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1 Introduction

The Standard Model (SM) of particle physics is an extremely successful theory providing

various predictions that have been thoroughly tested and approved by experiments. Despite

the brilliance of the Standard Model, it is still far from being a complete theory. There are

number of unsolved problems that this theory is unable to provide solutions for. In order

to discover physics beyond the Standard Model different new theories and extensions have

been proposed. Among them are the supersymmetric theories that are considered to be

an elegant solution to some of the current problems in particle physics. Supersymmetry is

a spacetime symmetry relating bosons and fermions to each other and easily remedies the

hierarchy problem. In my thesis I will mainly focus on the minimal phenomenologically viable

supersymmetric extension of the SM, called the Minimal Supersymmetric Standard Model

(MSSM). The conservation of baryon number (B) and lepton number (L) present in the

Standard Model is no longer guaranteed in supersymmetric models. For instance, the MSSM

Lagrangian can generally contain additional terms, both gauge-invariant and renormalizable,

that violate eitherB or L [2]. A new symmetry, calledR-parity, can be imposed to forbid such

terms and this way make sure to stay close to current experimental picture. Nevertheless, the

presence of R-parity violating (/Rp) couplings in the supersymmetric Lagrangians leads to new

types of interactions. Some of these interactions yield extra contributions to the well-known

SM processes, while others generate reactions that are forbidden in the Standard Model. In

contrast to the SM, where all the processes happen via the exchange of fundamental spin-1

gauge bosons, new fundamental scalar bosons can be additionally mediated between SM

fermions in the MSSM if R-parity is violated. Therefore, R-parity violation, if present at

all, leads to many interesting new phenomenological consequences. The non-observation of

certain interactions and measured experimental constraints on the observables set stringent

bounds on the /Rp coupling constants. The main goal of my thesis is to recalculate some of

these bounds based on the updated experimental values for different observables provided

by the Particle Data Group.

One thing to note is that it is generally more convenient to use two-component Weyl

spinor notation for fermions when working in electroweak or in supersymmetric theories. As

some readers may not be familiar with it, I will briefly provide the basic formalism before

specifying the MSSM Lagrangian and calculating different matrix elements or observables.

Section 2 covers the essential notations, conventions and Feynman rules in two-component

language heavily based on Ref. [1]. In section 3, using the formalism of section 2, I shortly

present the interaction Lagrangian of the SM in two-component notation together with

the associated Feynman interaction vertices. Section 4 is dedicated to a brief overview of

supersymmetry and the MSSM based of Ref. [2]. In section 5 I discuss R-parity, its origin,

properties, violation and consequences based on Ref.s [3] and [2]. In the end of this section

1



Bounds on Supersymmetric Operators from Experiments Archil Suladze

I specify the /RP trilinear interaction terms. In Section 6, I go through various low energy

processes to calculate /RP contributions coming from the above-mentioned trilinear terms

and, consequently, set bounds on the trilinear /RP coupling constants involved. Finally, in

the last section, I will summarize all the obtained single-coupling bounds in a table together

with previous bounds found in the literature.

2 Two-component spinors

One of the distinctive features of the Standard Model is the chiral nature of fermionic

interactions. The fundamental degrees of freedom for fermions are two-component Weyl-van

der Waerden spinors that transform under the irreducible representations of the Lorentz

group [1]. It can be shown that the Lie algebra for the Lorentz group splits into two

commuting su(2) subalgebras [5]:

so(1, 3) = su(2) ⊕ su(2). (2.1)

Each irrep (short for irreducible representation) of su(2) is characterized by a number j

that is either integer or half-integer. This in turn means that we can specify the irreps of

the Lorentz group istelf by two such numbers, say j1 and j2, generating infinite number of

irreducible representations denoted by (j1, j2) with dimension (2j1 + 1)(2j2 + 1). The two

relevant irreps are
(

1
2
, 0
)

and
(
0, 1

2

)
, referred to as spin-1

2
representations. The elements

living in the vector spaces on which these irreps act are known as Weyl spinors. The(
1
2
, 0
)

&
(
0, 1

2

)
spinors are called the left-handed and right-handed Weyl spinors, respectively,

and are usually denoted by ψL &ψR in the familiar four-component notation. One should

keep in mind that these irreps are indeed distinct, though related by Hermitian conjugation,

as the left- and right-handed Weyl spinors tranform differently under boosts and rotations

[5]. The chiral nature lies in the fact that the two kinds of Weyl spinors are also differently

charged under the Standard Model gauge group. The parity is thus violated by the SM

Lagrangian. In the four-component notation, the Dirac fermion, containing both left-and

righ-handed Weyl degrees of freedom, therefore has to carry left- or right-handed projection

operators:

PL :=
1

2
(1− γ5), PR :=

1

2
(1 + γ5) (2.2)

all along. So, while the parity-conserving theories, such as QCD and QED, are well-suited to

the four-component Dirac spinor notation, the latter may become a bit clumsy in a theory

that violates parity. Moreover, the two-component notation has even more advantage in

supersymmetric models, since their building blocks are chiral and vector supermultiplets,

both of which contain a sole two-component Weyl fermion.

2
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2.1 Conventions, notations and two-component spinor identities

This subsection specifies the most essential conventions and notations. I will also present

some of the two-comonent spinor identities that are relevant for the later calculations. The

possible number of these identities is enormous, so the reader is encouraged to refer to section

2 of Ref. [1] and the references in it for more detailed discussion of the two-component spinor

notation. All conventions, notations and identities are taken from Ref. [1].

I will use the following metric tensor:

gµν = gµν = diag(+1,−1,−1,−1) , (2.3)

where µ, ν = 0, 1, 2, 3 are spacetime vector indices.

A two-component
(

1
2
, 0
)

spinor field is denoted by ψα. It is a two-component, complex,

anti-commuting field with α = 1, 2. A two-component
(
0, 1

2

)
spinor is denoted by ψ†α̇ with

α̇ = 1, 2 as well1. It is important to distinguish between the undotted and dotted spinor

indices because they cannot be directly contracted to form Lorentz invariant quantities. As

mentioned above, the
(

1
2
, 0
)

and
(
0, 1

2

)
representations are related by hermitian conjugation.

That is, if ψα is a
(

1
2
, 0
)

fermion, then ψ†α̇ transforms as a
(
0, 1

2

)
fermion [1]:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇, (2.4)

and conversely

(ψ†α̇)† = ψα . (2.5)

This implies that one can use left-handed spinor fields ψα or right-handed fields ψ†α̇ only to

describe all fermion degrees of freedom. By standard convention the
(

1
2
, 0
)

Weyl spinors are

chosen and I will also stick to this choice later on when defining the chiral supermultiplets of

the MSSM. Note that it is helpful to regard ψα as a column vector, and ψ†α̇ as a row vector.

There are also spinors that have raised spinor indices and are denoted as ψα and ψ†α̇.

One can picture ψα as a row vector, and ψ†α̇ as a column vector when combining them to

form Lorentz tensors [1]:

ψ†α̇ ≡ (ψα)† = (ψ†)α̇. (2.6)

The height of spinor indices matters. In order to raise or lower them one can introduce the

analogue of metric tensor for spinors, the two-index antisymmetric epsilon symbol defined

as [1]

ε12 = −ε21 = ε21 = −ε12 = 1 , ε11 = ε22 = ε11 = ε22 = 0 . (2.7)

1spinor indices are conventionally denoted by the symbols from the beginning of the Greek alphabet.

3
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We can then formally define εα̇β̇ ≡ (εαβ)∗ and εα̇β̇ ≡ (εαβ)∗ [1]. Viewing ε as a 2× 2 matrix

yields the following [1]:

ψα = εαβψβ, ψα = εαβψ
β, ψ†α̇ = εα̇β̇ψ†

β̇
, ψ†α̇ = εα̇β̇ψ

†β̇. (2.8)

In order to obtain Lorentz vectors hermitian sigma matrices σµ
αβ̇

and σµ α̇β are introduced

as follows [1]:

σµ = (12×2 ; ~σ) , σµ = (12×2 ; −~σ) , (2.9)

where ~σ ≡ (σ1 , σ2 , σ3) represents the three-vector of Pauli matrices. Using space-time

metric tensor the covariant versions can be easily obtained [1]:

σµ = gµνσ
ν = (12×2 ; −~σ) , σµ = gµνσ

ν = (12×2 ; ~σ) . (2.10)

When constructing Lorentz tensors lowered indices must only be contracted with raised

indices and vice versa. Following a convention, descending contracted undotted indices and

ascending contracted dotted indices,

α
α and α̇

α̇ (2.11)

can be suppressed [1].

Until now I have been discussing anticommuting fermion quantum fields. In the later

sections commuting spinor wave functions will also appear, for example from the Feynman

rules. Consequently, some identities will generate a relative minus sign depending on the

type of spinors involved. Therefore, it is convenient to denote the generic spinor by zi [1],

where i enumerates different spinors. The extra minus sign, when interchanging the order

of two anticommuting fermion fields, can be incorporated in a handy notation [1]:

(−1)A ≡

 +1 , commuting spinors,

−1 , anticommuting spinors.
(2.12)

Using eq. (2.12) the following identities involving zi hold2 [1]:

z1z2 = −(−1)Az2z1 , (2.13)

z†1z
†
2 = −(−1)Az†2z

†
1 , (2.14)

z1σ
µz†2 = (−1)Az†2σ

µz1 . (2.15)

2The additional minus sign in equations (2.13) and (2.14) appears due to the antisymmetry of the ε symbol.

Because of this, interchanging commuting spinors results in an overall minus sign, while interchanging

anticommuting spinors does not produce an extra minus sign.

4
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Often one needs to simplify or rearrange Two-component spinor products, for example

in the matrix element calculations. This can be achieved by the Fierz identities. Here I list

some of the relevant ones used later in the matrix element calculations [1]:

(z1σ
µz†2)(z†3σµz4) = 2(z1z4)(z†2z

†
3) , (2.16)

(z†1σ
µz2)(z†3σµz4) = 2(z†1z

†
3)(z4z2) , (2.17)

(z1σ
µz†2)(z3σµz

†
4) = 2(z1z3)(z†4z

†
2) . (2.18)

A more comprehensive list of sigma matrix identities and their associated Fierz identities

are given in Appendix B of Ref. [1].

2.2 Correspondence to four-component spinor notation

Before discussing Feynman rules, let me briefly demonstrate the correspondence between the

two-component spinor notation and the more familiar four-component Dirac spinor notation.

Of course the two notations should be linked to each other and the results obtained from the

calculations should not depend on which notation one employs. The easiest way to make

the correspondence evident is to go to the Chiral representation in which γ-matrices take

the following form3 [1]:

γµ ≡

(
0 σµ

αβ̇

σµ α̇β 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
−δαβ 0

0 δα̇β̇

)
, 1 =

(
δα

β 0

0 δα̇β̇

)
, (2.19)

where the 4× 4 identity matrix is also displayed in terms of dotted and undotted Kronecker

symbols.

In a Chiral representation, a Dirac spinor is obtained by combining mass-degenerate left-

and right-handed two-component Weyl spinors, say χα and η†α̇, of opposite U(1) charge into

a single four-component object [1]:

Ψ(x) ≡

(
χα(x)

η†α̇(x)

)
, (2.20)

while the Dirac conjugate field in the same representation is

Ψ(x) ≡ Ψ†(x)

(
0 δα̇β̇
δα

β 0

)
=
(
ηα(x), χ†α̇(x)

)
. (2.21)

Note that numerically the above matrix is equivalent to γ0. From the group theoretical point

of view, the above expressions suggest that Dirac spinors transform under the (1
2
, 0)⊕ (0, 1

2
)

3In order to show the correspondence one must explicitly include spinor indices.
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representation of the Lorenrz group. Using eq. (2.19) the chiral projection operators in eq.

(2.2) can be expressed as [1]:

PL =

(
δα

β 0

0 0

)
, PR =

(
0 0

0 δα̇β̇

)
. (2.22)

Eq. (2.22) then allows us to introduce the familiar four-component left and right-handed

spinors, ΨL(x) and ΨR(x), defined as:

ΨL(x) ≡ PLΨ(x) =

(
χα(x)

0

)
, ΨR(x) ≡ PRΨ(x) =

(
0

η†α̇(x)

)
, (2.23)

justifying their names as evident from eq. (2.23).

Using equations (2.19)-(2.23), one can now express frequently encountered Dirac spinor

bilinears in the two component notation. Some of them are listed below:

ΨiPLΨj = ηi χj, ΨiPRΨj = χ†i η
†
j , (2.24)

Ψiγ
µPLΨj = χ†iσ

µχj, Ψiγ
µPRΨj = ηiσ

µη†j , (2.25)

Ψiγ
µγ5PLΨj = −χ†iσµχj, Ψiγ

µγ5PRΨj = ηiσ
µη†j , (2.26)

with the spinor indices suppressed in accordance with eq. (2.11), and i,j run through the

flavour or gauge degrees of freedom. These equations can be viewed as a recipe for quickly

switching between the two- and four-component languages.

An in depth discussion of the correspondence between the two-component and four-component

spinor notations can be found in Appendix G of Ref. [1].

2.3 Feynman rules and calculations in two-component spinor notation

In this subsection I briefly provide the basic Feynman rules, conventions and recipes for

calculating matrix elements in two-component notation taken from Ref. [1].

External fermion and boson rules

Feynman rules for the two-component external state spinors (suppressing the momentum

and spin arguments) are the following [1]:

• For an initial state (incoming) left-handed (1
2
, 0) fermion: x

• For an initial state (incoming) right-handed (0, 1
2
) fermion: y†

• For a final state (outgoing) left-handed (1
2
, 0) fermion: x†

• For a final state (outgoing) right-handed (0, 1
2
) fermion: y

6
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xα and yα are commuting two-component spinor wave functions that satisfy the momentum-space

Dirac equations [1]:

(p · σ)α̇βxβ = my†α̇ , (p · σ)αβ̇y
†β̇ = mxα , (2.27)

(p · σ)αβ̇x
†β̇ = −myα , (p · σ)α̇βyβ = −mx†α̇ . (2.28)

The mnemonic diagram [1] in Fig. 1 below summarizes these rules.

x

y†

x†

y

Initial State Final State

L (1
2
, 0) fermion

R (0, 1
2
) fermion

Figure 1: The external wave function spinors should be assigned as indicated here, for initial

state and final state left-handed (1
2
, 0) and right-handed (0, 1

2
) fermions.

Note that the direction of the arrows on the external lines do not coincide with the flow

of charge or fermion number, but instead correspond to their spinor index structure, with

fields of undotted indices flowing into any vertex and fields of dotted indices flowing out of

any vertex. The two-component Feynman rules for external bosons do not differ from the

four-component counterparts. They are listed below for completeness’ sake [1]:

• For an initial state (incoming) or final state (outgoing) spin-0 boson : 1

• For an initial state (incoming) spin-1 boson of momentum ~p and helicity λ : εµ(~p , λ)

• For a final state (outgoing) spin-1 boson of momentum ~p and helicity λ : εµ(~p , λ)∗

The treatment of propagators in two-component notation can be found in Ref. [1].

7
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General structure and rules for Feynman diagrams

Here the basic recipe for matrix element calculations in two-component notation is presented.

For the external lines we have [1]:

• If one starts a fermion line at an x or y external state spinor, it should have a

raised undotted index. If one starts with an x† or y†, it should have a lowered

dotted spinor index. If one ends with an x or y external state spinor, it will

have a lowered undotted index, while if one ends with an x† or y† spinor, it

will have a raised dotted index.

(2.29)

The following determines whether the σ or σ version of the rule for arrow-preserving

fermion propagators and gauge vertices are employed [1]:

• For any scattering matrix amplitude, factors of σ and σ must alternate. If

one or more factors of σ and/or σ are present, then x and y must be followed

[preceded] by a σ [σ], and x† and y† must be followed [preceded] by a σ [σ].

(2.30)

• Arrow-preserving propagator lines must be traversed in a direction parallel

[antiparallel] to the arrowed line segment for the σ [σ] version of the propagator

rule.

(2.31)

Fermi-Dirac statistics yield the following rules [1]:

• Each closed fermion loop gets a factor of −1. (2.32)

• A relative minus sign is imposed between terms contributing to a given

amplitude whenever the ordering of external state spinors (written left-to-right

in a formula) differs by an odd permutation.

