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Chapter 1

Introduction

Kähler manifolds are widely used in numerous sections of modern theoretical and math-

ematical physics [1],[3],[10],[33]. It is mostly considered as a configuration space of various

systems. Here Kähler manifolds are considered as a phase space of some (super)integrable

systems, which lead us to an interesting and elegant description of integrability, rooted in the

underlying geometry of the phase space.

One of the advantages of considering integrable systems on them is that the Kähler struc-

ture of the phase spaces enables the use of the geometric quantization method [11],[12], [13],

[14]. The number of known nontrivial (super)integrable systems featuring a Kähler phase space

is quite limited, and their examination remains at the periphery of integrable systems theory.

This is particularly surprising, given that the quantization of systems with a Kähler phase space

has been a focal point in modern geometry ever since the inception of geometric quantization.

A notable integrable model with a Kähler phase space that is currently under extensive inves-

tigation is the (compactified) Ruijesnaars-Schneider model [5] ,[6], [7], [8]. However, even this

system is primarily studied in canonical coordinates. On the other hand, establishing a con-

nection between existing integrable systems and their constants of motion with the isometries

of a Kähler manifold viewed as a phase space can be useful in comprehending the system’s

geometry. It’s an important step towards quantization in non-canonical coordinates.

This thesis is devoted to the study of classical mechanical (super)integrable systems having

6



Kähler phase spaces and a construction of their supersymmetric extensions. As demonstrated

later in this work, the methods that are used herein can be extremely useful for supersym-

metrization of a given model. The phase superspaces of such a supersymmetric extensions are

Kähler supermanifolds, meaning, a Kähler manifold equipped with Grassmann anticommuting

coordinates also ([10],[16]).

The thesis comprises four chapters (excluding the current introductory chapter). The second

chapter is dedicated to a renowned classical system known as the Euler top. It is considered as a

one-dimensional system with Kähler phase space, specifically CP1, and its supersymmetrization

in that context. It is based on [18]. In the third chapter, we study compact and non-compact

complex projective spaces, along with their symmetries. Focusing on the non-compact case, we

regard them as phase spaces of N -dimensional conformal mechanics, N -dimensional oscillator,

and N -dimensional Coulomb system. Their integrability properties are studied from the geo-

metrical point of view. This material can be found in [17]. In the fourth chapter, we examine

the possibilities of supersymmetrization within this formalism and consider the options for su-

persymmetrization for the examples from the previous chapter [19]. Finally, the fifth chapter is

devoted to discussion of the main results and possible future developments of the ideas explored

in this thesis.

This chapter focuses on the basic introductory information about Kähler manifolds, Hamil-

tonian formalism, and supersymmetric mechanics. These concepts are widely used in current

work.

Section 1.1 is dedicated to Kähler manifolds and explains how they serve as phase spaces

for different systems. It covers the basics and their application in this context.

In Section 1.2 we talk about Hamiltonian formalism in general, as well as, consider Hamil-

tonian and super-Hamiltonian reduction technique.

Section 1.3 focuses on integrability .

And finally, Section 1.4 is devoted to supersymmetric mechanics.
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1.1 KÄHLER MANIFOLDS

Kähler manifolds are Hermitian manifolds that possess a symplectic structure, satisfying

specific compatibility conditions with Riemann (and/or complex) structures [1], [3]. These man-

ifolds commonly appear as configuration spaces for particles and fields in theoretical physics.

While they can be considered as phase spaces for Hamiltonian systems, this usage is limited

to certain physical problems, such as various versions of the Hall effect and tops [64]. The

number of known nontrivial (super)integrable systems with K”ahler phase spaces is restricted,

and their study is on the margin of the theory of integrable systems.

An exceptional integrable model with a Kähler phase space extensively studied nowadays

is the compactified Ruijesnaars-Schneider model with an excluded center of mass, whose phase

space is the complex projective space CPN [5]. However, even in these investigations, canonical

coordinates are used.

On the other hand, there are indications that Kähler phase spaces can be useful for studying

conventional Hamiltonian systems, particularly those formulated on the cotangent bundle of

Riemann manifolds. For instance, one-dimensional conformal mechanics formulated in terms

of Lobachevsky plane, serving as a noncompact complex projective plane, plays the role of

phase space [9]. This elegant description allows for the immediate construction of its N = 2M

superconformal extension associated with su(1, 1|M) superalgebra. In recent paper [17], a

similar formulation of some higher-dimensional systems was presented in terms of su(1, N)-

symmetric Kähler phase space, considered as a noncompact version of complex projective space.

Relating angular coordinates and momenta with the action-angle variables (e.g. [15]) of the

angular part of the integrable conformal mechanics, all symmetries of generic superintegrable
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conformal-mechanical systems are described in terms of the powers of the su(1, N) isometry

generators. The maximally superintegrable generalizations of the Euclidean oscillator/Coulomb

systems express all symmetries of these systems via su(1, N) isometry generators. However,

supersymmetrization aspects of that system were not considered there. In a subsequent paper

[19], we have studied supergeneralizations of those systems, we have constructed their N -

extended superconformal extensions , as done in [9] for the one-dimensional case. These results

are presented in Chapter 4.

According to Darboux’s theorem, any symplectic structure can locally be presented in the

canonical form corresponding to canonical Poisson brackets. Furthermore, any cotangent bun-

dle of a Riemann manifold can be equipped with the globally defined canonical symplectic

structure. Hence, for the Hamiltonian description of systems of particles moving on the Rie-

mann space, we can restrict ourselves to the canonical symplectic structure (and canonical

Poisson brackets). Non-canonical Poisson brackets are usually used for the description of more

sophisticated systems, such as various modifications of tops, (iso)spin dynamics, etc.

As it was mentioned above, Kähler manifolds have three mutually compatible structures,

namely complex structure, Riemannian structure and symplectic structure. Kähler manifold is

a particular case of the general Hermitian manifold (gab̄dz
adz̄b). For any Hermitian metric one

can define a 2-form

ω = ıgab̄dz
a ∧ dz̄b (1.1)

This 2-form is called a fundamental form. Hermitian manifold is called Kähler if this 2-form is

symplectic (closed and non-degenerate). This condition puts a strong limitation, which allows

us to express a Kähler metric as the second derivative of a function known as the Kähler

potential.

gab̄ =
∂2K(z, z̄)

∂za∂z̄b
(1.2)

It is worth to mention that it is defined up to a holomorphic or antiholomorphic function:K(z, z̄) →
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K(z, z̄) + U(z) + Ū(z̄).

Symplectic structure of Kähler manifolds allows as naturally equip it with Poisson brackets.

{f, g}0 = igab̄
( ∂f
∂za

∂g

∂z̄b
− ∂g

∂za
∂f

∂z̄b

)
, gab̄gb̄c = δac . (1.3)

Since the symplectic structure relates functions (Hamiltonian) and vector fields (Hamiltonian

vector fields), we can introduce functions, which generate Killing vector fields.

Vµ = {hµ, }0 = V a
µ

∂

∂za
+ V̄ ā

µ

∂

∂z̄a
, V a

µ = −igab̄∂b̄hµ (1.4)

Such functions are called Killing potentials. By employing the Killing Equations, limitations

on Killing potentials can be deduced. These potentials must have real values and must satisfy

the following equation.

∂2hµ
∂za∂zb

− Γc
ab

∂hµ
∂zc

= 0 (1.5)

These functions are extremely useful for studying systems on Kähler manifolds in presence

of a constant magnetic field. Since any 2-form is closed in two (real) dimensions, a one-

dimensional orientable complex manifold (Riemann surface) can always be equipped with a

Kähler structure. Many components of the Christoffel symbols and Riemann tensor vanish.

Γa
bc = gad̄gbd̄,c, Ra

bcd̄ = −(Γa
bc),d̄. (1.6)

In this thesis some (super)integrable models on maximally symmetric Kähler manifolds are

discussed. Namely, in the first chapter an integrable system Euler top is approached as a

one dimensional system possessing CP1 as a phase space. Latter on, N dimensional compact

and non-compact projective spaces are involved as phase spaces of some model. And namely

the non-compact projective space, denoted here as C̃P
N
, is studied in details, as phase space

of N-dimensional conformal mechanics and its deformations, specifically Oscillator-like and

Coulomb-like models.
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1.1.1 CN+1 AND CN.1 AS A KÄHLER MANIFOLD

From now on, as we start more concrete consideration and for being more precise let us

denote coordinates on Euclidean spaces (both, compact and non-compact) by u, ū, leaving

z, z̄ for the projective spaces. As well as, use i, j, k for the indices, actually, for the same

reason. Certainly, it is very artifical to consider N + 1-dimensional Euclidean space instead of

N-dimensional. We do so just for a complete analogy with the non-compact case (where we do

not consider CN−1.1), and it is also useful for the next section where we discus compact and

non-compact projective spaces, which are the main objects of study in this thesis, and we take

them to be N -dimensional.

The metric of the N + 1-dimensional complex Euclidean space is well known

ds2 = dudū, gij̄ = δij̄. (1.7)

Here and throughout the remainder of this text, when we express a product without explicit

indices, it implies the presence of dummy indices and the performance of a subsequent summa-

tion:

dudū ≡ duidūi ≡
∑
i

duidūi, zz̄ ≡ zaz̄a ≡
∑
a

zaz̄a, etc. (1.8)

It is easy to note that the Kähler potential and the symplectic structure are as follows

K(u, ū) = uū, ω = −ıdu ∧ dū, {ui, ūj}0 = ıδij̄, (1.9)

Such a Kähler potential leads to the metric above. All the components of Christoffel symbols

and Riemann tensor vanish. Finally we present the results for Killing potentials and corre-

sponding Killing vector fields.

hij̄ = ūiuj, Vij̄ = −ı(ui∂i + ūi∂j̄)

h+i = ūi, V−
i = −ı∂i,

h−i = ui, V+
i = −ı∂ī. (1.10)

11



Vij̄ vector fields generate rotations, while V −
i and V +

i are the generators of translation.

Although hij̄, h
+
i and h−i are not real, one can take real combinations using these functions.

The number of real Killing potentials is (N + 1)(2(N + 1) + 1), so as is mentioned CN+1 is

maximally symmetric space.

The metric of N+1-dimensional complex pseudo-Euclidean space CN.1 is equally well known

ds2 = du0dū0 − duadūa, gij̄ = γij̄. (1.11)

where γ = diag(1,−1, . . . ,−1) and indices a, b, ... = 1, ..., N .

Kähler potential and associated Poisson brackets are given by

K(u, ū) = u0ū0 − uaūa, {ui, ūj} = ıγi,j̄. (1.12)

The Killing potentials and associated vector fields are are given by (1.10).

1.1.2 CPN AND C̃P
N

AS A KÄHLER MANIFOLD

The N -dimensional complex projective space is a space of complex rays in the (N + 1)-

dimensional complex Euclidian space (CN+1,
∑N

i=0 du
idūi), with ui being homogeneous co-

ordinates of the complex projective space. Equivalently, it can be defined as the quotient

S2N+1/U(1), where S2N+1 is the (2N + 1)-dimensional sphere embedded in CN+1 by the con-

straint
∑N

i=1 u
iūi = 1. One can solve the latter by introducing locally “inhomogeneous” coor-

dinates za(i)

za(i) =
ua

ui
, with a ̸= i, ui ̸= 0. (1.13)
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Hence, the full complex projective space can be covered by N +1 charts marked by the indices

i = 0, . . . , N , with the following transition functions on the intersection of i-th and j-th charts:

za(i) =
za(j)
zi(j)

. (1.14)

Let us endow CN+1 with the canonical Poisson brackets {ui, ūj} = ıδij̄, and define, with respect

to them, the u(N + 1) algebra formed by the generators

hij̄ = ūiuj . (1.15)

Reducing the manifold CN+1 by the action of the U(1) group with the generator J = uiūi, we

arrive at the SU(N + 1)-invariant Kähler structure defined by the Fubini-Study metrics ([38],

[72])

gab̄dz
adz̄b =

∂2 log(1 + zz̄)

∂za∂z̄b
dzadz̄b =

dzdz̄

1 + zz̄
− (z̄dz)(zdz̄)

(1 + zz̄)2
, K = log(1 + zz̄). (1.16)

This metrics is obviously invariant under the passing from one chart to another. Hence, we

can omit the indices marking charts and assume, without loss of generality, that we are dealing

with 0-th chart, so that the indices a, b, c run from 1 to N .

Being Kähler manifold, the complex projective space is equipped with the Poisson brackets

{za, z̄b} = ıgab̄, where gab̄ = (1 + zz̄)(δab̄ + zaz̄b) is the inverse Fubini-Study metrics. The

su(N + 1) isometry of CPN is generated by the holomorphic Hamiltonian vector fields defined

as the following momentum maps (Killing potentials).

hab̄ =
z̄azb

1 + zz̄
, h−a =

z̄a

1 + zz̄
, h+a =

za

1 + zz̄
. (1.17)

Like for the Euclidean case the number of independent Killing vector fields indicates that

this space is again maximally superintegrable. Finally we can compute the components of

Christoffel symbol and Riemann tensor.

Γa
bc = −δ

a
b z̄

c + δac z̄
b

1 + zz̄
, Rab̄cd̄ = gab̄gcd̄ + gcb̄gad̄, (1.18)

An analogues formulas can be written down for the non compact case. As it was mentioned,

to get to the non-compact complex projective space we start from N + 1 dimensional pseudo-

Euclidean space CN.1 with Poisson brackets {ui, ūj} = ıγi,j̄, where γ is as defined in previous

section.
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Reducing CN.1 by the action of U(1) generator J = u0ū0 − uaūa we arrive at the SU(1.N)

invariant Kähler structure

gab̄dz
adz̄b =

∂2 log(1− zz̄)

∂za∂z̄b
dzadz̄b =

dzdz̄

1− zz̄
+

(z̄dz)(zdz̄)

(1− zz̄)2
, K = log(1− zz̄). (1.19)

This manifold is equipped with the following Poisson brackets

{za, z̄b} =
ı

g
gab̄, (1.20)

where gab̄ = (1 − zz̄)(δab̄ − zaz̄b) is the inverse metric. The isometry algebra of C̃P
N

is su(1.N), and it is generated by the holomorphic Hamiltonian vector fields defined by the

following Killing potentials

hab̄ =
z̄azb

1− zz̄
, h−a =

z̄a

1− zz̄
, h+a =

za

1− zz̄
. (1.21)

Again, as in compact case the number of Killing potentials shows that this a maximally

symmetric space. Here are the components of Christoffel symbols and Reimann tensor

Γa
bc =

δab z̄
c + δac z̄

b

1− zz̄
, Rab̄cd̄ = gab̄gcd̄ + gcb̄gad̄, (1.22)
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1.2 HAMILTONIAN FORMALISM

Below, we recall some very basic facts about Hamiltonian formalism, which can be found

in many textbooks on classical mechanics or, to align with the spirit of this thesis, in [10].

Non-degenerate Poisson brackets of a Hamiltonian system are locally defined by

{f, g} =
∂f

∂xi
ωij(x)

∂g

xj
, detω ̸= 0. (1.23)

This brackets obey the following conditions, which are known as antisymmetricity condition

and Jacobi identity

{f, g} = −{g, f}, (1.24)

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, (1.25)

or equivalently

ωij = −ωji, (1.26)

ωij,k + ωki,j + ωjk,i = 0. (1.27)

Due to the nondegenerency of matrix ω one can construct a nondegenerate two-form

ω =
1

2
ωijdxi ∧ dxj. (1.28)

Jacobi identity implies closeness of this two-form

dω = 0. (1.29)

A manifold equipped with such a form is called symplectic manifold and denoted by (M,ω).

