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Chapter 1

Introduction

Integrable models are crucial for modern theoretical and mathematical physics. Due to the fact

that different physical phenomena can have similar mathematical description, exactly solvable

models can be used in many different areas. One can see that using these models huge amount of

(both macroscopic and microscopic) physical phenomena can be described. Moreover integrable

models can have applications even in other disciplines, due to the fact that system of integrable

differential equations arise in other subjects e.g. mathematics, computer science, biology etc.

The thesis is devoted to superintegrable extensions of oscillator and Coulomb models with an

inverse square potential. Integrable models with inverse square potential are studied for few

decades. Due to this fact they are well studied and there are many important results about

these systems. Namely the Calogero-model has unique properties and due to that nowadays

this is an important system in mathematical physics. On the other hand projective spaces have

also interesting properties . Due to the fact that they are maximally symmetric spaces it is

important to consider physical systems on these spaces. Unfortunately these two branches of

mathematical physics are disconnected now. Complex analogs of Calogero model are not studied

well and attempts to construct complexification of Calogero-like models haven’t succeeded yet.

Possible applications of this work should be highlighted. Namely in condensed matter

physics models on complex projective spaces are strongly related with the quantum Hall effect.

In High energy physics their role cannot be overestimated. These systems can be viewed as
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simplified toy models for field theoretical complicated models in high energy research. Our

particular example of Calogero model is an example of conformal mechanics. It is well known

that conformal symmetry has a crucial role in modern high energy research. In this context

supersymmetrization of these systems is also important. Moreover Calogero-like models are

strongly related with AdS2/CFT1 correspondence [6]. Particularly four-dimensional Hall effect

can be related with the systems in CP3 [7].

This chapter is devoted to the basic introductory information about Hamiltonian formalism,

Kähler manifolds, and supersymmetric mechanics, which is widely used in the current work.

In Section 1.1 we discuss the basic examples of maximally superintegrable models (oscillator,

Coulomb). Then we consider the Hamiltonian approach for the interaction with an external

magnetic field. Finally we present important information about action-angle variables.

In Section 1.2 we present information about Kähler manifolds and consider the examples of

maximally symmetric Kähler spaces which will be used in the next parts.

In Section 1.3 We focus on the Hamiltonian approach for the supersymmetric classical

mechanics, since the last chapter of this thesis is devoted to that subject.

The second chapter of this thesis is based on the three articles [1, 2, 3]. The material of

the third chapter can be found in [4]. The fourth and the fifth parts are based on [5] and

on another paper which is in progress and will be published soon and is done with coauthors

Armen Nersessian, Evgeny Ivanov and Stepan Sidorov .

1.1 INTEGRABILITY AND HAMILTONIAN

MECHANICS

N -dimensional mechanical system (system with N degrees of freedom) will be called, integrable

if it has N mutually commuting and functionally independent constants of motion[8, 9]. In
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addition to these constants of motion the system can have additional ones. In that case we will

say that the system is superintegrable. Particularly if N -dimensional mechanical system has

2N−1 functionally independent constants of motion it will be called maximally superintegrable.

In case the system has N+1 conserved quantities it is called minimally superintegrable. While

integrable models possess separation of variables in one coordinate system, superintegrability

guarantees separation of variables in many coordinate systems. For example two-dimensional

oscillator is superintegrable, which allows us to separate variables in Cartesian and polar coordi-

nates. In classical mechanics maximal superintegrability guarantees the closeness of trajectories.

Quantum mechanically energy spectrum of integrable models depend on N quantum numbers.

If the system has K additional conserved quantities (superintegrable) energy spectrum depends

on N−K quantum numbers. For maximal superintegrability we have that the energy spectrum

contains only one quantum number. So we can conclude that superintegrability leads to degen-

eracy of energy spectrum in quantum level. Well known examples of maximally superintegrable

models are N -dimensional Coulomb system and N -dimensional harmonic oscillator. Another

important but recently discovered model is the Calogero model which is discussed in this thesis

later.

1.1.1 OSCILLATOR

Harmonic oscillator is well known and maybe the most important example of a maximally su-

perintegrable model [10]. Due to its simplicity and unique properties it plays a crucial role in

all areas of modern physics. Techniques developed for harmonic oscillator can be used in all

areas of physics, e. g. in condensed matter physics and quantum field theory. There are several

extensions and generalizations of harmonic oscillator, namely non -harmonic oscillator, oscil-

lator with additional potential. In current work oscillator is the key system. We will consider
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superintegrable generalizations of oscillator in curved spaces, for instance on spherical and pseu-

dospherical spaces, Euclidean and projective complex manifolds. Extensions with additional

potential will also be discussed, namely we will focus on superintegrable generalizations with

an inverse square potential. Before discussing this generalizations it is important to discuss the

standard harmonic oscillator.

N -dimensional harmonic oscillator is the system with quadratic potential and standard

Poisson brackets.

H =
N∑
i=1

p2
i

2
+
ω2x2

i

2
, {pi, xj} = δij, {pi, pj} = {xi, xj} = 0 (1.1)

Since the system has rotational symmetry angular momentum is conserved. As is known

the symmetry these conserved quantities is SO(N).

Lij = pixj − pjxi, {Lij, Lkl} = δilLkj − δkjLil + δjlLik − δikLjl (1.2)

Moreover oscillator has additional conserved quantities quadratic on momenta

Iij = pipj + ω2xixj (1.3)

This is the so called Fradkin tensor and together with angular momentum the system of con-

served quantities of harmonic oscillator has U(N) symmetry. We have to highlight that there

are functional relations between these conserved quantities and due to that the number of

functionally independent conserved quantities is 2N − 1. U(N) symmetry is more obvious

if we introduce complex quantities, which can be viewed as classical analog of creation and

annihilation operators.

u =
pi + ixi√

2
, ū =

pi − ixi√
2

, {ūi, uj} = iδij (1.4)

In these coordinates Hamiltonian will have manifest U(N) invariance and we can write down

conserved quantities as generators of this symmetry.

H =
N∑
i=1

uiūi, Mij = uiūj (1.5)
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Energy spectrum can be written down and as was mentioned it depends only one quantum

number (n) [11].

E = ~ω(n+
N

2
) (1.6)

1.1.2 COULOMB PROBLEM

Coulomb problem is another well known example of superintegrable model. It plays an impor-

tant role in celestial mechanics and that’s why it is known for few centuries. Symmetries of

this system are also known for centuries namely the angular momentum conservation (Kepler’s

second law) and Laplace-Runge-Lenz or simply Runge-Lenz vector conservation. In this thesis

we again consider superintegrable extensions of a Coulomb system on spherical and pseudo-

spherical spaces with an inverse square potential. Investigation of complex generalizations of

Coulomb system is quite challenging and are not discussed by us, since Coulomb problem has

orthogonal symmetries, while complex structure requires unitary symmetry.

The Hamiltonian of N-dimensional Coulomb problem is as follows

H =
N∑
i=1

p2
i

2
− γ

r
, r =

√∑
i

x2
i (1.7)

Poisson brackets are the same as given in(1.1). Again we have SO(N) rotational symmetry

and due to that angular momentum is a conserved quantity.

Lij = pixj − pjxi, {Lij, Lkl} = δilLkj − δkjLil + δjlLik − δikLjl (1.8)

We have additional constants of motion, which is called Runge-Lenz vector

Ai = Lijpj +
γxi
r

(1.9)

Together with angular momentum the system of conserved quantities has SO(N+1) symmetry

[12]. N -dimensional Coulomb problem can be obtained via reduction from free particle moving

11



on N + 1 dimensional sphere Since the symmetry of this system is obviously SO(N + 1), the

symmetry of N -dimensional Coulomb problem is not surprising.

Again the number of independent constants of motion is 2N − 1. So the N -dimensional

Coulomb system is maximally superintegrable. So the energy spectrum depends on one quan-

tum number

E = − γ

2~2(n+ N−3
2

)2
(1.10)

1.1.3 INTERACTION WITH EXTERNAL MAGNETIC FIELD

In this chapter we see that in many cases inclusion of an external constant magnetic field

does not violate integrability properties. For this purpose we can discuss the Hamiltonian

approach for systems interacting with an external magnetic field. Hamiltonian formalism allows

to introduce magnetic field without changing the form of the Hamiltonian. The price we pay

is the modification of the symplectic structure [13]. Here we consider this approach and from

now on we will introduce magnetic field via modification of the basic Poisson brackets.

Consider particle moving on N -dimensional Riemannian manifold. Hamiltonian and basic

non-zero Poisson brackets are as follows.

H =
1

2
gabpapb + U(q), {pa, qb} = δba (1.11)

One can additionally include an external magnetic field. As is known this interaction modifies

the momenta (minimal coupling)

H =
1

2
gab(pa − Aa)(pb − Ab) + U(q), (1.12)

where Aa is the magnetic vector potential. It is worth to mention that although for general

Riemannian manifold with non-trivial topology introduction of magnetic potential is not pos-

sible globally, it is at least possible locally (for a chosen chart). We can redefine momenta and
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introduce new (non-canonical) ones πa = pa − Aa. In terms of these momenta Hamiltonian

will have the usual form, but the basic Poisson brackets i. e. the symplectic structure will be

modified.

H =
1

2
gabπaπb + U(q), {πa, qb} = δba, {πa, πb} = Fab (1.13)

where Fab consists of the components of magnetic strength.

Fab = ∂aAb − ∂bAa (1.14)

1.1.4 ACTION-ANGLE VARIABLES

As was mentioned integrable system has N functionally independent constants of motion. In

this case we can choose these variables to be canonical momenta. They will be called action

variables. Moreover one can compute canonically conjugate coordinates corresponding to these

variables, which will be called angle variables. This approach is very important in the theory

of integrability and it is one of the most effective ways to deal with integrable models. After

change of variables it is obvious that Hamiltonian will also depend only on action variables,

because it for closed systems Hamiltonian is always a conserved quantity and so there is a

functional relation between action variables and the Hamiltonian. So the angle variable in this

context is cyclic. It is important to highlight that action angle variables are highly effective

even for exactly solvable field theories, such as sin-Gordon theory and non-linear Schrödinger

equation [14]. On the other hand quantum mechanically these variables can be used in Bohr-

Sommerfeld quantization. Moreover due to the adiabatic invariance these variables can be used

in perturbation theory if one considers system which is a small perturbation on an integrable

system. Another crucial fact about these variables is that they can indicate whether two

integrable models are equivalent or not.
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Now let us discuss another important result related to the action angle variables, namely

the Arnold-Liouville theorem [8] . Suppose that we have an integrable system and we fixed

the conserved quantities. Then on a phase space the motion is restricted on an N -dimensional

manifold (M). If this manifold is connected than it is diffeomorphic to , M ∼= Rp × T q where

p+q = N and p is the number of non-compact coordinates, while q is to the compact coordinates.

We will manly focus on compact motion so we can write that the manifold is diffeomorphic to

the N -dimensional torus M ∼= TN . This theorem can be viewed as a geometric interpretation

of action angle variables. Action variables can be viewed as the conserved quantities which are

fixed, while the angle variables are the coordinates on the torus. In this context these mutually

commuting constants of motion are sometimes called Liouville integrals of motion. In this

context superintegrability also has an interesting geometrical interpretation. Each additional

constant of motion puts restriction an the torus and reduces the dimensionality by one. Incase

of the maximal superintagrability we have that the dimension of the N -dimensional torus is

reduced by N−1 and consequently it is diffeomorphic to S1, since it is the only one-dimensional

compact manifold. This corresponds to closeness of the classical trajectory. Action and angle

variables can be found via computing the following relations

Ia =
1

2π

∮
padqa, Φa =

∂S

∂Ia
(1.15)

As was mentioned they are canonically conjugated ({Ia,Φa} = δab) and due to that canonical

quantization is straightforward [15]

ÎaΨa(Φ) = IaΨΦ, Îa = −i~ ∂

∂Φa

, Ψ =
1

(2π)N/2
e−inaΦa , Ia = ~na (1.16)

It will be beneficial to briefly consider the simplest example of one-dimensional oscillator.

Hamiltonian can be chosen as an action variable, so the energy levels will correspond to M . It is

obvious that energy levels on the space correspond are circles , which can be considered as one-

dimensional torus (T 1 = S1). Quantum mechanically solution in energy picture corresponds to

canonical quantization via action angle variables (1.16).
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1.2 KÄHLER MANIFOLDS

Kähler manifolds play an important role in modern theoretical physics and mathematics [13, 16,

18]. In algebraic geometry a class of algebraic varieties are Kähler manifolds. In supersymmetry

the target space can be sometimes viewed as a Kähler manifold. Moreover, in string theory

some compactification schemes are based on Kähler manifolds , e.g Calabi-Yau manifolds is

a compact Kähler manifold with vanishing first Chern class, that is also Ricci flat. We will

mainly focus on the role of Kähler spaces in Hamiltonian mechanics. Kähler manifolds have

three mutually compatible structures, namely complex structure, Riemannian structure and

symplectic structure. Kähler manifold is a private case of more general Hermitian manifold

(gab̄dz
adz̄b). For any Hermitian metric one can define a 2-form

ω = igab̄dz
a ∧ dz̄b (1.17)

This 2-form is called a fundamental form. Hermitian manifold is called Kähler if this 2-form is

symplectic (closed and non-degenerate). This requirement is quite restrictive and due to that

Kähler metric can be written as a second derivative of a function called Kähler potential.

gab̄ =
∂2K(z, z̄)

∂za∂z̄b
(1.18)

It is worth to mention that this function is not uniquely determined and one can add holomor-

phic or antiholomorphic function to it.

Due to the symplectic structure Kähler manifolds have natural symplectic structure and

can be equipped with Poisson brackets.

{f, g}0 = igab̄
( ∂f
∂za

∂g

∂z̄b
− ∂g

∂za
∂f

∂z̄b

)
, gab̄gb̄c = δac (1.19)
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Since the symplectic structure relates functions (Hamiltonian) and vector fields (Hamiltonian

vector fields), we can introduce functions, which generate Killing vector fields.

Vµ = {hµ, }0 = V a
µ

∂

∂za
+ V̄ ā

µ

∂

∂z̄a
, V a

µ = −igab̄∂b̄hµ (1.20)

Such functions will be called Killing potentials. Using Killing Equations one can derive re-

strictions on Killing potentials. They should be real and they have to fulfill the following

equation.

∂2hµ

∂za∂zb
− Γcab

∂hµ
∂zc

= 0 (1.21)

These functions are extremely useful for studying systems on Kähler manifolds in presence

of a constant magnetic field. Due to the fact that any 2-form is closed in two (real) dimensions,

one-dimensional orientable complex manifold (Riemann surface) can always be equipped with a

Kähler structure. Many components of the Christoffel symbols and Riemann tensor will vanish.

Γabc = gad̄gbd̄,c, Ra
bcd̄ = −(Γabc),d̄ (1.22)

In this thesis some superintegrable models on maximally symmetric Kähler manifolds are

discussed, namely on CN (complex Euclidean space) and CPN (complex projective space)

1.2.1 CN AS A KÄHLER MANIFOLD

The metric of the N-dimensional complex Euclidean space is well known.

ds2 = dzdz̄, gab̄ = δab̄. (1.23)

It is easy to note the Kähler potential and the symplectic structure is as follows

K(z, z̄) = zz̄, ω = −idz ∧ dz̄, {za, z̄b}0 = iδab̄ (1.24)
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will lead to this well known metric. All the components of Christoffel symbols and Riemann

tensor vanish. Finally we present the results for Killing potentials and corresponding Killing

vector fields.

hab̄ = z̄azb, Vab̄ = −i(zb∂a + z̄a∂b̄) (1.25)

h+
a = z̄a, V−a = −i∂a, h−a = za, V+

a = −i∂ā (1.26)

Vab̄ vector fields generate rotations, while V −a and V +
a are the generators of translation. Al-

though hab̄, h
+
a and h−a are not real, one can take real combinations using these functions. The

number of real Killing potentials is N(2N + 1), so as is mentioned CN is maximally symmetric

space.

1.2.2 CPN AS A KÄHLER MANIFOLD

The N -dimensional complex projective space is a space of complex rays in the (N + 1)-

dimensional complex Euclidian space (CN+1,
∑N

i=0 du
idūi), with ui being homogeneous co-

ordinates of the complex projective space. Equivalently, it can be defined as the quotient

S2N+1/U(1), where S2N+1 is the (2N + 1)-dimensional sphere embedded in CN+1 by the con-

straint
∑N

i=1 u
iūi = 1. One can solve the latter by introducing locally “inhomogeneous” coor-

dinates za(i)

za(i) =
ua

ui
, with a 6= i, ui 6= 0. (1.27)

Hence, the full complex projective space can be covered by N + 1 charts marked by the indices

i = 0, . . . , N , with the following transition functions on the intersection of i-th and j-th charts:

za(i) =
za(j)
zi(j)

. (1.28)
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Let us endow CN+1 with the canonical Poisson brackets {ui, ūj} = ıδij̄, and define, with respect

to them, the u(N + 1) algebra formed by the generators

hij̄ = ūiuj . (1.29)

Reducing the manifold CN+1 by the action of the U(1) group with the generator h0 =
∑N

i=0 u
iūi,

we arrive at the SU(N + 1)-invariant Kaḧler structure defined by the Fubini-Study metrics

gab̄dz
adz̄b =

∂2 log(1 + zz̄)

∂za∂z̄b
dzadz̄b =

dzdz̄

1 + zz̄
− (z̄dz)(zdz̄)

(1 + zz̄)2
, K = log(1 + zz̄). (1.30)

This metrics is obviously invariant under the passing from one chart to another. Hence, we

can omit the indices marking charts and assume, without loss of generality, that we are dealing

with 0-th chart, so that the indices a, b, c run from 1 to N .

Being Kähler manifold, the complex projective space is equipped with the Poisson brackets

{za, z̄b}0 = ıgab̄, where gab̄ = (1 + zz̄)(δab̄ + zaz̄b) is the inverse Fubini-Study metrics. The

su(N + 1) isometry of CPN is generated by the holomorphic Hamiltonian vector fields defined

as the following momentum maps (Killing potentials).

hab̄ =
z̄azb

1 + zz̄
, h−a =

z̄a

1 + zz̄
, h+

a =
za

1 + zz̄
(1.31)

Like for the Euclidean case the number of independent Killing vector fields indicates that this

space is again maximally superintegrable. Finally we can compute the components of Christoffel

symbol and Riemann tensor.

Γabc = −δ
a
b z̄

c + δac z̄
b

1 + zz̄
, Rab̄cd̄ = gab̄gcd̄ + gcb̄gad̄, (1.32)

1.3 SUPERSYMMETRIC MECHANICS

Now we consider the Hamiltonian approach to the classical supersymmetric mechanics. Al-

though initially supersymmetry was introduced in quantum field theory, further development
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of supersymmetry showed that supersymmetric mechanical models themselves are also inter-

esting for modern physics. First of all, since mechanics can be viewed as one-dimensional field

theory this models can be viewed as simple ”toy” models for supersymmetric field theories and

superstring theory. But as is known there is no any evidence for existence of supersymmetry

in high energy physics yet. In contrast to this supersymmety can be found in many physical

quantum mechanical phenomena. For instance, the well known Landau problem can be viewed

as a supersymmetric model [17].

The last chapter of this thesis is devoted to supersymmetric generalizations of some in-

tegrable models on Kähler manifolds so it is useful to present basic information about su-

persymmetric mechanics. It should be highlighted that Kähler structures play crucial role

in supersymmetric field theoretical models and for instance supersymmetric Lagrangians can

be composed out of chiral superfields using the Kähler potential[18]. First of all we should

extend the notion of Poisson brackets for odd Grassmann quantities. This structure will be

called supersymplectic structure. First of all Poisson brackets for two odd-Grassmann quanti-

ties is symmetric and is analogous to anticommutator for operators in quantum mechanics[13].

Moreover Jacobi identity must be also extended.

{f (a), g(b)} = −(−1)ab{g(b), f (a)} (1.33)

(−1)ac{f (a), {g(b), h(c)}}+ (−1)ab{g(b), {h(c), f (a)}}+ (−1)bc{h(c), {f (a), g(b)}} = 0 (1.34)

where a, b, c take values 0 for even Grassmann variables and 1 for odd Grassmann variables.

So we say that we have N = n supersymmetric mechanics if there exist n odd-Grassmann

variables Qi (supercharges), which satisfy the following relation

{Qi, Qi} = δijH, {Qi, H} = 0 (1.35)

Since the field theoretical context is that here we deal with a one-dimensional field theory

our superspace consists of time and Grassmann variables (t, θi) , which can be called supertime.