(2.33)

The only thing that remains is to establish conventions for labelling Feynman diagrams in

the two-component notation. Since Dirac fermions are made up of two distinct two-component

spinor fields, there is an option of labelling fermion lines in Feynman rules and diagrams by

particle names or by field names. In what follows, I will stick to conventions specified in

Ref. [1] and label fermion lines with two-component fields rather than particle names. The

exact labelling conventions for internal and external lines in Feynman diagrams and also in

Feynman rules can be found in section 5 of Ref. [1].

8
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3 The Standard Model in two-component notation

We can now use conventions and notations of the previous section to specify the fermionic

part of the SM in two-component notation4. The fermionic content of the SM, listed in Table

1, is made up of three generations of quarks and leptons described by the two-component

fermion fields. In Table 1 Y is the weak hypercharge, while T3 is the third component of the

weak isospin. Together they yield the electric charge via the relation: Q = Y + T3 [1].

One can make connection to four-component Dirac notation using eq. (2.20). Associating

χ←→ f and η ←→ f , a generic four-component Dirac fermion field is built in the following

way [1]:5

fD ≡

(
f

f
†

)
. (3.1)

The left- and right-handed projections are then

fDL ≡

(
f

0

)
, fDR ≡

(
0

f
†

)
. (3.2)

The QCD interaction Lagrangian of the quarks with gluons is the following [1]:

Lint = −gsAµaq†mi σµ(T a)m
nqni + gsA

µ
aq
†
ni σµ(T a)m

nqmi , (3.3)

where q is a (mass eigenstate) quark field, m and n are SU(3) color triplet indices, Aµa is

the gluon field and T a are the color generators in the triplet representation of SU(3). The

corresponding Feynman rules are given in Fig. 2 [1].

The electroweak interaction Lagrangian is given by [1]:

Lint =− g√
2

[
Ki

ju†iσµdjW
+
µ + (K†)i

jd†iσµujW
−
µ + ν†iσµ`iW

+
µ + `†iσµνiW

−
µ

]
− g

cW

∑
f=u,d,ν,`

{
(T f3 − s2

WQf )f
†iσµfi + s2

WQff
†i
σµf i

}
Zµ

− e
∑

f=u,d,`

Qf (f †iσµfi − f
†i
σµf i)Aµ , (3.4)

where sW ≡ sin θW , cW ≡ cos θW , and i, j are generation indices. K is the unitary

Cabibbo-Kobayashi-Maskawa (CKM) matrix. All the fermion fields above are the mass

eigenstate fields. Fig. 3 [1] summarizes the Feynman rules .

4More detailed description of the SM (gauge and Higgs bosons, Higgs mechanism, mass diagonalizations,

etc.) can be found in Appendix J of Ref. [1], Ref. [5] and the references in them.
5Usually four-component fermion fields are also denoted by f . For this reason I write the subscript “D”

(short for Dirac) to differentiate the four-component field from the two-component
(
1
2 , 0
)

field f , even though

it is fairly easy to differentiate between the two depending on the situation. One can also use capital letters

to denote four-component Dirac fields when making connection to the two-component notation.

9
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Two-component fields SU(3)C , SU(2)L, U(1)Y T3 Q = T3 + Y

Qi ≡

(
ui

di

)
(3, 2, 1

6
)

1
2

−1
2

2
3

−1
3

u i

d i

(3, 1,−2
3
)

(3, 1, 1
3
)

0

0

−2
3

1
3

Li ≡

(
νi

`i

)
(1, 2,−1

2
)

1
2

−1
2

0

−1

` i (1, 1, 1) 0 1

Table 1: Fermions of the Standard Model with their SU(3)C × SU(2)L × U(1)Y quantum

numbers. i = 1, 2, 3 is a generation index. The bars on the two-component antifermion fields

are part of their names, and do not denote some form of complex conjugation.

µ, a

α̇

β

−igsδji (T a)m
n σ α̇βµ

µ, a

igsδ
j
i (T

a)m
n σ α̇βµ

α̇

β

qmi

qnj

qnj

qmi

Figure 2: QCD Feynman vertex interaction rules involving the gluon and quark q =

u, d, c, s, t, b. For each rule, a corresponding one with lowered spinor indices is obtained

by σ α̇βµ → −σµβα̇.

4 Supersymmetry and the Minimal Supersymmetric

Standard Model

Supersymmetry (SUSY) is a spacetime symmetry that transforms a bosonic state into a

fermionic state, and vice versa. Its algebraic structure involves a spin-1
2

anti-commuting

spinor generator Q generating the transformations [2]

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (4.1)

Spinors being generally complex objects, the hermitian conjugate of Q is also a symmetry

generator. Together they satisfy the following (anti-)commutation relations [2]:

10
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S1
µ

α̇

β

−ieQf δ
j
iσ

α̇β
µ S2

µ
ieQf δ

j
iσ

α̇β
µ

α̇

β

γ

fi

fj

γ

f i

f j

S3
µ

α̇

β

−i g
cW

(T f3 − s2
WQf ) δ

j
iσ

α̇β
µ S4

µ
−igs

2
W

cW
Qf δ

j
iσ

α̇β
µ

α̇

β

Z

fi

fj

Z

f i

f j

S5
µ

α̇

β

− i√
2
g[K†]i

j σα̇βµ S6
µ

− i√
2
g[K]i

j σα̇βµ

α̇

β

W−

di

uj
W+

ui

dj

µ
S7

α̇

β

− i√
2
g δjiσ

α̇β
µ S8

µ
− i√

2
g δjiσ

α̇β
µ

α̇

β

W−

`i

νj
W+

νi

`j

Figure 3: Feynman rules for the charged and neutral current interaction vertices. For the

W± bosons, the charge indicated is flowing into the vertex. Qf denotes the electric charge

and T f3 = 1/2 for f = u, ν, while T f3 = −1/2 for f = d, `. For each rule, a corresponding

one with lowered spinor indices is obtained by σα̇βµ → −σµβα̇ .

{Q,Q†} = −2σµP
µ, (4.2)

{Q,Q} = {Q†, Q†} = 0, (4.3)

[Q,P µ] = [Q†, P µ] = 0, (4.4)

where P µ is the generator of space-time translations and the spinor indices on generators

have been suppressed. The squared-mass operator P 2 also commutes with Q and Q† [2]:

[Q,P 2] = [Q†, P 2] = 0, (4.5)

[P 2, P µ] = 0. (4.6)

11
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The building blocks of the supersymmetric algebra are its irreducible representations

called supermultiplets in which the single-particle states reside. Because of the nature of

supersymmetry, each multipltet contains both fermionic and bosonic states, usually referred

as superpartners of each other. Additionally, fermion and boson degrees of freedom are

equal in any supermultiplet6. As a result of the equations (4.5) and (4.6) particles living in

the same supermultiplet must have equal eigenvalues of P 2, that is equal masses. One can

also show that the generators Q,Q† commute with the generators of gauge transformations.

Consequently, particles in the same supermultiplet have the same quantum numbers [2].

The simplest possible supermultiplets are the so-called chiral and gauge supermultiplets.

A chiral supermultiplet consists of a single two-component Weyl fermion and 2 real scalars,

conveniently integrated into a complex scalar field. A gauge supermultiplet contains a

massless spin-1 gauge boson together with a massless spin-1/2 Weyl fermion. These massless

fermions are called gauginos that, similar to their bosonic partners, transform in the adjoint

representation of the gauge group, and thus have the same gauge transformation properties

for the left- and right-handed components [2]. The SM fermions live in chiral supermultiplets

in any supersymmetric extension of the Standard Model. Note that there are other types

of supermultiplets, but they can always be reduced to combinations of chiral and gauge

supermultiplets [2].

From this point I will focus on the the Minimal Sypersimmetric Standard Model (MSSM).

First the particle content of the MSSM should be specified. As the SM quarks and leptons

fit into chiral supermultiplets their partners are spin-0 bosons. These scalar bosons are

conventionally called sfermions. The symbols used for the SM fermions also denote sfermions,

but with a tilde (˜) on top. Since the left- and right-handed parts of the SM fermions are

distinct two-component Weyl fermions, they live in separate supermultiplets, and thus have

their own complex scalar partners.

Higgs scalar boson also falls into a chiral supermultiplet. Actually, In comparison to

the SM, only one Higgs doublet is not enough in the MSSM. One needs two separate Higgs

chiral supermultiplets with weak hypercharges Y = 1/2 and Y = −1/2 [2]. As will become

evident from the MSSM superpotential later on, we need both to give masses to the SM

fermions. These S(U)L doublet Higgs chiral supermultiplets are denoted by Hu and Hd,

with hypercharges Y = 1/2 and Y = −1/2 respectively [2]. The fermionic partners of the

Higgs scalars are called higgsinos. Their respective S(U)L doublet left-handed Weyl spinor

fields are denoted by H̃u and H̃d.

This is the chiral supermultiplet content of the MSSM. It is summarized in Table 2 [2].

6The proof can be found in Ref. [2].
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Supermultiplets spin 0 fields spin 1/2 fields SU(3)C , SU(2)L, U(1)Y

Qi (ũL d̃L)i (u d)i (3, 2, 1
6
)

ui ũ?Ri ui (3, 1, −2
3
)

di d̃?Ri di (3, 1, 1
3
)

Li (ν̃ ˜̀
L)i (ν `)i (1, 2, −1

2
)

ei ˜̀?
Ri `i (1, 1, 1)

Hu (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) (1, 2, −1
2
)

Table 2: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The

spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component

Weyl fermions. i=1,2,3 is a generation index. The bars on the fields are part of their names

and do not denote any kind of conjugation.

The first column specifies the names of supermultiplets7, the second and third columns list

scalar and fermion fields respectively, and in the last column their transformation properties

under the SM gauge group are given. Table 2 follows a standard convention according to

which all chiral supermultiplets are defined in terms of left-handed Weyl spinors, so that the

conjugates of the right-handed quarks and leptons (and their superpartners as well) appear

in it [2].

The Standard Model gauge vector bosons reside in gauge supermultiplets together with

their superpartner gauginos. The particle content of the gauge supermultiplets is briefly

summarized in Table 3 [2]. Supersymmetric partners of gluons are called gluinos and are

denoted by g̃. The electroweak gauge bosons W±, W 0 and B0 are associated with Spin-1/2

superpartners W̃±, W̃ 0 and B̃0, called winos and bino. Note that after electroweak symmetry

7The symbols in the first column of Table 2 represent the whole supermultiplet. For example, L stands for

the SU(2)L-doublet chiral supermultiplet containing ν̃, ν (with T3 = 1/2), and ˜̀L, `L (with T3 = −1/2). In

comparison, e stands for SU(2)L-singlet chiral supermultiplet containing ˜̀?R, `. Note that the same symbols

can denote SU(2)L-doublet fields. For instance, Hu, apart from representing the whole up-type Higgs

supermultiplet, can also denote SU(2)L-doublet scalar field (H+
u H0

u), while L can stand for SU(2)L-doublet

spinor filed (ν `) just like in Table 1. Usually it is straightforward to discern what the symbol denotes from

the context. The same symbols can also designate superfields. It makes sense because they also contain as

components all of the bosonic and fermionic fields within the corresponding supermultiplets. Nevertheless,

I will always point out that we are dealing with the superfields when required.
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Names spin 1/2 fields spin 1 fields SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g (8, 1, 0)

winos, W bosons W̃± W̃ 0 W± W 0 (1, 3, 0)

bino, B boson B̃0 B0 (1, 1, 0)

Table 3: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

breaking, just as W 0 and B0 interaction eigenstates mix to give mass eigenstate γ and Z0,

W̃ 0 and B̃0 will also mix giving the so-called photino γ̃ and zino Z̃0.

To sum up, Tables 2 and 3 make up all of the particle content of the MSSM. Next we

have to specify the superpotential as it governs the supersymmetric interactions bewteen the

chiral superpartners.

The superpotential of the MSSM is [2]

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd, (4.7)

where Q, L, Hu, Hd, e, u, d are chiral superfields corresponding to the chiral supermultiplets

given in Table 2 and all the gauge and family indices have been suppressed. A superfield is a

single object that contains as components all of the bosonic and fermionic fields within the

corresponding supermultiplet. The gauge quantum numbers and the mass dimension of a

chiral superfield are the same as that of its scalar component 8[2]. ye, yu, yd, 3× 3 matrices

in the family space, are the dimensionless Yukawa coupling parameters.

Note that in the superpotential only terms holomorphic in the chiral superfields treated

as complex variables (no complex conjugates should appear) are admitted. This implies

that terms like H?
uHu can not be part of the superpotential [2]. This constraint also makes

it evident why one needs two Higgs supermultiplets to give masses to SM fermions. Since

the superpotential is holomorphic, only Hu can give masses to the up-type quarks and only

Hd can generate down-type quark and charged lepton masses after electroweak symmetry

breaking. The different interactions and vertices produced by superpotential (4.7) and,

additionally, the treatment of the gauge interactions as well can be found in Ref. [2].

Tables 2 and 3 and superpotential (4.7) are the basic building blocks of the MSSM. They

contain the particle spectrum and all the possible supersymmetry conserving terms that are

8The detailed discussion of superspace, superfields and the treatment of supersymmetry in this formalism

can be found in section 4 of Ref. [2]
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compatible with gauge invariance and R-parity conservation in the MSSM. So new question

arises: what is R-parity, and why do we need it at all in the MSSM?

5 R-parity

The concept of R-parity is closely related to the conservation of baryon number B and lepton

number L. One of the problems that can arise with the introduction of sypersymmetry

concerns the definition of B and L [3] that are carried by Dirac fermions. These numbers

appear to be fermionic in nature, since they are carried only by fundamental fermions as far

as we are concerned. This can not be the case any more in any supersymmetric extension of

the SM, because the fundamental fermions of the SM live in chiral supermultiplets together

with their superpartners, spin-0 bosons, which in supersymmetry have the fundamental

status themselves. Since the superpartners must share the same quantum numbers, we then

have no other choice but to attribute baryon and lepton numbers to fundamental bosons as

well. In the MSSM these boson are squarks and sleptons. But now B and L do not have

to be necessarily conserved due to possibly new interactions of supersymmetric theories [3].

Indeed the new bosons, if allowed to be exchanged between ordinary SM particles conjointly

with the SM gauge bosons, would change the entire picture, allowing extra contributions to

the normal processes and generating unwanted interactions mediated by scalar bosons. In

contrast, SM interactions are due to the exchange of spin-1 gauge bosons. To remedy these

problems a continuous R-symmetry U(1)R acting on the susy generator was introduced [3].

It allows for an additive conserved quantum number, R, and different values of it are carried

by superpartners inside the multiplets of supersymmetry. R-parity is the discrete version (Z2

subgroup) of U(1)R, is connected to B and L as will become evident below, and successfully

forbids the unwanted direct exchanges of squarks and sleptons between SM fermions when

one imposes its conservation.

R-symmetry is a global U(1)R symmetry under which some supersymmetric Lagrangians

are invariant. The defining feature of a continuous R-symmetry is that the anti-commuting

coordinates θ and θ† are oppositely charged under it [2]:

θ → e−iαθ, θ† → eiαθ†, (5.1)

where α parametrizes the U(1) transformation. Eq. (5.1)9 leads to [2]:

Q→ eiαQ, Q† → e−iαQ, (5.2)

9Explicit expressions of susy generators in terms of superspace coordinates can be found in section 4 of

Ref. [2].
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which in turn implies that susy generators do not commute with U(1)R generator R [2]:

[R,Q] = Q, [R,Q†] = −Q†. (5.3)

Consequently, R-symmetry distinguishes between bosons and fermions belonging to the same

supermultuplets as they always carry different values of R charges.

In a theory invariant under an R-symmetry a general transformation rule of any superfield

S(x, θ, θ†) of charge R is given by [2]:

S(x, θ, θ†)→ eiRαS(x, e−iαθ, eiαθ†). (5.4)

In a component form we have [2]:

φ→ eiRφαφ, ψ → ei(Rφ−1)αψ, (5.5)

where φ and ψ are the scalar and fermion fields of some chiral supermultiplet and Rφ is

a charge assigned to this chiral supermultiplet. The components of a related anti-chiral

supermultiplet carry the opposite charges. Gauge superfields being real are not charged

under U(1)R at all. For their components it follows in Wess-Zumino gauge that

Aµ → Aµ, λ→ eiαλ, (5.6)

where Aµ and λ are gauge boson and gaugino fields respectively [2].

