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Notation

nC — number of channels;
nR — number of resonances;
(1C)ij = δij [i, j = 1, . . . , nC ] — identity in “channel space”;
(1R)ij = δij [i, j = 1, . . . , nR] — identity in “resonance space”;
Gk — propagator of channel k (2.43);
Gl — propagator of resonance l (2.52);
ml — mass of resonance l (2.52);
glk — coupling between channel k and resonance l (2.51);
ck — coupling between channel k and external current (2.53);
αl — coupling between resonance l and external current (2.53);
σk — phase space factor for channel k (3.1, 3.5);
ξk — centrifugal barrier factor for channel k (3.1, 3.5);
Γk — vertex for channel k (C.2);
Σk — self-energy for channel k (2.47);
(T̃ )kk — elastic T -matrix for channel k (2.42);

δ̃1 — phase for t̃11 ≡ t̃1 (A.7)
(TR)kj — resonance T -matrix between channels k and j (2.45);
Fk — form factor for channel k (2.49).

Masses and quantum numbers

The values are taken from the [PDG 2020]:

Name Symbol Mass Quantum numbers
Photon γ 0 I(JPC) = 0, 1(1−−)
Electron e 511 keV J = 1

2
Pion π 139.57 MeV IG(JP ) = 1−(0−)
Kaon K 493.67 MeV I(JP ) = 1

2(0
−)

Rho ρ 775.26 MeV IG(JPC) = 1+(1−−)
Omega ω 782.65 MeV IG(JPC) = 0−(1−−)
Phi φ 1019.46 MeV IG(JPC) = 0−(1−−)

Table 1: Masses and quantum numbers of particles mentioned throughout the text.
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1 Motivation

The magnetic moment of the muon gµ (and the anomalous part

aµ =
gµ − 2

2
,

in particular) is one of the most precisely known physical quantities nowadays, both theoretically and
experimentally. The most recent Standard Model (SM) prediction reads [Aoyama et al. 2020]

aSMµ = 116591810(43)× 10−11, (1.1)

which is smaller than the experimental average of the E821 at Brookhaven [BNL 2006] and E989 at
Fermilab [FNAL 2021] by 4.2σ:

aExp.µ = 116592061(41)× 10−11. (1.2)

Because of this discrepancy, aµ is currently one of the most promising observables to show the need
for physics beyond the Standard Model. By convention, the significance of 5σ is needed in order for
a claim to be called a discovery. This calls for improvement in precision on both experimental and
theoretical sides. Another experiment with a precision goal of 450 parts per billion (similar to the
E989 experiment at Fermilab) is planned to run in 2024 [Abe et al. 2019].
This work could help increase the accuracy of the theoretical prediction for the aµ. The leading
contributions from the hadronic sector are the hadronic vacuum polarization (HVP) and the hadronic
light-by-light scattering (HLbL) (see Figure 1) with [Aoyama et al. 2020]

aHVPµ = 6845(40)× 10−11,

aHLbLµ = 92(18)× 10−11. (1.3)

One of the most important contributors to both HVP and HLbL are the two-pion states [Colangelo
et al. 2017, 2019]. The coupling of the pions to the electromagnetic current is given by the pion vector
form factor (VFF), to be defined later in the text, in Section 2.3.
The pion form factors are most commonly modeled by sums of Breit-Wigners [Gounaris and Sakurai
1968] or the K-matrix formalism [Dalitz 1961]. Since the former violates unitarity and the latter
destroys analyticity, a new parametrization is needed, hopefully preserving both of these properties
of the S-matrix. In this work we present such a parametrization, using a two-potential formalism,
introduced in [Hanhart 2012]. The formalism has been applied to the pion vector form factor in the
original paper, to the pion scalar form factor in [Ropertz et al. 2018] and to the scalar pion-kaon form

γ

µ µ

γ

µ µ

Figure 1: The Hadronic Vacuum Polarization (left) and the Hadronic Light by Light scattering (right)
contributions to the anomalous magnetic moment of the muon.
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factor in [von Detten et al. 2021]. Here we take a look at the pion vector form factor with exclusive
data from the π0ω channel, which was not included in [Hanhart 2012].
This work is structured as follows. In Section 2 a theoretical introduction is given: scattering kinemat-
ics, principles of analyticity and unitarity of the S-matrix, as well as the formal definition of the pion
VFF and our approach for its parametrization. Section 3 presents the application of the two-potential
formalism to the pion VFF and the results obtained by the fitting procedure. These are followed by
Appendices, containing detailed calculations of invariant amplitudes, discontinuity equations, etc.
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2 Theory

2.1 Kinematics

m1

m2

m�
1

m�
2

p1

p2

q1

q2

For a 2 → 2 process of spinless particles with initial momenta p1, p2 and final momenta q1, q2, the
amplitude can depend only on the scalar products:

p21, p22, q21, q22, p1 · p2, p1 · q1, p1 · q2, p2 · q1, p2 · q2, q1 · q2. (2.1)

The first 4 are constrained by the mass-shell conditions:

p2i = m2
i , q2i = m�2

i , i = 1, 2. (2.2)

Energy-momentum conservation gives 4 additional constraints:

pµ1 + pµ2 = qµ1 + qµ2 , µ = 0, 1, 2, 3. (2.3)

This fixes 8 out of 10 variables and therefore leaves 2 of them independent. Alternatively to (2.1) one
can define three scalar quantities called the Mandelstam variables:

s = (p1 + p2)
2 = (q1 + q2)

2,

t = (p1 − q1)
2 = (p2 − q2)

2,

u = (p1 − q2)
2 = (p2 − q1)

2. (2.4)

As discussed above, only two of these variables can be linearly independent. In fact, it can be shown
that s, t and u satisfy

s+ t+ u = m2
1 +m2

2 +m�2
1 +m�2

2 . (2.5)

The n-particle phase space is defined [PDG 2020] as

dΦn = δ(4)


�

i

pi −
�

j

qj




n�

j=1

d3qj
(2π)32E�qj

, (2.6)

where E�qj =
�
m2

j + �q 2
j . pi are the initial momenta, while qj are the final ones.

One could also argue about the near-threshold scaling for the phase space factors by employing sim-
plified dimensional analysis

dΦn ∼ |�qM |3n−5, (2.7)

where |�qM | is the maximum momentum observed in the final state at given energy
√
s. The power

3n comes from the momentum integration measure, while the power of −5 comes from the δ-function
(note that even though δ(4) would in principle introduce 4 powers of momenta in the denominator,
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energy is proportional to momentum squared near threshold). For example, for a final state of n
identical particles with masses m,

|�qM | ∼
�

1− (nm)2

s
. (2.8)

The differential cross section for a 2 → 2 process is

dσm1m2→m�
1m

�
2
=

(2π)4 |�q1, q2|t|p1, p2�|2

4
�
(p1 · p2)2 −m2

1m
2
2

dΦ2, (2.9)

where initial and final states are denoted by |p1, p2� and |q1, q2�, andm1,2 are the masses of the particles
in the initial state. Of course, they need not to be the same in the final state. We will denote final
state masses with m�

1,2. Using (2.6), we get for a two-body phase space

σm1m2→m�
1m

�
2
=

�
(2π)4δ(4)(p1 + p2 − q1 − q2)

