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For our further purposes we need an account of various features of quantum ensembles and their differences with
respect to the classical ones. Though the theory of quantum ensembles is almost as old as quantum mechanics itself,
it still attracts lively discussions; see e.g. [1].
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A. Statistical interpretation of quantum mechanics.

Within this interpretation of quantum mechanics a quantum ‘state’ is described by a density matrix ρ̂. Any state,
including a pure state |ψ⟩⟨ψ|, describes an ensemble of identically prepared systems. For instance, in an ideal Stern-
Gerlach experiment all particles of the upper beam together are described by the wavefunction | ↑⟩ or the pure density
matix | ↑⟩⟨↑ |. The description is optimal, in the sense that all particles have σz = +1, but incomplete in the sense of
of σx and σy are unknown: upon measuring either of them, one will get ±1 with equal probabilities.
This interpretation suffices for describing experiments, including those done on a single system [2]. As compared to

other interpretations of quantum mechanics, the statistical interpretation is dealing more succesfully with a number
of conceptual problems, including the quantum measurement problem [2].

B. Homogeneous ensembles.

In general, a density matrix ρ̂ can be applied to describe two types of quantum ensembles, homogeneous and
inhomogeneous.
For a homogeneous ensemble E(ρ̂) only the density matrix ρ̂ is given and no further specification is made about

a single system § from that ensemble. A typical example is an ensemble prepared by thermalization, that is, by
letting each single system § to interact weakly with an equilibrium thermal bath, and waiting sufficiently long till the
equilibrium state of § is established.
Let us study the feature of homogeneous ensembles in more detail. We start by comparing them to classical

ensembles. In the classical situation, the description of an ensemble by means of a probability distribution still
implies that each single system has definite values for all its variables. For a homogeneous quantum ensemble E(ρ̂),
only those observables (hermitian operators living in the Hilbert space H) Â that are dispersionless on E(ρ̂),[

tr
(
Â ρ̂

)]2
= tr

(
Â2 ρ̂

)
, (1)

can be said to have definite values for all single systems § from E(ρ̂) . Indeed, dispersionless observables satisfy 1

Â ρ̂ = α ρ̂, (6)

1 Let tr(Â2ρ̂) = [tr(Âρ̂)]2 be valid for some hermitian operator Â and density matrix ρ̂. In the main text we called such operators

dispersionless with respect to the ensemble described by the density matrix ρ̂. In Cauchy inequality |tr(ÂB̂)|2 ≤ tr(ÂÂ†) tr(B̂B̂†),

which is valid for any operators Â and B̂, while the equality is realized for Â = αB̂†, where α is a number. Thus the equality[
tr(Â

√
ρ̂
√
ρ̂)
]2

= tr(Â2ρ̂) tr(ρ̂) (2)

implies

Â
√
ρ̂ = α

√
ρ̂. (3)

Now insert the eigenresolution
√
ρ̂ =

∑n
k=1

√
pk |εk⟩⟨εk| into (3) and multiply it from the right by |pm⟩, to obtain:

√
pm Â |pm⟩ = α

√
pm |pm⟩. (4)

It is seen that either only one among the eigenvalues pk’s is non-zero and then the corresponding eigenvector is also an eigenvector for
Â, or, more generally, that Â acts as ∝ 1̂ in the Hilbert space formed by eigenvectors of ρ̂ corresponding to its non-zero eigenvalues.
In both cases the measurement of Â on the state ρ̂ always produces definite results. Thus any operator Â that is dispersionless on the
density matrix ρ̂ has to have the following block-diagonal matrix representation

Â =

(
α 1̂k×k 0

0 B̂

)
, (5)

where α is a real number, 1̂k×k is k×k unity matrix in the k-dimensional Hilbert space formed by eigenvectors corresponding to non-zero

eigenvalues of ρ̂, and finally B̂ is an arbitrary (n− k)× (n− k) hermitian matrix on the space orthogonal to the sero eigenvalues. It has

(n− k)2 free parameters, and another free parameter of Â is coming with the real number α. Thus, Â has

(n− k)2 + 1,

free parameters. Note finally that various operators that are dispersionless on a pure density matrix need not be mutually commuting.
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where α is a c-number. This implies tr ( Âm ρ̂ ) =
[
tr Â ρ̂

]m
, with m = 0, 1, 2, 3..., and the above statement follows.

For a pure state ρ̂ = |ψ⟩⟨ψ|, we return from (6) to the standard notion of |ψ⟩ being an eigenstate of Â.

Any other, non-dispersionless observable B̂ — even if it commutes with the density matrix ρ̂ — does not have a
definite value in a single system § from E(ρ̂). It is true that for [ρ̂, B̂] = 0, E(ρ̂) can be prepared by mixing 2 pure
states ensembles { E(|pk⟩⟨pk|) }nk=1 with probabilities {pk}nk=1, where { |pk⟩ }nk=1 and {pk}nk=1 are, respectively, the

common eigenvectors of ρ̂ and B̂ and the eigenvalues of ρ̂. If E(ρ) is known to be prepared in such a way, then B̂ has
indeed definite values for each single member of E . However, in general this need not apply, since there are (infinitely)
many other ways to prepare the same ensemble E(ρ̂) via mixing N subensembles with density matrices {|ψα⟩⟨ψα|}Nα=1

and probabilities {λα}Nα=1. They correspond to the (infinitely) many ways in which the hermitian operator ρ̂ can be
decomposed as [2]

ρ̂ =

N∑
α=1

λα|ψα⟩⟨ψα|, λα ≥ 0,

N∑
α=1

λα = 1, (7)

where |ψα⟩ are some normalized — but in general not orthogonal— vectors living in the same n-dimensional Hilbert
space H 3, and where |ψα⟩⟨ψα| are distinct.
The eigenresolution

ρ̂ =
n∑
k=1

pk|pk⟩⟨pk|, (8)

Ĥ =

n∑
k=1

εk|εk⟩⟨εk|, (9)

⟨εk|εl⟩ = ⟨pk|pl⟩ = δkl, (10)

is only a particular case of (7), and if now the ensemble E(ρ̂) was prepared by one of the ways corresponding to (7)

with non-orthogonal |ψα⟩, the constituents of E(ρ̂) come from the subensembles E(|ψα⟩⟨ψα|)} and the observable B̂
has in general not any definite value for these subensembles.
We conclude with three related features of a homogeneous ensemble:

• The ensemble cannot be thought to consist of definite subensembles.

• A single system from such an ensemble does not by itself define a subensemble.

• There are thus no homogeneous ensembles in classical statistical physics, since a single system is known to have
definite values of all its variables.

C. Pure-state ensembles.

The description of a homogeneous ensemble via pure density matrices, ρ̂2 = ρ̂, has several special features.
First of all, it is seen from (7) that for a pure state ρ̂ = |ψ⟩⟨ψ| in the RHS of representation (7) only one term shows

up: |ψ⟩⟨ψ| = |ψ⟩⟨ψ| 4. Thus, pure-state ensembles cannot be prepared via mixing of other ensembles of the system §,
or, put differently,

• pure-state ensembles are irreducible.

2 Mixing ensembles E(ρ̂1) and E(ρ̂2) with probabilities p1 and p2, respectively, means that one throws a dice with probabilities of outcomes
equal to p1 and p2, and depending on the outcome one picks up a system from E(ρ̂1) or E(ρ̂2), keeping no information on where the
system came from. Alternatively, one can join together Np1 systems from E(ρ̂1) and Np2 systems from E(ρ̂2) (N ≫ 1), so that no
information information is kept on where a single system came from. Then any subensemble of M systems (N ≫ M) is described by
the density matrix ρ̂ = p1 ρ̂1 +p2 ρ̂2. Note that the restriction N ≫M is important, see, e.g., [1], and some confusion arose in literature
for not taking it into account.

3 Normalization and belonging to H are necessary for |ψα⟩⟨ψα| to describe some ensemble of the systems §.
4 This can also be deduced from a more general result: any |ψα⟩ that can appear in (7) is orthogonal to the linear space formed by the
eigenvectors of ρ̂ corresponding to eigenvalue zero. Indeed, let |0⟩ be one such eigenvector, then ⟨0|ρ̂|0⟩ =

∑
α λα |⟨0|ψα⟩|2 = 0; thus

⟨0|ψα⟩ = 0 for λα > 0.
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• Second, this description is the maximally complete one possible in quantum mechanics.

The latter known thesis can be substantiated as follows. First one notes from (1, 6) that for a fixed ρ̂ dispersionless
observables form a linear space: if two operators are dispersionless, so is their sum, and multiplication by a number
conserves the dispersionless feature.
Note from (6) that if the mixed density matrix ρ̂ has k, 1 ≤ k ≤ n, non-zero eigenvalues (n being the dimension of

the Hilbert space H), then the dimension of the linear space formed by the corresponding dispersionless observables
is equal to

Nk = (n− k)2 + 1. (11)

This number is maximal for k = 1, that is, for pure density matrices. In other words, pure density matrices provide
definite values for a larger set of observables than mixed density matrices 5. For a mixed state all dispersionless
observables have to be degenerate.
Though the features of irreducibility and completeness create a conceptual difference between pure and mixed

density matrices, this should not be taken as an invitation to prescribe pure density matrices to a single system,
reserving the mixed ones for ensembles [2].

D. Inhomogeneous ensembles.

A mixed density matrix ρ̂ can also describe inhomogeneous ensembles. Such an ensemble Ei is a collection of
homogeneous subensembles { E(ρ̂α) }Nα=1 with probabilities {λα }Nα=1, so that each single system from Ei is known to
be taken from the ensemble E(ρ̂α) with probability λα, α = 1, .., N . Obvious cases are when the subensembles E(ρ̂α)
are separated in space —as happens for the two beams of the Stern-Gerlach experiment— or in time, or by means of
some other classical quantity.
Inhomogeneous ensembles are typically prepared by means of selective measurements 6. In that case the above

classical quantity is the corresponding record of the macroscopic apparatus by which this measurement was done. An
initially homogeneous ensemble can be separated into subensembles by means of a measurement.

The inhomogeneous ensemble Ei is still described by the overall density matrix ρ̂ =
∑N
α=1 λαρ̂α, but in contrast to

the homogeneous situation this is not the full description. The latter is provided by the list

{λα, ρ̂α }Nα=1. (12)

So more information is known about the inhomogeneous ensemble Ei then only ρ̂. If the inhomogeneous ensemble
is just a combination of homogeneous ones, this is obvious. If the inhomogeneous ensemble was prepared by means
of a measurement, then the above information results from the measurement carried out and from selection of the
outcomes.

E. Prescribed ensemble fallacy.

This fallacy rests on forgetting the difference between homogeneous and inhomogeneous ensembles [3], that is, it

rest on neglecting that the overall [post-measurement] density matrix ρ̂ =
∑N
α=1 λαρ̂α is physically different from

the one before the measurement, even though it is mathematically still the same (in a Stern-gerlach experiment the
initial beam has been split in two parts). The fact that many mathematical splittings are possible just agrees with
the fact that many experiments are possible in principle. “Switching to another representation”, as is often done in
theoretical considerations that commit the prescribed ensemble fallacy, is by itself impossible, unless one makes a

5 For k = n we get Nk = 1, since in this case only operators proportional to unity are dispersionless. For n = 2 and k = 1, Nk = 2:
all dispersionless observables for a two-dimensional pure density matrix |ψ⟩⟨ψ| can be represented as α|ψ⟩⟨ψ| + β|ψ⊥⟩⟨ψ⊥|, where
⟨ψ|ψ⊥⟩ = 0, and where α and β are two independent real numbers.

6 These measurements need not be done on the systems § directly, they can be indirect as well. Imagine an ensemble of two spin- 1
2

particles described by pure density matrix |ψ⟩⟨ψ|, where |ψ⟩ = 1√
2
(|+⟩1 ⊗ |+⟩2 + |−⟩1 ⊗ |−⟩2), and where |±⟩1,2 are the eigenvectors

of σ̂
(1,2)
z with eigenvalues ±1 for the first and second particle, respectively. One can now measure σ̂

(1)
z , and keep both the results of

these measurements and the order of their appearance (thus, one keeps a sequence of random numbers ±1). For the subensemble of the
second spin this amounts to preparation of inhomogeneous ensemble { 1

2
, |+⟩2 2⟨+| ; 1

2
, |−⟩2 2⟨−|}.
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second measurement setup. In any given situation, however, once the experimental setup is determined, there is no
choice in the splitting, instead, the splitting is unique, physical and contextual.
In spite of explicit warnings, the fallacy frequently (re)appears in applications and interpretations of quantum

statistical physics. Consider, for example, the basic tool of statistical physics, the equilibrium ensemble described
by the Gibbsian density matrix. It is typically obtained by thermalization process, that is, due to interaction with
a thermal bath. One sometimes hears with respect to this ensemble that it represents the system being in states
of definite energy with the corresponding probabilities pk. This is a valid description of the ensemble only after the
measurement of energy Ĥ has been done, something which is not typical in applications. Moreover, as we recalled
above and below, one can choose to make a different measurement, and then the interpretation in terms of definite
energies will be explicitly wrong. The reason of why some applications —though starting from the above incorrect
premise— do not lead to contradictions is clear: they use this premise merely for “explanation of what actually
happens”, while in real calculations and comparisons with experiment only the density matrix (18) is employed.