Obviously, M is an even-dimensional manifold. The Hamiltonian system is defined by a triple

(M,ω,H(x)), where H(x) is a scalar function called Hamiltonian.
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The Hamiltonian equations of motion generate a vector field that preserves the symplectic

form ω

dxi

dt
= {H, xi} = V i

H : LVH
ω = 0, (1.30)

where LV denotes Lie derivative along the vector field V. Conversely, any vector field, preserv-

ing the symplectic structure, is locally a Hamiltonian vector field.

The vector field V defines a symmetry of Hamiltonian system,if it preserves both the Hamil-

tonian H and the symplectic form ω:

LVJω = 0, VJH = 0 (1.31)

Hence,

VJ = {J , }, {J , H} = 0. (1.32)

The scalar function J (x) is called a constant of motion of Hamiltonian system.
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1.3 INTEGRABLE SYSTEMS

Integrable models play a pivotal role in modern theoretical and mathematical physics. Their

significance lies in the fact that distinct physical phenomena can often be described by similar

mathematical frameworks. Consequently, exactly solvable models find applications across a

wide range of domains. Through these models, a vast array of both macroscopic and microscopic

physical phenomena can be effectively characterized. Furthermore, integrable models have

implications beyond physics, as systems of integrable differential equations also arise in various

other disciplines, including mathematics and computer science.

An N -dimensional mechanical system, characterized by N degrees of freedom, is called

integrable if it possesses N constants of motion that mutually commute and are functionally

independent [8, 9]. Moreover, the system may feature additional constants of motion. In such

cases, we classify the system as superintegrable.Specifically, if an N -dimensional mechanical

system exhibits 2N − 1 functionally independent constants of motion, it is called maximally

superintegrable 1. Conversely, if the system upholds N + 1 conserved quantities, it is labelled

minimally superintegrable. While integrability of models lets us easily separate variables just

in a single coordinate system, with superintegrability, we can do this in many different coor-

dinate systems. For instance, the two-dimensional oscillator is superintegrable, enabling us to

separate variables using both Cartesian and polar coordinates. In classical mechanics, maximal

superintegrability ensures trajectories remain closed. In the quantum mechanics, the energy

1According to Liouville’s theorem in classical mechanics, an isolated mechanical system with N degrees of

freedom can possess 2N − 1 additional constants of motion, aside from the Hamiltonian, that are in involution

(meaning they mutually commute). This result is a consequence of the conservation of phase space volume in

Hamiltonian dynamics.
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spectrum of integrable models depends on N quantum numbers. For superintegrable systems

possessing an additional K conserved quantities, the energy spectrum depends on N−K quan-

tum numbers. In cases of maximal superintegrability, the energy spectrum is determined by a

single quantum number, leading to a degenerate energy spectrum at the quantum level.

Very well known examples of maximally superintegrable models are the N -dimensional

Coulomb system and the N -dimensional harmonic oscillator, which are widely considered as

an examples throughout this work. Both in chapter 3 and 4, as in bosonic case so in supersym-

metrisation, this geometrical approach is demonstrated in these models. So it worth to give

some basics on these systems, what we are going to do in the next two subsections.

1.3.1 OSCILLATOR

Harmonic oscillator is well known and maybe the most important example of a maximally

superintegrable model [22]. Due to its simplicity and unique properties it plays a crucial role

in all areas of modern physics. Techniques developed for harmonic oscillator can be used in all

areas of physics, e. g. in condensed matter physics and quantum field theory. There are several

extensions and generalizations of harmonic oscillator, namely non -harmonic oscillator, oscil-

lator with additional potential. In current work oscillator is the key system. We will consider

superintegrable generalizations of oscillator in curved spaces, for instance on spherical and pseu-

dospherical spaces, Euclidean and projective complex manifolds. Extensions with additional

potential will also be discussed, namely we will focus on superintegrable generalizations with

an inverse square potential. Before discussing this generalizations it is important to discuss the

standard harmonic oscillator.

The harmonic oscillator stands out as a well-known and arguably the most significant ex-

ample of a maximally superintegrable model [22]. Due to simplicity and distinctive properties
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it plays a pivotal role across various domains in modern physics. Techniques that are devel-

oped for the harmonic oscillator find applications in diverse fields, including condensed matter

physics and quantum field theory.Extensions and generalizations of the harmonic oscillator,

such as the non-harmonic oscillator and oscillators with additional potential, exist. In our

current study, the oscillator takes center stage as the key system. We explore the oscillator

as a system that possesses Kähler phase space. Additionally, In the third chapter we dis-

cuss supersymmetrisation of the harmonic oscillator, now having, so to speak, Kähler phase

superspace.Before delving into these generalizations, it is essential to lay the groundwork by

discussing the standard harmonic oscillator.

N -dimensional harmonic oscillator is a system with quadratic potential and standard Pois-

son brackets.

H =
N∑
i=1

p2i
2

+
ω2x2i
2

, {pi, xj} = δij, {pi, pj} = {xi, xj} = 0 (1.33)

Given the rotational symmetry of the system, angular momentum is conserved. It is well

known that the symmetry associated with these conserved quantities is SO(N).

Lij = pixj − pjxi, {Lij, Lkl} = δilLkj − δkjLil + δjlLik − δikLjl (1.34)

Moreover, oscillator has an additional conserved quantities that are quadratic on momenta

Iij = pipj + ω2xixj (1.35)

This is the Fradkin tensor, and when combined with angular momentum, the system of

conserved quantities for the harmonic oscillator possesses U(N) symmetry. It is crucial to note

that functional relations exist among these conserved quantities, leading to a total of 2N − 1

functionally independent conserved quantities. The U(N) symmetry becomes more apparent

when we introduce complex quantities, which can be regarded as the classical analog of creation

and annihilation operators.

u =
pi + ixi√

2
, ū =

pi − ixi√
2

, {ūi, uj} = iδij (1.36)
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In these coordinates, the Hamiltonian will exhibit a clear U(N) invariance, allowing us to

express conserved quantities as generators of this symmetry.

H =
N∑
i=1

uiūi, Mij = uiūj (1.37)

The energy spectrum can be expressed as follows, and as previously noted, it depends solely

on one quantum number (n). [23].

E = ℏω(n+
N

2
) (1.38)

1.3.2 COULOMB PROBLEM

The Coulomb problem stands as another well-known example of a superintegrable model,

significant in celestial mechanics and recognized for centuries. The system’s symmetries, in-

cluding angular momentum conservation (Kepler’s second law) and the conservation of the

Laplace-Runge-Lenz (or simply Runge-Lenz) vector, have been known for an extended period.

Within this thesis, we once again explore this superintegrable model in terms our geomet-

rical language. The supersymmetrisation possibilities in this context are considered as well.

However, the investigation of complex generalizations of the Coulomb system poses significant

challenges and is not within the scope of our discussion. This is because the Coulomb problem

exhibits orthogonal symmetries, while a complex structure necessitates unitary symmetry.

The Hamiltonian of N-dimensional Coulomb problem is

H =
N∑
i=1

p2i
2

− γ

r
, r =

√∑
i

x2i (1.39)

Poisson brackets are the same as given in(1.33). Again we have SO(N) rotational symmetry

and due to that angular momentum is a conserved quantity.

Lij = pixj − pjxi, {Lij, Lkl} = δilLkj − δkjLil + δjlLik − δikLjl (1.40)
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We have additional constants of motion, which are called Runge-Lenz vector

Ai = Lijpj +
γxi
r
. (1.41)

Together with angular momentum the system of conserved quantities has SO(N + 1) sym-

metry [24]. N -dimensional Coulomb problem can be obtained via reduction from free particle

moving on N+1 dimensional sphere Since the symmetry of this system is obviously SO(N+1),

the symmetry of N -dimensional Coulomb problem is not surprising.

Again the number of independent constants of motion is 2N − 1. So the N -dimensional

Coulomb system is maximally superintegrable.

The energy spectrum depends on one quantum number

E = − γ

2ℏ2(n+ N−3
2

)2
. (1.42)
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1.4 SUPERSYMMETRIC MECHANICS

In this section we consider the Hamiltonian approach applied to classical supersymmet-

ric mechanics. While supersymmetry was originally introduced in the quantum field theory,

subsequent developments have revealed the intrinsic significance of supersymmetric mechanical

models in modern physics. Firstly, considering mechanics as a one-dimensional field theory

allows us to regard these models as a simple ”toy” models of supersymmetric field theories

and superstring theory. However, it is acknowledged that, to date, no empirical evidence sub-

stantiates the existence of supersymmetry in high-energy physics. In contrast, supersymmetry

manifests in numerous physical quantum mechanical phenomena. For example, the widely

recognized Landau problem can be interpreted as a paradigmatic supersymmetric model [20].

The third chapter of this thesis is devoted to the supersymmetric extensions of certain

integrable models on Kähler manifolds. Therefore, it is useful to provide some fundamental

information about supersymmetric mechanics. It is urgent to emphasize that Kähler structures

play a pivotal role in supersymmetric field theoretical models. Notably, supersymmetric La-

grangians can be formulated by employing the Kähler potential to compose chiral superfields.

[21].

Initially, we need to extend the concept of Poisson brackets to include odd Grassmann quan-

tities. This extended structure is termed a ”supersymplectic structure.” It’s essential to note

that the Poisson brackets for two odd Grassmann quantities exhibit symmetry and resemble

the anticommutator for operators in quantum mechanics, as discussed in [10]. Additionally,

the Jacobi identity must be extended to accommodate this context.

{f (a), g(b)} = −(−1)ab{g(b), f (a)} (1.43)
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(−1)ac{f (a), {g(b), h(c)}}+ (−1)ab{g(b), {h(c), f (a)}}+ (−1)bc{h(c), {f (a), g(b)}} = 0 (1.44)

where a, b, c take values 0 for even Grassmann variables and 1 for odd Grassmann variables.

We state that we haveN = n supersymmetric mechanics when there exist n odd-Grassmann

variables Qi (supercharges) that satisfy the following relation

{Qi, Qi} = δijH, {Qi, H} = 0 (1.45)

Given the one-dimensional field theory context, our superspace consists of time and Grass-

mann variables (t, θi), often referred to as ”supertime.” It is evident that this supersymmetry

corresponds to the N = n, d = 1 SuperPoincaré algebra.

Let us examine the most straightforward example, namely N = 1 supersymmetric me-

chanics. In this scenario, any odd Grassmann variable can be selected, and its square can be

identified as the Hamiltonian. However, due to its trivial nature, this case lacks significant

interest.

Moving on to the N = 2 supersymmetric mechanics example. In this case, the supercharges

can be redefined as Q± = (Q1 ± iQ2)/
√
2, resulting in the supersymmetric algebra taking the

following form:

{Q+, Q−} = H, {Q+, Q+} = {Q−, Q−} = 0 (1.46)

If we consider a particle on a Riemannian manifold, the supercharges and the symplectic

structure can be selected in the following form:

Q± = (pa ± iW,a)η
a
±, ω = dpa ∧ dxa +

1

2
Rabcdη

a
+η

b
−dx

c ∧ dxd + gabDη
a
+ ∧Dηb− (1.47)

whereDηa± = dηa±+Γa
bcη

b
±dx

c andW is called superpotential. One can compute the Hamiltonian

H =
1

2
gab(papb +W,aW,b) +Wa;bη

a
+η

b
− +Rabcdη

a
−η

b
+η

c
−η

d
+ (1.48)
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Chapter 2

Euler top and freedom in

supersymmetrization of

one-dimensional mechanics

2.1 INTRODUCTION

In this chapter, we explore a basic one-dimensional model that possesses a Kähler phase

space. The model under consideration is an Euler top, a classical mechanical integrable sys-

tem widely studied for its interesting dynamics. The Euler top represents a rotating rigid

body, exhibiting rich behaviors related to angular momentum and precession, see, e.g. [1].

Conventionally it is described by the Hamiltonian system with degenerated Poisson brackets

parameterized by the components of angular momentum ℓ = (x1, x2, x3),

{xi, xj} = εijkxk, H =
3∑

i=1

x2i
2Ii

, (2.1)
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where H is the Hamiltonian, and Ii > 0 are the principal momenta of inertia. Since xi form

so(3) algebra, the system has a Casimir function

C =
3∑

i=1

x2i : {C(x), xi} = 0 (2.2)

Its fixation leads to the Hamiltonian system with two-dimensional non-degenerated phase

space, i.e. one-dimensional system. Hence, Euler top is a priori integrable.

Being introduced centuries ago, Euler top has been studied as completely as the one-

dimensional oscillator both at classical and quantum-mechanical levels. So, none of the open

questions is to be studied there, except various aspects of its perturbations and generalizations.

Recently A.Galajinsky noticed the absence of the relevant supersymmetric extensions of

Euler top [63]. He suggested its N = 1 supersymmetrization via extension of the degenerated

Poisson brackets (2.1) by three real Grassmann coordinates, stating that in general the resulting

system lacks integrability. It seems to us that many questions asked in that paper come from the

improper supersymmetrization procedure formulated in terms of degenerated phase space. As a

consequence, it yields overcompleted number of fermionic variables which do not have impact on

the actual properties of the system. Moreover, the invention of three Grassmann variables could

yield the problems with the physical interpretation of the quantized version of system (though

quantum aspects were not touched in that paper). Furthermore, the N ≥ 2 supersymmetric

extensions of the Euler top, which at the quantum level create qualitative corrections to the

initial spectrum (e.g. degeneracy of the energy levels etc), were not considered there at all.

In this chapter we propose to supersymmetrize the Euler top formulated in terms of nonde-

generated phase space. First, fixing the value of the Casimir (2.2), we formulate the Hamilto-

nian system (2.1) in terms of two-dimensional nondegenerated phase space given by the complex

projective plane CP1, i.e. as a one-dimensional mechanical system. Since any two-dimensional

manifold can be provided with the Kähler structure, the initial system can be quantized by the

well-developed technique of geometric quantization on Kähler manifold (see, e.g. [64]).

Then we present the procedure of N = 2k supersymmerization of the systems with generic
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two-dimensional nondegenerated phase space which results in á priory integrable supersym-

metric extension of the initial system. Suggested procedure provides us with the family of the

supersymmetric systems parameterized by the N /2 angle-like arbitrary functions. Similar func-

tional freedom was noticed earlier in the one-dimensional N = 2 supersymmetric mechanics [42]

and in the two-dimensional N = 4 supersymmetric ones [65]. In proposed supersymmetriza-

tion scheme the fermionic variables are splitted from the bosonic ones, in contrast with N = 2

supersymmetrization procedure of the systems with generic Kähler phase space suggested in

[66]. They form, with respect to the Poisson brackets, the Clifford algebra. Thus, guantization

of the supersymmetric system is straightforward: we should perform geometric quantization of

the initial bosonic system and then replace the fermionic variables by the respective gamma-

matrices.

The chapter is organized as follows.

In Section 2.2 we review the description of Euler top on the phase space given by the complex

projective plane CP1.

In Section 2.3 we present the N = 2k supersymmetization procedure for the system with

generic one-(complex)dimensional Kähler spaces.

In Section 2.4 we summarize obtained results and discuss the possible extensions of the

proposed scheme to the Lagrange and Kowalewski tops.

2.2 EULER TOP

For the description of the Euler top (2.1) in terms of the non-degenerated phase space, let

us introduce instead of xi, the coordinates j, z, z̄
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j :=

√√√√ 3∑
i=1

x2i , z :=
x1 + ıx2
j − x3

. (2.3)

Clearly, j is the complete angular momentum.