We can define R-transformation to not act on ordinary particles meaning that they have

R = 0 [3]. Gauge bosons already satisfy this condition as evident in eq. (5.6). We can

extend this definition to chiral Higgs , quark and lepton superfields, so that Higgs scalars

and SM fermions all have R = 0. This way all ordinary particles get R = 0, while their

superpartners, namely gauginos, higgsinos and sfermions will have R = ±1 (for example as

eq. (5.5) suggests ˜̀L, q̃L have R = +1 , while ˜̀R, q̃R have R = −1). These assignments

allow us to define R-parity as the parity of the additive quantum number R associated with

U(1)R [3]:

Rp ≡ (−1)R =

 +1 , for ordinary particles,

−1 , for their superpartners.
(5.7)

Thus we end up with two separate sectors of R-even and R-odd particles, with R-even

(Rp = +1) particles including SM fermions, gauge bosons and the Higgs bosons of Hu and

Hd, and R-odd (Rp = −1) particles encompassing their superpartners. The definition (5.7)

corresponds to restricting the U(1)R symmetry to its Z2 discrete subgroup by constraining

parameter α to integer multiples of π.
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In order to connect R-parity to B and L we have to first discuss the so-called matter

parity. It is a multiplicatively conserved quantum number defined as [2]

PM ≡ (−1)3B+L, (5.8)

which was initially used to constrain superpotential to be an even function of the quark

and lepton superfields, thus to be able to recover B and L conservation laws, and avoid

direct Yukawa exchanges of spin-0 bosons between ordinary SM fermions. Using the above

definition of PM , one can now connect R-parity to B and L by re-expressing it in the following

way [3]:

Rp = (−1)2s(−1)3B+L, (5.9)

s being the spin of the particle. Note that (−1)2s coincides with (−1)3B+L for all ordinary

particles, hence giving Rp = +1 when multiplied. Because the spin of the superpartners

differ by 1/2, (−1)2s and therefore their Rp charges are exactly opposite. This means that

definitions (5.9) and (5.7) are equivalent.

To see how Rp conservation forbids possible additional unwanted interaction terms, let’s

first find out if there are such terms at all in the MSSM superpotential. Indeed, as it turns

out there are other terms both gauge-invariant and holomorphic in the chiral superfields,

but are not part of the MSSM because they violate either B or L [2]. These additional terms

are given below in two extra superpotentils [2]:

W∆L=1 = 1
2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu, (5.10)

W∆B=1 = 1
2
λ′′ijkuidjdk, (5.11)

where i, j, k = 1, 2, 3 are family indices . Li have L = +1, ei have L = −1, and L = 0 for

the other supermultiplets. Qi carry B = +1
3
, ui and di are assigned B = −1

3
, while for the

rest B = 0. It is trivial to check that the terms in equations (5.10) and (5.11) indeed violate

L and B respectively by 1 unit. Gauge indices have been suppressed, which means that one

has for example LiLj ≡ εαβLiαLjβ and εabc uiadjbdkc, where α, β = 1, 2 are SU(2)L indices

and a, b, c = 1, 2, 3 are SU(3)C indices [3]. Because of the antisymmetry of εαβ and εabc, λijk

are antisymmetric with respect to their first two indices, while λ′′ijk is with respect to their

last two indices:

λijk = −λjik, λ′′ijk = −λ′′ikj. (5.12)

A candidate term in the Lagrangian (or in the superpotential) is allowed only if the

product of Rp (or PM) for the fields in it is +1 [2]. The reason for sticking to Rp instead

of matter-parity is phenomenological, since all the SM particles and the Higgs bosons carry

Rp = +1, while their superpartners, with none of them yet discovered, have Rp = −1. With

the Rp values already assigned it is easy to check that the terms in equations (5.10) and
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(5.11) are indeed forbidden if Rp is exactly conserved. But if R-parity is violated, then the

MSSM is enhanced with W∆L/B=1 superpotentials. They generate a variety of terms. I will

focus only on the trilinear, Yukawa-like interactions involving two fermions and one scalar

boson. There are also bilinear terms involving fermions coming from µ′i terms in W∆L=1,

scalar interactions both Rp conserving and violating, as well as /Rp soft terms10.

In order to obtain Yukawa interactions we have to look for the F-terms [2] in the /Rp

superpotentials. The following identity involving the anti-commuting coordinates will be

useful [2]:

(θξ)(θχ) = −1

2
(θθ)(ξχ). (5.13)

Chiral superfields can be expanded in the following way [2]:

Φ = φ(y) +
√

2 θψ(y) + θθF (y),

where φ(y) is a scalar field, ψ(y) is a fermion field, and F (y) is an auxiliary complex scalar

field. Let’s now look at, for example, the λ terms in the W∆L=1. Chiral superfields involved

are SU(2)L lepton doublets Li and SU(2)L lepton singlets ei:

Li =

(
ν̃i˜̀
Li

)
+
√

2 θ

(
νi

`i

)
+ θθFLi , ei = ẽ ?Ri +

√
2 θei + θθFei ,

LiLjek is then:

LiLjek =

[(
ν̃i˜̀
Li

)
+
√

2 θ

(
νi

`i

)
+ θθFLi

][(
ν̃j˜̀
Lj

)
+
√

2 θ

(
νj

`j

)
+ θθFLj

] [
ẽ ?Rk +

√
2 θek + θθFek

]
(5.14)

One of the F -terms can be obtained by combining the first term in the first bracket, the

second term in the second bracket, and the second term in the third bracket:

2 εαβ

(
ν̃i˜̀
Li

)
α

(
θνj

θ`j

)
β

(θ`k) = 2 ε12

(
ν̃i˜̀
Li

)
1

(
θνj

θ`j

)
2

(θ`k) + 2 ε21

(
ν̃i˜̀
Li

)
2

(
θνj

θ`j

)
1

(θ`k)

= 2
[
ν̃i (θ`j)(θ`k)− ˜̀Li (θνj)(θ`k)]

Now we can use eq. (5.13) to get to the final form:

2
[
ν̃i (θ`j)(θ`k)− ˜̀Li (θνj)(θ`k)] = −(θθ)(`j`k)ν̃i + (θθ)(νj`k)˜̀Li.

So taking the F -term will yield the following interaction terms: ν̃i`j`k and ˜̀Liνj`k. There

are also the same terms but with i↔ j coming from the product of the second term in the

10All these interaction terms can be found in section 2 of [3].
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first bracket of eq. (5.14), the first term of the second bracket, and the second term of the

third bracket. Additionally more F -terms can be obtained by combining the second terms

in the first two brackets with the first term of the third bracket. The same steps can be done

for the λ′ and λ′′ terms in the /Rp superpotentials. For each Lagrangian term there is also

its complex conjugate. Altogether we get the following /Rp trilinear Lagrangian interaction

terms [1]:

LLLe = −1

2
λijk

(˜̀∗
Rkνi`j + ν̃i`j`k + ˜̀Lj`kνi − ˜̀∗Rk`iνj − ν̃j`k`i − ˜̀Liνj`k)+ h.c. , (5.15)

LLQd = −λ′ijk
(
d̃∗Rkνidj + ν̃idjdk + d̃Ljdkνi − d̃∗Rk`iuj − ũLjdk`i − ˜̀Liujdk)+ h.c. , (5.16)

Lu d d = −1

2
λ′′ijkεpqr

[
ũ p∗Rid

q

j d
r

k + d̃ q∗Rju
p
i d

r

k + d̃ r∗Rku
p
i d

q

j

]
+ h.c. , (5.17)

with the Feynman vertex rules given in Fig.s 4, 5 and 6 [1].

These Lagrangians contain terms that yield extra contributions to the usual Standard

Model processes, as well as generate new ones that are forbidden in the SM. By computing

/RP contributions and using experimental values for different observables, indirect bounds on

trilinear λ couplings can be placed. This is precisely the goal of the next section.

Before going to the next topic let’s briefly discuss the reason why we limit ourselves to

the discrete R-parity and discard the continuous U(1)R symmetry. Actually, U(1)R happens

to be a symmetry of all four necessary basic building blocks of the MSSM: the Lagrangian

density for the gauge superfields responsible for strong and electroweak interactions, the

gauge interactions of the quark and lepton superfields, the gauge interactions of the two chiral

doublet Higgs superfields Hu and Hd responsible for the electroweak symmetry breaking,

and the “super-Yukawa” interactions, coming from WMSSM, responsible for quark and lepton

masses [3]. So why do we abandon U(1)R in favour of R-parity? The reason is that an

unbroken U(1)R constrains gauginos to remain massless, even after spontaneous breaking of

supersymmetry. A Majorana gaugino mass term
1

2
Mλλλ will always break the continuous

U(1)R symmetry and, consequently, it will be absent in the susy breaking Lagrangian of the

MSSM. Since we want supersymmetry to be necessarily broken only the discrete version of

U(1)R, namely R-parity, can be tolerated.
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/RP1 −iλijk /RP2 −iλijk
˜̀
Rk

`j

νi

ν̃i

`j

`k

/RP3 −iλijk
˜̀
Lj

νi

`k

Figure 4: Feynman rules for the Yukawa couplings of two-component fermions due to the

supersymmetric, R-parity-violating Yukawa Lagrangian LLLe. For each diagram, there is

another with all arrows reversed and λijk → λ∗ijk.

/RP4 −iλ′ijk /RP5 −iλ′ijk
d̃Rk

dj

νi

ν̃i

dj

dk

/RP6 −iλ′ijk /RP7 iλ′ijk
d̃Lj

νi

dk

d̃Rk

uj

`i

/RP8 iλ′ijk /RP9 iλ′ijk
ũLj

`i

dk

˜̀
Li

uj

dk

Figure 5: Feynman rules for the Yukawa couplings of two-component fermions for the

supersymmetric, R-parity-violating Yukawa Lagrangian LLQd. For each diagram, there is

another with all arrows reversed and λ′ijk → λ′∗ijk.

/RP10 −iεpqrλ′′ijk /RP11 −iεpqrλ′′ijk
ũpRi

d
r

k

d
q

j

d̃rRk

d
q

j

u pi

Figure 6: Feynman rules for the Yukawa couplings of two-component fermions due to the

supersymmetric, R-parity-violating Yukawa Lagrangian Lud d . For each diagram, there is

another with all arrows reversed and λ′′ijk → λ′′∗ijk.
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6 Single-Coupling Bounds on the Trilinear λ Couplings

In this section I go through various low energy processes mainly in the charged current

(CC) and neutral current (NC) sectors and obtain bounds on the trilinear λ couplings from

various observables. These bounds are single-coupling bounds derived under the so-called

single coupling dominance hypothesis, where a single /RP coupling dominates over all the

others, with typical orders of magnitude being λ, λ′, λ′′ < (10−2 − 10−1) × m̃

100GeV
and

involving a linear dependence on the exchanged sfermion masses [3].

To simplify notation, it is useful to define the following auxiliary parameters [4]:

rijk(˜̀) =

(
M2

W

g2

)
|λijk|2

m2˜̀ , r′ijk(q̃) =

(
M2

W

g2

) |λ′ijk|2
m2
q̃

. (6.1)

Shifts in observables in the CC and NC sectors will be expressed in terms of these dimensionless

quantities.

6.1 Charged Current Universality In Lepton Sector

One of the distinctive properties of the standard electroweak theory is the universality of

lepton and quark couplings to W± bosons. The LLe and LQd operators lead to universality

violations. Consequently, stringent bounds on /RP couplings can be placed by precision

measurements of the CC universality. For example, the λ12k couplings induce additional

contributions to the muon decay µ− → νµe
−νe, involving vertex /RP1 and its counterpart

with all the arrow reversed as shown in Fig. 7(b).

µ

νµ

ν†e

e

(a)

p1

p4

q

W−

p3

p2

µ

ν†e

νµ

e

λ12k

λ?12k

(b)

p1

p3

q

˜̀
Rk

p4

p2

Figure 7: Contributions to the muon decay from (a) the Standard Model and (b) an /RP

operator. q2 = t = (p1 − p4/3)2 in (a)/(b).

The effective tree-level Fermi coupling GF will be modified by the /RP operator. In order

to get the /RP contributions let’s evaluate matrix elements at low energies for the above
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diagrams:

iM/RP =
{
xα1
[
−iλ12k δ

β
α

]
y3β

}( i

t−m2˜̀
Rk

){
x†2α̇

[
iλ∗12k δ

α̇
β̇

]
x†β̇4

}
=

i |λ12k|2

(t−m2˜̀
Rk

)
{x1y3} {x†2x

†
4}

t� m2˜̀
≈ − i |λ12k|2

m2˜̀
Rk

{x1y3} {x†2x
†
4}

(2.16)
= −i |λ12k|2

2m2˜̀
Rk

{x1σ
µx†4}{x

†
2σµy3}

=⇒ M/RP = − |λ12k|2

2m2˜̀
Rk

{x1σ
µx†4}{x

†
2σµy3}. (6.2)

Using vertex rules S7 and S8 , I get the following low energy SM matrix element:

iMSM =

{
xα1

[
igσµαα̇√

2

]
x†α̇4

}(
−igµν

t−M2
W

){
x†

2β̇

[
−igσβ̇βν√

2

]
y3β

}

=
−ig2

2 (t−M2
W )
{x1σ

µx†4}{x
†
2σ

µy3}

t� M2
W≈ ig2

2M2
W

{x1σ
µx†4}{x

†
2σ

µy3}

=⇒ MSM =
g2

2M2
W

{x1σ
µx†4}{x

†
2σ

µy3}. (6.3)

So we have11: 
MSM =

g2

2M2
W

{x1σ
µx†4}{x

†
2σ

µy3}.

−

M/RP = − |λ12k|2

2m2˜̀
Rk

{x1σ
µx†4}{x

†
2σµy3}.

Thus MTotal =MSM −M/RP , so that GF becomes:

GF√
2

=
g2

8M2
W

+
|λ12k|2

8m2˜̀
Rk

=
g2

8M2
W

[
1 +

(
M2

W

g2

)
|λ12k|2

m2˜̀
Rk

]
=

g2

8M2
W

[
1 + r12k(˜̀Rk)] . (6.4)

This shift will affect other observables through Fermi coupling GF .

11relative minus sign due to the ordering of the external fermions. It does not really matter which matrix

element gets a minus sign in front, only the relative sign matters.
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Bounds on the LLe couplings can be obtained by comparing the measured ratios of the

CC decay widths to their Standard Model expectations. One of these ratios is defined in the

following way [4]:

Rτµ ≡
Γ(τ → µνν)

Γ(µ→ eνν)
. (6.5)

The diagram and the matrix element calculation for τ → µνν are similar to the muon decay

counterparts after replacing µ → τ, e → µ, νµ → ντ , ν
†
e → ν†µ and λ12k → λ23k. Since

Γ ∝ |M|2 we get: Γ(τ → µνν) ∝ (1 + r23k(˜̀Rk))2 ≈ 1 + 2 r23k and similarly Γ(µ → eνν) ∝
(1 + r12k(ẽRk))

2 ≈ 1 + 2 r12k. The expression for Rτµ is then

Rτµ ≈ RSM
τµ

(
1 + 2 r23k

1 + 2 r12k

)
= RSM

τµ

(1 + 2 r23k)(1− 2 r12k)

(1 + 2 r12k)(1− 2 r12k)
= RSM

τµ

(1 + 2 r23k)(1− 2 r12k)

1− 4r2
12k

≈ RSM
τµ

[
1 + 2 r23k(˜̀Rk)− 2 r12k(˜̀Rk) +O(r2)

]
, (6.6)

where in the last step I have neglected the r2
12k � 1 terms in the denominator.

The measured branching ratios are [6]

Γµ→e ≈ ΓTotal
µ ,

Γτ→µ
ΓTotal
τ

= (17.39± 0.04)× 10−2.