III. NON-EXISTENCE OF (PRECISE) JOINT PROBABILITY FOR NON-COMMUTING
OBSERVABLES [22]

We first of all recall the employed notations. All operators (matrices) live in a finite-dimensional Hilbert space
H. For two hermitean operators Y and Z, Y ≥ Z means that all eigenvalues of Y − Z are non-negative, i.e.
⟨ψ|(Y − Z)ψ⟩ ≥ 0 for any |ψ⟩ ∈ H. The direct sum Y ⊕ Z of two operators refers to the following block-diagonal

matrix: Y ⊕Z =

(
Y 0
0 Z

)
. ran(Y ) is the range of Y (set of vectors Y |ψ⟩, where |ψ⟩ ∈ H). I is the unity operator of

H.
Given two sets of non-commuting hermitean projectors:

nP∑
k=1

Pk = I, PkPi = δikPk, nP ≤ n, (13)

nQ∑
k=1

Qk = I, QkQi = δikQk, nQ ≤ n, (14)

we are looking for non-negative operators Πik ≥ 0 such that for an arbitrary density matrix ρ∑
ik

tr(ρΠik) = 1,
∑
i

tr(ρΠik) = tr(ρPk),
∑
k

tr(ρΠik) = tr(ρQi). (15)

These relations imply ∑
ik

Πik = I, Πik ≤ Qi, Πik ≤ Pk. (16)

Now the second (third) relation in (16) implies ran(Πik) ⊂ ran(Qi) (ran(Πik) ⊂ ran(Pk)). Hence ran(Πik) ⊂ ran(Qi)∩
ran(Pk).
Thus, if ran(Qi) ∩ ran(Pk) = 0, then Πik = 0, which means that the sought joint probability does not exist.
If ran(Qi) ∩ ran(Pk) ̸= 0, then the largest Πik that holds the second and third relation in (16) is the projection

g(Pk, Qi) on ran(Qi) ∩ ran(Pk) = 0. However, the first relation in (16) is still impossible to satisfy (for [Pi, Qk] ̸= 0),
as seen from the sub-additivity feature:∑

ik

g(Pi, Qk) ≤
∑
k

g(
∑
i

Pi, Qk) =
∑
k

g(1, Qk) =
∑
k

Qk = 1. (17)

IV. THE MINIMUM WORK PRINCIPLE

The second law of thermodynamics [4–6], formulated nearly one and half century ago, continues to be under
scrutinity [7–9]. While its status within equilibrium thermodynamics and statistical physics is by now well-settled
[4–6], its fate in various border situations is far from being clear. In the macroscopic realm the second law is a set of
equivalent statements concerning quantities such as entropy, heat, work, etc. However, in more general situations these
statements need not be equivalent and some, e.g. those involving entropy, may have only a limited applicability[8, 9].
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In contrast to entropy, the concept of work has a well-defined operational meaning for finite systems interacting with
macroscopic work sources [5]. It is, perhaps, not accidental that Thomson’s formulation of the second law [4–6] —
no work can be extracted from an equilibrium system by means of a cyclis process — was proven [10, 11] both in
quantum and classical situation.
Here we study the minimum work principle which extends the Thomson’s formulation to non-cyclic processes [4–

6, 11], and provides a recipe for reducing energy costs. After formulating the principle and discussing it for macroscopic
systems, we investigate it for finite systems coupled to macroscopic sources of work. Its domain of validity there is
found to be large but definitely limited. These limits are illustrated via counterexamples.

A. The setup

Consider a quantum system S which is thermally isolated [4–6]: it moves according to its own dynamics and interacts
with an external macroscopic work source. This interaction is realized via time-dependence of some parameters
R(t) = {R1(t), R2(t), ...} of the system’s Hamiltonian H(t) = H{R(t)}. They move along a certain trajectory R(t)
which at some initial time ti starts from Ri = R(ti), and ends at Rf = R(tf). The initial and final values of
the Hamiltonian are Hi = H{Ri} and Hf = H{Rf}, respectively. Initially S is assumed to be in equilibrium at
temperature T = 1/β ≥ 0, that is, S is described by a gibbsian density operator:

ρ(ti) = exp(−βHi)/Zi, Zi = tr e−βHi . (18)

As usual, this equilibrium state is prepared by a weak interaction between S and a macroscopic thermal bath at
temperature T [4, 5, 9], and then decoupling S from the bath in order to achieve a thermally isolated process [4–6].
The Hamiltonian H(t) generates a unitary evolution:

i~
d

dt
ρ(t) = [H(t), ρ(t) ], ρ(t) = U(t) ρ(ti)U

†(t), (19)

with time-ordered U(t) =←−exp[− i
~
∫ t
ti
dsH(s)]. The work W done on S reads [4–6]

W =

∫ tf

ti

dt tr [ρ(t)Ḣ(t)] = tr[Hfρ(tf)]− tr[Hiρ(ti)], (20)

where we performed partial integration and inserted (19). This is the energy increase of S, which coincides with the
energy decrease of the source.

B. The principle

Let S start in the state (18), and let R move between Ri and Rf along a trajectory R(t). The work done on S is
W . Consider the adiabatically slow realization of this process: R proceeds between the same values Ri and Rf and
along the same trajectory, but now with a homogeneously vanishing velocity, thereby taking a very long time tf − ti,
at the cost of an amount work W̃ . The minimum-work principle then asserts [4–6]

W ≥ W̃ . (21)

This is a statement on optimality: if work has to be extracted from S, W is negative, and to make it as negative
as possible one proceeds with very slow velocity. If during some operation work has to be added (W > 0) to S, one
wishes to minimize its amount, and operates slowly. For thermally isolated systems, adiabatically slow processes are
reversible. This is standard if S is macroscopic [4–6], and below it is shown to hold for a finite S as well, where the
definition of reversibility extends unambiguously (i.e., without invoking entropy) [6].
In macroscopic thermodynamics the minimum work principle is derived [4, 6] from certain axioms which ensure

that, within the domain of their applicability, this principle is equivalent to other formulations of the second law.
Derivations in the context of statistical thermodynamics are presented in [11–13]. We discuss one of them now.

C. The minimal work principle for macroscopic systems

It is proven in two steps: first one considers the relative entropy tr[ρ(tf) ln ρ(tf)− ρ(tf) ln ρeq(Hf)] between the final
state ρ(tf) given by (19) and an equilibrium state ρeq(Hf) = exp(−βHf)/Zf , Zf = tr e−βHf , a state corresponding to
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the final Hamiltonian Hf and the same temperature T = 1/β. As follows from (19), tr[ρ(tf) ln ρ(tf)] = tr[ρ(ti) ln ρ(ti)].
This combined with (18, 20) and the non-negativity of relative entropy [5] yields:

W ≥ F (Hf)− F (Hi) ≡ T ln tr e−βHi − T ln tre−βHf , (22)

where F (Hi) and F (Hf) are the gibbsian free energies corresponding to ρ(ti) and ρeq(Hf), respectively.
There are several classes of macroscopic systems for which one can show that the free energy difference in the RHS

of (22) indeed coincides with the adiabatic work [9, 12, 13].

D. Finite systems

For an arbitrary N -level quantum system S, Eq. (22) does not have the needed physical meaning, since in general
F (Hf)−F (Hi) does not coincide with the the adiabatic work. It is known[14] that for finite systems the final density
matrix ρ(tf) given by (19) need not coincide with ρeq(Hf) = exp(−βHf)/Zf . This fact was recently applied for certain
irreversible processes[15].
Thus we need an independent derivation of (21). Let the spectral resolution of H(t) and ρ(ti) be

H(t) =
N∑
k=1

εk(t)|k, t⟩⟨k, t|, ⟨k, t|n, t⟩ = δkn, (23)

ρ(ti) =

N∑
k=1

pk|k, ti⟩⟨k, ti|, pk =
e−βεk(ti)∑
n e

−βεn(ti)
. (24)

At t = ti we order the spectrum as

ε1(ti) ≤ ... ≤ εN (ti) =⇒ p1 ≥ ... ≥ pN . (25)

For ti ≤ t ≤ tf we expand on the complete set |n, t⟩:

U(t)|k, ti⟩ =
N∑
n=1

akn(t) e
− i

~
∫ t
ti

dt′ εn(t
′) |n, t⟩, (26)

and use (20) to obtain:

W =
N∑

k,n=1

|akn(tf)|2 pk εn(tf)−
N∑
k=1

pk εk(ti). (27)

A similar formula can be derived to express the adiabatic work W̃ in coefficients ãkn(tf). From the definition
|akn(tf)|2 = |⟨n, tf |U |k, ti⟩|2 it follows that

N∑
k=1

|akn(tf)|2 =
N∑
n=1

|akn(tf)|2 = 1. (28)

With help of the identity:
∑N
n=1 εnxn = εN

∑N
n=1 xn −

∑N−1
m=1[εm+1 − εm]

∑m
n=1 xn, we obtain using (27, 28) the

general formula for the difference between non-adiabatic and adiabatic work:

W − W̃ =
N−1∑
m=1

[εm+1(tf)− εm(tf)]Θm, (29)

Θm ≡
m∑
n=1

N∑
k=1

pk( |ãkn(tf)|2 − |akn(tf)|2). (30)

To understand the meaning of this formula, let us first assume that the ordering (25) is kept at t = tf :

ε1(tf) ≤ ... ≤ εN (tf). (31)
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If different energy levels did not cross each other (and equal ones do not become different), Eq. (31) is implied by
Eq. (25). According to non-crossing rule [16], if H{R} is real and only one of its parameters is varied with time, (31)
is satisfied for any discrete-level quantum system: level-crossing, even if it happens in model-dependent calculations
or due to approximate symmetry, does not survive arbitrary small perturbation where it is substituted by avoided
crossing (for a more general H{R} the conditions prohibiting level-crossing are more restrictive; see [16]). No level-
crossings and natural conditions of smoothmess of H(t) are sufficient for the standard quantum adiabatic theorem
[17] to ensure

ãkn(tf) = δkn. (32)

Combined with (25, 32), Eq.(30) brings

Θm =

m∑
k=1

pk(1−
m∑
n=1

|akn(tf)|2)−
m∑
n=1

N∑
k=m+1

pk|akn(tf)|2

≥ pm

[
m−

m∑
k=1

m∑
n=1

|akn(tf)|2 −
m∑
n=1

N∑
k=m+1

|akn(tf)|2
]
= 0.

Eqs. (27, 29, 31) together with Θm ≥ 0 extend the minimum work principle (21) to cases where the adiabatic work
is not equal to the difference in free energies.

E. Level crossing

The above non-crossing condition raises the question: Is the minimum work principle also valid if the adiabatic
energy levels cross? Before addressing this question in detail, let us mention some popular misconceptions which
surround the level-crossing problem: 1) The no-crossing rule is said to exclude all crossings. This is incorrect as the
exclusion concerns situations where, in particular, only one independent parameter of a real Hamiltonian H{R} is
varied [16]. Two parameters can produce robust level-crossing for such Hamiltonians. 2) It is believed that once levels
can cross, ∆ε→ 0, the very point of the adiabatic theorem disappears as the internal characteristic time ~/∆ε of S is
infinite. This view misidentifies the proper internal time as seen below; see also [18] in this context. 3) It is sometimes
believed that crossing is automatically followed by a population inversion. We shall find no support for that.
As a first example we consider a spin-1/2 particle with Hamiltonian

H(t) = h1(s)σ1 − h3(s)σ3, s = t/τ, (33)

where σ1, σ3 and σ2 = iσ1σ3 are Pauli matrices, and where s is the reduced time with τ being the characteristic
time-scale. The magnetic fields h1 and h3 smoothly vary in time. Assume that i) for s→ si < 0 and for s→ sf > 0,
h1(s) and h3(s) go to constant values sufficiently fast; ii) for s → 0 one has: h1(s) ≃ α1s

2, h3(s) ≃ −α3s, where α1

and α3 are positive constants. iii) h1(s) and h3(s) are non-zero for all s, si ≤ s ≤ sf , except s = 0. Not all these
points are needed, but we choose them for clarity. Generalizations are indicated below. One writes (33) as

H =

(
−h3(s) h1(s)
h1(s) h3(s)

)
= ε1(s)

(
cos θ(s) sin θ(s)
sin θ(s) − cos θ(s)

)
,

where θ(s) = − arctan[h1(s)/h3(s)] is a parameter in the interval −π/2 < θ < π/2, and where

ε1(s) = sg(s)
√
h23(s) + h21(s), ε2(s) = −ε1(s) (34)

are the adiabatic energy levels which cross at s = θ(s) = 0 (
√
. . . is defined to be always positive). The adiabatic

eigenvectors are, H(s)|k, s⟩ = εk(s)|k, s⟩, k = 1, 2,

|1, s⟩ =

 cos 1
2θ(s)

sin 1
2θ(s)

 , |2, s⟩ =

 − sin 1
2θ(s)

cos 1
2θ(s)

 . (35)

Both the eigenvalues and the eigenvectors are smooth functions of s. Eq. (31) is not valid, and (27–30) imply:

W − W̃ = −2
√
h21(sf) + h23(sf)Θ1, τ sf = tf . (36)



9

Naively this already proves the violation. More carefully, our strategy is now to confirm (32) in the adiabatic limit
τ →∞ and thus to confirm that Θ1 > 0, implying that the minimum work principle is indeed violated. To this end
we apply the standard adiabatic perturbation theory [17]. Substituting (26) into (19) one has:

ȧkn = −
N∑
m=1

akm(t) e
i
~
∫ t
ti

dt′[εn(t
′)−εm(t′)] ⟨n|∂t|m⟩. (37)

As |1⟩ and |2⟩ in (35) are real, ⟨n|n⟩ = 1 implies ⟨n|∂t|n⟩ = 0. Since ⟨n|∂t|m⟩ = 1
τ ⟨n|∂s|m⟩ the RHS of (37) contains a

small parameter 1/τ . It is more convenient to introduce new variables: akn(t) = δkn + bkn(t), bkn(ti) = 0. To leading
order in 1/τ , bkn can be neglected in the RHS of (37), yielding for ak ̸=n(tf) = bk ̸=n(tf):

|ak ̸=n(tf)|2 =

∣∣∣∣∫ sf

si

ds e
iτ
~

∫ s
si

du[εk(u)−εn(u)]⟨n|∂s|k⟩
∣∣∣∣2 , (38)

while |akk(tf)|2 = 1−
∑
n ̸=k |akn(tf)|2. In (38) we put sτ = t, s′τ = t′. For our model (33–35),

∫ s
si
du[ε1(u)− ε2(u)] =

2
∫ s
si
du ε1(u) has only one extremal point, at s = 0. We also have from (35)

⟨2|∂s|1⟩ =
θ′

2
=

1

2

h1h
′
3 − h3h′1
h23 + h21

, θ′ ≡ dθ

ds
. (39)

For large τ the integral in (38) can be calculated with use of the saddle-point method:

|a12(tf)|2 =
π~
τ

[
⟨2|∂s|1⟩2

√
h21 + h23

h1h′1 + h3h′3

]∣∣∣∣∣
s=0

=
π~α2

1

4τα3
3

. (40)

Eqs. (38, 40) extend the adiabatic theorem (32) for the level-crossing situation. More general statements of similar
adiabatic theorems can be found in Ref. [18]. Inserting Θ1 = (p1− p2)|a12(tf)|2 > 0 in Eq. (36) confirms the violation
of the minimum work principle. Eq. (40) shows that the role of the proper internal characteristic time is played by
~α2

1/α
3
3 rather than by ~/(ε1 − ε2).

