decay to a W boson and a bottom quark, resulting in tiny top
�avor changing branching ratios in the framework of the SM.

In the second column of the table below, we present the SM predictions for
the �avor changing branching ratios of the top.
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Decay mode SM prediction LHC bound Comments

BR (t→ ch) 3× 10−15 4.6× 10−3 h→ lept., h→ bb̄, γγ

BR (t→ uh) 2× 10−17 4.2× 10−3 h→ bb̄, h→ γγ

BR (t→ cg) 5× 10−12 2× 10−4 Single top production

BR (t→ ug) 4× 10−14 4× 10−5 Single top production

BR (t→ uZ) 8× 10−17 1.7× 10−4 Z → ℓℓ, tZ production

BR (t→ cZ) 10−14 2× 10−4 Z → ℓℓ, tZ production

BR (t→ uγ) 4× 10−16 1.3× 10−4 Single top production

BR (t→ cγ) 5× 10−14 1.7× 10−3 Single top production

All branching ratios are below the 10−13 level! A discovery of a �avor vi-
olating top decay in the foreseeable future would, therefore, unequivocally,
imply the existence of New Physics.

Several searches for top �avor changing couplings have been performed at the
LHC. So far, there is no evidence for non-zero couplings. In the third column
of the Table we show the state of the art of the most stringent constraints
on the several branching ratios. All searches have been performed using the
full 8 TeV luminosity. Some searches look directly for top �avor changing
decays; some other for single top production, eventually in association with
a Z or a photon. Projections of these constraints for the LHC show that we
could reach the sensitivity to �avor changing branching ratios at the level of

BR(t→ gc) . 4× 10−6 , BR(t→ hq) . 2× 10−4 . (32.54)

These values are still quite larger than the corresponding SM predictions, but
will be crucial for testing the prediction of 2HDMs models and of Randall-
Sundrum-like models with a generic �avor structure, that can predict branch-
ing ratios as large as

BR(t→ gc)2HDM ∼ 10−5 , BR(t→ hq)2HDM ∼ 2× 10−3 ,

BR(t→ hq)RS ∼ 10−4 , (32.55)

in agreement with the present low energy �avor constraints.

As we have discussed above, the Higgs is intrinsically connected to the �a-
vor puzzle, as without Yukawa interactions the SM �avor symmetry, Gflavor,
would be un-broken. For this reason, it is of paramount importance to test
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the couplings of the Higgs with quarks and leptons at the LHC. By now, we
know that the masses of the third generation quarks and leptons are largely
due to the 125 GeV Higgs, as indicated by the measured values of Higgs
couplings to the third generation fermions. Little is known about the origin
of the masses of the �rst and second generation fermions and about �avor
changing Higgs couplings.

In the SM, in spite of the very small Higgs width, �avor violating Higgs de-
cays have a negligible branching ratio. Generically, �avor violating Yukawa
couplings are well constrained by the low energy �avor changing NC mea-
surements. A notable exception are the �avor violating couplings involving
a tau lepton. Models with extra sources of EW SSB, can predict a sizable
(% level) Higgs �avor violating decays to a tau and a lepton, while being in
agreement with low energy �avor observables, as τ → µγ.

A few searches for Higgs �avor violating decays h → τµ, τe have been per-
formed by the LHC, so far not showing a convincing evidence for non-zero
branching ratios (see, however, the initial small anomaly. It will be very in-
teresting to monitor these searches in the coming years of the LHC, as they
could give a complementary probe of models with sizable �avor changing
Higgs couplings to leptons.

Exercise 32.1: Prove that the neutral interactions of the photon, the Z
boson, the gluons and the Higgs boson are �avor diagonal in the quark mass
eigenbasis.

Exercise 32.2: Using the unitarity relations show that the Kobayashi-
Maskawa matrix is fully described by 4 free parameters.

Exercise 32.3: Write the leading term of the Wilson coe�cient of each
operator in (32.34), according to the �avor violating ansatz and demonstrate
that they are much smaller than (cVLL

1 ).

Exercise 32.4: Write down the transformations of spin and linear momen-
tum vectors of an elementary particle under the parity and time reversal
operators. Suggest a way to look for time reversal violation in the decay
Λ → N + π. Are any experimental details or assumptions crucial to this
suggestion?

Exercise 32.4: The state of two π0-mesons is the CP odd or even?



Chapter 33

Neutrino Mass Problem

Discovery of the neutrino oscillations in the atmospheric Super-Kamiokande,
solar SNO and reactor KamLAND experiments was a �rst evidence in favor
of a beyond the SM physics. Neutrino oscillations were further studied in
the long baseline accelerator K2K, MINOS and T2K experiments. With the
measurement of the small parameter sin2 θ13 (in the accelerator T2K, reactor
Daya Bay, RENO and Double Chooze experiments) investigations of neutrino
oscillations enters into a new era, era of high precision measurements.

The 2015 Nobel Prize to Kajita and McDonald for the discovery of neutrino
oscillations, which shows that neutrinos have mass, is a very important event
for the neutrino community that will attract new people and give a great
boost to the �eld.

33.1 Brief Historical Survey

Idea of neutrino oscillations was �rst proposed by Pontecorvo in 1957-58 soon
after the theory of the two-component neutrino was proposed and con�rmed
by the Goldhaber et al. Pontecorvo looked in the lepton world for a phe-
nomena analogous to K0 � K̄0 oscillations. At that time only one type of
neutrino was known. Pontecorvo assumed that in addition to the usual weak
interaction exist a much weaker interaction which does not conserve the lep-
ton number. Assuming maximum mixing (by the analogy with K0− K̄0) he
concluded that "...neutrino and antineutrino are particle mixtures, i.e. sym-
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metrical and antisymmetrical combinations of two truly neutral Majorana
particles ν1 and ν2...":

|ν̄R⟩ =
1√
2
(|ν1⟩+ |ν2⟩) , |νR⟩ =

1√
2
(|ν1⟩ − |ν2⟩) . (33.1)

Here |ν̄R⟩ is the state of the right antineutrino, while |νR⟩ is the state of the
right neutrino, a particle which does not take part in the weak interaction
(later Pontecorvo proposed the name sterile for such neutrinos), and |ν1,2⟩
are states of Majorana neutrinos with small masses m1,2. As a result of the
mixing (33.1), oscillations ν̄R � νR (sterile) become possible.

Pontecorvo discussed a possibility of experimental con�rmation of the neu-
trino oscillation hypothesis. In 1958 the only known sources of neutrinos
were reactors and the sun. Pontecorvo �nished his paper with the remark:
"... e�ects of transformation of neutrino into antineutrino and vice versa may
be unobservable in the laboratory because of large values of R (oscillation
length), but will certainly occur, at least, on an astronomic scale".

In 1962 the idea of neutrino masses and mixing was discussed by Maki, Nak-
agawa and Sakata. Their proposal was based on the Nagoya model in which
nucleons were considered as bound states of a vector boson and neutrino
with de�nite mass. They assumed that the �elds of the weak neutrinos νe
and νµ are connected with the �elds of neutrinos with de�nite masses ν1 and
ν2 (they called them true neutrinos) by the orthogonal transformation

νe = cos θ ν1 + sin θ ν2 , νµ = − sin θ ν1 + cos θ ν2 . (33.2)

The phenomenon of neutrino oscillations was not considered, however, a
possibility of 'virtual transmutation' of νµ into νe was discussed. They esti-
mated a time of this transition and discussed how a possible νµ → νe tran-
sition would in�uence the interpretation of the results of the Brookhaven
experiment which was going on the time when this paper was written.

In 1967 Pontecorvo published the second paper on neutrino oscillations. In
this paper he discussed �avor neutrino oscillations νµ � νe and also oscil-
lations between �avor and sterile neutrinos (νeL � ν̄eL etc.). In this paper
solar neutrino oscillations were considered. Before the �rst results of the
Davis solar neutrino experiment appeared, Pontecorvo pointed out that be-
cause of neutrino oscillations the �ux of the solar νe's could be two times
smaller than the expected �ux. Thus, he anticipated the solar neutrino
problem.
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In the Gribov and Pontecorvo paper it was suggested that only active left-
handed neutrinos νe and νµ and right-handed antineutrinos ν̄e and ν̄µ exist
in nature (no sterile neutrinos). It was assumed that exist a (mili-weak) in-
teraction which does not conserve lepton numbers. After the diagonalization
of such an interaction the authors came to the mixing relation

νeL = cos ξ ϕ1L + sin ξ ϕ2L , νµL = − sin ξ ϕ1L + cos ξ ϕ2L , (33.3)

where ξ is the mixing angle and ϕ1 and ϕ2 are �elds of the Majorana neutrinos
with masses m1 and m1. They calculated the probability of νe to survive
in vacuum. The case of the maximum mixing (ξ = π/4), analogous to
the K0 − K̄0 case, was considered as the most attractive one. Under this
assumption the oscillations of solar neutrinos were discussed.

In the 1970-80-ies an idea of neutrino masses and oscillations was further
developed in Dubna. In addition to the Gribov-Pontecorvo scheme of the
neutrino mixing, based on the Majorana mass term, neutrino mixing based
on the Dirac mass term and the most general Dirac and Majorana mass
term were considered. Possible reactor, accelerator, solar and atmospheric
experiments on the search for neutrino oscillations were discussed.

Currently majority of physicist believe that:

• There are no principles which require that neutrinos are massless par-
ticles. It is plausible that neutrinos have small nonzero masses;

• Neutrino oscillations is an interference phenomenon. Search for neu-
trino oscillations is the most sensitive method to search for extremely
small mass-squared di�erences;

• Experiments with neutrinos from di�erent sources are sensitive to dif-
ferent neutrino mass-squared di�erences. Experiments on the search
for neutrino oscillations must be performed with neutrinos from all
existing sources.

33.2 Neutrino Mixing

Neutrino oscillations are based on the mixing of neutrino �elds

νlL(x) =
∑
i

UliνiL(x) , (33.4)
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where U is a unitary mixing matrix and νi(x) is the �eld of neutrinos (Dirac
or Majorana) with mass mi.

The �avor neutrino �elds νlL(x) (l = e, µ, τ) enter into the SM CC and NC
interactions

LCCI = − g√
2
jCCα Wα + h.c. , LNCI = − g

2 cos θW
jNCα Zα . (33.5)

Here
jCCα =

∑
l=e,µ,τ

ν̄lL γα lL , jNCα =
∑

l=e,µ,τ

ν̄lL γα νlL (33.6)

are charged leptonic and neutral neutrino currents.

The neutrino mixing takes place if in the total Lagrangian there is a mass
term, nondiagonal over �avor neutrino �elds. In the case of the charged
particles (leptons and quarks) only Dirac mass terms are possible. Because
the electric charges of neutrinos are equal to zero three di�erent neutrino
mass terms considered.

• Dirac Mass Term,

LD = −
∑

l′,l=e,µ,τ

ν̄l′LM
D
l′,l νlR + h.c. , (33.7)

where MD is a complex, nondiagonal, 3 × 3 matrix. After the diago-
nalization of the matrix MD we have

νlL(x) =
3∑
i=1

Uli νiL(x) . (33.8)

Here U is the unitary mixing matrix and νi(x) is the Dirac �eld with
the mass mi. The Lagrangian LD conserves the total lepton number

L = Le + Lµ + Lτ . (33.9)

Neutrino νi and antineutrino ν̄i di�er by the lepton number:

L(νi) = 1 , L(ν̄i) = −1 . (33.10)

• Majorana Mass Term,

LM = −1

2

∑
l′,l=e,µ,τ

ν̄l′LM
M
l′l (νlL)

c + h.c. , (33.11)
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where MM is a complex, nondiagonal, symmetrical 3× 3 matrix and

(νlL)
c = Cν̄TlL (33.12)

is the conjugated �eld. The mass term (33.11) violates not only �a-
vor lepton numbers, but also the total lepton number L. After the
diagonalization of the matrix MM we have

νlL(x) =
3∑
i=1

Uli νiL(x) . (33.13)

Here U is a unitary 3× 3 mixing matrix and

νi(x) = νci (x) (33.14)

is the Majorana �eld with the mass mi (νi ≡ ν̄i).

• The most general Dirac and Majorana mass term,

LD+M = LM + LD −
∑

s′,s=s1,...sns

1

2
(νs′R)cM

R
s′s νsR + h.c. (33.15)

(MR is a complex symmetrical matrix), violates lepton numbers and
require left-handed and right-handed neutrino �elds. After the diago-
nalization of the mass term LD+M we �nd

νlL(x) =

3+ns∑
i=1

Uli νiL(x) , (νsR(x))
c =

3+ns∑
i=1

Usi νiL(x) . (33.16)

Here U is a unitary (3 + ns)× (3 + ns) matrix and

νi(x) = νci (x) (33.17)

is the �eld of a Majorana lepton with de�nite mass.

The mixing (33.16) open di�erent possibilities: the seesaw possibility
of the generation of small neutrino masses, a possibility of transitions
of �avor neutrinos into sterile states etc.

Let us notice that the Dirac mass term can be generated by the standard
Higgs mechanism. The Majorana and the Dirac-Majorana mass terms can
be generated only by a beyond the SM mechanisms.
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33.3 Flavor Neutrino States

There exist di�erent methods of the derivation of the discussed above ex-
pression for transition probabilities. We will present here a method based
on the notion of the coherent �avor neutrino states

|νl⟩ =
∑
i

U∗
li |νi⟩ . (l = e, µ, τ) (33.18)

Here |νi⟩ is the state of neutrino (Dirac or Majorana) with mass mi, mo-
mentum p⃗ and energy

Ei =
√
p2 +m2

i ≃ E +
m2
i

2E
(E = p) , (33.19)

and |νl⟩ is the state the �avor neutrino νl which is produced together with l+
in a CC weak decay (π+ → µ+ + νµ, etc.) or produces l− in a CC neutrino
reaction (νµ +N → µ− +X, etc.).

The relation (33.18) is valid if neutrino mass-squared di�erences are so small
that in weak decays production of neutrinos with di�erent masses cannot be
resolved. It follows from the Heisenberg uncertainty relation that this con-
dition is satis�ed in neutrino oscillation experiments with neutrino energies
many orders of magnitude larger than neutrino masses.

The possibility to resolve small neutrino mass-squared di�erences is based
on the time-energy uncertainty relation

∆E ∆t & 1 . (33.20)

Here ∆t is a time interval during which the state with the energy uncertainty
∆E is signi�cantly changed. In the case of neutrino beams, from (33.20) we
�nd

|∆m2
ki|

L

2E
& 1 , (33.21)

where L ≃ ∆t is the distance between a neutrino source and neutrino detec-
tor. For 'atmospheric' and 'solar' mass-squared di�erences,

∆m2
A ≃ 2.4 · 10−3 eV2 , ∆m2

S ≃ 7.5 · 10−5 eV2 , (33.22)

the condition (33.21) is satis�ed in the atmospheric Super-Kamiokande, long
baseline accelerator K2K, MINOS, T2K, reactor KamLAND, Daya Bay,
RENO, Double Chooze and other neutrino oscillation experiments.
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Let us �nish this section with a remark about the states of sterile neutrinos
which (by de�nition) do not interact with leptons and quarks via the SM
interaction. If in addition to the �avor neutrinos νl sterile neutrinos νs exist,
their states are determined as follows

|νs⟩ =
3+ns∑
i=1

U∗
si |νi⟩ , (s = s1, s1, ...) (33.23)

where U is a unitary (3 + ns) × (3 + ns) matrix. Then the states of active
and sterile neutrinos (33.18) and (33.23) satisfy the condition

⟨α′|α⟩ = δα′α . (α′, α = e, µ, τ, s1, s1, ...sns) (33.24)

Neutrino oscillations is a direct consequence of the fact that �avor (and
sterile) neutrinos are described by coherent states (33.18) and (33.23).

33.4 Neutrino Oscillations in Vacuum

Let us assume that at the initial time t = 0 a �avor neutrino να was produced.
In the general case of �avor and sterile neutrinos at the time t we have

|να⟩t = e−iH0t |να⟩ =
3+ns∑
i=1

|νi⟩ e−iEit U∗
αi =

=
∑
α′

|α′⟩(
3+ns∑
i=1

Uα′i e
−iEit U∗

αi) . (33.25)

Thus, for the να → να′ transition probability we �nd

P (να → να′) =
∣∣ 3+ns∑
i=1

Uα′i e
−iEit U∗

αi

∣∣2 . (33.26)

We will present here convenient expression for να → να′ transition proba-
bility. From (33.26) we have

P (να → να′) =
∣∣ 3+ns∑
i=1

Uα′i e
−2i∆pi U∗

αi

∣∣2 =
=

∣∣δα′α − 2i
∑
i

Uα′i e
−i∆pi sin∆pi U

∗
αi

∣∣2 , (33.27)
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where p is arbitrary �xed index and

∆pi =
∆m2

piL

4E
, ∆m2

pi = m2
i −m2

p . (33.28)

Let us notice that in (33.27) i ̸= p, also we extracted the common phase
e−im

2
pL/2E and used the unitarity condition

∑
i Uα′iU

∗
αi = δα′α. From (33.27)

we �nd

P (να→ να′) = δα′α − 4
∑
i

|Uαi|2(δα′α − |Uα′i|2) sin2∆pi +

+8
∑
i>k

[
Re(Uα′iU

∗
αiU

∗
α′kUαk) cos(∆pi −∆pk)± (33.29)

± Im (Uα′iU
∗
αiU

∗
α′kUαk) sin(∆pi −∆pk)

]
sin∆pi sin∆pk .

Here + (−) sign refer to να → να′ (ν̄α → ν̄α′) transition. There are some
advantages of (33.29) since it contains only independent mass-squared dif-
ferences. The unitarity condition is fully implemented in (33.29) and as a
result only independent terms enter into this expression.

Let us consider now the most important case of the three-neutrino mixing.
Usually neutrino masses are labeled in such a way that m2 > m1 and solar
('small') mass-squared di�erence is determined as follows

m2
2 −m2

1 = ∆m2
12 ≡ ∆m2

S . (33.30)

For the neutrino mass spectrum there are two possibilities:

1. Normal spectrum (NS):∆m2
S is the di�erence between square of masses

of the lightest neutrinos. In this case m3 > m2 > m1;

2. Inverted spectrum (IS):∆m2
S is the di�erence between square of masses

of the heaviest neutrinos. In this case m2 > m1 > m3.

We will determine the atmospheric ('large') neutrino mass squared di�erence
in the following way

NS : ∆m2
A = ∆m2

23 , IS : ∆m2
A = |∆m2

13| . (33.31)

Let us notice that there exist di�erent de�nition of this quantity in the
literature:
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• In some cases atmospheric mass-squared di�erence is determined as:

(∆m2
A)

′ =
1

2
|∆m2

13 +∆m2
23| = ∆m2

A +
1

2
∆m2

S . (33.32)

• Sometimes atmospheric mass-squared di�erence is determined in the
following way:

(∆m2
A)

′′ = ∆m2
13 (NS) = |∆m2

23| (IS) = ∆m2
A +∆m2

S . (33.33)

• The parameter ∆m2
ee is expressed as follows:

∆m2
ee = cos2 θ12∆m

2
13 + sin2 θ12∆m

2
23 , (33.34)

and is connected with ∆m2
A and ∆m2

S by the relations

∆m2
ee = ∆m2

A + cos2 θ12∆m
2
S (NS) ,

|∆m2
ee| = ∆m2

A + sin2 θ12∆m
2
S (IS) . (33.35)

As it is seen from (33.31), (33.32), (33.33) and (33.35) di�erent de�nitions
of 'large' mass-squared di�erence di�er only by a few %. However, neutrino
oscillation experiments enter now into precision era when neutrino oscillation
parameters will be measured with 1 % accuracy. It is believed that the
consensus in de�nition of 'large' neutrino mass-squared di�erence must be
found.

For the probability of the transition νl → νl′ (l, l′ = e, µ, τ) in the case of
normal and inverted mass spectra from (33.29) we �nd, correspondingly, the
following expressions

PNS(νl→ νl′) = δl′l − 4|Ul3|2(δl′l − |Ul′3|2) sin2∆A −
− 4|Ul1|2(δl′l − |Ul′1|2) sin2∆S −
− 8[Re (Ul′3U

∗
l3U

∗
l′1Ul1) cos(∆A +∆S)± (33.36)

± Im(Ul′3U
∗
l3U

∗
l′1Ul1) sin(∆A +∆S)] sin∆A sin∆S ,

and

P IS(νl→ νl′) = δl′l − 4|Ul3|2(δl′l − |Ul′3|2) sin2∆A −
− 4|Ul2|2(δl′l − |Ul′2|2) sin2∆S −
− 8[Re(Ul′3U

∗
l3U

∗
l′2Ul2) cos(∆A +∆S)∓ (33.37)

∓ Im(Ul′3U
∗
l3U

∗
l′2Ul2) sin(∆A +∆S)] sin∆A sin∆S .
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The transition probabilities (33.37) and (33.38) are the sum of atmospheric,
solar and interference terms. Notice that expression (33.38) can be obtained
from (33.37) by the change Ul1 → Ul2 and (±)→ (∓) in the last term.

The values of the oscillation parameters obtained from global analysis of
existing data are presented in the Table:

Parameter Normal Spectrum Inverted Spectrum

sin2 θ12 0.304+0.013
−0.012 0.304+0.013

−0.012

sin2 θ23 0.452+0.052
−0.028 0.579+0.025

−0.037

sin2 θ13 0.0218+0.0010
−0.0010 0.0219+0.0011

−0.0010

δ (in ◦) (306+39
−70) (254+63

−62)

∆m2
S (7.50+0.19

−0.17) · 10−5 eV2 (7.50+0.19
−0.17) · 10−5 eV2

∆m2
A (2.457+0.047

−0.047) · 10−3 eV2 (2.449+0.048
−0.047) · 10−3 eV2

33.5 Neutrino and SM

The SM started with the theory of the two-component neutrino. The two-
component, massless, Weil neutrino is the simplest possibility for the particle
with spin 1/2: only two degrees of freedom. The local SUL(2) group with
the lepton doublets

ψlepeL =

(
ν ′eL
e′L

)
, ψlepµL =

(
ν ′µL
µ′L

)
, ψlepτL =

(
ν ′τL
τ ′L

)
(33.38)

and corresponding quark doublets is the simplest possibility which allows to
include charged leptons and quarks in addition to neutrinos.

In order to unify weak and electromagnetic interactions we need to enlarge
the symmetry group: in electromagnetic currents of charged particles en-
ter left-handed and right-handed �elds. The simplest enlargement is the
SUL(2)×UY (1) group where UY (1) is the group of the weak hypercharge Y
determined by the Gell-Mann-Nishijima relation

Q = T3 +
1

2
Y . (33.39)

Neutrinos have no electromagnetic interaction. Uni�cation of the weak and
electromagnetic interactions does not require right-handed neutrino �elds.
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The SM interaction of leptons, neutrinos and quarks with gauge vector
bosons is the minimal interaction compatible with the local SUL(2)×UY (1)
invariance.

The SM mechanism of the mass generation is the Higgs mechanism based on
the assumption of the existence of scalar Higgs �elds. In order to generate
masses of W± and Z0 bosons we need to have three (Goldstone) degrees
of freedom. Minimal possibility is a doublet of complex Higgs �elds (four
degrees of freedom). With this assumption one scalar, neutral Higgs boson
is predicted. This prediction is in a good agreement with existing LHC data.

Masses of W± and Z0 bosons are given in the SM by the relations

mW =
1

2
g v , mZ =

1

2

√
g2 + g′2 v =

g

2 cos θW
v , (33.40)

where
v = (

√
2GF )

−1/2 = 246 GeV (33.41)

is the parameter which characterizes the scale of the electroweak symmetry
breaking. Lepton and quark masses and mixing are due to SUL(2)× UY (1)
invariant Yukawa interactions which generate Dirac mass terms. For the
charged leptons we have

LlepY = −
∑
l

ml l̄l , (33.42)

where ml = yl v and yl is the Yukawa constant. Neutrinos in the minimal
SM after spontaneous breaking of the EW symmetry remain two-component,
massless, Weyl particles.

33.6 The Weinberg Mechanism of Mass Generation

In the framework of the minimal SM neutrino masses and mixing can be
generated only by a beyond the SM mechanism. The most general method
which allows to describe e�ects of a beyond the SM physics is the method
of the e�ective Lagrangian. The e�ective Lagrangian is a SUL(2) × UY (1)
invariant, dimension �ve or more local operator built from SM �elds. In
order to build the e�ective Lagrangian which generate a neutrino mass term
we must use the lepton doublets (33.38) and the Higgs doublet

ϕ =

(
ϕ+
ϕ0

)
. (33.43)
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The e�ective Lagrangian which generate the neutrino mass term has the
form

LeffI = − 1

Λ

∑
l1,l2

(
ψ̄lepl1Lϕ̃

)
Yl1l2

(
ϕ̃T (ψlepl2L)

c
)
+ h.c. , (33.44)

where the parameter Λ characterizes a scale of a beyond the SM physics
(Λ ≫ v) and ϕ̃ = iσ2ϕ

∗ is the conjugated doublet. Let us stress that the
Lagrangian (33.44) does not conserve the total lepton number, it can be
generated (in the second order of the perturbation theory) by the seesaw
interaction of the Higgs-lepton pair with a heavy Majorana right-handed
lepton.

After SSB from (33.44) we come to the Majorana mass term

LM = − v
2

2Λ

∑
l1,l2

ν̄ ′l1L Yl1l2(ν
′
l2L)

c + h.c. = −1

2

3∑
i=1

miν̄iνi . (33.45)

Here νi = νci is the �eld of the Majorana neutrino with the mass

mi =
v2

Λ
yi =

v

Λ
(yiv) , (33.46)

where yi is a Yukawa coupling. In (33.46) yiv is a 'typical' fermion mass in
SM. Thus, neutrino masses, generated by the e�ective Lagrangian (33.44),
are suppressed with respect to 'SM masses' by a factor

v

Λ
=

scale of SM

scale of a new physics
≪ 1 . (33.47)

The mechanism we have considered (Weinberg mechanism) is apparently
the most economical and natural beyond the SM mechanism of the neutrino
mass generation. There are two general consequences of this mechanism.

• Neutrinos with de�nite masses νi are Majorana particles;

• The number of neutrinos with de�nite masses is equal to the number
of lepton-quark generations (three). This means that in this scheme
there are no transitions of �avor neutrinos into sterile states.

The study of the lepton number violating neutrinoless double β-decay (0νββ-
decay),

(A,Z)→ (A,Z + 2) + e− + e− , (33.48)
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of some even-even nuclei is most sensitive way to investigate the Majorana
nature of neutrinos with de�nite masses. The probability of the process
(33.48) is proportional to square of the Majorana neutrino mass,

mββ =
∑
i

U2
eimi , (33.49)

and is very small. It has the following general form:

1

T 0ν
1/2

= |mββ |2|M0ν |2G0ν(Q,Z) . (33.50)

HereM0ν is the nuclear matrix element andG0ν(Q,Z) is known phase factor.

Several experiments on the search for the 0νββ of di�erent nuclei are going
on and are in preparation. Up to now the process was not observed. From
the data of recent experiments the following upper bound was obtained

|mββ | < 1.4 · 10−1 eV . (33.51)

In future experiments on the search for 0νββ decay the values |mββ | ≃
a few · 10−2 eV are planned to be reached.

Indications in favor of transitions of �avor neutrinos into sterile states were
obtained in the LSND and MiniBooNE short baseline accelerator experi-
ments and in the GALLEX and SAGE calibration experiments and in short
baseline reactor experiments which were reanalyzed with a new reactor an-
tineutrino �ux. Many new short baseline source, reactor and accelerator
neutrino experiments on the search for sterile neutrinos with masses ∼ 1 eV
are in preparation. Hopeful in a few years the sterile neutrino anomaly will
be resolved.

Exercise 33.1: Assume the neutrino mass is exactly zero. Does the neutrino
have a magnetic moment? Along what direction(s) does the neutrino spin
point? Along what direction(s) does the antineutrino spin point?