It is obvious that this supersymmetry will be the N = n, d = 1 SuperPoincare algebra.
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Consider the simplest example, namely the N = 1 supersymmetric mechanics. In this case

any odd Grassmann variable can be chosen and its square can be identified with the Hamiltonian

Since this case is quite trivial, it is not very interesting.

The next example is N = 2 supersymmetric mechanics. In this case supercharges can be

redefined (Q± = (Q1 ± iQ2)/
√

2) and the supersymmetric algebra will have the following form

{Q+, Q−} = H, {Q+, Q+} = {Q−, Q−} = 0 (1.36)

One can see that, if we discuss particle on a Riemannian manifold, supercharges and the

symplectic structure can be chosen in the following form

Q± = (pa ± iW,a)η
a
±, ω = dpa ∧ dxa +

1

2
Rabcdη

a
+η

b
−dx

c ∧ dxd + gabDη
a
+ ∧Dηb− (1.37)

where Dηa± = dηa±+Γabcη
b
±dx

c and W is called superpotential. One can compte the Hamiltonian

H =
1

2
gab(papb +W,aW,b) +Wa;bη

a
+η

b
− +Rabcdη

a
−η

b
+η

c
−η

d
+ (1.38)

We should highlight that introduction of the external magnetic field breaks the standard N = 2

supersymmetry and later we will call this ”weak” supersymmetry.

{Q+, Q−} = H + iFabη
a
+η

b
−, {Q±, Q±} = Fabη

a
±η

b
± (1.39)

The last part of this thesis is devoted to discussion of higher supersymmetries (N > 2).
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Chapter 2

Deformations of oscillator/Coulomb

systems (holomorphic factorization)

2.1 INTRODUCTION

This chapter is based on three papers[1, 2, 3] written with Armen Nersessian and Tigran

Hakobyan.

The N -dimensional oscillator and Coulomb problem play special role among other integrable

systems by many reasons. One of the main reasons, due to which these models continue

to attract permanent interest during the last centuries, is their maximal superintegrability.

Another important example of superintegrable system is Calogero model. The rational Calogero

model and its generalizations, based on arbitrary Coxeter root systems, are highlighted among

the non-trivial unbound superintegrable systems. This property was established for the classical

[19, 20, 21] and quantum [22, 23] rational Calogero model, which is described by the Hamiltonian

[24, 25]

H0 =
N∑
i=1

p2
i

2
+
∑
i<j

g2

(xi − xj)2
. (2.1)
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Its generalization, associated with an arbitrary finite Coxeter group, is defined by the Hamil-

tonian [20, 21]

H0 =
N∑
i=1

p2
i

2
+
∑
α∈R+

g2
α(α · α)

2(α · x)2
. (2.2)

Let us mention that the Coxeter group is described as a finite group generated by a set of orthog-

onal reflections across the hyperplanes α · x = 0 in the N -dimensional Euclidean space,where

the vectors α from the set R+ (called the system of positive roots) uniquely characterize the

reflections. The coupling constants gα form a reflection-invariant discrete function. The original

Calogero potential in (2.1) corresponds to the AN−1 Coxeter system with the positive roots,

defined in terms of the standard basis by αij = ei − ej for i < j. The reflections become the

coordinate permutations in this particular case.

The oscillator and Coulomb systems admit obvious separation of the radial and angular

variables, which is useful to formulate in terms of conformal algebra so(1, 2) ≡ sl(2,R) defined

by the following Poisson bracket relations

{H0,D} = 2H0, {H0,K} = D, {K,D} = −2K. (2.3)

The generators H0,K,D could be identified, respectively, with the Hamiltonian of some N -

dimensional mechanical system, and with the generators of conformal boost and dilatation.This

system is usually called ”conformal mechanics”, and so(1, 2) symmetry appears as its dynamical

symmetry [27]. Introduce the effective ”radius” and conjugated momentum,

r =
√

2K, pr =
D√
2K

, {pr, r} = 1, (2.4)

and define a Casimir of conformal algebra

I = 2H0K −
1

2
D2 : {I,H0} = {I,K} = {I,D} = 0. (2.5)

It is obviously a constant of motion independent on radial coordinate and momentum, and thus

could be expressed via appropriate angular coordinates φa and canonically conjugate momenta

πa which are independent on radial ones: I = I(φa, πa). In these terms the generators of

conformal algebra read:

H0 =
p2
r

2
+
I
r2
, D = rpr, K =

r2

2
. (2.6)
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Hence, such a separation of angular and radial parts could be defined for any system with dy-

namical conformal symmetry, and for those with additional potentials be function of conformal

boost K. In particular, such a generalized oscillator and Coulomb systems assume adding of

potential

Vosc = ω2K, VCoul = − γ√
2K

, (2.7)

so that their Hamiltonian takes the form

Hosc/Coul =
p2
r

2
+
I
r2

+ Vosc/Coul(r). (2.8)

Well-known generalizations of oscillator and Coulomb systems to N -dimensional spheres and

two-sheet hyperboloids (pseudospheres) [28, 29] can be described in a similar way.

In Refs. [30, 31] a separation of ”radial” and ”angular” variables has been used for construct-

ing the integrable deformations of oscillator and Coulomb systems (and of their (pseudo)spherical

generalizations) via replacement of the spherical part of pure oscillator/Coulomb Hamiltonians

(quadratic casimir of SO(N) algebra) by some other integrable system formulated in terms of

the action-angle variables. Analyzing these deformations in terms of action-angle variables, it

was found that they are superintagrable iff the spherical part has the form

I =
1

2

(
N−1∑
a=1

kaIa + c0

)2

(2.9)

with c0 be arbitrary constant and ka be rational numbers. Moreover, it was demonstrated, by

the use of the results of Ref. [32], that the angular part of rational Calogero model belongs to

this set of systems. Thus, it was concluded that rational Calogero model with Coulomb poten-

tial (Calogero-Coulomb system) is superintegrable system. Besides, superintegrable generaliza-

tions of the rational Calogero models with oscillator/Coulomb potentials on the N -dimensional

spheres and two-sheet hyperboloids have been suggested there. The explicit expressions of their

symmetry generators and respective algebras have been given in Refs. [33, 80, 81]. An inte-

grable two-center generalization of the Calogero-Coulomb systems (and those in the presence

of Stark term, which was called Calogero-Coulomb-Stark model) has been also revealed [34].

The goal of this chapter is to present ”holomorphic factorization” to the superintegrable

generalizations of oscillator and Coulomb systems on N -dimensional Euclidean space, sphere
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and two-sheet hyperboloid (pseudosphere). For this purpose we parameterize the phase spaces

of that system by the complex variable Z = pr + ı
√

2I/r identifying the radial phase subspace

with the Klein model of Lobachevsky plane, and by the complex variables ua =
√
Iae

ıΦa unifying

action-angle variables of the angular part of the systems. We formulate, in these terms, the

constants of motion of the systems under consideration and calculate their algebra. Besides,

we extend to these systems the known oscillator-Coulomb duality transformation.

This chapter is organized as follows:

In Section 2.2 we review the classical properties of Tremblay-Turbiner-Winternitz and Post-

Wintenitz systems and their relation with N -dimensional rational Calogero model with oscil-

lator and Coulomb potentials, paying special attention to their hidden symmetries. Then we

show that combining the radial coordinate and momentum in a single complex coordinate in

proper way, we get an elegant description for the hidden and dynamical symmetries in these

systems related with action-angle variables.

In Section 2.3 we introduce the appropriate complex coordinates unifying radial and angular

variables and formulate the Poisson brackets and generators of conformal algebra in these

terms. Then we give ”holomorphic factorization formulation” of the constants of motion of

higher-dimensional superintegrable conformal mechanics, and calculate their algebra.

In Section 2.4 we formulate in these terms, the higher-dimensional superintegrable gener-

alizations of oscillator and Coulomb systems given by (2.42),(2.9) and calculate the algebra of

their constants of motion.

In Section 2.5 we formulate, in this terms, the well-known oscillator-Coulomb duality trans-

formation.

In Section 2.6 we extend the results of Section 2 to the systems on N -dimensional sphere

and two-sheet hyperboloid (pseudosphere).

Finally, in the Section 2.7 we discuss examples of angular part of these systems.
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2.2 TTW AND PW SYSTEMS

The Trembley-Turbiner-Wintenitz (TTW) system, invented a few years ago [36], is a particular

case of the Calogero-oscillator system. It is defined by the Hamiltonian of two-dimensional

oscillator, with the angular part replaced by a Pöschl-Teller system on circle:

HTTW =
p2
r

2
+
IPT
r2

+
ω2r2

2
, (2.10)

IPT =
p2
ϕ

2
+

k2α2

sin2 kϕ
+

k2β2

cos2 kϕ
, (2.11)

where k is an integer. It coincides with the two-dimensional rational Calogero-oscillator model

associated with the dihedral group D2k [37] and was initially considered as a new superinte-

grable model. The superintegrability was observed by numerical simulations. Later an analytic

expression for the additional constant of motion was presented [38].

The two-dimensional Calogero-Coulomb system, associated with dihedral group, is known

as a Post-Winternitz (PW) system. It was constructed from the TTW system by performing

the well-known Levi-Civita transformation, which maps the two-dimensional oscillator into

the Coulomb problem [39]. The PW system was also suggested as a new (independent from

Calogero) superintegrable model. It is also expressed via the Pöschl-Teller Hamiltonian (2.11),

HPW =
p2
r

2
+
IPT
r2
− γ

r
. (2.12)

In Ref. [40], the superintegrability of the TTW-system was explained from the viewpoint of

action-angle variable formulation, while in Ref. [30], using the same (action-angle) arguments,

the superintegrable generalizations of the TTW and PW systems on sphere and hyperboloid

were suggested. Below we briefly describe the constructions.
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Consider an integrableN -dimensional system with the following Hamiltonian in action-angle

variables:

H = H(nI1 +mI2, I3, . . . , IN), {Ii,Φj} = δij, Φi ∈ [0, 2π), (2.13)

where n and m are integers. The Liouville integrals are expressed via the action variables Ii.

The system has a hidden symmetry, given by the additional constant of motion

Khidden = Re A(Ii)e
ı(mΦ1−nΦ2), (2.14)

where A(Ii) is an arbitrary complex function on Liouville integrals. Respectively, for the Hamil-

tonian

H = H(n1I1 + n2I2 + . . . nNIN), (2.15)

where n1, . . . , nN are integer numbers, all the functions

Kij = Re Aij(I)eı(njΦi−niΦj). (2.16)

are constants of motion, which are distinct from the Liouville integrals. The Liouville integrals

together with the additional integrals Ii i+1 with i = 1, . . . N − 1 constitute a set of 2N − 1

functionally independent constants of motion, ensuring the maximal superintegrability.

In Ref. [30] the integrable deformations of the N -dimensional oscillator and Coulomb sys-

tems have been proposed on Euclidean space, sphere and hyperboloid by replacing their angular

part by an (N − 1)-dimensional integrable system, formulated in action-angle variables:

H =
p2
r

2
+
I(Ia)

r2
+ V (r), {pr, r} = 1, {Ia,Φ0

b} = δab, (2.17)

where a, b = 1, . . . , N − 1 and

Vosc(r) =
ω2r2

2
, VCoulomb(r) = −γ

r
. (2.18)

In other words, we obtain the deformation of the N -dimensional oscillator and Coulomb systems

by replacing the SO(N) quadratic Casimir element J2, which defines the kinetic part of the

system on sphere SN−1, with the Hamiltonian of some (N − 1)-dimensional integrable system

written in terms of the action-angle variables.
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Next we have performed similar analyses for the systems on N -dimensional sphere and (two-

sheet) hyperboloid with the oscillator and Coulomb potentials. These models were introduced,

respectively, by Higgs [28] and Schrödinger [41, 42],

SN : H =
p2
χ

2r2
0

+
I

r2
0 sin2 χ

+ V (tanχ), {pχ, χ} = 1, (2.19)

HN : H =
p2
χ

2r2
0

+
I

r2
0 sinh2 χ

+ V (tanhχ), {pr, r} = 1 (2.20)

with I depending on the (angular) action variables. The exact forms for the potential are:

SN : VHiggs(tanχ) =
r2

0ω
2 tan2 χ

2
, VSch−Coulomb(tanχ) = − γ

r0

cotχ, (2.21)

HN : VHiggs(tanhχ) =
r2

0ω
2 tanh2 χ

2
, VSch−Coulomb(tanhχ) = − γ

r0

cothχ. (2.22)

The following expressions for the Hamiltonians of oscillator-like systems had been derived:

Hosc = Hosc(2Ir +
√

2I) =


ω(2Ir +

√
2I) for RN ,

1
2
(2Iχ +

√
2I + ω)2 − ω2

2
for SN ,

−1
2
(2Iχ +

√
2I − ω)2 + ω2

2
for HN .

(2.23)

Respectively, the Hamiltonians of the Coulomb-like systems read:

HCoulomb = HCoulomb(Ir +
√

2I) =


−γ2

2
(Ir +

√
2I)2 for RN ,

−γ2

2
(Iχ +

√
2I)2 + 1

2
(Iχ +

√
2I)2 for SN ,

−γ2

2
(Iχ −

√
2I)2 − 1

2
(Iχ −

√
2I)2 for HN .

(2.24)

Thus, it is easy to deduce that for the angular Hamiltonian

ISphCalogero =
1

2

(N−1∑
a=1

kaIa + const
)2

, ka ∈ N, (2.25)

the deformations of the oscillator and Coulomb systems become superintegrable. In particular,

the Pöschl-Teller Hamiltonian has the same form [37]:

IPT =
k2(I + α + β)2

2
. (2.26)

Hence, choosing N = 2 and I = IPT , we obtain the generalizations of the TTW and PW

systems on sphere and hyperboloid with additional constants of motion given by

KTTW = Re A(I)eı(kΦr−2Φϕ), KPW = Re A(I)eı(kΦr−Φϕ). (2.27)
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Here Φϕ is the angle variable in the Pöschl-Teller system, and Φr is the angle variable associated

with r and pr. For explicit expressions, see Ref. [30].

Note that the angular part of the N -dimensional rational Calogero model has the form (2.25)

as well. This is a reason for the superintegrabilty of the Calogero-oscillator and Calogero-

Coulomb problems. It also suggests that their superintegrable generalizations on the N -

dimensional spheres and hyperboloids [43, 44, 45, 46, 47]. Although the TTW and PW systems

are particular cases of the Calogero-type models, they continue to attract enough interest due

to their simplicity. In particular, a couple of years ago, Ranada suggested a specific representa-

tion for the constants of motion of the TTW and PW systems (including those on sphere and

hyperboloid) [48, 49, 50], called a ”holomorphic factorization”. For the TTW system it reads

RTTW = (M̄0)kN2, (2.28)

where

M0 =
2pr
r

√
2IPT + 2ıHTTW , (2.29)

and

N = k(β − α) + 2IPT cos 2kϕ+ ı
√

2IPTpϕ sin 2kϕ. (2.30)

A similar expression exists in case of the (pseudo)spherical TTW system. The additional

constant of motion of PW system in Ranada’s representation reads:

MPW = (M̄0)kN, (2.31)

and N is given by Eq. (2.30), and

M0 = pr
√

2IPT + ı
(
γ − 2IPT

r

)
. (2.32)

Such forms of the hidden constants of motion have a visible relation with their expressions

in terms of the action-angle variables, which will be discussed below. Hence, the TTW and

PW systems possess a natural description in spherical coordinates, where the ”radial” part is

separated from the ”angular” one. On the other hand, the radial parts are expressed via the

generators of conformal algebra, which can be viewed as generators of isometries of the Kähler
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structure of Klein model of the Lobachevsky space [35]. Hence, we can represent phase spaces

of the TTW and PW systems as a (semidirect) product of Lobachevsky space with cotangent

bundle of circle, and expect that the reformulation in these coordinates will help us to extend

the expressions of hidden constants of motion to higher dimensions. Similarly, phase spaces of

the N -dimensional oscillator and Coulomb systems and their Calogero-deformations could be

represented as a semidirect product of Lobachevsky space and cotangent bundle on (N − 1)-

dimensional sphere [51]. One can expect, that Ranada’s representation of hidden symmetries

of the TTW and PW systems in these terms will take a more transparent and elegant form.

Furthermore, having in mind the relation of the TTW and PW systems with rational Calogero

models, one can expect that the hidden symmetries of Calogero model could be represented in

a similar way.

2.2.1 ONE-DIMENSIONAL SYSTEMS

Since the middle of seventies with Ref. [27] in the field-theoretical literature much attention

has been paid to a simple one-dimensional mechanical system given by the Hamiltonian

H0 =
p2

2
+

g2

2x2
. (2.33)

The reason was that it forms the conformal algebra so(1, 2) (2.3) together with the generators:

D = px, K =
x2

2
. (2.34)

In Ref. [35] the following formulation of this is suggested. Its phase space is parameterized

by a single complex coordinate and identified with the Klein model of the Lobachevsky plane:

z =
p

x
+
ıg

x2
, Im z > 0 : {z, z̄} = − ı

g
(z − z̄)2 . (2.35)
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In this parametrization, the so(1, 2) generators (2.33), (2.34) define the Killing potentials

(Hamiltonian generators of the isometries of the Kähler structure) of Klein model:

H0 = g
zz̄

ı(z̄ − z)
, D = g

z + z̄

ı(z̄ − z)
, K = g

1

ı(z̄ − z)
. (2.36)

Let us remind, that the Kähler structure is

ds2 = − gdzdz̄

(z̄ − z)2
. (2.37)

It is invariant under the discrete transformation

z → −1

z
, (2.38)

whereas the Killing potentials (2.36) transform as follows:

H0 → K, K → H0, D → −D. (2.39)

Thus, it maps H0 to the free one-dimensional particle system. This can be viewed as a one-

dimensional analog of the decoupling transformation of the Calogero Hamiltonian, considered

in Refs. [52, 53, 54].

In order to construct a similar construction for higher-dimensional systems, first, we in-

troduce an appropriate ”radial” coordinate and conjugated momentum, so that the higher-

dimensional system looks very similar to the one-dimensional conformal mechanics. In that

picture, the remaining ”angular” degrees of freedom are packed in the Hamiltonian system on

the (N−1)-dimensional sphere, which replaces the coupling constant g2 in the one-dimensional

conformal mechanics. The angular Hamiltonian defines the constant of motion of the initial

conformal mechanics. Then we relate the radial part of the N -dimensional conformal me-

chanics with the Klein model of the Lobachevsky space, which is completely similar to the

aforementioned one-dimensional case.
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2.2.2 HIGHER-DIMENSIONAL SYSTEMS

Let us consider the N -dimensional conformal mechanics, defined by the following Hamiltonian

and symplectic structure:

ω = dp ∧ dx, H0 =
p2

2
+ V (x), where (x · ∇)V (x) = −2V (x). (2.40)

This Hamiltonian together with the generators

D = p · x, K =
x2

2
(2.41)

forms the conformal algebra so(1, 2) (2.3). Here D defines the dilatation and K defines the

conformal boost, x = (x1, . . . , xN), p = (p1, . . . , pN).

Extracting the radius r = |x|, we can present the above generators in the following form:

D = prr, K =
r2

2
, H0 =

p2
r

2
+
I
r2
, I ≡ J2

2
+ U, U ≡ r2V (r). (2.42)

Here pr = (p · x)/r is the momentum, conjugate to the radius: {pr, r} = 1. It is easy to check

that I is the Casimir element of conformal algebra so(1.2):

4HK−D2 = 2I : {I,H0} = {I,K} = {I,D} = 0. (2.43)

Thus, it defines the constant of motion of the system (2.40) and commutes with r, pr and, hence,

does not depend on them. Instead, it depends on spherical coordinates φa and canonically

conjugate momenta πa. As a Hamiltonian, I defines the particle motion on (N − 1)-sphere in

the potential U(φα). The phase space is the cotangent bundle T ∗SN−1.

As in one dimension [35] instead of the radial phase space coordinates r and pr we introduce

the following complex variable (for simplicity, we restrict to I > 1):

z =
pr
r

+
ı
√

2I
r2
≡ D + ı

√
2I

2K
, Im z > 0. (2.44)

It obeys the following Poisson brackets:

{z, z̄} = − ı√
2I(u)

(z − z̄)2 , (2.45)
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{uα, uβ} = ωαβ(u), {uα, z} = (z − z̄)
V α(u)

2I
, {uα, z̄} = (z − z̄)

V α(u)

2I
, (2.46)

where V α = {uα, I(u)} are the equations of motion of the angular system.