More generally, if
√
h23(s) + h21(s) is a smooth function for all real s (e.g., it is not ∝ |s|), there are no crossings of

eigenvalues and (21) is valid. If both h1(s) and h3(s) are linear for s→ 0, the leading term presented in (40) vanishes
due to ⟨2|∂s|1⟩2|s=0 = 0, and one needs the second-order in the saddle-point expansion, to be compared with the
second-order term of the adiabatic perturbation theory. This leads to the same physical conclusions as (40) did, but
with |a12(tf)|2 ∼ τ−3.
One can calculate |akn(tf)| yet in another limiting case, where the characteristic time τ is very short. It is well-known

[17] that in this limit energy changes can be calculated with frozen initial state of S. For the present situation this leads
from (35) to |a12(tf)|2 = |a21(tf)|2 = |⟨1, tf | 2, ti⟩|2 = sin2 1

2 [θ(tf)−θ(ti)], and thus to Θ1 = (p1−p2) sin2 1
2 [θ(tf)−θ(ti)],

again positive.

F. Exactly solvable model with level crossing

Consider a two-level system with Hamiltonian

H(t) = ~ω

 s cos2 s 1
2s sin 2s

1
2s sin 2s s sin2 s

 , s =
t

τ
, (41)

where τ is the characteristic time-scale, and ω is a constant. For si < 0 denote the adiabatic energy levels as
ε1(si) = ~ωsi < ε2(si) = 0. They cross when s passes through zero. Eq. (37) for this model can be solved exactly in
terms of hypergeometric functions. Postponing the detailed discussion, we present in Fig. 1 the behavior of |a12(sf)|2

as a function of τ . Since from (29, 41) one has for the present model W − W̃ = −~ωsf |a12(sf)|2 tanh(12β~ω |si| ),
violations of the minimum work principle exist for sf > 0, and they are maximal for |a12(sf)|2 → 1. This is seen to be
the case in Fig. 1 for some τ near τ = 1. Notice that both the first-order perturbation theory and the saddle-point
approximation are adequately reproducing |a12(sf)|2 for τ & 10.
Let S has a finite amount of levels, and two of them cross. For quasi-adiabatic processes (τ is large but finite) the

transition probability between non-crossing levels is exponentially small [17, 19], while as we saw it has power-law
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smallness for two crossing levels. Then one neglects in (27) the factors |ak ̸=n(tf)|2 coming from any non-crossed levels
k and n, and the problem is reduced to the two-level situation. Thus already one crossing suffices to detect limits of
the minimum work principle. The reduction to the two-level situation takes place also in a macroscopic system which
has few discrete levels at the bottom of a continuous spectrum, since for low temperatures these levels can decouple
from the rest of the spectrum.

G. Cyclic processes and reversibility

The above results do not imply any violation of the second law in Thomson’s formulation[10]: no work is extracted
from S during a cyclic process, Wc ≥ 0. We illustrate its general proof in the context of the level crossing model given
by (33–35). Assume that the trajectory R(t) = (h1(t), h2(t) ) described there is supplemented by another trajectory
R′(t) which brings the parameters back to their initial values (h1(ti), h3(ti) ) so that the overall process R + R′ is
cyclic. If R′ crosses the levels backwards, then at the final time of R′ Eq. (31) is valid, and (27–32) imply:

Wc = |a12|2(p1 − p2)[ε2(ti)− ε1(ti)] ≥ W̃c = 0, (42)

where |a12|2 ≤ 1 now corresponds to the full cyclic process R + R′. Eq. (42) confirms the intuitive expectation that
non-adiabatic process are less optimal. In particular, this is valid if R′ is exactly the same process R moved backwards

with the same speed. Then W̃c = 0 means that R is a reversible process in the standard thermodynamical sense [4–6].
If R′ does not induce another level crossing, i.e., h1(s) and h2(s) in Eq. (33) return to their initial values without
simultaneously crossing zero, then ε1(tf) = ε2(ti), ε2(tf) = ε1(ti) and Eqs. (27, 32) imply

W̃c = (p1 − p2)[ε2(ti)− ε1(ti)] ≥Wc = |a11|2 W̃c > 0.

In contrast to (42), non-adiabatic processes are more optimal if R+R′ contains one level-crossing (or an odd number
of them). We thus have found here a violation of the minimum work principle for a cyclic process.

H. Summary

We have studied the minimum work principle for finite systems coupled to external sources of work. As compared to
other formulations of the second law, this principle has a direct practical meaning as it provides a recipe for reducing
energy costs of various processes. We gave its general proof and have shown that it may become limited if there are
crossings of adiabatic energy levels: optimal processes need to be neither slow nor reversible. Already one crossing
suffices to note violations of the principle. If this is the case, the optimal process occurs at some finite speed.
Level-crossing was observed, e.g., in molecular and chemical physics [21]. It is not a rare effect[20]: if the number of

externally varied parameters is larger then two, then for typical spectra level crossings are even much more frequent
than avoided crossings[20]. It is possible that the presented limits of the minimum work principe may serve as a test
for level crossings.
Together with the universal validity of Thomson’s formulation of the second law [10, 11], the limits of the principle

imply that the very equivalence between various formulations of the second law may be broken for a finite system
coupled to macroscopic sources of work: different formulations are based on different physical mechanisms and have

10 20 30 40 50

time- scale
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0.4

0.6

0.8

1

FIG. 1: Amplitude |a12(sf)|2 versus the time-scale τ for si = −1.5, sf = 1.5 and ω = 1. Full oscillating curve: the exact value
which can reach unity. Dotted curve: result from a first-order adiabatic perturbation theory. The smooth curve presents a
saddle-point approximation analogous to (40).
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different ranges of validity. Similar results on non-equivalence of various formulations of the second law were found in
Ref. [8, 9], where for a quantum particle coupled to a macroscopic thermal bath, it was shown that some formulations,
e.g., Clausius inequality and positivity of the energy dispersion rate, are satisfied at sufficiently high temperatures of
the bath, but can be invalid at low temperatures, that is, in the quantum regime.

V. CARNOT CYCLE AND ATTAINABILITY OF THE MAXIMAL EFFICIENCY

A. Introduction

Reciprocating heat engines extract work operating cyclically between two thermal baths at temperatures T1 and
T2 (T1 > T2) [4–6]. They have two basic characteristics: (i) efficiency, η =W/Q1, is the work W extracted per cycle
divided by the heat input Q1 from the high-temperature bath. (ii) Power W/τ , where τ is the cycle duration. Both
these quantities have to be large for a good engine: if η is small, lot of energy is wasted; if the power is small, no
sizable work is delivered over a reasonable time [4–6].
The second law establishes the Carnot efficiency

ηC = 1− T2
T1

as an upper bound for η [4–6]. The Carnot cycle reaches the bounding value ηC in the (useless) limit, where the power
goes to zero [4–6]. Conversely, realistic engines are not efficient, since they have to be powerful, e.g. the efficiency of
Diesel engines amounts to 35–40 % of the maximal value. This power-efficiency dilemma motivated a search for the
efficiency that would generally characterize the maximal power regime. One candidate for this is the Curzon-Ahlborn
efficiency

ηCA = 1−
√
T2/T1

[23], which is however crucially tied to the linear regime T1 ≈ T2 [24]. Beyond this regime ηCA is a lower bound of η
for a class of model engines [25]. Several recent models for the efficiency at the maximal power overcome ηCA with
η∗ = ηC

2−ηC [26].

As argued in [25, 27], the maximal power regime allows for the Carnot efficiency, at least for certain models. But
it is currently an open question whether the maximal efficiency is attained under realistic conditions (see e.g. [27]),
and how to characterize the very realism of those conditions. Even more generally: what is the origin of the power-
efficiency dilemma? We answer these questions by analyzing a generalized Carnot cycle, which in contrast to the
original Carnot cycle is not restricted to slow processes. We now summarize our answers.
(1) When the N -particle engine operates at the maximal work extracted per cycle, its efficiency reaches the Carnot

bound ηC for N ≫ 1, while the cycle time is given by the relaxation time of the engine. The maximal work and the
Carnot efficiency are achieved due to the flat energy landscape of the engine. For realistic engine-bath interactions this
energy landscape leads to a very long [O(eN )] relaxation time nullifying the power. By realistic we mean interactions
that are independent from the engine Hamiltonian. If we assume a proper tuning between engine-bath interaction
and the engine Hamiltonian, the relaxation time scales as O(

√
N), and the maximal efficiency is achievable in the

limit N ≫ 1 at a large power O(
√
N).

(2) The relaxation of the optimal engine under realistic interactions relates to an important problem of searching
an unstructured database for a marked item, where each energy level refers to a database item. This task is compu-
tationally complex, i.e. even the most powerful quantum algorithms resolve it in O(eN/2) time-steps [28]. Hence the
power-efficiency dilemma relates to computational complexity. The same effect can be reformulated as the Levinthal’s
paradox of the protein folding problem: if the majority of unfolded states of a protein are assumed to have the same
(free) energy, the folding time is very long [29].
(3) A scenario of resolving the Levinthal’s paradox proposed in protein science shows the way of constructing sub-

optimal engines that operate at a reasonably large values of work, power and efficiency. These sub-optimal engines
function as model proteins, but they are restricted to a mesoscopic scales N ∼ 100; otherwise the relaxation time
is again large. Sacrificing some 50–60% of the maximal possible work leads to a reasonable cycle times with the
efficiency that achieves some 90 % of the maximal (Carnot) efficiency.

B. Carnot cycle and its generalization

Recall that the Carnot cycle consists of four slow, consecutive pieces [4]: thermally-isolated – isothermal – thermally-
isolated – isothermal. Four times slow brings in the vanishing power stressed above; see additionally section I of [32].
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Since the overall process is a quasi-equilibrium one, the external fields that extract work from the engine act on it
during all the four pieces. One deduces for the isothermal parts: Q1 = T1∆S and Q2 = T2∆S, where Q1 (Q2) is the
heat taken from (put into) the T1-bath (T2-bath), and ∆S > 0 is the entropy change. Since the work extracted is
W = Q1 −Q2, η equals to its maximal value ηC = 1− T2

T1
[4].

We keep the two isothermal and two thermally isolated pieces of the original Carnot cycle, but do not force them to
be slow. In addition, the external fields will act only during the thermally isolated stages. Isothermal pieces amount to
free relaxation. Due to these points, we can analyze the engine functioning from the energy conservation. We study
the engine via quantum mechanics on a finite Hilbert space, because this reduces the problem to a combinatorial
optimization. The final results are interpreted classically and can be also obtained by discretizing the Hamiltonian
classical dynamics over phase-space cells.
0. The engine E with the Hamiltonian H1 starts in an equilibrium state at temperature T1 described by the density

matrix

ρ(0) = ρ1 = e−β1H1/(tr e−β1H1), β1 = 1/T1. (43)

1. Between times 0 and τ , E undergoes a thermally isolated process with a time-dependent Hamiltonian H12(t)

and the unitary evolution ρ(τ) = U12ρ(0)U
†
12:

H12(0) = H1, H12(τ) = H2, U12 = T e−i
∫ τ
0

dsH12(s), (44)

where T means chronological ordering. The work taken out of E is determined by energy conservation (see [4] and
section II of [32])

W1 = tr[H1ρ1 −H2U12ρ1U
†
12]. (45)

2. Then E is attached to the T2-bath and after relaxation time τr its density matrix becomes

ρ(τ + τr) = ρ2 = e−β2H2/(tr e−β2H2). (46)

The heat that came to E from the T2-bath is

Q2 = tr[H2ρ2 −H2U12ρ1U
†
12]. (47)

3. E undergoes another thermally isolated process

H21(0) = H2, H21(τ) = H1, U21 = T e−i
∫ τ
0

dsH21(s), (48)

completing the cycle with respect to the Hamiltonian. The work taken out of E reads

W2 = tr[H2ρ2 −H1U21ρ2U
†
21]. (49)

4. Finally, E is attached to the T1-bath (T1 > T2) and relaxes to ρ1 thereby completing the cycle; see (43). The
heat that came to E from the T1-bath is

Q1 = tr[H1ρ1 −H1U21ρ2U
†
21]. (50)

To stress the differences with the original Carnot cycle: (i) the cycle time 2(τ + τr) need not be much larger than the
relaxation time τr. (ii) The cycle is out of equilibrium. (iii) The work source and the bath never act simultaneously;
either one acts or another. Hence heat and work are deduced from the energy conservation.
The essential assumption of the cycle is that the system-bath coupling is weak; thus we did not count the work

necessary for switching the coupling(s) on and off.