In these coordinates the Poisson brackets read

{z̄, z} = − ı

2j
(1 + zz̄)2, {z, j} = {z, z} = 0, (2.4)

while the momentum generators look as follows

j2 :=
3∑

i=1

x2i , (2.5)

x1 := h1 = j
z + z̄

1 + zz̄
, x2 := h2 = j

ı(z̄ − z)

1 + zz̄
, x3 := h3 = j

zz̄ − 1

1 + zz̄
. (2.6)

However, the point x3 = j cannot be described in these terms.To improve this lack we

should introduce, instead of z, another coordinates z̃, ¯̃z

z̃ :=
x1 − ıx2
j + x3

: {¯̃z, z̃} = − ı

2j
(1 + z̃ ¯̃z)2. (2.7)

Out of the points x3 = ±j these coordinates are related with each other as follows

z̃ =
1

z
. (2.8)

The Poisson brackets (2.4) and (2.7) transform to each other under this transformation.

Thus, fixing j to be constant we arrive at the two-dimensional phase space covered by two

charts (parameterized by the single complex coordinate z or z̃ ) and equipped with the one-

(complex)dimensional Kähler structure - the complex projective plane CP1 with the Fubini-

Study metrics

g(z, z̄)dzdz̄ := 2j
dzdz̄

(1 + zz̄)2
, (2.9)

which corresponds to the Kähler potential

K(z, z̄) = 2j log(1 + zz̄). (2.10)
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The generators (2.6) become Killing potentials of CP1, and define the Hamiltonian holo-

morphic vector fields,

{h1, } = ı(1− z2)∂z + c.c.,

{h2, } = −(1 + z2)∂z + c.c.,

{h3, } = 2ız∂z + c.c., (2.11)

In these terms the Hamiltonian of Euler top reads

H =
3∑

i=1

x2i
2Ii

= −j2 b(z
2 + z̄2) + 2azz̄

2(1 + zz̄)2
+

j2

2I3
, (2.12)

where

a :=
2

I3
− 1

I1
− 1

I2
, b :=

1

I2
− 1

I1
. (2.13)

Now, let us rewrite the Euler top in canonical coordinates. For this purpose we notice that

CP1 is just the two-dimensional sphere S2 formulated in the projective coordinates

z = cot
θ

2
eıφ, (2.14)

where θ, φ are the spherical coordinates. In these terms the Poisson bracket (2.4) reads

{φ, j cos θ} = 1 (2.15)

Hence, the function p := j cos θ defines the canonical momentum conjugated to φ. In terms

of these canonical coordinates the angular momentum generators (and Killing potentials) (2.6)

read

x1 + ıx2 = j sin θeıφ =
√
j2 − p2eıφ, x3 = j cos θ = p, (2.16)

while the Hamiltonian of the Euler top takes the form

H =
1

4
(a+ b cos 2φ)p2 +

j2

4

(
2

I3
− (a+ b cos 2φ)

)
. (2.17)

Without loss of generality we assume

I3 ≤ I2 ≤ I1, (2.18)
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and perform canonical transformation (p, φ) → (P,Q), where

, (2.19)

P =

√
a+ b cos 2φ

2
p,

Q =

√
2

a+ b

∫
dφ√

1− 2b
a+b

sin2 φ
=

√
2

a+ b
F (φ, k) : {Q,P} = 1, (2.20)

where F (φ, k) is an elliptic integral of the first kind, with k =
√
2b/(a+ b) being its modulus,

and φ is the so-called Jacobi amplitude (which defines the Jacobi elliptic functions) [67],

φ = F−1 (F, k) = amp (F, k) . (2.21)

Respectively

sinφ = sin(amp(F, k)) = sn(F, k) (2.22)

is the Jacobi sine amplitude of the elliptic functions.

In this terms the Hamiltonian of Euler top reads

H =
1

2
P 2 +

j2b

2
sn2

(√
a+ b

2
Q,

√
2b

a+ b

)
+

j2

2I1
. (2.23)

In the particular case of the symmetric top (I1 = I2 := I) it reduces to the one-dimensional

free particle Hamiltonian

H =
1

2

(
1

I3
− 1

I

)
p2 +

j2

2I
. (2.24)

So, the Euler top is the one-dimensional Hamiltonian system with CP1 phase space and with

the Hamiltonian given by the quadratic functions of its Killing potentials. In the canonical

coordinates it results in the one-dimensional nonlinear oscillator.
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2.3 SUPERSYMMETRY

In the previous section we formulated the Euler top in terms of one-(complex)dimensional

phase space given by complex projective plane. Being one-dimensional system, the Euler top

allows many ways of supersymmetrization, including supersymmetrization in canonical coor-

dinates. However, we are interested in the supersymmetrization compatible with the Kähler

geometry describing the phase space of the Euler top.

One of the ways to supersymmetrize the Euler top is to use the approach suggested in [66]

which is based on the extension of the Kähler phase space to the super-Kähler one defined by

the potential

K(z, z̄, θa, θ̄
a) = K(z, z̄) + F (ıg(z, z̄)θaθ̄

a), (2.25)

where F (x) is the real function with F ′(0) ̸= 0, with K(z, z̄), g(z, z̄) given by (2.10) and (2.9),

while the fermionic variables θa are associated with dz, in complete similarity with the superfield

approach.

Another particular way of supersymmetrization is to extend the complex projective plane

to the complex projective super-plane given by the Kähler potential

K̃(z, z̄, θa, θ̄
a) = 2j log(1 + zz̄ + θaθ̄

a). (2.26)

Such approach has been taken in [9], where it was applied to the Lobachevsky plane (i.e.

non-compact version of complex projective plane) for the construction of N -extended one-

dimensional superconformal mechanics. Later on, this approach was generalized to the higher-

dimensional systems in [19].

Below we suggest different, less geometric approach, which is applicable not only for the

Euler top, but for any one-dimensional system. We will consider the systems with generic
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two-(real)dimensional phase space. Such phase spaces can be always equipped with the one-

(complex)dimensional Kähel structure, so that the Poisson brackets will be given by the relation

{z, z̄} =
ı

g(z, z̄)
. (2.27)

For the construction of N -supersymmetric extensions of these systems ( with even N ) we

extend this phase space by the canonical complex Grassmann variables ψa, a = 1, . . . , N
2

{
ψa, ψ̄

b
}
= ıδba, (2.28)

where (ψa) := ψ̄a and F1F2 = F2F1.

With these Poisson brackets at hands we can construct the N supersymmetric extensions of

two-dimensional systems defined by the Poisson brackets (2.27) and by any positive Hamiltonian

H(z, z̄) > 0, {
Qa, Q

b
}
= ıδbaH , H := H(z, z̄) + fermions. (2.29)

In accordance with the generalization of Liouville theorem to the supermanifolds [68](see also

[42]) these supersymmetric extensions will be aṕriory integrable, since we will get the system

with (2|N )R-dimensional phase space with one bosonic constant of motion H and N fermionic

constants of motion Qa, Q
b
commuting with the bosonic integral H.

N = 2 SUPERSYMMETRY

For the construction of N = 2 supersymmetric extension of the system with Hamiltonian

H(z, z̄) > 0 we choose, following [42], the appropriate Ansatz for supercharges and arrive

the family of N = 2 supersymmetric extensions of the Hamiltonian H, parameterized by the

arbitrary real function Φ(z, z̄)

Q =
√
HeıΦψ, Q =

√
He−ıΦψ̄ ⇒ H = H + {Φ, H}ψψ̄. (2.30)
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Specifying the Poisson brackets and Hamiltonian we will get the respective supersymmetric

extension of the Euler top.

Direct extension of construction to the N ≥ 4 supersymmetric mechanics fixes the function

Φ and leads to the trivial family of the supersymmetric Hamiltonians. Namely, choosing Qa =

√
HeıΦψa, we get that the superalgebra (2.29) is fulfilled when {H,Φ} = 0. Hence, the resulting

supersymmetric Hamiltonian is trivial: it coincides with the initial bosonic Hamiltonian.

N = 4 SUPERSYMMETRY

For the construction of nontrivial N = 4 supersymmetric system we choose the following

Ansatz for supercharges

Qa = f1(z, z̄)ψa + f2(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b,

Q
a
= f̄1(z, z̄)ψ̄

a − f̄2(z, z̄)ψ̄
a

N/2∑
b=1

ψ̄bψb , (2.31)

with

f1(z, z̄) :=
√
HeıΦ1(z,z̄), (2.32)

f2 = R(z, z̄)eı(Φ1−Φ2), (2.33)

R̄ = R, (2.34)

Φ̄a(z, z̄) = Φa(z, z̄). (2.35)

Then, we require that the supercharges (2.3) form the N = 4 Poincaré superalgebra (2.29),

which results in the following conditions on the functions involved
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ı
{
f1, f̄1

}
= f1f̄2 + f̄1f2 ⇔ {

√
H,Φ1} = R cosΦ2, (2.36)

with the Hamiltonian H acquiring the form

H = f1f̄1 + ı
{
f1, f̄1

} N/2∑
a=1

ψaψ̄
a +

ı

2

({
f1, f̄2

}
+
{
f2, f̄1

})N/2∑
a=1

ψaψ̄
a

2

= H + {H,Φ1}ψaψ̄
a + A(

√
H,Φ1,2)

N/2∑
a=1

ψaψ̄
a

2

, (2.37)

with

A(
√
H,Φ1,2) :=

ı

2

({
f1, f̄2

}
+
{
f2, f̄1

})
=
(
{
√
H,Φ1}

)2
− {

√
H,Φ1}{

√
H,Φ2}

cos2Φ2

+
{
{
√
H,Φ1},Φ1

}√
H +

{
{
√
H,Φ1},

√
H
}
tanΦ2. (2.38)

Thus, we get the N = 4 supersymmetric mechanics parametrized by two arbitrary functions

Φ1,2 .

We can use the Ansatz (2.3) for the construction of N > 4 supersymmetric systems as well.

However, in that case we get the additional constraints on the functions f1, f2,

N = 6 : {f1, f̄2}+ {f2, f̄1} = 2ıf2f̄2 (2.39)

N = 8 : {f1, f̄2}+ {f2, f̄1} = 2ıf2f̄2, {f2, f̄2} = 0. (2.40)

These constraints, obviously, restrict the functional freedom existing in N = 4 systems.

In the N = 6 case this constraint leads to the following restriction

A(
√
H,Φa) +

(
{
√
H,Φ1}
cosΦ2

)2

= 0, (2.41)

with A given by (2.38). Hence, the system has single functional degree of freedom parameterized

by Φ1, as in the N = 2 case.
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The requirement of N = 8 supersymmetry further fixes the value of Φ1

{{
√
H,Φ1},Φ1 − Φ2} = {Φ1,Φ2}{

√
H,Φ1} tanΦ2. (2.42)

As a result, we get the N = 8 Hamiltonian with no functional freedom.

The evident way to construct the N > 4 systems with wide functional freedom is to extend

the supercharges Ansatz by higher 5- and 7- fermionic terms .

2.4 N = 6, 8 SUPERSYMMETRIC MECHANICS

In the previous section we have shown that the supercharges with cubic fermionic terms allow

to construct N = 4 supersymmetric mechanics with two functional degrees of freedom, N = 6

supersymmetric mechanics with single functional degree of freedom, andN = 8 supersymmetric

mechanics without any functional freedom.

One can guess that the supercharges with fifth-order fermionic term could lead to the N = 6

supersymmetric mechanics with three functional degrees of freedom and to N = 8 supersym-

metric mechanics with two functional degrees of freedom. Furthermore, one can expect that

the supercharges with seventh-order fermionic terms could lead to the N = 8 supersymmetric

mechanics with four functional degrees of freedom and so on. Let us show that it is indeed the

case.

In order to construct the N = 6 supersymmetric systems with three functional degrees of

freedom we consider the following Ansatz for the supercharges

Qa = f1(z, z̄)ψa + f2(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

 + f3(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

2

,

Q
a

= f̄1(z, z̄)ψ̄
a + f̄2(z, z̄)ψ̄

a

N/2∑
b=1

ψbψ̄
b

 + f̄3(z, z̄)ψ̄a

N/2∑
b=1

ψbψ̄
b

2

, (2.43)

34



with a, b = 1, 2, 3.

Then, requiring that these functions form N = 6 Poincaré superalgebra (2.29), we get the

following restrictions to the functions fa

f1f̄2 + f̄1f2 − ı
{
f1, f̄1

}
= 0,

2f3f̄1 + 2f2f̄2 + 2f1f̄3 − ı
{
f1, f̄2

}
+ ı
{
f̄1, f2

}
= 0, (2.44)

The respective Hamiltonian then reads

H =
1

2
f1f̄1 +

1

2
(f1f̄2 + f̄1f2)

N/2∑
a=1

ψaψ̄
a

+
1

2
(f3f̄1 + f1f̄3 + f2f̄2)

N/2∑
a=1

ψaψ̄
a

2

+
1

2
(f2f̄3 + f3f̄2)

N/2∑
a=1

ψaψ̄
a

3

(2.45)

Representing fa in the form

f1 =
√
HeıΦ1 , f2 = R2e

ı(Φ1−Φ2), f3 = R3e
ı(Φ1−Φ2−Φ3), (2.46)

and re-writing in these terms the conditions (2.4), we conclude that the functions Φ1,Φ2,Φ3

remains unfixed. Therefore, we arrive at the family of N = 6 supersymmetric mechanics pa-

rameterized by three arbitrary real functions.

In order to construct the N = 8 supersymmetric systems with four functional degrees of

freedom we introduce the following generalization of the Ansatz (2.3),
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Qa = f1(z, z̄)ψa + f2(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

+ f3(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

2

+ f4(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

3

,

Q
a
= f̄1(z, z̄)ψ̄

a + f̄2(z, z̄)ψ̄
a

N/2∑
b=1

ψbψ̄
b

+ f̄3(z, z̄)ψ̄a

N/2∑
b=1

ψbψ̄
b

2

+ f̄4(z, z̄)ψ̄a

N/2∑
b=1

ψbψ̄
b

3

, (2.47)

with a, b = 1, 2, 3, 4.

Then, requiring that these functions form N = 8 Poincaré superalgebra (2.29), we get the

following restrictions on the functions fa

f1f̄2 + f̄1f2 − ı
{
f1, f̄1

}
= 0, (2.48)

2f3f̄1 + 2f2f̄2 + 2f1f̄3 − ı
{
f1, f̄2

}
+ ı
{
f̄1, f2

}
= 0, (2.49)

3f4f̄1 + 3f3f̄2 + 3f2f̄3 + 3f1f̄4 − ı
{
f1, f̄3

}
+ ı
{
f̄1, f3

}
− ı
{
f2, f̄2

}
= 0. (2.50)

The respective Hamiltonian then reads

H =
1

2
f1f̄1 +

1

2
(f1f̄2 + f̄1f2)

N/2∑
a=1

ψaψ̄
a


+

1

2
(f3f̄1 + f1f̄3 + f2f̄2)

N/2∑
a=1

ψaψ̄
a

2

+
1

2
(f4f̄1 + f1f̄4 + f2f̄3 + f3f̄2)

N/2∑
a=1

ψaψ̄
a

3

+
ı

8
(
{
f1 , f̄4

}
+
{
f2 , f̄3

}
+
{
f3 , f̄2

}
+
{
f4 , f̄1

}
)

N/2∑
a=1

ψaψ̄
a

4

(2.51)
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Let us notice that the restriction (3.33) for N = 8 system coincides with the restrictions

(2.4) for N = 6 case. While the additional constraint (??) contains extra complex function

f4(z, z̄). Hence, representing fa in the form

f1 =
√
HeıΦ1 , (2.52)

f2 = R2e
ı(Φ1−Φ2), (2.53)

f3 = R3e
ı(Φ1−Φ2−Φ3), (2.54)

f4 = R4e
ı(Φ1−Φ2−Φ3−Φ4), (2.55)

we conclude that the functions Φ1, . . . ,Φ4 remain unfixed. Therefore, the N = 8 supersym-

metric Hamiltonian (2.51) depends on four arbitrary real functions.

