
Improving the tt̄tt̄ event selection

with Graph Neural Networks

in multilepton final states

at the ATLAS detector

MASTERARBEIT IN PHYSIK

VON

VAKHTANG ANANIASHVILI

ANGEFERTIGT IM

PHYSIKALISCHEN INSTITUT

VORGELEGT DER

MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT DER

RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

NOVEMBER 2021

1. Gutachter: Prof. Dr. Markus Cristinziani

2. Gutachter: Prof. Dr. Florian Bernlochner

Abstract

A study on the use of Graph Neural Networks for the selection of tt̄tt̄ events in the ATLAS

detector is presented. Data used is the Monte-Carlo simulated proton-proton collision events at
√
s = 13TeV. The analysis is only concerned with the same-sign multilepton channel. After

optimization, GNNs achieved a performance of AUC = 0.87435± 0.00166 which is an improve-

ment over the previous studies conducted on the same data using Boosted Decision Trees and

Feedforward Neural Networks.

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Markus Cristinziani for the opportunity

of conducting my research as a member of the ATLAS Collaboration. Prof. Cristinziani was

extremely supportive throughout my studies, providing valuable feedback, and sharing knowl-

edge and experience. I am also grateful to Prof. Dr. Florian Bernlochner, for being the second

examiner of my master’s thesis, and taking time to evaluate my work.

I would like to express my immense gratitude towards PD Dr. Akaki Rusetsky, for granting me

the possibility of pursuing my master’s degree studies at the University of Bonn, for being a

great mentor and always showing support.

I am also very thankful to fellow members of Prof. Cristinziani’s group. Dr. Ogul Öncel, was

instrumental at the early stages of my research. He was always available for help and was eager

to share his vast experience. Niklas Schwan was kind enough to walk me through the research he

conducted on a similar topic a year earlier. He shared his code with me, which greatly assisted

me in understanding the inner-workings of the Neural Networks. Katharina Voß and Gabriel

Gomes helped me with the preparation of my master’s thesis colloquium, by giving me valuable

feedback.

I am very grateful to Dr. Peter Falke, for introducing me to the Graph Neural Networks and

for convincing me to use this Neural Network architecture for my analysis. He guided me

throughout my research by providing useful and practical knowledge, and was always available

for quick questions as well as insightful discussions.

Lastly, I would like to thank my fellow students, Lado Razmadze and George Chanturia who

were by my side throughout my studies, and were always willing to lend a helping hand.

Contents

1 Introduction 1

2 Theoretical Background 3

2.1 Standard Model . 4

2.2 Top Quark . 6

2.3 tt̄tt̄ Production . 7

3 ATLAS Experiment 9

3.1 Large Hadron Collider . 10

3.2 ATLAS Detector . 11

3.3 Particle Signatures . 16

4 Data 17

4.1 Monte-Carlo Simulation . 18

4.2 Event Selection and Signal Region . 19

4.3 Data Splitting Strategy . 20

5 Introduction to Machine Learning 21

5.1 Supervised Learning . 22

5.2 Train – Test – Validation Split . 22

5.3 Neural Networks . 23

5.4 Building Blocks of a Machine Learning Algorithm 26

5.4.1 Loss Function . 26

5.4.2 Optimizer . 27

5.4.3 Performance Measures . 28

6 Graph Neural Networks 31

6.1 Definition . 32

6.2 Experimental Setup . 34

7 Previous Studies 35

7.1 BDT Studies . 35

7.2 FNN and RNN Studies . 35

8 Results 37

8.1 Bootstrapping . 38

8.2 Learning Rate Optimization . 40

8.3 Variable Optimization . 42

8.4 Aggregation Functions . 44

8.5 Validation . 45

9 Conclusion 47

A Appendix 49

A.1 Table of BDT Variables . 49

A.2 Additional Plots . 50

1
Introduction

Understanding the world of elementary particles holds the keys to uncovering the inner work-

ings of the universe. Decades of research have culminated into the most precise description of

particle physics, the Standard Model. Despite its remarkable success, there still remain physical

phenomena that are yet to be explained.

Construction of the Large Hadron Collider, the largest particle accelerator in the world, allows for

producing and detecting extremely rare and highly energetic processes, such as the simultaneous

production of four top quarks. The precise measurement of this process can give insight into

Beyond Standard Model physics. The ATLAS detector is the largest general purpose particle

detector, located around the Large Hadron Collider. It produces an inordinate amount of data,

which needs to be rigorously processed to detect the events we are looking for.

Recent advances in the field of Machine Learning have aided the efforts of particle physicists with

this task. This thesis will explore the use of Graph Neural Networks for the signal-background

separation of the tt̄tt̄ events, in multilepton final states. Graph Neural Networks are a novel

machine learning architecture that operate on mathematical graph structures. Representing

particle physics data as graphs, allows for capturing complicated relationships between different

particles.

This thesis will start by introducing the Standard Model and the top quark. The next two

chapters will concern the ATLAS experiment and the data used for this analysis. The following

two chapters will explain the basic concepts behind machine learning algorithms, as well as

Graph Neural Networks. Chapter 7 will summarize the results of previous studies conducted on

the same data, using different machine learning algorithms. Lastly, Chapter 8 will document

the findings of this analysis, and compare the achieved performance to the results presented in

Chapter 7.

2
Theoretical Background

This chapter will provide theoretical background necessary for understanding elementary particle

physics processes that are the focus of this research. Firstly, the Standard Model (SM) of particle

physics will be introduced, which represents the most precise description of elementary particles

to date.

Section 2.2 presents the top quark, which is of particular interest for our analysis, and how this

particle stands out among other SM particles. Further, this section provides a brief review of

the possible production and decay channels of the top quark.

Lastly, Section 2.3 will describe the simultaneous production of four top quarks, which is one

of the energetically highest processes accessible at the Large Hadron Collider. Possible decay

channels of this process and their categorization will be explained, in order to outline the focus

of this analysis.

4 THEORETICAL BACKGROUND

2.1 Standard Model

The Standard Model of particle physics describes two types of elementary particles, namely

fermions and bosons [1]. These names come from the spin statistics that these particles obey.

Fermions have a half-integer spin and therefore are described by Fermi-Dirac statistics. Bosons

have an integer spin and are in turn described by Bose-Einstein statistics. Particles with half-

integer spin obey the Pauli exclusion principle, while the particles with integer spin do not.

Because of this property, fermions are the building blocks of matter, while bosons are the force-

mediating particles of 3 fundamental forces of our universe.

There are 12 fermions, each with a corresponding anti-particle. Anti-particles have similar

properties to particles, only differing in the sign of their additive quantum numbers (e.g. electric

charge, baryon number, lepton number). These 12 particles are further subdivided into two

classes, quarks and leptons. Both of these classes have pairs of particles arranged in 3 generations.

𝑢 𝑡

Q
u

ar
ks

Le
p

to
n

s

𝑒 𝜇 𝜏

𝜈𝑒 𝜈𝜇 𝜈𝜏

𝑐

𝑠 𝑏𝑑

electron neutrino muon neutrino tau neutrino

electron muon tau

down strange bottom

up charm top

Strong Force

𝑔

𝑊 𝑍

𝛾

Weak Force

Gauge
Bosons

Electromagnetic Force

Scalar
Boson

𝐻

FERMIONS BOSONS

125 GeV

91 GeV80 GeV

0

0

gluon

photon

W boson Z boson

Higgs boson

0
1

0
1

0
1

±1
1

0
0

-1
1/2

-1
1/2

-1
1/2

0
1/2

0
1/2

0
1/2

-1/3
1/2

-1/3
1/2

-1/3
1/2

2/3
1/2

2/3
1/2

2/3
1/2

173 GeV

4.18 GeV93 MeV4.67 MeV

2.16 MeV 1.27 GeV

511 eV 106 MeV 1.78 GeV

< 0.12 eV< 0.12 eV< 0.12 eV

Figure 2.1: Elementary particles of the Standard Model of particle physics.

Quarks carry color charge (r, g, b) and therefore interact via the strong interaction. Because

of the nature of the strong interaction, quarks are confined in colorless particles and are never

found in nature independently. These composite particles are called hadrons, and exist in two

types: mesons and baryons. Mesons consist of a quark and an anti-quark with a color-anticolor

combination, and (anti-)baryons consist of 3 (anti-)quarks each with a different color.

Quarks also have an electric charge and interact with the electromagnetic field. Each generation

has a quark with electric charge +2
3 and −1

3 . Due to the color confinement described above,

hadrons always end up with an integer electric charge.

THEORETICAL BACKGROUND 5

As it has already been mentioned, quarks come in 3 generations of weak isospin doublets: (u, d),

(c, s), (t, b). The strength of the weak coupling of quarks is described by the CKM matrix.

Up-type quarks (u, c, t) can only decay to down-type quarks (d, s, b) and vice versa.

Leptons do not carry color charge, hence they do not interact with the strong field. Electron,

muon, and tau each have an electric charge of −1, while all neutrinos are electrically neutral,

thus they only interact through the weak interaction.

Only first generation fermions are stable. Higher generation fermions quickly decay to the first

generation fermions with very short lifetimes. Therefore ordinary matter is composed of particles

from the first generation.

The forces in the Standard Model are mediated by gauge bosons. Gluons are the massless

electrically neutral mediators of the strong force, with 8 possible color charge configurations. The

electromagnetic force is mediated by photons which are also massless, colorless and chargeless.

The weak interaction is governed by the exchange of 3 gauge bosons. W+ and W− are massive

electrically charged gauge bosons with electric charges +1 and −1 respectively. Z0 is also

massive, but electrically neutral.

The latest addition to the Standard Model is the Higgs boson. The existence of this particle

was theoretically proposed in 1964, and experimentally confirmed in 2012 [2]. The Higgs boson

is a massive, spin-zero boson. It is the only particle in the Standard Model without spin. This

particle is an evidence of the existence of the scalar Higgs field, which is responsible for giving

mass to all the massive particles in the Standard Model through the Higgs mechanism.

Despite being the best description of particle physics to date, the Standard Model fails to

explain a number of phenomena. The biggest shortcoming is the failure of describing the fourth

fundamental force of gravity, and its interaction with SM particles. Some other issues that are

yet to be explained are the nature of Dark Matter and the reason behind the baryon asymmetry.