4
�
(p1 · p2)2 −m2

1m
2
2

|tfi|2
S

d3q1
(2π)32E�q1

d3q2
(2π)32E�q2

Em,�q1
=Em,−�q1

≡Em,�q−−−−−−−−−−−−−−→ =
1

16π2S

�
δ(
√
s− Em�

1,�q
− Em�

2,�q
)

4
�
(p1 · p2)2 −m2

1m
2
2

|tfi|2 d3q
Em�

1,�q
Em�

2,�q

=
1

16π2S

�
λ(s,m�2

1 ,m
�2
2 )

2s

1

4
�
(p1 · p2)2 −m2

1m
2
2

�
|tfi|2 dΩ�q, (2.10)

where S is the symmetry factor and λ is the Källén function, defined as

λ
�
s,m2

1,m
2
2

�
=
�
s− (m1 +m2)

2
� �

s− (m1 −m2)
2
�
. (2.11)

In the CM frame, where �p1 = −�p2 ≡ �p, the Källén function gives the solution of
√
s =

�
m1 + �p 2 +

�
m2 + �p 2,

=⇒ �p 2 =
λ(s,m2

1,m
2
2)

4s
=

�
s− (m1 +m2)

2
� �

s− (m1 −m2)
2
�

4s
. (2.12)

The flux factor in the denominator of (2.10) is given by

4
�

(p1 · p2)2 −m2
1m

2
2 = 4

√
s|�p| = 2

�
λ(s,m2

1,m
2
2). (2.13)

Therefore,

σm1m2→m�
1m

�
2
=

1

64π2

�
λ(s,m�2

1 ,m
�2
2 )�

λ(s,m2
1,m

2
2)

1

s

� |tfi|2
S

dΩ�q. (2.14)

2.2 Properties of the S-matrix

2.2.1 Analyticity

The S-matrix, as a function on the complex E plane, is assumed to be analytic up to branch points
and poles, so that the theory is causal [Eden et al. 1966]. These are the continuous right-hand cuts
from threshold to ∞ (associated with allowed intermediate states) and discrete poles at negative real
values of E (associated with bound states).
This allows us to write a dispersion relation by employing Cauchy’s theorem. We start by choosing a
contour that avoids all the possible poles, as displayed on Figure 3. We also assume that S(E) falls
sufficiently fast for large E, so that large arcs do not contribute.
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Bound States

Re(E)

Im(E)

Figure 2: General analytic structure of the S-matrix.

Then, S(E) is analytic in the region enclosed by the path and we get

S(E) =
1

2πi

�
S(E�)dE
E� − E

3 contributions:−−−−−−−−−→ =
1

2πi

� ∞

0

S(E� + i�)dE

E� − E� �� �
Above

+
1

2πi

� 0

∞

S(E� − i�)dE

E� − E� �� �
Below

−
�

j

1

2πi

�

Cj

S(E�)dE
E� − E

� �� �
Around the poles

. (2.15)

The contribution from the large arcs are ignored and the minus sign in front of the last term accounts
for a reversed direction when integrating around the poles. The loops around the poles can be made
small enough, such that they enclose a single pole only. Thus, we may write for a given j:

1

2πi

�

Cj

S(E�)dE
E� − E

=
1

2πi

�

Cj

ResEj (S)

(E� − Ej)(Ej − E)
= −ResEj (S)

E − Ej
. (2.16)

Using the Schwarz reflection principle,

1

2πi

� 0

∞

S(E� − i�)

E� − E
dE� =

−1

2πi

� ∞

0

S(E� + i�)∗

E� − E
dE�. (2.17)

Re(E)

Im(E)

Figure 3: Integration contour on the complex E-plane.
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With S(E� + i�)− S(E� + i�)∗ = 2iIm(S(E�)) one finds

S(E) =
1

π

� ∞

0

Im(S(E�))
E� − E

dE� +
�

j

ResEj (S)

E − Ej
. (2.18)

This relation is trivially correct for the imaginary part on the real axis of the physical sheet. For
values at E + i� we use the following relation

1

x− x0 − i�

�→0−−→ P
x− x0

+ iπδ(x− x0), (2.19)

where P denotes the principal value. Hence,

S(E + i�) =
1

π
P
� ∞

0

Im(S(E�))
E� − E

dE� + iIm(S(E + i�)) +
�

j

Poles

=⇒ Re(S(E + i�)) =
1

π
P
� ∞

0

Im(S(E�))
E� − E

dE� +
�

j

Poles. (2.20)

By assumption, S(E) is (analytic and thus) infinitely differentiable:

S(E) = S(E0) + S�(E0)(E − E0) + . . . (2.21)

So, instead of S(E), one can write dispersion relations for

S1(E) =
S(E)− S(E0)

E − E0
. (2.22)

Note that S1(E) is regular at E = E0 and drops faster than S(E) by one power in E:

S1(E) =
1

π

� ∞

0

Im(S1(E
�))

E� − E
dE� + Bound states, (2.23)

or, using the definition of S1(E),

S(E) = S(E0) +
E − E0

π

� ∞

0

Im(S(E�))
(E� − E)(E� − E0)

. (2.24)

S(E0) here is called a subtraction constant. This procedure may be repeated to introduce further
subtraction constants. For instance, the next step would be

S2(E) =
S(E)− S(E0)− S�(E0)(E − E0)

(E − E0)2
. (2.25)

This introduces another subtraction constant S�(E0) and adds another negative power of E into the
integrand. Therefore, we can always force the integral to converge. If this is done n times, we have n
subtractions constants: S(E0), S

�(E0), . . . , S
(n)(E0). The n-times subtracted dispersion integral reads

S(E) = S(E0) + S�(E0)(E − E0) + · · ·+ 1

(n− 1)!
S(n−1)(E0)(E − E0)

n−1+

+
(E − E0)

n

π

� ∞

0

Im(S(E�))
(E� − E0)n(E� − E)

. (2.26)
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2.2.2 Unitarity

Due to probability conservation, the S-matrix is required to be unitary [PDG 2020]: S†S = SS† = 1.
We define the T -matrix as:

S = 1 − iT,

�f |T |i� = (2π)4δ(4)(Pf − Pi)tfi, (2.27)

where Pi and Pf are the total 4-momenta of states |i� and |f�, respectively.
The unitarity relation for S implies that T − T † = −iTT †. Using (2.27), we can write

�f |T − T †|i� = −i �f |T †T |i� ,
(2π)4δ(4)(Pf − Pi)

�
tfi − t∗if

�
= −i

�

n

(2π)4δ(4)(Pf − Pn)(2π)
4δ(4)(Pn − Pi)t

∗
nf tni,

=⇒ tfi − t∗if = −i
�

n

(2π)4δ(4)(Pf − Pn)t
∗
nf tni. (2.28)

This can be used to determine discontinuities due to the allowed intermediate states. Examples are
given in the following sections.

2.3 Definition of the form factor

The central object of interest throughout this work is the pion vector form factor FV (s) defined as

γ FV

π+

π−

q1

q2

= �π+(q1)π
−(q2)|Jµ|0� = e(q1 − q2)

µFV (s), (2.29)

where s is the Mandelstam variable s = (q1 + q2)
2. This object can be extracted e.g. from the

process e+e− → π+π−, where one has to contract the hadronic current given in (2.29) and the photon
propagator with the leptonic current, which is defined as

γ

e+

e−

p1

p2

= �0|Jµ|e+(p1)e−(p2)� = v̄(p1) (−ieγµ)u(p2). (2.30)

(See Appendix B for a detailed calculation.)