So, specifying the formulae given in the Third and Fourth Sections to the particular case of

Euler top given in the Section 2 by (2.9) we will get its integrable N = 2, 4, 6, 8 supersymmetric

extensions.

From the consideration above it is easy to deduce that for the construction of N =

10, 12, . . . 2k superextensions of initial Hamiltonian we should choose the following ansatzes

for the supercharges

Qa = f1(z, z̄)ψa +

N/2∑
l=1

fl+1(z, z̄)ψa

N/2∑
b=1

ψbψ̄
b

l

,

Q
a
= f̄1(z, z̄)ψ̄

a +

N/2∑
l=1

f̄l+1(z, z̄)ψ̄
a

N/2∑
b=1

ψbψ̄
b

l

, (2.56)

with a, b = 1, . . . ,N /2k. Then, requiring that they form Poincaré superalgebra (2.29) we will

get the family of N = 2k supersymmetric Hamiltonians parameterized by k arbitrary real

functions.
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2.5 CONCLUSION

In this chapter, we have shown, firstly, that the Euler top can be represented as a one-

dimensional system with a Kähler phase space CP1.

Then, we suggest a generic procedure for N = 2k supersymmetrization of a generic one-

dimensional system. Hence, we have provided an entire family of supersymmetric extensions

of the Euler top as well.

Further possible developments, namely potential applications to Kowalevski and Lagrange

tops, are discussed in the last chapter.
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Chapter 3

Non-compact Complex Projective

Space as a Phase Space of

Superintegrable Systems

3.1 INTRODUCTION

The so called ”non-compact complex projective space”, denoted here as C̃P
N
, is a non-

compact analogue of complex projective space. The reason to study particularly non-compact

space is due yo the fact that it naturally leads us to formulation of standard conformal me-

chanics, and its deformations us an example of integrable and superintegrable systems. Bellow

is adopted the Hamiltonian reduction approach while constructing projective spaces. Both,

compact (CPN) and non-compact (C̃P
N
) cases are considered in parallel, with the upper sign

presenting the compact case, the lower one non-compact. N -dimensional complex projective

space CPN , compact and non-compact, can be obtained by the reduction from Euclidean com-

plex space CN+1 and pseudo-Euclidean complex space C1.N respectively. The metric and Kähler
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potentials of CN+1 and C1.N are given by

ds2 = gij̄du
idūj ≡ du0dū0 ± duadūa ≡ du0dū0 ± dudū, (3.1)

where the indices like i, j, k, ... are running from 0 to N and ones like a, b, c, ... from 1 to N . gij̄

is the Riemann metric, given by

gij̄ =

 gij̄ = δij̄, for compact case

gij̄ = γij̄, for non-compact case

, (3.2)

where δij̄ is Kronecker symbol and γ = diag(1,−1, ...,−1). Kähler structures giving these

metrics and associated Poisson brackets are

K(u, ū) = u0ū0 ± uaūa, ω = −ıgij̄dui ∧ dūj, {ui, ūj} = ıgij̄, (3.3)

where K is the Kähler potential and ω is an antisymmetric 2-form. gij̄ is the inverse metric in

these trivial cases coincides with metric.

The isometry algebras of CN+1 and C1.N are u(N + 1) = u(1) × su(N + 1) and u(1.N) =

u(1) × su(1.N) respectively.The u(1) generator(s), which form the center of the respective

algebra, are given by J = u0ū0 ± uaūa. To obtain the compact and non-compact complex

projective spaces from the compact and non-compact Euclidean complex spaces by Hamiltonian

reduction one needs to do following. To reduce the system by the action of generator J , first we

have to choose 2N real (N complex) functions commuting with J . Then, we have to calculate

their Poisson brackets and fix the u(1) generator and hence the level surface by

J = g, (3.4)

where g is chosen to be a positive constant for further convenience. The role of such functions,

which constitute the coordinates of the newly reduced CPN and C̃P
N
, can be as follows (for

both, compact and non-compact case):
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za =
ua

u0
,

(
z̄a =

ūa

ū0

)
. (3.5)

So in this way we arrive at the most known examples of nontrivial Kähler manifolds, namely,

the N -dimensional complex projective space CPN and its non-compact analog C̃P
N
. They can

be equipped with the su(N + 1)-invariant (for the compact case) and the su(N.1) invariant

(for the non-compact case) Kähler metrics, known as the Fubini-Study metrics. These metrics

and respective Kähler potentials are defined by the expressions (again, with the upper sign

corresponding to CPN , and the lower sign to C̃P
N
) 1

gab̄dz
adz̄b =

gdzdz̄

1± zz̄
∓ g(z̄dz)(zdz̄)

(1± zz̄)2
, K = ±g log(1± zz̄), (3.6)

as well as the inverse metrics and Poisson brackets given by them

gāb = (1± zz̄)(z̄azb ± δāb), {za, z̄b} =
ı

g
(1± zz̄)(zaz̄b ± δab̄). (3.7)

Let us notice that the complex projective space CPN is defined by N + 1 charts, while its

noncompact analog C̃P
N
by a single chart. Moreover, in the latter case the range of validity of

the coordinates za is

|za| < 1,
N∑
a=1

zaz̄a < 1 (3.8)

The isometries of projective spaces are defined by the Killing potentials

hab̄ = g
z̄azb ∓ δāb

1± zz̄
, ha = g

2z̄a

1± zz̄
, hā = g

2za

1± zz̄
. (3.9)

These generators form the su(N +1) algebra for the upper sign, and the su(N.1) for the lower

sign (the generators hab̄ form u(N) algebra):

{ha, hb} = 0,

{ha, hb̄} = −4ıhab̄,

{ha, hbc̄} = ±ı (δac̄hb + δbc̄ha) ,

{hab̄, hcd̄} = ±ı(δad̄hcb̄ − δb̄chad̄). (3.10)

1Through this text we use the notation zz̄ ≡
∑N

c=1 z
cz̄c, zdz̄ ≡

∑N
c=1 z

cdz̄c etc.
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3.2 POINCARÉ AND KLEIN MODELS OF THE

LOBACHEVSKY PLANE

The one-dimensional noncompact complex projective space C̃P
1
is the Lobachevsky plane

(upper sheet of two-sheet hyperboloid) proper. Its Fubini-Study metrics results in the su(1.1) =

so(1.2)-invariant Kähler metric parameterized by the unit disc of two-dimensional plane, which

is known as Poincaré model [57]

ds2 =
gdzdz̄

(1− zz̄)2
, ⇒ K = −g log(1− zz̄), |z| < 1. (3.11)

In this particular case the Killing potentials read

h = g
1 + zz̄

1− zz̄
, h+ = g

2z̄

1− zz̄
, h− = g

2z

1− zz̄
: (3.12)

{h+, h−} = −4ıh, {h±, h} = ∓2ıh±. (3.13)

Performing the transformation

z =
1− ıw

1 + ıw
(3.14)

we arrive at the so-called Klein model parameterized by lower two-dimensional half-plane [57]

ds2 =
gdwdw̄

[ı(w − w̄)]2
, K = −g log[ı(w − w̄)], Im w < 0. (3.15)

We could have obtained this one dimensional manifold C̃P
1
directly by reduction of pseudo-

Euclidean space (which the Lobachevsky plane in this case), if only we took the Klein model

of it, namely taking the metric 0 −ı

ı 0

 (3.16)

instead of diagonal one. This corresponds to the transformation (3.14).
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The Poisson brackets corresponding to this structure are defined by the relation

{w, w̄} = − ı

g
(w − w̄)2, (3.17)

while the Killing potentials read

h = g
ww̄ + 1

ı(w − w̄)
, h+ = g

(1 + ıw)(1 + ıw̄)

ı(w − w̄)
, h− = g

(1− ıw)(1− ıw̄)

ı(w − w̄)
. (3.18)

Instead of these generators it is more convenient to use their linear combinations

H0 = g
ww̄

ı(w − w̄)
, K0 = g

1

ı(w − w̄)
, D0 = g

w̄ + w

ı(w − w̄)
, (3.19)

{K0, H0} = D0, {D0, H0} = 2H0, {K0, D0} = 2K0. (3.20)

Here the index 0 indicates that we are dealing with one dimensional case.

Introducing the canonical phase space variables (p, x) [9]

w =
p

x
− ı

g

x2
: {x, p} = 1, (3.21)

we can represent the Killing potentials in the standard form of the generators of one-dimenisional

conformal mechanics [38]

H0 =
p2

2
+

g2

2x2
, K0 =

x2

2
, D0 = px. (3.22)

In the next Section we will extend this mapping to the higher-dimensional noncompact complex

projective space.

3.3 NONCOMPACT COMPLEX PROJECTIVE SPACE:

KLEIN MODEL

Let us construct N -dimensional analog of the Klein model from the Fubini-Study structure

of noncompact complex projective space C̃P
N
given by the expressions (3.6) with a lower sign.
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For this purpose we perform the transformation

zN =
1− ıw

1 + ıw
, zα =

√
2

z̃α

1 + ıw
, (3.23)

which yields the following expressions for the Kähler structure and potential (here and further

instead of z̃α we use the former notation zα)

ds2 =
g[dw + ız̄αdzα][dw̄ − ızβdz̄β)]

[ı(w − w̄)− zγ z̄γ]2
+

gdzαdz̄α

ı(w − w̄)− zγ z̄γ
, (3.24)

K = −g log [ı(w − w̄)− zγ z̄γ] , α, β, γ = 1, . . . N − 1, (3.25)

with the following range of validity of the coordinates w, zα

Im w < 0,
N−1∑
α=1

zαz̄α < −2 Im w. (3.26)

The respective Poisson brackets are defined by the relations

{w, w̄} = −A(w − w̄), {w, z̄α} = Az̄α, {zα, z̄β} = ıAδβ̄α, (3.27)

where

A :=
ı(w − w̄)− zγ z̄γ

g
. (3.28)

The Killing potentials of the Kähler structure (3.25) are defined by the expressions

hNN̄ =
ww̄ + 1

A
,

hαN̄ =
1√
2

z̄α(1− ıw)

A
,

hαβ̄ =
z̄αzβ + 1

2
δαβ̄(1 + ıw)(1− ıw̄)

A
,

hN =
(1 + ıw)(1 + ıw̄)

A
,

hα =
√
2
z̄α(1 + ıw)

A
. (3.29)

These potentials form su(N.1) algebra, which in the given notation reads the same as in

(3.10) with a lower sign and a = N,α. Below we will refer to this representation as the

N -dimensional Klein model.
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For our purposes, instead of Killing potentials (3.29) it is more convenient to use the fol-

lowing ones

H =
ww̄

A
, K =

1

A
, D =

w + w̄

A
, HαN̄ =

z̄αw

A
, Hα =

z̄α

A
, Hαβ̄ =

z̄αzβ

A
. (3.30)

Certainly, these functions are not independent, for there are many obvious relations between

them, e.g.

H =
1

2

N−1∑
α=1

HαN̄H̄Nᾱ

Hαᾱ

, Hαβ̄ =
HαHβ̄

K
, etc. (3.31)

In these terms the su(1.N) algebra relations read

{H,K} = −D, {H,D} = −2H, {K,D} = 2K, (3.32)

{H,Hα} = −HαN̄ , {H,HαN̄} = {H,Hαβ̄} = 0, (3.33)

{K,HαN̄} = Hα, {K,Hα} = {K,Hαβ̄} = 0, (3.34)

{D,Hα} = −Hα, {D,HαN̄} = HαN̄ , {D,Hαβ̄} = 0, (3.35)

{Hα, Hβ} = {HαN̄ , HβN̄} = {Hα, HβN̄} = 0, (3.36)

{Hα, Hβ̄} = −ıKδαβ̄, {HαN̄ , HNβ̄} = −ıHδαβ̄, (3.37)

{Hαβ̄, Hγδ̄} = ı(Hαδ̄δγβ̄ −Hγβ̄δαδ̄), (3.38)

{Hα, HNβ̄} = Hαβ̄ +
1

2

(
g +

∑
γ

Hγγ̄ − ıD

)
δαβ̄, (3.39)

{Hα, Hβγ̄} = −ıHβδαγ̄, {HαN̄ , Hβγ̄} = −ıHβN̄δαγ̄ (3.40)

So, the generators H,K,D define the conformal algebra su(1.1) = so(1.2), and the genera-

tors Hαβ̄ define the algebra u(N − 1).

It is seen that

• the HamiltonianH has two sets of constants of motionHαN̄ andHαβ̄ (see (3.33)), therefore

it defines superintegrable system;

• the Hamiltonian K has two sets of constants of motion as well, Hα and Hαβ̄ (see(3.34)).

Thus, it defines the superintegrable system as well;
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• the triples (H,HαN̄ , Hαβ̄) and (K,Hα, Hαβ̄) transform into each other within discrete

transformation

(w, zα) → (− 1

w
,
zα

w
) ⇒ D → −D,

 (H,HαN̄ , Hαβ̄) → (K,−Hα, Hαβ̄),

(K,Hα, Hαβ̄) → (H,HαN̄ , Hαβ̄).

(3.41)

Adding to the Hamiltonian H the appropriate function of K, we get the superintegrable

oscillator- and Coulomb-like systems.

3.3.1 OSCILLATOR-LIKE HAMILTONIAN

We define the oscillator-like Hamiltonian by the expression (cf.(3.22))

Hosc = H + ω2K (3.42)

and introduce the following generators

Aα = HαN̄ + ıωHα, Bα = HαN̄ − ıωHα :

 {Hosc, Aα} = −ıωAα,

{Hosc, Bα} = ıωBα.