The lifetimes of µ and τ are τµ ≈ 2.197× 10−6 and ττ ≈ (290.3± 0.5)× 10−15 respectively,

while mµ ≈ 105.6584 MeV and mτ = 1776.86 ± 0.12 MeV [6]. Using these numbers I get

that

Rτµ = (131.4183± 0.3023)× 104. (6.7)

The SM expression for Rτµ including radiative corrections is [7]

RSM
τµ =

m5
τ

m5
µ

f(m2
µ/m

2
τ )

f(m2
e/m

2
µ)

δτW
δµW

δτγ
δµγ

= 1.309× 106, (6.8)

where f(x) is the phase space factor

f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx, (6.9)

δ`W is the W -boson propagator correction

δ`W = 1 +
3

5

m2
`

M2
W

, (6.10)

and δ`γ is one-loop correction from photons

δ`γ = 1 +
α(m`)

2π

(
25

4
− π2

)
. (6.11)
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Using the results of eq.s (6.7) and (6.8) I get that

Rτµ

RSM
τµ

= 1.0040± 0.0023.

Plugging this number back in eq. (6.6) then yields the following single bounds:

|λ23k| = 0.04± 0.01 (< 0.05)

(
m˜̀

Rk

100 GeV

)
, 1σ (2σ) (6.12)

|λ12k| < 0.01

(
m˜̀

Rk

100 GeV

)
. 2σ (6.13)

Eq. (6.6) excludes λ12k at 1σ level.

Another measure of the LLe operators comes from the following ratio [4]:

Rτ ≡
Γ(τ → eνeντ )

Γ(τ → µνµντ )
. (6.14)

Rτ is modified by /RP operators analogous to Rτµ, with the replacement of r23k and r12k by

r13k and r23k, respectively, giving:

Rτ ≈ RSM
τ

[
1 + 2 r13k(˜̀Rk)− 2 r23k(˜̀Rk) +O(r2)

]
. (6.15)

The measured branching ratios are [6]

Γe
Γ

= (17.82± 0.04)%,
Γµ
Γ

= (17.39± 0.04)%,

where Γ is the total decay width of τ lepton. Using these numbers I get that

Rτ = 1.0247± 0.0033. (6.16)

The SM expression for Rτ including radiative corrections is [7]

RSM
τ =

f(m2
e/m

2
τ )

f(m2
µ/m

2
τ )

= 1.028, (6.17)

where f(x) is already defined in eq. (6.9). Eq.s (6.16) and (6.17) then result in

Rτ

RSM
τ

= 0.9968± 0.0032.

Finally inserting the above number in eq. (6.15) yields the following 2σ level bounds:

|λ23k| < 0.06

(
m˜̀

Rk

100 GeV

)
, 2σ (6.18)

|λ13k| < 0.03

(
m˜̀

Rk

100 GeV

)
. 2σ (6.19)
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6.2 Charged Current Universality in π and τ Decays

One can also consider the π leptonic decays in /RP SUSY as they can be mediated by the

LQd operators at the tree level through vertex /RP4 and the counterpart of vertex /RP7

with all the arrows reversed as shown in Fig. 8.

Diagram 8 (a) yields the following tree level /RP matrix element at low energies:

iM/RP =
{
xα1
[
−iλ′i1k δ β

α

]
y3β

}( i

t−m2
d̃Rk

){
y†2α̇

[
iλ′∗i1k δ

α̇
β̇

]
x†β̇4

}
=

i |λ′i1k|2(
t−m2

d̃Rk

) {x1y3} {y†2x
†
4}

t� m2
d̃≈ −i |λ

′
i1k|2

m2
d̃Rk

{x1y3} {y†2x
†
4}

(2.16)
=

i |λ′i1k|2

2m2
d̃Rk

{x1σ
µy†2}{x

†
4σµy3}. (6.20)

Using the vertex factors S6 and S7 , I get the following SM matrix element at low energies:

MSM =
g2Vud
2M2

W

{x1σ
µy†2}{x

†
4σµy3}. (6.21)

There is no relative minus sign between the diagrams, so we get a constructive contribution

from the /Rp operator:

MTotal ∝Vud
2

(
g2

M2
W

)[
1 +

1

Vud

(
M2

W

g2

|λ′i1k|2

m2
d̃Rk

)]

=
Vud
2

(
g2

M2
W

)[
1 +

1

Vud
r′i1k(d̃Rk)

]
. (6.22)

The above result can be used to extract bounds on λ′11k and λ′21k by comparing the ratio

Rπ ≡
Γ(π− → e−νe)

Γ(π− → µ−νµ)
[4] to the experimental value. The advantage of the ratio is that it

eliminates the dependence on the pion decay coupling constant, fπ. By using eq. (6.22), I

get the following expression for Rπ (the calculation is similar to eq. (6.6)):

Rπ ≈ RSM
π

[
1 +

2

Vud

(
r′11k(d̃Rk)− r′21k(d̃Rk)

)]
. (6.23)

25



Bounds on Supersymmetric Operators from Experiments Archil Suladze

λ′?i1k

u† (p2, s2) `i (p4, s4)

d (p1, s1) ν†i (p3, s3)(a)

λ′i1k

p2 p4

qd̃∗Rk

p3 p3

u† (p2, s2)

d (p1, s1)

`i (p4, s4)

ν†i (p3, s3)(b)

p2

p1

q

W−

p4

p3

Figure 8: Pion leptonic decay in (a) an /Rp SUSY and (b) the Standard Model. q2 = t =

(p1 − p3)2 in (a), while q2 = s = (p1 + p2)2 in (b).

The tree-level SM expression for Rπ is [8]

RSM
π, tree =

(
me

mµ

)2(
m2
π −m2

e

m2
π −m2

µ

)2

. (6.24)

After plugging me ≈ 0.511 MeV, mµ ≈ 105.6584 MeV and mπ± ≈ 139.5706 ± 0.0002 MeV

[6] in eq. (6.24), I get that

RSM
π, tree = 1.284× 10−4. (6.25)

With the radiative corrections RSM
π, tree becomes [9]

RSM
π = RSM

π, tree(1 + δRπ) = 1.236× 10−4, (6.26)

with [9]

δRπ = −0.0374± 0.0001. (6.27)

The measured branching ratios are [6]

π → eνe (Γe/Γ) = (1.230± 0.004)× 10−4,

π → µνµ (Γµ/Γ) = (99.98770± 0.00004)× 10−2,

where Γ is a total decay width of π±. Calculating Rπ using the above values, together with

eq. (6.26), yields the following value for the ratio:

Rπ

RSM
π

= 0.9951± 0.0032. (6.28)
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Finally, after inserting eq. (6.28) into eq. (6.23), I get the following single bounds:

|λ′21k| = 0.04
+ 0.01

− 0.02
(< 0.06)

(
md̃Rk

100 GeV

)
, 1σ (2σ) (6.29)

|λ′11k| < 0.02

(
md̃Rk

100 GeV

)
. 2σ (excluded at 1σ level) (6.30)

The 2-body decay τ− → π−ντ , shown in Fig. 9, can also be used as an additional test of

lepton universality.

τ

u†

d

ντ

d̃Rk

Figure 9: /RP contribution to the tau decay.

Once again, comparing the ratio [3]

Rτπ ≡
Γ(τ− → π−ντ )

Γ(π− → µ−νµ)
≈ RSM

τπ

[
1 +

2

Vud
(r′31k − r′21k)

]
(6.31)

to the experimental result will yield bounds on the couplings λ′31k and λ′21k.

The tree-level SM expression for the above ratio is [10]

RSM
τπ, tree =

m3
τ

2mπm2
µ

(1−m2
π/m

2
τ )

2

(1−m2
µ/m

2
π)2

. (6.32)

mτ = 1776.86±0.12 MeV, ττ (lifetime) = (290.3±0.5)×10−15s, τπ± = (2.6033±0.0005)×10−8s

and the branching ratio for τ → πντ is (Γi/Γ) = (10.82 ± 0.05)% [6]. After plugging these

numbers into eq. (6.32) I obtain that

RSM
τπ, tree = 0.9756× 104. (6.33)

RSM
τπ, tree is modified by the radiative corrections to [9]

Rτπ = RSM
τπ, tree(1 + δRτπ)

(
9.771

+ 0.009

− 0.013

)
× 103, (6.34)

with [9]

δRτπ = 0.0016
+ 0.0009

− 0.0014
. (6.35)
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Experimental value of Rτπ is

Rτπ = (9.711± 0.052)× 103,

so that I calculate the ratio to be

Rτπ

RSM
τπ

= 0.9939± 0.0054. (6.36)

Finally, after inserting the above result into eq. (6.31), I get the following single bounds:

|λ′21k| = 0.04
+ 0.02

− 0.03
(< 0.07)

(
md̃Rk

100 GeV

)
, 1σ (2σ) (6.37)

|λ′31k| < 0.04

(
md̃Rk

100 GeV

)
. 2σ (excluded at 1σ level) (6.38)

6.3 Charged Current Universality in the Quark Sector

In the quark sector the LQd operators lead to extra contributions to quark semileptonic

decays, as happens, for instance, in nuclear β decay. The form of these decays are indeed

similar to that of pion leptonic decay, diagrammatically shown in Fig. 8(a), with the incoming

up anti-quark external line reversed and the coupling set to λ′11k. The calculation of the /Rp

contribution is very similar to that of eq. (6.4). This implies that, at low energies, the

effective tree-level weak coupling now is:

g2

8M2
W

[
V SM
ud + r′11k(d̃Rk)

]
. (6.39)

The CKM matrix elements VQq are experimentally determined from the ratio of the

Q→ qeνe to µ→ νµeνe partial widths [4], which for Q = d and q = u is

|Vud|2expt =
|V SM
ud + r′11k(d̃Rk)|2

|1 + r12k(˜̀Rk)|2 . (6.40)

The rates for s → ueνe and b → ueνe will also be modified by the LQd interactions [3].

One should keep in mind that these rates will still depend on r12k through the dependence

of GF on the λ12k couplings. Summing over all of the down-type quark generations yields:

3∑
j=1

|V 2
udj
|expt =

1

|1 + r12k(˜̀Rk)|2
[
|V SM
ud + r′11k(d̃Rk)|2 + |V SM

us + {r′11k(d̃Rk)r
′
12k(d̃Rk)}1/2 |2

+ |V SM
ub + {r′11k(d̃Rk)r

′
13k(d̃Rk)}1/2 |2

]
≈ |V SM

ud |2
[
1 +

2

V SM
ud

r′11k − 2 r12k

]
+ |V SM

us |2
[
1 +

2

V SM
us

(r′11kr
′
12k)

1/2 − 2 r12k

]
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+ |V SM
ub |2

[
1 +

2

V SM
ub

(r′11kr
′
13k)

1/2 − 2 r12k

]
= 1− 2 r12k(˜̀Rk) + 2V SM

ud r′11k(d̃Rk)

+ 2V SM
us

[
r′11k(d̃Rk)r

′
12k(d̃Rk)

]1/2

+ 2V SM
ub

[
r′11k(d̃Rk)r

′
13k(d̃Rk)

]1/2

, (6.41)

where the unitarity of the CKM matrix has been used in the last step.

The numerical value of the above quantity is [6]

3∑
j=1

|V 2
udj
|expt = 0.9994± 0.0005.

Also, at the lowest order in /Rp corrections we can take [3] V SM
ud = V expt

ud ≈ 0.974 [6]. After

plugging these two numbers into eq. (6.41), I get the following single bounds:

|λ12k| = 0.014
+ 0.005

− 0.008
(< 0.023)

(
m˜̀

Rk

100 GeV

)
1σ (2σ), (6.42)

|λ′11k| < 0.011

(
md̃Rk

100 GeV

)
2σ (it is excluded at 1σ level). (6.43)

6.4 Semileptonic and Leptonic Decays of D Mesons

Since the experimental branching ratios for the three classes of semileptonic charmed meson

decays are available, I will now discuss the following three-body decay channels: D+ →
K

0
`+
i νi, D

+ → K
0∗
`+
i νi, D

0 → K
−
`+
i νi, where i = e, µ. Apart from the normal Standard

Model diagrams, we get additional contributions to these decays due to the λ′i2k couplings

of the LQd Lagrangian. The tree-level /RP Feynman diagram of the D+ → K
0
`+
i νi decay is

shown in Fig. 10 (a) [3].

c
λ′i2k

`†i

λ′?i2k
s

νi

d† d†

(a)

p1

p3

d̃Rk

p2

p4

D+
K

0

c

(b)

s

`†i

νi
p1

p2

W+

p3

p4

Figure 10: (a) /RP and (b) SM contributions to the D+ meson semileptonic decay.
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Using the vertex rules /RP7 and the complex conjugate of /RP4 the tree-level /RP matrix

element is then:

iM/RP =
{
xα1
[
iλ′i2k δ

β
α

]
y3β

}( i

t−m2
d̃Rk

){
x†2α̇

[
−iλ′∗i2k δα̇β̇

]
x†β̇4

}
=

i |λ′i2k|2

(t−m2
d̃Rk

)
{x1y3} {x†2x

†
4}

s� m2
d̃≈ −i |λ

′
i2k|2

m2
d̃Rk

{x1y3} {x†2x
†
4}

(2.16)
=

i |λ′i2k|2

2m2
d̃Rk

{x1σ
µx†2}{x

†
4σµy3}. (6.44)

The SM Feynman diagram involves the vertices S5 and S8 and yields the following tree-level

matrix element (with 1234 ordering) at low energies:

MSM ≈ −Vcsg
2

2M2
W

{x1σ
µx†2}{x

†
4σµy3}. (6.45)

Since there is a relative minus sign due to the ordering of the external fermions between the

two diagrams, we get a constructive interference for the effective coupling:
Vcsg

2

2M2
W

[
1 +

r′i2k
Vcs

]
.

The other decays are identical, so after defining [3]R
(∗)
D+ , RD0 ≡ B(D → µνµK

(∗))/B(D →
eνeK

(∗)) respectively, the /RP contributions car be rewritten as

RD+

(RD+)SM
=

R∗D+

(R∗D+)SM
=

RD0

(RD0)SM
=
|Vcs + r′22k(d̃Rk)|2

|Vcs + r′12k(d̃Rk)|2
≈ 1+

2

|Vcs|

{
r′22k(d̃Rk)− r′12k(d̃Rk)

}
.

(6.46)

The measured branching ratios for the different decay channels are the following [6]

D+ → K
0
e+νe (Γi/Γ) = (8.73± 0.10) %,

D+ → K
0
µ+νµ (Γi/Γ) = (8.76± 0.19) %,

D+ → K
∗
(892)0e+νe (Γi/Γ) = (5.40± 0.10) %,

D+ → K
∗
(892)0µ+νµ (Γi/Γ) = (5.27± 0.15) %,

D0 → K−e+νe (Γi/Γ) = (3.542± 0.035) %,

D0 → K−µ+νµ (Γi/Γ) = (3.41± 0.04) %,

where Γ is the total decay width of D+(0) meson. By using the above numbers I calculate

that

RD+ = 1.003± 0.025, (6.47)
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R∗D+ = 0.976± 0.033, (6.48)

RD0 = 0.9627± 0.0148. (6.49)

(R
(∗)
D )SM = 1/1.03 accounts for the phase space suppression in the muon channel [3].

This would be the exact value of RD+ and RD0 if one treats the involved mesons as point

particles [7]. Ref. [7] takes into account the form factors and calculates RSM for all three

cases based on experimental date. For RSM
D+ and RSM

D0 , the above value of 1/1.03 is a good

approximation, since it lies within the calculated range [7]. But for R∗SMD+ we have to include

form factors, since 1/1.03 is out of the calculated range [7]

[
R∗SMD+

]−1
= 1.060

+ 0.005

− 0.007
. (2σ) (6.50)

Using eq. (6.50) I get that the ratio of the experimental and theoretical values of R∗D+ is

R∗D+

R∗SMD+

= 1.0346± 0.0363. (6.51)

|Vcs| ≈ 0.997 [6]. This value together with equations (6.46) - (6.51) then yield the

following single bounds:

RD+


|λ′22k| < 0.16

(
md̃Rk

100 GeV

)
2σ,

|λ′12k| < 0.08

(
md̃Rk

100 GeV

)
2σ (it is excluded at 1σ level),

(6.52)

R∗D+


|λ′22k| < 0.15 (0.18)

(
md̃Rk

100 GeV

)
1σ (2σ),

|λ′12k| < 0.02 (0.11)

(
md̃Rk

100 GeV

)
1σ (2σ),

(6.53)

RD0


|λ′22k| < 0.05 (0.08)

(
md̃Rk

100 GeV

)
1σ (2σ),

|λ′12k| < 0.09 (0.11)

(
md̃Rk

100 GeV

)
1σ (2σ).