2.4 Elastic regime

The discontinuity of FV (s) comes from the allowed intermediate states. For energies below the first
inelastic threshold, the only intermediate state (reachable through strong interactions) is the two-pion
elastic channel (see Figure 4).
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The corresponding discontinuity is (see the derivation of (A.13))

disc [FV (s)] = 2iσ(s)t̃∗1(s)FV (s), (2.31)

where

σ(s) =
1

16π

�
1− 4m2

π

s
(2.32)

and t̃1(s) is the P-wave projection of the elastic scattering t-matrix, which can be parametrized as

t̃1(s) =
1

σ(s)
sin(δ̃(s))eiδ̃(s). (2.33)

Using (2.31, 2.33), one obtains Watson’s theorem [Watson 1954]:
�
Im[FV (s)] = sin(δ̃1(s))e

−iδ̃1(s)FV (s)
�
∈ R

=⇒ arg[FV (s)] = δ̃1(s). (2.34)

Once δ̃1 is known, we may construct FV from this. Assume Ω is a solution of the discontinuity
equation. Then FV (s) = P (s)Ω(s) is a solution as well, provided that P (s) is free of right-hand cuts
and poles up to inelastic thresholds and can be approximated as a polynomial at low energies.
We may solve Ω under the assumption that it does not have any zeros and Ω(0) = 1.

Ω(s+ iε) = |Ω(s)|eiδ̃1(s)

=⇒ Ω(s− iε) = Ω(s+ iε)∗ = |Ω(s)|e−iδ̃1(s)

= Ω(s+ iε)e−2iδ̃1(s). (2.35)

Since Ω(s) does not have any zeros, we can take the logarithm:

ln(Ω(s− iε)) = ln(Ω(s+ iε))− 2iδ̃1(s),

=⇒ disc(ln(Ω(s))) = 2iδ̃1(s). (2.36)

Assume δ(s → ∞) → const.; then one can write a once-subtracted dispersion integral for ln(Ω):

ln(Ω(s)) = ln(Ω(0))� �� �
=0

+
s

π

� ∞

sthr

δ̃1(s
�)ds�

s�(s� − s)
. (2.37)

γ FV T̃

π+

π−

k1

k2

q1

q2

T̃

π+

π−

T̃

π+

π−

p1

p2

k1

k2

q1

q2

Figure 4: Cutkosky cuts due to the 2π elastic channel for the form factor (left) and the transition
matrix element (right).
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4m2
π m2

ρ 4m2
K (1.5 GeV )2

s

0

π/2

π

δ1 1
(s
)

ππ P-wave phase shift

Figure 5: The pion P-wave phase shift [Colangelo et al. 2019].

Finally [Omnès 1958],

Ω(s) = exp

�
s

π

� ∞

sthr

δ̃1(s
�)ds�

s�(s� − s− iε)

�
. (2.38)

For the input phase δ̃1 we use ππ P-wave phase shifts from [Colangelo et al. 2001, 2019], plotted in
Figure 5. They are valid up to s = (1.5 GeV)2. From that point on we smoothly guide it to the value
of π using

δ̃1(s) = π +
�
δ̃
�
(1.5 GeV)2

�
− π

��λ2 + (1.5 GeV)2

λ2 + s

�
[for s > (1.5 GeV)2]. (2.39)

(2.39) introduces a pole in the spacelike region: s = −λ2. However, provided λ is sufficiently large,
this does not have visible consequences on the amplitude in the timelike region. We take λ = 10 GeV.
The comparison of the Omnès solution to the pion vector form factor data [BaBaR 2012] is given in
Figure 6.
One can notice that the Omnès function, although it gives a decent description of the data at low
energies, deviates largely from the experimental values above 1 GeV or so. Apart from that, it fails to
account for the isospin-breaking effects such as ρ− ω and ρ− φ mixing, depicted on the upper panels
of Figure 6.
The data show pronounced structures above 1 GeV, which could be described by introducing reso-
nances. These resonances, however, do not show up in the ππ scattering phase (see Figure 5). This
could be resolved by introducing inelastic channels. Then, Watson’s theorem (2.34) does not hold
anymore and the scattering phase does not necessarily agree with the phase of the form factor. So,
the phase motion due to the higher resonances can appear in the form factor only.

2.5 Including inelastic channels: two-potential formalism

Following the discussion in the previous section, a formalism is required that (a) maps smoothly onto
the Omnès solution at low energies and (b) fits the data well at higher energies. We have already
argued that in addition to the elastic channel, the model should contain contributions from inelastic
ones.
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Figure 6: The Omnès solution compared to the experimental data for FV (s) from [BaBaR 2012]. The
input phase shift δ̃(s) is from [Caprini et al. 2012], extrapolated to π using (2.39). The upper panels
show the effects of ρ−ω (left) and ρ−φ (right) mixing in the data. The dotted lines denote thresholds
for the ππ, 4π and π0ω channels.

We denote the interaction potential between channels i and j with Vij(s) and split it into two parts:

Vij(s) = Ṽij(s) + VRij(s), (2.40)

where Ṽ describes elastic interaction. Such a splitting, applied to the pion vector form factor, was
introduced in [Hanhart 2012], inspired by e.g. [Nakano 1982]. The subscript R in VR indicates that
the inelastic part of the potential will be attributed to resonances. The explicit expression for VR

within this model will be given below. We will also see that there is no need to specify the explicit
form of the elastic potential Ṽ , all we need are the phase shifts.
Accordingly, the scattering matrix can be split into an elastic part and a remainder:

Tij(s) = T̃ij(s) + TRij(s). (2.41)

The elastic part of the T -matrix is, of course, diagonal in i, j and can be obtained from Ṽ using the
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Lippmann-Schwinger equation:

T̃kkk k = Ṽkkk k + Ṽkkk T̃kkGk k =⇒ T̃ = Ṽ + Ṽ GT̃ (2.42)

Here Gk denotes the propagation of channel k. For instance, in the case of the 2π channel (k = 1),
we have

G1 =

�
d4l

(2π)4
|l, P − l� 1

(l2 −m2
π + i�)

1

((P − l)2 −m2
π + i�)

�l, P − l| , (2.43)

where P 2 = s. With this we define “in” and “out” vertices to be

Γ†
in = 1 +GT̃ , Γout = 1 + T̃G. (2.44)

Since only elastic scattering is included in the definition of the vertex, its discontinuity equation is the
same as of the Omnès function (2.38). Therefore, the vertex of the first channel will be taken to be
Γ1 = Ω[δ̃]. The parametrization of the other vertices is discussed in Section 3.1.
To obtain TR from the resonance potential, we first split it as

TRiji j = i j
tRij

=⇒ TRij = ξiΓout,itRijΓ
†
in,jξj . (2.45)

Along with the vertices Γi we have also pulled out the centrifugal barrier factors ξi. These are the
factors that come from the Lorentz structure that the form factors are multiplied with (see (2.29) and
Appendix B for details). Explicit functional forms for ξi will be discussed in section 3.1. tRij is then
defined as

i j
tRij

= i j
VRij

+ i k j
VRik tRkj

tRij = VRij + VRik ξkGkΓkξk� �� �
Σk

tRkj ,

=⇒ tR = [1C − VRΣ]
−1 VR. (2.46)