(3.43)

These generators and their complex conjugates form the following algebra

{Aα, Āβ} = −ı
(
Hosc − ω(g +

N−1∑
γ=1

Hγγ̄)
)
δαβ̄ + 2ıωHαβ̄, (3.44)

{Bα, B̄β} = −ı
(
Hosc + ω(g +

N−1∑
γ=1

Hγγ̄)
)
δαβ̄ − 2ıωHαβ̄, (3.45)

{Aα, B̄β} = −ıδαβ̄
(
Hosc − 2ω2K + ıωD

)
, (3.46)

with their Poisson brackets with Hαβ̄ reading

{Aα, Hβγ̄} = −ıδαγ̄Aβ, {Bα, Hβγ̄} = −ıδαγ̄Bβ, (3.47)

{Āα, Hβγ̄} = −ıδᾱβĀγ, {B̄α, Hβγ̄} = −ıδᾱβB̄γ, (3.48)

{H̄osc, Hαβ̄} = 0. (3.49)
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Then we immediately deduce that the Hamiltonian (3.42) besides Hαβ̄, has the additional

constants of motion which provide the system by the maximal superintegrability property

Mαβ = AαBβ

= HαN̄HβN̄ + ω2HαHβ + ıω(HαHβN̄ −HαN̄Hβ)

=
z̄αz̄β

A2
(w2 + ω2) ,

(3.50)

with

{Hosc,Mαβ} = 0. (3.51)

For sure, these constants of motion are functionally dependent, so that among them one can

choose the N − 1 integrals which guarantee superintegrability of the system, e.g. Mα ≡ Mαα

only, like in [32]. The generators (3.50) and the u(N − 1) generators Hαβ̄ form the following

symmetry algebra

{Hαβ̄,Mγδ} = ıδβ̄γMαδ + ıδβ̄δMγα, {Mαβ,Mγδ} = 0, (3.52)

3.3.2 COULOMB-LIKE HAMILTONIAN

We define the Coulomb-like Hamiltonian with the additional constants of motion which

provide the system by the maximal superinetgrability property as follows (cf. (3.22))

HCoul = H − γ√
2K

, Rα = HαN̄ + ıγ
Hα

(g +
∑N−1

γ=1 Hγγ̄)
√
2K

, (3.53)

with

{HCoul, Rα} = {HCoul, Hαβ̄} = 0. (3.54)
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The whole symmetry algebra is as follows

{Rα, Rβ̄} = −ıδαβ̄

(
HCoul −

ıγ2

2(g +
∑N−1

γ=1 Hγγ̄)2

)
+

ıγ2Hαβ̄

2(g +
∑N−1

γ=1 Hγγ̄)3
, (3.55)

{Hαβ̄, Rγ} = ıδγβ̄Rα, (3.56)

{Rα, Rβ} = 0. (3.57)

To clarify the origin of these models it is convenient to transit to the canonical coordinates.

3.4 CANONICAL COORDINATES

For the introduction of the canonical coordinates we transit from the complex coordinates

to the real ones

w = x+ ıy, zα = qαe
ıφα , (3.58)

where

y < 0, qα ≥ 0, φα ∈ [0, 2π), q2 :=
N−1∑
α=1

q2α < −2y. (3.59)

Then we write down the symplectic Kähler one-form and identify it with the canonical one

A = −g
2

dw + dw̄ − ı(zαdz̄α − z̄αdzα)

ı(w − w̄)− zγ z̄γ
:= pxdx+ παdφα. (3.60)

This yields the following expressions for the canonical coordinates and momenta,

px = g
1

2y + q2
, πα = −g q2α

2y + q2
⇔ qα =

√
−πα
px
, y =

π + g

2px
, (3.61)

where

π :=
N−1∑
α=1

πα. (3.62)

Thus, the complex coordinates are expressed via canonical ones as follows

w = x+ ı
π + g

2px
, zα =

√
−πα
px

eıφα . (3.63)
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For the complete analogy with one-dimensional case [9] we perform further canonical transfor-

mation (x, px) → (pr/r,−r2/2) and re-write the above expression in a more convenient form

w =
pr
r
− ı

π + g

r2
, zα =

√
2πα
r

eıφα , (3.64)

with

r > 0, πα ≥ 0, φα ∈ [0, 2π). (3.65)

and

A =
ı(w − w̄)− zγ z̄γ

g
=

2

r2
. (3.66)

In these terms the generators of conformal algebra (3.32) take the form of conformal me-

chanics with separated ”radial” and ”angular” parts (cf. [36]),

H =
p2r
2

+
I
r2
, K =

r2

2
, D = prr, (3.67)

where the angular part of Hamiltonian is given by the expression

I =
1

2

(
N−1∑
α=1

πα + g

)2

. (3.68)

The rest generators of su(1.N) algebra read

HαN̄ =
√
2πα

(
pr
2

− ı
π + g

2r

)
e−ıφα , (3.69)

Hα = r

√
πα
2
e−ıφα , (3.70)

Hαβ̄ =
√
παπβe

−ı(φα−φβ), (3.71)

with the basic Poisson brackets {r, p} = 1 and {φα, πα} = 1.

In these coordinates the oscillator- and Coulomb-like Hamiltonians (3.42),(3.53) take the

form,

Hosc =
p2r
2

+
I
r2

+
ω2r2

2
, HCoul =

p2r
2

+
I
r2

− γ

r
, (3.72)

with I given by (3.68).

The generic conformal mechanics with the angular part Igen(π, φ) can be defined via su(1.N)

generators by the expression

Hgen = H +
Igen(Hα/

√
K,Hβ̄/

√
K)− (

∑N−1
γ=1 Hγγ̄ + g)2

2K
. (3.73)
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However, we are mostly interested in the study of integrable and superintegrable systems. Thus,

we have to restrict ourselves by the particular cases of angular Hamiltonians.

3.4.1 SUPERINTEGRABLE SYSTEMS

In accordance with Liouville theorem, the integrability of the system with 2N -dimensional

phase space means the existenceN functionally independent involutive integrals F1 = H, . . . , FN :

{Fa, Fb} = 0. This yields the existence of the so-called action-angle variables (Ia(F ),Φa):

H = H(I), {Ia,Φb} = δab, {Ia, Ib} = {Φa,Φb} = 0, (3.74)

Φa ∈ [0, 2π), a, b = 1, . . . , N. (3.75)

The system becomes maximally superintegrable when the Hamiltonian is expressed via action

variables as follows

H = H

(
N∑
a=1

naIa

)
, na ∈ N (3.76)

where na are integers (or rational numbers). Indeed, in that case the system possesses the

additional (non-involutive) integrals Iab = cos(naΦb − nbΦa), among them N − 1 integrals are

functionally independent.

Now, let us suppose that πα, φα are related with the action-angle variables (Iα,Φα) of some

(N − 1)-dimensional angular mechanics by the relations

πα = nαIα, φα =
Φα

nα

, where nα ∈ N . (3.77)

Upon this identification the angular Hamiltonian (3.68) takes a form

I =
1

2

(
N−1∑
α=1

nαIα + g

)2

, with nα ∈ N , (3.78)
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This is precisely the class of angular Hamiltonians which provides the superintegrable gen-

eralizations of the conformal mechanics, and of the oscillator and Coulomb systems on the

N -dimensional Euclidian spaces [56]!

Though the relations (3.32)-(3.40) hold upon this identification, the generatorsHα, HαN̄ , Hαβ̄

become locally defined, φα ∈ [0, 2π/mα), so they fail to be constants of motion. However,

taking their relevant powers we get the globally defined generators which form the nonlinear

algebra

H̃α := (Hα)
nα = dα(I)r

nαe−ıΦα , (3.79)

H̃αN̄ := (HαN̄)
nα = dαN̄(I)

(
pr − ı

∑N−1
γ=1 nγIγ + g

r

)nα

e−ıΦα , (3.80)

H̃αβ̄ := (Hαβ̄)
nαnβ = dαβ̄(I)e

−ı(nβΦα−nαΦβ), (3.81)

where

dα(I) =

(
nαIα
2

)nα/2

, (3.82)

dαN̄(I) =

(
nαIα
2

)nα/2

, (3.83)

dαβ̄(I) = (nαnβIαIβ)
nαnβ/2. (3.84)

Thus, we get

{H, H̃αN̄} = {H, H̃αβ} = 0, {K, H̃α} = {K, H̃αβ} = 0, (3.85)

where H,K are defined by (3.67) and (3.78). For sure, the functions (3.84), being dependent

on action variables only, do not affect the commutativity of the additional integrals with the

Hamiltonian.

In a similar way we construct the constant of motion of the oscillator- and Coulomb-like

systems given by (3.42),(3.78) and (3.53),(3.78), respectively.
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For the oscillator-like system (3.42) the integrals take the form

M̃αβ := (AαBβ)
nαnβ

=
1

2
dαβ̄(I)e

−ı(nβΦα−nαΦβ)

(ıpr + ∑N−1
γ=1 nγIγ + g

r

)2

− ω2r2

nαnβ

, (3.86)

with Aα, Bβ given by (3.43), (3.77).

For the Coulomb-like system (3.53) the integrals take the form

R̃α := (Rα)
nα

= dα(I)e
−ıΦα

pr + ıγ∑N−1
γ=1 nγIγ + g

−
ı
(∑N−1

γ=1 nγIγ + g
)

r

n1

. (3.87)

There are a few interesting simple systems whose angular parts are given by (3.78) with

g ̸= 0, among them are,

• ”charge-monopole” system (and respective systems with oscillator/Coulomb potentials),

H =
3∑

a=1

p2a
2

+
s2

2r2
, (3.88)

{pa, xb} = δba, {pa, pb} = s
εabcx

c

r2
, {xa, xb} = 0. (3.89)

Its angular part is defined by the (two-dimensional) spherical Landau problem, with the

following Hamiltonian (see, e.g.[58], where one can find the expressions for action-angle

variables for the angular part)

I =
1

2

(
I1 + I2 + |s|

)2
, I1,2 ∈ [0,∞), (3.90)

with s being the monopole number.

• Smorodinsky-Winternitz system

HSW =
N∑
a=1

(p2a
2

+
g2a
2x2a

+
ω2x2a
2

)
. (3.91)
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The angular Hamiltonian of this system is given by the expression (3.78) with (see, e.g.

[59])

kα = 2ω, g =
N−1∑
a=1

|ga|. (3.92)

For sure, this system could be viewed as a trivial case of rational Calogero model, which

also belongs to the class of systems above.

• Rational Calogero model associated with Coxeter root system [60] R ⊂ RN ,

HCal =
N∑
a=1

p2a
2

+
∑
α∈R+

g2α(α · α)
2(α · x)2

, {pa, xb} = δab (3.93)

where gα ≥ 0 is a Weyl-invariant multiplicity function on the set of roots [61].

The spectrum of the angular part of quantum rational Calogero model was found in [62].

Taking its classical limit, one can get the expression of the angular (part of) generalized

rational Calogero model in terms of action variables [56]. It given by (3.78), with nα being

the degrees of the basic homogeneous Weyl-invariant polynomials, and g =
∑

α∈R+
gα.

Let us notice that in the angular Hamiltonian (3.68) the nonzero constant g ̸= 0 appears,

and the range of validity of the action variables is fixed to be Iα ∈ [0,∞). As a result,

the standard oscillator and Coulomb systems cannot be included in the proposed description,

since for these systems we should choose g = 0, Iα ∈ [0,∞). The first condition leads to the

vanishing of Kähler structure and Poisson brackets, while the absorbtion of constant g by the

action variables immediately yields the change of the range of validity of the action variables.

However, a minor complication allows to involve in our picture the generic superintegrable

conformal mechanics, oscillator and Coulomb systems as well.

Using the expressions of the constants of motion presented in [32], we can immediately write

down the constants of motions of those systems written in terms of Killing potentials.
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• Conformal mechanics

H = H −
g(g + 2

∑N−1
γ=1 Hγγ̄)

4K
, (3.94)

HαN̄ := HαN̄ + ı
gz̄α

2
= HαN̄ + ıg

Hα

2K
, (3.95)

{H,HαN̄} = {H, Hαβ̄} = 0. (3.96)

• Oscillator-like system

Hosc = Hosc −
g(g + 2

∑N−1
γ=1 Hγγ̄)

4K
, (3.97)

{Hosc, Hαβ̄} = {Hosc,AαBβ} = 0, (3.98)

where

Aα = HαN̄ + ıg
Hα

2K
+ ıωHα, Bα = HαN̄ + ıg

Hα

2K
− ıωHα (3.99)

• Coulomb-like system

HCoul = HCoul −
g(g + 2

∑N
γ=1Hγγ̄)

4K
, (3.100)

{HCoul,Rα} = 0, (3.101)

where

Rα = Rα + ıg
Hα√
2K

( 1√
2K

+
γ

(g +
∑N

γ=1Hγγ̄)
∑N

γ=1Hγγ̄

)
(3.102)

The transition to the action-angle variables (3.77) is obvious.

Hence, we have shown how to describe the superintegrable deformations of oscillator and

Coulomb systems in terms of noncompact complex projective spaces C̃P
N
.
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3.5 CONCLUSION

In this chapter, we propose the description of superintegrable models with dynamical so(1, 2)

symmetry, as well as the generic superintegrable deformations of oscillator and Coulomb sys-

tems, in terms of higher-dimensional Klein model (serving as the non-compact analog of complex

projective space), considered as the phase space. We provide the expressions for the constants

of motion of these systems using Killing potentials that define the su(N, 1) isometries of the

Kähler structure.

Besides elegant geometric interpretation of (super)integrability of those models, this may

be very useful when applying geometric quantization methods.
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Chapter 4

su(1.N |M)-Superconformal Mechanics

and Deformations

4.1 INTRODUCTION

In this chapter we consider the systems with su(1, N |M)-symmetric (N |M)C-dimensional

Kähler phase space and relate their symmetries with the isometry generators of the super-

Kähler structure. We construct this space reducing the (N + 1|M)C-dimensional complex

pseudo-Euclidian space by the U(1)-group action and then identify the reduced phase space

with noncompact analog of complex projective superspace constructed in [26]. We parameterize

this space by the complex bosonic variable w, Im w < 0, by the N−1 complex bosonic variables

zα ∈ [0,∞), arg z ∈ [0; 2π), and by M complex fermionic coordinates ηA. Thus, it can be

considered as the N-dimensional extension of the Klein model of Lobachevsky plane. This

allows us to connect the complex coordinate w with the radial coordinate and momentum of

the conformal-mechanical system spanned by su(1, 1) subalgebra, and separate the su(1, 1)

generators interpreting them as Hamiltonian, conformal boosts and dilatation operators. The
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rest bosonic generators zα parameterize then the angular part of integrable conformal mechanics

with Euclidian configuration spaces. Relating the angular coordinates and momenta with the

action-angle variables of the angular part of the integrable conformal mechanics, we describe

all symmetries of the generic superintegrable conformal-mechanical systems in terms of the

powers of the su(1, N) isometry generators. An important aspect of proposed approach is that

in proposed canonical coordinates all fermionic degrees of freedom appear only in the angular

part of the Hamiltonian.

Furthermore, we construct the superanalogs of the maximally superintegrable generaliza-

tions of the Euclidian oscillator/Coulomb systems considered in [17] as follows: we preserve the

form of Hamiltonian expressed via generators of su(1, 1) subalgebra but extend the phase space

C̃P
N

to phase superspace C̃P
N |M

. As a result, we find that these superextensions reserves all

symmetries of the initial bosonic Hamiltonians and get maximal set of functionally-independent

fermionic integrals,i.e. they remains superintegrable in the sence of super-Liuvville theorem.

We also find, that the constructed oscillator-like systems (in contrast with Coulomb-like ones)

possess deformed N = 2M Poincaré supersymmetry, and express all the symmetries of these

superintegrable systems via su(1, N) isometry generators as well.

The chapter is organized as follows.

In Section 4.2 we present the basic facts on Kähler supermanifolds and construct, by

the Hamiltonian reduction, the non-compact complex projective superspace C̃P
N |M

in the

parametrization similar to those of Klein model for Lobachevsky space.

In Section 4.3 we analyze the symmetry algebra of C̃P
N |M

and extract from it the su(1, N |M)-

superconformal systems.

In Section 4.4 we introduce the canonical coordinates which naturally split radial and angu-

lar parts of the Hamiltonian and relate the angular part with the systems formulating in terms

of action-angle variables. In the Section 4.5 we construct superintegrable supergeneralizations

of oscillator- and Coulomb-like systems.
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4.2 NONCOMPACT COMPLEX PROJECTIVE SUPER-

SPACE

The (even) (N |M)-dimensional Kähler supermanifold is defined as a complex symplectic su-

permanifold whose symplectic structure is given by the expression

Ω = ı(−1)pI(pJ+1)gIJ̄dZ
I ∧ dZ̄J , dΩ = 0, (4.1)

with ZI denoting N complex bosonic coordinates and M complex fermionic ones, while pI :=

p(ZI) be Grassmanian parity of coordinates, i.e. it is equal to zero for bosonic coordinate and

to one for the fermionic one.