VI. MAXIMIZATION OF WORK

We maximize the full extracted work W = W1 +W2 over H1, H2, U12, U21 for fixed T1 > T2 and a fixed number
n+1 of energy levels of E. The lowest energies of H1 and H2 can be set to zero. Introduce the eigen-resolution of Hα

Hα =
∑n+1

k=2
ϵ
[α]
k |k

[α]⟩⟨k[α]|, α = 1, 2. (51)
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The full work W =W1 +W2 reads from (45, 49)

W =
∑2

α=1

∑n+1

k=2
p
[α]
k ϵ

[α]
k (52)

−
∑n+1

k,l=2

[
p
[2]
k ϵ

[1]
l C

[21]
kl + p

[1]
k ϵ

[2]
l C

[12]
kl

]
, (53)

where {p[α]k }
n+1
k=1 are eigenvalues of ρα given by (43, 46, 51), and where

C
[αγ]
kl ≡ |⟨k[α]|Uαγ |l[γ]⟩|2, (α, γ) = (1, 2), (2, 1). (54)

C
[αγ]
kl are doubly stochastic matrices:

∑n+1
k=1 C

[αγ]
kl =

∑n+1
l=1 C

[αγ]
kl = 1. Such a matrix Ckl can be represented as a

convex sum of permutation matrices (Birkhoff’s theorem) [31]: Ckl =
∑
δ λδΠ

[δ]
kl , where λδ ≥ 0,

∑
δ λδ = 1, and where

Π[δ] permutes the components of any vector on which it acts. Hence we can maximize W in (52, 53) over {λδ}. The
optimal C

[12]
kl and C

[21]
kl amount to permutation matrices, since {λδ} enter linearly into W . Without loss of generality

we can assume ϵ
[α]
1 ≤ ... ≤ ϵ

[α]
n+1 and hence p

[α]
1 ≥ ... ≥ p

[α]
n+1. Then the optimal permutations C

[12]
kl and C

[21]
kl are unit

matrices; see (53). In contrast to the original Carnot cycle, the optimal thermally isolated processes can be realized
as sudden (quick) changes of the Hamiltonian eigenvalues without changing the eigenvectors. A prominent example of
such a process is the Mössbauer effect [33]. It is an advantage that thermally isolated processes can be fast; otherwise
it is difficult to maintain thermal isolation, which is a known problem of the original Carnot cycle [4, 5].
The work

W =W1 +W2 =
∑n+1

k=2
(p

[1]
k − p

[2]
k )(ϵ

[1]
k − ϵ

[2]
k ), (55)

is to be still maximized over {ϵ[1]k }
n+1
k=2 and {ϵ[2]k }

n+1
k=2 ; see (54). W is symmetric with respect to permutations within

{ϵ[1]k }
n+1
k=2 and within {ϵ[2]k }

n+1
k=2 . We checked numerically that this symmetry is not broken and hence the maximum of

W is reached for

ϵ[α] ≡ ϵ[α]2 = ... = ϵ
[α]
n+1, α = 1, 2, (56)

i.e. all excited levels have the same energy. Thus the thermally isolated pieces of the cycle consist, respectively, of
sudden changes ϵ[1] → ϵ[2] and ϵ[2] → ϵ[1].

With new variables e−βαϵ
[α] ≡ uα we write the maximal work as

Wmax[u1, u2] =
(T1 ln

1
u1
− T2 ln 1

u2
)(u1 − u2)n

[1 + nu1][1 + nu2]
, (57)

where u1 and u2 are found from

∂u1Wmax[u1, u2] = ∂u2Wmax[u1, u2] = 0. (58)

u1 and u2 depend on T2/T1 and on n. Noting (50) and the result before (55) we obtain Q1 = tr(H1(ρ1 − ρ2)) for the
heat obtained from the high-temperature bath. Using (56) we get from η =W/Q1 and from (57):

η = 1− [T2 lnu2] /[T1 lnu1] . (59)

Note from (57) thatWmax[u1, u2] > 0 and T2 < T1 imply 1 > ϵ[2]/ϵ[1] > T2/T1. Hence (59) implies η ≤ ηC = 1−T2/T1,
as expected.
Both Wmax[u1, u2] and η increase with n. For ln[n]≫ 1 we get asymptotically from (58):

u1 =
(1− θ) ln[n]

n
, u2 =

θ

n ln[n](1− θ)
, (60)

where θ ≡ T2/T1. This produces

Wmax[u1, u2] = (T2 − T1) ln[n]−O(1/ln[n]), (61)

η = ηC −O(1/ln[n]), ηC ≡ 1− T2/T1. (62)

The maximal work Wmax[u1, u2] scales as ln[n], since this is the “effective number of particles” for the engine. In the
macroscopic limit ln[n]≫ 1, the efficiency converges to its maximal value ηC = 1− T2/T1; see (62).
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A. The cycle time

It amounts to two times the relaxation time τr of the system with spectrum (56) and energy gap ϵ ∼ ln[n]; see (56,
60). (Recall that the thermally isolated stages of the cycle are very quick.) The magnitude of τr essentially depends
on the scenario of relaxation.
First (specific) scenario. We can assume that the Hamiltonian (51, 56) of the heat engine is known. Then there

exist system-bath interaction scenarios that lead to τr = O(
√

ln[n]); see section VI of [32]. Hence for this type of

relaxation the Carnot efficiency is achievable at a large power O(
√

ln[n])≫ 1; see (61). However, in these scenarios the
system-bath interaction Hamiltonian (that governs the relaxation) is special: it depends on the engine Hamiltonian
(51, 56).
Second (realistic) scenario. Assuming that the system-bath interaction does not depend on the Hamiltonian (51,

56), we can estimate τr within the weak-coupling, Markov master equation approach that leads to τr = O(n); see
section III of [32]. For a qualitative understanding of this situation, consider the relaxation as a random walk in the
energy space, e.g. in the second step of the cycle, where the engine starts with almost unpopulated ground state, and
it has to achieve ground state probability ≈ 1 after relaxation; see (60). So, if every transition from one excited energy
level to another takes a finite time, one will need to perform in average n/2 transitions before jumping to the ground
state. Now note from (62) that the convergence of η to ηC is controlled by O(1/ ln[n]): a small step towards ηC will
lead to a large increase in τr nullifying the power O(ln[n]/n) for n≫ 1; see (61). Hence for this type of relaxation the
Carnot efficiency is not achievable at a finite power.
The second relaxation scenario of the system with Hamiltonian (51, 56) is similar to the known combinatorial

optimization problem: finding a marked item in an unstructured database [28] of n + 1 items. This problem is
mapped to physics by associating each item to an eigenvector of a Hamiltonian [28]. The marked item relates to the
lowest energy level 0, while all other (excited) eigenvalues of the Hamiltonian ϵ are equal. The resulting system has
unknown eigenvectors of the Hamiltonian, but known eigenenergies. Now the searching process can be organized as
a relaxation of the system from an excited state to a low-temperature equilibrium state. This state is dominated by
the ground level due to a large ϵ. Once the relaxation is over, the unknown item (eigenvector) can be revealed by
measuring the energy.
For classical algorithms the search time of this problem scales as O(n) for n ≫ 1 [28]. It is thus not much better

than going over all possible candidates for the solution, a typical situation of a computationally complex problem. For
quantum algorithms (Grover’s search) the search time scales as O(

√
n) [28]. This is still not suitable for our purposes,

since it nullifies the power for ln[n]≫ 1.

B. Sub-optimal engine

Within the second (realistic) relaxation scenario, we shall modify the optimal engine so that the power is finite, but
both the work and efficiency are still large. We are guided by the analogy between the relaxation of the Hamiltonian
(51, 56) under the second scenario and the Levinthal’s paradox from protein physics [29]. In fact, (51, 56) is the
simplest model employed for illustrating the paradox; see [29, 30] and section V of [32]. Here the ground state refers
to the unique folded (native) state. To ensure its stability, it is separated by a large gap from excited (free) energy
levels. The essence of the paradox is that assuming many equivalent unfolded (excited) states, the relaxation time to
the native state is unrealistically long. Recall that the states ρ1 and ρ2 of the optimal engine refer respectively to
unfolded and folded states of the protein model. Indeed nuα/(1 + nuα) (α = 1, 2) is the overall probability of the
excited levels; see (56). Hence for ln[n]≫ 1 the ground state (excited levels) dominates in ρ2 (ρ1); see (60).
The resolution of the paradox is to be sought via resolving the degeneracy of excited levels: if there are energy

differences, some (unfavorable) transitions will not be made shortening the relaxation time [29, 30]. In resolving the
energy degeneracy we follow the simplest model proposed in [29].
The model has N ≫ 1 degrees of freedom {σi}ni=1; each one can be in ζ + 1 states: σi = 0, ..., ζ. Whenever σi = 0

for all i’s, the model protein is in the folded (ground) state with energy zero [29, 30]. The ground state has zero
energy. Excited states with s ≥ 1 have energy ϵ + δs, where ϵ > 0 and s is the number of (misfolded) degrees of
freedom with σi ̸= 0. δ > 0 is the parameter that (partially) resolves the degeneracy of excited states; we revert to
the previous, work-optimal, model for δ → 0. For different eigenvalues of the Hamiltonian Hα we have{

(1− δKr[s, 0] ) (ϵ
[α] + sδ[α])

}N
s=0

, α = 1, 2, (63)

where δKr[s, 0] is the Kronecker delta, and where each energy ϵ[α] + sδ[α] is degenerate ζsN !
s!(N−s)! times; thus the total

number of energy levels is (1 + ζ)N .
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TABLE I: Parameters of the sub-optimal engine: work W , efficiency η and the cycle time 2τr; see (65–69). Wmax is the

maximal work extracted for the optimal engine at a vanishing power; see (57, 58). For the sub-optimal engine: K = ζe−β1δ
[1]

,
N = 140, ζ = 4, T1 = 1, T2 = 1/2. Carnot and Curzon-Ahlborn efficiencies are, respectively, ηC = 1/2 and 0.5858 ηC. Also,

p
[α]
1 = [1 + (1 +K)Ne−βαϵ[α]

]−1 (α = 1, 2) are the ground-state probabilities of ρα ∝ e−βαHα ; see (63).

K τr W/Wmax W η/ηC p
[1]
1 p

[2]
1

0.1 4.45× 10−5 s 0.2267 23.52 0.8751 0.0392 0.9808

0.2 4.35 s 0.3884 40.3 0.9110 0.0237 0.9883

0.24 357 s 0.4393 45.58 0.9181 0.0210 0.9896

Given (63), the cycle consists of two isothermal and two thermally isolated pieces with sudden changes (δ[1], ϵ[1])→
(δ[2], ϵ[2])→ (δ[1], ϵ[1]); see (43–55). Below we shall also assume

β1δ
[1] = β2δ

[2], (64)

because this makes the sub-optimal engine structurally very similar to the optimal one. Now the work W =W1+W2

is calculated from (45, 49, 50, 63, 64):

W [v1, v2;K] =
m(∆ϵ+ KN∆δ

1+K )(v1 − v2)
(1 +mv1)(1 +mv2)

, (65)

∆ϵ = ϵ[1] − ϵ[2] = T1 ln[1/v1]− T2 ln[1/v2], (66)

∆δ = δ[1] − δ[2] = (T1 − T2) ln[ζ/K]. (67)

where K = ζe−β1δ
[1]

, m = (1 +K)N , and where vα ≡ e−βαϵ
[α]

(α = 1, 2) are determined from maximizing (65). Note
the analogy between (57) and (65), with m being an analogue of n; they get equal for δ → 0. Note that in (65) we
neglected factor O( 1

m ) assuming that m≫ 1.
Likewise, we get for the efficiency [cf. (59)]:

η = 1− T2
T1
×

ln 1
v2

+ NK ln(ζ/K)
1+K

ln 1
v1

+ NK ln(ζ/K)
1+K

. (68)

For this model [29] assumes a local Markov relaxation dynamics, where each degree of freedom makes a transition
σi → σi ± 1 in 10−9 seconds; this value is chosen conventionally to fit experimental magnitudes for the elementary
dynamic step [29]. The model has a single relaxation time [29] that is easily reproduced in the general master-equation
framework (see section IV of [32]):

τr = 10−9(1 +K)N/(NK) seconds, (69)

where the factor N is due to the N -times degenerate first excited level.
For δ[α] → 0 (α = 1, 2), where the excited energy levels become degenerate, τr ∝ (1 + ζ)N scales linearly over the

number of energy levels, as expected. When δ[α] are not zero, τr can be of order of 1 second for N ∼ 100, because
1 +K is close to 1. However, for the macroscopic situation (N ∼ 1023) τr is still huge. In this sense, the model is
incomplete, but still useful for analyzing the mesoscopic situation N ∼ 100 that is relevant for the protein folding
problem [30].
Table I illustrates the characteristics of the sub-optimal engine and compares them with those of the optimal one.

Reasonable cycle times can coexist with a finite fraction (∼ 40%) of the maximal work and with sizable efficiencies
(∼ 90% of the maximal value) that are larger than the Curzon-Ahlborn value. Hence, albeit within the second
(realistic) scenario it is impossible to approach the maximal efficiency as close as desired, reasonably large efficiencies
at a finite (or even large) power are possible.