For a detailed calculation see Appendix C.1. The self-energy Σk can be calculated using its disconti-
nuity (see the derivation leading to (C.4)):

Σk(s) =
s

π

� ∞

sthr,k

ds�

s�
σk(s

�)ξ2k(s
�)|Γk(s

�)|2
s� − s− i�

. (2.47)
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We proceed with the definition of the form factor. We denote point-like source terms for channel k
with Mk. Since there are multiple channels open, one needs to allow for inelastic scattering in the full
expression. So,

Fii = Mii + Tiji MjGj =⇒

ξiFi = ξiMi + TijGjξjMj . (2.48)

As already discussed above, the inclusion of the centrifugal barrier factors is needed. Using the
definition of Tij along with (2.48), one obtains (see the full derivation in Appendix C.2)

Fi = Γout,i[1C − VRΣ]
−1
ij Mj . (2.49)

Since this expression was derived from unitarity (we have thoroughly followed the dispersion relations),
Fi defined in (2.49) satisfies the expected discontinuity equation (see (C.13) in Appendix C.2):

disc [Fi] = 2iT ∗
ikσk(ξk/ξi)Fk, (2.50)

as long as the model parameters are real.

2.5.1 The resonance model

To proceed, we need to introduce some model-dependent assumptions: Ṽij is only non-zero for i = j =
1 (a generalization of this for the case of two input channels can be found in [Ropertz et al. 2018]).
This means that the elastic scattering matrix, in addition to being diagonal, is zero for every channel
other than the first one. All long-ranged forces of the first channel that induce the left-hand cuts are
contained in Ṽ , while no left-hand cuts are allowed in the other channels. All the deviations from Ṽ
are assumed to come either from s-channel resonances or contact terms. With this [Hanhart 2012],
VR can be defined as

V̄Rij(s) = −
nR�

l,l�
g
(l)
i G(l,l�)(s)g

(l�)
j , VRij(s) = V̄Rij(s)− V̄Rij(0), (2.51)

where
G(l,l�)(s) =

δl,l�

s−m2
l

. (2.52)

Here nR is the number of resonances in the model, g(l)i denotes the coupling of channel i with resonance
l and G(l,l�) is the resonance propagator. Even though the bare propagator is diagonal, after photon
mixing is taken into account, this is no longer the case (see (2.55) below). ml is the bare mass of the
resonance l. We have subtracted the potential at s = 0, so that it does not distort the low-energy
region, where the dominant contribution needs to be from Ṽ .
For the point-like source term Mk we write

Mk(s) = ck −
nR�

l,l�
g
(l)
k G(l,l�)α(l�)s. (2.53)
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The parameters ck and α(l) denote the photon coupling with channel k and resonance l, respectively.
Resonances couple to the photon linearly in s. This means that the interaction is given via FµνVµν ,
where Fµν and V µν are the field strength tensors for the electromagnetic and the resonance fields,
respectively. This kind of coupling ensures gauge invariance.

The couplings g
(l)
i , ck,α

(l) and the resonance masses ml will be treated as the parameters of the fit.
The ck denote the values of Fk at s = 0. Therefore, c1 is fixed to 1 with F1(0) = 1 due to the charge
of the pion.

2.5.2 ρ − ω and ρ − φ mixing

As already mentioned, we have the effects of ρ mixing with ω and φ, depicted on the upper panels of
Figure 6. This can be included in the model using

c1 → c1

�
1 + κω

s

s−m2
ω + imωΓω

+ κφ
s

s−m2
φ + imφΓφ

�
, (2.54)

where κω/φ are two additional free parameters of the model, which parametrize the strength of ρ−ω/φ
mixing. The values for mω,φ and Γω,φ are taken from [PDG 2020]. Note that this redefinition destroys
unitarity: Mk now acquires an imaginary part, which was assumed to be absent in the derivation
of (C.13) in Appendix C.2. However, since they violate isospin, these effects must be small (as
demonstrated in Figure 6). In principle, it is possible to resolve this breaking of unitarity by including
additional channels, reached by isospin-breaking reactions. This, in turn, adds free parameters and
further complicates the fitting procedure. So, instead, the above strategy was chosen within the scope
of this work.

2.5.3 Photon-resonance mixing

One of the well-established effects is the mixing of a ρ with a photon [Jegerlehner and Szafron 2011].
In our framework we can also allow for photon mixing with higher resonances. For this, one needs to
redefine the propagator and the vertex as follows:

→ + + . . .

G(l,l�) → Ĝ(l,l�) ≡ G(l,l�) +

nR�

l1,l2

G(l,l1)
�
α(l1)s

� 1

s

�
α(l2)s

�
G(l2,l�) + . . .

=⇒ G → Ĝ ≡
�
1R −GsααT

�−1
G, (2.55)

→ +

g
(l)
i → ĝ

(l)
i ≡ g

(l)
i − e2α(l)ci. (2.56)

Finally, we rewrite the potential

V̄Rij(s) = −
nR�

l,l�
ĝ
(l)
i Ĝ(l,l�)ĝ

(l�)
j , VRij(s) = V̄Rij(s)− V̄Rij(0)− e2

cicj
s

, (2.57)
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and the source term

Mk(s) = ck −
nR�

l,l�
ĝ
(l)
k Ĝ(l,l�)α(l�)s. (2.58)

Consequently, photon mixing does not introduce new parameters. This was expected, since the pa-
rameters for the photon coupling with both the continuum channels and the resonances were already
defined.
Note, that the potential is non-zero at s = 0 now. Consequently, to retain the previous normalization,
one needs to redefine ci as follows (see Appendix C.2.1 for details):

ci → ci

�
1 +

e2

π

�

k

c2k

� ∞

sthr,i

ds�σk(s�)ξ2k(s
�)|Γk(s

�)|2
(s�)2

�
. (2.59)

2.5.4 Fitting parameters

The model defined as above has the following parameters:

ml − nR resonance masses;

g
(l)
i − nC × nR channel-resonance couplings;

α(l) − nR resonance-photon couplings;
ck − nC − 1 channel-photon couplings;

κω/φ − 2 strength parameters for ω/φ mixing.

where nC is the number of channels. For instance, the model with nC = 3 channels and nR = 2
resonances would have 14 parameters to be determined by fitting to data. Note that c1 = 1 is fixed by
charge conservation, so only c2, . . . , cnC can be adjusted by the fit. In principle, other ci could also be
fixed (see e.g. equation (5.11) in [Schneider 2012] which can be used to fix c3). In this work, however,
only c1 is fixed.
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3 Application

3.1 Channels

The pion vector form factor is related to ππ scattering in P-wave. Therefore, we will consider channels
with I = 1, L = 1. For the special case of 2-particle final states with masses ma and mb, the phase
space and the centrifugal barrier factors are

σab(s) =

�
λ(s,m2

a,m
2
b)

s

1

16π
and

ξab(s) =

�
λ(s,m2

a,m
2
b)√

3s
. (3.1)

The factors of
√
3 appear due to the P-wave projection (see Appendix B for details). We are going to

look at the cross sections of e+e− going to some channel i, defined as

σe+e−→i = (4π)2α2

� �� �
e4

1

s2
σi(s) [ξi(s)]

2 |Fi(s)|2 . (3.2)

The first to consider is the 2π channel, with

Ethr,1 = 2mπ ≈ 279 MeV,

σ1(s) =
1

16π

�
1− 4m2

π

s
,

ξ1(s) =
1√
3

�
s− 4m2

π,

Γ1(s) = Ω[δ̃](s). (3.3)