(6.54)

Another useful process for testing the lepton universality is the two-body leptonic decay

of the strange Ds meson: D−s → `−v`. The /RP diagram is is shown in Fig. 11.

Additional single-coupling constant bounds can be obtained by defining RDs(τµ) ≡
B(Ds → τντ )/B(Ds → µνµ) [3] as the ratio of τ and µ decay channels. /RP couplings

contribute to this ratio, giving (calculation is analogous to the R∗D case):

RDs(τµ)

RSM
Ds

(τµ)
=
|Vcs + r′32k(d̃Rk)|2

|Vcs + r′22k(d̃Rk)|2
≈ 1 +

2

|Vcs|

{
r′32k(d̃Rk)− r′22k(d̃Rk)

}
. (6.55)
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λ′?i2k

c†

`

λ′i2k

s

ν†`

d̃Rk

D−s

Figure 11: /RP contributions to the D−s meson leptonic decay.

The measured branching ratios are the following [6]:

Ds → τντ (Γi/Γ) = (5.48± 0.23) %,

Ds → µνµ (Γi/Γ) = (5.50± 0.23)× 10−3.

The SM expression of RSM
Ds

(τµ) is [11]

RSM
Ds (τµ) =

(
mτ

mµ

)2(M2
Ds
−m2

τ

M2
Ds
−m2

µ

)2

. (6.56)

Using numerical values of the masses involved in eq. (6.56) [6]

MD±s
= 1968.34± 0.07 MeV, mµ ≈ 105.658 MeV, mτ ≈ 1777 MeV,

and the above numbers for the branching ratios, I get that

RSM
Ds (τµ) ≈ 9.73, RDs(τµ) = 9.96± 0.59. (6.57)

Finally plugging eq. (6.57) in eq. (6.55) gives me the following bounds:

|λ′22k| < 0.11 (0.18)

(
md̃Rk

100 GeV

)
1σ (2σ), (6.58)

|λ′32k| < 0.16 (0.21)

(
md̃Rk

100 GeV

)
1σ (2σ). (6.59)

6.5 Neutrino Interactions

In this section I discuss neutrino interactions with leptons and nucleons. I will focus on

muon neutrino - electron elastic scattering νµ(νµ)e− → νµ(νµ)e− and NC muon neutrino -

nucleon deep inelastic scatterings νµ(νµ)N(A)→ νµ(νµ)X, where X represents any product

particle.

32



Bounds on Supersymmetric Operators from Experiments Archil Suladze

At low energies the effective Lagrangian containing the relevant neutral current couplings

encoded in the parameters gν`L,R and εL,R(q) for the charged leptons and the quarks, respectively,

is [3]:

Leff = −4GF√
2

(
ν†σµν

){∑
`=e,µ

gν`L
(
`†σµ`

)
+ gν`R

(
`σµ`

†
)

+
∑
q=u,d

εL(q)
(
q†σµq

)
+ εR(q)

(
qσµq†

)}
.

(6.60)

In the presence of the /Rp interactions the above-mentioned neutrino processes get additional

tree-level contributions, consequently modifying the effective NC couplings. Measuring them

can thus provide single coupling bounds on the involved /Rp coulings.

First let’s discuss νµe
− scattering. The relevant /Rp diagram, shown in Fig. 12 (b), is

obtained through vertex /Rp1 and its counterpart with all the arrows reversed.

νµ (p2, s2) νµ (p4, s4)

e (p1, s1) e (p3, s3)(a)

p2 p4

Z

p1 p3

νµ (p2, s2)

e (p1, s1)

νµ (p4, s4)

e (p3, s3)(b)

λ12k λ?12k

p2

p1

˜̀
Rk

p4

p3

Figure 12: νµe
− elastic scattering in (a) the SM and (b) an /Rp SUSY.

The above diagrams yield the following matrix elements:

iM/RP = {x1 [iλ12k ]x2}

(
i

s−m2˜̀
Rk

)
{x†3[iλ∗12k]x

†
4}

=
−i |λ12k|2

s−m2˜̀
Rk

{x1x2} {x†3x
†
4}

s� m2˜̀
≈ i |λ12k|2

m2˜̀
Rk

{x1x2} {x†3x
†
4}

(2.17)
= −i |λ12k|2

2m2˜̀
Rk

{x†3σµx1}{x†4σµx2}. (6.61)

iMSM =

{
x1

(
ig

cW

[
−1

2
+ s2

W

]
σµ

)
x†3

}[
−igµν

t−M2
Z

]{
x2

(
ig

cW

[
1

2

]
σν

)
x†4

}
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=
i(g2/c2

W )

t−M2
Z

[
1

2

] [
−1

2
+ s2

W

]
{x†3σµx1}{x†4σµx2}

t� M2
Z≈ −i

[
1

2

] [
−1

2
+ s2

W

](
g2

M2
W

)
{x†3σµx1}{x†4σµx2}. (6.62)

Now taking into account that there is a relative minus sign between the diagrams due to the

external fermion ordering, we get the destructive interference between the couplings:

− 1

2

(
g2

M2
W

)(
−1

2
+ s2

W

)
+

1

2

|λ|2

m2˜̀
Rk

= −1

2

(
g2

M2
W

)[(
−1

2
+ s2

W

)
−
(
M2

W

g2

)
|λ|2

m2˜̀
Rk

]

= −1

2

(
g2

M2
W

)[(
−1

2
+ s2

W

)
− r12k(˜̀Rk)] = −4GF√

2

{
1− r12k(˜̀Rk)}[(−1

2
+ s2

W

)
− r12k(˜̀Rk)] .

=⇒ gνeL ≈
(
−1

2
+ s2

W

)
−
(
−1

2
+ s2

W

)
r12k(˜̀Rk)− r12k(˜̀Rk)

=

(
−1

2
+ s2

W

)[
1− r12k(˜̀Rk)]− r12k(˜̀Rk).

νµe
− scattering also receives /Rp contribution at tree-level, this time through vertex /Rp3 .

The relevant Feynman diagram is shown in Fig. 13 (b) below.

ν†µ (p2, s2) ν†µ (p4, s4)

e† (p1, s1) e† (p3, s3)(a)

p2 p4

Z

p1 p3

ν†µ (p2, s2)

e† (p1, s1)

ν†µ (p4, s4)

e† (p3, s3)(b)

λ?2j1 λ2j1

p2

p1

˜̀
Lj

p4

p3

Figure 13: νµe
− elastic scattering in (a) the SM and (b) an /Rp SUSY.

At low energies the matrix elements (the calculation is similar to the νµe
− case) are:

MSM =
1

2

(
g2

M2
W

)
s2
W {y

†
1σ

µy3}{y†2σµy4}. (6.63)

M/RP = −1

2

|λ2j1|2

m2˜̀
Lj

{y†1σµy3}{y†2σµy4}. (6.64)
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For the effective coupling it means:

−1

2

(
g2

M2
W

)
s2
W −

1

2

|λ2j1|2

m2˜̀
Lj

= −1

2

(
g2

M2
W

)[
s2
W + r2j1(˜̀Lj)] = −4GF√

2

[
{1− r12k} s2

W + r2j1

]
.

=⇒ gνeR = s2
W

[
1− r12k(˜̀Rk)]+ r211(˜̀L1) + r231(˜̀L3).

As for the neutrino-nucleon deep inelastic scattering, represented by νµ(νµ)d→ νµ(νµ)d

processes at the quark level, the diagrams (and hence matrix elements) are obtained by

applying the following changes: e → d, λ12k → λ′21k,
˜̀
Rk → d̃Rk and e → d, λ2j1 → λ′2j1,˜̀

Lj → d̃Lj in Fig.s 12 (b) and Fig. 13 (b), respectively. Thus we get similar expressions for

the NC couplings εL(d) and εR(d) but with appropriate factors and λ couplings. Altogether

we have:

gνeL = (−1

2
+ s2

W )[1− r12k(˜̀Rk)]− r12k(˜̀Rk), (6.65)

gνeR = s2
W

[
1− r12k(˜̀Rk)]+ r211(˜̀L1) + r231(˜̀L3), (6.66)

εL(d) = (−1

2
+

1

3
s2
W )[1− r12k(˜̀Rk)]− r′21k(d̃Rk), (6.67)

εR(d) =
s2
W

3

[
1− r12k(˜̀Rk)]+ r′2j1(d̃Lj). (6.68)

In order to set bounds on the coupling constants involved notice that [6]

gνeL =
1

2
(gνeV + gνeA ), (6.69)

gνeR =
1

2
(gνeV − gνeA ), (6.70)

where

gνeV = 2gνV g
e
V , (6.71)

gνeA = 2gνAg
e
A, (6.72)

and

gfV = T f3 − 2s2
WQf , (6.73)

gfA = T f3 . (6.74)

The experimental and SM values (including radiative corrections) for gνeV and gνeA are [6]

gνeV = −0.040± 0.015, (gνeV )SM = −0.0398± 0.0001, (6.75)

gνeA = −0.507± 0.014, (gνeA )SM = −0.5064. (6.76)
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Using eq.s (6.75) and (6.76) I find that

gνeL = −0.2735± 0.0103, (gνeL )SM = −0.2731, (6.77)

gνeR = 0.2335± 0.0103, (gνeR )SM = 0.2333. (6.78)

The experimental and SM values (including radiative corrections) for εL(d) and εR(d) are [6]

εL(d) = −0.4554± 0.0340, (εL(d))SM = −0.4288, (6.79)

εR(d) = 0.0738± 0.0340, (εR(d))SM = 0.0777. (6.80)

Finally, the numbers in eq.s (6.77) - (6.80) give me the following single bounds:

|λ12k| < 0.097 (0.136)

(
m˜̀

Rk

100 GeV

)
, 1σ (2σ) [gνeL ] (6.81)

|λ231| < 0.082 (0.115)
( mτ̃L

100 GeV

)
, 1σ (2σ) [gνeR ] (6.82)

|λ121| < 0.093 (0.131)
( mẽL

100 GeV

)
, 1σ (2σ) [gνeR ] (6.83)

|λ12k| < 0.166 (0.236)

(
m˜̀

Rk

100 GeV

)
, k /=1 1σ (2σ) [gνeR ] (6.84)

|λ12k| < 0.105 (0.248)

(
m˜̀

Rk

100 GeV

)
, 1σ (2σ) [εL(d)] (6.85)

|λ′21k| < 0.196 (0.245)

(
md̃Rk

100 GeV

)
, 1σ (2σ) [εL(d)] (6.86)

|λ12k| < 0.557 (0.768)

(
m˜̀

Rk

100 GeV

)
, 1σ (2σ) [εR(d)] (6.87)

|λ′2j1| < 0.138 (0.202)

( md̃Lj

100 GeV

)
. 1σ (2σ) [εR(d)] (6.88)

6.6 Forward-backward asymmetry in e+e− collisions

Another sensitive tests of the Standard model are the fermion pair production processes,

e+e− → ff , where f = `, q. Mediated by photon or the Z boson in the SM, the asymmetric

angular distribution of the produced particles is observed due to weak interactions, since

the Z boson couplings differ for the left- and right-handed fermions. The forward-backward

asymmetry AfFB in e+e− collisions, defined in eq. (6.89) below, can provide a measure of the
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NC axial-vector couplings gfA. 12

AfFB =
F −B
F +B

≡

∫ 1

0

dσ

dcosθ
dcosθ −

∫ 0

−1

dσ

dcosθ
dcosθ∫ 1

−1

dσ

dcosθ
dcosθ

. (6.89)

To see how AfFB is related to the axial vector couplings let’s consider the cross-section

σ(ff) for the e+e− → ff process that can be generally written as: σ(ff) = σ(QED) +

σ(int) + σ(weak) [12] ; The middle term represents the interference between QED and the

weak interactions. At the lowest order (Born approximation) one gets [12]:

dσ(ff)

dcosθ
=
πα2

2s
[Rff (1 + cos2θ) +Bffcosθ], (6.90)

where θ is the center-of-mass scattering angle and [12]

Rff =
σ(ff)

σ(QED)
= 1− 2geV g

f
V χ+ [(geV )2 + (geA)2][(gfV )2 + (gfA)2]χ2, (6.91)

Bff = −4geAg
f
Aχ+ 8(geV g

f
V )(geAg

f
A)χ2. (6.92)

The Bff term causes F-B asymmetry as can be observed in eq. (6.90). σ(QED) =
4πα2

3s
and

χ ≡ 1

4sin2θW cos2θW

(
s

M2
Z − s

)
[12] in equations (6.91) and (6.92). The imaginary part of

the propagator is small and thus is neglected. These results yield for F and B the following:

F =

∫ 1

0

dσ

dcosθ
dcosθ = Rff +

1

3
Rff +

1

2
Bff , (6.93)

B =

∫ 0

−1

dσ

dcosθ
dcosθ = Rff +

1

3
Rff −

1

2
Bff . (6.94)

=⇒ AfFB =
F −B
F +B

=
3Bff

8Rff

. At sufficiently low energies, that is when s � M2
Z , χ is a

small number and, consequently, the χ2 terms can be neglected in Rff and Bff :

Bff

Rff

≈ −4geAg
f
Aχ

1− 2geV g
f
V χ
≈ −4geAg

f
Aχ(1 + 2geV g

f
V χ) = −4geAg

f
Aχ+O(χ2), (6.95)

=⇒ AfFB = −3

2
geAg

f
Aχ. (6.96)

At the Z peak [3]

A0,f
FB =

3

4
AeAf , (6.97)

12Sometimes cfA is used instead of gfA.
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where

Af =
2gfV g

f
A

gf2
V + gf2

A

tree level
= −T f3 . (6.98)

The presence of the /Rp interactions affects the forward-backward asymmetries AfFB by

modifying axial coupling products through the t-channel diagrams with a sneutrino or squark

exchange as shown in Fig. 14.

In order to get the corrections to AeAf let’s look directly at eq. (3) of Ref. [4] and take

f = µ. The calculations for other fermions will be similar. The relevant part comes from

the third term of the above-mentioned equation [4]

e† `k

e `
†
k(+`i ↔ `k)

λ?1jk

λ1jk

ν̃j

e† uj

e u†j

λ′?1jk

λ′1jk

d̃Rk

e† dk

e d
†
k

λ′?1jk

λ′1jk

ũLj

Figure 14: /Rp contributions to AfFB.