VII. STATISTICAL THEORY OF IDEAL QUANTUM MEASUREMENT PROCESSES

One of the main foundational challenges of quantum theory is the so-called measurement problem: Why does each
individual run of an ideal measurement yield a well-defined outcome, in spite of the existence of quantum coherences?
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Does measurement theory require a specific principle or interpretation of quantum mechanics? Already raised by the
founding fathers, this crucial question has witnessed a revival [34–40]. Many authors explore models, others propose
alternative interpretations of quantum mechanics or go beyond it.
As in [41, 42], we will approach the problem through a standard minimalist quantum approach, by analysing the

dynamics of the isolated system constituted by the tested system S coupled to the measuring apparatus A. A key point
is the macroscopic size of the apparatus, which forces us to rely on non-equilibrium quantum statistical mechanics.
Moreover, being irreducibly probabilistic, quantum physics does not describe individual objects; we must deal with
statistical ensembles (§1), then attempt to infer the properties of a single run of the measurement from those of the
subensembles of runs in which it may embedded.
We deal with ideal, non demolishing measurements. Their purpose is to test a single observable ŝ =

∑
i siΠ̂i of

S characterised by its eigenvalues si and the associated eigenprojectors Π̂i, while perturbing S minimally. Although
ideal measurements are not currently performed in real experiments, their theoretical elucidation is a necessary step
towards a full understanding of actual measurement processes, since any general quantum measurement (POVM) can

be represented as a partial trace over an ideal measurement [2]. We denote by D̂(t) the joint density operator of S+A

for a large ensemble of runs, and by r̂(t) = trAD̂(t) and R̂(t) = trSD̂(t) the marginal density operators of S and A,
respectively. At the initial time t = 0, S and A are uncorrelated, S lies in some state r̂(0) and A in a metastable state

R̂(0), so that D̂(0) = r̂(0) ⊗ R̂(0). Triggered by its coupling with S, A may relax towards one or another among its

stable states R̂i, which should have equal entropies and energies so as to avoid bias in the measurement. These states
can be distinguished from one another through observation or registration of the pointer variable Ai, identified with
the expectation value trAR̂iÂ of some collective observable Â of A. The final indication Ai of the pointer must be
fully correlated with the eigenvalue si of the tested observable ŝ and with the production of the final state r̂i for S.
The analysis of the process should therefore explain how S+A, starting from the initial state D̂(0), reaches at a final
time tf , for each run of the measurement, one among the states [43]

D̂i = r̂i ⊗ R̂i, pir̂i = Π̂ir̂(0)Π̂i, (70)

with Born’s probability pi = ⟨Π̂i⟩ = trSr̂(0)Π̂i.
Some parts of this task have been achieved for various models. Here we deal with arbitrary ideal measurement

processes, gathering the key ideas that underlie their full dynamical solution. Due to the generality of our scope, we
can describe only qualitatively this solution, but we will demonstrate the feasibility of the program by recalling in
footnotes the outcomes of the detailed dynamical solution [39, 44] of the Curie–Weiss (CW) model7.
1. Statistical formulation of the principles of quantum mechanics. We tackle the measurement problem within

a statistical formulation of quantum mechanics, also called “statistical interpretation” or “ensemble interpretation”
[34]. It is a minimalist, formal description suited to both microscopic and macroscopic systems. Its spirit is the same
as in the C∗-algebraic approach [40], although we deal with finite non relativistic systems. It does not prejudge any
specific interpretation of quantum oddities [2]. Physical interpretations should emerge at the macroscopic scale, in
experimental contexts, as will be discussed in §5.
Physical quantities pertaining to a system (or rather to an ensemble of similar systems) are described as “observ-

ables” represented by Hermitean matrices in a Hilbert space. Observables behave as random objects, but, unlike
ordinary random variables, their randomness arises from their non-commutative nature and is inescapable.
A “quantum state”, whether pure or not, encompasses the probabilistic predictions that one may make about the

various observables. It is characterised by a correspondence between observables Ô and real numbers, implemented
as Ô 7→ ⟨Ô⟩ = tr D̂Ô by means of a Hermitean, normalised and nonnegative density operator D̂. Such a definition
looks analogous to that of a state in classical statistical mechanics, encoded in a density in phase space. However,
“quantum expectation values” ⟨Ô⟩, “quantum probabilities” such as ⟨Π̂i⟩ and “quantum correlations” such as ⟨ŝÂ⟩
present a priori only a formal similarity with standard expectation values, probabilities and correlations; fluctuations
arise not only from some ignorance but also from the operator character of physical quantities.
As a standard probability distribution, a quantum state gathers information and refers, implicitly or not, to a

statistical ensemble E : We should regard an individual system as embedded in a large, real or virtual, ensemble E
of systems produced under the same conditions. So a state does not “belong to a system”, it is not an intrinsic

7 In the CW model [6, sect. 3], S is a spin 1
2
, the measured observable being its z-component ŝz , with outcomes i = ↑ or ↓. The apparatus

simulates a magnetic dot, including N ≫ 1 spins σ̂(n), which interact through the Ising coupling J , and a phonon thermal bath at
temperature T < J ; these spins and the phonons are coupled through a dimensionless weak coupling γ. Initially prepared in its metastable

paramagnetic state, A may switch to one or the other stable ferromagnetic state. The pointer observable Â = Nm̂ =
∑N

n=1 σ̂
(n)
z is the

total magnetisation in the z-direction of the N Ising spins. The coupling between S and A is ĤSA = −
∑N

n=1 gŝz σ̂
(n)
z , while ĤS = 0.
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property. Information may be updated as for ordinary probabilities by acknowledging and sorting the outcomes of
measurements so as to split E into subensembles, to each of which a new state will be assigned (§5).
2. System plus apparatus in thermodynamic equilibrium. We suppose that the compound system S+A is isolated,

including in A a thermal bath or an environment if present. The properties of S+A are governed by the Hamiltonian
Ĥ = ĤS + ĤA + ĤSA, which must have specific features. If A is decoupled from S, the part ĤA governing the
macroscopic apparatus should produce an initial metastable state R̂(0) with lifetime longer than the duration of the

measurement and several thermodynamic equilibrium states R̂i, the possible final states. A typical example1 is given
by spontaneously broken discrete invariance, the pointer variable Ai being the order parameter.
As we wish to deal with ideal measurements, the process should perturb S as little as possible: any observable

compatible with ŝ, i.e., commuting with its eigenprojectors Π̂i, should remain unaffected. The conservation of all
these observables [43] is expressed by the fact that Ĥ depends on S only through the projectors Π̂i. In particular the

coupling must have the form ĤSA =
∑
i Π̂i⊗ ĥi, where ĥi are operators of A. Moreover, if ŝ takes the value si, that is,

Π̂i the value 1, A should end up near its stable state R̂i, the pointer variable being close to Ai. This can be achieved

if each ĥi behaves as a source that breaks explicitly the invariance8 by energetically favouring Ai.
Before analysing the dynamics of the measurement process (§3 and §4), we determine for orientation the general

form D̂eq of the thermodynamic equilibrium states associated with the Hamiltonian Ĥ of S+A. We rely on the
maximum von Neumann entropy criterion for assigning a state to a system in equilibrium [45, 46]. We thus maximise

−trD̂ ln D̂ under constraints accounting for the conserved quantities. As usual for isolated macroscopic systems,
thermal equilibrium is implemented by specifying the average energy ⟨Ĥ⟩. The other constants of the motion, to wit,

the expectation values of all observables of S that commute with the projections Π̂i, are accounted for by associating
a Lagrange multiplier with each of them.
This yields for the equilibrium states a Gibbsian form where the exponent involves an arbitrary linear combination

of all the conserved observables, i.e., D̂eq ∝ exp(−βĤ+
∑
i ŷi) where ŷi is any operator of S acting inside the diagonal

block i (so that ŷi = Π̂iŷiΠ̂i). Noting that the exponent, which commutes with the projections Π̂i, has a block
diagonal structure, we find for these equilibrium states the related block diagonal structure

D̂eq =
∑
i

qix̂i ⊗ R̂h
i ,

∑
i

qi = 1. (71)

Each factor qix̂i, which arises from exp(−βĤS + ŷi), is an arbitrary block diagonal operator of S, where x̂i = Π̂ix̂iΠ̂i,

trSx̂i = 1 behaves as a density operator of S. (If the eigenvalue si is non degenerate, x̂i reduces to Π̂i.) Each factor

R̂h
i ∝ exp[−β(ĤA + ĥi)] in (71) can be interpreted as a canonical equilibrium density operator in the space of A. Here

the invariance is explicitly broken by adding to the Hamiltonian of A the source term ĥi arising from ĤSA.
This term should be sufficiently large so that the distribution trAR̂hi δ(A − Â) of Â has a single narrow peak, and

sufficiently small so that this peak lies close to Ai, so as to let Â behave as a pointer observable. These properties
are easy to satisfy for a macroscopic apparatus. Thermodynamic equilibrium (71) thus entails a complete correlation

between the eigenvalue si of ŝ and the value Ai of the pointer variable. The moderate size of ĥi also ensures that the
state R̂hi lies in the basin of attraction of the state R̂i with broken symmetry, so that R̂hi will relax smoothly to R̂i
at the end of the measurement process when the coupling ĤSA is switched off.
Let us return to measurements. We wish to explain how a final state D̂i of the form (1) should be assigned with

probability pi to each run. It is thus necessary (but not sufficient) to prove, by studying the dynamics of a large

statistical ensemble E of runs for which S+A lies initially in the state D̂(0) = r̂(0)⊗ R̂(0), that its final state is

D̂(tf) =
∑
i

piD̂i =
∑
i

pir̂i ⊗ R̂i. (72)

8 The interaction Hamiltonian ĤSA allows to describe not only ideal measurements involving well separated eigenvalues si of ŝ, but also
more general measurements for which the projectors Π̂i, still associated through ĥi with the pointer indications Ai, are no longer in one-
to-one correspondence with the eigenvalues of ŝ. For instance, if some Π̂i encompasses the eigenspaces of several different neighbouring
eigenvalues, selecting the outcome Ai will not discriminate them, and the final state r̂i = Π̂ir̂(0)Π̂i/pi of S will not be associated with a

single eigenvalue of ŝ as in an ideal measurement. As another example, consider two orthogonal rank-one projectors Π̂1 and Π̂2, coupled
with sources ĥ1 and ĥ2 that produce different outcomes A1 and A2, and assume that Π̂1 + Π̂2 spans the two-dimensional eigenspace
associated with a degenerate eigenvalue of ŝ; reading the outcome A1 (or A2) then provides more information than this eigenvalue.
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We can identify (72) with a thermodynamic equilibrium state (71), for which relaxation of R̂h
i to R̂i has taken place

after switching off ĤSA. Dynamics and conservation laws will determine the free parameters of D̂eq from the initial

state D̂(0) as qix̂i = Π̂ir̂(0)Π̂i ≡ pir̂i. i.e., qi = pi, x̂i = r̂i.

We can also identify the state D̂i defined in (70), expected to describe the subensemble Ei obtained by selecting
within E the runs tagged by the value Ai of the pointer, with an equilibrium state for which all qj with j ̸= i vanish.
More generally, for an arbitrary subset Esub of runs9 having yielded a proportion qi of individual runs with outcomes
Ai, the expected final state

D̂sub(tf) =
∑
i

qiD̂i (73)

is a thermodynamic equilibrium state (71) with x̂i = r̂i.
Thus, an ideal measurement process appears as a mere relaxation of S+A to equilibrium, for the full ensemble E of

runs and for arbitrary subensembles Esub. In quantum mechanics, relaxation of D̂(t) and D̂sub(t) towards Gibbsian
thermodynamic equilibrium states (3) and (4) is not granted [47]. We must therefore justify these properties within
the quantum statistical dynamics framework. We sketch the main steps of such a proof in §3 and §4.
3. Dynamics of S+A for the full set of runs. Our first task [41] consists in deriving the final state (72) by solving

the Liouville–von Neumann equation i~dD̂(t)/dt = [Ĥ, D̂(t)] with initial condition D̂(0) = r̂(0) ⊗ R̂(0). Taking into

account the above form of Ĥ and the commutation [ĤS, r̂(0)] = 0 which ensures that the marginal state r̂(t) of S is

perturbed only by the interaction ĤSA during the process, we check that D̂(t) can be parameterised as

D̂(t) =
∑
i,j

Π̂ir̂(0)Π̂j ⊗ R̂ij(t) (74)

in terms of a set R̂ij(t) = R̂†
ji(t) of operators in the Hilbert space of A, to be determined by the equations

i~
dR̂ij(t)

dt
= (ĤA + ĥi)R̂ij(t)− R̂ij(t)(ĤA + ĥj), (75)

with the initial conditions R̂ij(0) = R̂(0). The dynamics thus involves solely the apparatus, irrespective of the tested
system, a specific property of ideal measurements.
Though macroscopic, A should be treated as a finite system so as to ensure a better control of the dynamics and

to discuss under which conditions the process can be regarded as an ideal measurement. We must then explain how
the expected irreversible relaxation from D̂(0) to D̂(tf) can be governed by the reversible equations (75), so that
we run into the old paradox of irreversibility. As usual in statistical mechanics, it is legitimate for finite but large
systems to disregard events having an extremely small probability, to forget about recurrences that would occur after
large, unattainable times, and to neglect physically irrelevant correlations between a macroscopic number of degrees of
freedom. Such approximations, although not exact mathematically, are fully justified when their outcome is physically
indistinguishable from the exact solution. A large apparatus, and a suitable choice of parameters in ĤA and ĤSA will
therefore be needed, for each model, to explain the required relaxations and to estimate their time scales, as will be
illustrated by the CW model treated extensively in [39].
Two types of relaxation arise independently from the dynamical equations (75). (i) For i ̸= j, the coherent

contributions R̂ij(t) decay owing to the difference between ĥi and ĥj and eventually vanish. The off-diagonal blocks

of the density matrix D̂(t) are thus truncated as regards the physically attainable observables. Depending on the
model, this decay may be governed by different mechanisms.
For i = j, the evolution of R̂ii(t) governed by (75) is a mere relaxation from the metastable state R̂(0) to the

equilibrium state R̂hi in the presence of the source ĥi, and then to R̂i after ĤSA is switched off. The correlation
between si and Ai needed to register the outcome is thereby established10. Thus, microscopic dynamics confirms the
thermodynamic surmise (72) for the final state of S+A in the ensemble E .

9 Subsets obtained by extracting runs at random from E would be described by the same state D̂(t) as the full set E. If r̂i is a mixed
state, the runs described by (4) are picked up at random within Ei.