One can check that plugging the above expressions into (3.2) yields

σe+e−→π+π− =
πα2

3

λ3/2(s,m2
π,m

2
π)

s4
|F1(s)|2 (3.4)

The second channel contains 4 pions:

Ethr,2 = 4mπ ≈ 558 MeV,

σ2(s) =
1

16π

�
1− 16m2

π

s

7

,

ξ2(s) =
1√
3

�
s− 16m2

π,

Γ2(s) =
Λ2

Λ2 + s
. (3.5)

For the phase space and centrifugal barrier factors we have used (2.7, 2.8). Unlike the ππ channel,
we do not have an input vertex. Instead, we use (3.5), which goes as ∼ 1/s for high energies and has
a pole in the spacelike region. However, provided that Λ2 is large enough, this should not affect the
timelike region significantly. Therefore, we do not expect the results to be sensitive to the actual value
of Λ, which will not be fixed by the fitting procedure. Instead, we will manually vary it over some
range, to estimate systematic uncertainties.



21

4m2
π 16m2

π (mω +mπ)
2

0.000

0.005

0.010

0.015

0.020

σ
1
(s
)

Phase Space

4m2
π 16m2

π (mω +mπ)
2

0

200

400

600

800

χ
1
(s
)

Centrifugal Barrier

4m2
π 16m2

π (mω +mπ)
2

0.000

0.002

0.004

0.006

0.008

0.010

0.012

σ
2
(s
)

4m2
π 16m2

π (mω +mπ)
2

0

200

400

600

800

χ
2
(s
)

4m2
π 16m2

π (mω +mπ)
2

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

σ
3
(s
)

4m2
π 16m2

π (mω +mπ)
2

0

100

200

300

400

500

600

χ
3
(s
)

Figure 7: Phase space and centrifugal barrier factors for 2π, 4π and π0ω channels.

The same vertex factor will be used for the π0ω channel, which is again a 2-body channel with

Ethr,3 = mπ +mω ≈ 922 MeV,

σ3(s) =
1

16π

��
1− (mω +mπ)2

s

��
1− (mω −mπ)2

s

�
,

ξ3(s) =
1√
3

�
(s− (mπ +mω)2) (s− (mπ −mω)2) /s,

Γ3(s) =
Λ2

Λ2 + s
, (3.6)

where we simply follow (3.1). Strictly speaking, the ω is not stable. However, its most dominant decay
(ω → 3π with a branching ratio of around 90% [PDG 2020]) is already taken into account, as the π0ω
channel is connected to the 4π channel within the model.
The phase space and the centrifugal barrier factors are plotted in Figure 7. One can notice the slow
onset for the second channel due to the fact that the final state is 4-body.
With this, self-energies can be calculated. Figure 8 shows the plots for different values of Λ. There
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Figure 8: Self-energies calculated according to (2.47).

is a noticeable change in the curvature of the lines, but the overall shape does not change with the
variation of Λ. On the plot of the first channel the contribution of the ρ(770) to the self-energy is
visible.

3.2 Data

3.2.1 The ππ P-wave phase shift

The ππ scattering amplitude can be parametrized using the so-called Roy equations [Roy 1971]. The
maximum energy of validity of the Roy equations is 1.15 GeV. Above this region one could use purely
phenomenological approaches (see e.g. [García-Martín et al. 2011]). Within the region of validity the
parametrization can be supplemented by the so-called Regge analysis to provide a more precise input
at high energies [Caprini et al. 2012]. The phase shifts of the Roy equation analysis of the Bern group
adjusted to account for the vector form factor fits [Colangelo et al. 2019] is plotted in Figure 5 and
used throughout this work.
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3.2.2 The pion vector form factor

The pion vector form factor FV (s) can be extracted from the process e+e− → π+π− (see (3.2)) [KLOE
2005; SND 2005; CMD-2 2005, 2007; BaBaR 2012] or from the τ → π−π0ντ decay [BELLE 2008].
We use the data set by the BABAR collaboration [BaBaR 2012] since it covers the largest energy
range. The cross section was measured using the initial-state radiation technique. The data points
are plotted in Figure 6.

3.2.3 The e+e− → π0ω cross section

The process e+e− → π0ω gives one of the most important contributions to the total hadronic cross
section in the energy range of 1-2 GeV. However, ω being unstable, what is measured in the experiment
are its decay products. Two of its most prominent decay modes are π+π−π0 and π0γ with branching
ratios [PDG 2020]

Γω→π+π−π0/Γω = 89.2± 0.7%,

Γω→π0γ/Γω = 8.40± 0.22%. (3.7)

The cross section of the process e+e− → π0ω → π+π−2π0 was measured by the BABAR collaboration
[BaBaR 2017] using the initial-state radiation technique, from the process e+e− → π+π−2π0γ.
Experiments conducted in Novosibirsk with the CMD-2 [CMD-2 2003] and SND [SND 2000, 2016]
detectors measure the cross section for e+e− → π0ω → π0π0γ. Even though the branching ratio of
π0γ is about ten times smaller than that of 3π (3.7), the final state is easier to single out, in contrast
to the 4π state, where one has to deal with a systematic uncertainty accompanied with non-trivial
background subtraction.
The cross section σe+e−→π0ω can be obtained by taking the data from these experiments and dividing
them by the relevant branching ratios from (3.7). The connection between the cross section and the
pertinent form factor is given by (3.2). The data points are plotted in Figure 9.
Even though it is not used for fitting, the data for ω → π0l+l− [NA60 2009, 2016; MAMI 2017] is
worth mentioning here. For the discussion of the experimental evidence for the ρ(770) in the π0ω form
factor data see e.g. [Schneider et al. 2012].

3.2.4 The elasticity η1

At high energies elastic unitarity does not hold anymore. The parametrization of the partial wave
scattering amplitude tl is then given in terms of not one, but two real functions: the phase shift δl(s)
and elasticity1 ηl(s). We already have δ1(s) from [Caprini et al. 2012]. We will use the parametrization
for η1(s) from [García-Martín et al. 2011], plotted in Figure 10. The parametrization is valid in the
range 2mK < E <1420 MeV, where mK is the mass of the kaon.

3.2.5 Cross section ratio r

Another interesting quantity is the following ratio

r =
σI=1
e+e−→non−2π

σe+e−→π+π−
(3.8)

1Note, that some authors call this inelasticity. We will, however, use the term elasticity, since it is equal to 1 for
elastic scattering.
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Figure 9: Cross sections for the process e+e− → π0ω and |F3|2, defined as in (3.2). The data is from
[BaBaR 2017; CMD-2 2003; SND 2000, 2016].

between the total cross sections of e+e− to I = 1 non-2π channels over those to 2π. The data for
energies in the range 820 MeV < E < 1400 MeV is given in [Eidelman and Łukaszuk 2004] and is
plotted in Figure 10.
We do not fit our model to any exclusive cross section data from the 4π channel. However, a combina-
tion of σe+e−→π+π− ,σe+e−→π0ω and r constrains the model so that the contribution from all channels
is included. In this sense, we are fitting the model to the data from all three open channels.