6 THEORETICAL BACKGROUND

2.2 Top Quark

The top quark was the last quark to be discovered, in 1995 at Fermilab [3, 4]. It stands out as

the most massive elementary particle of the Standard Model [1]:

mt = 172.8± 0.3GeV, (2.1)

making it more than 40 times heavier than the bottom quark, and even slightly heavier than a

whole Tungsten (74W) atom.

There are several relevant processes for the production of top quarks, assuming the center-of-

mass energy is sufficiently high. These processes can be classified based on the amount of final

state top quarks in two categories: top-quark pair production, and single-top production.

tt̄ pair production via the strong interaction is the dominant mode. Example of this process can

be seen on Figure 2.2a below. The 3-gluon vertex can also be replaced by a qq̄ annihilation into

a highly energetic gluon. The gluon propagator can in turn be replaced by a photon or a Z0

boson, however these processes are highly suppressed.

(a) tt̄ pair production (b) Single t production

Figure 2.2: Main channels of top-quark production

Single top quark can only be produced via weak interaction, making this process relatively

unlikely compared to the tt̄ pair production, since the weak interaction is suppressed by the

W boson mass. Due to this reason, the production of a single top quark was experimentally

confirmed 11 years later in 2009, also at Fermilab [5, 6].

Because of its large mass, the top quark has a very short lifetime [1]:

τ ≈ 5 · 10−25s. (2.2)

This value is so small that t quarks decay before they hadronize. The only known decay channel

is through the weak interaction, where a t quark decays into a down-type quark and a W boson.

Since, the diagonal terms of the CKMmatrix are significantly larger compared to the off-diagonal

terms, i.e |Vtb| ≫ |Vts| ≫ |Vtd|, the t-to-b transition is much more likely compared to the other

two quarks, with a relative branching ratio of [1]:

Γt→Wb

Γt→Wq
= 0.957± 0.0340. (2.3)

THEORETICAL BACKGROUND 7

2.3 tt̄tt̄ Production

The simultaneous production of four top quarks is one of the most energetic final state seen at

the Large Hadron Collider. Owing to the incredibly high center-of-mass energies required for

the production, this process is very rare. The expected SM cross section for the tt̄tt̄ production

at
√
s = 13 TeV, according to the latest calculation at Next-to-Leading Order (NLO) in QCD

and EW couplings [7], is:

σtt̄tt̄ = 11.97+18%
−21% fb. (2.4)

A precise measurement of this process is of particular interest, since many Beyond Standard

Model (BSM) theories predict the enhancement of this cross section [8, 9, 10].

Figure 2.3: Feynman diagrams of Leading Order (LO) tt̄tt̄ production in the Standard Model.

As it was already mentioned in the previous section, each one of the 4 quarks will decay into

a bottom quark and a W± boson. W± bosons in turn decay either hadronically, into a quark-

antiquark pair, or leptonically, into a lepton and a neutrino of the same flavour.

t → b+W±
hadronic: W± → q + q̄ 67% [1]

leptonic: W± → l + ν 33% [1]

As a result, the final state consists of at least four b-jets, and several leptons. The branching

ratios for various hadronic and leptonic decay combinations can be seen in Table 2.1. These

decay channel combinations can be classified according to the number and charge of the final

state leptons. The 1LOS (one lepton, opposite sign) channel includes decays with only one

charged lepton, or 2 charged leptons with opposite sign. The SSML (same-sign, multilepton)

channel consists of decays that result in at least 2 leptons of the same sign in the final state.

1LOS SSML

hhhh hhhl hhll OS hhll SS hlll llll

BR 0.311 0.422 0.143 0.072 0.049 0.004

Table 2.1: Branching ratios of the tt̄tt̄ decay [11].

Note that the branching ratios for hadronic and leptonic decays cannot simply be combined to

get the values of the table. The reason behind this is that a portion of leptonically decaying

W ’s decays into a τ lepton, which in turn can decay hadronically. The goal of this research will

be to improve identification accuracy of tt̄tt̄ events that decay through SSML channel.

3
ATLAS Experiment

The ATLAS experiment was built and is operated by a global collaboration involving roughly

3000 physicists from 40 different countries and is aimed at discovering new particles and physics

phenomena by taking advantage of the unprecedented energies achieved by the Large Hadron

Collider.

Section 3.1 provides basic information about the Large Hadron Collider itself. Section 3.2

introduces the ATLAS detector, the largest among the four general-purpose particle detectors

located around the accelerator ring. Firstly, the coordinate system used for documenting events

in the ATLAS detector will be explained, which will be followed by a description of the various

components of this detector and the detector technologies that are implemented for particular

tasks.

Lastly, Section 3.3 will detail the types of signatures left by elementary particles of the Standard

Model, and the method of accounting for neutrinos, which escape the detector cavern undetected.

The information provided in this chapter is based on Ref. [12].

10 ATLAS EXPERIMENT

3.1 Large Hadron Collider

The Large Hadron Collider or LHC is the largest and most powerful particle accelerator in the

world. The accelerator sits in a 27-kilometer tunnel approximately 100 meters underground on

the Swiss-French border near CERN headquarters.

The accelerator utilizes an array of superconducting dipole and quadrupole magnets, which

are cooled down to -271.3◦C, in order to confine the proton beams within the beam pipe and

direct them around the accelerator. Protons travel at close to the speed of light in two separate

beam pipes in opposite directions. When the beams are fully accelerated at the center-of-mass

energy of 13TeV, protons travel just 11 km/h slower than the speed of light, resulting in 11245

revolutions per second, and a collision rate of 40MHz. Particles travelling through the beam

pipes are concentrated in 2808 bunches, with each bunch containing approximately 1.15× 1011

protons.

Such high energies and particle numbers are required for producing enough statistics for the

observation of extremely rare events like tt̄tt̄. The number of collisions produced in a collider

can be quantified by the Luminosity L:

L =
1

σ

dN

dt
[L] = m−2s−1 (3.1)

where, σ is the cross-section for a given interaction and dN/dt describes the number of events

per unit time. The LHC achieved luminosities of 1034 cm−2s−1 in June 2016, and has since

surpassed this value.

Luminosities of this magnitude result in many interactions per bunch crossing. In general only

a single interaction with the highest energy, called the hard-scattering event, is of interest, while

the rest are background which needs to be removed. These background events are termed pile-up,

and their removal is a challenging task.

Beams intersect at 4 distinct points along the circular trajectory. These intersection points are

aimed to be at the center of 4 particle detectors located around the accelerator ring: ATLAS,

CMS, ALICE and LHCb. These detectors surround each intersection point, and have layered

structures optimal for detecting various types of secondary particles produced after the collision.

LINAC 2

North Area

LINAC 3
Ions

East Area

TI2
TI8

TT41TT40

CLEAR

TT2

TT10

TT66

e-

ALICE

ATLAS

LHCb

CMS

SPS

TT20

n

p

p

RIBs
p

1976 (7 km)

ISOLDE
1992

2016

REX/HIE
2001/2015

IRRAD/CHARM

BOOSTER
1972 (157 m)

AD
1999 (182 m)

LEIR
2005 (78 m)

AWAKE

n-ToF
2001

LHC
2008 (27 km)

PS
1959 (628 m)

2011

2016

2015

HiRadMat

GIF++
CENF

p (protons) ions RIBs (Radioactive Ion Beams) n (neutrons) –p (antiprotons) e- (electrons)

2016 (31 m)
ELENA

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear

Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive

EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight //

HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility //

GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrino platForm

2017

The CERN accelerator complex
Complexe des accélérateurs du CERN

Figure 3.1: Diagram of the CERN accelerator complex [13].

ATLAS EXPERIMENT 11

3.2 ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS) is the largest particle detector at the LHC. It is designed

to take advantage of the unprecedented energies achieved at the LHC and discover unknown

massive particles.

The detector is made of concentric cylindrical detecting layers specializing in detecting specific

types of particles. The signature left by each particle in these layers allows for identification

of the particle type, as well as its properties like mass, charge, energy and momentum. The

detector has four major components:

� Inner Detector,

� Calorimeters,

� Muon Spectrometer,

� Magnet System,

each of which have a complex structure that will be discussed below in further detail.

Events in the ATLAS detector are described by the cylindrical coordinates (z, ϕ, η), where the

radial coordinate z is chosen to be directed along the beam axis. ϕ is the azimuthal angle in a

plain perpendicular to the beam axis. η is the pseudorapidity, which is the transformed polar

angle θ:

η = − ln

[
tan

(
θ

2

)]
. (3.2)

As a result of this transformation, particles travelling perpendicular to the beam axis, correspond

to η = 0, while particles travel along this axis with η = ∞. This choice has the benefit of having

approximately a constant flux of particles per unit η.

Figure 3.2: Computer generated image of the ATLAS detector [12].

12 ATLAS EXPERIMENT

Inner Detector

The inner detector is the first cylindrical layer located closest to the interaction point, where

the density of particles is highest. This detector system has the highest granularity, in order to

achieve a proper resolution close to the interaction vertex. The detector is used to reconstruct

the tracks of the charged particles through their interaction with the medium at discrete points.

Reconstructed tracks are used to deduce the particle type and its momentum, as well as for

locating the interaction vertex where the particle originated from.

Figure 3.3: Computer generated image of the inner detector [14].

The inner detector consists of 3 parts:

� Pixel Detector: the innermost of the 3 detectors consists of 92 million pixels, distributed

cylindrically around the beam axis in 3 layers, and in 3 disks for each end-cap region

covering high pseudorapidity ranges. Most pixels have dimensions of 50× 400 µm.

� Semi-Conductor Tracker: it utilizes four double layers of long narrow silicon strips of

80µm×12cm in size, in order to detect particle tracks over a larger area compared to pixel

detector.

� Transition Radiation Tracker: the outermost of the 3 detectors is made up of 4 mm

wide drift tubes. Drift tubes are gas filled tubes with a thin wire stretched out at the

center, which is held at −1500 V. Charged particles going through the tubes, ionize the

gas. Due to high voltage, negative ions drift towards the wire, producing a pulse signal.

The resolution of the TRT is lower compared to the two inner detectors, which was a

necessary compromise for covering a larger area.

ATLAS EXPERIMENT 13

Calorimeters

The calorimeters are situated around the inner detector, and are designed to fully absorb the

energies of most particles, in order to bring them to a stop. Calorimeters are made up of

alternating layers of high-density metal that slows down incoming particles and active medium

used for measuring the deposited energies.

Figure 3.4: Structure of the calorimeter system [15].