Exercise 33.2: What is the velocity of a 3 K neutrino in the universe if the
neutrino mass is 0.1 eV?

Exercise 33.3: A sensitive way to determine the mass of νe is to measure:
(a) The angular distribution in electron-neutrino scattering;
(b) The electron energy spectrum in beta-decay;
(c) The neutrino �ux from the sun.
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Exercise 33.4: An experiment in a gold mine in South Dakota has been
carried out to detect solar neutrinos using the reaction ν + Cl37 → Ar37 +
e−. The detector contains approximately 4× 105 liters of tetrachlorethylene
(CCl4). Estimate how many atoms of Ar37 would be produced per day.

Exercise 33.5: A neutrino of type νe is produced at rest at time zero. What
is the probability (as a function of time) that the neutrino will be in each of
the other states?

Exercise 33.6: An experiment to detect neutrino oscillations is being per-
formed. The �ight path of the neutrinos is 2,000 meters. Their energy is
100 GeV. The sensitivity is such that the presence of 1% of neutrinos of one
type di�erent from that produced at the start of �ight path can be measured
with con�dence. Let us suppose that there is a small perturbing interaction
between neutrino types, in the absence of which all three types have the
same nonzero rest mass m. Let the matrix element of this perturbation have
the same real value E between each pair of neutrino types. Take m to be
20 eV. What is the smallest value of E that can be detected? How does this
depend on m?
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Chapter 34

Overview and Current Status

Supersymmetry (SUSY) is a principle that proposes a relationship between
two basic classes of elementary particles: bosons, which have an integer-
valued spin, and fermions, which have a half-integer spin.

SUSY is a possible candidate for a "new physics" and seen as an elegant
solution to many current problems in particle physics. If con�rmed, it could
resolve various areas where current theories are believed to be incomplete. It
is believed that a SUSY extension to the SM would resolve major hierarchy
problems within gauge theory, by guaranteeing that quadratic divergences
of all orders will cancel out in QFT.

In SUSY, each particle from one group would have an associated particle in
the other, which is known as its superpartner, the spin of which di�ers by a
half-integer. These superpartners would be new and undiscovered particles.
For example, there would be a particle called a "selectron" (superpartner
electron), a bosonic partner of the electron. In the simplest SUSY theories,
with perfectly unbroken SUSY, each pair of superpartners would share the
same mass and internal quantum numbers besides spin.

If SUSY exists then it consists of a SSB allowing superpartners to di�er in
mass. Spontaneously broken SUSY could solve many mysterious problems
in particle physics including the hierarchy problem.

There is no evidence at this time to show whether or not SUSY is correct, or
what other extensions to current models might be more accurate. In part this

541



542 CHAPTER 34. OVERVIEW AND CURRENT STATUS

is because it is only since around 2010 that particle accelerators speci�cally
designed to study physics beyond the SM have become operational. Also it
is not yet known where exactly to look for SUSY particles, nor the energies
required for their successful search.

The main reasons for SUSY being supported by physicists is that the cur-
rent theories are known to be incomplete and their limitations are well es-
tablished, and SUSY would be an attractive solution to some of the major
concerns. Direct con�rmation would entail production of superpartners in
collider experiments, such as the LHC. Indirect methods include the search
for a permanent electric dipole moment in the known particles, which can
arise when the SM particle interacts with the SUSY particles. The current
best constraint on the electron electric dipole moment put it to be smaller
than 10−28 e·cm, equivalent to a sensitivity to new physics at the TeV scale
and matching that of the current best particle colliders. An electric dipole
moment in any fundamental particle points towards time-reversal violating
physics, and therefore also CP -symmetry violation via the CPT theorem.
Such electric dipole moment experiments are also much more scalable than
conventional particle accelerators and o�er a practical alternative to detect-
ing physics beyond the SM as accelerator experiments become increasingly
costly and complicated to maintain.

34.1 History of SUSY Invention

As the father of SUSY can be considered Gödel, since he theorized two things
that support this fact:

1. He assumed that the universe is not expanding but rotating. The
centrifugal force arising from the rotation was what kept everything
from collapsing under the force of gravity. What makes this universe
weird is the way it mixes up space and time;

2. If the universe is truly suppersymmetric, then by completing a su�-
ciently long round trip in a su�ciently advanced spaceship a resident of
Gödel's theoretical Supersymmetric universe could travel to any point
in time.

Einstein followed Gödel's theory up by stating: "This separation between
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past, present, and future is only an illusion, if a stubborn one".

Gervais and Sakita (in 1971), Golfand and Likhtman (also in 1971), and
Volkov and Akulov (1972), independently rediscovered SUSY in the context
of QFT. They introduced a radically new type of symmetry of spacetime
and fundamental �elds, which establishes a relationship between elemen-
tary particles of di�erent quantum nature, bosons and fermions, and uni�es
spacetime and internal symmetries of microscopic phenomena.

Note that SUSY with a consistent Lie-algebraic graded structure (on which
the Gervais-Sakita rediscovery was based) �rst arose in 1971 in the context
of an early version of string theory by Ramond, Schwarz and Neveu.

Wess and Zumino (in 1974) identi�ed the characteristic renormalization fea-
tures of four-dimensional SUSY �eld theories, which identi�ed them as re-
markable QFTs, and they and Salam and their fellow researchers introduced
early particle physics applications.

The �rst realistic SUSY version of the SM was proposed in 1977 by Fayet
and is known as the Minimal Supersymmetric SM (MSSM).

34.2 Motivations

There are numerous phenomenological motivations for SUSY close to the
EW scale, as well as technical motivations for SUSY at any scale.

• The hierarchy problem. SUSY close to the EW scale ameliorates the
hierarchy problem that a�icts the SM.

In the SM, the EW scale receives enormous Planck-scale quantum cor-
rections. The observed hierarchy between the EW scale and the Planck
scale must be achieved with extraordinary �ne tuning. In a SUSY the-
ory, on the other hand, Planck-scale quantum corrections cancel be-
tween partners and superpartners (owing to a minus sign associated
with fermionic loops). The hierarchy between the EW scale and the
Planck scale is achieved in a natural manner, without miraculous �ne-
tuning;

• Gauge coupling uni�cation. The idea that the gauge symmetry groups
unify at high-energy is called Grand Uni�cation Theory (GUT). In
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the SM, however, the weak, strong and electromagnetic couplings fail
to unify at high energy. In a SUSY theory, the running of the gauge
couplings are modi�ed, and precise high-energy uni�cation of the gauge
couplings is achieved:

The modi�ed running also provides a natural mechanism for radiative
EW symmetry breaking;

• Dark matter. TeV-scale SUSY (augmented with a discrete symmetry)
typically provides a candidate dark matter particle at a mass scale
consistent with thermal relic abundance calculations;

• Other technical motivations. SUSY is also motivated by solutions to
several theoretical problems, for generally providing many desirable
mathematical properties, and for ensuring sensible behavior at high
energies. Supersymmetric QFT is often much easier to analyze, as
many more problems become mathematically tractable.

When SUSY is imposed as a local symmetry, Einstein's theory of gen-
eral relativity is included automatically, and the result is said to be
a theory of Supergravity. It is also a necessary feature of the most
popular candidate for a theory of everything, Superstring theory, and
a SUSY theory could explain the issue of cosmological in�ation.

Another theoretically appealing property of SUSY is that it o�ers the
only "loophole" to the Coleman-Mandula theorem, which prohibits
spacetime and internal symmetries from being combined in any non-
trivial way, for QFT like the SM with very general assumptions. The
Haag-�opusza«ski-Sohnius theorem demonstrates that SUSY is the
only way spacetime and internal symmetries can be combined con-
sistently.
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34.3 Extension of Symmetry Groups

One reason that physicists explored SUSY is because it o�ers an extension
to the more familiar symmetries of QFT. These symmetries are grouped into
the Poincaré group and internal symmetries.

The Coleman-Mandula theorem showed that under certain assumptions, the
symmetries of the S-matrix must be a direct product of the Poincaré group
with a compact internal symmetry group, or (if there is not any mass gap)
the conformal group with a compact internal symmetry group.

In 1971 Golfand and Likhtman were the �rst to show that the Poincaré
algebra can be extended through introduction of four anticommuting spinor
generators (in four dimensions), which later became known as supercharges.

In 1975 the Haag-�opusza«ski-Sohnius theorem analyzed all possible super-
algebras in the general form, including those with an extended number of the
supergenerators and central charges. This extended super-Poincaré algebra
paved the way for obtaining a very large and important class of SUSY �eld
theories.

Traditional symmetries of physics are generated by objects that transform
by the tensor representations of the Poincaré group and internal symmetries.
SUSYs, however, are generated by objects that transform by the spin repre-
sentations. According to the spin-statistics theorem, bosonic �elds commute
while fermionic �elds anticommute. Combining the two kinds of �elds into
a single algebra requires the introduction of a Z2-grading under which the
bosons are the even elements and the fermions are the odd elements. Such
an algebra is called a Lie superalgebra.

The simplest SUSY extension of the Poincaré algebra is the Super-Poincaré
algebra. Expressed in terms of two Weyl spinors, has the following anti-
commutation relation:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ (34.1)

and all other anti-commutation relations between the Qs and commutation
relations between the Qs and P s vanish. In the above expression Pµ = −i∂µ
are the generators of translation and σµ are the Pauli matrices.

There are representations of a Lie superalgebra that are analogous to rep-
resentations of a Lie algebra. Each Lie algebra has an associated Lie group
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and a Lie superalgebra can sometimes be extended into representations of a
Lie supergroup.

34.4 Applications

The mathematical structure of SUSY (graded Lie superalgebras) has subse-
quently been applied successfully to various topics of physics, ranging from
particle and nuclear physics, critical phenomena, quantum mechanics, statis-
tical physics to cosmology. It remains a vital part of many proposed physical
theories.

34.4.1 The Supersymmetric SM

Incorporating SUSY into the SM requires doubling the number of particles
since there is no way that any of the particles in the SM can be superpartners
of each other. With the addition of new particles, there are many possible
new interactions.

The simplest possible supersymmetric model consistent with the SM is the
Minimal Supersymmetric SM (MSSM) which can include the necessary ad-
ditional new particles that are able to be superpartners of those in the SM.

One of the main motivations for SUSY comes from the quadratically di-
vergent contributions to the Higgs mass squared. The quantum mechanical
interactions of the Higgs boson causes a large renormalization of the Higgs
mass and unless there is an accidental cancellation, the natural size of the
Higgs mass is the greatest scale possible. This problem is known as the hier-
archy problem. SUSY reduces the size of the quantum corrections by having
automatic cancellations between fermionic and bosonic Higgs interactions,
since they have di�erent signs.

If SUSY is restored at the EW scale, then the Higgs mass is related to
SUSY breaking which can be induced from small non-perturbative e�ects
explaining the vastly di�erent scales in the weak interactions and gravita-
tional interactions.

In many SUSY models there is a heavy stable particle (such as neutralino)
which could serve as a Weakly Interacting Massive Particle (WIMP) dark
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matter candidate. The existence of a SUSY dark matter candidate is related
closely to R-parity (see below).

The standard paradigm for incorporating SUSY into a realistic theory is
to have the underlying dynamics of the theory be supersymmetric, but the
ground state of the theory does not respect the symmetry and SUSY is
broken spontaneously.

The SUSY break cannot be done permanently by the particles of the MSSM.
This means that there is a new sector of the theory that is responsible for
the breaking. The only constraint on this new sector is that it must break
SUSY permanently and must give superparticles TeV scale masses.

There are many models that can break SUSY and most of their details do
not matter. In order to parameterize the relevant features of SUSY breaking,
arbitrary soft SUSY breaking terms are added to the theory which temporar-
ily break SUSY explicitly but could never arise from a complete theory of
SUSY breaking.

One piece of evidence for MSSM is gauge coupling uni�cation. The renor-
malization group evolution of the three gauge coupling constants of the SM
is somewhat sensitive to the present particle content of the theory. These
coupling constants do not quite meet together at a common energy scale
if we run the renormalization group using the SM. With the addition of
minimal SUSY joint convergence of the coupling constants is projected at
approximately 1016 GeV.

34.4.2 Supersymmetric Quantum Mechanics

SUSY quantum mechanics adds the SUSY superalgebra to quantum mechan-
ics as opposed to QFT. This model often becomes relevant when studying
the dynamics of supersymmetric solitons, and due to the simpli�ed nature
of having �elds which are only functions of time (rather than space-time), a
great deal of progress has been made in this subject and it is now studied in
its own right.

SUSY quantum mechanics involves pairs of Hamiltonians which share a
particular mathematical relationship, which are called partner Hamiltoni-
ans (the potential energy terms which occur in the Hamiltonians are then
known as partner potentials). An introductory theorem shows that for every
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eigenstate of one Hamiltonian, its partner Hamiltonian has a corresponding
eigenstate with the same energy.

This fact can be exploited to deduce many properties of the eigenstate spec-
trum. It is analogous to the original description of SUSY, which referred
to bosons and fermions. We can imagine a "bosonic Hamiltonian", whose
eigenstates are the various bosons of our theory. The SUSY partner of this
Hamiltonian would be "fermionic", and its eigenstates would be the theory's
fermions. Each boson would have a fermionic partner of equal energy.

34.4.3 SUSY in Condensed Matter Physics

SUSY concepts have provided useful extensions to the WKB approximation.

Additionally, SUSY has been applied to disorder averaged systems both
quantum and non-quantum (through statistical mechanics), an example of a
non-quantum theory is the Fokker-Planck equation. The SUSY in all these
systems arises from the fact that one is modelling one particle and as such
the "statistics" don't matter.

The use of the SUSY method provides a mathematical rigorous alternative
to the replica trick, but only in non-interacting systems, which attempts to
address the so-called problem of the denominator under disorder averaging.

34.4.4 SUSY in Optics

Integrated optics was recently found to provide a fertile ground on which cer-
tain rami�cations of SUSY can be explored in readily-accessible laboratory
settings.

Using the mathematical structure of the SUSY Schrödinger equation and the
wave equation governing the evolution of light in one-dimensional settings,
one may interpret the refractive index distribution of a structure as a poten-
tial landscape in which optical wave packets propagate. Then a new class of
functional optical structures with possible applications in phase matching,
mode conversion and space-division multiplexing becomes possible.

SUSY transformations have been also proposed as a way to address inverse
scattering problems in optics and as a one-dimensional transformation optics.
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34.4.5 SUSY in Dynamical Systems

All stochastic (partial) di�erential equations, the models for all types of con-
tinuous time dynamical systems, possess so called topological SUSY. In the
operator representation of stochastic evolution, the topological SUSY is the
exterior derivative, which is commutative with the stochastic evolution op-
erator de�ned as the stochastically averaged pullback induced on di�erential
forms by di�eomorphisms of the phase space.

The topological sector of the so-emerging SUSY theory of stochastic dynam-
ics can be recognized as the Witten-type topological �eld theory.

The meaning of the topological SUSY in dynamical systems is the preser-
vation of the phase space continuity-in�nitely close points will remain close
during continuous time evolution, even in the presence of noise.

When the topological SUSY is broken spontaneously, this property is violated
in the limit of the in�nitely long temporal evolution and the model can be
said to exhibit (the stochastic generalization of) the butter�y e�ect.

From a more general perspective, spontaneous breakdown of the topologi-
cal SUSY is the theoretical essence of the ubiquitous dynamical phenomenon
known as chaos, turbulence, self-organized criticality etc. The Goldstone the-
orem explains the associated emergence of the long-range dynamical behavior
that manifests itself as 1/f noise, butter�y e�ect, and the scale-free statistics
of sudden (instantonic) processes (e.g. earthquakes, neuro-avalanches, solar
�ares etc.) known as the Zipf's law and the Richter scale.

34.4.6 SUSY in Mathematics

SUSY is also sometimes studied mathematically for its intrinsic properties.
This is because it describes complex �elds satisfying a property known as
holomorphy, which allows holomorphic quantities to be exactly computed.
This makes SUSY models useful "toy models" of more realistic theories.
A prime example of this has been the demonstration of S-duality in four-
dimensional gauge theories that interchanges particles and monopoles.

Note also that the proof of the Atiyah-Singer index theorem is much simpli-
�ed by the use of SUSY quantum mechanics.
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34.4.7 SUSY in Quantum Gravity

SUSY is part of superstring theory, a string theory of quantum gravity, al-
though it could be a component of other quantum gravity theories as well,
such as loop quantum gravity. For superstring theory to be consistent, SUSY
seems to be required (although it may be a strongly broken).

If experimental evidence con�rms SUSY in the form of supersymmetric par-
ticles, such as the neutralino that is often believed to be the lightest super-
partner, some physicists believe this would be a major boost to superstring
theory. If major particle physics experiments fail to detect SUSY partners,
many versions of superstring theory which had predicted certain low mass
superpartners to existing particles may need to be signi�cantly revised.

34.5 Extended SUSY

It is possible to have more than one kind of SUSY transformation. Theories
with more than one SUSY transformation are known as extended supersym-
metric theories.

The more SUSY a theory has, the more constrained are the �eld content and
interactions. Typically the number of copies of a SUSY is a power of 2, i.e. 1,
2, 4, 8. In four dimensions, a spinor has four degrees of freedom and thus the
minimal number of SUSY generators is four. Having eight copies of SUSY
means that there are maximum 32 SUSY generators in four dimensions.
Theories with 32 supersymmetries automatically have a graviton. Theories
with more than 32 SUSY generators automatically have massless �elds with
spin greater than 2, for which it is not known how to de�ne interaction.

For four dimensions there are the following theories, with the corresponding
multiplets (CPT adds a copy, whenever they are not invariant under such
symmetry):

N = 1: Chiral multiplet
(
0, 12
)
, vector multiplet

(
1
2 , 1
)
, gravitino multiplet(

1, 32
)
and graviton multiplet:

(
3
2 , 2
)
.

N = 2: Hypermultiplet
(
−1

2 , 0
2, 12
)
, vector multiplet

(
0, 12

2
, 1
)
and super-

gravity multiplet
(
1, 32

2
, 2
)
.
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N = 4: Vector multiplet
(
−1,−1

2

4
, 06, 12

4
, 1
)
and supergravity multiplet(

0, 12
4
, 16, 32

4
, 2
)
.

N = 8: Supergravity multiplet
(
−2,−3

2

8
,−128,−1

2

56
, 070, 12

56
, 128, 32

8
, 2
)
.

34.5.1 SUSY and Extra Dimensions

It is possible to have SUSY in dimensions other than four. Because the
properties of spinors change drastically between di�erent dimensions, each
dimension has its characteristic. In d dimensions, the size of spinors is ap-
proximately 2d/2 or 2(d−1)/2. Since the maximum number of supersymmetries
is 32, the greatest number of dimensions in which a SUSY theory can exist
is eleven.

34.5.2 Fractional SUSY

Fractional SUSY is a generalization of the notion of SUSY in which the
minimal positive amount of spin does not have to be 1/2 but can be an
arbitrary 1/N for integer value of N . Such a generalization is possible in
two or less spacetime dimensions.

34.6 Experimental Searches

SUSY models are constrained by a variety of experiments, including mea-
surements of low-energy observables - for example:

• The anomalous magnetic moment of the muon;

• The dark matter density measurement and its direct detection experi-
ments;

• The particle collider experiments, including Higgs phenomenology, B-
physics and direct searches for superpartners (sparticles).
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Historically, the tightest limits were from direct production at colliders. The
�rst mass limits for squarks and gluinos were made at CERN by the UA1
experiment and the UA2 experiment at the Super Proton Synchrotron. LEP
later set very strong limits, which in 2006 were extended by the D0 experi-
ment at the Tevatron.

From 2003-2015, WMAP's and Planck's dark matter density measurements
have strongly constrained SUSY models, which, if they explain dark matter,
have to be tuned to invoke a particular mechanism to su�ciently reduce the
neutralino density.

Prior to the beginning of the LHC, in 2009 �ts of available data to CMSSM
and NUHM1 indicated that squarks and gluinos were most likely to have
masses in the 500 to 800 GeV range, though values as high as 2.5 TeV were
allowed with low probabilities. Neutralinos and sleptons were expected to
be quite light, with the lightest neutralino and the lightest stau most likely
to be found between 100 and 150 GeV.

The LHC found no evidences for SUSY, and, as a result, surpassed existing
experimental limits from the Large Electron-Positron Collider and Tevatron
and partially excluded the aforementioned expected ranges.

In 2011-12, the LHC discovered a Higgs boson with a mass of about 125 GeV,
and with couplings to fermions and bosons which are consistent with the SM.
The MSSM predicts that the mass of the lightest Higgs boson should not
be much higher than the mass of the Z boson, and, in the absence of �ne
tuning (with the SUSY breaking scale on the order of 1 TeV), should not
exceed 135 GeV.

The LHC result seemed problematic for the MSSM, as the value of 125 GeV
is relatively large for the model and can only be achieved with large radiative
loop corrections from top squarks, which many theorists had considered to
be "unnatural".

34.6.1 SUSY Signatures on LHC

SUSY models allows for a wide variety of new and distinct signatures. There-
fore, while searches for speci�c models are useful, it is also important to adopt
a signature-based approach. Let us outline the main considerations in LHC
serches.
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1. Interactions: There are only two sources of model dependence here.

• R-parity violating couplings: If R-parity is conserved, superpart-
ners are produced in pairs, and each decays to a lighter super-
partner plus SM particles. Thus any decay chain ends with the
stable lightest superpartner. In the presence of R-parity violat-
ing couplings, a single superpartner can be produced. There are
strong bounds on such couplings. Still, single superpartner pro-
duction via a small R-parity violating coupling may be competi-
tive because of the kinematics. Most superpartners decay through
the usual R-parity conserving couplings (gauge or Yukawa), with
the exception of the lightest superpartner, which can only decay
through R-parity violating couplings.

• Squark and/or slepton �avor mixing: For general sfermion mass
matrices, the gaugino-sfermion-fermion couplings may mix di�er-
ent �avors. This could a�ect both production and decay.

2. Superpartner masses:

• The hierarchy between colored and non-colored superpartners: In
most mediation schemes, colored superpartners are heavier (by
factors of a few to 10). Unless there is a huge hierarchy between
colored and non-colored superpartners, the production of squarks
and gluinos dominates at the LHC. As the hierarchy increases, the
production of ewkinos and sleptons becomes more competitive.

• Flavor structure: Superpartners of the same gauge charges may
have generation dependent-masses. Thus for example, the left-
handed up squark can have a di�erent mass from the left-handed
charm or top squarks. An arbitrary �avor structure leads to �avor
changing processes which, especially when the �rst and second
generations are involved, are stringently constrained. However,
the constrained quantities involve the products of the mass split-
tings and the �avor mixings, so models with some degree of mass
degeneracy and some alignment of fermion and sfermion mass
matrices are allowed. These would a�ect both the production of
sfermions and their decay.

The next to lightest superpartner plays a special role in determining the
LHC signatures of SUSY. Both the mass spectrum and its interactions are
relevant here.
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• The next to lightest superpartner lifetime: The lightest superpartner
is stable if R-parity is conserved. In the presence of R-parity violat-
ing couplings, the lightest superpartner can decay to SM particles, but
its lifetime may be long because the sizes of these couplings are con-
strained. Finally, the lightest superpartner may have only very weak
couplings to the SM, as is the case of the gravitino. Superpartners
produced at the LHC will decay to the lightest superpartner charged
under the SM, which is called the next to lightest superpartner, which
in turn decays to the lightest superpartner. Clearly, since the latter
is only weakly coupled to the SM, the next to lightest superpartner
can be long lived. Di�erent models span the whole range from prompt
next to lightest superpartner decays to next to lightest superpartners
which are long-lived on detector scales.

• The next to lightest superpartner charge: The next to lightest super-
partner can be either neutral (e.g. a neutralino or sneutrino), charged
(e.g. a slepton), or even colored (e.g. the gluino). Naturally, the pre-
cise identity of the next to lightest superpartner plays a key role in
determining the signatures of SUSY at the LHC. The signatures of a
spectrum with a pure bino are very di�erent from the signatures of a
spectrum with a pure Higgsino, even though both are neutral. If the
next to lightest superpartner is neutral and long lived, superpartner
production is accompanied by missing energy. If it is charged and long
lived, it behaves like a heavy muon, and dE/dx and time-of-�ight mea-
surements must be used to distinguish it from a muon. If it is colored
and long lived, it will hadronize in the detector, and subsequently ei-
ther stop in the detector or traverse the entire detector. If it decays
inside the detector, its charge and lifetime determine the speci�c sig-
nature, ranging from a disappearing track to a displaced vertex, with
or without missing energy.

Thus, SUSY has motivated a wide variety of ingenious approaches for search-
ing for new physics. Whether SUSY is there or not, this net of searches will
hopefully lead to new discoveries!

Exercise 34.1: What is SUSY and what it is useful for?

Exercise 34.2: How SUSY can solve the naturalness and hierarchy prob-
lems?

Exercise 34.3: Explain what is a graded algebra?
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Main Concepts

So far there is no experimental evidence for SUSY and may thus be somewhat
surprising the amount of e�ort that has been invested in SUSY, in both
theory and experiment. In this respect, SUSY is not di�erent from any
other "new physics" scenario, since there is no experimental evidence for any
underlying theory of EW symmetry breaking, which would give rise to the
(fundamental scalar) Higgs mechanism as an e�ective description. However,
there is of course experimental evidence for physics beyond the SM: dark
matter, baryon asymmetry, neutrino masses, etc.

SUSY is popular because it is a very beautiful idea and it is conceptually
di�erent from anything we know in Nature. It is a symmetry that relates
particles of di�erent spins � bosons and fermions. In fact, we are now in a
very special era from the point of view of spin, we have a spin-0 fundamental
particle, Higgs boson. It would be satisfying to have some uni�ed under-
standing of the spins we observe. SUSY would be a step in this direction,
given the SM fermions, it predicts spin-0 particles.

Beyond this purely theoretical motivation, the fact that the Higgs is a scalar
poses a more concrete (yet purely theoretical) puzzle. Scalar �elds (unlike
vector bosons or fermions) have quadratic divergences. This leads to the
�ne-tuning problem and SUSY removes these divergences. We will see that
in some sense SUSY makes a scalar behave like a fermion.

SUSY is not a speci�c model, there is a wide variety of SUSY extensions of
the SM. These involve di�erent superpartner spectra, and therefore di�erent

555
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experimental signatures. In thinking about these, it was developed a whole
toolbox for collider searches, including di�erent triggers and analyses. In
particular, SUSY supplies many concrete examples with new scalars (same
charges as SM fermions), new fermions (same charges as SM gauge bosons),
potentially leading to missing energy, displaced vertices, long lived charged
particles, or disappearing tracks, to name just some of the possible signa-
tures. For discovery, spin is a secondary consideration. So even if we are
misguided in thinking about SUSY, and Nature is not supersymmetric, the
work invested in SUSY searches may help us discover something else.

We will try to de-mystify SUSY and understand the following questions
about it:

• In what sense is it a space-time symmetry (extending translations,
rotations and boosts)?

• Why does it remove UV divergences (thus solving the �ne-tuning, or
Naturalness problem)?

• Why do we care about it even though it is clearly broken?

• Why is the gravitino relevant for LHC experiments?

35.1 Spacetime Symmetry

The symmetry we are most familiar with is Poincaré symmetry. As we know
it contains:

• Translations: xµ → xµ + aµ (generators: Pµ);

• Lorentz transformations: xµ → xµ+wµνxν , where wµν is antisymmetric
(generators: Jµν).

Throughout we will only consider global, in�nitesimal transformations, so aµ

and wµν are small, coordinate-independent numbers. These transformations
contain rotations. For a rotation around the axis xk with angle θk we have

wij = ϵijkθk . (35.1)
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For example, for rotations around z:

t→ t , x→ x− θy , y → y + θx , z → z . (35.2)

The Poincaré transformations also contain boosts. For a boost along the
axis xk with the speed βk:

− w0k = wk0 = βk . (35.3)

Thus, for a boost along z we have,

t→ t+ βz , x→ x , y → y , z → z + βt . (35.4)

The Poincaré algebra is:

[Pµ, P ν ] = 0 , [Pµ, Jρσ] = 0 ,

[Jµν , Jρσ] = i (gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) . (35.5)

Here Pµ are the momenta � the generators of translations, Jµν contain the
angular momenta, which generate rotations (when µ, ν = 1, 2, 3) and the
generators of boosts (when µ = 0 and ν = 1, 2, 3).