3.3 Results

The fitting procedure was performed using MINUIT. MINUIT is a function minimization and error
analysis software, originally written in Fortran [James and Roos 1975]. A modern version of MINUIT
(now called MINUIT2) is ported to and maintained by ROOT [Hatlo et al. 2005]. The software has
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Figure 10: Elasticity η1 (left) and cross-section ratio r (right).

m1 = 1313± 13 MeV m2 = 2027± 27 MeV m3 = 2860± 51 MeV
g11 = −0.07± 0.03 g12 = −5.33± 0.19 g13 = 1.67± 0.13
g21 = 0.12± 0.48 g22 = 2.89± 0.16 g23 = 25.0± 1.5
g31 = −4.85± 0.63 g32 = −24.0± 0.07 g33 = −8.75± 1.2
α1 = −0.56± 0.01 α2 = −0.002± 0.007 α3 = −0.14± 0.03
c2 = 12.9± 1.0 c3 = 3.13± 0.25
κω = −0.002± 0.0008 κφ = 0.0005± 0.0024

Table 2: Results of the fit #1: χ2/d.o.f. = 3.13 (excluding the r data set).

also been ported to Java and Python. We are using the Python version, called iminuit [Dembinski
et al. 2020].

3.3.1 Fit #1: 3 channels, 3 resonances: issue with the ρ peak

The results of the fit for 3 channels (2π, 4π,π0ω) and 3 resonances are given in Table 2. We will
call this fit #1. The form factors for channels 1 and 3 are plotted on Figure 11. The systematic
uncertainties attributed to the value of Λ in the vertices are represented by the width of the lines,
which correspond to Λ in the range from 4 to 7 GeV. As expected from Figure 8, the model is sensitive
to the value of Λ at high energies.
There are two things that we were unable to reproduce well during this procedure. First of all, there is
no signal of the ρ(770) in the π0ω form factor. This is clearly visible in the plot. In the two-potential
model described above, the contribution of the ρ(770) resides in the Omnès function, which is used as
a vertex of the first channel [Hanhart 2012]. Hence, in order for the third channel to couple with the
ρ(770) strongly enough (so that the peak is reproduced), the coupling with the first channel should be
strong. We were unable to provide such a coupling with the resonance potential. Introducing contact
terms between the channels in the potential could resolve this problem. While we do not have final
results including the contact terms, the working fits look promising.
Secondly, the procedure was performed by excluding the data of the cross section ratio r. If one
includes it in the calculation of χ2, the value of the latter becomes orders of magnitudes bigger with
the same model parameters (as given in Table 2). We were unable to reproduce sensible results with
all data sets included in the minimization procedure.
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Figure 11: Fit #1: results for 3 channels and 3 resonances. Form factors for the 2π (red) and the
π0ω channel compared with the data. Dotted gray vertical lines are threshold energies and dashed
red vertical lines are the masses of resonances. The width of the lines is due to the value of Λ, which
we vary in the range from 4 GeV to 7 GeV.

m1 = 806± 2 MeV m2 = 1667± 23 MeV m3 = 2423± 36 MeV
g11 = −6.0± 0.3 g12 = −0.53± 0.17 g13 = 1.59± 0.22
g21 = −0.50± 0.07 g22 = −4.11± 0.07 g23 = −7.73± 0.27
g31 = 4.29± 0.32 g32 = −24.5± 1.1 g33 = −24.8± 1.4
α1 = −0.47± 0.02 α2 = −0.343± 0.004 α3 = 0.13± 0.01
c2 = −1.2± 2 c3 = 1.22± 0.16
κω = 0.020± 0.009 κφ = 0.001± 0.004

Table 3: Results of the fit #2: χ2/d.o.f. = 5.05 excluding the δ̃1 data set and 88.32 including it.

3.3.2 Fit #2: 3 channels, 3 resonances: without the input phase

One way to address the problem at hand is to move the contribution of the ρ(770) from the input
vertex to the model parameters. In other words, we can use the vertex function:

Γ1(s) =
Λ2

Λ2 + s
. (3.9)

This way all channels are treated on the same footing (all channels will directly couple to all resonances,
ρ(770) included). The scattering phase δ̃1 will still contribute, as it is part of the χ2 in the minimization
procedure. Thus we now study a unitarized multi-channel version of the Gounaris-Sakurai model
[Gounaris and Sakurai 1968].
The results of the fit #2 are given in Table 3 and plotted in Figures 12 to 15.
Figure 12 shows the form factors. One can notice the ρ(770) peak in both channels now. This peak
is attributed to the first resonance of our model with bare mass m1 = 806± 2 MeV.
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Figure 12: Fit #2: results for 3 channels and 3 resonances. Form factors for the 2π (red) and the
π0ω channel compared with the data. Dotted gray vertical lines are threshold energies and dashed
red vertical lines are the masses of resonances. The width of the lines is due to the value of Λ, which
we vary in the range from 4 GeV to 7 GeV.

The phases obtained with this method are plotted in Figure 13. The scattering and the form factor
phases agree in the low energy region, as expected from the Watson’s theorem. The scattering phase
agrees to the parametrization from [Caprini et al. 2012] at low energies, but strongly deviates from it
above the mass of the ρ(770). The ππ scattering phases are known with excellent precision, such that
the simple resonance model employed here is not enough to accurately reconstruct the line shape of
the ρ(770). This all leads to a significant increase of the χ2.
Figure 14 shows the elasticity parameter compared with the parametrization from [García-Martín
et al. 2011]. Physically, η must be bound between 0 and 1. The reason behind the little bump at the
mass of ω is (2.54). As mentioned in the text, adding ρ− ω mixing in such a simplified way destroys
unitarity. This is exactly what we observe, as the elasticity becomes greater than 1 at this point.
There is another such bump (although, smaller and barely visible) at the mass of φ. However, these
effects are tiny and well localized.
The non-2π/2π cross section ratio r is plotted on Figure 15. The matching is quite good above the
π0ω threshold, but not so much below, where the only contributor should be the 4π channel. The fit
could be improved if the 4π exclusive data is added to the χ2. In addition, one could also employ
more sophisticated phase space and/or centrifugal barrier factors for the 4π channel. In particular, the
contribution of a1π intermediate state can be considered (see e.g. [Achasov and Kozhevnikov 2013]).
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Figure 13: Fit #2: The scattering (green) and the form factor (blue) phases compared to δ̃1 from
[Colangelo et al. 2019] (red). Dotted gray vertical lines are threshold energies and dashed red vertical
lines are the masses of resonances. The width of the lines is due to the value of Λ, which we vary in
the range from 4 GeV to 7 GeV.