The calorimeter system consists of 2 different calorimeters:

� Electromagnetic (EM) Calorimeter: a liquid argon calorimeter designed to measure

energies of electrons and photons, as well as tau leptons and hadrons. It is composed of

layers of metal with liquid argon in between. The particles interact with metal sheets,

causing a shower of secondary particles. These particles ionize the liquid argon, which is

kept at −184◦C, and produce an electric signal. Using the signal pulse, the energies of the

original particles can be determined.

� Hadronic Calorimeter: a tile calorimeter surrounding the EM calorimeter. It is used

for measuring energies of particles that are not fully stopped within the previous layers,

most of which are hadrons. Unlike the electromagnetic calorimeter, instead of liquid

argon, the hadronic calorimeter utilizes plastic scintillating tiles sandwiched between steel

plates. Showers produced in the layers of steel cause photon cascades inside the scintillating

material, which are in turn converted to an electrical current. The magnitude of this signal

is proportional to the energy of the original particle.

The only type of known particles that escape outside of the inner detector and calorimeter

system, are muons and neutrinos.

14 ATLAS EXPERIMENT

Muon Spectrometer

The muon spectrometer is the last layer of the ATLAS detector. It covers a large cylindrical

area, starting at 4.25 m away from the beam axis, right after the calorimeters, and extending up

to 11 m. Such a large area coverage is necessary for reconstructing the muon tracks before they

leave the detector. Muon detection is a vital factor for distinguishing between various physical

processes.

Figure 3.5: Structure of the muon spectrometer [16].

The muon spectrometer consists of 4 different detector technologies:

� For precision measurement:

– Monitored Drift Tubes

– Cathode Strip Chambers

� For trigger:

– Resistive Plate Chambers

– Thin Gap Chambers

The trigger system provides an accurate time resolution for passing particles, which is crucial for

bunch crossing identification, as well as triggering the data recoding for the detecting chambers

behind. These chambers measure the amount of ionized charge, giving insight about the energy

of the muon. The locations of these signals are used to reconstruct the tracks of the muons and

measure their momenta. The muon spectrometer has a 16-fold segmentation in azimuth. The

chambers are oriented in such a way that each muon intersects 3 stations of chambers, which is

necessary for track reconstruction.

ATLAS EXPERIMENT 15

Magnet System

ATLAS detector utilizes a magnetic system, in order to bend the trajectories of charged particles

produced inside the detector. The behavior of the charged particles in the magnetic field gives

us the information about their charge and momentum.

Figure 3.6: Field lines of the central solenoid are shown in green. Field lines of the 3 toroid

magnets are shown in blue [17].

There are two different types of superconducting magnets deployed to achieve the desired field

lines inside the detector:

� Central Solenoid Magnet: it surrounds the inner detector, is 5.6 m long and 2.56 m in

diameter. It provides magnetic fields of approximately 2 T.

� Toroid Magnets: they are located outside of the calorimeters and are used for bending

muons. The main barrel toroid is made up of 8 superconducting coils each in an individual

cryostat. The two end-cap toroids, also consisting of 8 coils, which are housed in a single

cryostat, are inserted at each end of the detector. Both toroids produce a field of 4 T at

the surface of the superconductor.

Strong magnetic fields are necessary for accurately measuring the radius of curvature r, which

is used for calculating the charge and momentum of the particle:

r =
p

qB
. (3.3)

The direction of the curvature tells us whether we are dealing with a particle or an anti-particle,

and the radius of curvature allows us to measure its momentum.

16 ATLAS EXPERIMENT

3.3 Particle Signatures

Figure 3.7 below depicts signatures each type of particle leaves inside the detector. Photons

do not leave any tracks in the inner detector, since they are not charged, and deposit all their

energies in the EM calorimeter. Unlike photons, electrons leave curved tracks in the inner

detector, and are fully stopped by the EM calorimeter, as well. Hadrons can only be stopped by

the Hadronic calorimeter. Just like photons, electrically neutral hadrons do not leave tracks in

previous layers. Muons only interact slightly with various detector components, before exiting

the detector. Their momenta are measured according to the curvature of their tracks.

Figure 3.7: Diagram of particle paths in the detector [18].

At this point all Standard Model particles other than neutrinos have left a signature inside

the detector. Neutrinos exit the detector cavern without any interactions, and the only way to

account for their energies is to precisely measure the tracks of every other type of particle. This

information can be used in combination with the law of conservation of momentum, to deduce

the missing transverse energy:

Emiss
T =

√
(Emiss

x)2 + (Emiss
x)2 (3.4)

where,

Emiss
x = −

∑
i

(px)i Emiss
y = −

∑
i

(py)i (3.5)

and the sum is over all reconstructed particles.

4
Data

The particles created in the proton-proton collisions at the LHC interact with the various com-

ponents of the detector, and produce signals. This raw data is selectively recorded and put

through several steps of pre-processing. Various algorithms are utilized to reconstruct parti-

cle types, their trajectories and energies in order to produce the datasets with reconstructed

physical objects, such as individual particles or particle jets. This information needs further

treatment, in order to identify the original process that resulted in such decay products.

The very point of the machine learning algorithm we are attempting to create, is to assign a

correct label to an actual recorded event of the ATLAS detector. To achieve this goal, we need to

have true information about the events in our dataset, in order to teach the algorithm what kind

of signature each type of event leaves in the detector. Needless to say, that this information is

unavailable in ATLAS datasets. To solve this problem, artificial datasets are produced through

Monte-Carlo simulation.

This chapter will introduce the dataset used in this research, and briefly describe the meth-

ods used for its production. Further, it will present the procedure of event selection, and the

definition of the signal region, as well as the concept of event weights and purposes of their

application.

18 DATA

4.1 Monte-Carlo Simulation
Event simulation consists of three distinct stages, namely event generation, parton showering,

and detector simulation. During the first stage events are generated and the immediate decay and

hadronization of the produced particles are simulated. The next stage estimates the interaction

of secondary particles with the detector, which is followed by a simulation of the detector

response, by converting the interactions into voltages and currents. the final output format is

identical to the data recorded by a true detector.

The list of software used for the event generation and parton showering can be seen in Table 4.1

below. Detector simulation of the signal samples (tt̄tt̄ LO & tt̄tt̄ NLO) was performed by

AtlFastII. The detector simulation for the background samples was done with the combination

of AtlFastII and FullSim. For details about the simulation process see Ref. [11].

Dataset Event Generator Parton Showering

tt̄tt̄ LO MadGraph5 aMC@NLO Pythia 8

tt̄tt̄ NLO MadGraph5 aMC@NLO Pythia 8

tt̄W Sherpa 2 Sherpa 2

tt̄WW MadGraph5 aMC@NLO Pythia 8

tt̄Z MadGraph5 aMC@NLO Pythia 8

tt̄H Powheg-Box v2 Pythia 8

V+ jets Sherpa 2 Sherpa 2

V V Sherpa 2 Sherpa 2

t(t̄)X Powheg-Box v2 Pythia 8

tt̄ Powheg-Box v2 Pythia 8

Other MadGraph5 aMC@NLO Pythia 8

Table 4.1: List of software used for event generation and parton showering.

The analysis uses two signal datasets: tt̄tt̄ produced at the LO and tt̄tt̄ at NLO QCD precision.

Background samples consist of associated production of top quark with bosons, top quark pair

production, diboson production, and associated production of gauge bosons and jets. The

“Other” dataset in Table 4.1 includes the following events: tt̄t, t, tt̄ZZ, tt̄HH, tt̄WH, tt̄WZ.

Generator Event Weights

The relative number of events in the dataset for different processes is not proportional to the

respective cross-sections, meaning the dataset is not a good representation of the expected

signature in the ATLAS detector. Hence the number of generated events in the dataset needs

to be scaled accordingly. Further scaling needs to be applied to account for variable factors like

detector configuration, pile up, lepton scaling factors, b-tagging scaling factors, etc. To combat

this, events are scaled with event weights. This scaled number of events is called yield.

Certain simulated events come with negative weights. During the event generation, the genera-

tors encounter divergences while integrating over virtual emissions. Because of this, the negative

weights are utilized to make the overall event distributions correct.

DATA 19

4.2 Event Selection and Signal Region

The simulated datasets are subjected to a sequence of quality checks. Firstly, the overlap

removal procedure is applied, to make sure for instance that energy deposited in calorimeters is

not assigned to two different reconstructed objects. Next, events need to pass the preselection

criteria, which imposes certain cuts on reconstructed particles in order to improve the signal-to-

background ratio. Further details about this procedure can be found in Ref. [11]. Finally, cuts

are applied for the selection of the signal region.

As it has already been mentioned in Section 2.3 our analysis is only concerned with tt̄tt̄ events in

the SSML channel. This imposes the constraint of having at least 2 leptons with the same sign.

In order to further filter the signal region and remove background events, additional cuts are

placed. Event are required to have at least 6 reconstructed jets, 2 of which are tagged as b-jets.

A cut is also placed on the variable HT , which is the scalar sum of lepton and jet transverse

momenta, to be greater than 500 GeV.

(a) Preselection (b) Signal Region

Figure 4.1: HT distributions after applying preselection 4.1(a), and after applying signal region

cuts 4.1(b). The dark red line shows the signal scaled to the total background yield. The last

bin contains all events with HT > 2 000 GeV [19].

As it can be seen in the figure above, the relative contribution of background events in the signal

region is suppressed. These cuts decrease the amount of data from 2.7 million down to 700

thousand events. In the signal region, tt̄W , tt̄Z, and tt̄H are the most dominant backgrounds.

(a) Jet multiplicity Nj (b) Sum of the b-tagging scores
∑

wMV2c10

Figure 4.2: Distributions of jet multiplicity and sum of b-tagging scores in the signal region [19].

20 DATA

4.3 Data Splitting Strategy

The total number of events remaining after the signal selection cuts is 718231, as it can be seen

in Table 4.2. For a proper evaluation of the performance of the algorithm, the dataset needs to

be split into three portions: training, testing, and validation. The reason behind this will be

discussed in Chapter 5.2.

Machine Learning algorithms have a problem with learning from data with negative weights. To

combat this issue, the training dataset, which is the dataset from which the algorithm learns,

uses only the tt̄tt̄ LO dataset, since this dataset only has positive generator weights. Background

events with negative weights are ignored for the training dataset.