The “metrics components” gIJ̄ can then be locally represented in the form

gIJ̄ =
∂L

∂ZI

∂R

∂Z̄J
K(Z, Z̄), (4.2)

where ∂L(R)/∂ZI denotes left(right) derivatives.

The Poisson brackets associated with this Kähler structure looks as follows

{f, g} = ı

(
∂Rf

∂Z̄I
gĪJ

∂Lg

∂ZJ
− (−1)pIpJ

∂Rf

∂ZI
gJ̄I

∂Lg

∂Z̄J

)
, (4.3)

where

gĪJgJK̄ = δĪK̄ gĪJ = (−1)pIpJgJ̄I , (4.4)

As in the pure bosonic case, the isometries of Kähler manifolds are given by the holomorphic

Hamiltonian vector fields,

Vµ := {hµ(Z, Z̄), } = V I(Z)
∂L

∂ZI
+ V̄ I(Z̄)

∂L

∂Z̄I
, (4.5)

where hµ(Z, Z̄) are real functions called Killing potentials (see, e.g. [10, 26] for the details).
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Our goal is to study the systems on the Kähler phase space with su(1, N |M) isometry

superalgebra. For the construction of such phase space it is convenient, at first, to present

the linear realization of u(N.1|M) superconformal algebra on the complex pseudo-Euclidian

superspace CN.1|M equipped with the canonical Kähler structure (and thus, by the canonical

supersymplectic structure)and then reduced it by the action of U(1) generator.

It is instructive to present this reduction in details. Let us equip, at first, the (N + 1|M)-

dimensional complex superspace with the canonical symplectic structure

Ω0 = ı

N∑
a,b=0

γab̄dv
a ∧ dv̄b +

M∑
A=1

dηA ∧ dη̄A, (4.6)

with va, v̄a being bosonic variables, and ηA, η̄A being fermionic ones, and with the matrix γab̄

chosen in the form

γab̄ =



0 −i

i 0

−1

. . .

−1


, a, b = N, 0, 1, ..., N − 1. (4.7)

With this supersymplectic structure we can associate the Poisson brackets given by the relations

{va, v̄b} = −ıγ b̄a, {ηA, η̄B} = {η̄B, ηA} = δAB̄, γābγbc̄ = δāc̄ . (4.8)

Equivalently,

{v0, v̄N} = 1, {vN , v̄0} = −1, {vα, v̄β} = ıδαβ̄, (4.9)

{ηA, η̄B} = {η̄B, ηA} = δAB̄. (4.10)

Here we introduced the indices α, β = 1, . . . , N − 1.

On this superspace we can define the linear Hamiltonian action of u(N.1|M) = u(1) ×

su(N.1|M) superalgebra

{hab̄, hcd̄} = −ı
(
had̄γ

c̄b − hcb̄γ
ād
)
, (4.11)

{ΘAā, Θ̄B̄b} = hbāδ
BĀ −RAB̄γ

b̄a, {ΘAā, hbc̄} = −ıΘAc̄γ
b̄a, (4.12)

{RAB̄, RCD̄} = ı
(
RAD̄δ

BC̄ −RCB̄δ
DĀ
)
, {ΘAā, RCD̄} = −ıΘCāδ

DĀ, (4.13)
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where

hab̄ = vavb, ΘAā = η̄Ava, RAB̄ = ıη̄AηB. (4.14)

The u(1) generator defining the center of u(N.1|M) is given by the expression

J = γab̄v
av̄b + ıηAη̄A : {J, hab̄} = {J,ΘAā} = {J,RAB̄} = 0. (4.15)

Hence, reducing the system by the action of this generator we will get the ”non-compact”

projective super-space C̃P
N |M

(i.e. the supergeneralization of noncompact projective space

C̃P
N
), which is (2N |2M)-(real)dimensional space.

For performing the reduction by the action of generator (4.15) we have to choose, at first,

the 2N real (N complex) bosonic and 2M real (N complex) fermionic functions commuting

with J , and . Then, we have to calculate their Poisson brackets and restrict the latter to the

level surface

J = g. (4.16)

As a result we will get the Poisson brackets on the reduced (2N |2M)-(real) dimensional space,

with that U(1)-invariant functions playing the role of the latter’s coordinates.

The required functions could be easily found,

w =
vN

v0
, zα =

vα

v0
, θA =

ηA

v0
: {w, J} = {za, J} = {θA, J} = 0, and c.c.. (4.17)

Calculating their Poisson brackets and having in mind the expression following from (4.16),

A :=
1

v0v̄0

∣∣∣∣
J=g

=
1

g

(
ı(w − w̄)−

N−1∑
γ=1

zγ z̄γ + ı
M∑

C=1

θC θ̄C

)
, (4.18)

we get the reduced Poisson brackets defined by the following non-zero relations (and their

complex conjugates)

{w, w̄} = −A(w − w̄), (4.19)

{zα, z̄β} = ıAδαβ̄, (4.20)

{θA, θ̄B} = AδAB̄, (4.21)

{w, z̄α} = Az̄α, (4.22)

{w, θ̄A} = Aθ̄A. (4.23)

60



These Poisson brackets are associated with the supersymplectic structure

Ω =
ı

g

[
1

A2
dw ∧ dw̄ − ızα

A2
dw ∧ dz̄α − θA

A2
dw ∧ dθ̄A

+
ız̄α

A2
dzα ∧ dw̄ +

(
gδαβ̄
A

+
z̄αzβ

A2

)
dzα ∧ dz̄β − ız̄αθA

A2
dzα ∧ dθ̄A

− θ̄A

A2
dθA ∧ dw̄ +

ıθ̄Azα

A2
dθA ∧ dz̄α −

(
ıgδAB̄

A
+
θ̄AθB

A2

)
dθA ∧ dθ̄B

]
. (4.24)

It is defined by the Kähler potential

K = −g log(ı(w − w̄)− zαz̄α + ıθAθ̄A). (4.25)

In what follows we will call this space “ noncompact projective superspace C̃P
N |M

”. The

isometry algebra of this space is su(N, 1|M), which can be easily obtained by the restriction of

(4.12),(4.13) to the level surface (4.16). It is defined by the following Killing potentials

H := vN v̄N |J=g =
ww̄

A
,

K := v0v̄0|J=g =
1

A
,

D := (vN v̄0 + v0v̄N)|J=g =
w + w̄

A
, (4.26)

Hα := v̄αvN |J=g =
z̄αw

A
,

Kα := v̄αv0|J=g =
z̄α

A
,

hαβ̄ := v̄αvβ|J=g =
z̄αzβ

A
, (4.27)

QA := η̄AvN |J=g =
θ̄Aw

A
,

SA := η̄Av0|J=g =
θ̄A

A
,

ΘAᾱ := η̄Avα|J=g =
θ̄Azα

A
, (4.28)

RAB̄ := ıη̄AηB|J=g = ı
θ̄AθB

A
. (4.29)

Constructed super-Kähler structure can be viewed as a higher dimensional analog of the Klein

model of Lobachevsky space, where the latter is parameterized by the lower half-plane. One

can choose, instead of non-diagonal matrix (4.7), the diagonal one, γab̄ = diag(1,−1, . . . ,−1).

In that case the reduced Kähler structure will have the Fubini-Study-like form (see Section VI).
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In the next Section we will analize the isometry algebra defined by these generators in details.

Presented choice (4.7) is motivated by the by its convenience for the analizing superconformal

mechanics. Indeed, in thet case the generators (4.26) defines conformal subalgebra su(1.1)

and are separated wrom the rest su(N, 1) generators. Thus they can be interpreted as the

Hamiltonian of conformal mechanics, the generator of conformal boosts and the generator of

dilatation.

In the next section we will analize in details these superconformal mechanics and their dy-

namical super algebra the isometry algebra defined by the generators (4.26),(4.27),(4.28),(4.29).

4.3 su(1, N |M) SUPERCONFORMAL ALGEBRA

The generators (Killing potentials) (4.26),(4.27),(4.28),(4.29) form su(1, N |M) superalgebra

given by (4.12),(4.13) with γab̄ defined in (4.7). Its explicit expression with separated su(1, 1)

subalgebra is represented below. For the convenience it is divided into three sectors: ”bosonic”,

”fermionic” and ”mixed” ones.
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BOSONIC SECTOR: su(1, N)× u(M)

The bosonic sector is direct product of the su(1, N) algebra defined by the generators

(4.26),(4.27), and the u(M) algebra defined by the R-symmetry generators (4.29). Explicitly,

the su(1.N) algebra is given by the relations

{H,K} = −D, {H,D} = −2H, {K,D} = 2K, (4.30)

{H,Kα} = −Hα, {H,Hα} = {H, hαβ̄} = 0, (4.31)

{K,Hα} = Kα, {K,Kα} = {K,hαβ̄} = 0, (4.32)

{D,Kα} = −Kα, {D,Hα} = Hα, {D, hαβ̄} = 0, (4.33)

{Kα, Kβ} = {Hα, Hβ} = {Kα, Hβ} = 0, (4.34)

{Kα, Kβ} = −ıKδαβ̄, {Hα, Hβ} = −ıHδαβ̄, (4.35)

{hαβ̄, hγδ̄} = ı(hαδ̄δγβ̄ − hγβ̄δαδ̄), (4.36)

{Kα, hβγ̄} = −ıKβδαγ̄, {Hα, hβγ̄} = −ıHβδαγ̄, (4.37)

{Kα, Hβ} = hαβ̄ +
1

2
(I − ıD) δαβ̄, (4.38)

where

I := g +
N−1∑
γ=1

hγγ̄ +
M∑

C=1

RCC̄ (4.39)

The R-symmetry generators form u(M) algebra and commute with all generators of su(1, N):

{RAB̄, RCD̄} = ı(RAD̄δCB̄ −RCB̄δAD̄), {RAB̄, (H;K;D;Kα;Hα;hαβ̄)} = 0. (4.40)

It is clear that the generators H,D,K form conformal algebra su(1, 1), the generators hαβ̄ form

the algebra u(N−1), and all together - the su(1, 1)×(N−1) algebra. Notice, that the generator

I in (4.39) defines the Casimir of conformal algebra su(1, 1):

I :=
1

2
I2 =

1

2
D2 − 2HK. (4.41)

Hence, choosing H to the role of Hamiltonian, we get that Hα, hαβ̄, RAB̄ define its constant

of motion. Similarly, choosing to the role of Hamiltonian the generator K, we get that it has

constants of motion Kα, hαβ̄, RAB̄.
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”FERMIONIC” SECTOR

The Poisson brackets between fermionic generators (4.28) are as follows

{SA, SB} = KδAB̄, {QA, QB} = HδAB̄, (4.42)

{SA, QB} = −ıRAB̄ +
ı

2
(I − ıD) δAB̄, (4.43)

{ΘAᾱ,ΘBβ̄} = RAB̄δβᾱ + hβᾱδAB̄, (4.44)

{SA,ΘBᾱ} = KαδAB̄, {QA,ΘBᾱ} = HαδAB̄, (4.45)

{SA, SB} = {QA, QB} = {ΘAᾱ,ΘBβ̄} = {SA, QB} = {SA,ΘBᾱ} = {QA,ΘBᾱ} = 0. (4.46)

Hence, the functions QA play the role of supercharges for the Hamiltonian H, and the functions

SA define the supercharges of the Hamiltonian K playing the role of generator of conformal

boosts.
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”MIXED” SECTOR

The mixed sector is given by the relations

{H,QA} = {H,ΘAᾱ} = 0, {H,SA} = −QA, (4.47)

{K,SA} = {K,ΘAᾱ} = 0, {K,QA} = SA, (4.48)

{D,SA} = −SA, {D,QA} = QA, {D,ΘAᾱ} = 0 (4.49)

{QA, Kα} = −ΘAᾱ, (4.50)

{QA, Hα} = {QA, H̄α} = {QA, K̄α} = {QA, hαβ̄} = 0, (4.51)

{SA, Hα} = ΘAᾱ, (4.52)

{SA, Kα} = {SA, K̄α} = {SA, Hα} = {SA, hαβ̄} = 0, (4.53)

{ΘAᾱ, Kβ} = ıSAδβᾱ, {ΘAᾱ, Hβ} = ıQAδβᾱ, {ΘAᾱ, hβγ̄} = ıΘAγ̄δβᾱ, (4.54)

{ΘAᾱ, H̄α} = {ΘAᾱ, K̄α} = 0, (4.55)

{SA, RBC̄} = −ıSBδAC̄ , {QA, RBC̄} = −ıQBδAC̄ , {ΘAᾱ, RBC̄} = −ıΘBᾱδAC̄ . (4.56)

Looking to the all Poisson bracket relations together we conclude that

• The bosonic functions Hα, hαβ̄ , and the fermionic functions QA, ΘAᾱ commute with the

Hamitonian H and thus, provide it by the superintegrability property 1;

• The bosonic functions Kα, hαβ̄ and the fermionic functions SA,ΘAᾱ commute with the

generator K. Hence, the Hamiltonian K defines the superintegrable system as well.

• The triples (H,Hα, QA, ) and (K,Kα, SA, ) transform into each other under the discrete

transformation

(w, zα, θA) → (− 1

w
,
zα

w
,
θA

w
) ⇒ (4.57)

1In accord with superanalog of Liuville theorem [68] the system on (2N.M) phase superspace is integrable

iff it possess N commuting bosonic integrals (with nonvanishing and functionally independent bosonic parts)

and M fermionic ones
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D → −D,

 (H,Hα, QA, ) → (K,−Kα,−SA),

(K,Kα, SA) → (H,Hα, QA, )

. (4.58)

• The functions hαβ̄,ΘAᾱ are invariant under discrete transformation (4.58).Moreover, they

appear to be constants of motion both for H and K. Hence, they remain to be constants

of motion for any Hamiltonian being the functions of H,K. In particular, adding to the

Hamiltonian H the appropriate function of K, we get the superintegrable oscillator- and

Coulomb-like systems with dynamical superconformal symmetry .

• The superalgebra su(1, N |M) admits 5-graded decomposition

su(1, N |M) = f−2 ⊕ f−1 ⊕ f0 ⊕ f+1 ⊕ f+2 (4.59)

with

[fi, fj] ⊆ fi+j for i, j ∈ {−2,−1, 0, 1, 2} , (4.60)

where fi = 0 for |i| > 2 is understood. The subset f0 includes the generators

D, hαβ̄,ΘAᾱ,ΘAᾱ,RAB̄, the subsets f−2 and f2 contain only generators H and K, respec-

tively, while the subsets f−1 and f1 contain the generatorsHα, H̄α, QA, Q̄A andKα, K̄α, SA, S̄A.

Let us conclude this section by the following remark. It is easy to see, that the generator

(4.39) commutes the generators H,D,K, SA, QA, RAB̄. Hence, these generators form supercon-

formal algebra su(1.1|M) with central charge
√
2I (4.41) (being the casimir of su(1, 1|M)) as

well)

{H,K} = −D, {H,D} = −2H, {K,D} = 2K, (4.61)

{SA, SB} = KδAB̄, {QA, QB} = HδAB̄,

{SA, QB} = −ıRAB̄ +
ı

2

(√
2I − ıD

)
δAB̄,

{H,SA} = −QA, {K,QA} = SA, {H,QA} = {K,SA} = 0, (4.62)

{D,SA} = −SA, {D,QA} = QA,

{RAB̄, RCD̄} = ı(RAD̄δCB̄ −RCB̄δAD̄), {SA, RBC̄} = −ıSBδAC̄ , (4.63)

{QA, RBC̄} = −ıQBδAC̄ . (4.64)
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In the next section we will express presented su(1, N |M) generators in appropriate canonical

coordinates and in this way we will relate presented formulae with the superextensions of

conventional conformal mechanics.