Let us recall where all this transformations is coming from. One can "dis-
cover" all the above in a simple �eld theory, namely a �eld theory of a single
free complex scalar �eld. The Lagrangian is,

L = ∂µϕ∗ ∂µϕ−m2 |ϕ|2 . (35.6)

What is a symmetry? It is a transformation of the �elds which leaves the
equations of motion invariant. The equations of motion follow from the
action, so this tells us that the action is invariant under the symmetry trans-
formation. Since the action is the integral of the Lagrangian, it follows that
the Lagrangian can change by a total derivative,

L → L+ α∂µJ µ , (35.7)

where α is the (small) parameter of the transformation.

What is the symmetry of our toy theory? First, there is a U(1) symmetry:

ϕ(x)→ eiαϕ(x) . (35.8)
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Under this transformation, L is invariant. This is an example of an internal
symmetry, that is, a symmetry which is not a space-time symmetry (it does
not do anything to the coordinates). But our toy theory has also spacetime
symmetries: Translations,

xµ → xµ + aµ ,

ϕ(x)→ ϕ(x− a) = ϕ(x)− aµ∂µϕ(x) , (35.9)

or

δaϕ(x) = aµ∂µϕ(x) , (35.10)

and Lorentz transformations,

xµ → xµ + wµνxν ,

ϕ(xµ) → ϕ(xµ − wµνxν) , (35.11)

giving

δwϕ(x) = wµνxµ∂νϕ(x) =
1

2
wµν(xµ∂ν − xν∂µ)ϕ(x) . (35.12)

The Lagrangian only changes by a total derivative under these, so the action
is invariant.

Now let us recall how the algebra arises. Consider performing two transla-
tions. First we do a translation with xµ → xµ+aµ. Then we do a translation
with xµ → xµ+bµ. Alternatively, we could �rst perform the translation with
bµ and then the one with aµ. Obviously, this should not make any di�er-
ence. Mathematically, this translates to the fact that the commutator of two
translations vanishes. Indeed,

[δa, δb]ϕ ≡ δa(δbϕ)− δb(δaϕ) = 0 . (35.13)

However, with rotations and boosts, the order does matter. Consider the
commutator of two Lorentz transformations with parameters wµν and λρσ:

[δwµν , δλρσ ]ϕ = iwµνλρσ · i [gνρ(xµ∂σ − xµ∂σ) + permutations] . (35.14)

So we derived the algebra of spacetime transformations (the Poincaré alge-
bra) in this toy example. Now let us do the same in a SUSY theory.
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35.2 A Simple SUSY Model

Our example will be a free theory with one massive (Dirac) fermion of mass
m, which we will denote by ψ(x), and two complex scalars of the same mass
m, which we will denote by ϕ+(x) and ϕ−(x). The Lagrangian is,

L = ∂µϕ∗+ ∂µϕ+−m2 |ϕ+|2+∂µϕ∗− ∂µϕ−−m2 |ϕ−|2+ ψ̄(i/∂−m)ψ , (35.15)

where /∂ = γν∂ν . The labels + and − here are just names, we will see the
reason for this choice soon. This is not the most minimal SUSY �eld theory
� 'half of it' is a 2-component (Weyl) fermion plus one complex scalar. But
Dirac spinors are more familiar, so we start with this example.

Just as for the example in the previous section, this theory has spacetime
symmetry, including translations, rotations and boosts. The only di�erence
is that ψ(x) itself is a spinor, so it transforms nontrivially,

ψ(x)→ ψ′(x′) . (35.16)

Actually, the left-handed (L) and right-handed (R) parts of the spinor trans-
form di�erently under Lorentz transformations. Write(

ψL
ψR

)
, (35.17)

where ψL and ψR are 2-component spinors. Then under Lorentz transfor-
mations (rotations by θi and busts by βi),

ψL → ψ′
L =

(
1− iθiσ

i

2
− βiσ

i

2

)
ψL ,

ψR → ψ′
R =

(
1− iθiσ

i

2
+ βi

σi

2

)
ψR , (35.18)

where σi are Pauli matrices. So it will be useful to write everything in terms
of 2-component spinors.

Recall that we can write any right-handed spinor in terms of a left-handed
one:

ψR = −εχ∗
L , (35.19)

where

ε ≡ −iσ2 =
(
0 −1
1 0

)
. (35.20)
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We can then write our Dirac spinor in terms of two left-handed spinors ψ+

and ψ−:
ψL = ψ+ , ψR = −εψ∗

− , (35.21)

so that,

ψ =

(
ψ+

−εψ∗
−

)
. (35.22)

Let us write the Lagrangian in terms of these 2-component spinors,

L = ∂µϕ∗+ ∂µϕ+ + ψ†
+iσ̄

µ∂µψ+ + ∂µϕ∗− ∂µϕ− + ψ†
−iσ̄

µ∂µψ− −
−m2 |ϕ−|2 −m2 |ϕ+|2 −m(ψT+εψ− + hc) . (35.23)

All we have done so far is to re-discover spacetime symmetry in this simple
�eld theory. Now comes the big question: can this spacetime symmetry be
extended? The answer is yes: there is more symmetry hiding in our theory!

Take a constant (anti-commuting) 2-component left-spinor ξ and consider
the following transformations,

δξϕ+ =
√
2 ξT εψ+ ,

δξψ+ =
√
2 iσµεξ∗∂µϕ+ −mξϕ∗− , (35.24)

and similarly for + → −. We can see that this symmetry transformations
take a boson into a fermion and vice versa � this is SUSY.

As an (important) aside, we note that the symmetry separately relates ϕ−
to ψ− and ϕ+ to ψ+. Thus, if m = 0, the two halves of the theory decouple
and each one is symmetric separately. Therefore, as mentioned above, this
theory is not the most minimal SUSY theory, but half of it. This is very
handy to implement SUSY in the SM, because the SM is a chiral theory.

Is the symmetry we found indeed an extension of Poincaré? It is surely a
spacetime symmetry since it takes a fermion into a boson (the transformation
parameters carry spinor indices). Furthermore, let us consider the algebra.
Take the commutator of two new transformations with parameters ξ and η:

[δξ, δη]ϕL = aµ∂µϕL , (35.25)

where
aµ = 2i

(
ξ†σ̄µη − η†σ̄µξ

)
. (35.26)
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This is a translation! We see that the commutator of two new transforma-
tions gives a translation. So indeed, the new symmetry is an extension of
the 'usual' spacetime symmetry.

There are a couple of features of this simple example that are worth stressing
because they hold quite generally:

• If the bosons and fermions had di�erent masses, we would not have
this symmetry. That is, the theory would not be supersymmetric;

• On-shell we have 2 + 2 = 4 fermions and 2 + 2 = 4 bosons, i.e. equal
numbers of fermionic and bosonic degrees of freedom (o� shell, the
bosons are the same, but the fermions have 2× 4).

Let us summarize: our simple theory is supersymmetric (we have an exten-
sion of spacetime symmetry that involves anti-commuting generators) and
the SUSY transformations relate bosons and fermions.

35.3 The Vacuum Energy

In general, global symmetries lead to Noether currents. For each global
symmetry there is a current jµ (with ∂µjµ = 0), so that there is a conserved
charge:

Q =

∫
d3x j0(x) . (Q̇ = 0) (35.27)

We know that for translations in time the conserved charge is the Hamilto-
nian H.

Thus, what we found above means that the anti-commutator of two SUSY
transformations (35.25) gives the Hamiltonian. Schematically,

{GSUSY , GSUSY } ∝ H , (35.28)

where GSUSY stands for the generator of a SUSY transformation. Now
consider the vacuum expectation value (VEV) of this relation,

⟨0| {GSUSY , GSUSY } |0⟩ ∝ ⟨0|H|0⟩ . (35.29)
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If SUSY is unbroken, the ground state is supersymmetric and therefore is
annihilated by the SUSY generator,

GSUSY |0⟩ = 0 . (35.30)

Using (35.29) we �nd
⟨0|H|0⟩ = 0 , (35.31)

i.e. in a SUSY theory the ground state energy is zero!

As we have already mentioned, one of the chief motivations for SUSY is
the �ne-tuning problem, that is, the fact that SUSY removes the quadratic
divergence in the Higgs mass. Here you can already see the power of SUSY
in removing UV divergences (the vacuum energy usually diverges).

This reminds the situation with an in�nite constant in the energy of the har-
monic oscillator, which in quantum mechanics is just set to zero by choosing
the zero of the energy.

Now we see that SUSY completely removes this divergence: in a SUSY
theory, the ground state energy is zero. This gives us hope that SUSY can
help with other UV divergences.

The next worst divergence you can have in QFT is a quadratic divergence,
which is show up in the mass-squared of scalar �elds,

δm2 ∝ Λ2 , (35.32)

where Λ is the cuto�. This is why we are worried about �ne tuning in the
Higgs mass.

You could ask the question: why nobody ever worries about the electron mass,
it too is much smaller than the Planck scale. The reason this is not a problem,
is that fermion masses have no quadratic divergences, only logarithmic ones.
This is a very important result so we will show it in three ways.

1. Consider a fermion Lagrangian with a mass term m0,

L = ψ̄(i/∂ −m0)ψ = ψ̄(i/∂)ψ −m0(ψ
†
LψR + ψ†

RψL) . (35.33)

Note that the mass term is the only term that couples ψL and ψR. So
if m0 = 0, then the �elds ψL and ψR don't talk to each other and a
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mass term (L− R coupling) is never generated. Therefore, even if we
include quantum corrections, we have

δm ∝ m0 , (35.34)

where m is the full, physical mass, including quantum corrections. We
see that with m0 = 0 we have two di�erent species: ψL, call it, say, a
'blue' fermion, and ψR, a 'red' fermion, and they do not interact at all.

2. Consider m0 ̸= 0. Take a left-fermion (spin along p⃗). This is our
'blue' fermion. If our speed is greater than the fermion's momentum,
p⃗→ −p⃗, but the spin stays the same. Thus the fermion helicity (which
is the projection of the spin along the direction of motion) changes and
'left' becomes 'right', i.e. the 'blue' fermion turns into a 'red' fermion
(we know that helicity is not a good quantum number for a massive
fermion). But if m0 = 0, the 'blue' fermion is massless and it travels at
the speed of light � we can never run fast enough. The 'blue' fermion
does not change into a 'red' fermion. Thus, left and right are distinct
in this case, and the 'blue' fermion and the 'red' fermion are decoupled.

We thus learn that any correction to the bare mass m0 must be pro-
portional to m0,

δm ≡ m−m0 ∝ m0 . (35.35)

How can the UV cuto� Λ enter? On dimensional grounds,

δm = 0 · Λ +m0 log
m0

Λ
∝ m0 log

m0

Λ
. (35.36)

Indeed, there is no quadratic divergence in the fermion mass. The
worst divergence that can appear is a logarithmic divergence. This is
why no one ever worries about �ne-tuning in the electron mass.

3. Again, the question we are asking is: why is there no quadratic diver-
gence in the fermion mass? We will now see this using a global sym-
metry � the chiral symmetry. Let's consider the fermion Lagrangian
again,

L = iψ̄/∂ψ −m0(ψ
†
LψR + ψ†

RψL) . (35.37)

If m0 = 0, we have two independent U(1) symmetries, U(1)L×U(1)R.
This symmetry forbids the mass term. We again conclude (35.36).

We saw that SUSY implies that the boson mass equals the fermion mass. We
also saw that chiral symmetry implies that there is no quadratic divergence
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in the fermion mass. Putting these together we conclude: in a SUSY theory
there is no quadratic divergence in the boson mass. This is how SUSY solves
the �ne-tuning problem.

But there is more that we can learn just based on dimensional analysis. We
know there is no SUSY in Nature. We know for example that there is no
spin-0 particle whose mass equals the electron mass. So why should we care
about SUSY? The reason is that SUSY is so powerful that even when it is
broken by mass terms, the quadratic divergence does not reappear! All we
need in order to see this is dimensional analysis.

Suppose we take a SUSY theory and change the scalar mass (squared, since
for a scalar �eld the physical parameter is the mass-squared that appears in
Lagrangians),

m0
2
scalar = m0

2
fermion + m̃2 , (35.38)

where m̃2 is some constant. Will there be a quadratic divergence in the
scalar mass?

δm2
scalar ∼ Λ2 +m0

2
scalar log

m0
2
scalar

Λ2
? (35.39)

No. For m̃2 = 0, SUSY is restored, and therefore there should not be a
quadratic divergence. So the Λ2 term (which is the quadratic divergence)
must be proportional to m̃2. But there is nothing we can write in pertur-
bation theory that would have the correct dimension. We conclude that, if
SUSY is broken by

m0
2
scalar ̸= m0

2
fermion , (35.40)

the scalar mass-squared has only log divergences. In other words, the SUSY
breaking (given by the fact that the scalar mass is di�erent from the fermion
mass) does not spoil the cancellation of the quadratic divergence.

This type of breaking is called soft SUSY breaking. This is what we have in
the Minimal Supersymmetric Standard Model (MSSM).

Parenthetically, we note that one can also have hard SUSY breaking. Take
a SUSY theory, and change some dimensionless number, e.g. the coupling
of the boson compared to the coupling of the fermion. This will reintroduce
the quadratic divergences.

We derived all these results based on dimensional analysis. Now let us see
them concretely. To get something non-trivial we must add interactions. Let
us go back to the simple toy model (35.23). Our two fermions look like the
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two pieces of an electron or a quark. For example, you can think of ψ− as
the SM SU(2)-doublet quark, and of the ψ+ as the SM SU(2)-singlet quark.
To get interactions we add a complex scalar h with the 'Yukawa' interaction:

δL = −y hψT+εψ− + hc , (35.41)

where y is a coupling. To make a SUSY theory we also need a left fermion h̃.
SUSY transformations of h and h̃ are just like ϕ+ and ψ+. If h and h̃ remind
you of the Higgs and Higgsino that is great, but here they have nothing to
do with generating mass, we are just interested in the interactions. Finally,
just for simplicity, let us set m = 0.

It is easy to see that if we just add this Yukawa interaction, the Lagrangian
is not invariant under SUSY. So we must add more interactions,

L = ∂µϕ∗+ ∂µϕ+ + ∂µϕ∗− ∂µϕ− + ψ†
+iσ̄

µ∂µψ+ + ψ†
−iσ̄

µ∂µψ− +

+ ∂µh∗ ∂µh+ h̃†iσ̄µ∂µh̃+ Lint , (35.42)

with

Lint = − y
(
hψT+εψ− + ϕ+h̃

T εψ− + ϕ−h̃
T εψ+ + hc

)
−

− |y|2
(
|ϕ+|2 |ϕ−|2 + |h|2 |ϕ−|2 + |h|2 |ϕ+|2

)
. (35.43)

Now we have an interacting SUSY theory and are ready to consider the UV
divergence in scalars mass. Consider δm2

h. It gets contributions from:

(a) a ϕ+ loop,

(b) a ϕ− loop,

(c) a fermion loop,



566 CHAPTER 35. MAIN CONCEPTS

To calculate the fermion loop, let us convert to Dirac fermion language,

y hψT+εψ− + hc = yhψ̄PLψ + hc . (35.44)

So the fermion loop is

− |y|2
∫

d4p

(2π)4
trPL

i

/p
PR

i

/p
= 2|y|2

∫
d4p

(2π)4
1

p2
. (35.45)

In the MSSM, the analog of this is the top contribution to the Higgs mass.

The boson loop is,

2× i|y|2
∫

d4p

(2π)4
i

p2
= −2|y|2

∫
d4p

(2π)4
1

p2
. (35.46)

In the MSSM, the analog of this is the stop contribution to the Higgs mass.

Before we argued that the cancellation is not spoiled by soft SUSY breaking.
Let us see this in this example. Suppose we change the ϕ± masses-squared
to m̃2

±. Indeed there is no quadratic divergence,

δm2
h ∝ |y|2

∫
d4p

(2π)4

[
2

p2
− 1

p2 − m̃2
+

− 1

p2 − m̃2
−

]
=

= |y|2 m̃2
1

∫
d4p

(2π)4
1

p2(p2 − m̃2
+)

+ (m̃2
+ → m̃2

−) . (35.47)

We see that when SUSY is softly broken, the scalar mass squared is log
divergent, and the divergence is proportional to the SUSY breaking m̃2. In
contrast to hard SUSY breaking: if we change one of the 4-scalar couplings
from |y|2, the quadratic divergence is not cancelled.

We now know a lot of SUSY basics. Let's recap and add some language:

• SUSY is an extension of the Poincaré symmetry � it is a spacetime
symmetry ;

• The basic SUSY 'module' we know is a complex scalar plus a 2-
component spinor of the same mass, e.g. (ϕ+, ψ+). These �elds trans-
form into each other under SUSY and form a representation, or a
multiplet of SUSY � the chiral supermultiplet ;

• The number of fermionic and bosonic degrees of freedom is equal to
each other;
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• SUSY dictates not just the �eld content but also the interactions. The
couplings of fermions, bosons of the same supermultiplets are related.
Starting from

a scalar1-fermion2-fermion3 vertex,

SUSY requires

a fermion1-scalar2-fermion3 vertex,

and also

a fermion1-fermion2-scalar3 vertex,

all with same coupling,

as well as four-scalar vertex,

with the same coupling squared.

You see that the structure of supersymmetric theories is very constrained,
and that as a result it is less divergent. This is the real reason theorists like
SUSY, it is easier. In fact, the more SUSY, the easier it gets. There are
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less divergences, more constraints, one can calculate many things, even at
strong coupling. By the time you get to maximal SUSY you have a �nite,
scale invariant theory.

We also know a great deal about SUSY breaking, so let us summarize that
too.

• With unbroken SUSY the vacuum energy is zero. Thus the vacuum
energy is an order parameter for SUSY breaking, and SUSY breaking
always involves a scale Evac;

• With unbroken SUSY we have only log divergences. Even in the pres-
ence of soft SUSY breaking (i.e. SUSY is broken by dimensionful
quantities only), there are only log divergences;

• In contrast, hard SUSY breaking (i.e. when pure numbers, such as
couplings, break SUSY) reintroduces quadratic divergences, so it is
not that interesting from the point of view of the �ne-tuning problem.

Let us pause and talk about language. This will be useful when we super-
symmetrize the SM. Our simple example of (35.23) has two chiral supermul-
tiplets, each contains one complex scalar and one left-handed fermion,

(ϕ+ ψ+) , (ϕ− ψ−) . (35.48)

In the SM each fermion (e.g. the top quark) comes from a fusion of two
Weyl fermions: one originating from an SU(2) doublet and the other from
an SU(2) singlet. These are the analogs of ψ+ and ψ−. When we supersym-
metrize the SM we must add two scalars (the stops, or top squarks) these
are the analogs of ϕ+ and ϕ−. One often refers to the doublet and singlet
fermions as 'left-handed' and 'right-handed'.

This is bad language (remember we can always write a left handed spinor
using a right-handed spinor). If we used this bad language anyway, we could
call our fermions ψL and ψR, and the accompanying scalars: ϕL and ϕR.
This is why you hear people talk about the stop-left and stop-right, or left
squarks and right squarks. Of course the stops are scalars, and have no
chirality, but the names just refer to their fermionic partners.
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35.4 SUSY Breaking

If SUSY is realized in Nature it is realized as a broken symmetry. We already
saw that even explicit (soft) SUSY breaking can be powerful. But the picture
we had is not very satisfying: we don't want to put in the parameter m̃2 by
hand. We want it to be generated by the theory itself, i.e. we want the
theory to break SUSY spontaneously.

We also saw that with unbroken SUSY the vacuum energy vanishes, and
the potential V ≥ 0. Thus SUSY is unbroken if there are solution(s) of the
equations of motions with V = 0. Recall that this followed from

⟨0| {GSUSY , GSUSY } |0⟩ ∝ ⟨0|H|0⟩ , (35.49)

and with unbroken SUSY,

GSUSY |0⟩ = 0 . (35.50)

However, if SUSY is spontaneously broken:

GSUSY |0⟩ ̸= 0 , (35.51)

and the ground state has nonzero (positive) energy!

In the SM, the only scalar is the Higgs, so the only potential is the Higgs
potential. But in SUSY theories, fermions are always accompanied by scalars
and any fermion interaction results in a scalar potential, e.g.

V (ϕ+, ϕ−, h) = |y|2
(
|ϕ+|2 |ϕ−|2 + |h|2 |ϕ−|2 + |h|2 |ϕ+|2

)
. (35.52)

To break SUSY spontaneously all we need is to �nd a SUSY theory with a
potential which is always above zero. So we need a scale. Classically, we
can just put in scale by hand. This brings us to the simplest example of
spontaneous SUSY breaking.

35.4.1 The O'Raifeartaigh Model

The simplest SUSY theory with chiral supermultiplets that breaks SUSY
spontaneously has three chiral supermultiplets,

(ϕ, ψ) , (ϕ1, ψ1) , (ϕ2, ψ2) , (35.53)
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and two mass parameters. We will only write the scalar potential (the kinetic
terms and fermion-fermion-scalar interactions are there too, but there is
nothing instructive in them at this point),

V = |yϕ21 − f |2 +m2|ϕ1|2 + |2ϕ1ϕ+mϕ2|2 . (35.54)

Here m is a mass, f has dimension mass2, and y is a dimensionless coupling.
It is easy to see that there is no supersymmetric minimum. The �rst two
terms cannot vanish simultaneously. SUSY is broken! Note that we need
f ̸= 0 for that (we must push some �eld away from the origin) as well as
m ̸= 0.

Finding the ground state requires more e�ort. Let us assume

f <
m2

2y
. (35.55)

The ground state is at
ϕ1 = ϕ2 = 0 (35.56)

with ϕ arbitrary (ϕ is a �at direction of the potential),

V0 = |f |2 . (35.57)

Expanding around the VEVs, one �nds the following spectrum: one massless
Weyl fermion, one Dirac fermion of mass m, and several real bosons of which
two are massless, two have mass m, one has mass

√
m2 + 2yf , and one√

m2 − 2yf . Indeed, for f = 0 SUSY is restored, and the fermions and
bosons become degenerate.

Why are there massless bosons in the spectrum? Recall that ϕ is arbitrary,
it is a �at direction (two real degrees of freedoms). Why is there a massless
Weyl fermion? Normally a global SSB implies the existence of a massless
Goldstone boson (or pion). Here we have spontaneously broken SUSY, which
is a 'fermionic' symmetry, so we have a massless Goldstone fermion. Since
SUSY is broken spontaneously, the SUSY generator does not annihilate the
vacuum,

GSUSY |0⟩ ̸= 0 . (35.58)

Since this generator carries a spinor index, this state is a fermion state, which
is precisely the Golsdtone fermion (sometimes called a Goldstino).

Recall that we needed a scale, or a dimensionful parameter in order to break
SUSY. Above we simply put it in by hand. But suppose we started with
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no scale in the Lagrangian. Then classically SUSY would remain unbroken.
This suggest that, since no scale can be generated perturbatively, if SUSY is
unbroken at the tree-level, it remains unbroken to all orders in perturbation
theory.

This is actually true, and it is a very powerful result. It is a consequence of
the constrained structure of SUSY. So if SUSY is unbroken at tree level, it
can only be broken by non-perturbative e�ects, with a scale that is generated
dynamically, just like the QCD scale,

Λ =MUV e
−8π2/bg2 , (35.59)

which is exponentially suppressed compared to the cuto� scale.

This type of SUSY breaking is called dynamical SUSY breaking. We will
come back to this when we discuss the SM. It leads to a beautiful scenario:
the SUSY breaking scale can naturally be 16 or so orders of magnitude below
the Planck scale.

35.5 SUSY Lagrangians

Suppose we have the chiral supermultiplet:

(ϕ, ψ) , (35.60)

with ϕ a complex scalar, ψ a 2-component fermion. In the real world we also
have spin-1 gauge bosons, Aaµ, where a denotes the gauge group index. So
in order to supersymmetrize the SM we also need vector supermultiplets,

(Aaµ, λ
a) , (35.61)

namely, a gauge �eld plus a 'gaugino'. On-shell Aaµ has two degrees of free-
doms (two physical transverse polarizations), so λa is a 2-component spinor.
Aaµ is real, so if we want to write λa as a 4-component spinor it must be
a Majorana spinor (as opposed to the Dirac fermion which consists of two
distinct 2-component fermions), (

λ
−ελ∗

)
. (35.62)
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Under a SUSY transformation, Aaµ and λa transform into each other, and
we can construct SUSY Lagrangians for them as we did for the chiral super-
multiplet.

We now have the gauge module (gauge �eld + gaugino) and the chiral module
(scalar + fermion). What are the Lagrangians we can write down? With a
theory of such a constrained structure, you expect to have many limitations.
Indeed, all the theories we can write down are encoded by two functions, the
Káhler potential (K), which gives the kinetic and gauge interactions (as we
will see, there is no freedom there, so we won't even write it down), and the
superpotential (W ), which gives the non-gauge (Yukawa-like) interactions of
chiral �elds.

Let us start with the gauge part: after all, gauge interactions are almost all
we measure.

35.5.1 A SUSY Gauge Theory

We want a gauge-invariant SUSY Lagrangian for

(Aaµ, λ
a) . (35.63)

Gauge symmetry and SUSY determine this Lagrangian completely up to
higher-dimension terms. It is

Lgauge = −
1

4
F aµνF aµν + λa†iσ̄ · Dλa . (35.64)

We also want to couple 'matter �elds' to the gauge �eld. So we add our chiral
modules (ϕi, ψi). There is no freedom here too, because of gauge symmetry
plus SUSY,

L = Lgauge +Dµϕ∗i Dµϕi + ψ†
i iσ̄

µDµψi −

−
√
2g (ϕ∗iλ

aTT aεψi − ψ†
i ελ

a∗T aϕi)−
1

2
DaDa , (35.65)

where
Da = −gϕ†iT

aϕi . (35.66)

As in other chiral theories, SUSY dictates 'new' couplings. In non-SUSY
theories we have a coupling gauge �eld-fermion-fermion. Now we also have
gaugino-fermion-scalar and of course there is also gauge �eld-scalar-scalar.
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In addition, there is a scalar potential with a 4-scalar interaction,

V =
1

2
DaDa , (35.67)

with
Da = −gϕ†iT

aϕi . (35.68)

This is a quartic scalar potential, but the quartic coupling is not arbitrary,
it is the gauge coupling. This will be very important when we discuss the
Higgs!

Note what happened here. Starting from a non-SUSY gauge theory with a
gauge �eld Aaµ and a fermion ψ, and an interaction gAµψψ, when we super-
symmetrize the theory, the �eld content is gauge �eld + gaugino, fermion
+ scalar. The interactions are Aµϕϕ (nothing new, ϕ is charged), but also,
λϕψ (gaugino-scalar-fermion) all with same coupling g. In addition there is
a 4-scalar interaction, with coupling g2.

We had no freedom in the process. The �eld content and couplings of the
SUSY theory were dictated by:

• the original non-SUSY theory we started from;

• the gauge symmetry;

• SUSY.

35.5.2 Yukawa-like Interactions

We also want Yukawa-like interactions of just the chiral scalars and fermions
(ϕi, ψi). There is a simple recipe for writing down the most general supersym-
metric interaction Lagrangian. Choose an analytic function W (ϕ1, . . . , ϕn)
� the 'superpotential'. Analytic means that W is not a function of the con-
jugate �elds (no daggers!). All the allowed interactions are given by

Lint = −
1

2

∂2W

∂ϕi∂ϕj
ψTi εψj + hc−

∑
i

|Fi|2 , (35.69)

where

F ∗
i = −∂W

∂ϕi
. (35.70)



574 CHAPTER 35. MAIN CONCEPTS

This Lagrangian is guaranteed to be supersymmetric!