Sample Total Training Testing Validation

tt̄tt̄ LO 283457 226765 0 56692

tt̄tt̄ NLO 301420 0 241136 60284

tt̄W 14170 5668 5668 2834

tt̄WW 876 350 350 176

tt̄Z 63621 25448 25448 12725

tt̄H 41043 16417 16417 8209

V+ jets 81 32 32 17

V V 1890 756 756 378

t(t̄)X 926 370 370 186

tt̄ 2294 918 915 461

Other 8453 3381 3381 1691

Total 718231 280105 294473 143653

Table 4.2: Number of events for each dataset in the signal region.

5
Introduction to Machine Learning

The field of Machine Learning (ML) has been going through a renaissance over the last decade.

The progress has been accelerated due to the increased accessibility to computer resources, and

the accumulation of large amounts of data.

Machine learning has been an integral part of particle physics for a long time. Methods like

Boosted Decision Trees and Support Vector Machines have been utilized for various classification

and regression tasks. The recent success of deep learning techniques in computer vision, natural

language processing and other fields has compelled scientists to explore the effectiveness of these

methods when applied to particle physics data [20].

This chapter introduces the general concept of supervised learning, and describes the operation

of various components of a machine learning algorithm. Formal definitions presented in this

chapter are taken from Refs. [21, 22].

22 INTRODUCTION TO MACHINE LEARNING

5.1 Supervised Learning
Supervised learning is concerned with data that can be represented as a set of tuples:

{(xi, yi)}Ni=1, (5.1)

where N is the total number of data entries. Each data point is described by two objects:

� Feature vector x, where each x(j) for j = 1, ..., D is a description of a particular feature

of a data point. For example, if the data describes various countries, x(1) can be used to

contain the area in km2, x(2) for population size, etc. In a feature vector, the jth feature

for each data point should always contain the same type of information.

� Label y contains information about the class of the data point. It can be a single number

or a more complex object. In a binary classification problem, y can be 0 or 1; for a

multi-class problem, y can be a vector containing a one-hot encoding1 representation of

classes.

The goal of supervised learning algorithms is to create a model which correctly predicts the

labels of the data yi from input feature vectors xi. Such an algorithm trains the model by

comparing the output to the true values of yi, and once the model is fully trained it can be used

to classify new data whose label is not known.

5.2 Train – Test – Validation Split
The necessity for splitting up data in several parts comes from the need of properly assessing

the performance of the model, in order to generalize it to previously unseen datasets. The data

internally consists of signal (i.e. the patterns we want to study) and background (i.e. patterns

that minimally deviate from the signal). If we train the ML algorithm on the whole dataset,

the model will fit the signal as well as background, and we will have no way of generalizing its

performance on new data. The process of improving the training performance at the cost of

generalization is called overfitting and is an undesirable characteristic.

The testing set is a portion of the dataset, set aside during the training. At every iteration, the

model runs through the training dataset, predicts output values, and then updates the parame-

ters of the model based on the accuracy of this prediction. We can evaluate the performance of

the model after every training step by feeding it with the testing dataset. This dataset is purely

used for evaluation, and the model doesn’t learn anything from it.

However, there is yet another type of bias we need to account for. After evaluating the perfor-

mance of the testing dataset, we, as the optimizers of the algorithm, take this information and

tune the algorithm accordingly. This introduces a bias of tuning the model to a specific testing

dataset, which might result in overfitting. Therefore we need a validation set, a portion of the

data set aside from the beginning, and never used for either training or testing. Once the full

optimization of the model is complete and the maximum of the testing performance seems to

be reached, we can feed the model with the validation dataset, in order to objectively evaluate

its performance on a previously unseen dataset.
1c1 = (1, 0, . . . , 0), c2 = (0, 1, . . . , 0), · · ·

INTRODUCTION TO MACHINE LEARNING 23

5.3 Neural Networks

As the name suggests, the creation of Neural Network algorithms was inspired by the desire to

formulate a mathematical representation of information processing in the human brain. Our

brains have an ability of inductive thinking and pattern recognition, which are a desireable

characteristic for a machine learning algorithm.

Neural Networks are efficient models for statistical pattern recognition, because of their ability

of modeling non-linear processes. In recent years they have found applications in numerous dis-

ciplines, and have fueled recent advancement in software development. This chapter will present

the inner workings of a Feed-forward Neural Network (FNN) also referred to as a Multilayer

Perceptron (MLP) or simply a Neural Network.

The first layer of the neural network is called the input layer. The size of an input layer is

determined by the amount of features in a feature vector x. Each input feature is represented

by an input neuron. The last layer of the neural network is called the output layer, and has the

characteristic shape of the y labels. For a binary classifier usually the output layer comprises

a single neuron. Between the input and the output layers we have so-called hidden layers. A

neural network with more than one hidden layer is called a Deep Neural Network.

𝑦

𝑥1

𝑥𝑖

𝑛11

𝑛12

𝑛13

𝑛1𝑗

𝑛𝑙1

𝑛𝑙2

𝑛𝑙3

𝑛𝑙𝑚

𝑛21

𝑛22

𝑛23

𝑛2𝑘

Figure 5.1: Graphical representation of a neural network.

The core building blocks of neural networks are neurons. Each hidden layer of the neural network

can be populated with any number of neurons. Neurons take in information from the previous

layer, perform mathematical operations, and output a single number, called the activation of

the neuron. For the purposes of our research we are only going to use fully connected neurons,

meaning each neuron is connected with all the neurons of the previous layer. Such a network

is called a Dense Neural Network. In order to avoid the loss of clarity for the purposes of

generalization, the following shall describe the behavior of a fully connected neural network.

24 INTRODUCTION TO MACHINE LEARNING

Each neuron operates on its inputs using two parameters:

� w, a weight vector, describing the sensitivity to each of the neurons in the previous layer.

The size of this vector is based on the amount of connections.

� b, the bias, a number characteristic of a single neuron.

The activation of a neuron is given by the sum of the inputs multiplied by their respective

weights, plus the bias term:

aj =
D∑
i=1

wjixi + bj . (5.2)

In order to introduce non-linearity into our model, activations are fed to a piecewise differen-

tiable, non-linear activation function g:

z
(1)
j = g(aj) = g

(
D∑
i=1

w
(1)
ji xi + b

(1)
j

)
. (5.3)

Non-linearity helps the model to better fit various types of data and is crucial for generalization.

Here, the superscript (1) denotes the number of the hidden layer. zj is the final output of the

jth neuron in the first layer.

All the outputs of the first hidden layer are subsequently fed to the second layer as inputs.

Therefore the output of the kth neuron in the second layer is:

z
(2)
k = g

 D∑
j=1

w
(2)
kj z

(1)
j + b

(2)
k

 = g

 D∑
j=1

w
(2)
kj g

(
D∑
i=1

w
(1)
ji xi + b

(1)
j

)
+ b

(2)
k

 . (5.4)

Number of neurons and number of hidden layers are among the hyperparameters of the model.

Hyperparameters are fixed quantities governing the model and are used to tune it for specific

applications. These values are set in advance by the person conducting analysis, and are kept

constant throughout the training process. The weights and biases are free parameters and their

values are getting updated as the model trains. The total number of free parameters is governed

by the following equation:

N =

L∑
l=1

nl−1nl + nl. (5.5)

where L is the total amount of hidden layers, and nl is the number of neurons in the lth layer.

This number will quickly explode with the addition of hidden layers, making the training of the

model computationally too demanding to handle.

INTRODUCTION TO MACHINE LEARNING 25

Activation Functions

One of the common examples for an activation function is a sigmoid, defined as:

σ(x) =
1

1 + e−x
. (5.6)

This function squishes the input between 0 and 1 as it can be seen on figure 5.2(a), and is usually

used for the last layer of the neural network classifier.

Another commonly used activation function is a ReLU (Rectified Linear Unit),

ReLU(x) =

0 if x < 0

x if x ≥ 0
. (5.7)

This function simply nullifies the negative values, and leaves the positive values unchanged.

ReLU has the benefit of a reduced computational cost compared to a sigmoid.

Leaky ReLU is a slight modification of the ReLU function. Instead of nullifying the negative

values, it scales them with a factor of 0.1.

Leaky ReLU(x) =

0.1x if x < 0

x if x ≥ 0
. (5.8)

(a) Sigmoid (b) ReLU (c) Leaky ReLU

Figure 5.2: Various activation functions [23].

Weight Initializations

Selecting initial values for the free parameters is another factor that influences the performance

of a neural network. Usually these values are drawn randomly from a certain distribution. This

research will use the TensorFlow implementation of the truncated normal distribution with:

µ = 0 σ =
1√
N

, (5.9)

with the truncation happening at 2 standard deviations away from the mean.

26 INTRODUCTION TO MACHINE LEARNING

5.4 Building Blocks of a Machine Learning Algorithm

Each machine learning algorithm consists of four main components:

� Model

� Loss function

� Optimization routine

� Performance measure

Since the model has already been discussed in the previous chapter, the remaining three will be

explained below.

5.4.1 Loss Function

The loss function, also called a cost function or an objective function, is a function used for

evaluating the performance of the model. This function captures the properties of the model

and distills them down to a single number. A loss function is a measure of distance between the

output and the desired output of the algorithm. The objective of the training is to minimize

this value and reach the local minimum of the function.

There are several types of loss functions used in modern machine learning practices. The main

distinguishing factor is whether the objective at hand is a classification or a regression.

� Classification: process of assigning a class label to an unlabeled data point.

� Regression: process of predicting a target value for an unlabeled data point.

Since, the objective of this research is to separate the tt̄tt̄ process from the background, we are

dealing with a binary classification task. For a loss function our setup will utilize the Binary

Cross-Entropy also known as the Log loss:

L(θ) = − 1

N

N∑
n=1

[
y(n) ln

(
p(n)

)
+
(
1− y(n)

)
ln
(
1− p(n)

)]
(5.10)

where, y(n) is the true label (1 for signal and 0 for background) for a specific event, and p(n) is

the predicted label (number between 1 and 0) of the same event, i.e.

y(n) ∈ {0, 1} and p(n) ∈ [0, 1].

Each time the model evaluates a true signal event with a probability p(n) we add a ln
(
p(n)

)
term

to the loss, and for each true background we add ln
(
1− p(n)

)
. The further away the predictions

are from the true labels, the larger these terms, and vice-versa. This results into an effective

penalization of the model by increasing the loss function for misclassification, therefore taking

the minimization of this function as the goal of the training, improves the predictive power of

the model. Once the parameters of the model are tuned in a way that the loss function is at the

local minimum, the model is said to have converged.