The symplectic structure of the conformal mechanics can be represented as follows:

Ω = −ı
√

2I(u)dz ∧ dz̄
(z̄ − z)2

+
(dz + dz̄) ∧ d

√
2I(u)

ı(z̄ − z)
+

1

2
ωαβdu

α ∧ duβ, (2.47)

while the local one-form, defining this symplectic structure, reads

Ω = dA, A = ı
√

2I(u)
dz + dz̄

ı(z − z̄)
+ A0(u), dA0 =

1

2
ωαβdu

α ∧ duβ. (2.48)

Taking into account Eq. (2.43), we can write:

H0 =
√

2I(u)
zz̄

ı(z̄ − z)
, D =

√
2I(u)

z + z̄

ı(z̄ − z)
, K =

√
2I(u)

ı(z̄ − z)
, (2.49)

The transformation (2.38) does not preserve the symplectic structure, i. e., it is not a canonical

transformation for the generic conformal mechanics of dimension d > 1.

Now we introduce the following generators, which will be used in our further considerations:

M =
z√

ı(z̄ − z)
, M̄ =

z̄√
ı(z̄ − z)

. (2.50)

With the generators of the conformal algebra they form a highly nonlinear algebra:

{M,H0} =
ı

2
z
√
ı(z̄ − z), {M,K} =

2z

ı(z̄ − z)
, {M,D} =

z√
ı(z̄ − z)

= M, (2.51)

{M, M̄} =
z − z̄
2
√

2I
. (2.52)

Let us introduce the angle-like variable, conjugate with
√

2I:

Λ(u) :
{

Λ,
√

2I
}

= 1, Λ ∈ [0, 2π). (2.53)

Using M and Λ, one can easily build a (complex) constant of motion for the conformal me-

chanics:

M = MeıΛ, {M,H0} = 0. (2.54)

Evidently, its real part is the ratio of Hamiltonian and its angular part and does not contain any

new constant of motion. Nevertheless, such a complex representation seems to be useful not

only from an aesthetical viewpoint, but also for the construction of supersymmetric extensions.
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Note that we can write down the hidden symmetry generators for the conformal mechan-

ics, modified by the oscillator and Coulomb potentials as well. The Hamiltonian of the N -

dimensional oscillator and its hidden symmetry generators look as follows:

Hosc = H0 + ω2K, Mosc =
z2 + ω2

ı(z̄ − z)
e2ıΛ =

(
M2 + ω2K

)
e2ıΛ : {Mosc,Hosc} = 0 (2.55)

The Hamiltonian and hidden symmetry of the Coulomb problem are defined by

HCoul = H0 −
γ√
2K

, MCoul =

(
M − ıγ

(8
√

2I)3/2

)
eıΛ : {MCoul,HCoul} = 0, (2.56)

The absolute values of both integrals do not produce anything new:

|Mosc|2 =
H2
osc

2I
− ω2, |MCoul|2 =

HCoul√
2I

+
γ2

2(
√

2I)3
. (2.57)

So, the hidden symmetry is encoded in their phase, depending on the angular variables Φ(u).

Assume that the angular system is integrable. Hence the Hamiltonian and two-form are ex-

pressed in terms of the action-angle variables as follows:

I = I(Ia), Ω =
∑
a

dIa ∧ dΦa.

Then the condition (2.53) implies the following local solutions for Λ:

Λa =
Φa

ωa(I)
, where ωa =

∂
√

2I
∂Ia

. (2.58)

Thus, to provide the global solution for a certain coordinate a, we are forced to set ωa(I) = ka

to a rational number:

ka =
na
ma

, ma, na ∈ N . (2.59)

Then, taking ka-th power for the locally defined conserved quantity, we get a globally

defined constant of motion for the system. In this case, the hidden symmetry of the conformal

mechanics reads:

Ma = MnaeımaΦa . (2.60)

Similarly, for the systems with oscillator and Coulomb potentials one has:

M(a)osc =
(
M2 + ω2K

)na
e2ımaΦa , M(a)Coul =

(
M − ıγ

(8
√

2I)3/2

)na
eımaΦa . (2.61)
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To find the expression(s) for Φ, let us remind that the angular part of these systems is just

the quadratic Casimir element (angular momentum) of so(N) algebra on (N − 1)- dimensional

sphere, I = L2
N/2. It can be decomposed by the eigenvalues of the embedded SO(a) angular

momenta Ia as follows:

I =
1

2

(
N−1∑
a=1

Ia

)2

. (2.62)

Hence, our expressions define the N − 1 functionally independent constants of motion

M(a)osc =
(
M2 + ω2K

)
e2ıΦa , M(a)Coul = (M + ıγ) eıΦa , (2.63)

respectively, for the N -dimensional oscillator and Coulomb problems. Since these systems have

N commuting constants of motion (Ia, H), we have obtained in this way the full set of their

integrals.

To clarify the origin of these generators, let us consider a particular case of two-dimensional

systems. The angular part is a circle, and, respectively, I = |pϕ|, Φ = ϕ with ϕ being a polar

angle. In this case, the oscillator Hamiltonian and its hidden constant of motion read

Hosc = |pϕ|
zz̄ + ω2

ı(z̄ − z)
, Mosc =

i

z − z̄
(z2 + ω2)e2ıϕ. (2.64)

The latter can also be presented as follows:

Mosc =
H1 −H2 + 2iH12

|pϕ|
, with Hab = papb + ω2xaxb. (2.65)

Here Hab is a standard representation of the oscillator’s hidden symmetry generators, sometimes

(Fradkin tensor).

The Hamiltonian of two-dimensional Coulomb problem and its hidden symmetry generator

are of the form

HCoul = |pϕ|
zz̄

ı(z̄ − z)
− γ

√
ı(z̄ − z)

2|pϕ|
, MCoul =

(
z√

ı(z̄ − z)
− ıγ√

2|pϕ|3

)
eıϕ (2.66)

The Latter is related with the components of the two-dimensional Runge-Lenz vector

A = (Ax, Ay) as follows

MCoul =
Ay − ıAx√

2|pϕ|3
, where Ax = pϕpy − γ cosϕ, Ay = pϕpx − γ sinϕ. (2.67)
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Now we are ready to apply this constructions to the TTW and PW systems. In order to

formulate TTW and PW systems in the above terms, we will use the action-angle formulation

of the Pöshl-Teller Hamiltonian given in Ref. [37]:

IPT =
k2Ĩ2

2
, Ĩ = I + α + β, (2.68)

where I is an action variable.

The angle variable is related to the initial phase space coordinates as follows:

a sin(−2Φ) = cos(2kϕ) + b, a =

√(
1− 2(α + β)

(kĨ)
2 + b2

)
, b =

β − α
(kĨ)2

. (2.69)

Using the above expressions, we can present the Hamiltonian of TTW system and its hidden

symmetry generator as follows:

HTTW = kĨ
zz̄ + ω2

ı(z̄ − z)
, MTTW =

( z2 + ω2

ı(z̄ − z)

)k
e2ıΦ. (2.70)

The Ranada’s constant of motion is related with the above one:

K = −a2 (2kĨ)2k+4

16

( z̄2 + ω2

z − z̄

)2k

e−4ıΦ = −a2 (2kĨ)2k+4

16
M̄2

TTW . (2.71)

We repeat the same procedure for the PW system as well. Using the expressions for action-

angle variables of the Pöschl-Teller Hamiltonian, we get:

HPW = ikĨ
z̄z

z − z̄
− γ

2kĨ

√
i(z̄ − z), MPW =

(
z√

i(z̄ − z)
− iγ

kĨ
√

2kĨ

)k

eiΦ. (2.72)

Respectively, the Ranada’s constant of motion takes the form

K = −ia(kĨ)2

(
kĨ
√

2kĨ
z√

i(z̄ − z)
+ iγ

)2k

e2iΦ = −ia(kĨ)2k+2M̄2
PW . (2.73)

2.3 ALTERNATIVE COMPLEX NOTATIONS

Introduce another complex variable Z, identifying the radial phase subspace with the Klein

model of Lobachevsky plane (compare with the notations in the previous section), and complex
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variables ua unifying the action-angle variables:

Z =
pr√

2
+
ı
√
I
r
, ua =

√
Iae

ıΦa with ImZ > 0. (2.74)

These variables have the following nonvanishing Poisson brackets:

{Z, Z̄} = − ı(Z − Z̄)2

2
√

2I
, {ua, ūb} = −ıδab, (2.75)

{Z, ua} = −uaΩa
ı(Z̄ − Z)

2
√

2I
, {Z, ūa} = ūaΩa

ı(Z̄ − Z)

2
√

2I
, (2.76)

where

Ωa = Ωa(I) =
∂
√

2I
∂Ia

. (2.77)

In these terms the generators of conformal algebra take the form

H0 = ZZ̄, D =
√

2I(uaūa)
Z + Z̄

ı(Z̄ − Z)
, K =

2I(uaūa)

(ı(Z̄ − Z))2
. (2.78)

Note that the action variables Ia complemented with the Hamiltonian form a set of Liouville

integrals of the conformal mechanics (2.40). They have a rather simple form while being

expressed via the complex variables:

H0 = ZZ̄, Ia = uaūa : {H0, Ia} = {Ia, Ib} = 0. (2.79)

Let us now look for the additional integrals of motion, if any. It is easy to verify using

(2.76), (2.79) that

{ZeıΛ,H0} = 0 iff {Λ,
√

2I} = −1. (2.80)

To get the single-valued function we impose Λ ∈ [0, 2π) . The local solutions of the above

equation read

Λa =
Φa

Ωa

, (2.81)

where Φa ∈ [0, 2π) is angle variable and Ia is given by (2.77). Therefore, the following local

quantities are preserved and generate the set of N − 1 additional constants of motion:

Ma = Zu
1

Ωa
a = ZI

1
2Ωa
a eı

Φa
Ωa , {Ma,H0} = 0. (2.82)
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Using (2.74), (2.76), one can verify that the only nontrivial Poisson bracket relations among

them occur between the conjugate Ma-s:

{Ma,Mb} = 0, {Ma,M b} = − ıδab
Ω2
a

I
1

Ωa
−1

a H0. (2.83)

However, for the generic Ωa, the constant (2.82) is not still globally well-defined, since Λ ∈

[0, 2π/Ωa). To get the global solution for a certain coordinate Φa, we are forced to set Ωa to a

rational number:

Ωa = ka =
na
ma

, ma, na ∈ N. (2.84)

Then, taking na-th power for the locally defined conserved quantity, we get a globally defined

constant of motion for the system,

Ma = Mna
a = Znaumaa = I

ma
2

a ZnaeımaΦa . (2.85)

Although both Ma and Ma are complex, their absolute values are expressed via Liouville

integrals, and, hence, do not produce new constants of motion:

|Ma|2 = H0I
1
ka
a , |Ma|2 = Hna

0 Imaa . (2.86)

So, we have constructed 2N − 1 functionally independent constants of motion of the generic

superintegrable conformal mechanics (2.40) with rational frequencies (2.81). Therefore, the

conformal mechanics will be superintegrable provided that the angular Hamiltonian has the

form (2.9) with rational numbers ka (2.84) and arbitrary constant c0.

Full symmetry algebra is given by the relations

{Ma,Mb} = −ıδabm2
aI

ma−1
a Hna

0 , {H0,Ma} = {Ma,Mb} = 0. (2.87)

Note that

{Ia,Mb} = ıδabMb, {H0, Ia} = {Ia, Ib} = 0 (2.88)

As we mentioned in Introduction, presented formulae are applicable not only for the nonrel-

ativistic conformal mechanics on N -dimensional Euclidean space defined by the Hamiltonian
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(2.40) but for the generic finite-dimensional system with conformal symmetry, including rela-

tivistic one. Typical example of such a system is a particle moving in the near-horizon limit of

extreme black hole. Several examples of such systems were investigated by A.Galajinsky and

his collaborators (see Refs. [55, 56, 57]).

2.4 DEFORMED OSCILLATOR AND COULOMB

SYSTEMS

Let us extend the above consideration to the deformed N -dimensional oscillator and Coulomb

systems defined by the Hamiltonians

Hosc/Coul =
p2
r

2
+
I
r2

+ Vosc/Coul(r) = ZZ̄ + Vosc/Coul(r), (2.89)

where

Vosc =
ω2r2

2
= ω2K = − 2ω2I

(Z̄ − Z)2
, VCoul = −γ

r
= − γ√

2K
= −γ ı(Z̄ − Z)

2
√
I

. (2.90)

Clearly, the action variables of the angular mechanics Ia together with the corresponding Hamil-

tonian define Liouville constants of motion:

{Hosc/Coul, Ia} = {Ia, Ib} = 0. (2.91)

To endow these systems by superintegrability property we choose the angular part given by

(2.9) with rational ka, see [31]. Below we construct the additional constants of motion and

calculate their algebra for both systems in terms of complex variables (2.74) introduced in

previous section.
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2.4.1 OSCILLATOR CASE

The 2N − 2 constants of motion of the deformed oscillator Hosc in the coordinates (2.74) are

appeared to look as:

Mosc
a =

(
Z2 − 2ω2I

(Z̄ − Z)2

)na
u2ma
a , |Mosc

a |2 =
(
H2
osc − 2ω2I

)na
I2ma
a . (2.92)

The last equation together with (2.9) means that only the arguments of these complex quantities

give rise to new integrals independent of the Liouville ones.

In fact, they are based on the simpler quantities Aa and Ba, which oscillate in time with

the same frequency w:

Aa =

(
Z +

ω
√

2I
Z̄ − Z

)
u

1
ka
a , Ba =

(
Z − ω

√
2I

Z̄ − Z

)
u

1
ka
a : (2.93)

{Hosc, Aa} = ıωAa, {Hosc, Ba} = −ıωBa. (2.94)

So, the product AaBb is preserved,

{Hosc, AaBb} = 0, (2.95)

but is not single valued. Thus, we have to take its nath power to get a well defined constant of

motion, which is precisely (2.92):

Mosc
a = (AaBa)

na . (2.96)

Note that the reflection ω → −ω in the parameter space maps between Aa and Ba. Together

with complex conjugate, they are subjected to the following rules:

|Ba|2 =
Hosc − ω

√
2I

Hosc + ω
√

2I
|Aa|2, |Aa|2 = I

1
ka
a

(
Hosc + ω

√
2I
)
. (2.97)

The complex observables Aa and Ba are in involution,

{Aa, Ab} = {Ba, Bb} = {Aa, Bb} = 0, (2.98)

so that the constants of motion (2.92) commute as well:

{Mosc
a ,Mosc

b } = 0. (2.99)
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However, in contrast to the simplicity of the relations (2.88), the Poisson brackets between

Mosc
a and Mosc

b are more elaborate. They can be derived from the Poisson brackets between

Aa and Ba and their conjugates having the following form:

{Aa, B̄b} = − ıδab
k2
aIa

AaB̄a, {Āa, Bb} =
ıδab
k2
aIa

ĀaBa, (2.100)

{Aa, Āb} = − 2ıωAaĀb

Hosc + ω
√

2I
− ıδab

k2
a

I
1
ka
−1

a (Hosc + ω
√

2I), (2.101)

{Ba, B̄b} =
2ıωAaĀb

Hosc − ω
√

2I
− ıδab

k2
a

I
1
ka
−1

a (Hosc − ω
√

2I). (2.102)

Hence, we have extended the ”holomorphic factorization” formalism to the N -oscillator.

2.4.2 COULOMB CASE

The 2N − 2 locally defined integrals of the generalized Coulomb Hamiltonian can be written

in the coordinates (2.74) as follows

MCoul
a =

(
Z − ıγ

2
√
I

)
u

1
ka
a , {HCoul,M

Coul
a } = 0. (2.103)

Like in the previous cases, only their arguments produce conserved quantities independent from

the Liouville integrals (2.91) since

∣∣MCoul
a

∣∣2 =

(
HCoul +

γ2

4I

)
I

1
ka
a . (2.104)

They form the following algebra, which can be verified using the Poisson brackets (2.76):

{
MCoul

a ,M
Coul

b

}
=

ıγ2MCoul
a M

Coul

b√
2I(γ2 + 4IHCoul)

− ıδabI
1
ka
−1

a

k2
a

(
HCoul +

γ2

√
8I

)
,

{
MCoul

a ,MCoul
b

}
= 0, (2.105)

Let us also present the Poisson brackets of these quantities with Liouville constants of motion

{
Ia,M

Coul
b

}
=
ıδab
kb
MCoul

b . (2.106)
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Similar to the previous cases, we are forced to take certain powers of the local quantities

(2.103) in order to get the valid, globally defined additional constants of motion of the deformed

Coulomb problem:

MCoul
a =

(
MCoul

a

)na
=

(
Z − ıγ

2
√
I

)na
umaa . (2.107)

Their algebra can be deduced from the Poisson bracket relations (2.105) and (2.106).

So, in this Section we extended the method of ”holomorphic factorization” initially devel-

oped for the two-dimensional oscillator and Coulomb system, to the superintegrable generaliza-

tions of Coulomb and oscillator systems in any dimension. For this purpose we parameterized

the angular parts of these systems by action-angle variables. To our surprise, we were able to

get, in these general terms, the symmetry algebra of these systems. Notice, that above formulae

hold not only on the Euclidean spaces, but for the more general one, if we choose I be the

system with a phase space different from T∗S
N−1.

2.5 OSCILLATOR-COULOMB CORRESPONDENCE

As is known, the energy surface of the radial oscillator can be transformed to the energy

surface of the radial Coulomb problem by transformation r̃ = λr2,p̃r̃ = pr/2λr where r, pr are

radial coordinate and momentum of oscillator, r̃, p̃r̃ are those of Coulomb problem, and λ is

an arbitrary positive constant number (see,e.g.[58, 59] for the review). Extension of oscillator-

Coulomb correspondence from the radial part to the whole system, as well as to its quantum

counterpart yields additional restrictions on the geometry of configuration spaces. Namely,

only N = 2, 4, 8, 16 -dimensional oscillator could be transformed to the Coulomb system, that

is N = 2, 5, 9 dimensional Coulomb problem. These dimensions are distinguished due to Hopf

maps S1/S0 = S1, S3/S1 = S2, S7/S3 = S4, which allow to transform spherical (angular) part
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of oscillator to those of Coulomb problem. Indeed, for the complete correspondence between

oscillator end Coulomb system we should be able to transform the angular part of oscillator

(that is particle on SD−1) to the angular part of Coulomb problem, i.e. to Sd−1. Thus, the

only admissible dimensions are D = 2, 4, 8, 16 and d = 2, 3, 5, 9. In the first three cases we

have to reduce the initial system by Z2, U(1) and SU(2). For the latter case, in spite of many

attempts, we do not know rigorous derivation of this correspondence, due to the fact that S7

sphere has no Lie group structure. Respectively, in the generic case we get the extension of

two-/three/five- dimensional Coulomb system specified by the presence Z2/Dirac/SU(2) Yang

monopole [60]. In the deformed Coulomb and oscillator problems considered here we do not

require that the angular parts of the systems should be spheres. Hence, trying to relate these

systems we are not restricted by the systems of mentioned dimensions. Instead, we can try

to relate the deformed oscillator and Coulomb systems of the same dimension and find the

restrictions to the structure of their angular parts.

Below we describe this correspondence in terms complex variables introduced in previous

Section. Through this subsection we will use ”untilded” notation for the description of oscillator,

and the ”tilded” notation for the description of Coulomb system.

The expression of the ”Lobachevsky variable” (2.74) via radial coordinate and momentum

forces to relate the angular parts of oscillator and Coulomb problem by the expression Ĩ =

I/4. The latter induces the following relations between ”angle-like” variables Λ, Λ̃: Λ̃ = 2Λ.

Altogether read

Z̃ =
ı(Z̄ − Z)

λ
√
I

Z, Ĩ =
I
4
, Λ̃ = 2Λ

m

Z = 2
√
λ

4
√
Ĩ Z̃√

ı( ¯̃Z − Z̃)

, I = 4Ĩ, Λ =
Λ̃

2
. (2.108)

This transformation is canonical in a sense, that preserve Poisson brackets between Z, Z̄,Λ, I,

and their tilded counterparts. To make the transformation canonical, we preserve the angu-

lar variables unchanged ũa = ua, which implies to introduce for superintagrable systems the
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following identification

k̃a =
ka
2

⇒ ña = na, m̃a = 2ma. (2.109)

Then we can see, that this transformation relates the energy surfaces of oscillator and Coulomb

systems:

ZZ̄ + Ω2 2I
(ı(Z̄ − Z))2

− Eosc = 0 ⇔ 2λ
√
Ĩ

ı( ¯̃Z − Z̃)

(
Z̃ ˜̄Z − γ ı(

˜̄Z − Z̃)

2
√
I
− ẼCoul

)
= 0,

(2.110)

where

γ̃ =
Eosc

λ
, ẼCoul = −2Ω2

λ2
. (2.111)

The generators of hidden symmetries also transform one into the other on the energy surface

M(a)osc =
(
ıλ

4
√

2Ĩ
)na
M(a)Coul (2.112)

Finally, let us write down the relation between generators of conformal symmetries defined on

”tilded” and untilded spaces.