Let us write our previous examples in this language. Start with the theory
containing h, ϕ+, ϕ− and take

W = y hϕ+ ϕ− . (35.71)

So

F ∗
h = −∂W

∂h
= yϕ+ϕ− ,

∂2W

∂h∂ϕ+
= yϕ− , (35.72)

and similarly for the remaining �elds. We indeed recover

Lint = − y
(
hψT+εψ− + ϕ+ h̃

T εψ− + ϕ− h̃
T εψ+ + hc

)
−

− |y|2
(
|ϕ+|2 |ϕ−|2 + |h|2 |ϕ−|2 + |h|2 |ϕ+|2

)
. (35.73)

35.5.3 R-symmetry

We now know how to write the most general supersymmetric Lagrangian
(with minimal SUSY). Note that the theory has a global U(1) symmetry.
Under this U(1), the gauge boson has charge 0, the gaugino has charge +1,
the chiral fermion has charge 0 and the scalar −1.

Alternatively we could take the fermion to have charge −1 and the scalar
with charge 0. This is called a U(1)R symmetry. It does not commute with
SUSY: members of the same supermultiplet have di�erent charges.

This symmetry (or its remanent) is crucial in LHC supersymmetry searches!

35.5.4 F -terms and D-terms

In writing SUSY Lagrangians, we are de�ning so call F and D terms. For
each vector multiplet (λa, Aaµ) we have

Da = −gϕ†iT
aϕi (dim− 2) (35.74)

(to which all the charged scalars contribute).
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For each chiral multiplet (ϕi, ψi) we have

F ∗
i = −∂W

∂ϕi
, (dim− 2) (35.75)

and the scalar potential is

V = F ∗
i Fi +

1

2
DaDa . (35.76)

With this language, we can revisit SUSY breaking. First we immediately see

V ≥ 0 . (35.77)

Second, SUSY is broken if some Fi ̸= or Da ̸= 0. So the Fi's and Da's are
order parameters for SUSY breaking.

35.5.5 Local SUSY and Supergravity

So far we thought about SUSY as a global symmetry of Lagrangians. Trans-
lations and Lorentz transformations are however local symmetries. The
'gauge theory' of local spacetime symmetry is gravity. We therefore have
no choice: SUSY is a local symmetry too.

The theory of local (spacetime and) SUSY is called Supergravity. The spin-
2 graviton must have a supersymmetric partner, the gravitino, which has
spin-3/2. Since SUSY is broken the gravitino should get mass.

If you are only interested in collider experiments, should you care about this?
Normally, the e�ects of gravity are suppressed by the Planck scale and we
can forget about them when discussing high energy experiments. However,
the gravitino mass is related to a broken local symmetry (SUSY), and, just
as in the usual Higgs mechanism of EW symmetry breaking, it gets mass by
'eating' the Goldstone fermion.

Thus, a piece of the gravitino (the longitudinal piece), is some 'ordinary'
�eld (which participates in SUSY breaking), and the gravitino couplings to
matter are not entirely negligible.

Furthermore, they are dictated by the SUSY breaking. If SUSY is broken
by some non-zero F term, the gravitino mass is

m3/2 ∼
F

MPl
. (35.78)
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Exercise 35.1: Write out commutation relations of the N = 1 SUSY ex-
tension of the Poincaré algebra.

Exercise 35.2: Find commutation relations of the Pauli-Ljubanski vector
with the generators of the N = 1 SUSY Poincaré algebra and show that the
second Casimir of the ordinary Poincaré group indeed commutes with the
Poincaré generators but not with its SUSY extension.

Exercise 35.3: Derive the transformation rules of a general scalar super�eld
with single spinor variable under super Poincaré.

Exercise 35.4: Find the combination of SUSY covariant derivatives and its
conjugates which leads to the Klein-Gordon operator.

Exercise 35.5: Prove (35.19).

Exercise 35.6: Derive (35.23). Show also that ψT+εψ− = ψT−εψ+, where ψ±
are any 2-component spinors.

Exercise 35.7: Show that the massless part of the Lagrangian is invariant
under (35.24) and that the rest of the Lagrangian is invariant too if the
masses of the fermion and scalars are the same.

Exercise 35.8: Check (35.25).

Exercise 35.9: Check that the Lagrangian (35.64) is supersymmetric.

Exercise 35.10: Check that the massive theory with ϕ± is obtained from
W = mϕ+ϕ−.

Exercise 35.11: Check that the O`Raifeartaigh model is obtained from
W = ϕ (yϕ21 − f) +mϕ1ϕ2.



Chapter 36

The SUSY and SM

Now that we understand what SUSY is, we can supersymmetrize the SM.
Let us review �rst the motivations for doing that.

36.1 Motivation

Before 2012 all fundamental particles we knew had spin 1, or spin 1/2. Now
he have the Higgs with the spin 0, this is the source of the �ne-tuning, or
naturalness problem. Since the Higgs is spin-0, its mass is quadratically
divergent

δm2 ∝ Λ2
UV , (36.1)

unlike fermions, whose masses are protected by the chiral symmetry as we
saw, or gauge bosons, whose masses are protected by gauge symmetry. In the
case of the Higgs mass, there are one loop corrections that are quadratically
divergent. The dominant one is from the top quark.

577
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This is not a practical problem. We can calculate any physical observable by
including a counter term that cancels this divergent contribution. Rather,
the problem is of a theoretical nature. We believe that ΛUV is a concrete
physical scale, such as the mass scale of new �elds, or the scale of new strong
interactions. Then at the low-scale µ,

m2(µ) = m2(ΛUV ) + cΛ2
UV , (36.2)

where m2(ΛUV ) determined by the full UV theory, and the constant c deter-
mined by the SM. We know the left hand side of (36.2): m2 ∼ 100 GeV2. So
if ΛUV is the Planck scale ∼ 1018 GeV we need m2(ΛUV ) ∼ 1036 GeV2 and
the two terms on the right hand side must be tuned to 32 orders of magni-
tude. Such dramatic tunings do not seem natural. In general, for a cuto�
scale ΛUV , the parameters of the two theories must be tuned to TeV2/Λ2

UV .

As we saw above, with SUSY (even softly broken), scalar masses-squared
have only log divergences:

m2(µ) = m2(ΛUV )

[
1 + c log

(
m2(ΛUV )

Λ2
UV

)]
, (36.3)

just as for fermions! The reason is that SUSY ties the scalar mass to the
fermion mass.

The way this happens is that the quadratic divergence from fermion loops
is cancelled by the quadratic divergence from scalar loops. The cuto� scale
then only enters in the log, and m2(ΛUV ) can be order (100 GeV)2. This is
the main motivation for SUSY extensions of the SM.

There are further motivations too. SUSY extensions of the SM often supply
dark matter candidates, new sources of CP violation, etc. Finally, extending
space time symmetry is theoretically appealing.

36.2 The Structure of the Model

So let us supersymmetrize the SM. Each gauge �eld of the SM will be now
part of a vector supermultiplet. For the gluon we have,

Gaµ → (g̃a, Gaµ) +Da , (36.4)
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where the physical �elds are the gluon and the spin-1/2 gluino. Similarly for
the W boson,

W I
µ → (w̃I ,W I

µ) +DI , (36.5)

where the physical �elds are the W and the wino, and for B boson,

Bµ → (b̃, Bµ) +DY , (36.6)

where the physical �elds are the B and the bino.

Each fermion is now part of a chiral supermultiplet of the form:

(ϕ, ψ) + F . (36.7)

Taking all the SM fermions q, uc, dc, l, ec to be left-fermions, we have:

q → (q̃, q) + Fq , all transforming as (3, 2)1/6 , (36.8)

with the physical �elds being the (doublet) quark q and a spin-0 squark q̃.

Similarly, for singlets,

uc → (ũc, uc) + Fu , all transforming as (3̄, 1)−2/3 , (36.9)

with the physical �elds being the (singlet) up-quark uc + up squark ũc,

dc → (d̃c, dc) + Fd , all transforming as (3̄, 1)1/3 , (36.10)

with the physical �elds being the (singlet) down-quark dc + down squark d̃c.

For leptons,

l→ (l̃, l) + Fl , all transforming as (1, 2)−1/2 , (36.11)

with the physical �elds being the (doublet) lepton l + a slepton l̃, and �nally

ec → (ẽc, ec) + Fe , all transforming as (1, 1)1 , (36.12)

with the physical �elds being the (singlet) lepton ec + a slepton ẽc.

Once EW symmetry is broken the quark and lepton doublets split:

q =

(
u
d

)
, q̃ =

(
ũ

d̃

)
, (36.13)
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and

l =

(
ν
l

)
, l̃ =

(
ν̃

l̃

)
. (36.14)

Now let us move on to the interactions, staring with the gauge interactions.
There is nothing we have to do here. As we saw above, these interactions
are completely dictated by SUSY and the gauge symmetry.

In previous chapter we wrote the Lagrangian for a general SUSY gauge
theory in the form (35.65). Applying this to the SM,

ψi = qi, u
c
i , d

c
i , li, e

c
i , ϕi = q̃i, ũ

c
i , d̃

c
i , l̃i, ẽ

c
i . (36.15)

The covariant derivatives now contain the SU(3), SU(2) and U(1) gauge
�elds, λa sums over the SU(3), SU(2) and U(1) gauginos

λa → g̃a , w̃I , b̃ . (36.16)

Also there are D terms for SU(3), SU(2) and U(1),

Da → Da , DI , DY . (36.17)

In addition there is of course the pure gauge Lagrangian, this part we don't
considering now.

The Lagrangian (35.65) contains the scalar potential,

V =
1

2
DaDa +

1

2
DIDI +

1

2
DYDY , (36.18)

where for SU(3):

Da = g3 (q̃
†T aq̃ − ũc†T a∗uc − d̃c†T a∗uc) , (36.19)

recall T3̄ = −T ∗
3 and we will write things in terms of the fundamental gen-

erators. Similarly for the SU(2),

DY = gY
∑
i

Yif̃
†
i f̃i . (36.20)

We see that we get 4-scalar interactions with the quartic couplings equal to
the gauge couplings.
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Again we emphasize that there was no freedom so far, and no new parame-
ters. We also did not put in the Higgs �eld yet, so let us do this now. The
SM Higgs is a complex scalar, so it must be part of a chiral module

H → (H, H̃) + FH , all transforming as (1, 2)−1/2 . (36.21)

We immediately see problems with having a single Higgs scalar, which are
all related:

1. We want the Higgs to get a VEV. However, the Higgs is charged under
SU(2) and U(1), so its VEV gives rise to nonzero D terms:

V ∼ DIDI +D2
Y , (36.22)

where

DI = g2 ⟨H†⟩T I⟨H⟩ , DY = g1
1

2
⟨H⟩†⟨H⟩ , (36.23)

i.e. EW SSB implies SUSY breaking!

You might think this is good, but it is not (for many reasons). For
one, the non-zero D-terms would generate masses for the squarks and
sleptons. Consider DY for example:

DY =
1

2
v2 +

∑
i

Yi|f̃i|2 , (36.24)

where f̃ sums over all squarks, sleptons and Yi is their hypercharge.
Recall the scalar potential V ∼ D2. Therefore some of the squarks will
get negative masses-squared of order v2.

This is a disaster: SU(3) and EW symmetries are broken at v! The
solution is to add a second Higgs scalar, with opposite charges. The
two Higgs scalars can then get equal VEVs with all ⟨D⟩ = 0.

2. A second problem is that H̃ is a Weyl fermion. Then we will have a
massless fermion around � the Higgsino. In the presence of massless
fermions gauge symmetries can become anomalous, that is, the gauge
symmetry can be broken at the loop level. In the SM the fermion
representations and charges are such that there are no anomalies.

Before discussing the Higgs, we only added scalars to the SM (squarks
and sleptons, known collectively as sfermions). These are harmless
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from the point of view of anomalies. We also added gauginos. These
are fermions, but they are adjoint fermions, which don't generate any
anomalies (essentially because the adjoint is a real representation). In
contrast, the Higgsino H̃ is a massless fermion which is a doublet of
SU(2) and charged under U(1)Y . The simplest way to cancel the
anomaly is to add a second Higgsino in the conjugate representation.
So we must add a second Higgs �eld with conjugate quantum numbers.

3. When we consider interactions, we will see other reasons why we must
add another Higgs. We will call the SM Higgs HD and the new Higgs
HU . Thus,

HD → (HD, H̃D) + FHD , all transforming as (1, 2)−1/2 , (36.25)

and we also add,

HU → (HU , H̃U ) + FHU , all transforming as (1, 2)1/2 , (36.26)

and in the limit of unbroken SUSY,

⟨HU ⟩ = ⟨HD⟩ . (36.27)

In the SM we add a quartic potential for the Higgs �eld,

λ(H†H)2 . (36.28)

Here there is quartic potential built in, coming from the D terms. This
potential will not necessarily give mass to the physical Higgs.

We now turn to the Yukawa couplings. In the SM we have Higgs-
fermion-fermion Yukawa couplings. Consider the down-quark Yukawa
�rst,

yDHDq
T εdc (Higgs − quark− quark) , (36.29)

as we saw above, with SUSY this must be accompanied by

yD (q̃H̃T
Dεd

c + d̃cH̃T
Dεq) (squark − Higgsino− quark) , (36.30)

all coming from the superpotential

WD = yDHDqd
c . (36.31)

Similarly for the lepton Yukawa,

Wl = ylHDle
c → Ll = yl(HDl

T εec + l̃H̃T
Dεe

c + ẽcH̃T
Dεl + hc) +

+ (Higgs− lepton− lepton) + (36.32)

+(slepton−Higgsino− lepton) .
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4. What about the up Yukawa? We need,

(Higgs)qT εuc . (36.33)

This coupling must come from a superpotential,

(Higgs)quc . (36.34)

In the SM (Higgs) = H†
D. But the superpotential is holomorphic, no

daggers are allowed. This is the forth reason why we needed a second
Higgs �eld with the conjugate charges,

WU = yUHUqu
c →

LU = yU (HUq
T εuc + q̃H̃T

U εu
c + ũcH̃T

U εq) + hc . (36.35)

You can now see what is going on. In some sense, holomorphy makes a
scalar �eld "behave like a fermion". In a SUSY theory the interactions of
scalar �elds are controlled by the superpotential, which is holomorphic. For
a fermion to get mass you need an left-right coupling. So starting from a left-
fermion you need a right-fermion, or another left-fermion with the opposite
charge(s). For a scalar ϕ to get mass in a non-SUSY theory you don't need
anything else (you can just use ϕ∗ to write a charge neutral mass term). Not
so in a SUSY theory: because you cannot use ϕ∗, you must have another
scalar with the opposite charge(s), just as for fermions.

To summarize, we have two Higgs �elds HU and HD and the SM Yukawa
couplings come from the superpotential:

W = yUHUqu
c + yDHDqd

c + ylHDle
c . (36.36)

Note again that there was no freedom here, and no new parameter.

36.2.1 R-symmetry

Note that our SUSY Lagrangian also has a U(1)R symmetry. Here is one
possible choice of charges: gaugino (−1), sfermions (1), Higgsinos (1), with
all other �elds, namely the SM �elds, neutral. In each of the interactions,
the new superpartners appear in pairs! This is important both for LHC
production and for dark matter.

To recap, we wrote down the SUSY SM which contains:
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• gauge bosons + (spin-1/2) gauginos;

• fermions + (spin-0) sfermions;

• 2 Higgses + 2 (spin-1/2) Higgsinos.

The interactions are all dictated by the SM interactions + SUSY. The new
interactions are:

• gauge-boson � scalar � scalar;

• gauge-boson � gauge-boson � scalar � scalar;

• gaugino � sfermion � fermion;

• gauge-boson � Higgsino � Higgsino;

• 4-scalar (all gauge invariant contributions).

All the couplings are determined by the SM gauge couplings. In particular,
there is a quartic Higgs coupling which is proportional to the gauge-coupling
squared.

Furthermore, there is the Yukawa part, which now contains: Higgsino �
fermion � sfermion, with a coupling equal to the SM Yukawa coupling.

There is now no quadratic divergence in the Higgs mass. Each quark contri-
bution is canceled by the corresponding squark contribution. In particular
the top loop is canceled by the left, right stops. Similarly, the contribution
from the Higgs self-coupling (from the D term) is canceled by the Higgsinos,
and each gauge boson contribution is canceled by the gaugino contribution.

But we now have, a wino degenerate with the W , a selectron degenerate
with the electron, etc. SUSY must be broken. Somehow the wino, selectron,
and all the new particles should get mass. It would be nice if the supersym-
metrized SM broke SUSY spontaneously (after all we have lots of scalars
with a complicated potential). But it does not, and so we must add more
�elds and interactions that break SUSY. These new �elds must couple to the
SM �elds in order to generate masses for the superpartners.
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36.3 SUSY Breaking

For SSB of SUSY we need a set of new �elds and interactions. As a re-
sult there will be mass splittings between the bosons and fermions of the
same symmetry breaking multiplet. Since there are SUSY-breaking mass-
splittings among the symmetry breaking �elds, their coupling will generate
mass splitting between the SM �elds and their superpartners, mediating the
SUSY breaking to the MSSM. The mediation mechanism determines the
SUSY-breaking terms in the MSSM, which in turn determine the experi-
mental signatures of SUSY.

36.3.1 Breaking Terms

A Lagrangian allows any term unless a symmetry prevents it. If we assume
SUSY breaking terms, in the matter sector, sfermions get mass. However,
the fermions don't: they are protected by chiral symmetry. In the gauge
sector, gauginos get mass. However, gauge bosons don't: they are protected
by gauge symmetry. In the Higgs sector, the Higgses get mass. Higgsinos
don't, they are protected by chiral symmetry. This is a problem. We would
like the gauginos to get mass, so we will have to solve this problem.

In addition, there are trilinear scalar terms that can appear, such as a Higgs
� squark � squark coupling, or a Higgs � slepton � slepton coupling. These
are allowed by gauge symmetry, and SUSY is no longer there to forbid them.
These terms are called A-terms.

The SUSY-breaking part of the MSSM Lagrangian is:

Lsoft = −1

2

[
m̃3g̃

T εg̃ + m̃2w̃
T εw̃ + m̃1b̃

T εb̃
]
− q̃∗m̃2

q q̃ −

− ũc∗m̃2
uRũ

c − d̃c∗m̃2
dRd̃

c − l̃∗m̃2
l l̃ − ẽc∗m̃2

eRẽ
c −

−H∗
Um

2
HU
HU −H∗

Dm
2
HD
HU −HU q̃

∗AU ũ
c − (36.37)

−HD q̃
∗AU d̃

c −HD l̃
∗Alẽ

c −BµHUHD .

The last term is a quadratic term for the Higgs scalars. The three terms
before it are the new trilinear scalar interactions, or A-terms. When the
Higgses get VEVs, these terms also will induce sfermion masses (mixing left
and right scalars). Finally, m2

q etc are 3×3 matrices in generation space. So
are the A-terms (AU etc).
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The values of the SUSY-breaking parameters are determined by the symme-
try breaking theory and mainly by the mediation. You sometimes hear people
criticize MSSM for having a hundred or so new parameters (the parameters
of Lsoft). These are all determined however by the symmetry breaking and
the mediation scheme. Often these involve very few new parameters (only
one in anomaly mediation and two in minimal gauge mediation).

Note that the parameters of Lsoft, where all the interesting physics lies, are
the only freedom we have. These parameters determine the spectrum of
squarks, sleptons, gauginos, and therefore the way SUSY manifests itself.

The gaugino masses and A-terms break the U(1)R symmetry of the MSSM
Lagrangian. There is a discrete symmetry left however. This remanent
symmetry is called R-parity. Under R-parity, the gauginos, sfermions, and
Higgsinos are odd, and all SM �elds are even. Thus, when we supersym-
metrize the SM without adding any new interactions, we have a new parity
symmetry, which guarantees that the lightest superpartner is stable!

Before we go on, let us discuss one remaining problem. We have two massless
Higgsinos in the theory. As we saw above, these do not get mass from SUSY
breaking. So we must also include a SUSY mass term for them,

W = µHUHD . (36.38)

36.4 Mediating the Breaking

There are many possibilities to mediate SUSY breaking. One is the Gauge
Mediated SUSY Breaking. Another is gravity, which is the basis of Anomaly
Mediated SUSY Breaking. Planck-suppressed interactions, which are also
associated with gravity, are at the basis of Gravity Mediated SUSY Breaking.
Even Yukawa-like interactions can do the job.

36.4.1 Gauge Mediated Breaking

Gauge interactions are the ones we know best. Therefore gauge mediation
gives full, concrete, and often fully calculable SUSY extensions of the SM.

We can start with a toy example to illustrate how things work. We saw in
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the O`Raifeartaigh model,

W = ϕ (ϕ21 − f) +mϕ1ϕ2 . (36.39)

Recall that this model breaks SUSY. The spectrum of the model contains a
supermultiplet with SUSY-breaking mass splittings: a fermion of mass m,
and scalars of masses-squared, m2 + 2f and m2 − 2f .

Let us complicate the model slightly, by considering �ve �elds, ϕ, ϕ1± and
ϕ2±, with the superpotential,

W = ϕ (ϕ1+ϕ1− − f) +mϕ1+ϕ2− +mϕ1−ϕ2+ . (36.40)

Now the model has a U(1) symmetry, under which ϕ has charge zero, and ϕi±
(i = 1, 2) has charge ±1. It is easy to see that SUSY is still broken. Again we
have supermultiplets with SUSY breaking splittings between fermions and
bosons. Now let us promote the U(1) symmetry to a gauge symmetry, and
identify it with hypercharge.

Another way to think about this is the following. Add to the SM the �elds
ϕ, ϕ1± and ϕ2± of hypercharges 0, ±1, respectively, with the superpotential
(36.40). Now consider a squark. It is charged under hypercharge, so it
couples to these split supermultiplets. Therefore, a squark mass is generated!

Minimal Gauge Mediation Models are the simplest models of this type. Sup-
pose we have a SUSY-breaking model with chiral supermultiplets Φi and Φ̄i
(i = 1, 2, 3), such that the fermions ψΦi and ψΦ̄i

combine into a Dirac fermion
of mass M , and the scalars have masses-squared M2 ± F (with F < M2).
Now identify i as an SU(3) color index. Thus Φ is a 3 of SU(3) and Φ̄ is a 3̄
of SU(3). These �elds have SUSY-breaking masses. The gluino talks to the
Φ's directly and therefore gets mass at one loop.

The squarks talk to the gluino and therefore get mass at two loops. We have
a gluino mass,

mg̃ ∼
α

4π

F

M
+O

(
F 2

M2

)
(36.41)

and a squark mass-squared at two loops:

mq̃ ∼
α2

(4π)2
F 2

M2
+O

(
F 4

M6

)
, (36.42)

where the coe�cients (group theory factors) are omitted. We can infer this
expressions for masses very simply since the masses arise at one or two loops
there is the appropriate loop factor;



588 CHAPTER 36. THE SUSY AND SM

• the masses should vanish as F → 0;

• the masses should vanish as M →∞.

Gauge mediation is very elegant:

• the soft masses are determined by the gauge couplings;

• the squark matrices are �avor-blind (∝ 13×3 in �avor space);

• the gluino masses ∼ squark masses;

• the only new parameters are F and M , and the overall scale is F/M .
If want soft masses around the TeV, then F/M ∼ 100 TeV.

The new �elds Φ are the messengers of SUSY breaking. In order to give
masses to all the MSSM �elds we need messenger �elds charged under SU(3),
SU(2) and U(1), e.g. N5 copies of (3, 1)−1/3 + (3̄, 1)1/3 and (1, 2)−1/2 +
(1, 2)1/2 (�lling up a 5+ 5̄ of SU(5)). This adds another parameter, namely
the number of messengers, N5.

The messenger scale M mainly enters through running. The soft masses are
generated at the messenger scale. To calculate them at the TeV we need to
include renormgroup e�ects. The gravitino mass in these models is

m3/2 =
Feff
MPl

, (36.43)

where Feff is the dominant F term. Therefore,

m3/2 ≥
F

MPl
∼ 100 TeV

M

MPl
(36.44)

and for low messenger scales, the gravitino can be very light (∼eV).

Minimal gauge mediation is just a simple example, mediation can in principle
have a very di�erent structure. The only de�ning feature is that the soft
masses are generated by the SM gauge interactions. Generically we have:

• colored superpartners (gluinos, squarks) are heavier than non-colored
(EW gauginos, sleptons) by a factor

α3

α2
or

α3

α1
; (36.45)
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• the bino is the lightest gaugino and gaugino masses scale as

α3 : α2 : α1 ; (36.46)

• to leading order, the A terms vanish at M ;

• the gravitino is light.

36.4.2 Gravity Mediation

With gauge mediation, we had to do some real work: add new �elds, make
sure they get SUSY-breaking masses couple them to the MSSM. But SUSY
breaking is one place where we can expect an automatic result. Imagine
we have, in addition to the SM, some symmetry breaking �elds, e.g. the
O'Raifeartaigh model. Since SUSY is a space-time symmetry, the SM �elds
should know this automatically. We would expect soft terms to be generated,
suppressed by MPl. This is known as "gravity mediation".

We will discuss �rst the purest form of gravity mediation: anomaly media-
tion, and then what is commonly referred to as gravity mediation.

36.4.3 Anomaly Mediation

We assume that SUSY is broken by some �elds that have no coupling to
the SM. These �elds are called the "hidden sector". The gravitino gets
mass m3/2. Would the MSSM "know" about SUSY breaking? Yes, at the
quantum level, it is not scale-invariant, all the couplings (gauge, Yukawa)
run � they are scale dependent. Therefore they are sensitive to the SUSY-
breaking gravitino mass, and all the soft terms are generated. The gaugino
masses are given by,

m1/2 = b
α

4π
m3/2 , (36.47)

where α is the appropriate gauge coupling and b is the beta-function coe�-
cient. Thus for SU(3), SU(2) and U(1) the parameter b equals to 3, -1 and
-33/5, respectively.

Sfermions get masses proportional to their anomalous dimensions:

m2
0 ∼

1

16π2
(y4 − y2g2 + bg4)m2

3/2 . (36.48)
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For the �rst and second generation sfermions, we can neglect the Yukawas
and,

m2
0 ∼

g4

16π2
bm2

3/2 , (36.49)

A terms are generated too, proportional to the beta functions of the appro-
priate Yukawa.

This is amazing, all the soft terms are determined by just the SM couplings
with one new parameter, the gravitino mass. It seems too good to be true.
Indeed, while SU(3) is asymptotically free and b3 > 0, SU(2) and U(1) are
not, b2, b1 < 0. Therefore the sleptons are tachyonic. There are various
solutions to this problem, but the gaugino masses are fairly robust,

mw̃ : mb̃ : mg̃ : m3/2 ∼ 1 : 3.3 : 10 : 370 . (36.50)

In this scenario, the wino is the lightest superpartner. Note that the gravitino
is roughly a loop factor heavier than the SM superpartners.

36.5 Planck Suppressed Operators

Let us return to our basic setup. We expect to have higher-dimension op-
erators, suppressed by MPl, that couple the symmetry breaking �elds (the
"hidden sector") and the MSSM �elds. SUSY breaking leads to non-zero F
terms (orD terms) for the symmetry breaking �elds, so the higher-dimension
operators coupling the two sectors will generate SUSY-breaking terms in the
MSSM, with sfermion mass from

|F |2

M2
Pl

f̃ †f̃ (36.51)

and gaugino masses from
|F |
MPl

λT ελ . (36.52)

You can think of these as mediated by tree-level exchange of Planck-scale
�elds.

Unlike in the previous two schemes, here we don't know the order-one coef-
�cients. Consider for example the doublet-squarks. Their mass terms are,

cij
|F |2

M2
Pl

q̃†i q̃j , (36.53)
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where cij are order-one coe�cients. Thus,

(m2
q̃)ij = cijm

2
0 .