4.4 CANONICAL COORDINATES ANDACTION-ANGLE

VARIABLES

For the introduction of the canonical coordinates we transit from the complex coordinates

to the real ones for bosonic variables and make a change of fermionic ones such that the new

fermionic variables will have canonical Poisson brackets. For this purpose we represent bosonic

variables w, zα as follows,

w = x+ ıy, zα = qαe
ıφα , (4.65)

where

y < 0, qα ≥ 0, φα ∈ [0, 2π), q2 :=
N−1∑
α=1

q2α < −2y. (4.66)

Then we write down the symplectic/Kähler one-form and identify it with the canonical one

A = −g
2

dw + dw̄ − ı(zαdz̄α − z̄αdzα) + θAdθ̄A + θ̄AdθA

ı(w − w̄)− zγ z̄γ + ıθC θ̄C

:= pxdx+ παdφα +
1

2
χAdχ̄A +

1

2
χ̄AdχA. (4.67)

After some calculations and canonical transformation (px, x) → (−r2/2, pr/r), one can obtain

w =
pr
r
− ı

I

r2
, zα =

√
2πα
r

eıφα , θA =

√
2

r
χA, (4.68)

with

{r, pr} = 1, {φβ, πα} = δαβ, {χA, χ̄B} = δAB̄, (4.69)

πa ≥ 0, φa ∈ [0, 2π), r > 0. (4.70)
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Hence, r, pr, φ
α, πα, χ

A, χ̄A define canonical coordinates. They expresses via initial ones as

follows

pr =
w + w̄

2

√
2

A
, r =

√
2

A
, (4.71)

πα =
zαz̄α

A
, φα = arg(zα), (4.72)

χA = − θA√
A
, χ̄A = − θ̄A√

A
, (4.73)

where

I = g +
N−1∑
α=1

πα +
M∑

A=1

ıχ̄AχA , A :=
ı(w − w̄)− zγ z̄γ + ıθC θ̄C

g
=

2

r2
. (4.74)

In these canonical coordinates the isometry generators read

H =
p2r
2

+
I2

2r2
, K =

r2

2
, D = prr, (4.75)

Hα =

√
πα
2
e−ıφα

(
pr − ı

I

r

)
, Kα = r

√
πα
2
e−ıφα , hαβ̄ =

√
παπβe

−ı(φα−φβ), (4.76)

QA =
χ̄A

√
2

(
pr − ı

√
2I
r

)
, SA =

χ̄A

√
2
r, ΘAᾱ = χ̄A√παeıφα , (4.77)

RAB̄ = ıχ̄AχB. (4.78)

Interpreting r as a radial coordinate, and pr as radial momentum, we get the superconformal

mechanics with angular Hamiltonian given by

I :=
I0 + (χ̄χ)

2
, with I0 := g +

N−1∑
α=1

πα, (χ̄χ) :=
M∑

A=1

ıχ̄AχA . (4.79)

So, the fermionic part of superconformal Hamiltonian is encoded in its angular part.

The explicit dependence of Hamiltonian H and of its supercharges QA and on fermions is

as follows

H = H0 +
I0(χ̄χ)

r2
+

(χ̄χ)2

2r2
, QA = − χ̄A

√
2

(
pr − ı

I0
r
− ı

(χ̄χ)

r

)
, (4.80)

while the dependence of bosonic integrals Hα on fermions is given by the expression

Hα = H0
α − Kα(χ̄χ)

2K
, (4.81)
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where

H0 :=
p2r
2

+
I20
2r2

, H0
α =

√
πα
2
e−ıφα

(
pr − ı

I0
r

)
: {H0

α, H
0} = 0. (4.82)

So, proposed superconformal Hamiltonian H inherits all symmetries of initial Hamiltonian H0

(given by H0
α, hαβ̄).

Looking at the functional dependence of the angular Hamiltonian I from the angular vari-

ables φα, πα one can expect that the set of conformal mechanics admitting proposed su(1, N |M)

superconformal extensions seems very restricted. However, it is not a case, since we it is not

necessary to interpret φα as a coordinate of the configuration space, and πα as its canonically

conjugated momentum. Instead, since πα define a constant of motion of the bosonic Hamilto-

nian H0 (and of the respective angular Hamiltonian I0 = H0K/2−D2), we can interpret it as

the action variable Iα, and consider φα as a respective angle variable Φα .

Furthermore, suppose that πα, φα are related with the action-angle variables (Iα,Φα) of

some (N − 1)-dimensional angular mechanics by the relations

πα = nαIα, φα =
Φα

nα

, where nα ∈ N. (4.83)

Upon this identification the bosonic part of the angular Hamiltonian (4.79) takes a form

Ĩ0 =
1

2

(
g +

N−1∑
α=1

nαIα

)2

, with nα ∈ N, Φα ∈ [0, 2π), (4.84)

but the bosonic generators Hα, Sα, hαβ̄, become locally defined, φα ∈ [0, 2π/mα), and fail to

be constants of motion. To get the globally defined bosonic generators we have to take their

relevant powers,

H̃α := (Hα)
nα , K̃α := (Kα)

nα , h̃αβ̄ := (hαβ̄)
nαnβ . (4.85)

as well as replace the fermionic generator ΘAᾱ by the following one

Θ̃Aᾱ = (Hα)
nα−1ΘAᾱ. (4.86)

As a result, the dynamical (super)symmetry algebra becomes nonlinear deformation of su(1, N |M)

.
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The angular Hamiltonian (4.84) define belong to the class the superintegrable general-

izations of the conformal mechanics, and of the oscillator- and Coulomb-like systems on the

N -dimensional Euclidian spaces [56]. As a particular cases, these set of systems includes the

”charge-monopole” system, Smorodinsky-Winternitz system, as well as the rational Calogero

models associated with Coxeter root system 2. Thus, proposed systems can be considered as

their 2M superconformal extensions.

Since the generators QA, SA, RAB̄ remain unchanged upon above identification( as well as

the expression of the angular Hamiltonian (4.39) via generators H,K,D), we conclude that

listed generators form superconformal algebra su(1, 1|N) with central charge (4.64).

Finally, notice that in (4.84) the nonzero constant g ̸= 0 appears, and the range of validity of

the action variables is fixed to be Iα ∈ [0,∞). As a result, standard free particle and conformal

mechanics cannot be included in the proposed description, since for these systems we should

choose g = 0, Iα ∈ [0,∞). To exclude this constant we should replace the initial generators by

the following ones

H := H − g(g − 2I)

4K
, Hα := Hα + ıg

Kα

2K
, QA := QA − ıg

SA

2K
. (4.87)

This deformation will further “non-linearize” the dynamical supersymmetry algebra su(1, N |M).

4.5 OSCILLATOR- AND COULOMB-LIKE SYSTEMS

In the previous section we mentioned that the angular Hamiltonian (4.84) defines the su-

perintegrable deformations of N -dimensional oscillator and Coulomb system [56], while in [17]

2To our best knowledge, the rational Calogero models are not yet constructed explicitly. However, we have

at hand the spectra of quantum Calogero model and of its angular part [62]. Taking the (semi)classical limit of

the spectrum of the angular Calogero model we can conclude that it is,indeed, of the form (4.84), see, e.g.[56]
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the exhamples of such systems on noncompact projective space C̃P
N

playing the role of phase

space were constructed. So, one can expect that on the phase superspace C̃P
N |M

one can

construct the super-counterparts of that systems, which presumably, possess (deformed) 2M -

supersymmetric Poincaré supersymmetry. Below we examine this question and show that our

claim is corrects in some particular cases.

4.5.1 OSCILLATOR-LIKE SYSTEMS

We define the supersymmetric oscillator-like system with the phase space C̃P
N |M

(equipped

with the Poisson brackets (4.23)) by the Hamiltonian

Hosc = H + ω2K, (4.88)

where the generators H,K are given by (4.26). In canonical coordinates (4.73)it reads

Hosc =
p2r
2

+
(g +

∑N−1
α=1 πα +

∑M
A=1 ıχ̄

AχA)2

r2
+
ω2r2

2
. (4.89)

This system possesses the u(N) symmetry given by the generators hαβ̄ defined in (4.27)(among

them N−1 constants of motion πα are functionally independent), the U(M) R-symmetry given

by the generators RAB̄ (4.29) as well as N − 1 hidden symmetries given by the generators

Mαβ = (Hα + ıωKα)(Hβ − ıωKβ) =
z̄αz̄β

A2
(w2 + ω2) : {Hosc,Mαβ} = 0, (4.90)

The generators (4.90) and the su(N) generators hαβ̄ form the following symmetry algebra

{hαβ̄,Mγδ} = ı
(
Mαδδγβ̄ +Mγαδδβ̄

)
, (4.91)

{Mαβ,Mγδ} = 0, (4.92)

{Mαβ,Mγδ} =

= ı

(
4ω2Ihαδ̄hβγ̄ −

MαβM̄γδ

hαγ̄
δαγ̄ −

MαβM̄γδ

hαδ̄
δαδ̄ −

MαβM̄γδ

hβγ̄
δβγ̄ −

MαβM̄γδ

hβδ̄
δβδ̄

)
, (4.93)
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with I given by (4.39) and summation over repeated indices is not assumed.

Besides, this system has a fermionic constants of motion ΘAᾱ defined in (4.28).Hence, it is

superintegrable system in the sense of super-Liuville theorem, i.e. it has 2N − 1 bosonic and

2M fermionic, functionally independent, constants of motion [68]. Further generalization to

the systems with angular Hamiltonian (4.84) is straightforward.

Let us show, that for the even M = 2k this system possess the deformed N = 2k Poincaré

supersymmetry, in the sense of papers written by E.Ivanov and S.Sidorov [44]. For this purpose

we choose the following Ansatz for supercharges

QA = QA + ωCABS̄B, (4.94)

with the constant matrix CAB obeying the conditions

CAB + CBA = 0, CABCBD = −δAD̄ (4.95)

For sure, the condition (4.95) assumes that M is an even number, M = 2k.

Calculating Poisson brackets of the functions (4.94) we get

{QA, Q̄B} = HoscδAB, {QA,QB} = −ıωGAB, {Q̄A, Q̄B} = ıωḠAB, (4.96)

where

GAB := CACRBC̄ + CBCRAC̄ , GĀB̄ := ḠAB = C̄ACRCB̄ + C̄BCRCĀ, (4.97)

and

ḠAB = C̄ACC̄DBGDC . (4.98)

Then we get that the algebra of generators QA, Hosc, RB
A is closed indeed:
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{QA, Hosc} = ωCABQB, {GAB, Hosc} = 0, (4.99)

{QA,GBC} = ı(CABQC + CACQB), (4.100)

{QA, ḠBC} = −ı(C̄BDQDδAC̄ + C̄CDQDδAB̄). (4.101)

{GAB,GCD} = ı(CADGBC + CACGBD + CBDGAC + CBCGAD), (4.102)

{GAB, ḠCD} = ı(C̄DNδAC + C̄CNδAD)GNB + ı(C̄DNδBC + C̄CNδBD)GNA, (4.103)

and surely,

{QA, Hosc +
ıω

2

∑
B

GBB} = 0. (4.104)

Hence, for the M = 2k the above oscillator-like system (4.88) possesses deformed N = 4k

supersymmetry. In the particular case M = 2 the choose of the matrix CAB is unique(up to

unessential phase factor): CAB := eκεAB. In that case the above relations define the superal-

gebra su(1|2)-deformation of N = 4 Poincaré supersymmetric mechanics studied in details in

S.Sidorov [44, 45]. For the k ≥ 2 the choice of matrices CAB is not unique, and we get the

family of deformed N = 4k Poincaré supersymmetric mechanics.

Let us present other deformed N = 2M Poincaré supersymmetryc systems whose bosonic

part is different from those of (4.88) but nevertheless, has the oscillator potential.

For this purpose we choose another Ansatz for supercharges (in contrast with previous case

M is not restricted to be even number)

Q̃A = QA + ıωSA. (4.105)

These supercharges generates the su(1|M) superalgebra, and thus generalizes the systems con-

73



sidered in [44, 45] to arbitrary M ,

{Q̃A,
¯̃QB} = HoscδAB − ωRA

B, (4.106)

{Q̃A, Q̃B} = 0, (4.107)

{R B
A ,R D

C } = ı(R D
A δ

B
C −R B

C δ
D
A ) (4.108)

{Q̃A,RC
B} = ı

(
1

M
Q̃AδBC̄ + Q̃BδAC̄

)
, (4.109)

{Q̃A,Hosc} = ıω
2M − 1

M
Q̃A, (4.110)

where

Hosc := Hosc − ω(I +
1

M

∑
C

RCC̄), R B
A := RAB̄ − 1

M
δBA
∑
C

RCC̄ (4.111)

with I defined by (4.39). Hence, the Hamiltonian get the additional bosonic term proportional

to the casimir of conformal group. In canonical coordinates (4.73) it reads

Hosc =
p2r
2

+
I
r2

+
ω2r2

2
− ω

(√
2I +

1

M
(χ̄χ)

)
. (4.112)

This Hamiltonian, seemingly, describes the oscillator-like systems specified by the presence of

external magnetic field.

So, choosing C̃P
N |M

as a phase superspace, we can easily construct superintegrable oscillator-

like systems which possess deformed N = 2M Poincar/’e supesymmetry.
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4.5.2 COULOMB-LIKE SYSTEMS

Now, let us construct on the phase space C̃P
N |M

with the Poisson bracket relations (4.23),

the Coulomb-like system given by the Hamiltonian

HCoul = H +
γ√
2K

, (4.113)

where the generators H,K are defined by (4.26).

The bosonic constants of motion of this system are given by the u(N − 1) symmetry gen-

erators hαβ , and by the N − 1 additional constants of motion

Rα = Hα + ıγ
Kα

I
√
2K

: {HCoul, Rα} = {HCoul, hαβ̄} = 0, (4.114)

where Hα, Kα, ηαβ̄ are defined by (4.27). These generators form the algebra

{Rα, R̄β̄} = −ıδαβ̄

(
HCoul −

ıγ2

2I2

)
+
ıγ2hαβ̄
2I3

, (4.115)

{hαβ̄, Rγ} = ıδγβ̄Rα, (4.116)

{Rα, Rβ} = 0. (4.117)

Besides, proposed system has 2M fermionic constants of motion given by ΘAᾱ, and u(M)

R-symmetry given by RAB̄. Hence, it is superintegrable in the sense of super-Liuville theo-

rem [68]. So, we constructed the maximally superintegrable Coulomb problem with dynamical

SU(1, N |M) superconformal symmetry which inherits all symmetries of initial bosonic system.

One can expect, that in analogy with oscillator-like system, our Coulomb-like system would

possess (deformed) N = 2M -super-Poincaré symmetry for M = 2k and γ > 1. However, it is

not a case.

Indeed, let us choose the following Ansatz for supercharges

QA = QA +
√

2γCAB
S̄B

(2K)3/4
, (4.118)
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with the constant matrix CAB obeying the conditions (4.95), M = 2k and γ > 0.