Cross-entropy has the benefit of avoiding small gradients, which are important for the optimizer

in order to achieve fast convergence of the model.

INTRODUCTION TO MACHINE LEARNING 27

5.4.2 Optimizer

An optimizer is an algorithm specifically designed for updating the free parameters of the model,

in order to improve the performance. After every training epoch, once the performance of the

model is evaluated by the loss function, the optimizer takes this value and back-propagates this

information by changing the parameters such that the update results into the decrease of the

loss value.

Our model utilizes the Adam optimization algorithm, proposed in 2015 by D. P. Kingma and

J. L. Ba [24]. The name Adam comes from adaptive moment estimation, and stems from the

fact that the algorithm estimates moments of the stochastic loss function gradients, in order to

adapt the learning rate for each individual parameter. This subsection will concisely summarize

the algorithm outlined in the original paper.

Let’s start out with our loss function f(θ), which is differentiable with respect to each parameter

θ. After assessing the f(θ) at a certain timestep t, we can calculate the gradient of the function

for each parameter:

gt = ∇θft(θ). (5.11)

Since the gradients are being evaluated for small random batches of data, they will have a

stochastic distribution. Adam therefore utilizes an exponential moving average, to calculate the

following values:

� mt, the exponential moving average of the gradient;

� vt, the exponential moving average of the (elementwise) squared gradient.

The exponential decay rates of these moving averages are controlled by the hyperparameters

β1, β2 ∈ [0, 1) which are by default fixed to β1 = 0.9 and β2 = 0.999:

mt = β1 ·mt−1 + (1− β1) · gt vt = β2 · vt−1 + (1− β2) · g2t (5.12)

mt is an estimate for the 1st moment of the gradient (mean), and vt is the estimate for the 2nd

raw moment of the gradient (uncentered variance). The values for these variables at timestep

t = 0 are taken to be the null vectors. This choice introduces an initialization bias, and therefore

requires a bias correction. The bias-corrected estimates are calculated the following way:

m̂t =
mt

(1− βt
1)

v̂t =
mt

(1− βt
2)
, (5.13)

where the exponent t denotes power. Once these values are calculated, the parameters themselves

can finally be updated the following way:

θt = θt−1 − α · m̂t

(
√
v̂t + ϵ)

, (5.14)

where ϵ is another hyperparameter which by default is fixed to ϵ = 10−8.

The parameter α is the stepsize also called the learning rate. This hyperparameter is used to

set the effective bound on the stepsize per update. Unlike the hyperparameters β1, β2, ϵ, which

are usually set to their default values, α depends on the use case and can either be constant, or

have a decay schedule as a function of t.

28 INTRODUCTION TO MACHINE LEARNING

5.4.3 Performance Measures

The output of a binary classifier is a number between 0 and 1, signifying the confidence of the

prediction, whether the given event is a signal (1) or a background (0). Because of this, the

definition of a discrimination threshold value is required, where all events with the predicted

values above this threshold are classified as signal and below this value as background. In order

to avoid choosing this threshold value manually a Receiver Operating Characteristic curve, or

ROC curve, can be used, which estimates the performance of the model for all possible threshold

values, therefore measuring the performance independent of a particular choice of the threshold.

For a binary classifier there are four possible outcome scenarios:

True Positive
(TP)

False Negative
(FN)

False Positive
(FP)

True Negative
(TN)

Positive

Po
si

ti
ve

Negative

N
e

ga
ti

ve

Predicted Label

A
ct

u
al

 L
ab

el

Figure 5.3: Four possible outcome scenarios.

� True Positive (TP): Signal correctly identified as signal

� False Negative (FN): Signal incorrectly identified as background

� False Positive (FP): Background incorrectly identified as signal

� True Negative (TN): Background correctly identified as background

The ROC curve is a plot of a True Positive Rate against a False Positive Rate, which are

defined as following:

� True Positive Rate is defined as the ratio of the number of events correctly identified signal

relative to the total amount of signal:

TPR =
TP

TP + FN
. (5.15)

� False Positive Rate is defined as the ratio of the number of events incorrectly identified as

signal relative to the total amount of background:

FPR =
FP

FP + TN
. (5.16)

INTRODUCTION TO MACHINE LEARNING 29

Plotting these values for all possible thresholds gives a ROC curve shown below in Figure 5.4.

Taking the integral of this curve gives us the Area Under the Curve or AUC. The best possible

model AUC is 1, meaning all events are predicted correctly. A random classifier has an AUC

Value of 0.5 since it can only correctly guess 50% of the time.

Perfect Classifier
1.0

0.5

0.5

0.0 1.0

False Positive Rate

Tr
u

e
P

o
si

ti
ve

 R
at

e

Figure 5.4: Examples for ROC curves.

Another important value to be monitored throughout the research is overtraining, which is a

measure of the ability of the model to generalize. Overtraining is defined as:

O = 1− AUCtest

AUCtrain
. (5.17)

If the performance of the model on the training set is significantly better than on the testing set,

overtraining will be closer to 1, which is an indication of the fact that the model is overfitting

the training set and because of this losing the ability to generalize. However, if the training and

testing values of the AUC are closer, overtraining will be zero. The objective of the optimization

of the model is to monitor this value, in order to keep it below 5%.

6
Graph Neural Networks

Most modern deep learning solutions, such as the one outlined in the previous chapter, follow an

“end-to-end” design philosophy. These methods try to avoid all kinds of explicit data structures

in order to minimize the representational and computational assumptions. Due to the advance-

ment of computational capabilities and increase in the amount of accessible “cheap” data, such

methods have been successful in a wide variety of applications.

However, such models tend to struggle with extracting the information from certain types of data

with inherent structure. The data used for this analysis contains complex underlying relations

and interactions. Most conventional Neural Network architectures require data structured as

vectors, grids or sequences, which impose a certain ordering on the data points. For example,

particles can be sorted according to their transverse momenta in decreasing order, or based on a

different parameter entirely, each choice resulting in a different sequence. Imposing an arbitrary

ordering on particles fails to reflect that they are fundamentally unordered.

This analysis will explore the use of Graph Neural Networks, avoiding an artificial ordering of

the event data, and employing relational reasoning and combinatorial generalization. Graph

Neural Networks are learning functions which operate on mathematical structures of graphs,

the sets of elements and their pairwise relations [25]. GNNs are a subfield of a broader field

of geometric deep learning. Introducing relational inductive biases can facilitate learning about

entities and their relations [26].

For over a decade several new architectures of Neural Networks have been developed, that

use mathematical graph structures [27, 28]. Our research uses the Graph Network framework

described in [26]. There have been other ongoing efforts concerning the application of GNNs for

High Energy Physics analyses [29].

32 GRAPH NEURAL NETWORKS

6.1 Definition

This research employs attributed graphs, which are comprised of node-level, edge-level, or graph-

level attributes, and are useful for representing event level collider data. In this subsection I will

present the formulation of the Graph Network (GN) as outlined in [26]. A graph is defined to

be a 3-tuple G = (u, V, E), where:

� u is a vector containing the global attributes.

� V is a set containing node vectors V = {vi}i=1:Nv , where Nv is the total number of nodes,

and vi is a vector describing each node.

� E is a set containing edge vectors ek as well as the information about the directionality of

each edge: E = {(ek, rk, sk)}k=1:Ne , where rk and sk are the indices of the receiving and

sending nodes respectively.

These three objects allow for the encoding of various types of information. The graph’s nodes

can describe the entities of the system and the edges can describe the relation between these

entities. The global attributes represent system level parameters.

Computations on graphs are performed by a Graph Network block. This algorithm takes the

input graph defined above, performs mathematical operations on its elements, and outputs a

graph with updated values. The GN block utilizes 6 different functions:

3 update functions: ϕe ϕv ϕu

3 aggregation functions: ρe→v ρe→u ρv→u

The input and the output of the update functions have the same shape. The aggregation

functions are order invariant, meaning they can handle the inputs of variable size and output

a fixed size representation of the input set. Further details about the inputs of these functions

and the sequence of their application will be described below.

𝜙 𝜌

Figure 6.1: Update and aggregation functions.

The sequence of updates in the GN block is as follows:

edge → node → global

Figure 6.2 depicts this process sequentially and shows what information is being used for each

update.

GRAPH NEURAL NETWORKS 33

(a) Edge Update (b) Node Update (c) Global Update

Figure 6.2: Sequence of updates in the GN block. Elements being updated are represented in

blue, while black represents the information used for the update [26].

The algorithm starts out by updating each individual edge with the following function:

e′k = ϕe(ek,vrk ,vsk ,u). (6.1)

The function uses the initial edge vector in combination with the node vectors at each end of

the edge, as well as the global attribute vector to calculate updated values of the edge vector.

Once all edges are updated the algorithm proceeds to the node update. The first order of

business is to aggregate all the incoming edges of the node with the following function:

ē′i = ρe→v(E′
i), (6.2)

where E′
i = {(e′k, rk, sk)}rk=i, k=1:Ne is the set of all edges that the ith node receives. Once the

edge aggregate is calculated, we can feed it to the node update function:

v′
i = ϕv(ē′i,vi,u). (6.3)

After calculating the updated vectors for each node individually, the next step is to update the

global features. The global feature update requires the aggregation of all edges and nodes of the

graph:

ē′ = ρe→u(E′) v̄′ = ρv→u(V ′), (6.4)

where, E′ = {(e′k, rk, sk)}k=1:Ne is the set of all edges, and V ′ = {v′}i=1:Nv is the set of all

nodes. Using these values we can finally update the global attributes:

u′ = ϕu(ē′, v̄′,u). (6.5)

As a result of this procedure we get the updated graph G′ = (u′, V ′, E′).

Figure 6.3: Schematic

representation of a full

GN block [26]

34 GRAPH NEURAL NETWORKS

6.2 Experimental Setup

The way event level information is distributed across this structure in our implementation is as

follows:

� Global attributes encode the event level information, such as the total number of jets,

the total sum of b-tagging scores, etc.

� Nodes encode the reconstructed objects of the event. We have a node for each jet,

each lepton, and one additional node for missing transverse energy. Each individual node

contains the object level information, such as momentum, angular information, charge,

etc.

� Edges encode the angular relation between the above mentioned reconstructed objects.

In our model they are automatically generated once the nodes are defined, since the graphs

are fully connected, and all edges are bi-directional.