−1

2

|λ1j2|2

m2
ν̃j

[eγµPLe] [µγµPRµ] = −1

8

|λ1j2|2

m2
ν̃j

[eγµe− eγµγ5e] [µγµµ+ µγµγ5µ]

=
1

8

|λ1j2|2

m2
ν̃j

(eγµγ5e)(µγµγ5µ) + . . . ,

where in the last step only the product of the axial-vector parts is specified as it is exactly

the term that modifies AFB. The contribution to AFB in the SM at the tree-level is the

following:

−1

4

g2

M2
W

[eγµ(geV − geAγ5)e] [µγµ(gµV − g
µ
Aγ5)µ] = −1

4

g2

M2
W

[geAg
µ
A](eγµγ5e)(µγµγ5µ) + . . . ;

Adding these two contributions yields the modification of the SM value of the product of

axial-vector couplings:

(geAg
µ
A)SM → (geAg

µ
A)SM − 1

2

(
M2

W

g2

)
|λ1j2|2

m2
ν̃j

=
1

4
− 1

2
r1j2(ν̃j). (6.99)
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The /Rp contributions to other fermion asymmetries are calculated a similar way. I list

the results of my calculations here:

AeAe =
1

4
− 1

2
rijk(ν̃j), ijk = 121, 131, (6.100)

AeAµ =
1

4
− 1

2
rijk(ν̃j), ijk = 122, 132, 211, 231, (6.101)

AeAτ =
1

4
− 1

2
rijk(ν̃j), ijk = 123, 133, 311, 321, (6.102)

AeAc = −1

4
− 1

2
r′12k(d̃Rk), (6.103)

AeAs =
1

4
− 1

2
r′1j2(ũLj), (6.104)

AeAb =
1

4
− 1

2
r′1j3(ũLj). (6.105)

So for the Asymmetries at the Z peak eq. (6.97) yields the following expression:

A0,f
FB

(A0,f
FB)SM

= |1 + r(′)|−2. (6.106)

Experimental and SM values (including radiative corrections) for A0,f
FB are [6]

A0,e
FB = 0.0145± 0.0025, (A0,e

FB)SM = 0.01619± 0.00007, (6.107)

A0,µ
FB = 0.0169± 0.0013, (A0,µ

FB)SM = 0.01619± 0.00007, (6.108)

A0,τ
FB = 0.0188± 0.0017, (A0,τ

FB)SM = 0.01619± 0.00007, (6.109)

A0,c
FB = 0.0707± 0.0035, (A0,c

FB)SM = 0.0736± 0.0002, (6.110)

A0,s
FB = 0.0976± 0.0114, (A0,s

FB)SM = 0.1031± 0.0002, (6.111)

A0,b
FB = 0.0996± 0.0016, (A0,b

FB)SM = 0.1030± 0.0002. (6.112)

After plugging eq.s (6.107) - (6.112) into eq. (6.106), I obtain the following single bounds:

|λijk| < 0.287 (0.362)
( mν̃j

100 GeV

)
, ijk = 121, 131, 1σ (2σ)

[
A0,e
FB

]
(6.113)

|λijk| < 0.108 (0.193)
( mν̃j

100 GeV

)
, ijk = 122, 132, 211, 231, 1σ (2σ)

[
A0,µ
FB

]
(6.114)

|λijk| < 0.125
( mν̃j

100 GeV

)
, ijk = 123, 133, 311, 321, 2σ (1σ excluded)

[
A0,τ
FB

]
(6.115)

|λ′12k| < 0.166 (0.207)

(
md̃Rk

100 GeV

)
, 1σ (2σ)

[
A0,c
FB

]
(6.116)

|λ′1j2| < 0.288 (0.296)
( mũLj

100 GeV

)
, 1σ (2σ)

[
A0,s
FB

]
(6.117)

|λ′1j3| = 0.102
+ 0.022 (+0.041)

− 0.028 (−0.078)

( mũLj

100 GeV

)
. 1σ (2σ)

[
A0,b
FB

]
(6.118)
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6.7 Atomic parity violation

Electroweak theory violates parity as it treats left- and right-handed objects differently.

Precise measurements of parity violation in a number of different atoms provide important

tests of the SM at low energies. Additionally, comparing a measured value of atomic parity

violation (APV) with the corresponding theoretical value predicted by the SM can also

provide probes of physics beyond the SM, since APV can be sensitive to new physics with

parity violating interactions. The SM prediction requires, as input, the mass of the Z boson

and the electronic structure of the atom in question [13]. Even though MZ is measured

with a very high precision, the uncertainties in the atomic structure can still be significant.

Therefore atoms with accurately known structure, one of them being caesium, are used in

variety of precision experiments. The structure of caesium is well-known because it is an

alkali atom with a single valence electron outside of a tightly bound inner core [13]. APV

has been observed via the 6S → 7S transitions of 133
55Cs [13].

Mediated by the Z-boson exchange between the atomic electrons and the nucleus in

the SM, APV transitions measure the parity-violating couplings in the electron-hadron

interactions that can be represented by the following four-fermion effective Lagrangian [3]:

L =
GF√

2

∑
q=u,d

[
CSM

1 (q)(eγµγ5e)(uγµu) + CSM
2 (q)(eγµe)(uγµγ5u)

]
, (6.119)

where the parity-violating C couplings are defined at the tree level as [3]

.CSM
1 (u) ≡ 2geAg

u
V = −1

2
+

4

3
s2
W , CSM

1 (d) ≡ 2geAg
d
V =

1

2
− 2

3
s2
W

CSM
2 (u) ≡ 2geV g

u
A = −1

2
+ 2s2

W , CSM
2 (d) ≡ 2geV g

d
A =

1

2
− 2s2

W . (6.120)

In the presence of the /Rp couplings λ′11k (λ′1j1) additional parity-violating interactions

arise that modify C coefficients through the s-channel (t-channel) exchange of d̃Rk (ũLj)

between an electron and a u (d) quark in the atomic nucleus as shown in Fig. 15. The

simplest way to get the modified expressions for C1(q) and C2(q) is to add the relevant terms

of the SM and /Rp Lagrangians. For q = u, the /Rp four-fermion interactions come from the

first term of eq. (3) of Ref. [4] after replacing λ→ λ′, νL → uL and eR → dR:

.
|λ′11k|2

2m2
d̃Rk

[eγµPLe][uγµPLu] =
|λ′11k|2

8m2
d̃Rk

[eγµe− eγµγ5e][uγµu− uγµγ5u]

=
|λ′11k|2

8m2
d̃Rk

[−(eγµγ5e)(uγµu)− (eγµe)(uγµγ5u) + · · · ], (6.121)

where in the last step only the gAgV terms are written out explicitly.
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e

u

e

u

λ′11k λ′?11k

d̃Rk

d
† e

e d
†

λ′?1j1

λ′1j1

ũLj

Figure 15: /Rp contributions to atomic parity violation.

Adding eq. (6.121) and eq. (6.119), while also keeping in mind that GF is itself modified

by λ12k, yields for C1/2(u) the following expression:

C1/2(u) = CSM
1/2 (u)[1− r12k(ẽRk)]−

M2
W

g2

|λ′11k|2

m2
d̃Rk

= CSM
1/2 (u)[1− r12k(ẽRk)]− r′11k(d̃Rk). (6.122)

One could also arrive to the above expression by directly calculating the matrix elements

of Fig 15. The first diagram of Fig. 15 modifies the gLgL coupling and, consequently, the

gAgV coupling since gAgV = (gL− gR)(gL + gR) = gLgL + · · · . Let’s also include the relevant

SM Feynman diagram and label both of them:

e(p1, s1)

u(p2, s2)

e(p3, s3)

u(p4, s4)

λ′11k λ′?11k

p1

p2

d̃Rk

p3

p4

u(p2, s2) u(p4, s4)

e(p1, s1) e(p3, s3)

p2 p4

Z

p1 p3

These diagrams at low energies yield the following matrix elements:
M/Rp =

|λ′11k|2

m2
d̃Rk

{x1x2}{x†3x
†
4}

(2.18)
= −|λ

′
11k|2

2m2
d̃Rk

{x1σ
µx†3}{x2σµx

†
4}.

MSM = − g2

M2
W

(geLg
u
L)SM{x1σ

µx†3}{x2σµx
†
4}.

(6.123)
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There is a relative minus sign between the two matrix elements due to the ordering of

the external fermions so that geLg
u
L = (geLg

u
L)SM − 1

2
r′11k(d̃Rk). This, combined with the fact

that GF is itself modified by the λ12k coupling, gives the same expression for C1/2(u).

The relevant /Rp four-fermion interactions for the d quarks come from the third term of

eq. (3) of Ref. [4] after replacing λ→ λ′, νL → uL and eR → dR:

−
|λ′1j1|2

2m2
ũLk

[eγµPLe][dγµPRd] = −
|λ′1j1|2

8m2
ũLj

[−(eγµγ5e)(dγµd) + (eγµe)(dγµγ5d) + · · · ]. (6.124)

So the in the presence of /Rp interactions C1(d) and C2(d) read:

C1(d) = (
1

2
− 2

3
s2
W )[1− r12k(ẽRk)] + r′1j1(ũLj), (6.125)

C2(d) = (
1

2
− 2s2

W )[1− r12k(ẽRk)]− r′1j1(ũLj). (6.126)

Another way to impose bounds on the coupling constants involved is to use the weak

charge QW , which plays the same role for the Z exchange as the electric charge does for the

Coulomb interaction. The weak charge is defined in terms of C coefficients as [3]

QW := −2 [(A+ Z)C1(u) + (2A− Z)C1(d)] . (6.127)

Here Z is the atomic number and A is the nucleon number. QW is determined by an electric

dipole transition amplitude EPV = kQW between two atomic states with the same parity,

such as the 6S and 7S states in caesium with k being an atomic-structure factor [14]. One

could evaluate bounds on the couplings directly from the expressions for C1/2(u/d), but the

bounds obtained from the weak charge calculations are more stringent. The quantity of

interest here is actually the difference between the measured weak charge and the SM value,

δQW = QW −QSM
W [3]. Below I calculate δQW for a stable isotope of caesium, 133

55Cs:

QW (Cs) =− 2[ (A+ Z)Cs{CSM
1 (u)− CSM

1 (u)r12k(ẽRk)− r′11k(d̃Rk)}
+ (2A− Z)Cs{CSM

1 (d)− CSM
1 (d)r12k(ẽRk) + r′1j1(ũLj)} ], (6.128)

QSM
W (Cs) =− 2[(A+ Z)CsCSM

1 (u) + (2A− Z)CsCSM
1 (d)], (6.129)

=⇒ δQW (Cs) =− 2[−(A+ Z)Csr′11k(d̃Rk) + (2A− Z)Csr′1j1(ũLj)

− {(A+ Z)CsCSM
1 (u) + (2A+ Z)CsCSM

1 (d)}r12k(ẽRk)]

= 376 r′11k(d̃Rk)− 422 r′1j1(ũLj)−QSM
W r12k(ẽRk). (6.130)

Now I can finally set bounds on the coupling constants involved. The SM and measured

values are QSM
W (133

55Cs) = −73.23 ± 0.01 and QW (133
55Cs) = −72.82 ± 0.42 respectively [15].

These numbers together with eq. (6.130) give me the following single bounds:

|λ′11k| < 0.046

(
md̃Rk

100 GeV

)
, 2σ (6.131)
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|λ′1j1| < 0.025
( mũLj

100 GeV

)
, 2σ (6.132)

|λ12k| < 0.104
( mẽRk

100 GeV

)
. 2σ (6.133)

6.8 The anomalous magnetic moment of muon

The last low energy process that I discuss concerns the anomalous magnetic dipole moment

of muon. The g-factor of muon represents the relative strength of its intrinsic magnetic

dipole moment to the strength of the spin-orbit coupling and in Dirac theory g = 2 [5]. Any

difference from g = 2 is dubbed as particle having the anomalous magnetic dipole moment.

Corrections to the magnetic moment come from diagrams that modify the way photons

interact with spinors. A generic diagram is shown below [5]:

q1 q2

p

where pµ = qµ2−q
µ
1 . Associated matrix element can be parametrized in an usual four-component

notation in the following way [5]:

iMµ = (−ie)u(q2)

[
F1

(
p2

m2

)
γµ +

iσµν

2m
pνF2

(
p2

m2

)]
u(q1), (6.134)

where F1 and F2 are independent form factors. The tree-level graph, for example, corresponds

to F1 = 1 and F2 = 0.

Form factor F1 simply modifies coupling e of the interaction Aµψγ
µψ, giving it scale

dependence [5]. This means, that F1 term is not relevant for anomalous magnetic moment

discussions. On the other hand, the second term in (6.134) has exactly the structure we are

looking for. Relativistically the value of g = 2 comes from σµν term of the Dirac equation

coupled to an external magnetic field. Without F2 g = 2, so it follows that this form

factor modifies the magnetic moment at the scale p2 by g → 2 + 2F2(p2/m2) [5]. Since the

measurements are performed at non-relativistic energies, with a good approximation we have

that [5]

g = 2 + 2F2(0). (6.135)

In this way, the whole problem of finding radiative corrections to g reduces to calculating

F2(0), which in the literature is often denoted by aµ.
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The loop correction to the magnetic moment of µ arises if there is a chirality flip between

the external fermions as eq. (6.134) suggests. Indeed we have:

uσµνu = (uL + uR)σµν(uL + uR) = (uL + uR)σµν(uL + uR).

Let’s focus on the uLuL term (or it could be the uRuR term) and rewrite it in terms of

projection operators:

uLσ
µνuL = (PLu)σµνPLu = uPRσ

µνPLu.

Now we can move PR through σµν ∝ [γµ, γν ]. Keeping in mind that {γ5, γ
µ} = 0 we get that

uPRσ
µνPL ∝ uPR[γµγν − γνγµ]PLu = u[γµPLγ

ν − γνPLγµ]PLu

= u[γµγν − γνγµ]PRPLu = 0.

Thus only the mixed terms survive. This chirality transition is usually done by an insertion of

a fermion mass and, consequently, a magnetic moment is then proportional to the external

fermion mass [16]. Since in the SM there is no heavy fermion one does not expect an

anomalously large anomalous magnetic moment of µ. Actually, the measured value of the

anomalous magnetic moment of muon is of order predicted in the SM, off from the theoretical

prediction by only a few sigma levels. Even though the existence of new physics contributing

to aµ can not be definitely concluded, still one can search for possibilities of generating aµ

of order the electroweak scale [16]. Since the experimental value is of order the expected

theoretical prediction, the mass scale of new physics must be close to the electroweak scale.

One particular model in which this can be achieved was discussed by Kim et al., Ref.

[16]. They studied the anom. magn. moment of µ in the so-called effective supersymmetric

theory (ESUSY [17]) . In the ESUSY, sparticle masses of the first two generations are of

order 20 TeV [17], so they decouple. This means that the ESUSY with R-parity conservation

cannot account for the possible extra contributions to aµ, since R-parity conserving loops

involve ν̃µ and µ̃ that are too heavy in the ESUSY [17].

The situation is different for the third generation sparticles, which in the ESUSY can be

taken to be lighter than 1 TeV [17]. So, following Ref. [16], I will discuss the anomalous

magnetic moment of muon in the ESUSY with R-parity violation involving contributions

from the third generation sparticles only.

The required chirality transition can also take place on the internal fermion and sfermion

lines because of the possible mixing between the left and right sfermions. However, such

contributions can be neglected due to the chiral nature of the SM and the fact that neutrinos

are very light [16].

The /Rp contributions to aµ from the λ and λ′ couplings are shown in Fig. 16 [16]. There

are two types of loops involved: one with two scalars and one fermion, and another with two
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fermions and one scalar. In what follows I calculate both of these loop types separately in the

four-component notation and obtain expressions for F2(0). The four-component version of

Lagrangians (5.15) and (5.16) can be found in section 2.1 of Ref. [3]. Neglecting generation

indices, fermionic part of the interactions are of the following form:

fRfL = (PRf)PLf = (PRf)†γ0PLf = f †PRγ0PLf = f †γ0PLPLf = fPLf,

while the h.c. interactions contain PR instead of PL in the last term as can be easily verified

by doing similar calculation. Therefore, in four-component notation matrix elements will

generally contain PL and PR.

First I calculate a loop with two scalars and one fermion. It is shown below with the

momenta assignments. λ denotes a generic Yukawa coupling constant. From the momentum

conservation it follows that p = q2 − q1.

µ µ

p γ

q1

q1 − k
q2

k p+ k

iMµ =u(q2)

∞∫
−∞

d4k

(2π)4

[
i
λ

2
(1− γ5)

]{
i

(p+ k)2 −m2
s + iε

}
[iQse (2kµ + pµ)]

×
{

i

k2 −m2
s + iε

} {
i (6 q1 −6 k +mf )

(q1 − k)2 −m2
f + iε

}[
i
λ∗

2
(1 + γ5)

]
u(q1)

=u(q2)

∞∫
−∞

d4k

(2π)4

(−Qse |λ2| /4) (2kµ + pµ) (1− γ5) (6 q1 −6 k +mf ) (1 + γ5)[
(p+ k)2 −m2

s + iε
]

[k2 −m2
s + iε]

[
(q1 − k)2 −m2

f + iε
]u(q1)

=u(q2)

∞∫
−∞

d4k

(2π)4

g (2kµ + pµ) {(6 q1 −6 k) (1 + γ5) (1 + γ5) +mf (1− γ5) (1 + γ5)}[
(p+ k)2 −m2

s + iε
]

[k2 −m2
s + iε]

[
(q1 − k)2 −m2

f + iε
] u(q1)

=u(q2)

∞∫
−∞

d4k

(2π)4

g (2kµ + pµ)
{

(6 q1 −6 k) (2 + 2γ5) +mf���
��: o

(1− 1)
}[

(p+ k)2 −m2
s + iε

]
[k2 −m2

s + iε]
[
(q1 − k)2 −m2

f + iε
]u(q1)
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µ µ

λ32k λ?32k

(a)
µ µ

λi23 λ?i23

(b)

γ

ν̃τ

`k `k

γ

νi

τ̃R τ̃R

µ† µ†

λ?3j2 λ3j2

(c)
µ† µ†

λ?i32 λi32

(d)

γ

ν̃τ

`j `j

γ

νi

τ̃L τ̃L

µ µ

λ′23k λ′?23k

(e)
µ µ

λ′2j3 λ′?2j3

(f)

γ

t̃L

dk dk

γ

uj

b̃R b̃R

µ µ

λ′2j3 λ′?2j3

(g)
µ µ

λ′23k λ′?23k

(h)

γ

b̃R

uj uj

γ

dk

t̃L t̃L

Figure 16: /Rp contributions to aµ from the λ and λ′ couplings. In each diagram one of the

external muons is chirally flipped by mµ insertion.
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= 2g u(q2)

∞∫
−∞

d4k

(2π)4

(6 q1 −6 k) (2kµ + pµ) (1 + γ5)[
(p+ k)2 −m2

s + iε
]

[k2 −m2
s + iε]

[
(q1 − k)2 −m2

f + iε
]u(q1),

where g ≡ (−Qse |λ2| /4); To simplify the above expression let’s first complete the square in

the denominator by introducing the Feynman identity [5]

1

ABC
= 2

∫ 1

0

dx dy dz δ(x+ y + z − 1)
1

[Ax+By + Cz]3
. (6.136)

In our case let A ≡ k2 −m2
s + iε , B ≡ (p+ k)2 −m2

s + iε, C ≡ (q1 − k)2 −m2
f + iε.