(
m0 ≡

|F |
MPl

)
(36.54)

In some models one assumes

cij = δij . (36.55)

It is not easy to justify this: the Yukawas are presumably generated at this
high scale, so there are �avor-dependent couplings in the theory.

Including the running to low scales,

d

dt
m1/2 ∝

α

4π
m1/2 , (36.56)

we �nd that starting from a common gaugino mass at the GUT scale, the
gaugino masses scale as

α3 : α2 : α1 , (36.57)

just as in gauge mediation. Again the bino is the lightest superpartner. The
gravitino mass is of order the superpartner masses in this case.

These are a few possibilities for mediating SUSY breaking but by no means
an exhaustive list.

36.6 EW SSB and the Higgs Mass

In the MSSM we have two Higgses, HU and HD, which can get VEVs,

⟨HU ⟩ =
(
vU
0

)
, ⟨HD⟩ =

(
0
vD

)
. (36.58)

Let us start in the SUSY limit (with no mu term). The D term must vanish,
so the VEVs must be equal,

D = 0 → vU = vD . (36.59)

The two Higgs �elds contain eight real scalars. Of these, three are eaten by
W± and Z.
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Consider the heavy Z supermultiplet. It contains a heavy gauge boson which
has 3 physical polarizations, and therefore 3 bosonic degrees of freedoms and
a Dirac fermion (4 degrees of freedoms). Therefore, in order to have the same
number of fermion and boson degrees of freedoms there must be one more
real scalar. This scalar comes from the Higgs �elds. The same holds for the
W±. Thus, 3 real scalars "join" the heavy W± and Z supermultiplets. In
the limit of unbroken SUSY which we are assuming now, all of these �elds
have masses MW or MZ .

Thus, of the 8 real scalars in HU and HD, 2 neutral �elds remain. One is the
SM physical Higgs, h. The other must be there because we have SUSY, and
h must reside in a chiral supermultiplet. As we saw above, this multiplet
contains a complex scalar �eld.

Note that so far there is no potential for h. This is not surprising. We have
not added any Higgs superpotential, so the Higgs could only have a quartic
form VD. But along the D-�at direction, the physical Higgs is massless.
Thus its mass must come from SUSY breaking!

Fortunately SUSY is broken � we have soft terms. The Higgs potential comes
from the following sources:

• The mu term: W = µHUHD,

δV = |µ|2|HU |2 + |µ|2|HD|2 ; (36.60)

• The Higgs soft masses:

δV = m̃2
HU
|HU |2 + m̃2

HD
|HD|2 , (36.61)

so we need m2
HU

< 0 and/or m2
HU

< 0;

• The Bµ term:
δV = BµHUHD + hc . (36.62)

These are all quadratic terms;

• Then we have quartic terms:

δV =
1

2
g22D

IDI +
1

2
g21DYDY , (36.63)

where
DI = H†

Uτ
IHU −H†

Dτ
I∗HD , (36.64)



36.6. EW SSB AND THE HIGGS MASS 593

and
DY =

∑
i

Yif̃
†
i f̃i +

1

2
(H†

UHu −H†
DHD) . (36.65)

Recall we had two parameters, the two Higgs VEVs. We can trade them for:

1.
√
v2U + v2D: determined by W mass to be 246 GeV;

2. tanβ ≡ vU/vD.

Requiring a minimum of the potential determines:

Bµ =
1

2
(m2

HU
+m2

HD
+ 2µ2) sin 2β , (36.66)

µ2 =
m2
HD
−m2

HU
tan2 β

tan2 β − 1
−
M2
Z

2
. (36.67)

Thus, for given m2
HU

and m2
HD

: Bµ and µ are determined, and we have two
free parameters, tanβ and sign(µ).

Expanding around the VEVs we �nd that the various scalars from HU and
HD have the following masses (squared),

H± :M2
W +M2

A , (SUSY : M2
W )

H0 :
M2
Z +M2

A

2
+

√
(M2

Z +M2
A)

2

4
−m2

AM
2
Z cos2 2β, (SUSY : M2

Z)(36.68)

A0 :M2
A = Bµ(cotβ + tanβ) , (SUSY : 0)

and for the physical Higgs,

m2
h =

1

2
(M2

Z +M2
A)−

1

2

√
(M2

Z +M2
A)

2 − 4m2
AM

2
Z cos2 2β , (36.69)

This is a prediction:
mh ≤ mZ | cos 2β| ≤MZ . (36.70)

So the measurement of the Higgs mass provides the �rst quantitative test of
the MSSM. It fails. However, the result (36.69) is a tree-level result. There
are large radiative corrections to this result, mainly from stop loops. In the
decoupling limit

m2
h ∼ m2

Z cos2 2β +
3m2

t

4π2v2

[
log

M2
S

m2
t

+
X2
t

M2
S

]
, (36.71)
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where

Xt = At − µ cotβ , (the LR stop mixing)

MS =
√
mt̃1

mt̃2
, (the average stop mass) (36.72)

This can raise Higgs mass to around 130 − 150 GeV. Thus for a 126 GeV
Higgs we need heavy stops and/or large stop A terms. This is not very
attractive. We wanted SUSY to solve the �ne-tuning problem, for which we
need light stops. So the large Higgs mass typically implies some �ne-tuning.

There is another important caveat. So far we did not add in any Higgs
potential on top of what the MSSM "gave us". Let us compare this to the
SM. In the SM we add (by hand) a quartic Higgs potential, with a quartic
coupling λ, to get the Higgs mass. Here we did not have to, D-terms give a
quartic potential. As a result, there is no new parameter, λ = g. We could
add a quartic interaction a la SM. To do that we must add at least one new
�eld, a SM singlet S, with

W = λSHUHD → V = λ2(|HU |2|HD|2 + . . .) , (36.73)

This model is called the Next to MSSM.

We can pursue the comparison to the SM at a deeper level. In the SM, we
put in EW SSB by hand. We had to put in a negative mass-squared for
the Higgs. In the MSSM, EW SSB can have a dynamical origin. Recall
that we needed m̃2

HU
< 0 or m̃2

HD
< 0. This happens (almost) automat-

ically in SUSY theories, since the renormgroup equations drive the Higgs
mass-squared negative! The crucial contribution is due to the large Yukawa
coupling of the Higgs to stops.

Now let us see why this happens. Suppose we start with m̃2
HU

> 0 at the
SUSY breaking scale. The running gives

d

dt
m2
HU
∼ − g2

16π2
m2

1/2+
y2t

16π2
m̃2
t . (36.74)

The negative Yukawa contribution wins because:

1. The top Yukawa is large compared to the SU(2) and U(1) gauge cou-
plings;

2. The stop is colored, so the Yukawa contribution is enhanced by a color
factor (=3).
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Note that there are many scalars in the MSSM, so you could worry about
their masses-squared driven negative by the renorgroup equations. However,
the Higgs is special: it is an SU(3) singlet, so there is no large positive
contribution from the gluino. Furthermore, it has an order-one Yukawa to
the colored stop. Thus only the Higgs develops a VEV.

Let us summarize our results so far. Putting aside the unpleasant 126 GeV
Higgs mass (which can be accounted for), SUSY gives a very beautiful pic-
ture. The MSSM has only log divergences: the quadratic divergence in
the Higgs mass-squared is cancelled by superpartners at m̃. The tuning
is then ∼ M2

Z/m̃
2 and the hierarchy between the EW SSB scale and the

Planck/GUT scale is stabilized.

Furthermore: starting with m̃2
HU

> 0 in the UV, the running (from stops)
drives it negative, and EW symmetry is broken, with a scale proportional to
m̃.

Finally, we remark that with a symmetry breaking sector that breaks SUSY
dynamically, the SUSY breaking scale is exponentially suppressed. m̃ can
naturally be around the TeV. In this case, the correct hierarchy between the
EW SSB scale and the Planck/GUT scale is not only stabilized, but actually
generated.

Returning to the Higgs mass with mh = 126 GeV the MSSM is stretched: we
often need heavy stops which implies some level of tuning. More practically,
discovery becomes more of a challenge.

Now that we understand SUSY breaking and EW symmetry breaking let us
turn to the superpartner spectrum.

36.6.1 Neutralinos and Charginos

We have 4 neutral 2-component spinors: two gauginos and two Higgsinos,

b̃ , W̃ 0 , H̃0
D , H̃0

U , (36.75)

with the mass matrix
M1 0 −g1vD/

√
2 g1vU/

√
2

0 M2 g2vD/
√
2 −g2vU/

√
2

−g1vD/
√
2 g2vD/

√
2 0 µ

g1vU/
√
2 −g2vU/

√
2 µ 0

 . (36.76)
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Diagonalizing this matrix we �nd 4 neutralino mass eigenstates: χ̃0 (i =
1, . . . , 4).

Similarly, there are two charginos mass eigenstates which are combinations
of the charged Higgsino and wino, χ̃±

i (i = 1, 2).

36.6.2 Sfermion Spectrum

Consider for example the up squarks. There are 6 complex scalars: ũLi and
ũRa, with i, a = 1, 2, 3 labeling the three generations. The mass (squared)
matrix is therefore a 6×6 matrix:(

m2
LL m2

LR

m2†
LR m2

RR

)
, (36.77)

where each of the blocks is 3×3.

Consider m2
U,LL. It gets contributions from:

1. the MSSM Yukawa (supersymmetric);

2. the SUSY breaking mass-squared;

3. the D-term (because D ∼ v2U − v2D + q̃†Tq + · · · ).

Thus,
m2
U,LL = m†

umu + m̃2
q +DU13×3 , (36.78)

and similarly for m2
U,RR.

m2
LR gets contributions from:

1. the A term (SUSY breaking);

2. the µ term: ∣∣∣∣ ∂W∂HD

∣∣∣∣2 → ∂W

∂HD
= µHU + yUqu

c . (36.79)

So
m2
U,LR = vU (A∗

U − yUµ cotβ) . (36.80)
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The remaining sfermions (down-squarks, sleptons, sneutrinos) have a similar
structure.

36.6.3 Flavor Structure

Now let us consider the sfermion �avor structure, starting with the up
squarks as before. Work in the quark mass basis (up, charm, top): the
Lagrangian contains the following:

• gaugino�uLi�ũLj couplings. Here the gaugino can be either a gluino,
a wino or a bino. In our original Lagrangian, these are proportional to
δij. We therefore say that the Lagrangian is given in the interaction
basis. Note that since we are in the fermion mass basis, this de�nes
the left up squark, charm squark and top squark (stop). For example,
the left stop is the state that couples to a gluino and the doublet-top
quark;

• gaugino�uRa�ũRb couplings. Again, in our original Lagrangian, these
are proportional to δab;

• . . . ;

• The up squark 6 × 6 mass matrix. This can in principle have an ar-
bitrary structure. In particular, the various 3 × 3 blocks need not be
diagonal.

Diagonalizing the squark mass matrix, we get 6 mass eigenstates, ũI , with
I = 1, . . . , 6. However, the gaugino�quark�squark couplings are no longer
diagonal. Writing these in terms of the up-squark mass eigenstates we have
in general

KiI g̃uLi − ũI . (36.81)

These mix the di�erent generations, and KiI are the quark-squark mixing
parameters. Each squark (mass state) is a composition of the di�erent �avor
states.

Are sfermions degenerate? Is m2
U,LL ∝ 1? That depends on the mediation of

SUSY. However, we do not understand the structure of fermion masses. In
fact this structure is very strange, suggesting a fundamental theory of �avor.
If there is such a theory, it will also control the structure of m2

U,LL and the
other sfermion mass-matrices.
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36.6.4 R-parity Violating Couplings

So far, we merely generalized the SM gauge and Yukawa interactions. In the
SM the Yukawa couplings were the only renormalizable couplings allowed.
Now however, there are new renormalizable Yukawa-like interactions,

W = λijkLiLje
c
k + λ′ijkLiQjd

c
k + λ′′ijku

c
id
c
jd
c
k . (36.82)

These are the only terms we can add, nothing else is gauge invariant. These
terms are problematic. The �rst two terms break lepton number, the third
breaks baryon number. If they are all there we would get proton decay!
Note also that all these new terms break R-parity. If we impose R-parity,
these dangerous terms are forbidden, and proton decay can only arise from
higher-dimension operators, much like in the SM. But this may be overly
restrictive. Certain �avor patters of R-parity breaking operators are viable.

Exercise 36.1: Find the components of a chiral super�eld, one of the irre-
ducible representations of simplest SUSY.

Exercise 36.2: Write most general Lagrangian for the simplest chiral su-
per�eld (Wess-Zumino model).

Exercise 36.3: Consider a chiral super�eld of charge coupled to an Abelian
vector super�eld. Write down the D-term part of the scalar potential. Show
that a non-vanishing vacuum expectation value of D (the auxiliary �eld of
the vector super�eld) can break SUSY.

Exercise 36.4: Construct the most general superpotential for MSSM.

Exercise 36.5: Derive the scalar potential for the Higgs �elds in the MSSM.
There are two contributions from the superpotential, three soft-breaking
terms and two D terms.

Exercise 36.6: Show that performing SU(2) rotations allows to rotate the
VEVs to the neutral components in the Higgs potential of the MSSM.

Exercise 36.7: Consider the structure of the Feynman rules of the MSSM.
Recall what general Lorentz structures are possible: Gauge self-couplings;
Fermion gauge interactions; Sfermion gauge interactions; All sorts of Yukawa
couplings; Triple and quartic scalar couplings (never try to count).



Part XIII

Lecture � Grand Uni�cation

Theories

599





Chapter 37

Preliminaries

Not all of the symmetries of the SM, are actually seen in ordinary life, since
some of them are "spontaneously broken". This means that while they are
symmetries of the laws of physics, they are not symmetries of the vacuum. To
see these symmetries we need to do experiments at very high energies, where
the asymmetry of the vacuum has less e�ect. So, the behavior of particles
at lower energies is like a shadow of the fundamental laws of physics, cast
down from on high: a cryptic clue we must struggle to interpret.

It is reasonable to ask if this process continues. Could the symmetries of the
SM be just a subset of all the symmetries in nature? Could they be the low
energy shadows of laws still more symmetric?

A Grand Uni�ed Theory (GUT) constitutes a guess at what these "more
symmetric" laws might be. It is a theory with more symmetry than the SM,
which reduces to the SM at lower energies. It is also, therefore, an attempt
to describe the physics at higher energies.

GUTs are speculative physics. The SM has been tested in countless experi-
ments. There is a lot of evidence that it is an incomplete theory, and some
vague clues about what the next theory might be like, but so far there is
no empirical evidence that any GUT is correct � and even some empirical
evidence that some GUTs, like SU(5), are incorrect.

Nonetheless, GUTs are interesting to theoretical physicists, because they
allow us to explore some very de�nite ideas about how to extend the SM.

601
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And because they are based almost entirely on the representation theory
of compact Lie groups, the underlying physical ideas provide a marvelous
playground for this beautiful area of mathematics. Amazingly, this beauty
then becomes a part of the physics.

37.1 GUT Idea

The representation of the SM gauge group seems ad hoc. Why this one?
Why all those seemingly arbitrary hypercharges �oating around, mucking
up some otherwise simple representations? Why do both leptons and quarks
come in left- and right-handed varieties, which transform so di�erently? Why
do quarks come in charges which are in units 1/3 times an electron's charge?
Why are there the same number of quarks and leptons? GUTs can shed light
on these questions, using only group representation theory.

GUT is a model in particle physics in which, at high energy, the three gauge
interactions (or forces) of the SM which de�ne the electromagnetic, weak, and
strong interactions, are merged into one single force. This uni�ed interaction
is characterized by one larger gauge symmetry and thus several force carriers,
but one uni�ed coupling constant. Models that do not unify all interactions
using one simple group as the gauge symmetry, but do so using semi-simple
groups, can exhibit similar properties and are sometimes referred to as GUT
as well. Unifying gravity with the other three interactions would provide a
theory of everything, rather than a GUT. Nevertheless, GUTs are often seen
as an intermediate step towards a theory of everything.

A GUT model consists of a gauge group which is a compact Lie group. A
Yang-Mills action is given by an invariant symmetric bilinear form over its
Lie algebra, a Higgs sector consists of a number of scalar �elds taking on
values within real/complex representations and chiral Weyl fermions take on
values within a complex representation of this Lie group. The GUT group
contains the SM group and the Higgs �elds acquire VEVs leading to a SSB
to the SM. The Weyl fermions represent matter.

If GUT is realized in nature, there is the possibility of a grand uni�cation
epoch in the early universe in which the fundamental forces are not yet
distinct. The current wisdom is that we live in a broken phase in which the
world looks SU(3)C ×U(1)Q invariant to us and the low-energy phenomena
are governed by strong interactions and electrodynamics. Growing with the
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energy we start to see the degrees of freedom of a new dynamics which can be
interpreted as a renormalizable SU(2)L×U(1)Y gauge theory spontaneously
broken into U(1)Q. Thus, in analogy to the U(1)Q → SU(2)L×U(1)Y case,
one can imagine that at higher energies the SM gauge group SU(3)C ×
SU(2)L × U(1)Y is embedded in a simple group G.

The �rst implication of the GUT ansatz is that at some scale MU ≫ MW

the relevant symmetry is G and the g3, g2 and g1 coupling constants of
SU(3)C × SU(2)L × U(1)Y merge into a single gauge coupling gU . The
rather di�erent values for g3, g2 and g1 at low-energy are then due to renor-
malization e�ects. Actually one of the most solid hints in favor of GUT is
the fact that the running within the SM shows an approximate convergence
of the gauge couplings around 1015 GeV.

The GUT idea, though a bit speculative, may have a deep impact on the un-
derstanding of our low-energy world. Consider for instance some unexplained
features of SM, like charge quantization or anomaly cancellation, which ap-
pear as the consequence of starting with an anomaly-free simple group. In
the SM anomaly cancellation implies charge quantization, after taking into
account the gauge invariance of the Yukawa couplings. This feature is lost
when one adds a right-handed neutrino νR, unless νR is a Majorana particle.

The novel particles predicted by GUTs are expected to have masses around
the GUT scale � just a few orders of magnitude below the Planck scale � and
so will be well beyond the reach of any foreseen particle collider experiments.
Therefore, the particles predicted by GUTs will be unable to be observed
directly. However, the e�ects of GUT might be detected through indirect
observations such as proton decay, electric dipole moments of elementary
particles, or the properties of neutrinos.

GUT is reminiscent of the uni�cation of electric and magnetic forces by
Maxwell's theory of electromagnetism in XIX century, but its physical impli-
cations and mathematical structure are qualitatively di�erent. GUTs which
aim to be completely realistic are quite complicated, even compared to the
SM, because they need to introduce additional �elds and interactions, or
even additional dimensions of space. The main reason for this complexity
lies in the di�culty of reproducing the observed fermion masses and mixing
angles which may be related to an existence of some additional family sym-
metries beyond the conventional GUTs. Due to this di�culty, and due to
the lack of any observed e�ect so far, there is no generally accepted GUT.
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Let us mention some model independent predictions of GUTs.

• Charge Quantization. The fact that the electric charges of electrons
and protons seem to cancel each other exactly is essential for the ex-
istence of the macroscopic world as we know it, but this important
property of elementary particles is not explained in the SM. While the
description of strong and weak interactions within the SM is based on
gauge symmetries governed by the simple symmetry groups SU(3) and
SU(2) which allow only discrete charges, the remaining component,
the weak hypercharge interaction is described by an abelian symmetry
U(1) which in principle allows for arbitrary charge assignments.

The observed charge quantization, namely the fact that all known ele-
mentary particles carry electric charges which appear to be exact mul-
tiples of the "elementary" charge, has led to the idea that hypercharge
interactions and possibly the strong and weak interactions might be
embedded in one Grand Uni�ed interaction described by a single, larger
simple group containing the SM. This would automatically predict the
quantized nature and values of all elementary particle charges. Since
this also results in a prediction for the relative strengths of the funda-
mental interactions which we observe, in particular the weak mixing
angle, Grand Uni�cation ideally reduces the number of independent
input parameters, but is also constrained by observations.

• Baryon Asymmetry of the Universe. Most importantly Grand Uni�ca-
tion is not just a mere interpretation of our low-energy world, but it pre-
dicts new phenomena which are correlated with the existing ones. The
most prominent of these is the instability of matter. The current lower
bound on the proton lifetime is something like twenty three orders of
magnitude bigger than the age of the Universe, namely τp & 1033÷34 yr
depending on the decay channel. This number is so huge that people
started to consider baryon number as an exact symmetry of Nature.
Nowadays we interpret it as an accidental global symmetry of the SM.

In the SM the baryonic current is anomalous and baryon number vio-
lation can arise from instanton transitions between degenerate SU(2)L
vacua which lead to ∆B = ∆L = 3 interactions for three �avor fami-
lies. The rate is estimated to be proportional to e−2π/α2 ∼ e−173 and
thus phenomenologically irrelevant. This also means that as soon as we
extend the SM there is the chance to introduce baryon violating inter-
actions. Gravity itself could be responsible for the breaking of baryon
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number. However, among all the possible frameworks there is only one
theory which predicts a proton lifetime close to its experimental limit
and this is GUT. Indeed we can roughly estimate it by dimensional
arguments. The exchange of a baryon-number-violating vector boson
of mass MU yields something like

τp ∼
1

αU

M4
U

m5
p

, (37.1)

and one discovers that τp & 1033 yr corresponds to MU & 1015 GeV.
Notice that the gauge running is sensitive to the log of the scale. This
means that a 10% variation on the gauge couplings at the EW scale
induces a 100% one on MU . Were the apparent uni�cation of gauge
couplings in the window 1015÷18 GeV just an accident, then Nature
would have played a bad trick on us.

• Magnetic Monopoles. Another �rm prediction of GUTs are magnetic
monopoles. Each time a simple gauge group G is broken to a subgroup
with a U(1) factor there are topologically nontrivial con�gurations of
the Higgs �eld which leads to stable monopole solutions of the gauge
potential. For instance SU(5) breaking generates monopoles with mag-
netic charge Qm = 2π/e and mass Mm =MU/αU . The central core of
a GUT monopole contains the �elds of the superheavy gauge bosons
which mediate proton decay, so one expects that baryon number can
be violated in baryon-monopole scattering. Quite surprisingly it was
found that these processes are not suppressed by powers of the uni�-
cation mass, but have a cross section typical of the strong interactions.

Though GUT monopoles are too massive to be produced at accelera-
tors, they could have been produced in the early universe as topological
defects arising via the Kibble mechanism during a symmetry breaking
phase transition. Experimentally one tries to measure their interac-
tions as they pass through matter. The strongest bounds on the �ux
of monopoles come from their interactions with the galactic magnetic
�eld (Φ < 10−16 cm−2 sr−1 sec−1) and the catalysis of proton decay in
compact astrophysical objects (Φ < 10−18÷29 cm−2 sr−1 sec−1).

• Neutrino Masses. The issue of neutrino masses caught the attention of
particle physicists since a long time ago. The model independent way
to parameterize them is to consider the SM as an e�ective �eld theory
by writing all the possible operators compatible with gauge invariance.
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Remarkably at the d = 5 level there is only one operator

Yν
ΛL

(ℓTσ2H)C(HTσ2ℓ) , (37.2)

where �avor indices are suppressed and C is the Dirac charge conju-
gation matrix. After EW symmetry breaking ⟨H⟩ = v and neutrinos
pick up a Majorana mass term

Mν = Yν
v2

ΛL
. (37.3)

The lower bound on the highest neutrino eigenvalue inferred from√
∆matm ∼ 0.05 eV (37.4)

tells us that the scale at which the lepton number is violated is

ΛL . Yν O(1014÷15 GeV) . (37.5)

Actually there are only three renormalizable UV completion of the SM
which can give rise to the operator (37.2). They go under the name
of type-I, type-II and type-III seesaw and are respectively obtained by
introducing a fermionic singlet (1, 1, 0)F , a scalar triplet (1, 3,+1)H
and a fermionic triplet (1, 3, 0)F . These vector-like �elds, whose mass
can be identi�ed with ΛL, couple at the renormalizable level with ℓ
and H so that the operator (37.2) is generated after integrating them
out. Since their mass is not protected by the chiral symmetry it can
be super-heavy and can explain the smallness of neutrino masses.

Notice that this is still an e�ective �eld theory language and we cannot
tell at this level if neutrinos are light because Yν is small or because ΛL
is large. It is clear that without a theory that �xes the structure of Yν
we don't have much to say about ΛL. The other possibility is that we
may probe experimentally the new degrees of freedom at the scale ΛL
in such a way to reconstruct the theory of neutrino masses. This could
be the case for left-right symmetric theories where ΛL is the scale of
the V +A interactions.

As an example of a predictive theory which can �x both Yν and ΛL
we can mention SO(10) uni�cation. The most prominent feature of
SO(10) is that a SM fermion family plus a right-handed neutrino �t
into a single 16-dimensional spinorial representation. This readily im-
plies that Yν is correlated to the charged fermion Yukawas. At the
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same time ΛL can be identi�ed with the B − L generator of SO(10),
and its breaking scale, MB−L . MU , is subject to the constraints of
gauge coupling uni�cation.

To summarize, the model independent predictions of GUTs are proton decay,
magnetic monopoles and charge quantization (and their deep connection).
However once we have a speci�c model we can do even more. For instance
the huge ratio between the uni�cation and the EW scale, MU/MW ∼ 1013,
reminds us about the well-established hierarchy among the masses of charged
fermions and those of neutrinos, mf/mν ∼ 107÷13. This analogy hints also
to a possible connection between GUTs and neutrino masses.

37.1.1 Historical Remarks

Historically, the �rst true GUT which was based on the simple Lie group
SU(5), was proposed by Georgi and Glashow in 1974. The Georgi-Glashow
model was preceded by the semi-simple Lie algebra by Salam and Pati, who
pioneered the idea to unify gauge interactions. The acronym GUT was �rst
coined in 1978 by CERN researchers Ellis, Buras, Gaillard and Nanopoulos,
however in the �nal version of their paper they opted for the less anatomical
GUM (Grand Uni�cation Mass). Nanopoulos later that year was the �rst to
use the acronym in a paper.

We can mention the following historical phases:

• 1974−1986: Golden age of GUTs. These are the years of the foundation
in which the fundamental aspects of the theory are worked out. The
�rst estimate of the proton lifetime in 1974 by Georgi, Quinn and
Weinberg yields τp ∼ 1031 yr, amazingly close to the experimental
bound of Reines and Crouch τp & 1030 yr. Hence, it was the great
hope that proton decay is behind the corner.

• 1987÷ 1990: Great depression. The proton lifetime is pushed to τp &
10?? yr. Neither proton decay nor magnetic monopoles are observed so
far. Emblematically the last workshop on pure GUTs is held in 1989.

• & 1991: SUSY-GUTs. The new data of the LEP collider at CERN
seem to favor low-energy SUSY as a candidate for gauge coupling uni-
�cation. From now on almost all the attention is caught by SUSY.
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• & 1998: Neutrino revolution. Starting from 1998 experiments begin to
show that atmospheric and solar neutrinos change �avor. GUTs come
back with a rationale for the origin of the sub-eV neutrino mass scale.

• & 2010: LHC era. Has SUSY something to do with the EW scale? The
lack of evidence for SUSY at the LHC would undermine SUSY-GUT
scenarios. Back to pure GUTs?

• & 2019: Next generation of proton decay experiments sensitive to τp ∼
1034÷35 yr. The future of GUTs relies heavily on that.

Despite the huge amount of work done so far, the situation does not seem
very clear at the moment. Especially from a theoretical point of view no
model of grand uni�cation emerged as 'the' theory. The reason can be clearly
attributed to the lack of experimental evidence on proton decay.

In such a situation a good guiding principle in order to discriminate among
models and eventually falsify them is given by minimality, where minimality
deals interchangeably with simplicity, tractability and predictivity. It goes
without saying that minimality could have nothing to do with our world,
but it is anyway the best we can do at the moment. It is enough to say that
if one wants to have under control all the aspects of the theory the degree of
complexity of some minimal GUT is already at the edge of the tractability.