The code developed for conducting our research is split in two parts. The first part takes the

root files, extracts the information for each event and redistributes the variables across the

graph structure. This code also creates the target graphs which are empty except having a

single global attribute, populated with either 1 or 0, describing whether the current event is a

signal or a background event. Once the input and target graphs are generated for all samples,

they are saved as .dat files.

Figure 6.4: GNN Structure.

The second part of the code, which utilizes

the graph nets package by DeepMind [26],

imports the graphs from these .dat files and

feeds them to the Graph Neural Network. The

computation proceeds according to the algo-

rithm described above. The update functions

in our model are MLPs with the following

structure:

ϕe : 256× 256

ϕv : 256× 256

ϕu : 512× 256× 128× 64× 32

All three of these MLPs use the LeakyReLU as their activation function.

As for the aggregation functions, the model uses the sum over the
√
N function:

output =
1√
N

∑
inputs, (6.6)

where N is the total number of inputs. However, the performance of several other alternatives

will be assessed in this research. For the purposes of our application, the GN block should pos-

sess permutation equivariance, therefore aggregation functions should be permutation invariant

reduction operators.

7
Previous Studies

This chapter briefly summarizes the findings of previous studies performed on the tt̄tt̄ event iden-

tification. Both of the studies presented below are performed on the same dataset as presented

in Chapter 4, and are also concerned with the SSML channel, only.

7.1 BDT Studies

The article published in November of 2020 by the ATLAS Collaboration, provided the first

evidence for tt̄tt̄ production at LHC with
√
s = 13 TeV pp collisions [30]. The research utilized

Boosted Decision Trees (BDT), which are among the most popular machine learning techniques.

BDTs are based on a concept of decision trees in combination with gradient boosting. The

separating power of the BDT with regards to the tt̄tt̄ signal-background separation was measured

to be [31]:

AUC = 0.8526± 0.0063. (7.1)

7.2 FNN and RNN Studies

tt̄tt̄ event classification studies with Feed-forward Neural Networks (FNNs) and Recurrent Neural

Networks (RNNs) were performed by Niklas Schwan [19]. The operating principle of FNNs is

described in Chapter 5.3. RNNs are another class of artificial Neural Networks which incorporate

temporal dynamics [32, 33].

The performance of Feed-forward Neural Networks for the identification of the tt̄tt̄ events was

measured to be:

AUC = 0.852± 0.005. (7.2)

Recurrent Neural Networks underperformed compared to FNNs, with their performance being

estimated with:

AUC = 0.838± 0.006. (7.3)

8
Results

This chapter will present the results obtained in this analysis. Firstly, the necessity of im-

plementing a bootstrapping procedure for a proper performance estimation will be outlined in

Section 8.1.

The following three sections will detail the findings of the hyperparameter optimization proce-

dure on the GNNs. Section 8.2 will present the behavior of GNN models for various learning

rate values, and provide the reasoning behind the implementation of a learning rate scheduler.

Section 8.3 explores the variables used as the global attributes of the graph, and the impact

the addition of variables has on the performance of the GNN. Section 8.4 studies five different

alternatives for aggregation functions used in a Graph Network block.

Finally, the last section will present the performance of the final model on the validation dataset.

The separation efficiency of the GNN will be compared to the performance of the BDT and the

FNN, presented in Chapter 7.

38 RESULTS

8.1 Bootstrapping
The first order of business was to create a stable model that clearly demonstrated the learning

behavior. This required the selection of initial hyperparameters based on intuition and previous

experience. The models were trained for 35 epochs, since it took approximately 24 hours to

complete the training with the available resources. The output of the testing performance of

the first model can be seen below in figure 8.1(a). This model clearly demonstrates the learning

behavior. Surprisingly, GNNs manage to produce a more competent model from the very first

epoch compared to FNNs. In later epochs the performance improves further, and the increase

slowly tapers off towards the end of the 35 epochs.

(a) Single run (b) Five runs

Figure 8.1: The performance of the model with constant learning rate α = 0.001.

However, the performance curve contains relatively large oscillations in the model performance

from one epoch to the next. These oscillations can be attributed to the internal statistical

randomness of the model. The data is being reshuffled after every epoch, changing the order

of the events seen by the algorithm. Figure 8.1(b) shows the performance for five models with

exactly the same hyperparameters. There are several reasons behind different starting points

and fluctuations in these performance curves. Firstly, every time the data is fed to the model, it

is getting reshuffled, before being split, meaning the set of events the model trains on is arbitrary

and changes for each subsequent run. Secondly, the weight initialization in TensorFlow contains

internal randomness, which further influences the performance.

It is common practice in the field of machine learning to factor out such uncertainties by using a

k-Fold Cross-Validation method. This method requires splitting the dataset into several portions

of the same size. One of the portions is then used for testing the performance of the model,

while the remaining portions are use for the training. Once the training is complete, the testing

portion is replaced, and the models are retrained for each such portion. Thus, if the testing is

done with 10% of the data, the model can be trained 10 times, and by averaging the performance

of these models, such uncertainties are reduced. Since the testing and training datasets used for

our research are of the same size, we can only run the training twice, which is not sufficient to

estimate the statistical uncertainties.

RESULTS 39

To deal with this issue an alternative bootstrapping procedure has been developed. This pro-

cedure does not resample the events; instead it exploits the internal randomness by training

models without fixing the seed that defines the randomness. The dataset is shuffled before

starting the training and split in half, meaning every time the model is trained the contents of

the training and testing datasets change. Running the model several times, and averaging the

output testing performance, gives us a significantly better estimate of the model’s performance,

as well as providing us with the distributions of the possible model outputs, which we can use

to calculate the uncertainties.

Figure 8.2: Average of the testing performance of 50 models with different randomness. The

shaded area depicts the ±1σ uncertainty around the average.

The result of bootstrapping 50 models can be seen in Figure 8.2. The curve is significantly

smoother and a much better representation of the expected model performance is obtained.

This clearly demonstrates that the variations in the output performance were the artifacts of

internal randomness, and can in principle be completely averaged out with additional runs.

The major disadvantage of this method is a high computation cost. As it has been stated above,

each model takes roughly 24 hours to complete the 35 epochs, and the resources allocated for this

research allowed for training 10 models in parallel. The bootstrapping procedure was interrupted

after 50 models, since there was no significant change detected in the average AUC value or the

width of the error bars.

Due to the significant time required for obtaining this result, not all plots presented in this

chapter will be bootstrapped equal times. This number will range from 10, when the behavior

of the performance curve is clear and further precision is unnecessary to draw a conclusion, to

50, when we need to properly assess the error margins associated with the expected output.

Training models with fixed learning rates has also been attempted for 150 epochs. However, the

training usually became unstable beyond 50 epochs and models broke down.

40 RESULTS

8.2 Learning Rate Optimization

Once the methodology of the performance estimation has been defined, the next challenge is

to optimize the hyperparameters of the model. The model presented in the previous section,

used the learning rate α = 0.001, which was chosen based on previous experience. Figure 8.3

shows the behavior of models for three different values of the learning rates. Models were also

trained with learning rate above and below these values, however larger learning rates resulted

in unstable models, while the ones with lower values did not learn sufficiently quickly.

Figure 8.3: Performance curves for different values of the learning rate (×10 bootstrap)

As it can be seen in Figure 8.3, the value of α = 10−3 chosen initially displays the optimal per-

formance. Nevertheless, the curves with lower learning rates posses certain desireable features.

The purple curve, depicting the model with α = 10−5, has a noticeably smoother evolution from

one epoch to the next. Because of this, the error bands are smaller, which are expected to grow

even wider for larger α values as the results are further bootstrapped.

To take advantage of these benefits a learning rate schedule has been introduced. The scheduler

reduces the learning rate by a factor of 10 after every 10 epochs. A comparison of the resulting

testing performance curves can be seen in Figure 8.4.

Figure 8.4: Five different outputs for a model with constant LR: α = 10−3 (left) vs. a model

with piecewise constant decay (right).

RESULTS 41

This implementation has the benefit of ensuring that the learning rate is sufficiently large during

the early stages of the training for the model to learn fast, while reducing it towards the end,

to reduce the effect of statistical fluctuations. It is clear from Figure 8.4 that this method

significantly reduces the spread of the expected outputs, compared to the model with a constant

learning rate.

Figure 8.5 below, shows the average of 50 performance curves. The curve is split in four parts

according to the value of the learning rate, which are displayed in blue on top of the plot.

Figure 8.5: Piecewise constant decay (×50 bootstrap).

By comparing this curve to the one in Figure 8.2, it becomes evident that the uncertainties

associated with the model output have been significantly reduced, as desired, while maintaining

a similar performance.

Checking the behavior of overtraining, demonstrates that similar benefits have been achieved as

for the AUCs. Figure 8.6 shows the comparison between the overtraining curves for fixed and

decaying learning rates. Error margins are significantly smaller, and the total overtraining after

35 epochs is at an acceptable value.

Figure 8.6: Overtraining for fixed (left) and decaying (right) learning rates (×50).

42 RESULTS

8.3 Variable Optimization
After achieving a desireable outcome with the learning rate optimization, the decision was made

to proceed with the optimization of variables used as the global attributes of the model. The

models presented above, used three such variables, namely:

�

∑
wMV2c10: Sum of b-tagging weights for all jets,

� Nj : Total number of jets in the event,

� HT: Scalar sum of all lepton and jet pT’s.

These event-level variables were chosen, based on a scientific guess, to run initial models. In

order to attempt an improvement of performance by adding additional variables, the table from

Reference [19], also reported in in Appendix A.1, has been consulted. The table contains the 18

variables with the highest BDT ranking scores.
∑

wMV2c10 and Nj are among these 18 variables.

Adding the remaining 16 to the 3 used beforehand, results in a model with 19 global variables,

the performance of which can be seen in Figure 8.7.

Figure 8.7: Performance curves for 3 vs. 19 global variables (×50 bootstrap).

Surprisingly, providing the GNN algorithm with additional information does not improve the

performance. Adding the variables that had the highest separating power for the BDT actually

decrease the performance.

In order to explore the behavior of the GNN algorithm for various variable combinations, an

iterative addition procedure has been devised. The 16 variables with the highest BDT scores

were added one by one to the original three variables, and models were trained for each such

configuration. Due to the increase in computation cost and time constraints, the models were

only bootstrapped five times. The resulting plot can be seen in Figure 8.8. The plot on the

right-hand-side is zoomed on the last five epochs to display the result more clearly. The red

curve is the same as the curve in Figure 8.5.