10 Authors do not always give the same meaning to the various words used. We term as truncation the disappearance of the off-diagonal
blocks of the density matrix of S+A under the effect of an arbitrary mechanism, and specialise decoherence to the production of this
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4. Final states for arbitrary subensembles. We have shown how D̂(t) evolves from D̂(0) to D̂(tf) =
∑
i piD̂i for the

large set E of runs. Our next task consists in proving, again dynamically, that S+A ends up in a state of the form (73),

D̂sub(t) =
∑
i qiD̂i, for all possible subsets Esub of E . If the density operator D̂(tf) did behave as an ordinary probability

distribution, this result would be obvious, as the form
∑
i piD̂i of D̂(tf) would mean that E contains a proportion pi

of individual runs having ended up in the state D̂i; the form (73) of D̂sub would follow for any subset gathering a
proportion qi of runs i. However, in quantum mechanics, contrary to standard probability theory, specifying the state
D̂ for an ensemble E (with N elements), that is, the correspondence Ô 7→ ⟨Ô⟩ = tr D̂Ô, does not imply the existence
of probabilities for individual systems (§1) so that the above reasoning is fallacious [48].

Indeed, when an ensemble E (with N elements described by D̂) gathers a subensemble Esub (with 0 < Nsub < N
elements described by D̂sub) and its complement, one has

D̂(t) = kD̂sub(t) + (1− k)D̂Csub(t), (76)

involving the weight k = Nsub/N and the nonnegative density operator D̂Csub(t) of the complement of Esub.
However, if we conversely consider some decomposition of a known mixed state D̂ having the form (7), we run into

a severe difficulty. Due to the matrix nature of quantum states, nothing tells us that the set E described by D̂ may
be split into two subsets that would be described by the two terms D̂sub and D̂Csub. We have to face a quantum
ambiguity: A mixed state possesses D̂ of S+A many different mathematical decompositions (76) which are physically

incompatible [48]. We cannot infer from its sole knowledge whether a term D̂sub issued from some decomposition of

D̂ is a density operator describing a real subset of runs or not. (We keep the notation D̂sub also in the latter case.)

In particular, the form (72) of D̂, though suggestive, is not sufficient to imply the existence of subensembles of runs

that would be described by D̂i.
In order to overcome this quantum ambiguity, we adopt the following strategy. We start from the state D̂(tsplit),

taken at a time tsplit earlier than tf but sufficiently late so that D̂(tsplit) has already reached the form
∑
i piD̂i,

after ĤSA has been switched off. We consider all mathematically allowed decompositions of D̂(tsplit) of the form (76),

involving two nonnegative Hermitean operators. Although nothing ensures that the operators D̂sub(tsplit) thus defined
are physically meaningful, we are ascertained that their class includes all physical states associated with real subsets
of runs. Our purpose is then to show, by taking D̂(tsplit) as initial condition and solving for t > tsplit the equations

of motion for D̂(t) governed by the Hamiltonian ĤS + ĤA, that any admissible candidate D̂sub(t) for a physical state

ends up in the expected form D̂sub(tf) =
∑
i qiD̂i. We shall thereby have proven the relaxation towards the required

equilibrium form (73) for all physical subsets of runs, although it will be impossible before the reasoning of §5 to know

which among the operators D̂sub(tf) thereby constructed are the physical ones.

We begin with the determination of the general form, issued from (76), of the initial operators D̂sub(tsplit). To

simplify the discussion, we assume here the eigenvalues of ŝ to be non degenerate11 so that r̂i = Π̂i = |si⟩⟨si|. As A

is macroscopic, the fluctuations of ĤA around ⟨ĤA⟩ and of the pointer observable around the macroscopic value Ai
are relatively small, and we can replace in D̂(tsplit) the canonical equilibrium states R̂i by microcanonical ones, R̂µi .
Within the Hilbert space of A, we denote as |Ai, η⟩ a basis of kets characterised by a value of Â close to Ai (within

a small margin δAi), and by a value of the energy corresponding to the microcanonical equilibrium state R̂µi . As the
spectrum is dense, the index η may take a very large number Gi of values, and R̂µi is expressed by

R̂µi =
1

Gi

∑
η

|Ai, η⟩⟨Ai, η|. (77)

effect by interaction with an environment or a thermal bath. We term as registration the process which leads each diagonal block to
the correlated state r̂i ⊗ R̂i, and as reduction the transition from r̂(0) to some r̂i for an individual run. While much attention has been
paid to the vanishing of the off-diagonal blocks, the relaxation of the diagonal blocks is too often disregarded, although it produces
the correlations that ensure registration. In the CW model [6, sect. 7], this process is triggered by ĥi which makes R̂(0) unstable and

should be sufficiently large to exclude false registrations (g ≫ J/
√
N). Later on, the relaxation of R̂ii(t) to R̂h

i , and finally to R̂i after

ĤSA is switched off, is governed by the dumping of free energy from the magnet to the phonon bath; its characteristic duration is the
registration time ~/γ(J − T ).

11 For degenerate eigenvalues si, the only change in the forthcoming derivation, if the states r̂i ≡ |i⟩⟨i| are pure, is the replacement of |si⟩
by |i⟩. If r̂i is mixed, we note that this operator of S is not modified by the process, while remaining fully coupled with Ai for t > tsplit.

We should therefore preserve this property when we split D̂ so as to build the candidates D̂sub for states of physical subensembles. The
microcanonical relaxation of A then produces again the final state (10), at least for all physical subensembles.
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The state D̂(tsplit) ≃
∑
i pir̂i ⊗ R̂

µ
i thus involves only diagonal matrix elements within the Hilbert subspace Hcorr

of S+A spanned by the correlated kets |si⟩ |Ai, η⟩. Hence, since both operators on the right side of (76) must be
nonnegative, their matrix elements must lie within this Hilbert subspace Hcorr, so that any initial (normalised)
operator constrained by (76) has the form

D̂sub(tsplit)=
∑
i,j,η,η′

|si⟩|Ai, η⟩K(i, η; j, η′)⟨sj |⟨Aj , η′|. (78)

The evolution for t > tsplit of the operator D̂sub(t) issued from (78) is governed by ĤS + ĤA, and, as in section 3,

ĤS is ineffective. The Hamiltonian ĤA of the apparatus is chosen so as to involve interactions inducing among the
kets |Ai, η⟩ rapid transitions12 that modify η without affecting the macroscopic value of Ai. Apart from the existence
here of several thermodynamic equilibrium states13 labelled by i, the mechanism is the same as in the standard
microcanonical relaxation [4, 49–51] which leads to the equalisation of the populations of the microstates for a single
microcanonical equilibrium. Such a “quantum collisional process” is irreversible for a large apparatus. Acting on
both |Ai, η⟩ and ⟨Aj , η′| in (78), it produces over the same time scale τsub two different effects. (i) For i ̸= j, all
contributions to (78) fade out. (ii) For i = j, all terms such that η ̸= η′ disappear, while the coefficients K(i, η; i, η)
of the various terms η all tend to one another, their sum remaining constant. The duration τsub of these relaxations
being much shorter12 than tf , the mechanism is already effective before tsplit, so that anyway D̂sub reaches at the final
time tf > tsplit + τsub the microcanonical equilibrium

D̂sub(tf) =
∑
i

qir̂i ⊗ R̂µi , qi =
∑
η

K(i, η; i, η). (79)

Since the above derivation holds for arbitrary operators D̂sub issued from a mathematical decomposition (76) of D̂, it
encompasses all the physical subsets Esub of runs, which therefore end up in the required form (73). The coefficients qi
of the various physical subensembles are related to one another by a hierarchic structure: If two disjoint subensembles

E(1)sub and E(2)sub of E , described by D̂(1)
sub and D̂(2)

sub, and having N (1) and N (2) elements, respectively, merge into a new
subensemble Esub, the above proof implies for the coefficients the standard addition rule

[
N (1) +N (2)

]
qi = N (1)q

(1)
i +N (2)q

(2)
i . (80)

5. Emergence of classical probabilistic interpretation. In order to elucidate the measurement problem for ideal
quantum measurements, it remains to show that the operators D̂i are not only the building blocks of the final
density operators D̂(tf) of S+A (associated with the full ensemble E of runs) and D̂sub(tf) (associated with its
subensembles Esub), but also that they describe the outcomes (1) of individual runs. However, we have stressed
(§1) that quantum mechanics, in its statistical formulation, does not deal with individual systems but only provides
information on statistical ensembles – possibly gedanken but physically consistent. In the strict framework of quantum
statistical mechanics, the most detailed result about ideal measurements that can be derived is the structure (73) of
the final density operators of S+A for all possible subensembles Esub of E . An essential feature of this result will allow
extrapolation to individual runs, to wit, the elimination owing to dynamics of the quantum ambiguity, yielding the
hierarchic structure (80) of the states of the subensembles Esub.
Indeed, the latter structure is just the same as the one that lies at the core of the definition of ordinary probabilities

when they are interpreted as relative frequencies of occurrence of individual events [52]. Once the quantum ambiguity

12 Two different mechanisms achieving such a process have been studied for the CW model [6, §11.2], and it has been shown that they

produce the result (79). In the more realistic one [6, Appendices H and I], the transitions that modify η are produced by an interaction V̂

between the magnet and the bath which has a variance v2 = tr V̂ 2; an average delay θ separates successive transitions. Microcanonical
relaxation may take place even if V̂ is not macroscopic, with a variance scaling as v ∝ Na (a < 1) for large N . For a short θ, scaling as
θ ∝ 1/Nb (a < b < 2a), the characteristic time τsub = ~2/v2θ scales as 1/Nc where c = 2a− b, 0 < c < a < 1; it is short compared to
the registration time, which dominates tf because registration involves a macroscopic dumping of energy from the magnet to the bath,
in contrast to the present relaxation.

13 This type of relaxation also occurs in the dynamics of finite-temperature quantum phase transitions with spontaneously broken invariance,
explaining within quantum theory why the order parameter may take a well-defined value in a single experiment. This analogue of the
measurement problem is solved along the same lines for macroscopic systems, so that the community has rightfully not been bothered
about it. But the problem remains for phase transitions in finite systems, which require an analysis of time scales.
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has been removed and the property (80) established, it is natural to complement the inherently probabilistic principles
of quantum mechanics with the following interpretation of the final mixed states (73) associated with the various
subensembles Esub: A coefficient qi that arose abstractly from the above relaxation process is identified14 as the
proportion of runs having produced the outcome Ai in the subensemble Esub; each Ei contains Born’s proportion pi
of runs. An individual run then belongs to some subset Ei and can be assigned the state D̂i, so that a solution of the
quantum measurement problem is achieved.
The runs are tagged by the value Ai of the pointer variable, which characterises the factor R̂i of D̂i and which can

macroscopically be observed or registered. By picking out the runs having yielded Ai, one extracts from the whole
ensemble E the subensemble Ei that ends up in the state D̂i. Two steps are thus necessary to go from the initial state
D̂(0) to D̂i. First, the Hamiltonian evolution (irreversible since A is large) of the coupled system S+A for the full

ensemble E leads to the state D̂(tf) expressed by (72); correlations are created, and information is transferred from S

to A with some loss. However, the subsequent reduction of the state from D̂(tf) to one of its components D̂i is not
a consequence of some evolution, but the mere result of selecting the particular outcome Ai. This change of state,
associated with the extraction from E of the subset Ei is merely an updating of information15, in the same way as the
change of an ordinary probability distribution resulting from some gain of information. A further step is involved in
the reduction of the state of S from r̂(0) to r̂i, the disregard of A after selection of Ai.

A “state” defined by the mapping Ô 7→ ⟨Ô⟩ = trD̂Ô has only a mathematical nature; the c-numbers ⟨Ô⟩ present
only a formal analogy with ordinary expectation values. However, at the end of a measurement, the coefficients
pi = ⟨Π̂i⟩ = trSr̂(0)Π̂i can be identified with ordinary probabilities in the frequency interpretation. Accordingly, ⟨ŝ⟩ =
tr r̂(0)ŝ =

∑
i pisi and Ai = trAR̂iÂ appear as ordinary statistical averages, and ⟨ŝ2⟩ − ⟨ŝ⟩2 as an ordinary variance;

the correlation between ŝ and Â in D̂(tf) has a classical nature. As usual in statistical mechanics, the macroscopic
behaviour of the apparatus, in particular the irreversibility of the process, emerges from the underlying reversible
microscopic theory. But moreover another remarkable type of emergence occurs at the end of the measurement
process: Classical probabilities emerge from quantum theory, although the underlying “quantum probabilities” were
non-commutative and could not a priori be regarded as frequencies in the absence of an experimental context. Certain
properties of S, encoded statistically in the initial state r̂(0) of the ensemble E , are selected by the measurement context
and revealed by the outcomes of the individual runs of the process.
Thus all the features of ideal measurements, including the measurement problem and the classical aspects of the

outcomes, have been explained by the sole use of a minimalist and abstract formulation of quantum theory, applied to
a large apparatus satisfying adequate dynamical properties. Interpretation came out naturally, but only in the end.
Since alternative interpretations involve unnecessary assumptions of one kind or another, the usage of the statistical
formulation in teaching is advocated.

VIII. ADIABATIC QUANTUM SYSTEMS WITH (AND WITHOUT) FEEDBACK

The adiabatic theorem of quantum mechanics governs the evolution of a quantum system subject to slowly varying
external fields. Its applications span a vast array of fields, such as two-level systems (nuclei undergoing magnetic
resonance or atoms interacting with a laser field), quantum phase transitions, quantum field theory (where a low-
energy theory is derived by tracing out fast, high-energy degrees of freedom), and Berry’s phase [33, 53–55]. This
phase and the adiabatic theorem also find applications in quantum information processing [56, 57]. For a recent
discussion on the validity of the adiabatic approach see [58].
A general perspective of the quantum adiabatic physics is that it studies a system subject to a slow, open loop (i.e.,

no feedback) control, where the evolution of the external fields is given a priori via time-dependent parameters of the
system Hamiltonian. In view of numerous application of this setup, it is natural to wonder about the quantum adiabatic
closed-loop control, where the external controlling fields evolve under feedback from the controlled quantum system.
We expect to find in this case a much richer dynamic behaviour, keeping simultaneously the system-independent

14 In other words, there exist subensembles Ei for which all but one of the coefficients qi vanish. This property, together with (80), was
included in the definition of probabilities as frequencies [52].