Quite surprisingly after many years from �rs works, there is still no consensus
on which is the minimal theory. Maybe the reason is also that minimality is
not a universal and uniquely de�ned concept, admitting a number of inter-
pretations. For instance it can be understood as a mere simplicity related
to the minimum rank of the gauge group. This was indeed the remarkable
observation of Georgi and Glashow: SU(5) is the unique rank-4 simple group
which contains the SM and has complex representations. However nowadays
we can say for sure that the Georgi-Glashow model in its original formula-
tion is ruled out because it does not unify and in this model neutrinos are
massive. Moved by this double issue of the Georgi-Glashow model, some
minimal extensions which can cure at the same time both uni�cation and
neutrino masses have been proposed.

There is currently no hard evidence that nature is described by a GUT. The
discovery of neutrino oscillations indicates that the SM is incomplete and
has led to renewed interest toward certain GUT. One of the few possible
experimental tests of certain GUT is proton decay and also fermion masses.
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There are a few more special tests for SUSY GUT. However, minimum proton
lifetimes from research (at or exceeding the 1034−1035 year range) have ruled
out simpler GUTs and most non-SUSY models. The maximum upper limit
on proton lifetime (if unstable), is calculated at 6 × 1039 years for SUSY
models and 1.4× 1036 years for minimal non-SUSY GUTs.

The gauge coupling strengths of QCD, the weak interaction and hypercharge
seem to meet at a common length scale called the GUT scale and equal
approximately to 1016 GeV, which is slightly suggestive. This interesting
numerical observation is called the gauge coupling uni�cation, and it works
particularly well if one assumes the existence of superpartners of the SM
particles. Still it is possible to achieve the same by postulating, for instance,
that ordinary (non-SUSY) SO(10) models break with an intermediate gauge
scale, such as the one of Pati-Salam group.

SU(5) can be considered the prototype GUT where to study all the funda-
mental aspects of grand uni�cation from proton decay to neutrino masses.
From a more pragmatic point of view one could instead use predictivity as
a measure of minimality. This singles out SO(10) as the best candidate.
At variance with SU(5), the fact that all the SM fermions of one family �t
into the same representation makes the Yukawa sector of SO(10) much more
constrained.

Notice that here we do not have in mind �avor symmetries, indeed the GUT
symmetry itself already constrains the �avor structure just because some
particles live together in the same multiplet. Certainly one could improve the
predictivity by adding additional ingredients like local, global, continuous, or
discrete symmetries on top of the GUT symmetry. However, though there is
nothing wrong with that, we feel that it would be a no-ending process based
on assumptions which are di�cult to disentangle from the uni�cation idea.
That is why we prefer to stick as much as possible to the gauge principle
without further ingredients.

Establishing the minimal Higgs content needed for the GUT breaking is a
basic question which has been addressed since the early days of the GUT pro-
gram. Remarkably the general patterns of symmetry breaking in gauge theo-
ries with orthogonal and unitary groups were already analyzed in 1973/1974
by Li, contemporarily with the work of Georgi and Glashow.

Let us stress that the quest for the simplest Higgs sector is driven not only by
aesthetic criteria but it is also a phenomenologically relevant issue related to
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the tractability and the predictivity of the models. Indeed, the details of the
symmetry breaking pattern, sometimes overlooked in the phenomenological
analysis, give further constraints on the low-energy observables such as the
proton decay and the e�ective SM �avor structure. For instance in order to
assess quantitatively the constraints imposed by gauge coupling uni�cation
on the mass of the lepto-quarks responsible for proton decay it is crucial to
have the scalar spectrum under control. Even in that case some degree of
arbitrariness can still persist due to the fact that the spectrum can never be
�xed completely but lives on a manifold de�ned by the vacuum conditions.
This also means that if we aim to a falsi�able (predictive) GUT scenario,
better we start by considering a minimal Higgs sector.

37.1.2 Gauge Coupling Uni�cation

Up to the energy scale of 102 GeV, we are con�dent that the fundamental
gauge symmetry of particle physics is that of the SM, i.e. SU(3)C×SU(2)L×
U(1)Y . New physics may appear just above this scale, but there may also be
a much higher energy scale where the three gauge groups of the SM become
uni�ed into some larger symmetry. This is the notion of grand uni�cation
and depends crucially on the values of the three observed gauge couplings
at the EW scale, as well as the particle content of the assumed theory from
that scale to the uni�cation scale.

The basic tool for exploring the possibility of grand uni�cation is the renor-
malization group evolution of the gauge couplings as a function of energy
scale, given in one loop by

1

αi(MZ)
=

1

αi(MU )
+
bi
2π

ln
MU

MZ
≈ 128 , (37.6)

where

1

α1
=

3 cos2 θW
5α

,
1

α2
=

sin2 θW
α

,
1

α3(MZ)
≈ 25

3
,

sin2 θW (MZ) ≈ 0.23 , sin2 θW (MU ) =
3

8
,

1

α(MZ)
≈ 128 . (37.7)

The coe�cients bi are obtained from the assumed particle content of the
theory between MZ and MU .

The renorm-group running of the three gauge couplings in the SM has been
found to nearly, but not quite, meet at the same point if the hypercharge is
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normalized so that it is consistent with SU(5) or SO(10) GUTs, which are
precisely the GUT groups which lead to a simple fermion uni�cation. This
is a signi�cant result, as other Lie groups lead to di�erent normalizations.
However, if the SUSY extension (MSSM) is used instead of the SM, the
match becomes much more accurate. In this case, the coupling constants of
the strong and EW interactions meet at the grand uni�cation energy, also
known as the GUT scale:

ΛGUT ≈ 1016 GeV . (37.8)

It is commonly believed that this matching is unlikely to be a coincidence,
and is often quoted as one of the main motivations to further investigate
SUSY theories despite the fact that no SUSY partner particles have been
experimentally observed. Also, most model builders simply assume SUSY
because it solves the hierarchy problem � i.e. it stabilizes the EW Higgs
mass against radiative corrections.

Note that the MSSM can allow the uni�cation of gauge couplings but there
remains a possible discrepancy, depending on the choice of inputs at the EW
scale. In fact, this small discrepancy is taken seriously by proponents of
speci�c GUTs and has been the subject of debates.

37.2 The Pati-Salam Model

At the end of this preliminary chapter let us consider a GUT model that is
not so "grand" � its gauge group is not a simple Lie group, as it is for the
SU(5) and SO(10) theories, considered in the following chapters.

In the Pati-Salam model (proposed in 1974) the uni�cation is based on four
quark color charges (dubbed red, green, blue and violet), instead of the
conventional three, with the new "violet" quark being identi�ed with the
leptons.

The model also has Left-right symmetry and predicts the existence of a
high energy right handed weak interaction with heavy W ′ and Z ′ bosons.
Originally the fourth color was labelled "lilac" to alliterate with "lepton".
The gauge group of the model is either SU(4) × SU(2)L × SU(2)R, or
(SU(4)× SU(2)L × SU(2)R)/Z2 and the fermions form three families, each
consisting of the representations (4, 2, 1) and (4, 1, 2).
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37.2.1 Left-Right Asymmetry in SM

In the SM there is an intrinsic lack of left-right symmetry, since only neutri-
nos belonging to SU(2)L doublets are introduced, without any explanation of
the phenomenological facts that neutrino masses are very small and the weak
interactions are predominantly V − A. The situation can be schematically
depicted in the following way

q =

(
u1 u2 u3
d1 d2 d3

)
, ℓ =

(
ν
e

)
,

dc = (dc1 dc2 dc3)
uc = (uc1 uc2 uc3)

,
ec

?
,

(37.9)
where under SU(3)C × SU(2)L × U(1)Y ,

q =
(
3, 2,+1

6

)
, ℓ =

(
1, 2,−1

2

)
,

dc =
(
3, 1,+1

3

)
, uc =

(
3, 1,−2

3

)
, ec = (1, 1,+1) . (37.10)

Considering the SM as an e�ective theory, neutrino masses can be generated
by a d = 5 operator of the type

Yν
ΛL

(
ℓTσ2H

)
C
(
HTσ2ℓ

)
, (37.11)

where C is the charge-conjugation matrix. After EW symmetry breaking,
⟨H⟩ = v, neutrinos pick up a Majorana mass term Mνν

TCν with

Mν = Yν
v2

ΛL
. (37.12)

The lower bound on the highest neutrino eigenvalue inferred from√
∆matm ∼ 0.05 eV (37.13)

tells us that the scale at which the lepton number is violated is

ΛL . Yν O
(
1014÷15 GeV

)
. (37.14)

Notice that without a theory which �xes the structure of Yν we don't have
much to say about the scale ΛL.

Actually, by exploiting the Fierz identity

(σi)ab(σi)cd = 2δadδcb − δabδcd , (37.15)
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one �nds that the operator in (37.11) can be equivalently written in three
di�erent ways (

ℓTσ2H
)
C
(
HTσ2ℓ

)
=

=
1

2

(
ℓTCσ2σiℓ

) (
HTσ2σiH

)
= (37.16)

= −
(
ℓTσ2σiH

)
C
(
HTσ2σiℓ

)
.

Each operator in (37.16) hints to a di�erent renormalizable UV completion
of the SM. Indeed one can think those e�ective operators as the result of the
integration of a heavy state with a renormalizable coupling of the type,

i
(
ℓTσ2H

)
Cνc , i

(
ℓTCσ2σiℓ

)
∆i , i

(
ℓTσ2σiH

)
CTi , (37.17)

where νc, ∆i and Ti are a fermionic singlet (Y = 0), a scalar triplet (Y = +1)
and a fermionic triplet (Y = 0). Notice that being νc, ∆i⊕∆∗

i and Ti vector-
like states their mass is not protected by the EW symmetry and it can be
identi�ed with the scale ΛL, thus providing a rationale for the smallness of
neutrino masses. This goes under the name of seesaw mechanism and the
three options in (37.17) are classi�ed respectively as type I, II and III seesaw.

37.2.2 Left-Right Symmetry

It is natural to introduce a SM-singlet fermion �eld νc. In such a way
the spectrum looks more "symmetric" and one can imagine that at higher
energies the left-right symmetry is restored, in the sense that left and right
chirality fermions are assumed to play an identical role prior to some kind
of SSB.

The smallest gauge group that implement this idea is SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L × Z2, where Z2 is a discrete symmetry which exchange
SU(2)L ↔ SU(2)R. The �eld content of the theory can be schematically
depicted as

q =

(
u1 u2 u3
d1 d2 d3

)
, ℓ =

(
ν
e

)
,

qc =

(
dc1 dc2 dc3
−uc1 −uc2 −uc3

)
, ℓc =

(
ec

−νc
)
, (37.18)
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where under SU(3)C × SU(2)L × SU(2)R × U(1)B−L,

q =
(
3, 2, 1,+1

3

)
, ℓ = (1, 2, 1,−1) ,

qc =
(
3, 1, 2∗,−1

3

)
, ℓc = (1, 1, 2∗,+1) . (37.19)

Given this embedding of the fermion �elds one readily veri�es that the elec-
tric charge formula takes the expression

Q = T 3
L + T 3

R +
B − L

2
. (37.20)

Next we have to state the Higgs sector. In the early days of the development
of left-right theories the breaking to the SM was minimally achieved by
employing the following set of representations:

δL = (1, 2, 1,+1) , δR = (1, 1, 2,+1) , Φ = (1, 2, 2∗, 0) . (37.21)

However, in order to understand the smallness of neutrino masses it is better
to consider

∆L = (1, 3, 1,+2) , ∆R = (1, 1, 3,+2) (37.22)

in place of δL and δR above.

Choosing the matrix representation

∆L,R =
σi
2
∆i
L,R (37.23)

for the SU(2)L,R adjoint and de�ning the conjugate doublet

Φ̃ ≡ σ2Φ∗σ2 , (37.24)

the transformation properties for the Higgs �elds under SU(2)L and SU(2)R
read

∆L → UL∆L U
†
L , ∆R → UR∆R U

†
R ,

Φ→ ULΦU
†
R , Φ̃→ ULΦ̃U

†
R , (37.25)

and consequently we have

δL∆L =
[
T 3
L,∆L

]
, δL∆R = 0, δLΦ = T 3

LΦ, δLΦ̃ = T 3
LΦ̃,

δR∆L = 0, δR∆R =
[
T 3
R,∆R

]
, δRΦ = −ΦT 3

R, δRΦ̃ = −Φ̃T 3
R,(37.26)

δB−L∆L = 2∆L, δB−L∆R = 2∆R, δB−LΦ = 0, δB−LΦ̃ = 0.
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Then, given the expression for the electric charge operator in (37.20), we can
decompose these �elds in the charge eigenstates,

∆L,R =

(
∆+/
√
2 ∆++

∆0 −∆+/
√
2

)
L,R

,

Φ =

(
ϕ01 ϕ+1
ϕ−2 ϕ02

)
, Φ̃ =

(
ϕ0∗2 −ϕ+2
−ϕ−1 ϕ0∗1

)
. (37.27)

In order to �x completely the theory one has to specify the action of the
Z2 symmetry on the �eld content. There are two phenomenologically viable
left-right discrete symmetries: ZP2 and ZC2 . They are de�ned as

ZP2 :


ψL ←→ ψR
∆L ←→ ∆R

Φ ←→ Φ†

Wµ
L ←→ Wµ

R

and ZC2 :


ψL ←→ ψcL
∆L ←→ ∆∗

R

Φ ←→ ΦT

Wµ
L ←→ Wµ∗

R

. (37.28)

The implications of this two cases di�er by the tiny amount of CP viola-
tion. Indeed when restricted to the fermion �elds we can identify ZP2 and
ZC2 respectively with P : ψL → ψR and C: ψL → ψcL ≡ Cγ0ψ

∗
R. In the

former case the Yukawa matrices are hermitian while in the latter they are
symmetric. So if CP is conserved (real couplings) ZP2 and ZC2 lead to the
same predictions.

Notice that ZC2 involves an exchange between spinors with the same chirality.
In principle this would allow the embedding of ZC2 into a gauge symmetry
which commutes with the Lorentz group. The gauging is conceptually im-
portant since it protects the symmetry from unknown UV e�ects.

37.2.3 Symmetry Breaking

Let us consider now the symmetry breaking sector. From (37.27) we deduce
that the SM-preserving vacuum directions are

⟨∆L,R⟩ =
(

0 0
vL,R 0

)
, ⟨Φ⟩ =

(
v1 0
0 v2

)
,
⟨
Φ̃
⟩
=

(
v∗2 0
0 v∗1

)
.

(37.29)
The minimization of the scalar potential shows that beside the expected
left-right symmetric minimum vL = vR, we have also the asymmetric one

vL ̸= vR , vLvR = γv21 , (in the approximation v2 = 0) (37.30)
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where γ is a combination of parameters of the Higgs potential. Since the
discrete left-right symmetry is de�ned to transform ∆L ↔ ∆R (∆L ↔ ∆∗

R)
in the case of ZP2 (ZC2 ), the VEVs in (37.30) breaks it spontaneously. Phe-
nomenologically we have to require vR ≫ v1 ≫ vL which leads to the follow-
ing breaking pattern

SU(3)C × SU(2)L × SU(2)R × U(1)B−L × Z2
vR−→

vR−→ SU(3)C × SU(2)L × U(1)Y
v1≫vL−→ (37.31)

v1≫vL−→ SU(3)C × U(1)Q ,

where the gauge hierarchy is set by the gauge boson masses MWR
, MZR

≫
MWL

and MZL
. Let us verify this by computing MWR

and MZR
. We start

from the covariant derivative

Dµ∆R = ∂µ∆R+igR
[
T iR,∆R

] (
AiR
)
µ
+igB−L

B − L
2

∆R (AB−L)µ , (37.32)

and the canonically normalized kinetic term

Tr (Dµ ⟨∆R⟩)†Dµ ⟨∆R⟩ , (37.33)

which leads to

M2
WR

= gRv
2
R , M2

ZR
= 2

(
g2R + g2B−L

)
v2R , M2

Y = 0 , (37.34)

where

W±
R =

A1
R ∓ iA2

R√
2

,

ZR =
gRA

3
R + gB−LAB−L√
g2R + g2B−L

, (37.35)

Y =
gB−LA

3
R − gRAB−L√
g2R + g2B−L

.

Given the relation g−2
Y = g−2

R + g−2
B−L and the Z2 symmetry in (37.28) which

implies gR = gL ≡ g, we obtain

M2
ZR

=
2g2

g2 − g2Y
M2
WR
∼ 2.6M2

WR
. (37.36)
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At the next stage of symmetry breaking (⟨Φ⟩ ̸= 0 and ⟨∆L⟩ ̸= 0) an analo-
gous calculation yields (in the approximation v2 = 0),

M2
WL

=
1

2
g2
(
v21 + 2v2L

)
, M2

ZL
=

1

2

(
g2 + g2Y

) (
v21 + 4v2L

)
, M2

A = 0 ,

(37.37)
where

W±
L =

A1
L ∓ iA2

L√
2

, ZL =
gLA

3
L − gYAY√
g2L + g2Y

, A =
gYA

3
L + gLAY√
g2L + g2Y

. (37.38)

Notice that in order to preserve ρ = 1 at tree level, where

ρ ≡
M2
WL

M2
ZL

g2 + g2Y
g2

, (37.39)

one has to require vL ≪ v1.

On the other hand at energy scales betweenMWL
andMWR

, SU(2)L×U(1)Y
is still preserved and (37.20) implies

∆T 3
R = −1

2
∆(B − L) . (37.40)

Since ∆R is an SU(2)R triplet ∆T 3
R = 1 and we get a violation of B − L by

two units. Then two classes of B and L violating processes can arise:

• ∆B = 0 and ∆L = 2 which imply Majorana neutrinos;

• ∆B = 2 and ∆L = 0 which lead to neutron-antineutron oscillations.

37.2.4 The Origin of Neutrino Masses

The piece of lagrangian relevant for neutrinos is

Lν = iYΦℓ
TCσ2Φℓ

c + iỸΦℓ
TCσ2Φ̃ℓ

c +

+ iY∆
(
ℓTCσ2∆Lℓ+ ℓcTC∆∗

Rσ2ℓ
c
)
+ hc . (37.41)

The invariance of (37.41) under the SU(2)L×SU(2)R might not be obvious.
So let us recall that, on top of the transformation properties in (37.25),
ℓ → UL ℓ, ℓc → UR ℓ

c and UTL,R σ2 = σ2 U
†
L,R. After projecting (37.41) on
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the SM vacuum directions and taking only the pieces relevant to neutrinos
we get

Lν = YΦν
TCνcv2+ ỸΦν

TCνcv1+Y∆
(
νTCν vL + νcTCνcv∗R

)
+hc . (37.42)

Let us take for simplicity v2 = 0 and consider real parameters. Then the
neutrino mass matrix in the symmetric basis (ν νc) reads(

Y∆vL ỸΦv1
Ỹ T
Φ v1 Y∆vR

)
, (37.43)

and, given the hierarchy vR ≫ v1 ≫ vL, the matrix in (37.43) is block-
diagonalized by a similarity transformation involving the orthogonal matrix(

1− 1
2ρρ

T ρ
−ρT 1− 1

2ρ
Tρ

)
, (37.44)

where ρ = ỸΦv1/Y∆vR. The diagonalization is valid up to O(ρ2) and yields

mν = Y∆vL −
ỸΦỸ

T
Φ

Y∆

v21
vR

. (37.45)

The two contributions go under the name of type-II and type-I seesaw re-
spectively. From the minimization of the potential, see (37.30), one gets
vL = γv21/vR and hence the e�ective neutrino mass matrix reads

mν =

(
Y∆γ −

ỸΦỸ
T
Φ

Y∆

)
v21
vR

. (37.46)

This equation is crucial since it shows a deep connection between the small-
ness of neutrino masses and the non-observation of V + A currents. Indeed
in the limit vR →∞ we recover the V −A structure and mν vanish.

Nowadays we know that neutrino are massive, but this information is not
enough in order to �x the scale vR because the detailed Yukawa structures
are unknown. In this respect one can adopt two complementary approaches.
From a pure phenomenological point of view one can hope that the V + A
interactions are just behind the corner and experiments such us the LHC are
probing right now the TeV region. Depending on the choice of the discrete
left-right symmetry which can be either ZP2 or ZC2 , the strongest bounds on
MWR

are given by the KL −KS mass di�erence which yields MWR
& 4 TeV

in the case of ZP2 and MWR
& 2.5 TeV in the case of ZC2 .

Alternatively one can imagine some well-motivated UV completion in which
the Yukawa structure of the neutrino mass matrix is correlated to that of
the charged fermions.
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37.2.5 Lepton Number as a 4-th Color

One can go a little step further and imagine a partial uni�cation scenario in
which quarks and leptons belong to the same representations. The simplest
implementation is obtained by collapsing the multiplets in (37.18) in the
following way

Q =

(
u1 u2 u3 ν
d1 d2 d3 e

)
, Qc =

(
dc1 dc2 dc3 ec

−uc1 −uc2 −uc3 −νc
)
, (37.47)

so that SU(3)C ×U(1)B−L ⊂ SU(4)C and the fermion multiplets transform
as Q = (4, 2, 1) and Qc = (4, 1, 2∗) under SU(4)C×SU(2)L×SU(2)R, which
is known as the Pati-Salam group. Even in this case one can attach an extra
discrete symmetry which exchange SU(2)L ↔ SU(2)R.

The Higgs sector of the model is essentially an extension of that of the left-
right symmetric model. Indeed we have ∆L = (10, 3, 1), ∆R = (10, 1, 3) and
Φ = (1, 2, 2∗). From the decomposition 10 = 6 (+2/3) ⊕ 3 (−2/3) ⊕ 1(−2)
under SU(4)C ⊃ SU(3)C × U(1)B−L and the expression for the electric
charge operator in (37.20), we can readily see that ⟨∆R⟩ contains a SM-
single direction and so the �rst stage of the breaking is given by

SU(4)C ×SU(2)L×SU(2)R
⟨∆R⟩−→ SU(3)C ×SU(2)L×U(1)Y , (37.48)

while the �nal breaking to SU(3)C × U(1)Q is obtained by means of the
bi-doublet VEV ⟨Φ⟩. Analogously to the left-right symmetric case an EW
triplet VEV ⟨∆L⟩ ≪ ⟨Φ⟩ is induced by the Higgs potential and the conclu-
sions about neutrino masses are the same.

37.2.6 Nuclear Stability

A peculiar feature of the Pati-Salam model is that the proton is stable in
spite of the quark-lepton transitions due to the SU(4)C interactions.

Let us consider �rst gauge interactions. The adjoint SU(4)C decomposes as
15 = 1(0)⊕3(+4/3)⊕3(−4/3)⊕8(0) under SU(3)C×U(1)B−L. In particular
the transitions between quark and leptons due to the Pati-Salam bosons,
XPS ≡ 3(+4/3) and XPS ≡ 3(−4/3), come from the current interactions

LPS ⊃
g√
2

(
XPS
µ

[
uγµν + dγµe

]
+X

PS
µ

[
ucγµνc + dcγµec

])
+ hc . (37.49)
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It turns out that the Lagrangian (37.49) has an accidental global symmetry
G, where

G(XPS) = −2
3 , G(u) = G(d) = +1

3 , G(ν) = G(e) = +1 ,

G(XPS) = +2
3 , G(uc) = G(dc) = −1

3 , G(νc) = G(ec) = −1 .(37.50)

G is nothing but B + L when evaluated on the standard fermions. Thus,
given that B − L is also a (gauge) symmetry, we conclude that both B and
L are conserved by the gauge interactions.

The situation regarding the scalar interactions is more subtle. Actually in
the minimal model there is a hidden discrete symmetry, which forbids all the
∆B = 1 transitions, like for instance qqqℓ. A simple way to see it is that any
operator of the type qqqℓ ⊂ QQQQ and the Q4 term must be contracted
with an ϵijkl tensor in order to form an SU(4)C singlet. However, since the
Higgs �elds in the minimal model are either singlets or completely symmetric
in the SU(4)C space, they cannot mediate Q4 operators.

On the other hand ∆B = 2 transitions like neutron-antineutron oscillations
are allowed and they proceed through d = 9 operators of the type

⟨∆R⟩
M6

∆R

(udd)(udd) , (37.51)

which are generated by the Pati-Salam breaking VEV, ⟨∆R⟩. The fact that
⟨∆R⟩ can be pushed down relatively close to the TeV scale without making
the proton to decay is phenomenologically interesting, since one can hope
in testable neutron-antineutron oscillations. Present bounds on nuclear in-
stability give τN > 1032 yr, which translates into a bound on the neutron
oscillation time τn−n̄ > 108 sec. Analogous limits come from direct reactor
oscillations experiments. This sets a lower bound on the scale of ∆B = 2
non-SUSY (d = 9) operators that varies from 10 to 300 TeV depending
on model couplings. Thus neutron-antineutron oscillations probe scales far
below the uni�cation scale.

Exercise 37.1: What is GUT scale and how one can estimate its value?

Exercise 37.2: How the Pati-Salam model answers two questions about the
SM: Why are quarks and leptons so similar? Why are left and right particles
so di�erent?

Exercise 37.3: Write down all possible dimension-6 operators which are
invariant under the SM group and violate the baryon number conservation.



Chapter 38

Georgi-Glashow's SU(5)

In Georgi-Glashow model (proposed in 1974) the SM gauge groups SU(3)×
SU(2)× U(1) are combined into a single simple gauge group � SU(5). The
uni�ed group is then thought to be spontaneously broken into the SM sub-
group below some high energy GUT scale.

Since the Georgi-Glashow model combines leptons and quarks into single
irreducible representations, there exist interactions which do not conserve
baryon number, although they still conserve B−L associated with the sym-
metry of the common representation. This yields a mechanism for proton
decay, which rate can be predicted from the dynamics of the model.

Proton decay has not yet been observed experimentally, and the resulting
lower limit on the lifetime of the proton contradicts the predictions of the
model. However, the elegance of the Georgi-Glashow model has led particle
physicists to use it as the foundation for more complex models which yield
longer proton lifetimes, like SO(10) in basic, or SUSY variants.

38.1 Structure of the Model

If we require minimality (i.e. using of rank 4 groups, as in the SM) one
reaches the remarkable conclusion that the only simple group with complex
representations, which contains SU(3)C × SU(2)L × U(1)Y as a subgroup,
is SU(5).

621
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Let us consider the fundamental representation of SU(5) and denote it as a
5-dimensional vector 5i (i = 1, . . . , 5). It is usual to embed SU(3)C×SU(2)L
in such a way that the �rst three components of 5 transform as a triplet of
SU(3)C and the last two components as a doublet of SU(2)L

5 = (3, 1)⊕ (1, 2) . (38.1)

In the SM we have 15 Weyl fermions per family with quantum numbers

q ∼
(
3, 2,+1

6

)
, ℓ ∼

(
1, 2,−1

2

)
,

uc ∼
(
3, 1,−2

3

)
, dc ∼

(
3, 1,+1

3

)
, ec ∼ (1, 1,+1) . (38.2)

How to embed these into SU(5)? One would be tempted to try with a 15 of
SU(5). Actually from the anti-symmetric and symmetric decomposition of
the product

5× 5 = 10A ⊕ 15S , (38.3)

and the fact that 3 × 3 = 3A ⊕ 6S one concludes that some of the known
quarks should belong to color sextects, which is not the case. So the next
step is to try with 5⊕10 or better with 5⊕10 since there is no (3, 1) in the set
of �elds in (38.2). The decomposition of 5 under SU(3)C ×SU(2)L×U(1)Y
is simply

5 =
(
3, 1,+1

3

)
⊕
(
1, 2,−1

2

)
, (38.4)

where we have exploited the fact that the hypercharge is a traceless generator
of SU(5), which implies the condition

3Y (dc) + 2Y (ℓ) = 0 . (38.5)

So, up to a normalization factor, one may choose

Y (dc) =
1

3
, Y (ℓ) = −1

2
. (38.6)

Then from (38.3) and (38.4) we get

10 = (5× 5)A =
(
3, 1,−2

3

)
⊕
(
3, 2,+1

6

)
⊕ (1, 1,+1) . (38.7)

Thus the embedding of a SM fermion family into 5⊕ 10 reads

5 =


dc1
dc2
dc3
e
−ν

 , 10 =


0 uc3 −uc2 u1 d1
−uc3 0 uc1 u2 d2
uc2 −uc1 0 u3 d3
−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 , (38.8)
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where we have expressed the SU(2)L doublets as q = (u d) and ℓ = (ν e).
Notice in particular that the doublet embedded in 5 is iσ2ℓ ∼ ℓ∗, the symbol
'∼' stands for the fact that iσ2ℓ and ℓ∗ transform in the same way under
SU(2)L.