H0 = λH̃0

√
2K̃, D = 2D̃, K =

2
√

2K̃
λ

. (2.113)

In this Section we transformed deformed oscillator into deformed Coulomb problem, preserv-

ing intact angular coordinates. Performing proper transformations of angular part of oscillator,

including its reduction, we can get variety of superintegrable deformations of Coulomb problem.

However, they will belong to the same class of systems under consideration, since the latter are

formulated in most general, action-angle variables, terms.
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2.6 SPHERICAL AND PSEUDOSPHERICAL

GENERALIZATIONS

Oscillator and Coulomb systems admit superintegrable generalizations toN -dimensional spheres

and two-sheet hyperboloids (pseudospheres), which are given by the Hamiltonians [28]

SN : HV =
p2
χ

2r2
0

+
I

r2
0 sin2 χ

+ V (tanχ),

HN : HV =
p2
χ

2r2
0

+
I

r2
0 sinh2 χ

+ V (tanhχ) (2.114)

with the potentials

SN : Vosc(tanχ) =
r2

0ω
2 tan2 χ

2
, VCoul(tanχ) = − γ

r0

cotχ, (2.115)

HN : Vosc(tanhχ) =
r2

0ω
2 tanh2 χ

2
, VCoul(tanhχ) = − γ

r0

cothχ. (2.116)

Here I is a quadratic Casimir element of the orthogonal algebra so(N). To get integrable

deformations of these systems, we replace it, as in Euclidean case, by some integrable (angular)

Hamiltonian depending on the action variables [30]. The particular angular Hamiltonian (2.9)

defines superintegrable systems as in the flat case. About decade ago the so-called κ-dependent

formalism was developed [61, 62, 63] where the oscillator and Coulomb systems on plane and

on the two-dimensional sphere and hyperboloid were described in the unified way.

Introduce, following that papers,

Tκ =
Sκ
Cκ

with Cκ(x) =



cos
√
κx κ > 0,

1 κ = 0,

cosh
√
−κx κ < 0,
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Sκ(x) =



sin
√
κx√
κ

κ > 0,

x κ = 0,

sinh
√
−κx√
−κ

κ < 0,

(2.117)

where the parameter κ in two-dimensional case coincides with the curvature of (pseudo)sphere,

SN : κ =
1

r2
0

, HN : κ = − 1

r2
0

. (2.118)

The case κ = ±1 corresponds to a unit sphere/pseudosphere. For κ 6= 0 we identify

x = r0χ =
χ√
κ
, px =

pχ
r0

=
√
κpχ. (2.119)

The ”holomorphic factorization” approach to two-dimensional systems was combined with κ-

dependent formalism by Ranada. Let us show that it can be straightly extended to any dimen-

sion. For this purpose introduce a (pseudo)spherical analog of Z, Z̄ coordinates and obtain

their Poisson bracket:

Z =
√
|κ| pχ√

2
+
ı
√
I

Tκ
, {Z̄, Z} =

ı(Z − Z̄)2

2
√

2I
− ıκ
√

2I. (2.120)

The Poisson brackets between Z, ua and ūa remain unchanged [see relations (2.76)].

In these terms the κ-deformed Hamiltonian reads

Hosc/Coul = H0 + Vosc/Coul, H0 =
p2
r

2
+
I
S2
κ

+ κI = ZZ̄ + κI, (2.121)

where using (2.117), (2.118), (2.119), (2.120), the oscillator and Coulomb potentials on sphere

(2.115) can be expressed as follows:

Vosc =
ω2T 2

κ

2
= − 2ω2I

(Z̄ − Z)2
, VCoul = − γ

Tκ
= −ıγ Z̄ − Z

2
√
I
. (2.122)

The (local and global) constants of motion and related quantities have the same expressions in

terms of Z, Z̄ as in the flat case, with the Hamiltonians shifted in agreement with (2.121)

H → H− κI. (2.123)
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For the free system on sphere, H0, the most of Poisson brackets among the integrals survive

from the flat case [see relations (2.83), (2.87) and (2.88)]. The only brackets, which acquire

extra κ-dependent terms, are:

{Ma,M b} =

(
ıκ
√

2I
H0 − κI

− ıδab
k2
aIa

)
MaM b = − ıδab

k2
a

I
1
ka
−1

a (H0 − κI) +
ıκ
√

2I
H0 − κI

MaM b, (2.124)

{Ma,Mb} = ı

(
κnanb

√
2I

H0 − κI
− m2

aδab
Ia

)
MaMb. (2.125)

Let us write down also the deformation of conformal algebra (2.3)

{H0,D} = 2(H0 − κI)(1 + 2κK), {H0,K} = D(1 + 2κK), {D,K} = 2K(1 + 2κK).

(2.126)

For the Coulomb problem on sphere, the Poisson brackets between the local integrals (2.106)

remain unaffected, while the relations (2.105) undergo a similar modification:

{
MCoul

a ,M
Coul

b

}
=

 ı√2I
(
γ2

4I2 + κ
)

Hcoul − κI + γ2

4I2

− ıδab
k2
aIa

MCoul
a M

Coul

b

= ı
√

2I
(
γ2

4I2
+ κ

)
MCoul

a M
Coul

b

Hcoul − κI + γ2

4I2

− ıδab
k2
a

I
1
ka
−1

a

(
HCoul − κI +

γ2

4I2

)
.

(2.127)

Consider now the spherical system (2.114) with the oscillator potential. Line for the flat

case, the integrals of motion are based on the simpler local quantities A and B,

Aa = (z +
ıωTκ√

2
)u

1
ka
a , Ba = (z − ıωTκ√

2
)u

1
ka
a , Mosc

a = (AaBa)
na , (2.128)

which evolve in time under the following rule:

{Hosc, Aa} = ıω(1 + κT 2
κ )Aa, {Hosc, Ba} = −ıω(1 + κT 2

κ )Ba. (2.129)

They are κ-deformations of the harmonic oscillating quantities (2.93), (2.96) in the flat case.

Unlike them, they do not oscillate harmonically, but the product AaBb is still preserved.

The Poisson brackets between local quantities can be calculated explicitly giving rise to
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κ-deformations of the relations (2.100), (2.101), (2.102):

{Aa, Bb} = − ıκωT 2
κ

z2 + ω2T 2
κ

2

AaBb, {Aa, B̄b} = − ıδab
k2
aIa

AaB̄a +
ıκ
√

2IAaĀb
Hosc − κI + ω

√
2I
, (2.130)

{Aa, Āb} = ı
κ(
√

2I − 2ωTκ)− 2ω

Hosc − κI + ω
√

2I
AaĀb −

ıδab
k2
a

I
1
ka
−1

a (Hosc − κI + ω
√

2I), (2.131)

{Ba, B̄b} = ı
κ(
√

2I + 2ωTκ) + 2ω

Hosc − κI − ω
√

2I
AaĀb −

ıδab
k2
a

I
1
ka
−1

a (Hosc − κI − ω
√

2I). (2.132)

The Poisson brackets between the true integrals of motion Mosc
a , MCoul

a and their conjugate

are based on the local brackets (2.127), (2.130), (2.131), (2.132) and can be easily obtained.

2.7 EXAMPLES OF SPHERICAL PART

In previous Sections we extended ”holomorphic factorization approach” to higher-dimensional

superintegrable systems with oscillator and Coulomb potentials, including those on spheres

and hyperboloids. For this purpose we separated the ”radial” and ”angular” variables in these

systems. Then we combined the radial coordinate and momentum in single complex coordinate

parameterizing Klein model of Lobachevsky space, and combined ”angular” coordinates and

their conjugated momenta in complex coordinates by the use of action-angle variables. However,

action-angle variables are not in common use in present math-physical society, and their explicit

expressions are not common even for the such textbook models like oscillator and Coulomb

problems.

For clarifying the relation of the above formulations of constants of motion with their con-

ventional representations first present the action-angle variables of the angular part(s) of non-

deformed, oscillator and Coulomb systems (on Euclidean space, sphere and hyperboloids). Its

Hamiltonian is given by the quadratic Casimir element of so(N) algebra on (N − 1)-sphere,

I = L2
N/2. It can be decomposed by the eigenvalues of the embedded SO(a) angular momenta

defining the action variables Ia. For the details of derivation of their explicit expressions, for
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those of conjugated angle variables we refer to Appendix in Ref. [30]. The action variables are

given by the expressions

Ia =
√
ja+1 −

√
ja, where ja+1 = p2

a +
ja

sin2 θa
, j0 = 0, a = 1, . . . N − 1. (2.133)

This gives rise the angular Hamiltonian which belongs to the family (2.9)

I =
1

2

(
N−1∑
a=1

Ia

)2

. (2.134)

Its substitution to the Hamiltonians (2.89),(2.114) leads to well-known oscillator and Coulomb

systems on the Euclidean spaces, spheres and hyperboloids.

The expressions for angle variables are more complicated,

Φa =
N−1∑
l=a

al +
N−1∑
l=a+1

bl, (2.135)

where

al = arcsin

√
jl+1

jl+1 − jl
cos θl, bl = arctan

√
jl cos θl
pl sin θl

. (2.136)

Direct transformations give the following expressions for ua coordinates:

ua =

√√
ja+1 −

√
ja eıaa

N−1∏
l=a+1

eı(al+bl), (2.137)

with

eıal =
pl sin θl + ı

√
jl+1 cos θl√

jl+1 − jl
, eıbl =

pl sin θl + ı
√
jl cos θl√

jl+1 − jl sin θl
(2.138)

With these expressions at hand we can express “holomorphic representation” of constants of

motion via initial coordinates. In two-dimensional case it has transparent relation with con-

ventional representations of hidden constants of motion, like Fradkin tensor (for the oscillator)

and Runge-Lenz vector (for Coulomb problem). In the higher dimensional cases the relation of

these two representations is more complicated.

This construction could easily be modified to the system whose Hamiltonian is given in the

angle variables by the generic expression (2.9). We define it by the recurrence relation

I ≡ 1

2
jN , ja = p2

a−1 +
ja−1

sin2 ka−1θa−1

, a = 1, . . . N − 1, j0 = c0. (2.139)
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It describes particle moving on the space (spherical segment) equipped with the diagonal metric

ds2 = gll(dθl)
2, gN−1.N−1 = 1, gll =

N−1∏
m=l

sin2 kmθm (2.140)

and interacting with the potential field

U =
c0∏N−1

l=1 sin2 klθl
. (2.141)

Redefining the angles, θa → θa/ka, we can represent the above metric in the form

ds2 =
1

k2
a

N−1∏
a=1

sin2 θa(dθa)
2. (2.142)

It is obvious, that the functions jk(θa, pa) define commuting constants of motions of the

system. Similar to derivation given in Appendix of Ref. [30] we can use action-angle variable

formulation, and find that the Hamiltonian is given by the expression (2.9). The action variables

are related with the initial ones by the expressions

Ia =
1

2π

∫ θmin

θmax

√
ja+1 −

ja
sin2 kaθa

dθa =

√
ja+1 −

√
ja

ka
⇒ ja =

(
N−1∑
a=1

kaIa + c0

)2

. (2.143)

The angle variables read

Φa =
N−1∑
l=a

ka
kl
al +

N−1∑
l=a+1

ka
kl
bl,

al = arcsin

√
jl+1

jl+1 − jl
cos klθl, bl = arctan

√
jl cos klθl
pl sin klθl

. (2.144)

Thus,

ua =
1

ka

√√
ja+1 −

√
ja

N−1∏
l=a

(
pl sin klθl + ı

√
jl+1 cos klθl√

jl+1 − jl

) ka
kl

×

×
N−1∏
l=a+1

(
pl sin klθl + ı

√
jl cos klθl√

jl+1 − jl sin θl

) ka
kl

. (2.145)

Hence, we constructed the superintegrable system with higher order constants of motion, which

admits separation of variables. Since the classical spectrum of its angular part is isospectral

with the ”angular Calogero model”, we can state that they become, under appropriate choice

of constants ki, c0, canonically equivalent with angular part of rational Calogero model [32]. In

fact this means equivalence of these two systems. However, we can’t present explicit mapping

of one system to other.
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Now consider the spherical Hamiltonian of the particle moving near horizon of the external

Myers -Perry black hole in odd dimensions (2n+1)[56]. Although one deals with the relativistic

system , the initial Hamiltonian can be brought to n-dimensional non-relativistic form. Angular

part of it in terms of spherical variables will have the following form.

I =
1

2
Fn−1, Fa = P 2

θa +
g2
a+1

cos2 θa
+

Fa−1

sin2 θa
(2.146)

As was mentioned I is identified with the Casimir element of the conformal group. The aim is to

describe this system in terms of complex variables (ua). Firstly the introduction of action-angle

variables is needed. Action variables can be computed.

Ia =
1

2π

∫
dθaPθa =

1

2
(
√
Fa +

√
Fa−1 − |ga+1|) (2.147)

Inverting this relation one finds.

I =
1

2

(
2
N−1∑
a=1

Ia +
N∑
a=1

|ga|

)2

(2.148)

Since action and angle variables are canonically conjugated corresponding angle variables can

be found via taking derivative of an action.

Φa =
∂S

∂Ia
=

n−1∑
l=a

arcsinXl + 2
n−1∑
l=a+1

arctanYl (2.149)

where

Xl =
(Fl + Fl−1 − g2

l+1)− 2Fl sin
2 θl√

(Fl−1 − Fl − g2
l+1)2 − 4Flg2

l+1

(2.150)

Yl = 2
(Fl + Fl−1 − g2

l+1)Pθl sin θl cos θl − sin2 θl

√
Fl(Fl + Fl−1 − g2

l+1)2 − F 2
l Fl−1

√
Fl−1(Fl + Fl−1 − g2

l+1 − 2Fl sin
2 θl)

(2.151)

ua variable contains exponents of angle variables and it is useful to give the expressions of these

exponents.

ei arcsinXl =
√

1−X2
l + ıXl =

√
FlPθl sin 2θl − ı(Fl cos 2θl + Fl−1 − g2

l+1)√
(Fl−1 − Fl − g2

l+1)2 − 4Flg2
l+1

(2.152)

e2ı arctanYl =
1 + ıYl
1− ıYl

=

=
ı
√
Fl−1(Fl−1+Fl cos2 2θl−g

2
l+1)−Pθl

sin 2θl(Fl−1+Fl−g
2
l+1)+2 sin2 θl

√
Fl(F

2
l−1

+Fl−1(Fl−2g2
l+1

)+(Fl−g
2
l+1

)2)

ı
√
Fl−1(Fl−1+Fl cos2 2θl−g

2
l+1

)+Pθl
sin 2θl(Fl−1+Fl−g

2
l+1

)−2 sin2 θl

√
Fl(F

2
l−1

+Fl−1(Fl−2g2
l+1

)+(Fl−g
2
l+1

)2)
(2.153)

50



And finally the expression of ua can be written.

ua =

√
1

2
(
√
Fa +

√
Fa−1 − |ga+1|)

n−1∏
l=a

√FlPθl sin 2θl − ı(Fl cos 2θl + Fl−1 − g2
l+1)√

(Fl−1 − Fa − g2
l+1)2 − 4Flg2

l+1

×
×
∏n−1
l=a+1

(
ı
√
Fl−1(Fl−1+Fl cos2 2θl−g

2
l+1)−Pθl

sin 2θl(Fl−1+Fl−g
2
l+1)+2 sin2 θl

√
Fl(F

2
l−1

+Fl−1(Fl−2g2
l+1

)+(Fl−g
2
l+1

)2)

ı
√
Fl−1(Fl−1+Fl cos2 2θl−g

2
l+1

)+Pθl
sin 2θl(Fl−1+Fl−g

2
l+1

)−2 sin2 θl

√
Fl(F

2
l−1

+Fl−1(Fl−2g2
l+1

)+(Fl−g
2
l+1

)2)

)

(2.154)

2.8 CONCLUDING REMARKS

In this chapter we discuss Tremblay-Turbiner-Winternitz and Post-Wintenitz systems and their

relation with N -dimensional rational Calogero model with oscillator and Coulomb potentials.

We write the hidden symmetries of this systems using complex variables. Then we investigated

superintegrable deformations of oscillator and Coulomb problems separating their ”radial” and

”angular” parts, where the latter was described in terms of action-angle variables. We encoded

phase space coordinates in the complex ones: the complex coordinate z involved radial vari-

ables parameterizing Klein model of Lobachevsky plane, and complex coordinates ua encoding

action-angle variables of the angular part. Then we combined the whole set of constants of

motion (independent from Hamiltonian) in N − 1 holomorphic functions Ma, generalizing the

so-called ”Holomorphic factorization” earlier developed for two-dimensional generalized oscil-

lator/Coulomb systems. Then we presented their algebra, which among nontrivial relations

possesses chirality property {Ma,Ma} = 0. Hence, presented representation can obviously

considered as a classical trace of ”quantum factorization” of respective Hamiltoinian. Seems

that it could be used for the construction of supersymmetric extensions of these systems. The

lack of given representation is the use of the action-angle formulation of the angular parts of

the original systems.

In this context one should mention the earlier work [64], where symmetries of the angular
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parts of conformal mechanics (and those with additional oscillator potential) were related with

the symmetries of the whole system by the use of coordinate z and conformal algebra generators

(2.78). That study was done in most general terms, without referring to action-angle variables

and to specific form of angular part. Quantum mechanical aspects were also considered there.

Hence, it seems to be natural to combine these two approaches for and at first, exclude the

action-angle argument from present formulations, and at second, use presented constructions

for the quantum considerations of systems, in particular, for construction of spectrum and

wavefunctions within operator approach. We are planning to present this elsewhere.
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Chapter 3

CN-Smorodinsky-Winternitz system

3.1 INTRODUCTION

Current chapter is based on my single-authored paper [4].

The one-dimensional singular oscillator is a textbook example of a system which is exactly

solvable both on classical and quantum levels.The sum of its N copies, i.e. N -dimensional

singular isotropic oscillator is, obviously, exactly solvable as well. It is given by the Hamiltonian

H =
N∑
i=1

Ii, with Ii =
p2
i

2
+
g2
i

2x2
i

+
ω2x2

i

2
, {pi, xj} = δij, {pi, pj} = {xi, xj} = 0 (3.1)

It is not obvious that in addition to Liouville Integrals Ii this system possesses supplementary

series of constants of motion, and is respectively, maximally superintegrable, i.e. possesses

2N − 1 functionally independent constants of motion. All these constants of motion are of the

second order on momenta. It seems that this was first noticed by Smorodinsky and Winternitz,

who then investigated superintegrability properties of this system in great detail [65, 66, 67].

For this reason this model is sometimes called Smorodinsky-Winternitz system and we will

use this name as well. For sure, such a simple and internally rich system would attract wide

attention in the community of mathematical and theoretical physics, and that is one of the
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main reasons why there are so many publications devoted to its study and further general-

izations. Besides the above-mentioned publications, we should as well mention the references

[68, 69, 70, 71, 72, 73, 74, 75](see the recent PhD thesis on this subject with expanded list

of references [76]). Notice also that Smorodinsky-Winternitz system is a simplest case of the

generalized Calogero model(with oscillator potential) associated with an arbitrary Coxeter root

system [21]. Thus, one hopes that observations done in this simple model could be somehow

extended to the Calogero models. There is a well-known superintegrable generalization of the

oscillator to sphere, which is known as Higgs oscillator[28, 29] Smorodinsky-Winternitz model

admits superintegrable generalization of the sphere as well [77]. Though it was first suggested

by Rosochatius in XIX century (without noticing its superintegrability) [78], it was later re-

discovered by many other authors as well (e.g. [79, 56]) . Superintegrable generalization of

Calogero model on the sphere also exists [31, 80, 81].

In this chapter we consider simple generalization of the Smorodinsky-Winternitz system

interacting with constant magnetic field. It is defined on the N -dimensional complex Euclidian

space parameterized by the coordinates za by the Hamiltonian

H =
N∑
a=1

(
πaπ̄a +

g2
a

zaz̄a
+ ω2zaz̄a

)
, with {πa, zb} = δab, {πa, π̄b} = ıBδab (3.2)

The (complex) momenta πa have nonzero Poisson brackets due to the presence of magnetic field

with magnitude B [13, 82]. We will refer this model as CN -Smorodinsky-Winternitz system.