The denominator:

Ax+By + Cz =
(
k2 −m2

s + iε
)
x+

(
(p+ k)2 −m2

s + iε
)
y +

(
(q1 − k)2 −m2

f + iε
)
z

= k2x−m2
sx+ p2y + k2y + 2pky −m2

sy + q2
1z + k2z − 2q1kz −m2

fz + iε

= k2 + 2k(yp− zq1) + yp2 + zq2
1 −m2

s(x+ y)−m2
fz + iε.

Complete the square: (kµ + ypµ − zqµ1 )2 = k2 + 2k(yp− zq1) + (ypµ − zqµ1 )2.

(ypµ − zqµ1 )2 = y2p2 + z2q2
1 − 2yzpq1 = (1− x− z)yp2 + (1− x− y)zq2

1 − 2yzpq1

= yp2 − xyp2 − yzp2 + zq2
1 − xzq2

1 − yzq2
1 − 2yzpq1

= yp2 + zq2
1 − xyp2 − yzp2 − 2yzpq1 − (xz + yz)q2

1

= yp2 + zq2
1 − xyp2 − yzp2 − 2yzpq1 − z(1− z)m2

µ

= yp2 + zq2
1 − xyp2 − z(1− z)m2

µ − yzp2 − 2yzpq1.

Considering only the last 2 terms:

−yzp2 − 2yzpq1 = − yz(q2 − q1)2 − 2yz(q2 − q1)q1 = −yz(q2
2 + q2

1 − 2q2q1)

− 2yz(q2q1 − q2
1) = −yzm2

µ − yzm2
µ + 2yzq2q1 − 2yzq2q1 + 2yzm2

µ

= 0.

=⇒ (ypµ − zqµ1 )2 = yp2 + zq2
1 − xyp2 − z(1− z)m2

µ.

From these results it follows that

Ax+By + Cz = (kµ + ypµ − zqµ1 )2 + xyp2 + z(1− z)m2
µ − (1− z)m2

s − zm2
f + iε

= (kµ + ypµ − zqµ1 )2 −∆ + iε,

where ∆ ≡ −xyp2 − z(1− z)m2
µ + (1− z)m2

s + zm2
f . So, if one shifts kµ → kµ − ypµ + zqµ1 ,

the denominator becomes (k2 −∆ + iε)3.
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The numerator

Nµ = u(q2) (6 q1 −6 k) (2kµ + pµ) (1 + γ5)u(q1).

One can use momentum space Dirac equations and the Gordon identity to simplify the above

expression:u(q2)6 q2 = mµu(q2)

6 q1u(q1) = mµu(q1)
; u(q2)(qµ2 + qµ1 )u(q1) = 2mµu(q2)γµu(q1)− iu(q2)σµνpνu(q1).

After shifting kµ the first two brackets of Nµ become: 13

26 q1 (kµ − ypµ + zqµ1 )− 2 (6 k − y6 p+ z6 q1) (kµ − ypµ + zqµ1 ) + 6 q1p
µ − (6 k − y6 p+ z6 q1) pµ

= 26 q1k
µ − 2y 6 q1p

µ + 2z 6 q1q
µ
1 − 2(6 kkµ − y 6 pkµ + z 6 q1k

µ − y 6 kpµ + y2 6 ppµ − yz 6 q1p
µ

+ z6 kqµ1 − yz 6 pq
µ
1 + z2 6 q1q

µ
1 ) + 6 q1p

µ −6 kpµ + y 6 ppµ − z6 q1p
µ

= (2− 2z)��
�*okµ6 q1 + (1− 2y)pµ6 q1 + (2z − 2z2)qµ16 q1 − 2kµ6 k + 2y��

�*okµ6 p + (2y − 1)��
�*opµ6 k

+ (y − 2y2)pµ6 p+ (2yz − z)pµ6 q1 − 2z�
��>
o

qµ16 k + 2yz qµ16 p

= (1− 2y + 2yz − z)pµ6 q1 + 2z(1− z)qµ16 q1 −
1

2
gµνk2γν + y(1− 2y)pµ6 p+ 2yz qµ16 p.

Neglecting k2 term as it is not relevant for the anomalous magnetic moment calculation we

are left with (1 − 2y + 2yz − z)pµ6 q1 + 2z(1 − z)qµ16 q1 + y(1 − 2y)pµ6 p + 2yz qµ16 p. Simplifying

the factors using the fact that x+ y + z = 1 gives 141− z − 2y + 2yz = x+ y − 2y + 2yz = ���
��: o

(x− y) + 2yz,

y(1− 2y) = y(x+ y + z − 2y) = y���
��: o

(x− y) + yz.

So one is left with the following expression: {2yz pµ6 q1 + 2z(1− z)qµ16 q1 + yz pµ6 p+ 2yz qµ16 p}.

=⇒ Nµ = {...} (1 + γ5) = 2yz pµmµ(1− γ5) + 2z(1− z)qµ1mµ(1− γ5)

+ (yz pµ6 q2 − yz pµ6 q1 + 2yz qµ16 q2 − 2yz qµ16 q1)(1 + γ5)

= 2yz pµmµ(1− γ5) + 2z(x+ y)qµ1mµ(1− γ5) + yz pµmµ(1 + γ5)

− yz pµmµ(1− γ5) + 2yz qµ1mµ(1 + γ5)− 2yz qµ1mµ(1− γ5)

= yz pµmµ(1− γ5) + 2xz qµ1mµ(1− γ5) + 2yz qµ1mµ(1− γ5) + yz pµmµ(1 + γ5)

13For simplicity I will not carry around u spinors, but naturally the following expressions are implied to

be sandwiched between u(q2) and u(q1)
14(x− y) parts will drop after the integration since the integrand and ∆ are both symmetric under x↔ y.
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+ 2yz qµ1mµ(1 + γ5)− 2yz qµ1mµ(1− γ5)

= yz pµmµ(2) + 2yz qµ1mµ(1− γ5) + 2yz qµ1mµ(1 + γ5)

= 2yz mµp
µ + 2yz mµq

µ
1 (2)

= 2yz mµq
µ
2 − 2yz mµq

µ
1 + 4yz mµq

µ
1

= 2yz mµq
µ
2 + 2yz mµq

µ
1 .

Therefore Nµ = 2yz mµ(qµ2 + qµ1 ) = 2yz mµ

[
2mµγ

µ − iσµνpν
]
. The σµνpν part of Nµ is

exactly what we are looking for. Thus, recalling that F2 was defined as the coefficient of this

operator normalized by
2m

e
, the contribution to F2(0) is

F2(0) =
2mµ

e

(
−2Qse

|λ|2

4

)
2

∫ 1

0

dx dy dz δ(x+ y + z − 1)

∞∫
−∞

d4k

(2π)4

−2yzmµi

(k2 −∆ + iε)3

=
(
−Qs|λ|2

)
4m2

µ (−1)

∫ 1

0

dx dy dz δ(x+ y + z − 1) yzi

[
−i

32π2∆

]
=
(
−Qs|λ|2

) m2
µ

8π2
(−1)

∫ 1

0

dz
z

∆

∫ 1−z

0

dy y

=
(
−Qs|λ|2

) m2
µ

8π2
(−1)

∫ 1

0

dz
z(1− z)2

2∆
.

Change of variables: z = 1− x =⇒ x = 1− z & dz = −dx. In terms of x F2(0) takes the

following form:

F2(0) = −Qs|λ|2
m2
µ

16π2

∫ 1

0

dx
x3 − x2

∆
, (6.137)

with ∆ = m2
µx

2 + (m2
s −m2

µ)x+m2
f (1− x) .

Now that I have finally obtained eq. (6.137) let’s proceed to computing the second type

one-loop diagram (two fermions and one scalar). It is shown below with the similar momenta

assignments.

µ µ

p γ

q1

q1 − k
q2

k p+ k
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iMµ =u(q2)

∞∫
−∞

d4k

(2π)4

[
i
λ

2
(1− γ5)

]{
i(6 p+ 6 k +mf )

(p+ k)2 −m2
f + iε

}
[iQfeγ

µ]

×

{
i(6 k +mf )

k2 −m2
f + iε

} [
i
λ∗

2
(1 + γ5)

]{
i

(q1 − k)2 −m2
s + iε

}
u(q1)

=u(q2)

∞∫
−∞

d4k

(2π)4

(−Qfe |λ2| /4) (1− γ5) (6 p+ 6 k +mf )γ
µ(6 k +mf ) (1 + γ5)[

(p+ k)2 −m2
f + iε

] [
k2 −m2

f + iε
] [

(q1 − k)2 −m2
s + iε

]u(q1).

Once again let’s introduce Feynman parameters:

1

ABC
= 2

∫ 1

0

dx dy dz δ(x+ y + z − 1)
1

[Ax+By + Cz]3
,

where A ≡ k2−m2
f+iε , B ≡ (p+ k)2−m2

f+iε, C ≡ (q1 − k)2−m2
s+iε. One recovers the same

A, B, C as in the previous loop calculation if f → s or vice versa. Therefore, the computation

of the denominator is very similar, giving (k2 −∆ + iε)3 after shifting kµ → kµ − ypµ + zqµ1 ,

with ∆ now defined as: ∆ ≡ −xyp2 − z(1− z)m2
µ + (1− z)m2

f + zm2
s . The calculation of

the numerator is a bit different though (once again the expressions below are implied to be

sandwiched between the two external spinors).

The numerator:

Nµ = (1− γ5) (6 k + 6 p+mf )γ
µ(6 k +mf ) (1 + γ5)

= (1− γ5)
(
6 kγµ6 k + 6 pγµ6 k +mfγ

µ6 k +mf6 kγµ +mf6 pγµ +m2
fγ

µ
)

(1 + γ5)

= (6 kγµ6 k + 6 pγµ6 k) (1 + γ5)2 + (mfγ
µ6 k +mf6 kγµ +mf6 pγµ) (1− γ5) (1 + γ5)

+m2
fγ

µ (1 + γ5)2

= 2 (6 kγµ6 k + 6 pγµ6 k) (1 + γ5) + 2m2
fγ

µ (1 + γ5) .

Shifting kµ → kµ − ypµ + zqµ1 and neglecting the γµ term as we only need σµν part of Nµ

gives:

Nµ = 2 {(6 k − y6 p+ z6 q1) γµ (6 k − y6 p+ z6 q1) + 6 pγµ (6 k − y6 p+ z6 q1)} (1 + γ5)

= 2

{
6 kγµ6 k − y��

�*o6 pγµ6 k + z���
�:o6 q1γ

µ6 k − y��
�*o6 kγµ6 p + y2 6 pγµ6 p− yz 6 q1γ

µ6 p+ z���
�:o6 kγµ6 q1

− yz 6 pγµ6 q1 + z2 6 q1γ
µ6 q1 +��

�*o6 pγµ6 k − y 6 pγµ6 p+ z 6 pγµ6 q1

}
(1 + γ5)

= 2
{

(y2 − y)6 pγµ6 p− yz 6 q1γ
µ6 p− yz 6 pγµ6 q1 + z2 6 q1γ

µ6 q1 + z 6 pγµ6 q1

}
(1 + γ5)
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= 2
{

(y2 − y)6 q2γ
µ6 q2 − (y2 − y)6 q1γ

µ6 q2 − (y2 − y)6 q2γ
µ6 q1 + (y2 − y)6 q1γ

µ6 q1

− yz 6 q1γ
µ6 q2 + yz 6 q1γ

µ6 q1 − yz 6 q2γ
µ6 q1 + yz 6 q1γ

µ6 q1 + z2 6 q1γ
µ6 q1

+ z 6 q2γ
µ6 q1 − z6 q1γ

µ6 q1} (1 + γ5)

= 2
{

(y2 − y)6 q2γ
µ6 q2 −

(
y2 − y + yz

)
6 q1γ

µ6 q2 +
(
z − yz − y2 + y

)
6 q2γ

µ6 q1

+
(
2yz + z2 − z + y2 − y

)
6 q1γ

µ6 q1

}
(1 + γ5)

= 2
{

(y2 − y)mµγ
µ6 q2 −

(
y2 − y + yz

)
6 q1γ

µ6 q2 +
(
z − yz − y2 + y

)
mµγ

µ6 q1

+
(
2yz + z2 − z + y2 − y

)
6 q1γ

µ6 q1

}
(1 + γ5) .

u(q2)γµ6 q2 (1 + γ5)u(q1) =u(q2) q2νγ
µγν (1 + γ5)u(q1)

=u(q2) 2gµνq2ν (1 + γ5)u(q1)− u(q2) q2νγ
νγµ (1 + γ5)u(q1)

=u(q2) 2qµ2 (1 + γ5)u(q1)− u(q2) 6 q2γ
µ (1 + γ5)u(q1)

=u(q2) {2qµ2 (1 + γ5)−mµγ
µ (1 + γ5)} u(q1).

u(q2) 6 q1γ
µ6 q2 (1 + γ5)u(q1) = u(q2) q2ν6 q1γ

µγν (1 + γ5)u(q1)

= u(q2) 2gµνq2ν6 q1 (1 + γ5)u(q1)− u(q2)6 q16 q2γ
µ (1 + γ5)u(q1)

= u(q2) 2mµq
µ
2 (1− γ5)u(q1)− u(q2) 2gαβq1αq2βγ

µ (1 + γ5)u(q1)

+ u(q2) q1αq2βγ
βγαγµ (1 + γ5)u(q1)

= u(q2) 2mµq
µ
2 (1− γ5)u(q1)− u(q2) 2(q1q2)γµ (1 + γ5)u(q1)

+ u(q2) 6 q26 q1γ
µ (1 + γ5)u(q1)

= u(q2) 2mµq
µ
2 (1− γ5)u(q1)− u(q2) 2(q1q2)γµ (1 + γ5)u(q1)

+ u(q2)mµ2gµνq1ν (1 + γ5)u(q1)− u(q2)mµq1νγ
µγν (1 + γ5)u(q1)

= u(q2) {2mµq
µ
2 (1− γ5)− 2(q1q2)γµ (1 + γ5)

+2mµq
µ
1 (1 + γ5)−m2

µγ
µ (1− γ5)

}
u(q1).

u(q2) γµ6 q1 (1 + γ5)u(q1) =u(q2)mµγ
µ (1− γ5) u(q1).

u(q2) 6 q1γ
µ6 q1 (1 + γ5)u(q1) = u(q2)mµ 6 q1γ

µ (1− γ5)u(q1)

= u(q2) 2mµ g
µνq1ν (1− γ5)u(q1)− u(q2)mµγ

µ6 q1 (1− γ5)u(q1)

= u(q2)
{

2mµ q
µ
1 (1− γ5)−m2

µγ
µ (1 + γ5)

}
u(q1).