It may be useful to know how the SU(5) generators act of 5 and 10. From
the transformation properties

5
i → (U †)ik 5

k
, 10ij → Uki U

l
j 10kl , (38.9)

where U = eiT and T † = T , we deduce that the action of the generators is

δ 5
i
= −T ik 5

k
, δ 10ij = {T, 10}ij . (38.10)

Already at this elementary level we can list a set of important features of
SU(5) which are typical of any GUT.

38.1.1 Charge Quantization

The charges of quarks and leptons are related. Let us write the most general
electric charge generator compatible with the SU(3)C invariance and the
SU(5) embedding

Q = diag (a, a, a, b,−3a− b) , (38.11)

i.e. TrQ = 0. Then by applying (38.10) we �nd

Q(u) = a+ b , Q(uc) = 2a , Q(d) = −2a− b , Q(dc) = −a ,
Q(e) = −b , Q(ec) = −3a , Q(ν) = 3a+ b , (38.12)

so that apart for a global normalization factor the charges do depend just
on one parameter, which must be �xed by some extra assumption. Let us
say we require Q(ν) = 0 that readily implies

Q(ec) = −Q(e) = 3
2Q(u) = −3

2Q(uc) = −3Q(d) = 3Q(dc) = b , (38.13)

i.e. the electric charge of the SM fermions is a multiple of b.

38.1.2 Anomaly Cancellation

We know that in the SM all the gauge anomalies vanish. This property is
preserved in SU(5) since 5 and 10 have equal and opposite anomalies, so



624 CHAPTER 38. GEORGI-GLASHOW'S SU(5)

that the theory is still anomaly free. In order to see this explicitly let us
under the branching chain

SU(5) ⊃ SU(4)× U(1)A ⊃ SU(3)× U(1)A × U(1)B (38.14)

decompose 5 and 10,

5 = 1(4)⊕ 4(−1) = 1(4, 0)⊕ 1(−1, 3)⊕ 3(−1,−1) ,
10 = 4(3)⊕ 6(−2) = 1(3, 3)⊕ 3(3,−1)⊕ 3(−2,−2)⊕ 3(−2,−2) , (38.15)

where the U(1) charges are given up to a normalization factor. The anomaly
A(R) relative to a representation R is de�ned by

Tr{T aR, T bR}T cR = A(R)dabc , (38.16)

where dabc is a completely symmetric tensor. Then, given the properties

A(R1 ⊕R1) = A(R1) +A(R2) and A(R) = −A(R) , (38.17)

it is enough to compute the anomaly of the SU(3) subalgebra of SU(5),

ASU(3)(5) = ASU(3)(3) ,

ASU(3)(10) = ASU(3)(3) +ASU(3)(3) +ASU(3)(3) , (38.18)

in order to conclude that
A(5⊕ 10) = 0 . (38.19)

We see that in SU(5) anomaly cancellation and charge quantization are
closely related. Actually it is not a chance that in the SM anomaly can-
cellation implies charge quantization, after taking into account the gauge
invariance of the Yukawa couplings.

38.1.3 Gauge Coupling Running

At some grand uni�cation mass scale MU the relevant symmetry is SU(5)
and the g3, g2 and g1 coupling constants of SU(3)C×SU(2)L×U(1)Y merge
into one single gauge coupling gU . The rather di�erent values for g3, g2 and
g1 at low-energy are then due to renormalization e�ects.
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Before considering the running of the gauge couplings we need to �x the
relative normalization between g2 and g1, which enter the weak interactions,
g2T3 + g1Y . We de�ne

ζ =
TrY 2

TrT 2
3

, (38.20)

so that

Y1 ≡
Y√
ζ

(38.21)

is normalized as T3. In a uni�ed theory based on a simple group, the coupling
which uni�es is then (g′Y1 = g1Y )

g′ ≡
√
ζg1. (38.22)

Evaluating the normalization over a 5 of SU(5) one �nds

ζ =
3
(
1
3

)2
+ 2

(
−1

2

)2(
1
2

)2
+
(
−1

2

)2 =
5

3
, (38.23)

and thus one obtains the tree level matching condition

gU ≡ g3(MU ) = g2(MU ) = g′(MU ) . (38.24)

At energies µ < MU the running of the �ne-structure constants (αi ≡ g2i /4π)
is given by

1

αi
=

1

αi(0)
− ai

2π
log

(
µ

µ0

)
(38.25)

and the one-loop beta-coe�cient for the SM reads

(a3, a2, a1) =

(
−7,−19

6
,
41

10

)
. (38.26)

Starting from the experimental input values for the (consistently normalized)
SM gauge couplings at the scale MZ = 91.19 GeV,

α1 ≈ 0.017 , α2 ≈ 0.034 , α3 ≈ 0.118 , (38.27)

it is then a simple exercise to perform the one-loop evolution of the gauge
couplings assuming just the SM as the low-energy e�ective theory. The result
is depicted in the Figure below.
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As we can see, the gauge couplings do not unify in the minimal framework,
although a small perturbation may su�ce to restore uni�cation. In partic-
ular, thresholds e�ects at the MU scale (or below) may do the job, however
depending on the details of the UV completion. By now this �gure remains
one of the most solid hints in favor of the grand uni�cation idea. Indeed,
being the gauge coupling evolution sensitive to the log of the scale, it is in-
triguing that they almost unify in a relatively narrow window, 1015÷18 GeV,
which is still allowed by the experimental lower bound on the proton lifetime
and a consistent e�ective QFT description without gravity.

38.2 Symmetry Breaking

The Higgs sector of the Georgi-Glashow model spans over the reducible 5H⊕
24H representation. These two �elds are minimally needed in order to break
the SU(5) gauge symmetry down to SU(3)C ×SU(2)L×U(1)Y and further
to SU(3)C × U(1)Q.

38.2.1 The First Stage

Let us concentrate on the �rst stage of the breaking which is controlled by
the rank-conserving VEV ⟨24H⟩. The fact that the adjoint preserves the
rank is easily seen by considering the action of the Cartan generators on the
adjoint vacuum

δ ⟨24H⟩ 24Hij = [TCartan, ⟨24H⟩]ij , (38.28)

derived from the transformation properties of the adjoint

24ij → (U †)ikU
l
j 24

k
l . (38.29)
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Since ⟨24H⟩ can be diagonalized by an SU(5) transformation and the Car-
tan generators are diagonal by de�nition, one concludes that the adjoint
preserves the Cartan subalgebra. The scalar potential is given by

V (24H) = −m2Tr242H + λ1
(
Tr242H

)2
+ λ2Tr24

4
H , (38.30)

where for simplicity it is imposed the discrete symmetry 24H → −24H .

The minimization of the potential goes as follows:

First of all ⟨24H⟩ is transformed into a real diagonal traceless matrix by
means of an SU(5) transformation

⟨24H⟩ = diag(h1, h2, h3, h4, h5) , (38.31)

where h1+h2+h3+h4+h5 = 0. With 24H in the diagonal form, the scalar
potential reads

V (24H) = −m2
∑

h2i + λ1

(∑
h2i

)2
+ λ2

∑
h4i . (38.32)

Since the hi's are not all independent, we need to use the Lagrangian multi-
plier µ in order to account for the constraint

∑
i hi = 0. The minimization

of the potential V ′(24H) = V (24H)− µTr24H yields

∂V ′(24H)

∂hi
= −2m2hi + 4λ1hi

∑
h2j + 4λ2h

3
i − µ = 0 . (38.33)

Thus at the minimum all the hi's satisfy the same cubic equation

4λ2x
3 +

(
4λ1a− 2m2

)
x− µ = 0 .

(
a =

∑
h2i

)
(38.34)

This means that the hi's can take at most three di�erent values, ϕ1, ϕ2 and
ϕ3, which are the three roots of the cubic equation. Note that the absence
of the x2 term in the cubic equation implies that

ϕ1 + ϕ2 + ϕ3 = 0 . (38.35)

Let n1, n2 and n3 the number of times ϕ1, ϕ2 and ϕ3 appear in ⟨24H⟩,

⟨24H⟩ = diag(ϕ1, . . . , ϕ2, . . . , ϕ3) . (n1ϕ1 + n2ϕ2 + n3ϕ3 = 0) (38.36)

Thus ⟨24H⟩ is invariant under SU(n1)× SU(n2)× SU(n3) transformations.
This implies that the most general form of symmetry breaking is SU(n) →
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SU(n1)×SU(n2)×SU(n3) as well as possible U(1) factors (total rank is 4)
which leave ⟨24H⟩ invariant. To �nd the absolute minimum we have to use
the relations

n1ϕ1 + n2ϕ2 + n3ϕ3 = 0 and ϕ1 + ϕ2 + ϕ3 = 0 (38.37)

to compare di�erent choices of {n1, n2, n3} in order to get the one with the
smallest V (24H). It turns out that for the case of interest there are two
possible patterns for the symmetry breaking:

SU(5)→ SU(3)× SU(2)× U(1), or SU(5)→ SU(4)× U(1) ,
(38.38)

depending on the relative magnitudes of the parameters λ1 and λ2. In par-
ticular for λ1 > 0 and λ2 > 0 the absolute minimum is given by the SM
vacuum and the adjoint VEV reads

⟨24H⟩ = V diag(2, 2, 2,−3,−3) . (38.39)

Then the stability of the vacuum requires

λ1

(
Tr⟨24H⟩2

)2
+ λ2Tr⟨24H⟩4 > 0 =⇒ λ1 > −

7

30
λ2 (38.40)

and the minimum condition

∂V (⟨24H⟩)
∂V

= 0 =⇒ 60V
[
−m2 + 2V 2(30λ1 + 7λ2)

]
= 0 (38.41)

yields

V 2 =
m2

2(30λ1 + 7λ2)
. (38.42)

Let us now write the covariant derivative

Dµ24H = ∂µ24H + ig [Aµ, 24H ] , (38.43)

where Aµ and 24H are 5 × 5 traceless hermitian matrices. Then from the
canonical kinetic term,

TrDµ ⟨24H⟩Dµ ⟨24H⟩† = g2Tr [Aµ, ⟨24H⟩] [⟨24H⟩ , Aµ] (38.44)

and the shape of the vacuum

⟨24H⟩ij = hjδ
i
j , (38.45)
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where repeated indices are not summed, we can easily extract the gauge
bosons mass matrix from the expression

g2 [Aµ, ⟨24H⟩]ij [⟨24H⟩ , A
µ]ji = g2 (Aµ)

i
j (A

µ)ji (hi − hj)
2 . (38.46)

The gauge boson �elds (Aµ)
i
j having i = 1, 2, 3 and j = 4, 5 are massive,

M2
X = 25g2V 2, while i, j = 1, 2, 3 and i, j = 4, 5 are still massless.

Notice that the hypercharge generator commutes with the vacuum in (38.39)
and hence the associated gauge boson is massless as well. The number of
massive gauge bosons is then 24−(8+3+1) = 12 and their quantum numbers
correspond to the coset SU(5)/SU(3)C ×SU(2)L×U(1)Y . Their mass MX

is usually identi�ed with the grand uni�cation scale, MU .

38.2.2 The Second Stage and Doublet-Triplet Splitting

The second breaking step, SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q,
is driven by a 5H where

5H =

(
T
H

)
, (38.47)

decomposes into a color triplet T and an SU(2)L doublet H. The latter
plays the same role of the Higgs doublet of the SM.

The most general potential containing both 24H and 5H can be written as

V = V (24H) + V (5H) + V (24H , 5H) , (38.48)

where V (24H) is de�ned in (38.30),

V (5H) = −µ2 5†H5H + λ
(
5†H5H

)2
, (38.49)

and
V (24H , 5H) = α 5†H5HTr24

2
H + β 5†H24

2
H5H . (38.50)

Again we have imposed for simplicity the discrete symmetry 24H → −24H .

It is instructive to compute the mass of the doublet H and the triplet T in
the SM vacuum just after the �rst stage of the breaking

M2
H = −µ2 + (30α+ 9β)V 2 , M2

T = −µ2 + (30α+ 4β)V 2 . (38.51)
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The gauge hierarchy MX ≫ MW requires that the doublet H, containing
the would-be Goldstone bosons eaten by the W and the Z and the physical
Higgs boson, live at theMW scale. This is unnatural and can be achieved at
the prize of a �ne-tuning of one part in O(M2

X/M
2
W ) ∼ 1026 in the expression

for M2
H . If we follow the principle that only the minimal �ne-tuning needed

for the gauge hierarchy is allowed thenMT is automatically kept heavy. This
goes under the name of doublet-triplet splitting. Usually, but not always,
a light triplet is very dangerous for the proton stability since it can couple
to the SM fermions in such a way that baryon number is not anymore an
accidental global symmetry of the low-energy Lagrangian.

A �nal comment about the radiative stability of the �ne-tuning is in order.
While SUSY helps in stabilizing the hierarchy betweenMX andMW against
radiative corrections, it does not say much about the origin of this hierarchy.
Other mechanisms have to be devised to render the hierarchy natural. In a
non-SUSY scenario one needs to compute the mass of the doublet in (38.51)
within a 13-loop accuracy in order to stabilize the hierarchy.

38.3 Proton Decay

The theory predicts that protons eventually decay. The most emblematic
contribution to proton decay is due to the exchange of super-heavy gauge
bosons which belong to the coset SU(5)/SU(3)C × SU(2)L × U(1)Y .

Let us denote the matter representations of SU(5) as

5 = (ψα, ψi) , 10 =
(
ψαβ, ψαi, ψij

)
, (38.52)

where the Greek and Latin indices run respectively from 1 to 3 (SU(3)C
space) and 1 to 2 (SU(2)L space).

Analogously the adjoint 24 can be represented as

24 =
(
Xα
β , X

i
j , X

α
α − 3

2X
i
i , X

α
i , X

i
α

)
, (38.53)

from which we can readily recognize the gauge bosons associated to the
SM unbroken generators, (8, 1) ⊕ (3, 1) ⊕ (1, 1), and the two super-heavy
leptoquark gauge bosons, (3, 2)⊕ (3, 2).
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Let us consider now the gauge action of Xα
i on the matter �elds,

ψα → ψi , (dc → ν, e)

ψβi → ψβα , (d, u→ uc) (38.54)

ψij → ψαj . (ec → u, d)

Thus diagrams involving the exchange of a Xα
i boson generate processes like

ud→ ucec , (38.55)

whose amplitude is proportional to the gauge boson propagator. After dress-
ing the operator with a spectator quark u, we can have for instance the
low-energy process p→ π0e+, whose decay rate can be estimated by simple
dimensional analysis

Γ
(
p→ π0e+

)
∼
α2
Um

5
p

M4
X

. (38.56)

Using τ(p→ π0e+) > 8.2× 1033 years we extract the naive lower bound on
the super-heavy gauge boson mass

MX > 2.3× 1015 GeV , (α−1
U = 40) (38.57)

which points directly to the GUT scale extrapolated by the gauge running
(see e.g. the �gure above).

Notice that B−L is conserved in the process p→ π0e+. This selection rule is
a general feature of the gauge induced proton decay and can be traced back
to the presence of a global B − L accidental symmetry in the transitions of
(38.54) after assigning B − L (Xα

i ) = 2/3.

38.4 Yukawa Sector and Neutrinos

The SU(5) Yukawa lagrangian can be written schematically as

LY = 5FY510F 5
∗
H +

1

8
ϵ510FY1010F 5H + h.c. , (38.58)

where ϵ5 is the 5-index Levi-Civita tensor. Here

5FY510F 5
∗
H ≡

(
5F
)αx
m
Cxy (Y5)

mn (10F )
y
αβn (5

∗
H)

β ,

ϵ510FY1010F 5H ≡ ϵαβγδϵ (10F )xαβmCxy (Y10)
mn (10F )

y
γδn (5H)ϵ , (38.59)
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where (α, β, γ, δ, ϵ), (m,n) and (x, y) are respectively SU(5), family and
Lorentz indices.

After denoting the SU(5) representations synthetically as

5F =

(
dc

ϵ2ℓ

)
, 10F =

(
ϵ3u

c q
−qT iσ2e

c

)
, 5H =

(
T
H

)
, (38.60)

where ϵ3 is the 3-index Levi-Civita tensor, we project (38.58) over the SM
components. This yields

5FY510F 5
∗
H = i

(
dc ℓσT2

)( ϵ3u
c q

−qT iσ2e
c

)(
T ∗

H∗

)
→

→ dcY5qH
∗ + ℓY5e

cH∗ , (38.61)
1

8
ϵ510FY1010F 5H → 1

2
uc
(
Y10 + Y T

10

)
qH .

After rearranging the order of the SU(2)L doublet and singlet �elds in the
second line of (38.61), i.e. ℓY5ecH∗ = ecY T

5 ℓH
∗, one gets

Yd = Y T
e and Yu = Y T

u , (38.62)

which shows a deep connection between �avor and the GUT symmetry
(which is not related to a �avor symmetry).

The �rst relation in (38.62) predicts

mb(MU ) = mτ (MU ) , ms(MU ) = mµ(MU ) , md(MU ) = me(MU ) (38.63)

at the GUT scale. So in order to test this relation one has to run the SM
fermion masses starting from their low-energy values. While mb(MU ) =
mτ (MU ) is obtained in the MSSM with a typical 20− 30% uncertainty, the
other two relations are evidently wrong. By exploiting the fact that the ratio
between md/me and ms/mµ is essentially independent of renormalization
e�ects, we get the scale free relation

md

ms
=
me

mµ
, (38.64)

which is o� by one order of magnitude.

Notice that md = me comes from the fact that the fundamental ⟨5H⟩ breaks
SU(5) down to SU(4) which remains an accidental symmetry of the Yukawa
sector. So one expects that considering higher dimensional representations
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makes it possible to further break the remnant SU(4). This is indeed what
happens by introducing a 45H which couples to the fermions in the following
way

5F 10F 45
∗
H + 10F 10F 45H + hc . (38.65)

The �rst operator leads to Yd = −3Ye, so that if both 5H and 45H are present
more freedom is available to �t all fermion masses. Alternatively one can
built an e�ective coupling

1

Λ
5F 10F (⟨24H⟩ 5∗H)45 , (38.66)

which mimics the behavior of the 45H . If we take the cut-o� to be the planck
scale MPl, this nicely keeps b − τ uni�cation while corrects the relations
among the �rst two families. However in both cases we loose predictivity
since we are just �tting Md and Me in the extended Yukawa structure.

38.4.1 Neutrino Masses

Finally what about neutrinos? It turns out that the Georgi-Glashow model
has an accidental global U(1)G symmetry with the charge assignment

G(5F ) = −
3

5
, G(10F ) = +

1

5
, G(5H) = +

2

5
. (38.67)

The VEV ⟨5H⟩ breaks this global symmetry but leaves invariant a linear
combination of G and a Cartan generator of SU(5). It easy to see that any
linear combination of G+ 4

5Y , Q, and any color generators is left invariant.
The extra conserved charge G+ 4

5Y when acting on the fermion �elds is just
B − L. Thus neutrinos cannot acquire neither a Dirac (because of the �eld
content) nor a Majorana (because of the global B−L symmetry) mass term
and they remain exactly massless even at the quantum level.

Going at the non-renormalizable level we can break the accidental U(1)G
symmetry. For instance global charges are expected to be violated by gravity
and the simplest e�ective operator one can think of is

1

MPl
5F 5F 5H5H . (38.68)

However its contribution to neutrino masses is too much suppressed (mν ∼
O(M2

W /MPl) ∼ 10−5 eV). Thus we have to extend the �eld content of
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the theory in order to generate phenomenologically viable neutrino masses.
Actually, the possibilities are many.

Minimally one may add an SU(5) singlet fermion �eld 1F . Then, through
its renormalizable coupling 5F 1F 5H , one integrates 1F out and generates an
operator similar to that in (38.68), but suppressed by the SU(5)-singlet mass
term which can be taken well below MPl.

A slightly di�erent approach could be breaking the accidental U(1)G sym-
metry by adding additional scalar representations. Let us take for instance
a 10H and consider then the new couplings

L10 ⊃ f 5F 5F 10H +M 10H10H5H . (38.69)

Since G(5F ) = −3/5 and G(5H) = +2/5 there is no way to assign a G-charge
to 10H in order to preserve U(1)G. Thus we expect that loops containing
the B − L breaking sources f and M can generate neutrino masses.

So what is wrong with the two approaches above? In principle nothing, but
we can try to do more than getting out what we put in. Indeed we are just
solving the issue of neutrino masses ad hoc, without correlations to other
phenomena. In addition we do not improve uni�cation of minimal SU(5).

Guided by this double issue of the Georgi-Glashow model, two minimal ex-
tensions which can cure at the same time both neutrino masses and uni�ca-
tion have been proposed:

• Add a 15H = (1, 3)H ⊕ (6, 1)H ⊕ (3, 2)H . Here (1, 3)H is an Higgs
triplet responsible for type-II seesaw. The model predicts generically
light leptoquarks (3, 2)H and fast proton decay.

• Add a 24F = (1, 1)F ⊕ (1, 3)F ⊕ (8, 1)F ⊕ (3, 2)F ⊕ (3, 2)F . Here (1, 1)F
and (1, 3)F are �elds responsible respectively for type-I and type-III
seesaw. The model predicts a light fermion triplet (1, 3)F and fast
proton decay.

38.5 SUSY Extension

Another well motivated and studied extension of the Georgi-Glashow model
is given by SUSY SU(5). In this case the supersymmetrization of the spec-
trum is enough in order to �x both uni�cation and neutrino masses. Indeed,
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if we do not impose by hand R-parity conservation Majorana neutrino masses
are automatically generated by lepton number violating interactions.

Consider the particle content of the MSSM. There are three copies of quark
and lepton super�elds:

(u, d) ∼
(
3, 2, 16

)
, uc ∼

(
3, 1,−2

3

)
, dc ∼

(
3, 1, 13

)
,

(ν, e) ∼
(
1, 2,−1

2

)
, ec ∼ (1, 1, 1) , (38.70)

and one copy of the two Higgs super�elds:

(ϕ01, ϕ
−
1 ) ∼

(
1, 2,−1

2

)
, (ϕ+2 , ϕ

0
2) ∼

(
1, 2,

1

2

)
. (38.71)

The quarks and leptons can be embedded into SU(5) as follows:

5 =

(
3, 1,

1

3

)
+

(
1, 2,−1

2

)
,

10 =

(
3, 2,

1

6

)
+

(
3, 1,−2

3

)
+ (1, 1, 1) , (38.72)

but the Higgs super�elds do not form complete multiplets: Φ1 ⊂ 5 and
Φ2 ⊂ 5. Their missing partners are (3, 1, 1/3) and (3, 1,−1/3) respectively
and they mediate proton decay. In the MSSM, such e�ective operators are
dimension-�ve, i.e. they are suppressed by only one power of MU in the
denominator and can easily contribute to a proton decay lifetime below the
experimental lower bound.

Recalling that there is a small discrepancy in the uni�cation of gauge cou-
plings. This can be �xed by threshold corrections due to heavy particles at
MU . Using these heavy color triplet Higgs super�elds to obtain exact uni�-
cation, it was shown that their masses must lie in the range 3.5×1014 GeV to
3.6×1015 GeV. However, the experimental lower bound on the decay lifetime
of p→ K+ν̄ is 6.7× 1032 years, which requires this mass to be greater than
7.6 × 1016 GeV. This contradiction is then used to rule out minimal SUSY
SU(5) as a candidate model of GUT.

The above analysis assumes that the sparticle mass matrices are related to
the particle mass matrices in a simple natural way. However, proton decay in
the MSSM through the above-mentioned dimension-�ve operators depends
on how sparticles turn into particles. It has been pointed out that if the most
general sparticle mass matrices are used, these operators may be su�ciently
suppressed to avoid any contradiction with proton decay.
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Instead of adjusting the color triplet masses to obtain exact uni�cation, a new
and popular way is to invoke extra space dimensions. For example, in a �ve-
dimensional theory, if Higgs �elds exist in the bulk, then there can be �nite
threshold corrections from summing over Kaluza-Klein modes. A speci�c
successful SU(5) model was proposed using the Kawamura mechanism of
symmetry breaking by boundary conditions.

Exercise 38.1: Write in�nitesimal SU(5) transformations and covariant
derivatives for a 5-dimensional vector and its complex conjugate. Construct
the �eld strength tensor and transformation laws for corresponding gauge
bosons.

Exercise 38.2: Write down the potential for the scalar �elds in the vector
representation of SU(5). Work out the possible pattern for SSB, how many
Goldstone bosons are there in this case? Discuss the possible SSB pattern
for the case where there are two such scalar �elds.

Exercise 38.3: Write down the scalar potential for a scalar �elds in the
adjoint representation of the SU(5) group. Work out the possible pattern
for the SSB for this �eld.

Exercise 38.4: Show that the SU(5) antisymmetric tensor representation
10 has the following decomposition

10 = (3, 1) + (3, 2) + (1, 1),

and the adjoint representation 24 has

24 = (8, 1) + (1, 3) + (1, 1) + (3, 2) + (3, 2).

Also, �nd the decomposition of the symmetric tensor representation 15.

Exercise 38.5: If we neglect Higgs in representation 5, we can write the
potential by the Higgs �eld in the adjoint representation of SU(5), which is
represented as a 5×5 hermitian traceless matrix. Show that at the minimum
of Higgs potential its diagonal elements can take at most three di�erent val-
ues. From this result, discuss the most general form of symmetry breakings
that can be induced by a 24 adjoint Higgs �eld.

Exercise 38.6: For the adjoint representation of the Higgs, H, written as
a 5× 5 traceless hermitian matrix, construct the covariant derivative DνH.
Calculate the mass spectra of the gauge bosons from the covariant derivative
if the vacuum expectation value is given by ⟨H⟩ = v diag(2, 2, 2,−3,−3).



Chapter 39

SO(10) GUT

The next simple Lie group which contains the standard model is

SO(10) ⊃ SU(5) ⊃ SU(3)× SU(2)× U(1) . (39.1)

Here, the uni�cation of matter is even more complete, since the irreducible
spinor representation 16 contains both the 5 and 10 of SU(5) and a right-
handed neutrino, and thus the complete particle content of one generation
of the extended SM with neutrino masses. This is already the largest simple
group which achieves the uni�cation of matter in a scheme involving only
the already known matter particles (apart from the Higgs sector).

Since di�erent SM fermions are grouped together in larger representations,
GUTs speci�cally predict relations among the fermion masses, such as be-
tween the electron and the down quark, the muon and the strange quark,
and the tau lepton and the bottom quark. Some of these mass relations hold
approximately, but most don't.

The boson matrix for SO(10) is found by taking the 15×15 matrix from the
10+ 5 representation of SU(5) and adding an extra row and column for the
right-handed neutrino. The bosons are found by adding a partner to each of
the 20 charged bosons (2 right-handed W bosons, 6 massive charged gluons
and 12 X/Y type bosons) and adding an extra heavy neutral Z-boson to
make 5 neutral bosons in total. The boson matrix will have a boson or its
new partner in each row and column. These pairs combine to create the
familiar 16-dimensional Dirac spinor matrices of SO(10).

637
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The power of SO(10) is historically well-known. A single spinor represen-
tation 16 contains the 5 and 1 of SU(5) as well as a singlet N , which may
be identi�ed as the right-handed neutrino. The existence of three heavy sin-
glets allows the three known neutrinos to acquire naturally small Majorana
masses through the famous seesaw mechanism, and the decay of the lightest
of them may also generate a lepton asymmetry in the early Universe which
gets converted by sphalerons during the EW phase transition to the present
observed baryon asymmetry of the Universe.