For sure, in the absence of magnetic field this model could be easily reduced to the conventional

Smorodinsky-Winternitz model, but the presence of magnetic field could have nontrivial impact

which will be studied in this chapter. So, our main goal is to investigate the whole symmetry

algebra of this system. Notice that this is not only for academic interest: the matter is that

C1-Smorodinsky-Winternitz system is a popular model for the qualitative study of the so-called

quantum ring [83, 84, 85], and the study of its behaviour in external magnetic field is quite

a natural task. Respectively, CN -Smorodinsky-Winternitz could be viewed as an ensemble of

N quantum rings interacting with external magnetic field. So investigation of its symmetry

algebra is of the physical importance.
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Since C2-Smorodinsky-Winternitz system is manifestly invariant with respect to U(1) group

action, we can perform its Kustaanheimo-Stiefel transformation, in order to obtain three-

dimensional Coulomb-like system. It was done about ten years ago [86], but in the absence of

magnetic field in initial system. Repeating this transformation for the system with constant

magnetic field we get unexpected result: it has no qualitative impact in the resulting system,

which was referred in [87] as ”generalized MICZ-Kepler system”[88, 89, 90]. In addition, we

obtain, in this way, the explicit expression of its symmetry generators and their symmetry

algebra, which as far as we know was not constructed before.

We already mentioned that both oscillator and Smorodinsky-Winternitz system admit su-

perintegrable generalizations to the spheres. On the other hand the isotropic oscillator on CN

admits the superintegrable generalization on the complex projective space, moreover, the in-

clusion of constant magnetic field preserves all symmetries of that system [91, 92]. It will be

shown that introduction of a constant magnetic field doesn’t change these properties of the

CN -Smorodinsky-Winternitz system. Thus, presented model could be viewed as a first step

towards the construction of the analog of Smorodinsky-Winternitz system on CPN .

The chapter is organized as follows.

In the Section 3.2 we review the main properties of the conventional (RN -)Smorodinsky-

Winternitz system, presenting explicit expressions of its symmetry generators, as well as wave-

functions and Energy spectrum. We also present symmetry algebra in a very simple, and

seemingly new form via redefinition of symmetry generators.

In the Section 3.3 we present CN -Smorodinsky-Winternitz system in a constant magnetic

field, find the explicit expressions of its constants of motion. We compute their algebra and

find that it is independent from the magnitude of constant magnetic field. Then we quantize a

system and obtain wavefunctions and energy spectrum. We notice that the CN -Smorodinsky-

Winternitz system has the same degree of degeneracy as RN - one, due to the lost part of

additional symmetry.

In the Section 3.4 we perform Kustaanheimo-Stiefel transformation of the C2-Smorodinsky-

Winternitz system in constant magnetic field and obtain, in this way, the so-called “generalized
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MICZ-Kepler system”. We find that constant magnetic field appearing in the initial system,

does not lead to any changes in the resulting one.

In the Section 3.5 we discuss the obtained results and possibilities of further generaliza-

tions. Possible extensions of discussed system include supersymmetrization and quaternionic

generalization as well as generalization of these systems in curved background.

3.2 SMORODINSKY-WINTERNITZ SYSTEM ON RN

Smorodinsky-Winternitz system is defined as a sum of N copies of one-dimensional singular

oscillators (3.1), each of them defined by generators Ii which obviously form its Liouville inte-

grals {Ii, Ij} = 0. About fifty years ago it was noticed that this system possesses additional set

of constants of motion given by the expressions [65]

Iij = LijLji −
g2
i x

2
j

x2
i

−
g2
jx

2
i

x2
j

, {Iij, H} = 0, (3.3)

where Lij are the generators of SO(N) algebra,

Lij = pixj − pjxi : {Lij, Lkl} = δikLjl + δjlLik − δilLjk − δjkLil. (3.4)

The generators Iij provides additional N − 1 functionally independent constants of motions

and so this system is maximally superintegrable. These generators define highly nonlinear

symmetry algebra,

{Ii, Ijk} = δijSik − δikSij, {Iij, Ikl} = δjkTijl + δikTjkl − δjlTikl − δilTijk (3.5)

where

S2
ij = −16(IiIjIij + I2

i g
2
j − I2

j g
2
i +

ω2

4
I2
ij − g2

i g
2
jω

2) (3.6)

T 2
ijk = −16(IijIjkIik + g2

kI
2
ij + g2

j I
2
ik + g2

i I
2
jk − 4g2

i g
2
j g

2
k). (3.7)
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The generators S2
ij and T 2

ijk are of the sixth-order in momenta and antisymmetric over i, j, k

indices. The above symmetry algebra could be written in a compact form if we introduce the

notation

Mij = Iij, M0i = Ii, Mii = g2
i , M00 =

ω2

4
, Rijk = Tijk, Rij0 = Sij. (3.8)

Then one can introduce capital letters which will take values from 0 to N . It is worth to

mention that MIJ is symmetric, whereas RIJK is antisymmetric with respect to all indices. In

this terms the whole symmetry algebra of Smorodinsky-Winternitz system reads

{MIJ ,MKL} = δJKRIJL + δIKRJKL − δJLRIKL − δILRIJK (3.9)

where

R2
IJK = −16(MIJMJKMIK +M2

IJMKK +M2
IKMJJ +M2

KLMII − 4MIIMJJMKK) (3.10)

One important fact should be mentioned, although in this algebra on the right side we have sum

of many terms (square roots), only one term always survives, since in case of three indices are

equal, the result is automatically 0. Consequently in this algebra we always have one square root

on the right hand side. Quantum-mechanically the maximal superintegrability is reflected in the

dependence of its energy spectrum on the single,“principal” quantum number only. Having in

mind that in Cartesian coordinates the system decouples to the set of one-dimensional singular

oscillators, we can immediately extract the expressions for its wavefunctions and spectrum from

the standard textbooks on quantum mechanics, e.g. [11],

En|ω = ~ω
(

2n+N +
N∑
i=1

√
1

4
+
g2
i

~2

)
, Ψ =

N∏
i=1

ψ(xi, ni), n =
N∑
i=1

ni (3.11)

where

ψ(xi, ni) = F
(
− ni, 1 +

√
1

4
+
g2
i

~2
,
ωx2

i

~

)(ωx2
i

~

) 1+
√

1+4g2
i
/~2

4
e−

ωx2
i

2~ (3.12)

Here F is the confluent hypergeometric function. With these expressions at hands we are

ready to study Smorodinsky-Winternitz system on complex Euclidean space in the presence of

constant magnetic field.
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3.3 CN-SMORODINSKY-WINTERNITZ SYSTEM

Now let us study 2N -dimensional analog of Smorodinsky-Winternitz system interacting with

constant magnetic field. It is defined by (3.2) and could be viewed as an analog of Smorodinsky-

Winternitz system on complex Euclidian space
(
CN , ds2 =

∑N
a=1 dz

adz̄a
)

. Thus, we will refer it

as CN -Smorodinsky-Winternitz system. The analog of SW-system which respects the inclusion

of constant magnetic field is defined as follows,

H =
∑
a

Ia, Ia = πaπ̄a +
g2
a

zaz̄a
+ ω2zaz̄a , (3.13)

where za, πa are complex (phase space) variables with the following non-zero Poisson bracket

relations

{πa, zb} = δab, {π̄a, z̄b} = δab, {πa, π̄b} = ıBδab. (3.14)

For sure, it can be interpreted as a sum of N two-dimensional singular oscillators interacting

with constant magnetic field perpendicular to the plane. It is obvious that in addition to N

commuting constants of motion Ia this system has another set of N constants of motion defining

manifest (U(1))N symmetries of the system

Laā = ı(πaz
a − π̄az̄a)−Bzaz̄a : {Laā,H} = 0 (3.15)

and supplementary, non-obvious, set of constants of motion defined in complete analogy with

those of conventional Smorodinsky-Winternitz system:

Iab = Lab̄Lbā +
(g2

az
bz̄b

zaz̄a
+
g2
bz

az̄a

zbz̄b

)
, {Iab,H} = 0, a 6= b (3.16)

with Lab̄ being generators of SU(N) algebra

Lab̄ = ı(πaz
b − π̄bz̄a)−Bz̄azb : {Lab̄, Lcd̄} = iδad̄Lcb̄ − iδcb̄Lcd̄. (3.17)
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These symmetry generators, and Ia obviously commute with Laā due to manifest U(1)N sym-

metry

{Laā, Ib} = {Laā, Ibc} = {Laā, Lbb̄} = {Ia, Ib} = 0 (3.18)

The rest Poisson brackets between them are highly nontrivial

{Ia, Ibc} = δabSac − δacSab, {Iab, Icd} = δbcTabd + δacTbcd − δbdTacd − δadTabc, (3.19)

where

S2
ab = 4IabIaIb − (LaāIb + Lbb̄Ia)

2 − 4g2
aI

2
b − 4g2

bI
2
a − 4ω2Iab(Iab − LaāLbb̄)

+ 4ω2g2
bL

2
aā + 4g2

aω
2L2

bb̄ + 16g2
ag

2
bω

2 − 2B(Iab − LaāLbb̄)(LaāIb + Lbb̄Ia)

−B2(Iab − LaāLbb̄)2 + 4B(g2
bIaLaā + g2

aIbLbb̄) + 4B2g2
ag

2
b (3.20)

T 2
abc = 2(Iab − LaāLbb̄)(Ibc − Lbb̄Lcc̄)(Iac − LaāLcc̄) + 2IabIacIbc + L2

aāL
2
bb̄L

2
cc̄

− 4(g2
cIab(Iab − LaāLbb̄) + g2

aIbc(Ibc − Lbb̄Lcc̄) + g2
bIac(Iac − LaāLcc̄))

− (I2
bcL

2
aā + I2

abL
2
cc̄ + I2

acL
2
bb̄) + 4g2

bg
2
cL

2
aā + 4g2

ag
2
cL

2
bb̄ + 4g2

ag
2
bL

2
cc̄ + 16g2

ag
2
bg

2
c (3.21)

To write the symmetry algebra in a simpler form we can redefine the generators

Maa = L2
aā + 4g2

a, Mab = Iab −
1

2
LaāLbb̄, Ma0 = Ia −

B

2
Laā, M00 = 4ω2 +B2. (3.22)

Since Laā commute with all other generators Poisson brackets of M will exactly coincide with

the Poisson brackets of Iab and Ia. Similarly the R tensor is defined as in the real case. So the

algebra will have the following form

{Mab,Mcd} = δbcTabd + δacTbcd − δbdTacd − δadTabc, {Ma0,Mab} = δabSac − δacSab. (3.23)

where

S2
ab = 4MabMa0Mb0 +

(
ω2 +

B2

4

)
(MaaMbb − 4M2

ab)−M2
b0Maa −M2

a0Mbb (3.24)

T 2
abc = 4MabMbcMac −M2

abMcc −M2
acMbb −M2

bcMaa +
1

4
MaaMbbMcc (3.25)
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Needless to say that Laā commute with all the other constants of motion. Finally the full

symmetry algebra then reads

{MAB,MCD} = δBCRABD + δACRBCD − δBDRACD − δADRABC (3.26)

where

R2
ABC = 4MABMBCMAC −M2

ABMCC −M2
ACMBB −M2

BCMAA +
1

4
MAAMBBMCC (3.27)

Again capital letters take values from 0 to N . In the complex case RABC and MAB are again

respectively antisymmetric and symmetric as in the real case. Up to multiplication by a constant

this has the same form as the symmetry algebra for the real case.

Let us briefly discuss the number of conserved quantities. We have N real functionally

independent constants of motion (Ia). Moreover let us mention that Iab is also real, and

although it has N(N − 1)/2 components, the number of functionally independent constants

of motion is N − 1. In addition to this, the complex system has N real conserved quantities

(Laā). So the total number of constants of motion is 3N − 1 and it is superintegrable (but

not maximally superintegrable). Especially if N = 1 the system is integrable. For N = 2

the system is superintegrable, but it has only one additional constant of motion (minimally

superintegrable).

3.3.1 QUANTIZATION

Quantization will be done using the fact that CN -Smorodinsky-Winternitz system is a sum of

two dimensional singular oscillators. This allows to write the wave function as a product of N

wave functions and total energy of the system as a sum of the energies of its subsystems. So

the initial problem reduces to two-dimensional one.
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ÎaΨa(za, z̄a) = EaΨa(za, z̄a), ĤΨtot = EtotΨtot,

Ψtot =
N∏
a=1

Ψa(za, z̄a), Etot =
N∑
a

Ea. (3.28)

After this reduction, complex indices can be temporarily dropped. Now it is obvious to intro-

duce the momenta operators and commutation relations, which will have the following form in

the presence of constant magnetic field.

π̂ = −ı(~∂ +
B

2
z̄), ˆ̄π = −ı(~∂̄ − B

2
z) [π, π̄] = ~B, [π, z] = −ı~ (3.29)

Schrödinger equation can be written down[
− ~2∂∂̄ +

(
ω2 +

B2

4

)
zz̄ − ~

B

2
(z̄∂̄ − ∂z) +

g2

zz̄

]
Ψ(z, z̄) = EΨ(z, z̄). (3.30)

Even in this two-dimensional system additional separation of variables can be done if one writes

this system in a polar coordinates using the fact that z = r√
2
eiφ.

[ ∂2

∂r2
+

1

r

∂

∂r
+

2

~2

(
E +

~2

2r2

∂2

∂φ2
− 2g2

r2
− 1

2

(
ω2 +

B2

4

)
r2 +

ıB~
2

∂

∂φ

)]
Ψ(r, φ) = 0. (3.31)

Further separation of variables can be done and one can use the fact that L is a constant of

motion.

Ψ(r, φ) = R(r)Φ(φ), L̂Φ = ~mΦ. (3.32)

Using the explicit form of the U(1) generator, normalized solution can be written

L̂ = −ı~ ∂

∂φ
, Φ(φ) =

1√
2π
eımφ. (3.33)

This result allows to write the equation (3.31) in the following form[ d2

dr2
+

1

r

d

dr
+

2

~2

(
E − ~2m2

2r2
− 2g2

r2
− 1

2

(
ω2 +

B2

4

)
r2 − B~m

2

)]
R(r) = 0. (3.34)

Solution of this kind of Schrödinger equation can be written down. The final result for the

wave functions of two-dimensional system and the energy spectrum are as follows

ψ(z, z̄, n,m) =
Cn,m√

2π
(
√
z/z̄)mF

(
− n,

√
m2 +

4g2

~2
+ 1,

2
√
ω2 + B2

4

~
zz̄
)
× (3.35)
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×
(2
√
ω2 + B2

4

~
zz̄
)1/2

√
m2+ 4g2

~2

e−
2

√
ω2+B2

4
~ zz̄

E = ~
√
ω2 +

B2

4

(
2n+ 1 +

√
m2 +

4g2

~2

)
+
B~m

2
(3.36)

Finally the indices of CN can be recovered. The total wave function is a product of the

wavefunctions and the total energy is the sum of the energies of two-dimensional subsystems

Ψ(z, z̄) =
N∏
a=1

ψ(za, z̄a, na,ma) (3.37)

Etot =
N∑
a=1

Ena,ma = ~
√
ω2 +

B2

4

(
2n+N +

N∑
a=1

√
m2
a +

4g2
a

~2

)
+
B~
2

N∑
a=1

ma, (3.38)

n =
N∑
a=1

na, n = 0, 1, 2... ma = 0,±1,±2, ... (3.39)

In contrast to the real case the energy spectrum of the CN -Smorodinky-Winternitz system

depends on N + 1 quantum numbers, namely n and ma .

3.4 KUSTAANHEIMO-STIEFEL TRANSFORMATION

Since CN -Smorodinsky-Winternitz system has manifest U(1) invariance, we could apply its

respective reduction procedure related with first Hopf map S3/S1 = S2, which is known as

Kustaanheimo-Stiefel transformation, for the particular case of N = 2. Such a reduction was

performed decade ago [86] and was found to be resulted in the so-called “generalized MICZ-

Kepler problem” suggested by Mardoyan a bit earlier [87, 93]. However the initial system

was considered, it was not specified by the presence of constant magnetic field, furthermore,

the symmetry algebra of the reduced system was not obtained there. Hence, it is at least

deductive to perform Kustaanheimo-Stiefel transformation to the C2-Smorodinsky-Winternitz

system with constant magnetic field in order to find its impact (appearing in the initial system)

in the resulting one. Furthermore, it is natural way to find the constants of motion of the

“generalized MICZ-Kepler system” and construct their algebra.
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So, let us perform the reduction of C2-Smorodinsky-Winternitz system by the U(1)-group

action given by the generator

J0 = L11 + L22 = ı(zπ − z̄π̄)−Bzz̄ (3.40)

For this purpose we have to choose six independent functions of initial phase space variables

which commute with that generators,

qk = zσkz̄, pk =
zσkπ + π̄σkz̄

2zz̄
, k = 1, 2, 3 (3.41)

where σk are standard 2×2 Pauli matrices. Matrix indices are dropped here. This transforma-

tion is called Kustaanheimo-Stiefel transformation. Then we calculate their Poisson brackets

and fix the value of U(1)- generator J0 = 2s. As a result, we get the reduced Poisson brackets

{qk, ql} = 0, {pk, ql} = δkl, {pk, pl} = sεklm
qm
|q|3

(3.42)

Expressing the Hamiltonian via qi, pi, J0 and fixing the value of the latter one, we get

HSW = 2|q|
[p2

2
+

s2

2|q|2
+
Bs

2|q|
+

1

2

(B2

4
+ ω2

)
+

g2
1

|q|(|q|+ q3)
+

g2
2

|q|(|q| − q3)

]
(3.43)

So, we reduced the C2-Smorodinsky-Winternitz Hamiltonian to the three-dimensional system.

To get the Coulomb-like system we fix the energy surface or reduced Hamiltonian, HSW−ESW =

0 and divide it on 2|q|. This yields the equation

HgMICZ − E = 0, with E ≡ −ω
2 +B2/4

2
(3.44)

and

HgMICZ =
p2

2
+

s2

2|q|2
+

g2
1

|q|(|q|+ q3)
+

g2
2

|q|(|q| − q3)
− γ

|q|
with γ ≡ ESW −Bs

2
. (3.45)

The latter expression defines the Hamiltonian of “generalized MICZ-Kepler problem”. Hence,

we transformed the energy surface of the reduced C2-Smorodinsky-Winternitz Hamiltonian to

those of (three-dimensional) “Generalized MICZ-Kepler system”. Additionally it has an inverse

square potential and this system has an interaction with a Dirac monopole magnetic field which

affects the symplectic structure.
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Surprisingly, the reduced system contains interaction with Dirac monopole field only, i.e.

the constant magnetic field in the original system does not contribute in the reduced one. All

dependence on B is hidden in s and γ, which are fixed, so the reduced system does not depend

on B explicitly.

Now this reduction can be done for constants of motion. Before doing that it is convenient

to present the initial generators of u(2) algebra given by (3.17) in the form

J0 = i(zπ − z̄π̄)−Bzz̄, Jk =
i

2
(zσkπ − π̄σkz̄)− Bzσkz̄

2
,

{J0, Ji} = 0, {Ji, Jj} = εijkJk. (3.46)

After reduction we get J0 = 2s. After the reduction, the rest su(2) generators result in the

generators of the so(3) rotations of three-dimensional Euclidian space with the Dirac monopole

placed in the beginning of Cartesian coordinate frame,

Jk = εklmplqm − s
qk
|q|

(3.47)

Then the symmetry generators for the “generalized MICZ-Kepler system” can be written down,

I =
I1 − I2

2
+
B

4
(L22 − L11) = p1J2 − p2J1 +

x3γ

r
+
g2

1(r − x3)

r(r + x3)
− g2

2(r + x3)

r(r − x3)
(3.48)

L =
1

2
(L22 − L11) = J3 = p1q2 − q1p2 −

sq3

|q|
,

J = I12 = J2
1 + J2

2 +
g2

1(r − q3)

r + q3

+
g2

2(r + q3)

r − q3

. (3.49)

It is important to notice that I is a generalization of the z-component of the Runge-Lenz vector.

The relation of the initial system and the reduced one will allow to find the symmetry

algebra of the final system using the previously obtained result for the complex Smorodinsky-

Winternitz system. First of all the constants of motion in the initial system will also commute

with the reduced Hamiltonian.

{HgMICZ , I} = {HgMICZ ,J } = {HgMICZ ,L} = 0 (3.50)

Moreover, since in the initial system Laā generators commute with all the other constants of

motion one can write.

{L,J } = {L, I} = 0 (3.51)
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There is only one non-trivial commutator

{I,J } = S (3.52)

S here coincides with S12 of C2-Smorodinsky-Winternitz system and can be written using the

generators of the reduced system.