4 Summary

In this work a two-potential formalism was presented, which parametrizes form factors in such a way
that the principles of analyticity and unitarity are preserved [Hanhart 2012]. Additionally to the
analysis of the original paper, here the exclusive π0ω data was fitted. The formalism was applied to
the pion vector form factor. The ππ scattering phases were used as input for low energies. A good
description is found for the pion vector form factor in the neutral channel (including isospin-breaking
effects, such as ρ − ω and ρ − φ mixing, as well as the mixing of ρ with the photon). However, we
were unable to accurately describe the e+e− → π0ω cross section at low energies. In particular, the
formalism does not provide a sufficiently strong coupling between the ρ and the π0ω channel. The
problem could be resolved by introducing contact terms to the potential. This, however, is a topic of
further research and is not included within the scope of this work. Apart from that, no sensible results
were obtained by including the e+e− to non-2π to 2π cross section ratio r in the fitting procedure.
Another fit was performed without using the input phases, but still including them in the cost function.
The results show a significantly improved description of the π0ω cross section as well as the cross
section ratio r at the cost of the accuracy in the ππ scattering phase. The reason for this is the
following: excluding the input phases, we now model both low- and high-energy regions using a
resonance potential and therefore, employing a unitarized Gounaris-Sakurai model. This model is
too simple (compared to the methods used e.g. in [Colangelo et al. 2001]) to accurately describe ππ
scattering.
Within this work the π0ω form factor was investigated in the production region, i.e. the data from
e+e− → π0ω was considered. The decay region for the reaction ω → π0γ was not included in the fit.
These two regions are usually modeled independently. Including the decay region into the fit could
help simultaneously model the transition form factor at both low and high energies, which is a subject
of active research.
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Figure 14: Fit #2: Elasticity parameter η1 (yellow) compared to the parametrization given in [García-
Martín et al. 2011] (light blue). Dotted gray vertical lines are threshold energies and dashed red vertical
lines are the masses of resonances. The width of the lines is due to the value of Λ, which we vary in
the range from 4 GeV to 7 GeV.

The cross-section ratio r predicted by our model deviates from the experimental values between the
4π and π0ω thresholds. This discrepancy could be improved by adding exclusive 4π data into the
fitting procedure. The analysis could be improved with the ongoing research of the amplitude of the
reaction e+e− → 4π. In particular, the a1π intermediate state could be included into the model (for
the role of a1(1260) in the 4π processes see e.g. [CMD-2 1999; Bondar et al. 1999]). We leave these
improvement strategies to the future studies.
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Figure 15: Fit #2: The non-2π to 2π cross section ratio compared with the data from [Eidelman and
Łukaszuk 2004]. Dotted gray vertical lines are threshold energies. The width of the lines is due to the
value of Λ, which we vary in the range from 4 GeV to 7 GeV.
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A Discontinuities

A.1 Discontinuity of the elastic transition matrix

The elastic transition matrix T̃ describes the elastic scattering of a two-pion system (see Figure 4).
Below the first inelastic threshold its discontinuity comes from the same two-pion intermediate state:
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(A.1)
We define θpq = θp − θq = ∠(�p1, �q1). Thus, we are dealing with the integral:
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. (A.2)

The transition amplitude can be expanded using the partial-wave decomposition:

t̃(s, cos θ) =
�

l

(2l + 1)Pl(cos θ)tl(s)

= P0(cos θ)t̃0(s) + 3P1(cos θ)t̃1(s) + 5P2(cos θ)t̃2(s) + . . .
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[For P-wave only l = 1 term survives.]
t̃(s, cos θ) = 3P1(cos θ)t̃1(s) = 3 cos θ t̃1(s). (A.3)
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Finally,
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which leads to
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A.2 Discontinuity of the form factor due to the elastic cut

The first contribution to the discontinuity of the pion vector form factor is the existence of the 2π
intermediate state. The discontinuity can be expressed according to the Cutkosky cutting rule (see
Figure 4):
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One needs to take the angular integral
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The only relevant four-vectors we have here are q1 and q2. Therefore, we introduce the ansatz:

Iµ = L1(q1 + q2)
µ + L2(q1 − q2)

µ. (A.10)
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Note, that
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For the P-wave,
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B Invariant amplitudes

B.1 e+e− → π+π−

Next we consider the process e+e− → π+π−, described by the following diagram:
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Apart from that, let us define
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The invariant amplitude for this diagram is
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Taking the absolute value squared,
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Averaging over all initial spin states,

|M|2 = 1

4

�

s,r

�
e2

s

�2
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We are going to need the result of this trace in other calculations, so let us compute separately:
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This can be interpreted as the sum of two projection operators:
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k2gµν − kµkν

�
projects in the direction

transverse to k (which is the photon momentum) and (lµlν) projects in the direction longitudinal to l
(which is, by construction, transverse to k). In other words, the leptonic current is transverse to the
photon momentum. Plugging this back into (B.5),
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In the last equality we have used the definition of the scattering angle:
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Integrating |M|2 over the solid angle, one obtains:
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B.2 e+e− → π0ω

Next up, we have e−e+ → π0ω.
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Also,

k = p1 + p2 = q1 + q2,

l = p1 − p2, l� = q1 − q2. (B.15)
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The invariant amplitude for this diagram can be written [Schneider 2012] as
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Squaring this and averaging/summing over spin/polarization states, we get
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µur(p2))

∗ �µναβ(n
ν(q2))

∗qα1 k
β×

× (v̄s(p1)γ
σur(p2)) �σρλκ(n

ρ(q2))q
λ
1k

κ|fωπ0(s)|2

=
1

4

��
e2

s

�2

(ūr(p1)γ
µvs(p2)v̄

s(p1)γ
σur(p2)) �µναβ�σρλκ×

×(nν(q2))
∗(nρ(q2))q

α
1 q

λ
1k

βkκ|fωπ0(s)|2. (B.17)

After the summation, fermion parts transform into a trace as in (B.5) and the vector meson polarization
sum will yield the metric tensor (see [Schneider 2012] for details). Finally,

|M3|2 = −
�
e2

s

�2
1

4
tr
�
γµ
�
/p1 −me

�
γσ
�
/p2 +me

���
�µναβ�σ

ν
λκq

α
1 q

λ
1k

βkκ
�
|fωπ0(s)|2

(B.6)−−−→ =

�
e2

s

�2
1

2

� �
k2gµσ − kµkσ

�
+ (lµlσ)

��
�µναβ�σ

ν
λκq

α
1 q

λ
1k

βkκ
�
|fωπ0(s)|2

=

�
e2

s

�2
1

2

�
k2�µναβ�

µν
λκq

α
1 q

λ
1k

βkκ + �µναβ�σ
ν
λκl

µlσqα1 q
λ
1k

βkκ

�
|fωπ0(s)|2. (B.18)

To proceed, recall

�µναβ�
µν

λκ = 2(gακgβλ − gαλgβκ),

�µναβ�σ
ν
λκ = −gασgβλgκµ + gαλgβσgκµ + gασgβκgλµ − gακgβσgλµ − gαλgβκgµσ + gακgβλgµσ. (B.19)

So,

k2�µναβ�
µν

λκq
α
1 q

λ
1k

βkκ = 2k2
�
(q1 · k)2 − q21k

2
�

=
s

2
λ(s,m2

π,m
2
ω),

�µναβ�σ
ν
λκl

µlσqα1 q
λ
1k

βkκ = (q1 · l)2k2 + (q1 · k)2l2 − q21k
2l2

=
1

4s
λ(s,m2

π,m
2
ω)λ(s,me,me)

�
cos2(θs)− 1

�
. (B.20)

Using this,

|M3|2 =
�
e2

s

�2
s

4
λ(s,m2

π,m
2
ω)

�
1− λ(s,me,me)

2s2
�
1− cos2(θs)

��
|fωπ0(s)|2. (B.21)

Integrating |M3|2 over the solid angle, one obtains:
�

|M3|2dΩ =
2πe4

4s
λ(s,m2

π,m
2
ω)

� +1

−1

�
1− λ(s,me,me)

2s2
�
1− cos2(θs)

��
|fωπ0(s)|2d cos(θs)
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=
πe4

s
λ(s,m2

π,m
2
ω)