As it turns out, most variables negatively affect the performance individually, and the GNN is

unable to extract additional information from them. Only five variables, namely H0
T, E

miss
T ,

∆R(b, b)min, p
(l,0)
T , and p

(j,0)
T improve upon the previous results, slightly.

RESULTS 43

Figure 8.8: Addition of one variable to the original 3 global attributes (×5 bootstrap).

To explore whether these 5 variables interfere constructively, the model was trained with 8

variables (the original 3 plus 5). As it can be seen in Figure 8.9, the model with 8 variables un-

derperforms yet again compared to the original configuration. The green curve displayed below

has only been averaged 20 times, since it has been deemed unnecessary to dedicate additional

time and resources to this.

Figure 8.9: Performance curve of the GNN with 8 global attributes (×10 bootstrap) in compar-

ison with the GNNs with 3 and 19 global attributes (×50 bootstrap).

Additional checks have been performed to ensure that the decrease in performance is not due to

the sparse distribution of variables. The model with 8 variables was retrained with logarithms of

the momentum valued variables, in order to compress these distributions. The resulting outputs

can be seen in Appendix A.1. The performance deteriorated even further, indicating that the

distribution of variables was not the culprit.

At this point, the variable optimization procedure was terminated, in order to save time, and

seek performance gains elsewhere.

44 RESULTS

8.4 Aggregation Functions

All of the GNN algorithms devised in the previous chapters use (6.6) as the aggregation function,

which was chosen based on previous experience as other initial hyperparameters. There are

several other options for aggregation functions which are explored in this section:

� sum: the sum of the input values,

� mean: the mean of the input values,

� max: the maximum value among the input values,

� min: the minimum value among the input values.

The resulting performance curves for these aggregation functions are displayed in Figure 8.10.

Figure 8.10: Performance curves for five different aggregation functions. Error curves are omitted

for clarity. Bootstrapping numbers are indicate next to the curves.

It can be seen that min and max have a distinct behavior compared to other aggregation functions.

Both of these functions achieve the peak performance at the 11th epoch, with their performance

gradually decaying at later epochs. As for the behavior of the other three aggregation functions,

their performance curves are identical within the error margins, with sum having a slightly better

performance.

In principle, sum should have an advantage compared to other aggregation functions, since the

output value of this function is the most sensitive to the variable number of inputs (e.g. the

number of nodes in the graph), and because of this it should be able to extract more information

from the graphs. Another advantage of this function is that it is computationally less demanding

compared to the alternatives, which should have an impact on the total training time. Due to

these reasons, it was decided to switch to sum as the aggregation function used in our model.

Although, the max function might look promising, since it manages to achieve comparable per-

formance in less number of epochs, by taking a closer look at the overtraining curves in the

Appendix (Figure A.2), we see that overtraining is significantly higher compared to sum.

RESULTS 45

8.5 Validation

Despite the existence of further potential of performance improvement through optimization, it

has been decided to seize the obtained optimization due to time constraints and proceed with

the validation of our model.

The final model uses a piecewise constant decay of the learning rate outlined in Chapter 8.2, in

combination with sum as the aggregation function. The rest of the hyperparameters are kept

unchanged as described in Chapter 6.2. The performance curve of this model can be seen in

Figure 8.11. The overtraining curve can bee seen in Figure A.3 in the Appendix.

Figure 8.11: Performance curve of the final model (×50 bootstrap)

The total testing performance was evaluated to be:

AUCtest = 0.8746± 0.0015. (8.1)

The application of these models to the validation dataset resulted in the following performance:

AUCV al = 0.8771± 0.0016. (8.2)

This value is noticeably higher then the AUCtest, which is counter intuitive. However, the

difference can be attributed to the fact that the validation dataset contains tt̄tt̄ LO as well

as tt̄tt̄ NLO events, while the testing dataset only contains tt̄tt̄ NLO events as can be seen in

Table 4.2. Therefore, it is logical that AUCV al is between the training and testing performance.

These numbers should not be directly compared to the results presented in Chapter 7. The two

analyses carried out with BDTs [30, 31] and FNNs [19] used a slightly different data splitting

strategy. The only difference from the numbers presented in Table 4.2 is that they used 100% of

the tt̄tt̄ LO sample for the training. For the sake of consistency, and the ability to make a direct

comparison, the 56692 tt̄tt̄ events were moved to the training set, and the GNN was yet again

trained, tested, and validate on exactly the same datasets as used for the BDTs and FNNs. The

resulting performance curve can be seen in Figure 8.12.

46 RESULTS

Figure 8.12: Performance curve of the final model with the matching data strategy to the BDT

and FNN studies.

As it can be seen in Figure 8.12, the testing performance of the GNN on exactly the same data

as used in the BDT and FNN analyses, was evaluated to be:

AUCtest = 0.8755± 0.0015. (8.3)

This value is slightly larger than the value presented in (8.1), which can be explained by the

fact that the model had more data to train on. The validation performance of this model was

estimated to be:

AUCV al = 0.8744± 0.0017. (8.4)

It is expected, that this value is lower than the one in the (8.2), since the training and validation

sets have less similarity, because the validation set does not include a portion of the tt̄tt̄ LO

sample anymore.

Comparing the result from (8.4) to the results of BDT (7.1) and FNN (7.2), an improvement

in performance is evident. The relative increase is roughly (2.6 ± 0.7)%. This improvement is

promising, considering GNNs are not nearly as optimized as BDTs, thus there is still room for

further improvement.

9
Conclusion

GNNs are a novel method of machine learning algorithms and their possible applications in high

energy physics are yet to be fully explored. The analysis presented in this thesis demonstrates

that the introduction of relational inductive bias by representing events as graphs is beneficial

for achieving an improved signal-background separation compared to sequential ordering of

reconstructed objects.

It is quite remarkable that GNNs manage to outperform most widely used methods of BDTs

and FNNs, with so little optimization. There is undoubtedly further room for improvement.

The learning rate optimization can be revisited to explore alternative schedules for the learning

rate decay. There is no necessity for using the same aggregation function for aggregation nodes,

edges, and global attributes, and it might be beneficial to use different functions. It might also be

interesting to explore the internal symmetries of the model by redefining angular parameters. A

proper variable optimization needs to be conducted for GNNs with regularization, since variables

with highest BDT ranking scores do not seem to benefit the performance. Lastly, the alternative

NN shapes should be explored for use as update functions.

It should be stated that a large portion of overtraining comes from the the difference between

the training and testing datasets. To reduce this effect, the use of tt̄tt̄ NLO for training the

model should be explored. This should include proper dealing with negative generator weights,

or simulating new samples entirely with positive weights. Also the increase in number of events

should in principle further improve the performance of the algorithm.

On the analysis side, the potentially different impact of systematic uncertainties between BDTs

and GNNs will additionally need to be checked. The calculation of the analysis sensitivity within

a full implementation of the statistical analysis using the GNN setup was out of the scope of

this thesis, but will be needed for a full optimization of the algorithm.

A
Appendix

A.1 Table of BDT Variables

Feature Definition BDT Ranking Score∑
wMV2c10 Sum of b-tagging weights of MV2c10 0.114

∆R(l, l)min Minimum angular distance between any lepton pair 0.063

pj,0T pT of the leading jet 0.063

Emiss
T Missing transverse energy 0.059

Nj Jet multiplicity 0.059

pl,0T pT of the leading lepton 0.059

pb,0T pT of the leading b-jet 0.058

∆R(b, b)min Minimum angular distance between any b-jet pair 0.055

pj,5T pT of the sixth highest jet 0.055

∆R(l, b)max Maximum angular distance between any lepton and b-jet 0.054

∆R(l, j)min Minimum angular distance between any lepton and jet 0.051

H0
T Scalar sum of all lepton and jet pT’s excluding the leading jet 0.049

pl,1T pT of the sub-leading lepton 0.049∑
l ∆R(l, l) Sum of all angular distances between any lepton pair 0.040

pj,1T pT of the sub-leading jet 0.039

∆R(l, l)max Maximum angular distance between any lepton pair 0.039

∆R(l, b)min Minimum angular distance between any lepton and b-jet 0.039

ϕl,0 ϕ of the leading lepton 0.038

Table A.1: The 18 variables with the highest BDT ranking scores [19].

50 APPENDIX

A.2 Additional Plots

Figure A.1: Performance curves of GNNs with 8 global variables, with and without logarithmic

scaling.

Figure A.2: Overtraining curves for GNNs with five different aggregation functions.

APPENDIX 51

Figure A.3: Overtraining curve of the final model used for validation.

Figure A.4: Overtraining curve of the final model used for validation with the data setup similar

to BDTs and FNNs.

Bibliography

[1] P.A. Zyla et al. “Review of Particle Physics”. In: PTEP 2020.8 (2020), p. 083C01. doi:

10.1093/ptep/ptaa104.

[2] ATLAS Collaboration. “Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1

(Sept. 2012), pp. 1–29. issn: 0370-2693. doi: 10.1016/j.physletb.2012.08.020. url:

http://dx.doi.org/10.1016/j.physletb.2012.08.020.

[3] CDF Collaboration. “Observation of Top Quark Production in pp Collisions with the

Collider Detector at Fermilab”. In: Physical Review Letters 74 (14 Apr. 1995), pp. 2626–

2631. doi: 10.1103/PhysRevLett.74.2626. url: https://link.aps.org/doi/10.1103/

PhysRevLett.74.2626.

[4] DØ Collaboration. “Observation of the Top Quark”. In: Physical Review Letters 74 (14

Apr. 1995), pp. 2632–2637. doi: 10.1103/physrevlett.74.2632. url: http://dx.doi.

org/10.1103/PhysRevLett.74.2632.

[5] CDF Collaboration. “Observation of Electroweak Single Top-Quark Production”. In: Phys-

ical Review Letters 103.9 (Aug. 2009). issn: 1079-7114. doi: 10.1103/physrevlett.103.

092002. url: http://dx.doi.org/10.1103/PhysRevLett.103.092002.

[6] DØ Collaboration. “Observation of Single Top-Quark Production”. In: Physical Review

Letters 103.9 (Aug. 2009). issn: 1079-7114. doi: 10.1103/physrevlett.103.092001.

url: http://dx.doi.org/10.1103/PhysRevLett.103.092001.

[7] Rikkert Frederix, Davide Pagani, and Marco Zaro. “Large NLO corrections in ttW± and

tttt hadroproduction from supposedly subleading EW contributions”. In: Journal of High

Energy Physics 2018.2 (Feb. 2018). issn: 1029-8479. doi: 10.1007/jhep02(2018)031.

url: http://dx.doi.org/10.1007/JHEP02(2018)031.