S2 = 2HgMICZ

[
4
(
J+

1

2

(
L2−s2

))2

−
(

4g2
2+(L+s)2

)(
4g2

1+(L−s)2
)]
−
(

4g2
2+(L+s)2

)(
I+γ

)2

−
(

4g2
1 + (L − s)2

)(
I − γ

)2

− 4
(
J +

1

2
(L2 − s2)

)(
I − γ

)(
I + γ

)
(3.53)

There is a crucial fact that should be mentioned. Although the initial system had an interaction

with magnetic field, after reduction we don’t have any dependence on B both in symplectic

structure and in generators of the symmetry algebra, at least in classical level. In other words,

the reduced system does not feel the magnetic field of the initial system.

3.5 DISCUSSION AND OUTLOOK

In this chapter we formulated the analog of the Smorodinksy-Winternitz system interacting

with a constant magnetic field on the N -dimensional complex Euclidian space CN . We found

out it has 3N − 1 functionally independent constants of motion and derived the symmetry

algebra of this system. Quantization of these systems is also discussed. While for the real

Smorodinsky-Winternitz system energy spectrum is totally degenerate and depends on single

(”principal”) quantum number, the CN -Smorodinsky-Winternitz energy spectrum depends on

N + 1 quantum numbers. Then we performed Kustaanheimo-Stiefel transformation of the

C2-Smorodinsky-Winternitz system and reduced it to the so-called ”generalized MICZ-Kepler

problem”. We obtained the symmetry algebra of the latter system using the result obtained

for the initial ones. Moreover, we have shown that the presence of constant magnetic field in

the initial problem does not affect the reduced system.
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There are several generalizations one can perform for this system. Straightforward task is

the construction of a quaternionic (HN -) analog of this system. While complex structure al-

lows to introduce constant magnetic field without violating the superintegrability, quaternionic

structure should allow to introduce interaction with SU(2) instanton. It seems that one can

also introduce the superintegrable analogs of the CN -/HN -Smorodinsky-Winternitz systems on

the complex/quaternionic projective space CPN/HPN , having in mind the existence of such

generalization for the CN -/(HN -) oscillator [91, 94]. We expect that the inclusion of a con-

stant magnetic/instanton field does not cause any qualitative changes for this system. These

generalizations will be discussed later on.
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Chapter 4

CPN-Rosochatius system

4.1 INTRODUCTION

This chapter is based on the article written with Armen Nersessian and Evgeny Ivanov[5].

The (D-dimensional) isotropic oscillator and the relevant Coulomb problem play a pivotal

role among other textbook examples of D-dimensional integrable systems. They are distin-

guished by the “maximal superintegrability” property, which is the existence of 2D − 1 func-

tionally independent constants of motion [9]. The rational Calogero model with oscillator

potential [24, 25], being a nontrivial generalization of isotropic oscillator, is also maximally

superintegrable [19]. Moreover, Calogero model with Coulomb potential is superintegrable too

[31, 80, 81]. All these systems, being originally defined on a plane, admit the maximally super-

integrable deformations to the spheres (see Ref. [28] for the spherical generalizations of the os-

cillator and Coulomb problem, and Ref. [31] for the Calogero-oscillator and Calogero-Coulomb

ones). The integrable spherical generalizations of anisotropic oscillator [95, 96], Stark-Coulomb

and two-center Coulomb problems [34] are also known.

In contrast to the spherical extensions, the generalizations to other curved spaces have not
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attracted much attention so far. The only exception seems to be the isotropic oscillator on the

complex/quaternionic spaces considered in Ref. [91, 94]. These systems reveal an important

feature: they remain superintegrable after coupling to a constant magnetic/BPST instanton

field, though cease to be maximally superintegrable. One may pose a question:

How to construct the superintegrable generalizations of Calogero-oscillator and Calogero-

Coulomb models on complex and quaternionic projective spaces?

In this chapter we make first steps toward the answer. Due to the complexity of the prob-

lem we restrict our attention to the simplest particular case. Namely, we construct the super-

integrable CPN -generalization of the N -dimensional singular oscillator (the simplest rational

Calogero-oscillator model) which is defined by the Hamiltonian

HSW =
N∑
a=1

(p2
a

2
+

g2
a

2x2
a

+
ω2x2

a

2

)
, {pa, xb} = δab, {pa, pb} = {xa, xb} = 0. (4.1)

This model is less trivial than it looks at first sight: it has a variety of hidden constants of

motion which form a nonlinear symmetry algebra and endow the system with the maximal

superintegrability property, as was mentioned in the previous chapter.

The maximally superintegrable spherical counterpart of the Smorodinsky-Winternitz system

is defined by the Hamiltonian suggested by Rosochatius in 1877 [78]

HRos =
p2

2
− (xp)2

2r2
0

+
N∑
a=1

ω2
ar

2
0

x2
a

+
ω2r2

0x
2

2x2
0

, x2
a + x2

0 = r2
0 . (4.2)

It is a particular case of the integrable systems obtained by restricting the free particle and

oscillator systems to a sphere. It was studied by many authors from different viewpoints, in-

cluding its re-invention as a superintegrable spherical generalization of Smorodinsky-Winternitz

system [98, 99, 77, 79, 56]. Rosochatius model, as well as its hybrid with the Neumann model

suggested in 1859 [100], attract a stable interest for years due to their relevance to a wide

circle of physical and mathematical problems. Recently, the Rosochatius-Neumann system was

encountered, while studying strings [101, 102, 103], extreme black hole geodesics [56, 104, 105]
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and Klein-Gordon equation in curved backgrounds [106].

In this chapter we propose a superintegrable generalization of Rosochatius (and Smorodinsky-

Winternitz) system on the complex projective space CPN . It is defined by the Hamiltonian

HRos = (1 + zz̄)
(ππ̄) + (zπ)(z̄π̄)

r2
0

+ r2
0(1 + zz̄)(ω2

0 +
N∑
a=1

ω2
a

zaz̄a
)− r2

0

N∑
i=0

ω2
i , (4.3)

and by the Poisson brackets providing the interaction with a constant magnetic field of the

magnitude B

{πa, zb} = δba, {π̄a, z̄b} = δb̄ā, {πa, π̄b} = ıBr2
0

(
δab̄

1 + zz̄
− z̄azb

(1 + zz̄)2

)
. (4.4)

We will call it CPN -Rosochatius system.

Reducing this 2N -dimensional system by the action of N manifest U(1) symmetries, za →

eıκaza, πa → e−ıκaπa, we recover the N -dimensional Rosochatius system (4.2) (see Section 3).

On the other hand, rescaling the coordinates and momenta as r0z
a → za, πa/r0 → πa and

taking the limit r0 →∞, ωa → 0 with r2
0ωa = ga kept finite, we arrive at the CN -Smorodinsky-

Winternitz system discussed in the previous chapter.

HSW =
N∑
a=1

(
πaπ̄a + ω2

0z
az̄a +

g2
a

zaz̄a

)
,

{πa, zb} = δba, {π̄a, z̄b} = δb̄ā, {πa, π̄b} = ıBδab̄ . (4.5)

Since the reductions of CPN -Rosochatius system yield superintegrable systems, it is quite nat-

ural that it proves to be superintegrable on its own.

Finally, note that CN -Smorodinsky-Winternitz system (4.5) can be interpreted as a set of N

two-dimensional ring-shaped oscillators interacting with a constant magnetic field orthogonal

to the plane. As opposed to (4.5), the CPN -Rosochatius system does not split into a set of

N two-dimensional decoupled systems. Instead, it can be interpreted as describing interacting

particles with a position-dependent mass in the two-dimensional quantum rings.

To summarize, the CPN -Rosochatius system suggested is of interest from many points of

view. Its study is the subject of the remainder of this chapter. It is organized as follows.
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In Section 4.2 we discuss the simplest systems on CPN , namely CPN -Landau problem and

the CPN -oscillator.Then we derive the potential specifying the CPN-Rosochatius system.

In Section 4.3 we present classical CPN -Rosochatius model in a constant magnetic field and

find that, in addition to N manifest U(1) symmetries, this system possesses additional 2N − 1

functionally-independent second-order constants of motion. The latter property implies the

(non-maximal) superintegrability of the model considered. We present the explicit expressions

of the constants of motion and calculate their algebra. We also show that the reduction of

CPN -Rosochatius model by manifest U(1) symmetries reproduces the original N -dimensional

(SN -) Rosochatius system.

In Section 4.4 we separate the variables and find classical solutions of CPN -Rosochatius

model.

In Section 4.5 we study quantum CPN -Rosochatius system and find its spectrum which

depends on N + 1 quantum numbers, as well as the relevant wavefunctions.

In Section 4.6 we give an account of open problems and possible generalizations.

In the subsequent consideration we put, for simplicity, r0 = 1.

4.2 MODELS ON COMPLEX PROJECTIVE SPACES

In this Section we briefly describe the Landau problem and the oscillator on a complex projective

space, and construct CPN -analog of Rosochatius system.

Let us introduce, on the cotangent bundle of CN+1, the canonical Poisson brackets {pi, uj} =

δij, and define the su(N + 1) algebra with the generators

Lij̄ = ı(piu
j − p̄jūi)−

δij̄
N
L0, where L0 = ı

N∑
i=0

(piu
i − p̄iūi). (4.6)

Reducing this phase space by the action of generators L0, h0 =
∑

i u
iūi, and finally fixing

their values as L0 = 2B, h0 = 1, we arrive at the Poisson brackets (4.4) (with r0 = 1). They
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describe an electrically charged particle on CPN interacting with a constant magnetic field of

the magnitude B and set the corresponding twisted symplectic structure

Ω0 = dza ∧ dπa + dz̄a ∧ dπ̄a + ıBgab̄dz
a ∧ dz̄b, (4.7)

with gab̄ being defined in (1.30).

The inhomogeneous coordinates and momenta za, πa are related to the homogeneous ones

pi, u
i as [13]

za =
ua

u0
, πa = gab̄

( pb
ū0
− z̄b p0

ū0

)
. (4.8)

The su(N + 1) generators (4.6) are reduced to the following ones

Jab̄ = ı(zbπa − π̄bz̄a)−B z̄azb

1+zz̄
, Ja = πa + z̄a(z̄π̄) + ıB z̄a

1+zz̄
: (4.9)

{Jāb, Jc̄d} = iδādJb̄c − iδc̄bJād, {Ja, J̄b} = −i(Jab̄ + J0δab̄), {Ja, Jbc̄} = iJbδac̄, (4.10)

where J0 ≡
∑N

a=1 Jaā +B.

With these expressions at hand we can now consider some superintegrable systems on CPN .

CPN -Landau problem. The CPN -Landau problem is defined by the symplectic structure

(4.7) and the free-particle Hamiltonian identified with a Casimir of su(N + 1) algebra

H0 = (1 + zz̄)
(

(ππ̄) + (zπ)(z̄π̄)
)

=
1

2

N∑
i,j=0

Lij̄Ljī −
B2

2
=

N∑
a=1

JaJ̄a +

∑N
a,b=1 Jab̄Jbā + J2

0 −B2

2

{H0, Lij} = 0. (4.11)

Its quantization was done, e.g., in [107].

CPN -oscillator. The CPN -oscillator is defined by the symplectic structure (4.7) and the

Hamiltonian [91]

Hosc = H0 + ω2zz̄ . (4.12)

It respects manifest U(N) symmetry with the generators Jab̄ (4.9), and additional hidden

symmetries given by the proper analog of “Fradkin tensor”,

Iab̄ = JaJ̄b + ω2z̄azb . (4.13)
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The full symmetry algebra of this system reads

{Jāb, Jc̄d} = ıδādJb̄c − ıδc̄bJād, {Iab̄, Jcd̄} = ıδad̄Icb̄ − ıδcb̄Iad̄ (4.14)

{Iab̄, Icd̄} = ıω2δad̄Jcb̄ − ıω2δcb̄Jad̄ − ıIcb̄(Jad̄ + J0δad̄) + ıIad̄(Jcb̄ + J0δcb̄) , (4.15)

where J0 = i(zπ − π̄z̄) +B 1
1+zz̄

. The Hamiltonian (4.12) is expressed via the symmetry gener-

ators as follows

Hosc =
N∑
a=1

Iaā +
1

2

N∑
a,b=1

Jab̄Jbā +
J2

0 −B2

2
. (4.16)

The quantum mechanics associated with this Hamiltonian was considered in [92]. In the flat

limit, the CPN -oscillator goes over to the CN -oscillator interacting with a constant magnetic

field.

CPN -Rosochatius system. The CPN -oscillator, being superintegrable system (for N > 1),

has an obvious drawback: it lacks covariance under transition from one chart to another. This

non-covariance becomes manifest after expressing the Hamiltonian (4.12) via the SU(N + 1)

symmetry generators and the homogeneous coordinates ui,

Hosc =

∑N
i,j=0 Lij̄Ljī −B2

2
+

ω2

u0ū0
− ω2. (4.17)

This expression allows one to immediately construct (N+1)-parameter deformation of the CPN -

oscillator, such that it is manifestly form-invariant under passing from one chart to another

accompanied by the appropriate change of the parameters ωi. The relevant potential is

VRos =
N∑
i=0

(
ω2
i

uiūi
− ω2

i

)
, with

N∑
i=0

uiūi = 1. (4.18)

In the case when all parameters ωi are equal, the system is globally defined on the complex

projective space with the punctured points ui = 0 .

The system with the potential (4.18) is just the CPN -Rosochatius system mentioned in

Introduction. Now we turn to its investigation as the main subject of the present chapter.
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4.3 CPN-ROSOCHATIUS SYSTEM

We consider the N -parameter deformation of the CPN - oscillator by the potential (4.18), in

what follows referred to as the “CPN -Rosochatius system”. It is defined by the Hamiltonian

(4.3) and Poisson brackets (4.4) with r0 = 1. Equivalently, this system can be defined by the

symplectic structure (4.7) and the Hamiltonian

HRos = gab̄πaπ̄b + (1 + zz̄)

(
ω2

0 +
N∑
a=1

ω2
a

zaz̄a

)
−

N∑
i=0

ω2
i , (4.19)

where gab̄ = (1 + zz̄)(δab̄ + zaz̄b) is the inverse Fubini-Study metrics.

The model has N manifest (kinematical) U(1) symmetries with the generators

Jaā = ıπaz
a − ıπ̄az̄a −B

zaz̄a

1 + zz̄
: {Jaā,H} = 0, (4.20)

and hidden symmetries with the second-order generators Iij = (I0a, Iab) defined as

I0a = J0aJ̄0ā + ω2
0z

az̄a +
ω2
a

z̄aza
, Iab = Jab̄Jbā + ω2

a

zbz̄b

zaz̄a
+ ω2

b

zaz̄a

zbz̄b
: {Iij̄,H} = 0 . (4.21)

In the homogeneous coordinates, the hidden symmetry generators can be cast in a more succinct

form

Iij = Jij̄Jjī + ω2
i

ujūj

uiūi
+ ω2

j

uiūi

ujūj
. (4.22)

The relevant symmetry algebra is given by the brackets

{Jaā, Iij} = 0, {Iij, Ikl} = δjkTijl + δikTjkl − δjlTikl − δilTijk , (4.23)

with

(Tijk)
2 = 2(Iij − JīiJjj̄)(Ijk − Jjj̄Jkk̄)(Iik − JīiJkk̄) + 2IijIikIjk + J2

īiJ
2
jj̄J

2
kk̄

− 4(ω2
kIij(Iij − JīiJjj̄) + ω2

i Ijk(Ijk − Jjj̄Jkk̄) + ω2
j Iik(Iik − JīiJkk̄))
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+ 4ω2
jω

2
kJ

2
īi + 4ω2

i ω
2
kJ

2
jj̄ + 4ω2

i ω
2
jJ

2
kk̄ + 16ω2

i ω
2
jω

2
k − (I2

jkJ
2
īi + I2

ijJ
2
kk̄ + I2

ikJ
2
jj̄) (4.24)

The Hamiltonian is expressed via these generators as follows

H =
1

2

N+1∑
i=1

Iij +
N∑
a=1

ω2
a +

J2
0 −B2

2
=

N∑
a=1

I0a +
N∑

a,b=1

Iab
2

+
N∑
a=1

ω2
a +

J2
0 −B2

2
. (4.25)

This consideration actually proves the superintegrability of the CPN -Rosochatius system.

The number of the functionally independent constants of motion will be counted in the end of

this Section.

For sure, the symmetry algebra written above can be found by a direct calculation of the

Poisson brackets between the symmetry generators. However, there is a more elegant and

simple way to construct it. Namely, one has to consider the symmetry algebra of CN+1-

Smorodinsky-Winternitz system (Part III) with vanishing magnetic field, and to reduce it, by

action of the generators ı(piu
i− p̄iūi), uiūi (see the previous Section), to the symmetry algebra

of CPN -Rosochatius system.

4.3.1 REDUCTION TO (SPHERICAL) ROSOCHATIUS SYSTEM

In order to understand the relationship with the standard Rosochatius system (defined on the

sphere) let us pass to the real canonical variables ya, ϕ
a, pa, pϕa

za = yae
ıϕa , πa =

1

2

(
pa − ı

(pϕa
ya

+
Bya

1 + y2

))
e−ıϕa : Ω = dpa∧dya+dpϕa ∧dϕa . (4.26)

In these variables the Hamiltonian (4.19) is rewritten as

HRos =
1

4
(1 + y2)

[
N∑

a,b=1

(δab + yayb)papb + 4ω̃2
0 + 4

N∑
a=1

ω̃2
a

y2
a

]
− E0 , (4.27)

where

ω̃2
a = ω2

a +
1

4
p2
ϕa , ω̃2

0 = ω2
0 +

1

4

(
B +

N∑
a=1

pϕa

)2

, E0 =
B2

4
+

N∑
i=0

ω2
i . (4.28)
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Then, performing the reduction by cyclic variables ϕa (i.e., by fixing the momenta paϕ), we

arrive at the Rosochatius system on the sphere with ya = xa/x0, where (x0, xa) are ambient

Cartesian coordinates,
∑N

i=0 x
2
i = 1:

xa =
ya√

1 + y2
, x0 =

1√
1 + y2

. (4.29)

As was already noticed, the SN -Rosochatius system is maximally superintegrable, i.e. it has

2N − 1 functionally independent constants of motion. From the above reduction we conclude

that the CPN -Rosochatius system has 2N−1+N = 3N−1 functionally independent integrals.

Hence, it lacks N integrals needed for the maximal superintegrability.

4.4 CLASSICAL SOLUTIONS

To obtain the classical solutions of CPN -Rosochatius system we introduce the spherical coor-

dinates through the recursion

yN = r cos θN−1, yα = r sin θN−1uα, with r = tan θN ,
N−1∑
α=1

u2
α = 1, (4.30)

where ya were defined by (4.26). In terms of these coordinates the Hamiltonian (4.27) takes

the form

HRos ≡ IN − E0 =
1

4
(1 + r2)

(
(1 + r2)p2

r +
4IN−1(θ)

r2
+ 4ω̃2

0

)
− E0,

Ia =
p2
θa

4
+
Ia−1

sin2 θa
+

ω̃2
a+1

cos2 θa
, (4.31)

with E0, ωN ≡ ω̃0 defined in (4.28) and a = 1, . . . , N .

Thus we singled out the complete set of Liouville integrals (HRos, Iα, pϕa), and separated

the variables. It is by no means the unique choice of Liouville integrals and of the coordinate

frame in which the Hamiltonian admits the separation of variables. However, for our purposes

it is enough to deal with any particular choice.
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With the above expressions at hand, we can derive classical solutions of the system by

solving the Hamilton-Jacobi equation

H(pa =
∂S

∂xµ
, xµ) = E, with xµ = (θa, ϕa), pµ = (pa, pϕa). (4.32)

To this end, we introduce the generating function of the form

Stot = 2
N∑
a=1

Sa(θa) +
N∑
a=1

pϕaϕa . (4.33)

Substituting this ansatz in the Hamilton-Jacobi equation, we immediately separate the variables

and arrive at the set of ordinary differential equations:(
dSa
dθa

)2

+
ca−1

sin2 θa
+

ω̃2
a+1

cos2 θa
= ca, a = 1, . . . , N, cN := E + E0, ω̃2

N+1 := ω̃2
0 . (4.34)

Solving these equations, we obtain

Sa =

∫
dθa

√
ca −

ca−1

sin2 θa
−

ω̃2
a+1

cos2 θa
. (4.35)

Thus we have found the general solution of the Hamilton-Jacobi equation (i.e., the solution

depending on 2N integration constants ca, pϕa).