Plugging the above results back in Nµ yields:

Nµ = 2
{

(y2 − y)2mµ q
µ
2 (1 + γ5)−

(
y2 − y + yz

)
2mµ q

µ
2 (1− γ5)

51



Bounds on Supersymmetric Operators from Experiments Archil Suladze

−
(
y2 − y + yz

)
2mµ q

µ
1 (1 + γ5) +

(
2yz + z2 − z + y2 − y

)
2mµ q

µ
1 (1− γ5)

}
+ (γµ terms) .

Some factors can be rewritten in the following way:

• z2−z+2yz = z(z−1)+2yz = −z(x+y)+2yz = −xz−yz+2yz = yz−xz = ���
��: 0

(y − x)z .

• y2 − y = y(y − 1) = −y(x+ z) = −xy − yz.

=⇒ Nµ = 2
{

(y2 − y)2mµ q
µ
2 (2γ5)− (yz)2mµ q

µ
2 (1− γ5)

+
(
y2 − y

)
2mµ q

µ
1 (−2γ5)− (yz)2mµ q

µ
1 (1 + γ5)

}
= 8(y2 − y)mµ p

µγ5 + 4yz mµ p
µγ5 − 4yz mµ (qµ2 + qµ1 ) .

The last term is exactly what we need; It gives the σµν term after applying the Gordon

identity:

u(q2) {−4yz mµ (qµ2 + qµ1 )}u(q1) = u(q2)
{
−8yz m2

µγ
µ + 4yz mµiσ

µνpν
}
u(q1).

pµ terms in Nµ vanish due to the Ward identity. Finally the contribution to F (0) is:

F2(0) =
2mµ

e

(
−Qfe

|λ|2

4

)
2

∫ 1

0

dx dy dz δ(x+ y + z − 1)

∞∫
−∞

d4k

(2π)4

4yz mµi

(k2 −∆ + iε)3

=
(
−Qf |λ|2

)
4m2

µ

∫ 1

0

dx dy dz δ(x+ y + z − 1) yzi

[
−i

32π2∆

]
=
(
−Qf |λ|2

) m2
µ

8π2

∫ 1

0

dz
z

∆

∫ 1−z

0

dy y

=
(
−Qf |λ|2

) m2
µ

8π2

∫ 1

0

dz
z(1− z)2

2∆
.

Change of variables: z = 1− x =⇒ x = 1− z & dz = −dx. In terms of x F2(0) becomes:

F2(0) = −Qf |λ|2
m2
µ

16π2

∫ 1

0

dx
x2 − x3

∆
, (6.138)

where ∆ = m2
µx

2 + (m2
f −m2

µ)x+m2
s(1− x).

With the loop calculations performed and the results (6.137) and (6.138) obtained, I will

now calculate /Rp contributions to aµ from the diagrams in Fig. 16. Using these equations

and neglecting muon and lepton masses we get:

a(a)
µ = |λ32k|2

m2
µ

16π2

∫ 1

0

dx
x2 − x3

m2
µx

2 + (m2
`k
−m2

µ)x+m2
ν̃τ

(1− x)
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≈ |λ32k|2
m2
µ

16π2

∫ 1

0

dx
x2(1− x)

mν̃τ (1− x)
=
|λ32k|2

48π2

m2
µ

m2
ν̃τ

, (6.139)

a(b)
µ = |λi23|2

m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
µx

2 + (m2
τ̃R
−m2

µ)x+m2
νi

(1− x)

≈ |λi23|2
m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
τ̃R
x

= −|λi23|2

96π2

m2
µ

m2
τ̃R

, (6.140)

a(c)
µ = |λ3j2|2

m2
µ

16π2

∫ 1

0

dx
x2 − x3

m2
µx

2 + (m2
`j
−m2

µ)x+m2
ν̃τ

(1− x)

≈ |λ3j2|2

48π2

m2
µ

m2
ν̃τ

, (6.141)

a(d)
µ = |λi32|2

m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
µx

2 + (m2
τ̃L
−m2

µ)x+m2
νi

(1− x)

≈ −|λi32|2

96π2

m2
µ

m2
τ̃L

. (6.142)

Altogether the λ contributions to the muon anomalous magnetic moment aλµ [16] is

aλµ =
m2
µ

96π2

(
|λ32ki|2

2

m2
ν̃τ

− |λi23|2

m2
τ̃R

+ |λ3i2|2
[

2

m2
ν̃τ

− 1

m2
τ̃L

])
. (6.143)

Similar calculations for the λ′ contribution can also be performed. In particular, the

evaluation of a
(e)
µ and a

(h)
µ is straightforward:

a(e)
µ = 3

(
1

3

)
|λ′23k|2

m2
µ

16π2

∫ 1

0

dx
x2 − x3

m2
µx

2 + (m2
dk
−m2

µ)x+m2
t̃L

(1− x)

≈ |λ
′
23k|2

48π2

m2
µ

m2
t̃L

, (6.144)

a(h)
µ = 3

(
2

3

)
|λ′23k|2

m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
µx

2 + (m2
t̃L
−m2

µ)x+m2
dk

(1− x)

≈ −|λ
′
23k|2

48π2

m2
µ

m2
t̃L

. (6.145)

Thus a
(e)
µ and a

(h)
µ cancel each other. As for the two remaining diagrams, I will still neglect

mµ, but leave muj untouched, since for j = 3 u is a top quark t and its mass can be

comparable to the sparticle mass involved.

a(f)
µ = 3

(
1

3

)
|λ′2j3|2

m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
µx

2 + (m2
b̃R
−m2

µ)x+m2
uj

(1− x)

≈ |λ′2j3|2
m2
µ

16π2

∫ 1

0

dx
x3 − x2

m2
b̃R
x+m2

uj
−m2

uj
x
.
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∫ 1

0

dx
x3 − x2

(m2
b̃R
−m2

uj
)x+m2

uj

=

∫ 1

0

dx
x3 − x2

ax+ b
, where a ≡ m2

b̃R
−m2

uj
and b ≡ m2

uj
.

∫ 1

0

dx
x3 − x2

ax+ b
=

a(−a2 + 3ab+ 6b2) + 6b2(a+ b) ln

(
b

a+ b

)
6a4

= − 1

6a

1− 3b

a
− 6b2

a2
−

6b2(a+ b) ln

(
b

a+ b

)
a3



= − 1

6a

1 +
6b

a

−
1

2
− b

a
−
b(a+ b) ln

(
b

a+ b

)
a2




= − 1

6a

1 +
6m2

uj

m2
b̃R

(
1−

m2
uj

m2
b̃R

)

−1

2
−

m2
uj

m2
b̃R

(
1−

m2
uj

m2
b̃R

) − m2
uj
m2
b̃R

ln

(
m2
uj

m2
b̃R

)

m4
b̃R

(
1−

m2
uj

m2
b̃R

)2




= − 1

6a

[
1 +

6y

1− y

{
−1

2
− y

1− y
− y ln y

(1− y)2

}]
= − 1

6a
[1 + C1(y)] ,

where

C1(y) ≡ 6y

1− y

{
1

2
− 1

1− y
− y ln y

(1− y)2

}
, (6.146)

as defined in Ref. [16] and y ≡
m2
uj

m2
b̃R

. Using the above result, it follows that

a(f)
µ = −

|λ′2j3|2

96π2

m2
µ

m2
b̃R
−m2

uj

(1 + C1(y)). (6.147)

a(g)
µ = 3

(
2

3

)
|λ′2j3|2

m2
µ

16π2

∫ 1

0

dx
x2 − x3

m2
µx

2 + (m2
uj
−m2

µ)x+m2
b̃R

(1− x)

≈ |λ′2j3|2
m2
µ

8π2

∫ 1

0

dx
x3 − x2

−m2
uj
x+m2

b̃R
x−m2

b̃R

.

∫ 1

0

dx
x3 − x2

(m2
b̃R
−m2

uj
)x−m2

b̃R

=

∫ 1

0

dx
x3 − x2

ax− b
, where a ≡ m2

b̃R
−m2

uj
and m2

b̃R
.

∫ 1

0

dx
x3 − x2

ax− b
=
−a(a2 + 3ab− 6b2) + 6b2(−a+ b) ln

(
1− a

b

)
6a4
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By simplifying the above expression and defining y ≡
m2
uj

m2
b̃R

as in the a
(f)
µ case the following

result is obtained:∫ 1

0

dx
x3 − x2

ax− b
=

1

3a

[
1 +

3y

1− y

{
1

2
+

1

1− y
+

ln y

(1− y)2

}]
=

1

3a
[1 + C2(y)] ,

where [16]

C2(y) ≡ 3y

1− y

{
1

2
+

1

1− y
+

ln y

(1− y)2

}
, (6.148)

Finally a
(g)
µ is

a(g)
µ =

|λ′2j3|2

24π2

m2
µ

m2
b̃R
−m2

uj

(1 + C2(y)). (6.149)

C1(y) and C2(y) are only relevant when j = 3. For the first two generations they can be

neglected as y � 1 in those cases. Combining (6.147) and (6.149) then yields the following

total contribution to aµ coming from the λ′ couplings [16]:

aλ
′

µ =
m2
µ

32π2

{
1

m2
b̃R
−m2

t

|λ′233|2
(

1 +
2yt

1− yt

[
1

2
+

3

1− yt
+

2 + yt
(1− yt)2

ln yt

])}

+
m2
µ

32π2

{
1

m2
b̃R

(|λ′213|2 + |λ′223|2)

}
. (6.150)

Note that aλ
′
µ is positive definite. The total contribution ∆a

/Rp
µ [16] in the ESUSY with Rp

violation is then

∆a
/Rp
µ = aλµ + aλ

′

µ . (6.151)

The theoretical and experimental values of aµ are [6]

aSMµ = (1165918.36± 0.44)× 10−9,

aexpµ = (1165920.91± 0.63)× 10−9.

Using the above numbers and setting, for simplicity, m2
ν̃τ

= m2
τ̃L

= m2
τ̃R

= m2
b̃R
≡ m̃ [16], I

get the following lower bound on the couplings λ, λ′ at 1σ (2σ) level:

|λ| (or|λ′|) > 0.72 (0.54)×
(

m̃

100 GeV

)
. (6.152)

This means that we can neglect contributions coming from the λ′ couplings since there are

unavoidable single bounds from other processes (see Ref. [16] or Ref. [3] and also the bounds

coming from Rτπ and D meson decays in previous sections). With all the masses set to m̃

aλµ then becomes [16]:

aλµ ≈
m2
µ

96π2 m̃2

(
2|λ321|2 + 3|λ322|2 + |λ323|2 + |λ312|2 − |λ123|2

)
. (6.153)
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First of all we can neglect λ123 contribution since there are stringent bounds on it from

the CC universality. Even if it were not the case, the λ123 contribution is negative, so no

stringent bound could be obtained from equation (6.153). The same applies to λ312 and λ321

couplings since they are constrained by asymmetries in e+e− collisions [16]. The remaining

two couplings are the least constrained of all the coupling constants involved, especially the

coupling constant λ322 (see the bounds obtained in previous sections), which in the ESUSY

can satisfy eq. (6.152) due to the high mass of smuons. Following the Ref. [16], we can treat

this coupling as the dominant one. ∆a
/Rp
µ then becomes:

∆a
/Rp
µ ≈ 3.48× 10−9

(
100 GeV

m̃

)2

|λ322|2. (6.154)

From the above equation I get the following 1σ level bound:

|λ322| = 0.86
+ 0.12

− 0.14

(
m̃

100 GeV

)
. 1σ (6.155)

So the λ322 coupling can in principle account for the extra contribution to the anomalous

magnetic dipole moment of muon.

7 Conclusion

To conclude I summarize my results in Table 4. In the second column of Table 4 various

observables are listed. Following the notation of Ref. [3], Vud stands for the CKM martix

unitarity, while observables R denote various ratios of branching fractions in the CC sector

(see section 6 for the exact definitions). AFB and QW (CS) are used for forward-backward

asymmetry in e+e− collisions and atomic parity violation in Cs atoms. Finally νµe and νµq

denote muon-neutrino - electron elastic scattering and muon-neutrino - nucleon deep inelastic

scattering respectively. The third column lists my bounds obtained in section 6, while the

last two columns contain previous bounds from Ref.s [3] (2004 review of R-parity violating

SUSY by Barbier et al.) and [7] (2009 paper by Y. Kao and T. Takeuchi, where some of the

bounds got updated). All of these bounds are 2σ level bounds. A handy notation [3] like

0.02˜̀Rk used in Table 4 represents in this case a concise version of a numerical relationship

λijk < 0.02

(
m˜̀

Rk

100GeV

)
.

As can be observed in Table 4 the CC sector gives the most stringent bounds and has

experienced a steady improvement; almost all the bounds from the CC observables have

gradually improved throughout the last 20-30 years. In most cases I got stronger bounds by

at least about 20%. The bounds from other observables fluctuate, but most of them seem to

stay in roughly 25%-50% range. Hopefully with the reduction of experimental uncertainties,

these bounds will also become more stringent.
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Coupling Observable My 2σ bounds
Previous 2σ

bounds [3]

Prev. 2σ

bounds [7]

λ12k

Vud

Rτµ

QW (Cs)

νµe

νµe

νµq

AFB [k = 1, 2, 3]

0.02 ˜̀Rk
0.01 ˜̀Rk
0.10 ˜̀Rk
0.14 ˜̀Rk

0.13 ˜̀Lk=1

0.25 ˜̀Rk
[0.36, 0.19, 0.13]ν̃

0.05 ˜̀Rk
0.07 ˜̀Rk
0.11 ˜̀Rk
0.14 ˜̀Rk

0.13 ˜̀Lk=1

0.13 ˜̀Rk
[0.37, 0.25, 0.11]ν̃

0.03 ˜̀Rk
0.05 ˜̀Rk
0.08 ˜̀Rk

λ13k

Rτ

AFB [k = 1, 2, 3]

0.03 ˜̀Rk
[0.36, 0.19, 0.13]ν̃

0.07 ˜̀Rk
[0.37, 0.25, 0.11]ν̃

0.05 ˜̀Rk
λ23k

Rτ

Rτµ

νµe, k = 1

0.06 ˜̀Rk
0.05 ˜̀Rk
0.12 τ̃L

0.07 ˜̀Rk
0.07 ˜̀Rk
0.11 τ̃L

0.05 ˜̀Rk
0.06 ˜̀Rk

λ′11k

Vud

Rπ

QW (Cs)

AFB [k = 2, 3]

0.01 d̃Rk

0.02 d̃Rk

0.05 d̃Rk

[0.30, = 0.10 + 0.04
− 0.08 ]ũL

0.02 d̃Rk

0.03 d̃Rk

0.05 d̃Rk

[0.28, 0.18]ũL

0.03 d̃Rk

0.03 d̃Rk

0.04 d̃Rk

λ′12k

RD0

RD+

R∗D+

AFB

AFB [k = 2, 3]

0.11 d̃Rk

0.08 d̃Rk

0.11 d̃Rk

0.21 d̃Rk

[0.30, = 0.10 + 0.04
− 0.08 ]c̃L

0.27 d̃Rk

0.44 d̃Rk

0.23 d̃Rk

0.21 d̃Rk

[0.28, 0.18]c̃L

0.2 d̃Rk

0.2 d̃Rk

0.2 d̃Rk

λ′21k

Rπ

Rτπ

νµq

0.06 d̃Rk

0.07 d̃Rk

0.25 d̃Rk

0.06 d̃Rk

0.08 d̃Rk

0.15 d̃Rk

0.06 d̃Rk

0.07 d̃Rk

λ′22k

RD0

RD+

R∗D+

RDs(τµ)

0.08 d̃Rk

0.16 d̃Rk

0.18 d̃Rk

0.18 d̃Rk

0.21 d̃Rk

0.61 d̃Rk

0.38 d̃Rk

0.65 d̃Rk

0.1 d̃Rk

0.4 d̃Rk

0.3 d̃Rk

0.2 d̃Rk

λ′31k Rτπ 0.04 d̃Rk 0.12 d̃Rk 0.06 d̃Rk

λ′32k RDs(τµ) 0.21 d̃Rk 0.52 d̃Rk 0.3 d̃Rk

λ′1j1 QW (Cs) 0.03 ũLj 0.03 ũLj 0.03 ũLj

λ′2j1 νµq 0.20 d̃Lj 0.18 d̃Lj

Table 4: My single-coupling bounds on various /Rp trilinear couplings compared to previous

bounds of Ref.s [3] and [7].
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