What is new in the past years is the realization of the importance of the
EW Higgs triplet contained in the 126 of SO(10). Whereas the Higgs triplet
under SU(2)R provides N with a heavy Majorana mass, the Higgs triplet
under SU(2)L provides neutrinos with a small Majorana mass. This latter
mechanism is also seesaw in character and may in fact be the dominant
contribution to the observed neutrino mass.

We shall give the physical foundations of SO(10) as a GUT group, starting
from the SM and browsing in a constructive way through the Georgi-Glashow
SU(5) and the left-right symmetric groups such as the Pati-Salam one. This
will o�er us the opportunity to introduce the fundamental concepts of GUTs,
as charge quantization, gauge uni�cation, proton decay and the connection
with neutrino masses in a simpli�ed way.

The SO(10) gauge group as a candidate for the uni�cation of the elementary
interactions was proposed long ago by Georgi and Fritzsch and Minkowski.
The main advantage of SO(10) with respect to SU(5) is that all the known
SM fermions plus three right handed neutrinos �t into three copies of the
16-dimensional spinorial representation of SO(10).

In recent years the �eld received an extra boost due to the discovery of
neutrino masses. While in the SM (and in SU(5)) there is no rationale
for the origin of the small neutrino mass scale, the appeal of SO(10) con-
sists in the predictive connection between the local B − L breaking scale
(constrained by gauge coupling uni�cation somewhat below 1016 GeV) and
neutrino masses around 25 orders of magnitude below. Through the im-
plementation of some variant of the seesaw mechanism the inner structure
of SO(10) and its breaking makes natural the appearance of a small neu-
trino mass scale. This striking connection with neutrino masses is one of the
strongest motivations behind SO(10) and it can be traced back to the left-
right symmetric theories which provide a direct connection of the smallness
of neutrino masses with the non-observation of the V +A interactions.
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39.1 SO(10) Group

SO(10) is the special orthogonal group of rotations in a 10-dimensional vector
space. Here special means detO = +1 which selects the group of transfor-
mations continuously connected with the identity. Representation of SO(10)
is given by the group of matrices O which leave invariant the norm of a 10-
dimentional real vector ϕ. Under O, ϕ → Oϕ and since the norm ϕTϕ is
invariant O must be orthogonal, OOT = 1.

The matrices O may be written in terms of 45 imaginary generators Tij =
−Tji, for i, j = 1, . . . 10, as

O = eϵijTij/2 , (39.2)

where ϵij are the parameters of the transformation. A convenient basis for
the generators is

(Tij)ab = −i
(
δa[iδbj]

)
, (a, b, i, j = 1, .., 10) (39.3)

where the square bracket stands for anti-symmetrization. They satisfy the
SO(10) commutation relations,

[Tij , Tkl] = i(δikTjl + δjlTik − δilTjk − δjkTil) . (39.4)

These are an higher dimensional generalization of the well-known SO(3)
commutation relations

[J1, J2] = i J3 , were Ji ≡ ϵijkTjk . (i, j, k = 1, 2, 3) (39.5)

Then the right hand side of (39.4) takes just into account the antisymmetric
nature of Tij and Tkl.

In oder to study the group theory of SO(10) it is crucial to identify the
invariant tensors. The conditions OOT = 1 and detO = +1 give rise to two
of them.

• The �rst one is simply the Kronecker tensor δij which is easily proven
to be invariant because of OOT = 1, namely

δij → OikOjlδkl = OikOjk = δij . (39.6)
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• The second one is the 10-index Levi-Civita tensor ϵijklmnopqr. Indeed,
from the de�nition of determinant

detO ϵi′j′k′l′m′n′o′p′q′r′ =

= Oi′iOj′jOk′kOl′lOm′mOn′nOo′oOp′pOq′qOr′rϵijklmnopqr (39.7)

and the fact that detO = +1, we conclude that ϵijklmnopqr is also
invariant.

The irreducible representations of SO(10) can be classi�ed into two cate-
gories, single and double valued representations. The single-valued repre-
sentations have the same transformations properties as the ordinary vectors
in the real 10-dimensional space and their symmetrized or antisymmetrized
tensor products. The double-valued representations, called also spinor rep-
resentations, transform like spinors in a 10-dimentional coordinate space.

39.1.1 Tensor Representations

The general n-index irreducible representations of SO(10) are built by means
of the antisymmetrization or symmetrization (including trace subtraction)
of the tensor product of n-fundamental vectors. Starting from the 10-
dimentional fundamental vector ϕi, whose transformation rule is

ϕi → Oijϕj , (39.8)

we can decompose the tensor product of two of them in the following way

ϕi × ϕj =
(ϕi × ϕj − ϕj × ϕi) /2︸ ︷︷ ︸

ϕAij
+
δijϕk × ϕk/10︸ ︷︷ ︸

Sδij
+

+(ϕi × ϕj + ϕj × ϕi) /2− δijϕk × ϕk/10︸ ︷︷ ︸
ϕSij

. (39.9)

Since the symmetry properties of tensors under permutation of the indices
are not changed by the group transformations, the antisymmetric tensor ϕAij
and the symmetric tensor ϕSij clearly do not transform into each other.

In general one can also separate a tensor in a traceless part and a trace.
Because O is orthogonal also the traceless property is preserved by the group
transformations. So we conclude that ϕAij , ϕ

S
ij and Sδij form irreducible
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representations whose dimensions are respectively 10(10−1)/2 = 45, 10(10+
1)/2 − 1 = 54 and 1. One can continue in this way by considering higher
order representations and separating each time the symmetric/antisymmetric
pieces and subtracting traces.

Something special happens for 5-index tensors and the reason has to do with
the existence of the invariant ϵijklmnopqr which induces the following duality
map when applied to a 5-index completely antisymmetric tensor ϕnopqr,

ϕijklm → ϕ̃ijklm ≡ −
i

5!
ϵijklmnopqrϕnopqr . (39.10)

This allows us to de�ne the self-dual and the antiself-dual components of
ϕijklm in the following way

Σijklm ≡
1√
2

(
ϕijklm + ϕ̃ijklm

)
, (39.11)

Σijklm ≡
1√
2

(
ϕijklm − ϕ̃ijklm

)
. (39.12)

One veri�es that Σ̃ijklm = Σijklm (self-dual) and Σ̃ijklm = −Σijklm (antiself-
dual). Since the duality property is not changed by the group transforma-
tions, Σijklm and Σijklm form irreducible representations with the dimension

1

2

10!

5!(10− 5)!
= 126 . (39.13)

39.1.2 Spinor Representations

We have de�ned the SO(10) group by those linear transformations on the
coordinates x1, x2, . . . , x10, such that the quadratic form x21 + x22 + . . .+ x210
is left invariant. If we write this quadratic form as the square of a linear
form of xi's,

x21 + x22 + . . .+ x210 = (γ1x1 + γ2x2 + . . .+ γ10x10)
2 , (39.14)

we have to require
{γi, γj} = 2δij . (39.15)

This goes under the name of Cli�ord algebra and the γ's have to be matrices
in order to anticommute with each other. In particular it can be shown that
the dimension of the γ matrices must be even. Indeed from (39.15) we obtain

γj(γiγj + γjγi) = 2γj or γjγiγj = γi , (39.16)
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with no sum over j. Taking the trace we get

Trγjγiγj = Trγi . (39.17)

But for the case i ̸= j this implies

Trγjγiγj = −Trγiγjγj = −Trγi . (39.18)

Putting together (39.17) and (39.18), we have Trγi = 0.

On the other hand, γ2i = 1 implies that the eigenvalues of γi are either +1 or
−1. This means that to get Trγi = 0, the number of +1 and −1 eigenvalues
must be the same, i.e. γi must be even dimensional.

For de�niteness let us build an explicit representation of the γ's which is
valid for SO(2N) groups. We start with N = 1. Since the Pauli matrices
satisfy the Cli�ord algebra

{σi, σj} = 2δij , (39.19)

we can choose

γ
(1)
1 = σ1 =

(
0 1
1 0

)
and γ

(1)
2 = σ2 =

(
0 −i
i 0

)
. (39.20)

Then the case N > 1 is constructed by recursion. The iteration from N to
N + 1 is de�ned by

γ
(N+1)
i =

(
γ
(N)
i 0

0 −γ(N)
i

)
, (i = 1, 2, . . . , 2N) (39.21)

with

γ
(N+1)
2N+1 =

(
0 1
1 0

)
and γ

(N+1)
2N+2 =

(
0 −i
i 0

)
. (39.22)

Given the fact that the γ(N)
i matrices satisfy the Cli�ord algebra let us check
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explicitly that the γ(N+1)
i ones satisfy it as well,

{
γ
(N+1)
i , γ

(N+1)
j

}
=

 {
γ
(N)
i , γ

(N)
j

}
0

0
{
γ
(N)
j , γ

(N)
i

}  =

=

(
2δij 0
0 2δij

)
= 2δij , (39.23)

{
γ
(N+1)
i , γ

(N+1)
2N+1

}
=

(
0 γ

(N)
i

−γ(N)
i 0

)
+

(
0 −γ(N)

i

γ
(N)
i 0

)
= 0 ,(

γ
(N+1)
2N+1

)2
= 1 .

Analogously one �nds {
γ
(N+1)
i , γ

(N+1)
2N+2

}
= 2δij ,{

γ
(N+1)
2N+1 , γ

(N+1)
2N+2

}
= 0 , (39.24)(

γ
(N+1)
2N+2

)2
= 1 .

Now consider a rotation in the coordinate space, x′i = Oikxk, where O is an
orthogonal matrix. This rotation induces a transformation on the γi matrix

γ′i = Oikγk . (39.25)

Notice that the anticommutation relations remain unchanged, i.e.

{γ′i, γ′j} = OikOjl{γk, γl} = 2δij . (39.26)

Because the original set of γ matrices form a complete matrix algebra, the
new set of γ matrices must be related to the original set by a similarity
transformation,

γ′i = S(O)γiS
−1(O) or Oikγk = S(O)γiS

−1(O) . (39.27)

The correspondence O → S(O) serves as a 2N -dimensional representation of
the rotation group which is called spinor representation. The quantities ψi,
which transform like

ψ′
i = S(O)ijψj , (39.28)

are called spinors. For an in�nitesimal rotation we can parametrize Oik and
S(O) by

Oik = δik + ϵik and S(O) = 1 +
i

2
Sijϵij , (39.29)
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with ϵik = −ϵki. Then (39.27) implies

i [Skl, γi] = (γlδik − γkδil) , (39.30)

where we have used

ϵikγk = ϵlkγkδil =
1

2
(γkδil − γkδjl) . (39.31)

One can verify that a solution for Skl in (39.30) is

Skl =
i

4
[γk, γl] . (39.32)

By expressing the parameter ϵkl in terms of rotations angle, one can see that
S(O(4π)) = 1, i.e. S(O) is a double-valued representation.

This is easily seen for SO(3). In this case the Cli�ord algebra is simply given
by the three Pauli matrices and a �nite transformation looks like

S(O(φ)) = e
i
2
σiφi = cos

|φ|
2

+ i
σiφi
|φ|

sin
|φ|
2
, (39.33)

where we have de�ned

ϵ23 ≡ −φ1 , ϵ13 ≡ −φ2 , ϵ12 ≡ −φ3 , |φ| =
√
φ2
1 + φ2

2 + φ2
3 . (39.34)

However for SO(2N) groups the representation S(O) is not irreducible. To
see this we construct the chiral projector γχ de�ned by

γχ = (−i)Nγ1γ2 · · · γ2N . (39.35)

γχ anticommutes with γi since 2N is even and consequently we get [γχ, Skl] =
0. Thus if ψ transforms as ψ′

i = S(O)ijψj , the positive and negative chiral
components

ψ+ ≡ 1

2
(1 + γχ)ψ and ψ− ≡ 1

2
(1− γχ)ψ (39.36)

transform separately. In other words ψ+ and ψ− form two irreducible spinor
representations of dimension 2N−1.

To �nd the relation between ψ+ and ψ− it is necessary to introduce the con-
cept of conjugation. Let us consider a spinor ψ of SO(2N). The combination
ψTCψ is an SO(2N) invariant provided that

STijC = −CSij . (39.37)
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The conjugation matrix C can be constructed iteratively. We start from
C(1) = iσ2 for N = 1 and de�ne

C(N+1) =

(
0 C(N)

(−)(N+1)C(N) 0

)
. (39.38)

One can verify that

(C(N))−1γTi C
(N) = (−)Nγi . (39.39)

By transposing (39.39) and substituting back γTi we get[
γi, ((C

(N))T )−1C(N)
]
= 0 . (39.40)

Then the Shur's Lemma implies

((C(N))T )−1C(N) = λ I or C(N) = λ(C(N))T , (39.41)

which yields λ2 = 1. In order to choose between λ = +1 and λ = −1 one
has to apply (39.38), obtaining

CT = (−)N(N+1)/2C . (39.42)

On the other hand (39.35) and (39.39) lead to

(C(N))−1γTχC
(N) = (−)Nγχ , (39.43)

which by exploiting γTχ = γχ yields

(C(N))−1γχC
(N) = (−)Nγχ . (39.44)

This allows us to write

(C(N))−1 (Sij(1 + γχ))
∗C(N) = (C(N))−1S∗

ij(1 + γχ)C
(N) =

− Sij
(
1 + (−)Nγχ

)
. (39.45)

where we have also exploited the hermicity of the γ matrices. (39.45) can be
interpreted in the following way: for SO(2N) with N even ψ+ and ψ− are
self-conjugate, i.e. real or pseudo-real depending on whether C is symmetric
or antisymmetric, while for SO(2N) with N odd ψ+ is the conjugate of ψ−.
Thus only SO(4k + 2) can have complex representations and remarkably
SO(10) belong to this class.
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Note a distinctive feature of spinorial representations: spinors of SO(2N)
decompose into the direct sum of spinors of SO(2N ′) ⊂ SO(2N). Indeed,
since the construction of γχ in (39.35) is such that

γ(N+1)
χ =

(
γ
(N)
χ 0

0 −γ(N)
χ

)
, (39.46)

the positive-chirality spinor ψ+ of SO(2N + 2M) contains 2M−1 positive-
chirality spinors and 2M−1 negative-chirality spinors of SO(2N). More ex-
plicitly

ψ+
SO(2N+2M) → ψ+

SO(2N+2M−2) ⊕ ψ−
SO(2N+2M−2)

→ 2× ψ+
SO(2N+2M−4) ⊕ 2× ψ−

SO(2N+2M−4) → · · ·

→ 2M−1 × ψ+
SO(2N) ⊕ 2M−1 × ψ−

SO(2N) . (39.47)

Let us exemplify this important concept in the case of the 16-dimensional
positive-chirality spinor of SO(10). By taking respectively (N = 3,M = 2)
and (N = 2,M = 3) we obtain

• 16 = 2× 4+ ⊕ 2× 4− under SO(10) ⊃ SO(6) ,

• 16 = 4× 2+ ⊕ 4× 2− under SO(10) ⊃ SO(4) ,

where 4+ (4−) and 2+ (2−) are respectively the positive (negative) chi-
ral components of the SO(6) and SO(4) reducible spinors. Thus under
SO(10) ⊃ SO(6)× SO(4) the 16 decomposes as

16 = (4+, 2+)⊕ (4−, 2−) . (39.48)

The Lie algebras SO(6) and SO(4) are isomorphic to SU(4) and SU(2) ×
SU(2). This allows us to make the following identi�cations between the
SO(6) and SU(4) representations

4+ ∼ 4 , 4− ∼ 4 , (39.49)

and the SO(4) and SU(2)× SU(2) ones

2+ ∼ (2, 1) , 2− ∼ (1, 2) , (39.50)



39.1. SO(10) GROUP 647

which justify the decomposition of the SO(10) spinor under the Pati-Salam
algebra SU(4)C × SU(2)L × SU(2)R, namely

16 = (4, 2, 1)⊕ (4, 1, 2) . (39.51)

This striking group-theoretic feature of spinors, which under the natural re-
striction to an orthogonal subgroup decompose into several copies of identical
spinors of the subgroup, hints to a suggestive connection with the repetitive
structure of the SM families and motivates the study of uni�cation in higher
orthogonal groups than SO(10). To accommodate at least the three ob-
served matter families we must use either SO(16) or SO(18). Following the
decomposition in (39.47) we get

• SO(16): ψ+
SO(16) → 4× ψ+

SO(10) ⊕ 4× ψ−
SO(10) ,

• SO(18): ψ+
SO(18) → 8× ψ+

SO(10) ⊕ 8× ψ−
SO(10) .

However there is a fundamental di�erence between the two cases above.

According to the discussion below (39.45) only SO(4k + 2) groups have
complex spinor representations. This means that one can write a super-
heavy bare mass term for ψ+

SO(16) and it is di�cult to explain why it should

be light. On the other hand no bare mass term can be written for ψ+
SO(18),

making the last group a more natural choice.

The obvious di�culty one encounters in this class of models is the over-
abundance of sequential or mirror families. If we decide to embed the SM
fermions into three copies of ψ+

SO(10), the remaining families in ψ+
SO(10) are

called sequential, while those in ψ−
SO(10) are mirror families.

Mirror fermions have the identical quantum numbers of ordinary fermions
under the SM gauge group, except that they have opposite handedness. They
imply parity restoration at high-energies as proposed long ago by Lee and
Yang. It has been pointed out recently that the existence of three (mirror or
sequential) families is still in accord with the SM, as long as an additional
Higgs doublet is also present. This however is not enough to allow large
orthogonal uni�cation scenarios based on SO(16) or SO(18).
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39.2 Anomaly Cancellation

SO(10) is an anomaly-free group. This important property can be under-
stood from a simple group theoretical argument.

Let us consider the SO(10) generators Tij in a given arbitrary representation.
Tij transforms like an antisymmetric tensor in the indices i and j. Then the
anomaly, which is proportional to the invariant tensor

Tr{Tij , Tkl}Tmn , (39.52)

must be a linear combination of a product of Kronecker δ's.

Furthermore it must be antisymmetric under the exchanges i ↔ j, k ↔ l,
m ↔ n and symmetric under the exchange of pairs ij ↔ kl, kl ↔ mn and
ij ↔ mn. However the most general form consistent with the antisymmetry
in i↔ j, k ↔ l, m↔ n

δjkδlmδni − δikδlmδnj − δjlδkmδni + δilδkmδnj −
−δjkδlnδmi + δikδlnδmj + δjlδknδmi − δilδknδmj , (39.53)

is antisymmetric in ij ↔ kl as well and so it must vanish. The proof fails
for SO(6) where the anomaly can be proportional to the invariant tensor
ϵijklmn. Actually this is consistent with the fact that SO(6) is isomorphic to
SU(4) which is clearly an anomalous group. On the other hand SO(N) is
safe for N > 6.

39.3 The SM Embedding

From the SO(10) commutation relations in (39.4) we �nd that a complete
set of simultaneously commuting generators can be chosen as

T12 , T34 , T56 , T78 , T90 . (39.54)

This is also known as the Cartan subalgebra and can be spanned over the
left-right group Cartan generators

T 3
C , T 8

C , T 3
L , T 3

R , TB−L . (39.55)

Let us consider the SO(4) × SO(6) maximal subalgebra of SO(10). We
can span the SO(4) generators over Tij with i, j = 1, 2, 3, 4 and the SO(6)
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generators over Tij with i, j = 5, 6, 7, 8, 9, 10. From the SO(10) commutation
relations in (39.4) one can verify that these two sets commute, hence the
direct product SO(4)× SO(6).

The next information we need is the notion of local isomorphism for the
algebras

SO(4) ∼ SU(2)× SU(2) , SO(6) ∼ SU(4) . (39.56)

In the SO(4) case we de�ne

T 1
L,R ≡

T23 ± T14
2

, T 2
L,R ≡

T31 ± T24
2

, T 3
L,R ≡

T12 ± T34
2

, (39.57)

and check by an explicit calculation that[
T iL, T

j
L

]
= i ϵijkT kL ,

[
T iR, T

j
R

]
= i ϵijkT kR ,

[
T iL, T

j
R

]
= 0 . (39.58)

Thus T iL and T iR (i = 1, 2, 3) span respectively the SU(2)L and the SU(2)R
algebra. On the other hand for the SO(6) sector we de�ne

T 1
C ≡

T89 + T70
2

, T 2
C ≡

T97 + T80
2

, T 3
C ≡

T09 + T87
2

,

T 4
C ≡

T96 + T05
2

, T 5
C ≡

T59 + T06
2

, T 6
C ≡

T67 + T85
2

,

T 7
C ≡

T75 + T86
2

, T 8
C ≡

2T65 + T78 + T09

2
√
3

, T 9
C ≡

T67 + T58
2

, (39.59)

T 10
C ≡

T75 + T68
2

, T 11
C ≡

T69 + T05
2

, T 12
C ≡

T95 + T06
2

,

T 13
C ≡

T89 + T07
2

, T 14
C ≡

T97 + T08
2

, T 15
C ≡

T65 + T87 + T90√
6

,

and verify after a tedious calculation that[
T iC , T

j
C

]
= i f ijkT kC , (39.60)

where f ijk are the structure constants of SU(4). Thus T iC (i = 1, . . . , 15)
spans the SU(4)C algebra and, in particular, the SU(3)C subalgebra is
spanned by T iC (i = 1, . . . , 8) while T 15

C can be identi�ed with the (normal-
ized) TB−L generator. Then the hypercharge and electric charge operators
read respectively

Y = T 3
R +

√
2

3
TB−L =

1

2
(T12 − T34) +

1

3
(T65 + T87 + T90) (39.61)

and
Q = T 3

L + Y = T12 +
1

3
(T65 + T87 + T90) . (39.62)
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39.4 The Higgs Sector

As we have seen above SO(10) o�ers a powerful organizing principle for the
SM matter content whose quantum numbers nicely �t in a 16-dimensional
spinorial representation. However there is an obvious prize to pay: the
more one uni�es the more one has to work in order to break the enhanced
symmetry.

The symmetry breaking sector can be regarded as the most arbitrary and
challenging aspect of GUT models. The standard approach is based on the
SSB through elementary scalars. Though other ways to face the problem
may be conceived the Higgs mechanism remains the most solid one in terms
of computability and predictivity. Establishing the minimal Higgs content
needed for the GUT breaking is a basic question which has been addressed
since the early days of the GUT program.

The �gure below shows SO(10) breaking chart with representations up to
the 210.

In this �gure it is indicated the possible symmetry stages between SO(10)
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and SU(3)C×U(1)Q with the corresponding scalar representations responsi-
ble for the breaking. That gives an idea of the complexity of the Higgs sector
in SO(10) GUTs. SU(5)× U(1)X can be understood either in the standard
or in the �ipped realization. In the former case 16 or 126 breaks it into
SU(5), while in the latter into SU(3)C × SU(2)L × U(1)Y . For simplicity
we are neglecting the distinctions due to the discrete left-right symmetry.

In view of such a degree of complexity, better we start by considering a min-
imal Higgs sector. Let us stress that the quest for the simplest Higgs sector
is driven not only by aesthetic criteria but it is also a phenomenologically
relevant issue related to tractability and predictivity of the models.

Indeed, the details of the symmetry breaking pattern, sometimes overlooked
in the phenomenological analysis, give further constraints on the low-energy
observables such as the proton decay and the e�ective SM �avor structure.
For instance in order to assess quantitatively the constraints imposed by
gauge coupling uni�cation on the mass of the lepto-quarks resposible for
proton decay it is crucial to have the scalar spectrum under control.

From the breaking chart we conclude that, before considering any symmetry
breaking dynamics, the following representations are required by the group
theory in order to achieve a full breaking of SO(10) down to the SM:

• 16H or 126H : they reduce the rank by one unit but leave an SU(5)
little group unbroken;

• 45H or 54H or 210H : they admit for little groups di�erent from SU(5)⊗
U(1), yielding the SM when intersected with SU(5).

It should be also mentioned that a one-step SO(10) → SM breaking can
be achieved via only one 144H irreducible Higgs representation. However,
such a setting requires an extended matter sector, including 45F and 120F
multiplets, in order to accommodate realistic fermion masses.

The dynamics of the SSB imposes further constraints on the viability of the
options showed in the chart. On top of that one has to take into account
also other phenomenological constraints due to the uni�cation pattern, the
proton decay and the SM fermion spectrum. While the choice between 16H
or 126H is a model dependent issue related to the details of the Yukawa
sector, the simplest option among 45H , 54H and 210H is certainly given by
the adjoint 45H .
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However, since the early 80's, it has been observed that the vacuum dynamics
aligns the adjoint along an SU(5) × U(1) direction, making the choice of
16H (or 126H) and 45H alone not phenomenologically viable. In the non-
SUSY case the alignment is only approximate. but it is such to clash with
uni�cation constraints which do not allow for any SU(5)-like intermediate
stage, while in the SUSY limit the alignment is exact due to F -�atness, thus
never landing to a supersymmetric SM vacuum.

Exercise 39.1: Write in�nitesimal SO(10) transformations for two sets of
scalar �elds in the vector representations of SO(10) and construct the co-
variant derivative for one of them.

Exercise 39.2: Show that in the group SO(n) with either even n = 2m or
odd n = 2m+ 1, we can �nd m mutually commuting generators.

Exercise 39.3: Consider the n-dimensional real space. Show that if we
write the quadratic form of this space as the square of a linear form, then the
coe�cient of the coordinates in this expression satisfy the anticommutation
relation, which is usually referred to as the Cl�rd algebra. Show also that
if we take this coe�cients to be hermitian matrices, then they have to be
even-dimensional matrices.

Exercise 39.4: Show that the SU(5) is a subgroup of SO(10).

Exercise 39.5: Show that under SU(5), the spinor representation S+ = 16
of SO(10) reduces as 16 = 10 + 5 + 1.
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In any case the days of SM are coming to an end in some sense! Hopefully it
will be the case of "The King is dead" and "Long live the King"! We have,
however, not much idea what particular Beyond the SM (BSM) option, if
any, would be the new king. As we have discussed in these lectures, already
the mass of the observed states of SM particles can be used to answer the
question about the scale up to which the SM is valid. In fact, this has been
one of the most impressive facts about the SM. It has held the ability to ask
and answer questions about its own consistency within its structure. Just
like the gauge principle and the unitarity were the guiding principle so far,
now the small mass of the discovered Higgs (∼ O weak scale) might be the
guiding principle for future theoretical developments! We should get a peek
at the BSM land through the "window" of measurement of the properties of
the Higgs and the top quark!

Exciting days are ahead for sure! If LHC will fail to �nd direct evidence
for the BSM physics we would really have to understand what is so special
about the SM. Precision measurements of the observed Higgs mass and Higgs
couplings will be then our window to this world of physics beyond the SM.

String Theory or an Extra Dimension Model, if true, must be able to repro-
duce the same general framework we have seen so far. But, String Theory is
fundamentally a geometric construct and will reproduce everything we have
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seen about gauge theory, but from a geometric framework. This should not
be entirely foreign, though. Recall that, for electromagnetism, the gauge
group is U(1). We can "draw" this geometrically as a circle in the complex
plane. The Weak force is represented by the gauge group SU(2), which we
have seen is parameterized by three numbers, and therefore has three gener-
ators. As we discussed in these lectures, we should think of these spaces as
vector spaces and the generators as basis vectors spanning the entire space.
The same is true of SU(3), though it is an eight-dimensional space. So,
because there is a space associated with each of these groups, it should be
somewhat obvious that there is a natural geometric picture associated with
a Lie group.

While the idea of the parameter space of a Lie group having a geometric
picture associated with it may seem straightforward, the geometry under-
girding gauge theory can be extremely complicated, and we therefore must
spend a signi�cant amount of time investigating it. Just as we have built
gauge theory from algebra, we will in a sense start over and rebuild it using
geometry.

When we �nally get to String and Extra Dimensional Theories, we will see
that the geometric and algebraic pictures come together beautifully, and that
a thorough understanding of both will be necessary to understand what may
be the "ultimate" theory of our universe.