In order to get the solutions of the classical equations of motion, we should differentiate the

generating functions with respect to these integration constants and then equate the resulting

functions to some constants t0, κα, and ϕa0,

∂Stot
∂E

= t− t0,
∂Stot
∂cα

= 2
N∑
b=1

∂Sb
∂cα

= κα, α = 1, . . . , N − 1,

∂Stot
∂pϕa

= ϕa +
N∑
b=1

2
∂Sb
∂pϕa

= ϕa0 . (4.36)

Introducing

ξa := sin2 θa, Aa :=
ca + ca−1 − ω̃2

a+1

2ca
, (4.37)

we obtain from (4.36)

ξN −AN =

√
A2
N −

cN−1

cN
sin 2
√
cN(t− t0), (4.38)
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ξα =

√
A2
α −

cα−1

cα

(
sinκα(ξα+1Aα+1 − cα

cα+1
) + cosκα

√
−ξ2

α+1 + 2ξα+1Aα+1 − cα
cα+1

ξα+1

√
cα+1

cα
A2
α+1 − 1

)
+Aα,

(4.39)

ϕa − ϕa0 = − pϕa
4ω̃a+1

arctan
2ω̃a+1

√
ca−1 (ξa − 1)− ξa

(
ca (ξa − 1) + ω̃2

a+1

)
−ca−1 (ξa − 1) + ca (ξa − 1) ω̃2

a+1 (ξa + 1)
. (4.40)

Thereby we have derived the explicit classical solutions of our CPN -Rosochatius system.

4.5 QUANTIZATION

In order to quantize the CPN -Rosochatius system we replace the Poisson brackets (4.4) by the

commutators (with r0 = 1)

[π̂a, z
b] = −ı~δba, [π̂a, ̂̄πb] = ~B

(
δab̄

1 + zz̄
− z̄azb

(1 + zz̄)2

)
. (4.41)

The appropriate quantum realization of the momenta operators reads

π̂a = −ı
(
~
∂

∂za
+
B

2

z̄a

1 + zz̄

)
, ̂̄πa = −ı

(
~
∂

∂z̄a
− B

2

z̄a

1 + zz̄

)
. (4.42)

Then we define the quantum Hamiltonian

ĤRos =
1

2
gab̄
(
π̂â̄πb + ̂̄πbπ̂a)+ ~2(1 + zz̄)

(
ω2

0 +
N∑
a=1

ω2
a

zaz̄a

)
− ~2

N∑
i=0

ω2
i . (4.43)

The kinetic term in this Hamiltonian is written as the Laplacian on Kähler manifold (coupled

to a magnetic field) defined with respect to the volume element dvCPN = (1 + zz̄)−(1+N)[dzdz̄],

while in the potential term we have made the replacement ωi → ~ωi .

In terms of the real coordinates za = yae
ıϕa this Hamiltonian reads (cf. (4.27))

ĤRos = (1 + y2)

[
− ~2

4

( N∑
a,b=1

(δab + yayb)
∂2

∂ya∂yb
+

N∑
a=1

(
ya +

1

ya

)
∂ya

)
+ ̂̃ω2

N+1 +
N∑
a=1

̂̃ω2

α

4y2
a

]
− Ẽ0 .

(4.44)

Here we introduced the operators

̂̃ω2

N+1 =
(B
~

+
1

~

N∑
a=1

p̂ϕa

)2

+ 4ω2
0, ̂̃ω2

α = 4ω2
α +

p̂2
ϕα

~2
(4.45)
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with

p̂ϕa = Ĵaā = −ı~ ∂

∂ϕa
Ẽ0 =

B2

4
+ ~2

N∑
i=0

ω2
i . (4.46)

Clearly, these operators are quantum analogs of the classical quantities (4.28). In the spherical

coordinates (4.30) the Hamiltonian (4.44) takes the form

ĤRos = ÎN − Ẽ0,

Îa = −~2

4

(
(sin θa)

1−a ∂

∂θa

(
(sin θa)

a−1 ∂

∂θa

)
+(a cot θa−tan θa)

∂

∂θa

)
+
Îa−1

sin2 θα
+

~2 ̂̃ω2

a+1

4 cos2 θa
, (4.47)

where a = 1, ..., N .

This prompts us to consider the spectral problem

ĴaāΨ = ~maΨ, ÎaΨ =
~2

4
la(la + 2a)Ψ, (4.48)

and separate the variables by the choice of the wavefunction in such a way that it resolves first

N equations in the above problem,

Ψ =
1

(2π)N/2

N∏
a=1

ψa(θa)e
ımaϕa , ma = 0,±1,±2, . . . (4.49)

Then, passing to the variables ξa = sin2 θa, we transform the reduced spectral problem to the

system of N ordinary differential equations

−ξa(1−ξa)ψ′′a+
(
(a+1)ξ−a

)
ψ′a+

1

4

(
la−1(la−1 + 2a− 2)

ξa
+
ω̃2
a+1

1− ξa
−la(la+2α)

)
ψa = 0. (4.50)

These equations can be cast in the form of a hypergeometric equation through the following

substitution

ψ(ξa) = ξ
la−1

2
a

(
1− ξa

)ωa+1
2
f(ξa) : (4.51)

ξa(1−ξa)f ′′+
(
la−1+a−ξa

(
la−1+a+ω̃a+1+1

))
f ′−1

4

(
la−1+ω̃a+1−la)(la−1+ω̃a+1+la+2a)

)
f = 0.

(4.52)

Introducing the following notions

A =
la−1 + ω̃a+1 − la

2
, B =

la−1 + ω̃a+1 + la + 2a

2
, C = la−1 + a (4.53)
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the equation reduces to the hypergeometric equation.

ξ(1− ξ)f ′′ +
(
C − ξ

(
A+B + 1)

)
f ′ − ABf = 0. (4.54)

The regular solution of this equation is the hypergeometric function [108]

f(ξ) = C0F (A;B;C; ξ) (4.55)

Moreover there is requirement for the constants, which yields discrete energy spectrum

A = −na, na = 0, 1, 2, ... (4.56)

So the solution will have the following form

fa(ξ) = C0F (−na; la−1,+ω̃a+1 + a+ na; la−1 + a; ξa), (4.57)

la = 2na + la−1 + ω̃a+1, (4.58)

with

ω̃a =
√

4ω2
a +m2

a. (4.59)

Therefore, lN =
∑N

a=1 (2na + ω̃a), so that the energy spectrum is given by the expressions

En,{ma} =
~2

4

(
2n+N +

√√√√(B/~ +
N∑
a=1

ma)2 + 4ω2
0 +

N∑
a=1

√
4ω2

a +m2
a

)2

−

− B2 + ~2N2

4
− ~2

N∑
i=0

ω2
i , (4.60)

where n =
∑N

a=1 na = 0, 1, . . . In fact, for the integer parameters na the hypergeometric function

(4.58) is reduced to Jacobi polynomials.

Thus the spectrum of quantum CPN -Rosochatius system depends on N + 1 quantum num-

bers. This is in full agreement with the fact that this system has 3N−1 functionally independent

constants of motion (let us remind that the spectrum of D-dimensional quantum mechanics

with D + K independent integrals of motion depends on D − K quantum numbers. E.g,

the spectrum of maximally superintegrable system depends on the single (principal) quantum

number).
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Let us also write down the explicit expressions for the non-normalized wavefunctions and

the CPN volume element

Ψ{na},{ma} =
C0

(2π)N/2

N∏
a=1

eımaϕaF (−na; la−1,+ω̃a+1 + a+ na; la−1 + a; ξa),

dvCPN =
1

(1 + y2)N+1

N∏
a=1

yadyadϕa , (4.61)

where

ξa =
y2
a

y2
a + y2

a+1

. (4.62)

One can write these solutions in the initial complex coordinates using the following relations

ya = zaz̄a, φa =
i

2
log

z̄a

za
(4.63)

4.5.1 REDUCTION TO QUANTUM (SPHERICAL)

ROSOCHATIUS SYSTEM

From the above consideration it is clear that, by fixing the eigenvalues of Ĵaā = p̂ϕa , we can

reduce the Hamiltonians (4.43) and (4.44) to those of the quantum (spherical) Rosochatius

system, the classical counterpart of which is defined by eq. (4.27).

However, the quantization of (4.27) through replacing the kinetic term by the Laplacian

yields a slightly different expression for the Hamiltonian

ĤRos = −~2

4
(1 + y2)

[
N∑

a,b=1

(δab + yayb)
∂2

∂ya∂yb
+

N∑
a=1

(
2ya∂ya +

g2
a

y2
a

)
+ g2

0

]
. (4.64)

This is because the volume element on N -dimensional sphere is different from that reduced

from CPN :

dvSN =
1

(1 + y2)(N+1)/2

N∏
a=1

dya, (4.65)
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and it gives rise to a different Laplacian as compared to that directly obtained by reduction of

the Laplacian on CPN .

As a result, the relation between wavefunctions of the (spherical) Rosochatius system and

those of CPN -Rosochatius system is as follows,

Ψsph =

√
(1 + y2)(N+1)∏N

a=1 ya
Ψ . (4.66)

So in order to transform the reduced CPN -Rosochatius Hamiltonian to the spherical one (4.64),

we have to redefine the wavefunctions presented in (4.61) and perform the respective similarity

transformation of the Hamiltonian.

4.6 CONCLUDING REMARKS

In this chapter we proposed the superintegrable CPN -analog of Rosochatius and Smorodinsky-

Winternitz systems which is specified by the presence of constant magnetic f and is form-

invariant under transition from one chart of CPN to others accompanied by the appropriate

permutation of the characteristic parameters ωi. We showed that the system possesses 3N − 1

functionally independent constants of motion and explicitly constructed its classical and quan-

tum solutions. In the generic case this model admits an extension with SU(2|1) supersymmetry,

which is reduced, under the special choice of the characteristic parameters and in the absence

of magnetic field, to the “flat” N = 4, d = 1 Poincaré supersymmetry.

When all constants ωi are equal, the system is covariant under the above transitions between

charts and so becomes globally defined on the whole CPN manifold. This covariance implies N

discrete symmetries,

za → 1

za
, zα → zα

za
, with α 6= a. (4.67)

Moreover, in this special case the model always admits (in the absence of magnetic field)

N = 4, d = 1 Poincaré supersymmetrization. This will be discussed in the next chapter. The
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model with equal ωi can be also interpreted as a model of N interacting particles with an

effective position-dependent mass located in the quantum ring. This agrees with the property

that, in the flat limit, the model under consideration can be interpreted as an ensemble of N

free particles in a single quantum ring interacting with a constant magnetic field orthogonal to

the plane. Thus the property of the exact solvability/superintegrability of the suggested model

in the presence of constant magnetic field (equally as of the superextended model implying the

appropriate inclusion of spin) makes it interesting also from this point of view.

The obvious next tasks are the Lax pair formulation of the proposed model and the study

of its SU(2|1) supersymmetric extension, both on the classical and the quantum levels.

Two important possible generalizations of the proposed system are the following ones:

• An analog of CPN -Rosochatius system on the quaternionic projective space HPN in the

presence of BPST instanton.

Presumably, it can be defined by the Hamiltonian (4.3) and the symplectic structure

(4.7), in which πa, z
a are replaced by quaternionic variables, and the last term in (4.7)

by terms responsible for interaction with BPST instanton [109] (see also [110], [111] and

[94]). The phase space of this system is expected to be T ∗HPN ×CP1, due to the isospin

nature of instanton. We can hope that this system is also superintegrable and that an

interaction with BPST instanton preserves the superintegrability. On this way we can

also expect intriguing links with the recently explored Quaternion-Kähler deformations

of N = 4 mechanics [112]. These models also admit homogeneous HPN backgrounds.

• CPN -analog of Coulomb problem.

Such an extension could be possible, keeping in mind the existence of superintegrable

spherical analog of Coulomb problem with additional
∑

i g
2
i /x

2
i potential, as well as the

observation that the (spherical) Rosochatius system is a real section of CPN -Rosochatius

system.

One of the key motivations of the present study was to derive the superintegrable CPN - and

CN - generalizations of rational Calogero model. Unfortunately, until now we succeeded in
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constructing only trivial extensions of such kind. We still hope to reach the general goal just

mentioned in the future.

83



Chapter 5

Supersymmetric extensions

5.1 INTRODUCTION

The following chapter is based on the article mentioned in the previous chapter [5] and another

paper which is in progress (with Armen Nersessian, Evgeny Ivanov and Stepan Sidorov) .

The (planar) Landau problem, that is the planar motion of electrons in the presence of a con-

stant perpendicular magnetic field, has been an issue in physics textbooks for a long time [11].

It is extremely simple and relates to various mathematical constructions. Also, it provides the

first physical realization of supersymmetry (see, e.g. [113]). The compact(spherical) analog of

the planar Landau problem is defined as a particle on the two-sphere in the constant magnetic

field generated by a Dirac monopole located in the center and enjoys an SO(3) invariance.

Similarly, the Landau problem on complex projective spaces is defined as a particle moving on

CPn in the presence of constant magnetic field and enjoys the SU(n+ 1) invariance due to the

first Hopf map realized as S2n+1/S1 = CP n. Quantum mechanically, the inclusion of constant

magnetic field cuts the spectrum from below and provide the system by the degenerate ground

state. Thanks to this degeneracy the quantum-mechanical Landau became the base of the the-
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ory of quantum Hall effect [114, 115] and of its higher-dimensional generalization on complex

projective spaces [116].

Thus, it is not surprising that there exists “quaternionic Landau problem” pertaining to the

second Hopf map S7/S3 = S4 , which is defined as an isospin particle on a four-sphere in the field

of a BPST instanton (the harmonic part of SU(2) Yang monopole located at the center of four-

dimensional sphere). Like in the conventional Landau problem, the gauge field configuration is

compatible with the spherical symmetry, in this case SO(5). It can be further generalized to the

Landau problem on quaternionic projective spaces defined as a particle moving on quaternionic

projective space in the presence of constant SU(2)-instanton (BPST-instanton) field [94]. Due

to relation with the second Hopf map realized as a fibration S4n+3/S3 = HP n this system is

Sp(n + 1) invariant one. Some two decades ago, Zhang and Hu proposed a model of the four-

dimensional Hall effect based on quaternionic Landau problem [117]. Their theory possesses

some qualitatively new features and admits a stringy interpretation [118]. It inspired further

generalizations of the Hall effect, for instance on complex projective spaces [91] and on the

eight-sphere (using the third Hopf map S15/S7 = S8) [119]. There were numerous publications

devoted to supersymmetric extensions of the Landau problem, and more generally, to the

systems on complex projective spaces interacting with constant magnetic field[120, 121, 122,

123, 124, 125, 126]. However, even N = 4 supersymmetric extensions of (two-dimensional)

spherical Landau problem are not studied in details [127], while quantum-mechanical N = 4

supersymmetric Landau problem on complex projective spaces is not still considered, to our

knowledge, except simplest case of CP1 [128].

Moreover, all listed N = 4 supersymmetric Landau problems have an important luck: the

supersymmetry transformations does not respect the initial su(n+ 1) symmetry of the Landau

problem on complex/quaternionic. Thus, supersymmetries seemingly decreases the degeneracy

of ground state which plays the key role in the construction of Hall effect theory. Thus, one

may ask a question:

How one should supersymmetrize the Landau problem, or, more generally, the systems on

Kähler manifolds interacting with constant magnetic fields, in order to preserve their initial
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symmetries?

Some preliminary attempts in this direction were performed some fifteen years ago [129],

when it was observed that the oscillator and Landau problem on complex projective space

admit the so-called ”weak N = 4 supersymmetry”[130] which preserves the initial symme-

tries of that system. These results were recently recovered within curved superfield approach

to supersymmetric mechanics [131, 132, 133, 135, 136], where ”weak N = 4 supersymmetry

algebra” was identified there with su(2|1) superalgebra. Having in mind the ”practical impor-

tance” of supersymmetrization respecting initial symmetries, and field-theoretical importance

of ”curved superspace approach” [137, 138], we present here the Hamiltonian approach to the

supersymmetrization of systems in the constant magnetic field.

Namely, we suggest to construct the N=4 supersymmetric extensions of Landau problem,

including that on complex projective spaces which is based on the symplectic coupling of the

external gauge field to the supersymmetric system in question. We find that in the case of

N=4 it yields SU(2|1) supersymmetric system.

We will show that CPN -Rosochatius system belongs to the class of “Kähler oscillators”

[91, 129] which admit SU(2|1) supersymmetrization (or a ‘weak N = 4” supersymmetrization,

in terminology of Smilga [130]). A few years ago it was found that these systems naturally arise

within the appropriate SU(2|1), d = 1 superspace formalism developed in a series of papers.

This research was partly motivated by the study of the field theories with curved rigid analogs

of Poincaré supersymmetry [137, 138]. In the absence of the background magnetic field and

for the special choice of the parameters ωi, the CPN -Rosochatius system admits N = 4, d = 1

Poincaré supersymmetric extension.

This chapter is organised in the following way

Section 5.2 is devoted to the general discussion of N=4 supersymmetry in Kähler mani-

folds. Namely the structure supersymplectic structure, Killing potentials for supersymmetric

mechanics on generic Kähler manifolds and corresponding Hamiltonian vector fields.

In Section 5.3 we discuss the free particle in presence of a constant magnetic field (Landau

problem) and the related superalgebra.
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In Section 5.4 we extend the discussion via adding potential. This system is the Kähler

superoscillator and this formalism is used for constructing the supersymmetric extensions of

the systems discussed in previous parts.

In Section 5.5 we focus on specific examples of Kähler superoscillator, namely supersymmet-

ric generalizations of CN -Smorodinsky-Winternitz and CPN -Rosochatius systems are discussed.

5.2 SUPERSYMMETRY ON KÄHLER MANIFOLDS

To describe the motion of charged particle on M with the constant magnetic field of strength

B we have to equip the cotangent bundle T ∗M with the following symplectic structure and

Hamiltonian

ωB = dπa ∧ dza + dπ̄a ∧ dz̄a + ıBgab̄dz
a ∧ dz̄b, H0 = gab̄πaπ̄b. (5.1)

The isometries of a Kähler structure define the Noether’s constants of motion of a free particle

Jµ = V a
µ πa + V̄ ā

µ π̄ā +Bhµ, V a
µ = −ıgab̄∂b̄hµ :

 {H0, Jµ} = 0,

{Jµ, Jν} = Cλ
µνJλ.

(5.2)

Notice that the vector fields generated by Jµ are independent on B

Ṽµ = {Jµ, }B = V a
(µ)(z)

∂

∂za
− V a

(µ),bπa
∂

∂πb
+ V̄ ā

(µ)(z̄)
∂

∂z̄a
− V̄ ā

(µ),b̄π̄a
∂

∂π̄b
. (5.3)

Hence, the inclusion of a constant magnetic field preserves the whole symmetry algebra of a

free particle moving in a Kähler manifold, i.e. the Landau problem can be properly defined on

the generic Kähler manifold.

To construct supersymmetric counterpart of the above construction let us consider a (2N.MN)C-

dimensional phase space equipped with the symplectic structure

Ω = dπa ∧ dza + dπ̄a ∧ dz̄a + ı(Bgab̄ + ıRab̄cd̄η
cαη̄dα)dza ∧ dz̄b + gab̄Dη

aα ∧Dη̄bα , (5.4)
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where Dηaα = dηaα + Γabcη
bαdzc, α = 1, . . .M , and Γabc, Rab̄cd̄ are, respectively, the components

of connection and curvature of the Kähler structure

The Poisson brackets defining by (5.55) are given by the expression

{f, g} =
∂f

∂πa
∧∇ag +

∂f

∂π̄a
∧ ∇̄ag + ı(Bgab̄ + ıRab̄cd̄η

cαη̄dα)
∂f

∂πa
∧ ∂f

∂π̄b
+ gab̄

∂rf

∂ηaα
∧ ∂lg

∂η̄bα
, (5.5)

where

∇a ≡
∂

∂za
− Γcabη

b
α

∂r

∂ηcα
, f ∧ g = fg − (−1)p(f)p(g)gf (5.6)

{πa, zb} = δba, {πa, ηbα} = −Γbacη
cα, {πa, π̄b} = i(Bgab̄ + iRab̄cd̄η

cαη̄dα),

{ηaα, η̄bβ} = gab̄δαβ . (5.7)

The symplectic structure (5.55) and Poisson brackets (5.6) are manifestly invariant with respect

to transformations

z̃a = z̃a(z), π̃a =
∂zb

∂z̃a
πb, η̃aα =

∂z̃a

∂zb
ηbα. (5.8)

Hence we can lift the isometries (5.3) to this supermanifold and define the following vector

fields, which are Hamiltonian with respect to Poisson brackets (5.6)

Vµ = {Jµ, } = V a
µ (z)

∂

∂za
− V a

(µ),bπa
∂

∂πb
+ V a

(µ),bη
bα ∂

∂ηaα
+ c.c. , (5.9)

with

Jµ = Jµ − ı
∂2hµ

∂zc∂z̄d
ηcαη̄dα (5.10)

where Jµ is defined by (5.2).