[8] Hans P. Nilles. “Supersymmetry, supergravity and particle physics”. In: Physics Reports

110.1 (1984), pp. 1–162. issn: 0370-1573. doi: https : / / doi . org / 10 . 1016 / 0370 -

1573(84)90008-5. url: https://www.sciencedirect.com/science/article/pii/

0370157384900085.

[9] Glennys R. Farrar and Pierre Fayet. “Phenomenology of the production, decay, and de-

tection of new hadronic states associated with supersymmetry”. In: Physics Letters B

76.5 (1978), pp. 575–579. issn: 0370-2693. doi: https://doi.org/10.1016/0370-

2693(78)90858-4. url: https://www.sciencedirect.com/science/article/pii/

0370269378908584.

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1103/PhysRevLett.74.2626
https://link.aps.org/doi/10.1103/PhysRevLett.74.2626
https://link.aps.org/doi/10.1103/PhysRevLett.74.2626
https://doi.org/10.1103/physrevlett.74.2632
http://dx.doi.org/10.1103/PhysRevLett.74.2632
http://dx.doi.org/10.1103/PhysRevLett.74.2632
https://doi.org/10.1103/physrevlett.103.092002
https://doi.org/10.1103/physrevlett.103.092002
http://dx.doi.org/10.1103/PhysRevLett.103.092002
https://doi.org/10.1103/physrevlett.103.092001
http://dx.doi.org/10.1103/PhysRevLett.103.092001
https://doi.org/10.1007/jhep02(2018)031
http://dx.doi.org/10.1007/JHEP02(2018)031
https://doi.org/https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/https://doi.org/10.1016/0370-1573(84)90008-5
https://www.sciencedirect.com/science/article/pii/0370157384900085
https://www.sciencedirect.com/science/article/pii/0370157384900085
https://doi.org/https://doi.org/10.1016/0370-2693(78)90858-4
https://doi.org/https://doi.org/10.1016/0370-2693(78)90858-4
https://www.sciencedirect.com/science/article/pii/0370269378908584
https://www.sciencedirect.com/science/article/pii/0370269378908584

54 BIBLIOGRAPHY

[10] Tilman Plehn and Tim M. P. Tait. “Seeking sgluons”. In: 36.7 (Apr. 2009), p. 075001.

doi: 10.1088/0954- 3899/36/7/075001. url: https://doi.org/10.1088/0954-

3899/36/7/075001.

[11] Nedaa Asbah et al. Search for tt̄tt̄ Standard Model Production in the Multilepton Final

State in proton-proton collisions with the ATLAS Detector. Tech. rep. Geneva: CERN,

Apr. 2019. url: https://cds.cern.ch/record/2670354.

[12] ATLAS Collaboration. “The ATLAS Experiment at the CERN Large Hadron Collider”.

In: 3.08 (Aug. 2008), S08003–S08003. doi: 10.1088/1748- 0221/3/08/s08003. url:

https://doi.org/10.1088/1748-0221/3/08/s08003.

[13] Esma Mobs. “The CERN accelerator complex - August 2018. Complexe des accélérateurs

du CERN - Août 2018”. In: (Aug. 2018). General Photo. url: https://cds.cern.ch/

record/2636343.

[14] João Pequenão. Computer generated image of the ATLAS inner detector. 2008.

[15] João Pequenão. Computer generated image of the ATLAS calorimeter. 2008.

[16] João Pequenão. Computer generated image of the ATLAS Muons subsystem. 2008.

[17] Rodriguez Vera and Ana Maria. ATLAS Detector Magnet System. 2021.

[18] João Pequenão and Paul Schaffner. How ATLAS detects particles: diagram of particle paths

in the detector. Jan. 2013. url: https://cds.cern.ch/record/1505342.

[19] Niklas W. Schwan. “Improving Four-Top-Quark Event Classification with Deep Learning

Techniques using ATLAS Simulation”. Presented 2020. 2020. url: http://cds.cern.ch/

record/2751676.

[20] Dimitri Bourilkov. “Machine and deep learning applications in particle physics”. In: Inter-

national Journal of Modern Physics A 34.35 (Dec. 2019), p. 1930019. issn: 1793-656X. doi:

10.1142/s0217751x19300199. url: http://dx.doi.org/10.1142/S0217751X19300199.

[21] Andriy Burkov. The Hundred-Page Machine Learning Book. 2019. isbn: 9781999579517.

[22] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn: 0387310738.

[23] Shruti Jadon. “Introduction to different activation functions for deep learning”. In:Medium,

Augmenting Humanity 16 (2018).

[24] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.

arXiv: 1412.6980 [cs.LG].

[25] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph neural networks in

particle physics”. In:Machine Learning: Science and Technology 2.2 (Jan. 2021), p. 021001.

issn: 2632-2153. doi: 10.1088/2632-2153/abbf9a. url: http://dx.doi.org/10.1088/

2632-2153/abbf9a.

[26] Peter W. Battaglia et al. Relational inductive biases, deep learning, and graph networks.

2018. arXiv: 1806.01261 [cs.LG].

https://doi.org/10.1088/0954-3899/36/7/075001
https://doi.org/10.1088/0954-3899/36/7/075001
https://doi.org/10.1088/0954-3899/36/7/075001
https://cds.cern.ch/record/2670354
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088/1748-0221/3/08/s08003
https://cds.cern.ch/record/2636343
https://cds.cern.ch/record/2636343
https://cds.cern.ch/record/1505342
http://cds.cern.ch/record/2751676
http://cds.cern.ch/record/2751676
https://doi.org/10.1142/s0217751x19300199
http://dx.doi.org/10.1142/S0217751X19300199
https://arxiv.org/abs/1412.6980
https://doi.org/10.1088/2632-2153/abbf9a
http://dx.doi.org/10.1088/2632-2153/abbf9a
http://dx.doi.org/10.1088/2632-2153/abbf9a
https://arxiv.org/abs/1806.01261

BIBLIOGRAPHY 55

[27] Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for learning in

graph domains”. In: Proceedings. 2005 IEEE International Joint Conference on Neural

Networks, 2005. 2 (2005), 729–734 vol. 2.

[28] Yujia Li et al. Gated Graph Sequence Neural Networks. 2017. arXiv: 1511.05493 [cs.LG].

[29] Shuo Han et al. Reaching for the Top with GNN. 2020. url: https://indico.cern.

ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_

Roberts_IML_Workshop_211020%20.pdf.

[30] ATLAS Collaboration. “Evidence for tt̄tt̄ production in the multilepton final state in

proton-proton collisions at
√
s = 13 TeV with the ATLAS detector”. In: Eur. Phys. J.

C 80 (July 2020). doi: 10.1140/epjc/s10052-020-08509-3. arXiv: 2007.14858. url:

http://cds.cern.ch/record/2725459.

[31] Lennart Rustige. “First evidence of standard model pp → tt̄tt̄ production and performance

studies of the ATLAS tile calorimeter for HL-LHC”. Thesis. Université Clermont Auvergne

; Universität Dortmund, Oct. 2020. url: https://tel.archives-ouvertes.fr/tel-

03169597.

[32] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning represen-

tations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986), pp. 533–536. doi:

10.1038/323533a0.

[33] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-

putation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.

8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.

1997.9.8.1735.pdf. url: https://doi.org/10.1162/neco.1997.9.8.1735.

https://arxiv.org/abs/1511.05493
https://indico.cern.ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_Roberts_IML_Workshop_211020%20.pdf
https://indico.cern.ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_Roberts_IML_Workshop_211020%20.pdf
https://indico.cern.ch/event/852553/contributions/4057190/attachments/2127774/3582682/Ryan_Roberts_IML_Workshop_211020%20.pdf
https://doi.org/10.1140/epjc/s10052-020-08509-3
https://arxiv.org/abs/2007.14858
http://cds.cern.ch/record/2725459
https://tel.archives-ouvertes.fr/tel-03169597
https://tel.archives-ouvertes.fr/tel-03169597
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Markus Cristinziani for the opportunity

of conducting my research as a member of the ATLAS Collaboration. Prof. Cristinziani was

extremely supportive throughout my studies, providing valuable feedback, and sharing knowl-

edge and experience. I am also grateful to Prof. Dr. Florian Bernlochner, for being the second

examiner of my master’s thesis, and taking time to evaluate my work.

I would like to express my immense gratitude towards PD Dr. Akaki Rusetsky, for granting me

the possibility of pursuing my master’s degree studies at the University of Bonn, for being a

great mentor and always showing support.

I am also very thankful to fellow members of Prof. Cristinziani’s group. Dr. Ogul Öncel, was

instrumental at the early stages of my research. He was always available for help and was eager

to share his vast experience. Niklas Schwan was kind enough to walk me through the research he

conducted on a similar topic a year earlier. He shared his code with me, which greatly assisted

me in understanding the inner-workings of the Neural Networks. Katharina Voß and Gabriel

Gomes helped me with the preparation of my master’s thesis colloquium, by giving me valuable

feedback.

I am very grateful to Dr. Peter Falke, for introducing me to the Graph Neural Networks and

for convincing me to use this Neural Network architecture for my analysis. He guided me

throughout my research by providing useful and practical knowledge, and was always available

for quick questions as well as insightful discussions.

Lastly, I would like to thank my fellow students, Lado Razmadze and George Chanturia who

were by my side throughout my studies, and were always willing to lend a helping hand.

	Introduction
	Theoretical Background
	Standard Model
	Top Quark
	tsiunitxunit-deprecatedࡡ爠barbarttsiunitxunit-deprecatedࡡ爠barbart Production

	ATLAS Experiment
	Large Hadron Collider
	ATLAS Detector
	Particle Signatures

	Data
	Monte-Carlo Simulation
	Event Selection and Signal Region
	Data Splitting Strategy

	Introduction to Machine Learning
	Supervised Learning
	Train – Test – Validation Split
	Neural Networks
	Building Blocks of a Machine Learning Algorithm
	Loss Function
	Optimizer
	Performance Measures

	Graph Neural Networks
	Definition
	Experimental Setup

	Previous Studies
	BDT Studies
	FNN and RNN Studies

	Results
	Bootstrapping
	Learning Rate Optimization
	Variable Optimization
	Aggregation Functions
	Validation

	Conclusion
	Appendix
	Table of BDT Variables
	Additional Plots