15 Measurements involve both a physical process of interaction between S and A and a selection of outcomes for repeated experiments. If
we do not select the indications of A, knowledge about S is updated by replacing r̂(0) by

∑
i pir̂i. If the tested observable is not fully

specified, the least biased subsequent predictions should rely on a state obtained by averaging over all possible interaction processes. If
for instance, one is aware that an ensemble of spins initially prepared in the state r̂(0) have been measured in some direction, but if
one knows neither in which direction nor the results obtained, one should assign to the final state the density operator 1

3
[1̂ + r̂(0)] as

being the best (but imperfect) description. Indeed, a quantum state is not an intrinsic property of a physical system but it reflects our
knowledge about the ensemble in which it is embedded.
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features of the adiabatic approach. Now any feedback needs information on the evolution of the system. This
information is to be gained via measurements, which in the quantum situation are normally related with unpredictable
disturbances and irreversibility. Thus quantum control has so far been restricted to open-system dynamics [59].
However, also quantum measurements can be non-disturbing, if N non-interacting quantum particles (spins, etc)

couple to the proper measuring apparatus. For N ≫ 1 [analog of the classical limit] one can measure single-particle
observables (almost) without disturbing the single-particle density matrix, since the disturbance caused by such
measurements scales as 1

Nσ2 , where σ is the measurement precision [60]. The knowledge of these observables allows
to implement feedback [61]. Non-disturbing measurements on ensembles of few-level systems are routinely employed
in NMR physics (e.g., in ensemble computation) and quantum optics [62–64]. An experimental example of realizing
feedback in NMR physics is presented in [64].
Here we develop an adiabatic theory under feedback obtained via such non-disturbing measurements. We intend

to show that the inclusion of the feedback in quantum adiabatic dynamics leads to much richer dynamic behavior
(non-linear replicator equation for the adiabatic probabilities, new gauge-invariant adiabatic phase), while still keeping
the main attractive point of the adiabatic approach that is the ability to gain important information without actually
solving equations of motion.

A. Basic equations

Consider a d-level quantum system described by a pure state |ψ⟩ (generalization to mixed states is indicated
below). The system evolves according to the Schroedinger equation with Hamiltonian H[R(t)], where R(t) is a
classical controllling parameter (~ = 1):

i|ψ̇(t)⟩ = H[R(t)] |ψ(t)⟩. (81)

By means of a continuous non-disturbing measurement performed on an ensemble of identical, non-interacting systems
(each one described by |ψ(t)⟩) one finds the average ⟨ψ(t)|A|ψ(t)⟩ of a monitoring observable A (in NMR physics A
typically corresponds to the magnetization). This average enters the feedback dynamics of R

Ṙ = εF (R, ⟨ψ(t)|A|ψ(t)⟩) , (82)

where ε≪ 1 is a small dimensionless parameter. We assume that |F (., .)| is bounded from above, which means that R
is a slow variable: its derivative is bounded by a small number. For F = F (R) (no feedback) we recover the standard
adiabatic setup. The dynamics (81) conserves the purity of |ψ(t)⟩, but the overlap ⟨ϕ(t)|ψ(t)⟩ between two different
wave-functions is not conserved in time, since H depends on |ψ(t)⟩⟨ψ(t)| via (82).
We assume that R is a scalar variable, though most of our results can be generalized directly to the case of several

variables (vector-valued R).
The way we introduced (82) referred to the situation, where the feedback is engineered artificially. However, there

is an important case, where the above scheme occurs naturally. For a particular case

F = −⟨ψ|∂RH|ψ⟩, (83)

Eqs. (81, 82) can be viewed as a hybrid dynamics, where a classical particle with coordinate R performs an overdamped
motion and couples to the quantum system. Then ε in (82) corresponds to an inverse damping constant, while
⟨ψ|∂RH|ψ⟩ is the average (mean-field) force acting on the particle. (Overdamping means that the acceleration is
irrelevant and the friction force is directly equated to the average potential force.) Hybrid theories are frequently
employed in optics, atomics physics and chemical physics; see [65] for the current state of art. In this context it
is useful to recall that also the non-feedback [adiabatic] situation, where a quantum system interacts with a given
external classical parameter, refers to an interaction of the quantum system with a classical one (the parameter is
then the coordinate of this classical system). However, in the this standard case the feedback effect is neglected.
Let us now introduce the adiabatic eigensolution of the Hamiltonian for a fixed value of R (n = 1, .., d):

H[R] |n[R]⟩ = En[R] |n[R]⟩, ⟨n[R] |m[R]⟩ = δmn. (84)

For simplicity we assume that the adiabatic energy levels are non-degenerate. The representation (84) has a gauge-
freedom:

|n[R]⟩ → eiαn[R] |n[R]⟩, (85)
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where αn[R] is an arbitrary single-valued function depending on n and R. All observables should be gauge-invariant.
Now let us expand |ψ(t)⟩ as

|ψ(t)⟩ =
∑

n
cn(t) e

iγn(t) |n[R(t)]⟩, (86)

γn(t) ≡ −
∫ t

0

dt′En[R(t
′)], cn(t) = ⟨n[R(t)] |ψ⟩ e−iγn(t),

where γn(t) are the dynamical phases, cn are the adiabatic amplitudes, and where all summation indices run from 1
to d (the total number of energy levels), if not stated otherwise.
One gets from (81, 82, 86):

ċn = −ε
∑

k
ck⟨n|k′⟩F (R, {c}, {ei∆γ(t)} ) ei(γk(t)−γn(t)),

(87)

where prime denotes differentiation over R,

|k′⟩ = ∂R|k[R]⟩, (88)

and where F (R, c, ei∆γ(t)) is already reparametrized in terms of all cl and all phase-differences eγl(t)−γm(t). To make
this point clear we indicated this dependence via curly brackets in F

(
R, {c}, {ei∆γ(t)}

)
. The amplitudes cn and R are

slow variables, since, e.g., |ċn| is bounded from above by O(ε) provided that the feedback F (R) and the Hamiltonian
H(R) are bounded functions of R. However, the contribution from the dynamical phases γn changes fast, since on
the slow time τ = εt it behaves as ∼ eiτ/ε; see (86). If the spacings between the adiabatic energy levels En[R] remain
large enough, the existence of some intermediate time τf is guaranteed, over which the dynamical phase contribution
performs many oscillations, but cn and R do not change appreciably. Note that in particular we assume that the
adiabatic energy levels do not cross as functions of R [68] (in addition of these levels being non-degenerate).
The adiabatic approximation divides cn into the time-averaged (over τf ) part c̄n and the small (at least as O(ε))

oscillating part: cn = c̄n + δcn [67]. To leading order we neglect in the RHS of (87) all the oscillating factors and
substitute c→ c̄ and R→ R̄:

c̄•n = −
∑

k
c̄k⟨n|k′⟩ F (R̄, {c̄}, {ei∆γ} ) ei(γk−γn) , (89)

where τ = εt, X̄ ≡
∫ τf
0

ds
τf
X(s), and where X• ≡ dX/dτ . Likewise, (82) produces for the averaged motion of R

R̄• = F (R̄, {c̄}, {ei∆γ} ).

B. Linear feedback

The simplest example of feedback is

F = ⟨ψ|A|ψ⟩ =
∑

nm
c∗n cmAnm e

i(γm−γn), (90)

where ⟨n|A|m⟩ ≡ Anm. Eq. (90) can be regarded as the first term of the Taylor expansion assuming that F (x) depends
weakly on its argument. Eq. (89) leads to

c̄•l = −
∑

knm
c̄k ⟨l|k′⟩ c̄∗n c̄mAnm ei(γm−γn+γk−γl). (91)

In working out (91) we shall assume that the time-integrated energy-level differences are distinct:

γm(t)− γn(t) ̸= γl(t)− γk(t), if m ̸= n and m ̸= l. (92)

This condition is generic for few-level systems. It does not hold for cases like harmonic oscillator, which should be
separately worked out from (91). Now in the RHS of (91) the non-zero terms are those with m = n and l = k, and
those with m = l and k = n (but n ̸= l, not to count twice the term m = n = k = l):

c̄•l = −c̄l ⟨l|l′⟩ R̄• − c̄l
∑

n(̸=l)
|c̄n|2 ⟨l|n′⟩Anl, (93)
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where ⟨l|l′⟩ is imaginary, since ∂R⟨l|l⟩ = 0. The nontrivial (second) term in the RHS of (93) is due to non-diagonal
elements of A. Defining the phase and modulus of c̄n,

c̄n =
√
pn e

iϕn ,
∑

n
pn = 1, (94)

we get from (93) [and likewise from (82, 90)]

p•l = −2pl
∑

n(̸=l)
pn ℜ{ ⟨l|n′⟩Anl }, (95)

ϕ•l = i⟨l|l′⟩R• −
∑

n( ̸=l)
pnℑ{ ⟨l|n′⟩Anl }, (96)

R̄• =
∑

n
pnAnn. (97)

Eqs. (95–97) are our central results. Before exploring them in more detail let us discuss the standard (open-loop, i.e.,
no feedback) adiabatics, where A = A(R) is a c-number. Now R moves in a prescribed way according to R• = A(R).
Eq. (95) leads to the conservation of the probabilities p•l = 0 (adiabatic theorem): the system does not get enough
energy to move out of the given energy level [33, 53]. The RHS of (96) reduces to Berry’s factor ϕ•B,l = i⟨l|l′⟩R•. As

seen from (86), though ϕB,l is by itself not gauge-invariant, it does bring an observable (Berry phase) contribution

to the average of an observable (hermitean operator) over the state |ψ(t) ⟩ =
∑
n cn(0)e

iϕB,n(τ)+iγn(t), provided that
this operator is not diagonal over the adiabatic basis (84).
The Berry phase was observed in numerous experiments; see [54, 55] for review. It is constrained by the following

conditions.
1. The Berry phase nullifies, ⟨l|l′⟩ = 0, if the adiabatic eigenvectors |l⟩ can be made real via a gauge transformation,

e.g., a spinless particle without magnetic field. (This statement does not hold if there are level-crossings.)
2. ϕB,l = 0 for a cyclic motion of a single slow parameter R, where R is switched on at the initial time and

then switched off at the final time. The Berry phase may be different from zero if there is more than one slow
parameter R = (R1, R2, ...) on a closed curve C: R(0) = R(τ) [54]. Then one gets a gauge-invariant expression
ϕB,l = i

∮
C dR ⟨l|∂R l⟩ [54, 55].

To our opinion these constraints seriously limit applications of the Berry phase. We shall see below that the
adiabatic phases generated by the feedback-driven adiabatic dynamics are free of these limitations.

C. Closed-loop adiabatics

Eq. (95) for pl arises out of the averaging over the fast dynamic phases under condition (92). Eq. (95) is non-
linear over pn due to the feedback. The probabilities pn are no longer conserved [due to the resonance between the
oscillations of cn and those of R, see (91)], and if pn’s are known, the phases ϕl are obtained directly from (96). The
matrix

aln ≡ −2ℜ{ ⟨l|∂Rn⟩ ⟨n|A|l⟩ }, aln = −anl, (98)

in (95) is antisymmetric; in particular, all = 0, which means
∑
l pl(τ) = 1. The edges of the probability simplex, e.g.

pl = δl1, are (possibly unstable) stationary solutions of (95), and pl(τ) is always non-negative.
It is noteworthy that (95) coincides with the replicator equation for a zero-sum population game [70, 71]. Consider

a population of agents that consists of groups l = 1, .., d. The fraction pl of each group in the total population changes
due to interaction between the groups, so that p•l is proportional to pl itself, while the proportionality coefficient is
the average payoff of the group l: p•l = pl

∑
n alnpn [70, 71]. Here the payoff matrix aln determines the fitness increase

of the group l in its interaction with the group n. The actual mechanism of this interaction depends on the concrete
implementation of the model (inheritance, learning, imitation, infection, etc) [71]. The condition anl = −aln means a
zero-sum game (e.g., poker): the gain of one group equals to the loss of the other. Thus in (95) the population game,
with (in general) τ -dependent payoffs aln, is now played by the energy levels. Interesting features of the replicator
equation can be found without solving it; see (100–103).
We note that this seems to be the first physical realization of the replicator dynamics, which so far was limited to the

phenomenology of population dynamics. This, in particular, opens up a way for its precise experimental investigation
(something that arguably is hardly possible in a field like population dynamics).
For the open-loop control changing of R on the slow time scale is mandatory, otherwise no adiabatic motion occurs

at all. The closed-loop situation is different, since now for ⟨n|A|n⟩ ≡ Ann = 0 the slow motion of R is absent,

R̄• = 0, (99)
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FIG. 2: Adiabatic amplitudes cnl versus τ for a three-level system. cnl are obtained from solving (119, 120) (hybrid dynamics).
The external field is not acting on the first energy level: |⟨2|1′⟩| = |⟨3|1′⟩| = 0; thus c11 is constant. We put |⟨2′|3⟩| = 1. All |k⟩
are real (no Berry phases), and additionally the adiabatic energies are constant: All = −∂REl = 0; thus R̄ is constant according
to (112). Normal curve: c23. Dashed curve: c12. Thick curve: c13. Thick dashed curved: c22. Recall that c33 + c22 = const.