With these expressions at hand we are ready to perform the supersymmetrization of Landau

problems on Kähler manifolds.
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5.3 SU(2|1) LANDAU PROBLEM

For the construction of N = 4 Landau problem we choose standard ”chiral” supercharges

Qα, Qα with α = 1, 2 by the same Ansatz as in the absence of magnetic field and the generators

of additional SU(2) symmetry given by the R-charges

Qα = πaη
aα , Qα = π̄aη̄

a
α, Rα

β = ıgab̄η
aαη̄bβ −

ı

2
δαβgab̄η

aγ η̄bγ . (5.11)

Closure of their Poisson brackets reads

{Qα, Qβ} = 0, {Rα
β ,R

γ
δ} = ıδγβR

α
δ − ıδαδR

γ
β,

{Qα,Rβ
γ} = −ıδαγQβ +

ı

2
δβγQ

α, {Qα,Rβ
γ} = ıδβαQγ −

ı

2
δβγQα

{Qα, Qβ} = δαβH0 +BRα
β , {Qα,H0} =

ıB

2
Qα, {Rα

β ,H0} = 0 (5.12)

where

H0 = gab̄πaπ̄b −
1

2
Rab̄cd̄η

aαη̄bαη
cβ η̄dβ +

B

2
ıgab̄η

aαη̄bα. (5.13)

Hence, extending the set (5.11) by the above generator (5.13) we get the su(2|1) superalgebra,

or weak N = 4 superalgebra. These generators are obviously invariant under action of (5.9)

{Qα,Jµ} = {Qα,Jµ} = {Rα
β ,Jµ} = {H0,Jµ} = 0, (5.14)

i.e. constructed supersymmetric system inherits all kinematical symmetries of the initial sys-

tem. In particular, for the CPN -Landau problem the system has a SU(N + 1) symmetry.

Moreover, the last term in the Hamiltonian (5.13) is obviously Zeeman term describing interac-

tion of spin with external magnetic field, i.e. our choice of Hamiltonian is physically relevant.

Thus, the generator (5.13) could be considered as a well defined Hamiltonian of ”weak N = 4

supersymmetric” Landau problem on Kähler manifold.
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Finally via modification of the initial Hamiltonian we can get the Hamiltonian which is

commutative with the supercharges

H̃0 = H0 +
B

2
ıgab̄η

aαη̄bα : {Qα, H̃0} = {Rα
β , H̃0} = 0. (5.15)

5.4 SU(2|1) KÄHLER SUPEROSCILLATOR

The Kähler oscillator is defined by the Hamiltonian[129]

Hosc = gab̄
(
πaπ̄b + |ω|2∂aK ∂b̄K

)
, (5.16)

and by the symplectic structure (5.1). It is distinguished system by its respect to supersym-

metrization: inclusion of ”oscillator potential” leads minor changes in the supersymmetrization

described above. Preserving the expressions of R-charges (5.11), we choose the ”dynamical

supercharges”

Θα = πaη
aα + ıω̄∂̄aKε

αβ η̄aβ, Θα = π̄aη̄
a
α + ıω∂aKεαβη

aβ, (5.17)

where

εαβ = −εαβ, εαβ = −εβα, ε12 = 1, εαβεβγ = δαγ . (5.18)

Another important identity should be noted.

εαβεγδ = δαδ δ
β
γ − δαγ δ

β
δ (5.19)

Calculating Poisson brackets of supercharges, we get

{Θα,Θβ} = δαβHSUSY +BRα
β . (5.20)

where the Hamiltonian has the following form

Hosc = gab̄(πaπ̄b + |ω|2∂aK∂b̄K)− 1

2
Rab̄cd̄η

aαη̄bαη
cβ η̄dβ
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+
ı

2
ωKa;bη

aαηbα +
ı

2
ω̄Kā;b̄η̄

a
αη̄

bα +
B

2
ıgab̄η

aαη̄bα, (5.21)

We can compute other commutators

{Θα,Θβ} = ω̄(εβγRα
γ + εαγRγ

β), {Θα,Θβ} = −ω(εβγRγ
α + εαγRγ

β) (5.22)

{Θα,Rβ
γ} = −ıδαγΘβ +

ı

2
δβγΘα, {Θα,Rβ

γ} = ıδβαΘγ −
ı

2
δβγΘα

Here again Rα
β are SU(2) generators of R-symmetry

Rα
β = ıgab̄η

aαη̄bβ −
ı

2
δαβgab̄η

aγ η̄bγ, {Rα
β ,R

γ
δ} = ıδγβR

α
δ − ıδαδR

γ
β. (5.23)

To present this superalgebra in more conventional (and convenient) form let rotate the

supercharges as follows

Qα = eiν/2 cosλΘα + e−iν/2 sinλεαγΘγ, Qα = e−iν/2 cosλΘα − eiν/2 sinλεαγΘ
γ (5.24)

where

cos 2λ =
B√

4|ω|2 +B2
, sin 2λ = − 2|ω|√

4|ω|2 +B2
, ω = |ω|eiν (5.25)

In these terms the symmetry algebra reads

{Qα, Qβ} = 0, {Qα, Qβ} = 0, (5.26)

{Qα, Qβ} = δαβHosc +
√

4|ω|2 +B2 Rα
β {Qα,Rβ

γ} = −ıδαγQβ +
ı

2
δβγQ

α (5.27)

{Qα,Hosc} = ı

√
|ω|2 +

B2

4
Qα {Rα

β ,Hosc} = 0 (5.28)

This is the SU(2|1) supersymmetry algebra.

Let us remind that Kähler potential is defined up to (anti-)holomorphic function, so that the

above supersymmetrization involves, not a single Hamiltonian, but a family of Hamiltonians

parameterized by arbitrary holomorphic function. Namely, replacing the initial Kähler potential

by the equivalent one,

K(z, z̄)→ K(z, z̄) +
1

ω
U(z) +

1

ω̄
Ū(z̄), (5.29)
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we will get the family of Hamiltonians formulated on given background,

HSUSY → HSUSY + gab̄∂aU∂b̄U +
ı

2
Ua;bη

aαηbα +
ı

2
Ūā;b̄η̄

a
αη̄

bα + gab̄ (ω̄∂aK∂b̄U + ω∂aU∂b̄K) .

(5.30)

In the limit ω = 0 we arrive to the well-known Hamiltonian which admits, in the absence of

magnetic field, the N = 4 supersymmetry (see, e.g. [139]). It is given by the first line in the

above expression.

5.5 EXAMPLES OF SU(2|1) KÄHLER

SUPEROSCILLATOR

5.5.1 SUPERSYMMETRIC CN-HARMONIC OSCILLATOR

At the first let us consider the system defined by the Kähler potential

K(z, z̄) =
N∑
a=1

(
zaz̄a +

gaz
aza

2ω
+
ḡaz̄

az̄a

2ω̄

)
. (5.31)

It yields the Kähler oscillator defined by the Hamiltonian.

Hosc =
N∑
a=1

(
πaπ̄a + (ωω̄ + gaḡa)z

az̄a + ω̄gaz
aza + ωḡaz̄

az̄a (5.32)

+
i

2
gaη

aαηaα +
i

2
ḡaη̄

a
αη̄

aα +
B

2
ıηaαη̄aα

)
(5.33)

Supercharges and R-charges have the following form.

Θα =
∑
a

(
πaη

aα + ı(ḡaz̄
a + ω̄za)εαβ η̄aβ

)
Rα
β = ıηaαη̄aβ −

ı

2
δαβη

aγ η̄aγ (5.34)

The canonical Poisson brackets are as follows

{πa, zb} = δba, {π̄a, z̄b} = δba, {πa, π̄b} = ıBδab̄, {ηaα, η̄bβ} = δab̄δαβ . (5.35)
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Diagonalizing this quadratic form we get the potential of 2N -dimensional oscillator.

For ω = 0 it yields the sum of two-dimensional isotropic oscillators with frequencies |ga|.

Hence, in the absence of magnetic field is possible to construct the exact N = 4 supersymmetric

extension only for the sum of N two-dimensional oscillators with frequencies |ga|.

Supersymmetric extension of isotropic oscillator is just a sum of bosonic and fermionic parts,

so that all constants of motion of the bosonic Hamiltonian become those of fermionic one. When

the ration of frequencies is rational, the hidden symmetries appears in this system, which

conserved in supersymmetric extension as well. Moreover, additional symmetry generators

could appear in supersymmetric system depending on fermionic variables only. Let us illustrate

these issues for the case of isotropic superoscillator. defined by the potential K = zz̄ and for

ω = ω̄. Its Hamiltonian, dynamical supercharges and R-charges decouples to those of two-

dimensional isotropic oscillator

H =
N∑
a=1

Ha, Θα =
N∑
a=1

Θaα, Rα
β =

N∑
a=1

Raα
β (5.36)

with

Ha = πaπ̄a + ω2zaz̄a +
B

2
ıηaαη̄aα, Θaα = πaη

aα + ıωzaεαβ η̄aβ. (5.37)

This system has kinematical SU(N) symmetries acting in the bosonic sector, su(N) symmetries

acting in fermionic sector (which includes, as a subset, the su(2) R-symmetries)

Rab̄ =
∑
α

ıηbαη̄qα : {Rab̄, Rcd̄} = ıδad̄Rcb̄ − ıδcb̄Rad̄, (5.38)

and the hidden symmetries given by the so-called “Fradkin tensor”:

Iab̄ = πaπ̄b + ω2z̄azb : (5.39)

{Iab̄, Icd̄} = ıδad̄Jcb̄ − ıδcb̄Jad̄, {Iab̄, Jcd̄} = ıωδad̄Icb̄ − ıωδcb̄Iad̄. (5.40)

Now, we are ready to consider less trivial example of SU(2|1) supersymmetric Kähler oscil-

lator with hidden symmetry.
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5.5.2 SUPERSYMMETRIC CN-SMORODINSKY-WINTERNITZ

Let us consider Kähler superoscillator underlined by the CN -Smorodinsky-Winternitz system.

We define it by the Kähler potential

K = zz̄ +
ga
ω

log za +
ḡa
ω̄

log z̄a. (5.41)

In that case the Hamiltonian decouples to the sum of N weak supersymmetric C1-Smorodinsky-

Winternitz systems,

HSW =
N∑
a=1

Ia, (5.42)

where

Ia = πaπ̄a + |ω|2zaz̄a +
|ga|2

zaz̄a
+ ωḡa + ω̄ga −

iga
2

ηaαηaα
zaza

− iḡa
2

η̄aαη̄
aα

z̄az̄a
+
B

2
ıηaαη̄aα (5.43)

We can also present the expressions for supercharges and su(2) supercharges.

Θα =
∑
a

(
πaη

aα + ı
(
ω̄za +

ḡa
z̄a

)
εαβ η̄aβ

)
, Rα

β = ıηaαη̄aβ −
ı

2
δαβη

aγ η̄aγ (5.44)

In this case supersymplectic structure has the same form as for the previous system.

{πa, zb} = δba, {π̄a, z̄b} = δba, {πa, π̄b} = ıBδab̄, {ηaα, η̄bβ} = δab̄δαβ . (5.45)

Clearly, that Ia commutes with each other, and defines the constants of motion of the su-

persymmetric CN -Smorodinsky-Winternitz system. The system possesses N manifest U(1)

symmetries za → eıκ, ηaα → eıκηaα given by the generators

Jaā = Jaā + ıη̄aαη
aα : {Jaā,Jbb̄} = {Jaā, Ib} = 0 (5.46)

where

Jaā = ıπaz
a − ıπ̄az̄a −B

zaz̄a

1 + zz̄
(5.47)
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5.5.3 SUPERSYMMETRIC CPN-ROSOCHATIUS

Let us briefly discuss the possibility of supersymmetrization of CPN -Rosochatius system. The

CPN -Rosochatius system belongs to the class of the so-called “Kähler oscillators” [91, 129] (up

to a constant shift of the Hamiltonian), and therefore, admits SU(2|1) (or, equivalently, “weak

N = 4”) supersymmetric extension. Namely, its Hamiltonian (4.19) can be cast in the form

HRos = gab̄
(
πaπ̄b + |ω|2∂aK∂āK

)
− E0, (5.48)

with

K = log(1 + zz̄)− 1

|ω|

N∑
a=1

(ωa log za + ω̄a log z̄a), ω = ω0 +
N∑
a=1

ωa, (5.49)

E0 = |
N∑
i=0

ωi|2 −
N∑
i=0

|ωi|2 (5.50)

Here, as opposed to the previous Sections, we assume that ωi are complex numbers, i.e. we

replaced

ωi → ωie
ıνi , (5.51)

with νi being arbitrary real constants.

The SU(2|1) superextension is reduced to that with N = 4, d = 1 Poincaré supersymmetry

under the conditions.

B = 0 , ω =
N∑
i=0

ωi = 0. (5.52)

From the viewpoint of SU(2|1) mechanics, B is just the parameter of contraction to N = 4

d = 1 supersymmetry. One could expect that the second constraint corresponds to the vanishing

potential. However, it is not the case: looking at the explicit expression for the Hamiltonian,

one can see that the parameter ω does not appear in denominators anymore.

Indeed, the second constraint above leads the relation |ω0|2 = |
∑N

a=1 ωa|2, which allows to

represent the Hamiltonian (4.19) in the following form

HRos =
N∑

a,b=1

gāb
(
π̄aπb + ∂āŪ∂bU

)
−

N∑
i=0

|ωi|2 (5.53)
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and U(z) be the holomorphic function (“superpotential”)

U(z) =
N∑
a=1

ωa log za. (5.54)

It is well-known that the systems with such Hamiltonian admit the N = 4 supersymmetric

extension in the absence of magnetic field (see, e.g., [139]). Explicitly it looks as follows.

Let us consider a (2N.4N)C-dimensional phase space equipped with the symplectic structure

Ω = dπa ∧ dza + dπ̄a ∧ dz̄a − 1
2
Rab̄cd̄η

c
αη̄

dαdza ∧ dz̄b + 1
2
gab̄Dη

a
α ∧Dη̄bα , (5.55)

The Poisson brackets defined by (5.55) are given by the following non-zero relations and

their complex-conjugates:

{πa, zb} = δba, {πa, ηbα} = −Γbacη
c
α, {πa, π̄b} = −Rab̄cd̄η

c
αη̄

dα, {ηaα, η̄bβ} = gab̄δβα. (5.56)

We can define the Hamiltonian and the supercharges

Qα = πaη
aα + ıŪ,āη̄

aα, Qα = π̄aη̄
a
α + ıU,aη

a
α,

HSUSY = HRos −
1

2
Rab̄cd̄η

aαη̄bαη
cβ η̄dβ +

ı

2
U,a;bη

aαηbα +
ı

2
Ū,ā;b̄η̄

aαη̄bα (5.57)

Straightforward calculations show that the following supercharges and Hamiltonian obey the

(N = 4, d = 1) Poincare superalgebra

{Qα, Qβ} = δαβ

(
HSUSY +

N∑
i=0

|ωi|2
)
,

{Qα, Qβ} = {Qα, Qβ} = {Qα,HSUSY } = {Qα,HSUSY } = 0, (5.58)

Hence, with the constraint (5.52) imposed, we can construct the N = 4 supersymmetric exten-

sion of CPN -Rosochatius system.

An interesting question is the symmetries of constructed supersymmetric system. Writing

down the explicit expressions for the Hamiltonian and supercharges one can see that they are

explicitly invariant under U(1)-transformations za → eıκza, πa → e−ıκπa, η
aα → eıκηaα which

are obviously, canonical transformations.Hence, one can easily construct the “supersymmetric

counterpart” of U(1) generators. However, to the moment we are unable to answer the question
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weather hidden symmetries of the system can be lifted to the supersymmetric extension of the

model.

Let us emphasize that the restriction ω = 0 can be graphically represented as a planar

polygon with the edges |ωi| (see Fig.1), which leads to the inequality

|ωi| ≤
∑
j 6=i

|ωj|. (5.59)

ω0 ω1 ω0 ω1

ω2

ω0

ω1

ω2

ω4

Fig.1

This implies that:

• For N = 1 the constraint ω = 0 uniquely fixes the values of parameters in the case of

CP1: ν0 = −ν1 and |ω0| = |ω1|. The latter property leads to the appearance of discrete

symmetry

z → 1

z
. (5.60)

• For N = 2 the above constraints amount to a triangle, which fixes the parameters νa as

follows

cos (ν2 − ν0) =
|ω1|2 − |ω0|2 − |ω2|2

2|ω0||ω2|
, cos (ν1 − ν0) =

|ω2|2 − |ω0|2 − |ω2|2

2|ω0||ω1|
. (5.61)

• For N > 2 the parameters νa are not uniquely fixed, so that we obtain a family of N = 4

supersymmetric Hamiltonians depending on up to N − 1 parameters.

We observe that for any value of N at least one parameter νi remains unfixed. But this does not

affect our consideration since such parameter can be absorbed into a redefinition of fermionic

variables.
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Finally, note that the constraint
∑N

i=1 ωi = 0 also appeared in constructing the N = 4

supersymmetric extension of SN -Rosochatius system [140], but with ωi being real numbers.

The above trick with complexification of the parameters ωi is certainly applicable to the SN -

Rosochatius system, giving rise to a less restrictive form of the N = 4 superextension of the

latter.

5.6 CONCLUDING REMARKS

In this chapter we have discussed Supersymmetric generalizations of CN -Smorodinsky-Winternitz

and CPN -Rosochatius models. For this purpose we have introduced SU(2|1) supersymmetriza-

tion which allows to construct weak N = 4 superextensions of systems on Kähler manifolds

interacting with an external magnetic field. First of all we have discussed SU(2|1)-Landau

problem (system without an external potential). After this we have introduced SU(2|1)-Kähler

oscillator. Using this formalism One can find many supersymmetric models on Kähler man-

ifolds using the fact that all these systems can be viewed as SU(2|1)-Kähler oscillator with

different Kähler potentials. Then we have shown Kähler potentials which give rise to SU(2|1)-

Supersymmetric CN -Smorodinsky-Winternitz and SU(2|1)-Supersymmetric CPN -Rosochatius

systems.
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Conclusion

To sum up we will briefly discuss the main results of this thesis.

First Chapter is an introduction and some general concepts are discussed. First of all we

give a brief discussion of Hamiltonian mechanics. We discuss well known examples of maximally

superintegrable models, namely the oscillator and Coulomb systems. We discuss mechanical

models interacting with an external magnetic field, and introduce action angle variables. More-

over we give a short review on Kähler manifolds and discuss maximally symmetric examples of

it, namely complex Euclidean and complex projective spaces. Finally we give a short description

of supersymmetric mechanics.

Second Chapter is devoted to holomorphic factorization formalism. This formalism allows to

describe generalizations of Coulomb and oscillator models via introduction of complex variables.

First of all we discuss this scheme on well known examples of TTW and PW systems. Then

we do this for higher dimensional cases. We do the so called oscillator-Coulomb reduction

procedure using the holomorphic factorization formalism. Moreover we discuss also curved

spaces namely the spherical and pseudospherical generalizations. Finally we describe some

examples of superintegrable models using this formalism.

In the Third Chapter we concentrate on the complex analogue of the Smorodinsky-Winternitz

system interacting with an external magnetic field. Firstly we discuss the usual real N -

dimensional Smorodinsky-Winternitz system. The main result we have obtained for the real

case is the convenient form of the symmetry algebra. Then we introduce the complex analogue

of this system, and write down the its hidden symmetries. We also obtain important result for

this model, namely the symmetry algebra and quantum solutions. Eventually we compute the
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symmetry algebra for the generalized MICZ-Kepler system using the results we have obtained

before for the C2-Smorodinsky-Winternitz system.

In the Fourth Chapter we introduce the complex projective analogue of the Rosochatius

system in an external magnetic field. Here again we see that it is superintegrable, since it has

hidden constants of motion. We write have found also its symmetry algebra, classical and quan-

tum solutions. Namely we find solutions for the classical equations of motion, wavefunctions

and the energy spectrum.

Finally in the Fifth Chapter we formulate the SU(2|1)-Supersymmetric mechanics. We

describe the SU(2|1)-Landau problem (supersymmetric particle moving on a Kähler manifold

with en external magnetic field). Then SU(2|1)-Superoscillator is discussed. Via this we

construct N = 4 supersymmetric extensions of the CN -Smorodinsky-Winternitz and CPN -

Rosochatius models.
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