1

2

�
2− λ(s,me,me)

2s2

�
2− 2

3

��
|fωπ0(s)|2

=
πe4

s
λ(s,m2

π,m
2
ω)

�
1− 1

3

λ(s,me,me)

s2

�

� �� �
=2/3 for me�s

|fωπ0(s)|2. (B.22)

Defining as before,

[ξ3(s)]
2 =

1

3

λ(s,m2
π,m

2
ω)

s
, (B.23)

we have
�

|M3|2dΩ = (4π)e2[ξe+e−(s)]
2 1

s2
e2[ξ3(s)]

2 s

2
|fωπ0(s)|2. (B.24)

Using (2.14),

σe+e−→π0ω =
1

64π2

λ1/2(s,m2
π,m

2
ω)

λ1/2(s,m2
e,m

2
e)

1

s

�
|M3|2dΩ

=
πe4

64π2s2
λ3/2(s,m2

π,m
2
ω)

λ1/2(s,m2
e,m

2
e)

�
1− 1

3

λ(s,me,me)

s2

�
|fωπ0(s)|2

m2
e�s−−−−−→

α=e2/4π
=

16π3α2

64π2s2
λ3/2(s,m2

π,m
2
ω)

s

�
1− 1

3

�
|fωπ0(s)|2

=
πα2

3

λ3/2(s,m2
π,m

2
ω)

s4
s

2
|fωπ0(s)|2

� �� �
|F3(s)|2

. (B.25)

Note that (B.25) has almost the same form as (B.13). They become exactly identical if one absorbs
the extra factor of s/2 in the definition of the form factor, i.e. F3(s) ≡

�
s/2fωπ0(s).
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C The two-potential model

C.1 Self-energy and resonance potential

For the calculation of the discontinuity of the self-energy Σk, we need to first consider the disconti-
nuities of its constituent parts: centrifugal barrier factor, channel propagator and vertex. Centrifugal
barrier factors are basically powers of momenta and have no discontinuity. The discontinuity of the
propagator can be derived from the Lippmann-Schwinger equation:

T = V + V GT,

disc [T ] = T − T ∗

= V GT − V G∗T ∗

= V GT − V GT ∗ + V GT ∗ − V G∗T ∗

= V G disc [T ] + V disc [G]T ∗

(A.5)−−−→ = V G T2iσT ∗ + V disc [G]T ∗,
(A.5)−−−→ disc [T ] = T2iσT ∗,

=⇒ disc [G] = 2iσ. (C.1)

Gk + T̃kkGk Gk ≡ ΓkGk =⇒ Gk +GkT̃kkGk ≡ GkξkΓk,out. (C.2)

Vertices are defined so that they include elastic rescattering (C.2). We have already calculated the
discontinuity due to elastic scattering in Appendix A.2. This will be similar to the one for the form
factor (A.13):

disc [Γ] = 2iσT̃ ∗Γ. (C.3)

Finally, the discontinuity of Σk can be derived as follows:

disc [Σk] = disc [ξkGkΓkξk]

= ξ2k (disc [Gk]Γk +G∗
kdisc [Γk])

(C.1,C.3)−−−−−→ = ξ2k

�
2iσkΓk + 2iσkG

∗
kT̃

∗
kkΓk

�

= 2iσkξ
2
k

�
1 +G∗

kT̃
∗
kk

�
Γk

= 2iσkξ
2
k|Γk|2. (C.4)

This allows us to write the integral solution for Σk as (2.47).
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The resonance t-matrix is defined as

i j
tRij

= i j
VRij

+ i k j
VRik VRkj

+ i k l j
VRik VRkl VRlj

+ . . .

(C.5)

Note that wherever applicable, elastic rescattering is taken care of by the vertices (see (C.2)). Finally,

(ξiΓi)tRij(ξjΓj) = (ξiΓi)VRij(ξjΓj)

+ (ξiΓi)VRik(ξkGkΓkξk)VRkj(ξjΓj)

+ (ξiΓi)VRik (ξkGkΓkξk)� �� �
Σk

VRkl(ξlGlΓlξl)VRlj(ξjΓj) + . . .

= (ξiΓi)

� ∞�

n=0

VRΣ

�

ik

VRkj(ξjΓj)

= (ξiΓi) [1C − VRΣ]
−1
ik VRkj(ξjΓj)

= (ξiΓi)
�
[1C − VRΣ]

−1VR

�
ij
(ξjΓj), (C.6)

where it should be clear, that
[VRΣ]ij = VRijΣj . (C.7)

In the end,
tR = [1C − VRΣ]

−1VR. (C.8)

C.2 Form factor

The expression for the form factor using the two-potential formalism can be derived as follows:

ξiFi = ξiMi + TijGjξjMj , (C.9)

Fi = Mi + TijGj(ξj/ξi)Mj

=
�
δij + T̃ijGj(ξj/ξi) + TRijGj(ξj/ξi)

�
Mj

=
�
δij(1 + T̃iiGi) + TRijGj(ξj/ξi)

�
Mj

= (δijΓout,i + TRijGj(ξj/ξi))Mj
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=
�
δijΓout,i + ξiΓout,itRijξjΓ

†
in,jGj(ξj/ξi)

�
Mj

= Γout,i
�
δij + tRijξ

2
jΓ

†
in,jGj

�
Mj

= Γout,i (δij + tRijΣj)Mj . (C.10)

Note that

tR = [1C − VRΣ]
−1VR

=⇒ tRΣ = [1C − VRΣ]
−1VRΣ = −1C + [1C − VRΣ]

−1. (C.11)

So,

Fi = Γout,i
�
δij + (−δij) + [1C − VRΣ]

−1
ij

�
Mj

= Γout,i[1C − VRΣ]
−1
ij Mj . (C.12)

The discontinuity of the above expression can be calculated as follows:

disc [Fi] = disc [Γout,i] [1C − VRΣ]
−1M + Γ∗

out,idisc
�
[1C − VRΣ]

−1
�
M

= disc [Γout,i]� �� �
2iT̃iiσiΓout,i

[1C − VRΣ]
−1M + Γ∗

out,i[1C − VRΣ]
−1VR disc [Σk]� �� �

2iσkξ
2
k|Γk|2

[1C − VRΣ]
−1M

= 2i
�
T̃ ∗
iiδik + ξiΓ

∗
out,itRikΓ

∗
out,kξk

�

� �� �
T ∗
ik

σk(ξk/ξi)Γout,k[1C − VRΣ]
−1
kj Mj� �� �

Fk

= 2iT ∗
ikσk(ξk/ξi)Fk. (C.13)

C.2.1 Form factor at s = 0

Within the resonance model, where photon mixing is allowed, VR is given by (2.57). This means, that

Fi(0) = Γout,i(0)� �� �
1

�
1C −

�
−e2

ccT

s
Σ(s)

� �����
s=0

�−1
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�
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−e2
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s
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π
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sthr,i

ds�
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������
s=0

�−1

ik

ck

=


1C −
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1
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�
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c2l Blc
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kBk + . . .
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= ci
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= ci


1−

�
−e2

�
c2k

1

π

� ∞

sthr,i

ds�σk(s�)ξ2k(s
�)|Γk(s

�)|2
(s�)2

� �� �
δ




−1

. (C.14)

Therefore, to obtain Fi(0) = ci, one needs to redefine the normalization constants:

ci → ci[1− δ]. (C.15)
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