Calculating their Poisson brackets we find

{QA, Q̄B} = HCoulδAB̄ +
3

2

√
2γ

(2K)7/4
(
SAC̄BDSD + S̄BCADS̄D

)
, (4.119)

{QA,QB} = − ı
√
2γ

2(2K)3/4
(CBDRD

A + CACRD
B), (4.120)

{QA,R C
B } = −ıQBδAC̄ , (4.121)

where RA
B is defined in (4.111).

Further calculating the Poisson brackets of QA with the generators appearing in the r.h.s.

of the above expressions we get that the superalgebra is not closed. For example,

{QA, HCoul} =
3γ

(2K)3/2
SA +

√
2γ

(2K)3/4
CAB

(
Q̄B − 3

4K
S̄BD

)
. (4.122)

Hence, proposed supercharges do not yield closed deformation of N = 2M -super-Poincaré al-

gebra.

Let us choose another Ansatz for supercharges (as above we assume that γ > 0)

Q̃A = QA + ı
√
2γeı

π
2

SA

(2K)3/4
, (4.123)

which yields

{Q̃A,
¯̃QB} = HCoulδAB̄ +

√
2γ

2(2K)3/4
RB

A, (4.124)

{Q̃A,RC
B} = ı

(
1

M
Q̃AδBC̄ − Q̃BδAC̄

)
, (4.125)

{Q̃A, Q̃B} = { ¯̃QA,
¯̃QB} = 0, (4.126)

where

HCoul = HCoul −
√
2γ

(2K)3/4

(
I − 1

2M

∑
C

RCC̄

)
, (4.127)

with I and RA
B are defined, respectively, in (4.79) and (4.111). In canonical coordinates (4.73)

this Hamiltonian reads

HCoul =
pr
2

+
I
r2

+
γ

r
−

√
2γ

r3/2

(
g +

∑
α

πα +
2M − 1

2M
(χ̄χ)

)
. (4.128)
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However, one can easily check that proposed supercharges do not yield closed deformation of

Poincaré superalgebra as well, e.g.

{Q̃A,
RC

B

(2K)3/4
} =

ı

(2K)3/4

(
1

M
Q̃AδBC̄ − Q̃BδAC̄

)
+

3

2

SA

(2K)7/4
RC

B (4.129)

So, proposed superextensions of Coulomb-like systems, being well-defined from the view-

point of superintegrability, do not possess neither N = 2M supersymmetry, no its deformation.

The su(1, N |M) superalgebra plays the role of dynamical algebra of that systems.

4.6 FUBINI-STUDY-LIKE KÄHLER STRUCTURE

The above considered super-Kaḧler structure is obviously the higher-dimensional superana-

log of the Klein model of Lobachevsky space. On the other hand, Lobachevsky space has other

common parametrization as well, which is known as Poincaré disc. The higher-dimensional gen-

eralization of Poincaré disc parameterizing the noncompact complex projective space is quite

similar to the Fubini-Study structure for CPN , and is defined by the Kähler potential

K = −g log(1−
N∑
a=1

zaz̄a). (4.130)

For the obtaining of the superanalog of this potential from C1,N |M , one should transit from

the matrix (4.7) to the diagonal matrix γab̄ = diag(1,−1, . . . ,−1), which can be done by the

transformation

v0 → v0 + vN√
2

, vN → v0 − vN

ı
√
2

. (4.131)

In these terms the Poisson brackets will again be given by the are given by the relations (4.8),

but with γab̄ = diag(1,−1, . . . ,−1).

On the reduced phase space (4.131) corresponds to the transformation

w → ı
zN − 1

zN + 1
, zα →

√
2

zα

zN + 1
, θA →

√
2

θA

zN + 1
. (4.132)
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Doing so we will get the Fubini-Studi-like Kähler potential

K = −g log(1− zcz̄c + ıθC θ̄C), (4.133)

which defines the following Kähler structure

Ω =
ı

g

[(
gδab̄

Ã
+
z̄azb

Ã2

)
dza ∧ dz̄b + ıθ̄Aza

Ã2
dθA ∧ dz̄a

− ız̄
aθA

Ã2
dza ∧ dθ̄A −

(
gδAB̄

Ã
+
θ̄AθB

Ã2

)
dθA ∧ dθ̄B

]
, (4.134)

where we have used a similar notation as in (4.18)

Ã :=
1− zcz̄c + ıθC θ̄C

g
. (4.135)

The respective Poissoon brackets read:

{za, z̄b} =
δab̄ − zaz̄b

Ã
, {za, θ̄A} =

zaθ̄A

Ã
, {θA, θ̄B} =

δAB̄ + θAθ̄B

Ã
. (4.136)

Now let us repeat the same procedure of introduction of canonical coordinates, but now

taking the symplectic/Kḧler one form associated with the Kähler potential (4.133), i.e. the

one that define ”Fubini-Study”-like metric. Then, as before, one needs to identify it with

the canonical one, and this canonical coordinates will play the role of ”Cartesian” coordinates

instead of the ”spherical” ones discussed above.

Ã = −g
2

ı(z̄adza − zadz̄a) + θAdθ̄A + θ̄AdθA

1− zcz̄c + ıθC θ̄C

:= padφa +
1

2
χAdχ̄A +

1

2
χ̄AdχA. (4.137)

It leads us to

za =

√
pa

g + p− ıχCχ̄C
eıφa , θA =

√
2

r
χA, (4.138)

with

p =
∑
a

pa. (4.139)

And vice versa,

pa =
zaz̄a

Ã
, φa = arg(za), χA =

θA√
Ã
, (4.140)
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where Ã is defined by (4.135).

These coordinates are related with (4.73) as follows

pN =
1

4

p2r +
(
r −

√
2I
r

)2
 , (4.141)

φN = arctan

(
2xy

(x− y)(x+ y)

)
, (4.142)

pα = πα, χA = χA, (4.143)

where

x = 1− p2r
r2

− 2I
r4
, y =

pr
r
. (4.144)

Finally, let us draw readers attention to the complete similarity of the bosonic part of

(4.138) with the equations mapping parameterizing compactified Ruijsenaars-Schneider model

with excluded centre of mass to the complex projective (phase) space CPN . This prompt us,

at first, to construct the conformal-invariant analog of that model by replacing the complex

projective space by its noncompact analog C̃P
N
. Then one can try to construct its su(1, N |M)-

supeconformal extension by further replacement of C̃P
N

by C̃P
N |M

.

4.7 5-GRADING AND COSET CONSTRUCTION

The key point of our consideration in the previous Sections was the reduction of the complex

Euclidian superspace C1,N |N to the Kähler phase superspace with the non-compact symmetry

superalgebra algebra G = su(1, N |M) containing conformal algebra su(1, 1) as the subalgebra

subgroup of the symmetry algebra G, and admitting 5-graded decompositions with respect to

dilatation generator D.

However, it is a well known fact [46, 47] that every simple Lie algebra F (except for sl2)

admits 5-graded decompositions with respect to a suitable generator D ∈ su(1, 1) ∈ F ,

F = f−2 ⊕ f−1 ⊕ f0 ⊕ f+1 ⊕ f+2 with [fi, fj] ⊆ fi+j for i, j ∈ {−2,−1, 0, 1, 2} (4.145)
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(fi = 0 for |i| > 2 understood). Compatibility with the 5-grading requires this real form to be

non-compact. Therefore, (H,D,K) generate an su(1, 1) subalgebra of F . Different real forms

of F and H give rise to different non-compact quaternionic symmetric spaces W [46, 47],

W =
F

H × SU(1, 1)

, (4.146)

where F , H and SU(1,1) are the (simply-connected) groups generated by F , H and su(1, 1),

respectively.

One may enlarge the coset by reducing the stability group [48] from H × SU(1, 1) to H ×

BSU(1,1), where BSU(1,1) denotes the positive Borel subgroup of SU(1,1), whose algebra bsu(1,1)

is generated by (D,K). In other words, we keep H in the numerator and consider the coset

W =
F

H ×BSU(1,1)

. (4.147)

The elements of W can be parametrized as follows,

g = et(H+ω2K)eu(t)·G−1ev(t)·G1 , (4.148)

where we employed a · notation to suppress the summation over A. The parameter ω represents

some freedom in the parametrization ofW . realization of the group F by the left multiplications

on the coset W (4.148) will give rize to a proper realization of the symmetry in terms of basic

fields u(t), v(t), while the dynamic equations can be obtained by imposing the proper constraints

on the Cartan forms [48]. Defining the Cartan forms in the standard way,

g−1dg = ω−2H + ω0D + ω2K + ω−1 ·G−1 + ω1 ·G1 +
∑
s

ωs
h hs, (4.149)

one can check that the constraints

ω−1 = 0 (4.150)

firstly are invariant under the whole group F , realized by left multiplication in the coset W

(4.147), and secondly express the Goldstone fields v(t) through the Goldstone fields u(t) and

their time derivatives in a covariant fashion. Thus means, that the fields v(t) acquire meaning
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of the momenta for the fields u(t) after passing to the Hamiltonian formalism.After imposing

the constraints (4.150) we have a realization of the F transformations on the time t and the d

coordinates uA(t).

Finally, one can impose the additional invariant constraints

ω1 = 0, (4.151)

which produces a system of second-order differential equations for the variables uA(t). These

are the equations of motion. Hence, with every simple Lie algebra F one may associate a

system of dynamical equations in d variables which is invariant under some non-compact real

form of the group F .
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4.8 CONCLUSION

In this chapter we suggest the su(1.N |M) superconformal mechanics formulated in terms

of phase superspace given by the noncompact analogue of complex projective superspace. We

parametrized this phase space by the specific coordinates allowing us to interpret it as a higher-

dimensional superanalogue of the Lobachevsky plane parametrized by lower half-plane (Klein

model). Then we introduced the canonical coordinates corresponding to the known separation

of the “radial” and “angular” parts of (super)conformal mechanics. Relating the “angular” co-

ordinates with action-angle variables, we demonstrated that the proposed scheme allows us to

construct the su(1.N |M) supeconformal extensions of wide class of superintegrable systems. We

also proposed the superintegrable oscillator- and Coulomb-like systems with a su(1.N |M) dy-

namical superalgebra and found that oscillatorlike systems admit deformed N = 2M Poincaré

supersymmetry, in contrast with Coulomb-like ones.
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Chapter 5

Discussion

As a summary, in this chapter we bring the main results of the thesis.

In the first chapter we have discussed some basics of Hamiltonian formalism, the geometry

of integrability, specially we have considered the use of the Kähler manifold regarded as a phase

space of Hamiltonian systems. Some examples of maximally integrable systems and maximally

symmetric Kähler (phase) spaces have been illustrated.

In the second chapter we formulated the Euler top as a system with phase space CP1, i.e.

as one-dimensional system. Then we proposed the procedure of N = 2k á priori integrable

supersymmetrization of a generic one-dimensional systems which provides the family of N -

supersymmetric extensions depending on N /2 arbitrary real functions. Thus, we gave the

N = 2k supersymmetric extensions of the Euler top as well.

A few more comments on this topic are worth to be mentioned. One may ask whether it is

possible to construct the family of supersymmetric extensions of the Lagrange and Kowalewski

tops (see, e.g.,[69]) which are parameterized by arbitrary functions?

Here we present some preliminary remarks on this issue. The phase spaces of Lagrange and

Kowalewski tops could be identified with cotangent bundle of complex projective plane. This

supermanifold can be equipped with three symplectic (and complex) structures, parameterized

by the coordinates uA = (z, π),
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ω1 = dπ ∧ dz + dπ̄ ∧ dz̄ (5.1)

ω2 = ıdπ ∧ dz − ıdπ̄ ∧ dz̄, (5.2)

ω3 = ı
∂2K̃

∂uA∂ūB
duA ∧ dūB, (5.3)

K̃ = K(z, z̄) + F (g−1π̄π), (5.4)

where K(z, z̄) and g(z, z̄) are given by (2.10) and(2.9) respectively, while F (x) is the real

function obeying condition F ′(0) ̸= 0. Within appropriate choice of the function F (x) these

symplectic structures provide the manifold T ∗CP1 with hyper-Kähler structure [70]. Formu-

lating Lagrange and Kowalewski tops in terms of symplectic structures (5.2), we can try to

construct their conventional N = 2, 4 supersymmetric extensions, extending these simplectic

structure by fermionic variables associated with dz. However, we are expecting that using

the symplectic structure (5.4) will be more useful for the construction of the supersymmetric

extensions of Lagrange and Kowalewski tops.

In the third chapter we have shown that the superintegrable generalizations of conformal

mechanics, oscillator and Coulomb systems can be naturally described in terms of the non-

compact complex projective space considered as a phase space. This observation yields some

interesting directions for further studies.

For example, performing the transformation to the higher-dimensional Poincare model via

(3.23), we expect to present the considered models in the Ruijsenaars-Schneider-like form and

in this way to find, some superinegrable cases of the Ruijsenaars-Schneider systems, as well as

their supersymmetric/superconformal extensions.

Another one is describing the superintegrable deformations of the free particle on the

spheres/hyperboloids, and the spherical/hyperbolic oscillators, in a similar way. For this pur-

pose we expect to consider the ”κ-deformation” of the Kähler structure of the Klein model, in

the spirit of the so-called “κ-deformation approach” developed in [53].

As well as, we are going to undertake the construction of spin-extensions for the afore-

mentioned models, opting for the noncompact analogs of complex Grassmannians as phase
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spaces.

In Chapter 4 we suggested to construct the su(1, N |M)-superconformal mechanics formu-

lating them on phase superspace given by the non-compact analog of complex projective super-

space CPN |M . The su(1, N |M) symmetry generators were defined there as a Killing potentials

of CPN |M . We parameterized this phase space by the specific coordinates allowing to inter-

pret it as a higher-dimensional super-analog of the Lobachevsky plane parameterized by lower

half-plane (Klein model). Then we transited to the canonical coordinates corresponding to the

known separation of the ”radial” and ”angular” parts of (super)conformal mechanics. Relating

the ”angular” coordinates with action-angle variables we demonstrated that proposed scheme

allows to construct the su(1, N |M) supeconformal extensions of wide class of superintegrable

systems. We also proposed the superintegrable oscillator- and Coulomb- like systems with a

su(1, N |M) dynamical superalgebra, and found that oscillator-like systems admit deformed

N = 2M Poincaré supersymmetry, in contrast with Coulomb-like ones.

In fact, proposed scheme demonstrated the effectiveness of the supersymmetrization via

formulation of the initial systems in terms of Kähler phase space and further generalisation

of the latter ones. In order to relate considered systems with the conventional ones (with

Euclidean configuration spaces) , we restricted ourselves by the non-compact complex projective

superspace. So, we are sure that applying the same approach to the conventional (compact)

complex projective spaces we can find many new integrable systems as well and construct their

unpredictable extended supersymmetric extensions.

Proposed scheme could obviously be extended to the systems on complex Grassmanians

GrN.K(C) (and on their noncompact analogs). In particular, we expect to find, in this way, the

N -supersymmetric extensions of compactified spin-Ruijsenaars-Schneider models. Moreover,

it seems to be straightforward task to apply proposed approach to the systems with generic

U(N)-invariant Kähler phase spaces locally defined by the Kähler potential K(
∑N

a=1z
az̄a). We

expect that it can be done in terms of Kähler phase superspace locally defined by the potential

K̃ = K

(
N∑
a=1

zaz̄a + ı
M∑

A=1

ηAη̄A

)
. (5.5)
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Finally, notice that our configuration is not coherent with the superfield approach to super-

symmetric mechanics, since considered phase superspace is not associated with external algebra

of initial bosonic manifolds.
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