[see (97)], with still non-trivial adiabatic dynamics. Eq. (99) implies that the fast motion of R averages out on the
slow time. Let us focus on this situation, since we cannot study (95–97) in full generality.
Eqs. (95, 98), now with τ -independent aln, is conveniently studied via the time-averages [71]:

1

T
ln
pl(T )

pl(0)
=

∑
n

alnp̃n(T ), p̃n(T ) =

∫ T

0

dτ

T
pn(τ), (100)

where T defines the time-window of the averaging. We shall normally take T →∞; see below.
There are now two different dynamic scenarios depending on the concrete form of τ -independent alp in (95, 98).
1. If all pl(t) (which were non-zero at the initial time τ = 0) stay non-zero for all times, ln pl(T ) in the LHS of

(100) is limited, which means that this LHS can be neglected for T →∞. We then get from (100) [70, 71]∑
n
alnp̃n(∞) = 0. (101)

Thus all pl(t) may remain non-zero for all times provided that there is a probability vector p̃(∞) that satisfies (101).
Clearly, p̃(∞) is a stationary state of (95, 98). Recall that the [non-negative] relative entropy is defined as

S[p̃(∞)|p(τ)] =
∑

l
p̃l(∞) ln [ p̃l(∞)/pl(τ) ] , (102)

where p(t) is a time-dependent solution of (95). S[p̃n(∞)|p(τ)] is equal to zero if and only if p̃(∞) = p(τ). Due to
(101), S[p̃n(∞)|p(t)] is a constant of motion [thus an adiabatic invariant], since

S•[p̃(∞)|p(τ)] =
∑

ln
pl(τ)alnp̃n(∞). (103)

Eq. (95) can be recast into a Hamiltonian form [70], where the constant of motion S[p̃(∞)|p(τ)] becomes the Hamil-
tonian. The non-linearity of this dynamics is essential, since it can demonstrate chaos for d ≥ 5. In some related
systems the chaotic behavior was seen in [72].

2. If the matrix aln is such that (101) does not have any probability vector solution, 1
T ln pl(T )

pl(0)
in (100) is necessarily

finite for at least one l. The corresponding probability pl(T ) goes to zero (for a large T ): pl(T )→ pl(∞) = 0, so that
for all k one has

∑
naknp̃n(∞) ≤ 0. This inequality is strict at least for k = l. Eq. (103) shows that S[p̃(∞)|p(τ)] now

decays to zero meaning that p(τ) relaxes to p̃(∞). This relaxation is due to the non-linearity of (95); it is impossible
without feedback.
Eq. (96) for the phases integrates as

ϕl(τ) = −τ
∑

n( ̸=l)
p̃n(τ)bln, bln ≡ ℑ{⟨l|n′⟩ ⟨n|A|l⟩}, (104)

where p̃n(τ) satisfies the algebraic equation (100), and bln is symmetric: bln = bnl. Eq. (104) gives the phases of the
adiabatic feedback control. Clearly, ϕl(τ) is free of the constraints for the open-loop (Berry) phase ϕB,l:
i) it is gauge-invariant together with bln, see (85, 104);
ii) its existence does not require complex adiabatic eigenvectors |l⟩, provided that the monitoring observable A has

at least some complex elements ⟨n|A|l⟩;
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iii) it does not require several control parameters for cyclic processes;
iv) even if anl, defined via (98), is zero, i.e., if the probabilities pn are conserved, the feedback-driven phases ϕl

in (104) can be non-zero. Here we have an important situation, where the adiabatic theorem holds, but the new
adiabatic phases are non-trivial.
Note that ϕl = 0 if the evolution starts from one adiabatic eigenvector pn(0) = δnk, i.e., in the expansion (86) only

one adiabatic eigenfunction with index k is present: cn(0) = δnk (however this stationary state of (95) need not be
stable, as we saw above). In contrast, the Berry phase may be non-zero even for this case, although its observation
does require interference with another eigenstate.

D. Examples

We now apply our findings to two simple examples. For a two-level system (95, 98) reduce to (recall that R̄• = 0,
and thus a12 does not depend on time τ)

p1(τ) =
p1(0)e

a12τ

1 + p1(0)[ea12τ − 1]
, (105)

which means that independent of the initial value p1(0), p1 → 1 (p1 → 0) if a12 > 0 (a12 < 0). Properly choosing the
time τ and a12, and knowing p1(0), we can reach any value 0 ≤ p1(τ) ≤ 1. For this simplest two-level example the
oscillatory behavior (described after (103)) is absent.
Eq. (104) produces for the phases

ϕ1,2(τ) = ±
b12
a12

ln
[
p1(0)(e

∓a12τ − 1) + 1
]
. (106)

Two basic examples of two-level systems are the spin- 12 and the polarization states of light. The standard Berry phase
was observed in both these cases [54].
For the three-level situation the internal stationary vector is obtained from (101) (up to normalization)

p̃1(∞) =
a23

a12 + a23 − a13
, p̃2(∞) = − a13

a12 + a23 − a13
, (107)

p̃3(∞) =
a12

a12 + a23 − a13
, (108)

provided all these probabilities are positive, as e.g. for a12 > 0, a23 > 0, a13 < 0. In game-theoretic terms this means
that 1 beats 2, 2 beats 3, but 3 beats 1 (cyclic dominance or rock-scissor-paper game) [71]. Now the τ -dependent
solution p(τ) of (95) oscillates around the stable point given by (107, 108) above [71].
The relaxation regime is realized if one of the probabilities in (107, 108) are not positive. For example, if 1 beats

both others (a12 > 0, a13 > 0), the only attractor of (95) is p̃(∞) = (1, 0, 0). The latter conclusion holds also for a
τ -dependent R̄, if the conditions a12(τ) > 0 and a13(τ) > 0 are satisfied for all τ ’s. However, the general arguments
(100–103) do not hold for τ -dependent aln.
In the last example [as well as in the two-level example given by (105)] we meet a situation, where for an arbitray

initial pure state, the dynamics leads to relaxation to a definite state, i.e., to the state p1 = 1 with the example given
by (105). The reason for this relaxation behavior, which is clearly absent for the usual linear Schrödinger dynamics,
is the underlying non-linearity of the feedback-driven adiabatic dynamics, as expressed by the dependence of F on
|ψ⟩⟨ψ| in (82). To some extent the above relaxation effect resembles the collapse of the wave-function known from
the phenomenology of quantum measurement. Recall from our discussion around (83) that this non-linearity may be
caused by a mean-field interaction with a classical [i.e., macroscopic] system. However, the studied situation does not
correspond to any measurement, since the ”collapse” is not probabilistic and does not correspond to a macroscopic
change in any measuring apparatus.

E. Slow motion of the controlling parameter

Now R moves slowly due to ⟨n|A|n⟩ ̸= 0. Now (95) becomes a driven replicator equation, since aln are τ -dependent.
The general theory for a time-dependent replicator is (to our knowledge) lacking. There are two cases, where the above

results suffice for analyzing the driven situation. In the above three-level example assume that conditions a23(τ)
a12(τ)

< 0

or a13(τ)
a12(τ)

> 0, are satisfied for all τ . Then the same argument on the relaxation to a single state applies. If the the

opposite conditions a23(τ)
a12(τ)

> 0 and a13(τ)
a12(τ)

< 0 hold for all τ , all pl(τ) are non-zero for all times.



27

F. Mixed states

So far we focused on pure states of the quantum system. Now we assume that the quantum state ρ is mixed and the
feedback goes via the average tr(Aρ); compare with closed loop equation (82). Since the closed loop equations (81) is
not linear, the mixed-state dynamics (in general) does not reduce to the pure case. Starting from the feedback-driven
von Neumann equation [compare with (81)]

iρ̇(t) = [H[R(t)], ρ ], Ṙ = εF (R, tr{Aρ}) , (109)

and defining for the adiabatic amplitude

cnm ≡ ⟨n|ρ|m⟩eiγm−iγn , (110)

[compare with (86)], and proceeding along the lines of (84–92) we obtain

c̄•nm + R̄•c̄nm(⟨n|n′⟩+ ⟨m′|m⟩) (111)

= −
∑

l(̸=n)
⟨n|l′⟩Alnc̄nlc̄lm −

∑
l(̸=m)

⟨l′|m⟩c̄nlc̄lmAml

R̄• =
∑

l
c̄llAll. (112)

There is a case where the pure-state analysis applies directly: Pseudo-pure states in NMR are important for ensemble
computation and are given as

ρ = (1− η) 1̂
d
+ η|ψ⟩⟨ψ|, (113)

where 1̂ is the unit matrix, and where 0 < η < 1 is a parameter [63]. Since 1̂ is an invariant of (111), Eq. (111) reduces
to (93), but with Anl → η2Anl. Thus for the pseudo-pure case we get the same (though rescaled in time with the
factor η2) adiabatic dynamics.
In general the phases of cnm do not decouple from |cnm|, and we do not have a general theory for mixed states.
Hybrid dynamics. Let us study in more detail the hybrid (quantum-classical) dynamics A = −∂RH; see our

discussion after (83). Let us first of all address the pure-state dynamics. Eq. (84) implies for n ̸= l

Anl ≡ ⟨n|A|m⟩ = (En − El)⟨n|l′⟩, (114)

⟨l|n′⟩Anl = (El − En)|⟨l|n′⟩|2. (115)

Substituting (115) into (104) we see that the new phases ϕl nullify. Eqs. (115, 95) predict for the probabilities

p•l = 2pl
∑

n(̸=l)
pn(En − El)|⟨l|n′⟩|2. (116)

We shall order the energies as

E1 < . . . < Ed. (117)

Since we assumed that there are no level-crossings (see our discussion after (88)), this ordering is conserved at all
times, once it was imposed initially.
Considering (116) for l = d we see that pd goes to zero for large times τ →∞. Continuing this logic for l = d−1, . . . , 1

we see that all pl with l > 1 go to zero for large times, while the probability p1 for the lowest level goes to one. The
origin of this phenomenon of relaxation to the ground-state (or cooling) is related to (83), which implies that the
external parameter R interacts with a zero-temperature thermal bath.
Let us now turn to the mixed-state dynamics, which will be seen to be more interesting. Eq. (111) implies

c̄•nn = 2
∑

l(̸=n)
(El − En)|⟨l′|n⟩|2 |c̄nl|2. (118)

Let n = 1 be the lowest energy level. If all |⟨l′|1⟩| differ from zero, the non-diagonal elements c̄l ̸=1 have to nullify for
large τ , since c̄11 should be limited. Continuing this reasoning for n > 1, we get that all non-diagonal elements c̄n̸=l
nullify for large times, if all |⟨l′|n⟩| are positive.
Once the non-diagonal elements c̄n ̸=m nullify, the large-time behavior of the diagonal elements c̄nn is determined by

the fact that the dynamics (109) conserves the eigenvalues of the density matrix ρ. Inspecting (111) and using (115,
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117) one can see that the long-time diagonal values of c̄nn(∞) are equal to the eigenvalues λn(0) of the initial matrix
{c̄nm(0)}dn,m=1: the lowest energy gets the largest eigenvalue, c̄11(∞) = max[λ1(0), . . . , λd(0)], the second energy level
gets the second largest eigenvalues among {λn(0)}, and so on till finally the highest energy level gets the smallest
eigenvalue: c̄dd(∞) = min[λ1(0), . . . , λd(0)]. The resulting long-time state with the density matrix δnmcnn(∞) has
the lowest energy among all density matrices with energies (117) and eigenvalues λn(0). Thus what we have here is
an effect of controlled decoherence.
The above analysis required that all |⟨l′|n⟩| are non-zero. If, however, |⟨l′|n⟩| = 0 for some n ̸= l, the element cnl

survives at long-times and undergoes a non-trivial evolution. An example of such evolution is presented in Fig. 2 under
the following simplifying conditions (which are in a sense minimal for the existence of this effect): (1) The number of
energy levels is equal to three: d = 3. (2) The field R acts only on energy levels 2 and 3; the level 1 does not feel R.
Thus |⟨2|1′⟩| = |⟨3|1′⟩| = 0 and |⟨2′|3⟩| > 0. (3) The adiabatic energies do not depend on R. Thus All = −∂REl = 0
and R̄ is also a constant of the averaged dynamics; (112). The R-dependence is restricted to the eigenvectors of the
Hamiltonian H[R] in (84). (4) These adiabatic eigenvectors |k⟩ are real (no Berry phases). Eqs. (111, 115) now read

c̄•22 = 2β|c̄23|2, |c̄23|• = β|c̄23|(1− c̄11 − 2c̄22), (119)

c̄•12 = βc̄13|c̄23|e−iψ23 , c̄•13 = −βc̄12|c̄23|eiψ23 , (120)

where c̄•11 = 0, ψ•
23 = 0, and where β ≡ (E3 − E2)|⟨2′|3⟩|2 and c̄23 ≡ |c̄23|eiψ23 . The numerical solution of (111, 115)

under the above conditions (1)-(4) is presented in Fig. 2. The fact that c̄11 is constant is natural, since the external
field R does not act on the first energy level due to condition (2). However, we see that c12 and c13 do change in
time, an effect that is impossible for pure states; see (95, 96), which show that under |⟨2|1′⟩| = |⟨3|1′⟩| = 0 both p1
and ϕ1 are constant (in the slow time). Another interesting aspect seen in Fig. 2, where all cl ̸=n are real, is that c13
changes its sign. This is an example of the adiabatic phase for the considered case. Note that though c23 decays to
zero [according to the argument presented after (118)], it increases in the intermediate times.
In summary, we studied how the feedback generated by non-disturbing (ensemble) measurements affects the adia-

batic (i.e., slowly driven) quantum dynamics. For the simplest linear feedback we have found that i) the populations
are no longer constant. Instead, they satisfy the canonical [replicator] equation of the population game theory, allowing
us to visualize the corresponding dynamics as a zero-sum game played by the adiabatic energy levels. The [non-linear]
replicator equation generates a non-trivial (possibly chaotic) Hamiltonian motion, or alternatively, relaxation toward a
certain state. ii) In addition to the Berry phase, the feedback generates a new, explicitly gauge-invariant phase, which
exists under a wider range of conditions. There are scenarios of feedback, where the probabilities are constant (resem-
bling the ordinary situation), but the new phases are still non-trivial. All these results extend directly to pseudo-pure
quantum states. For the properly mixed-state situation we analyzed in detail the hybrid (quantum-classical) case.
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