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Introduction

Relevance of the work. One of the main problems in the physics of
macromolecules is determination of the physical laws defining the structure
and biological function of the single-and double-stranded nucleic acids. It is
well known that the biological function of biopolymers is determined by their
spatial structure. In this regard, it is important to determine the main factors
and patterns affecting conformations and conformational transitions. One of
these factors is the formation of the secondary structure of nucleic acids and
the occurrence of long loops in the areas free from Watson-Crick base pair
formations. In addition, there remain a number of open questions related to
the effect of a heterogeneous sequence of nucleotides on the structure and
conformational transitions in nucleic acids. The study of these questions is also
interesting in terms of bioinformatics. The algorithms for the calculation of the
thermodynamic parameters and optimal prediction of the secondary structure
of single-stranded RNA are now widely used in biological research. Proper
account of loop entropy and sequence heterogeneity will significantly improve
the existing algorithms and promote the development of new approaches to the
problem. In light of the above, the relevance of this work is determined by the
development of new approaches to the study of conformational entropy of loops
and effects of the nucleotide sequence.

The objectives are:

1. construction of the theory of melting of double-stranded DNA, which
takes into account the topological restrictions imposed on long loops

2. investigation of the excluded volume effects in the formation of long loops
in the double-stranded DNA

3. study of the effect of long loops on the phase behavior of the double-
stranded DNA

4. construction of analytical theory describing the thermodynamic properties



of single-stranded RNA with a random sequence of nucleotides
5. comparative analysis of the phase behavior of ssRNA with and without
account of entropy of long loop formation
6. calculation of the thermodynamic characteristics of the ssRNA
The scientific novelty consists in constructing a model of melting of
the DNA double helix, without resorting to any prior assumptions about the
entropy of long loop formation. Analytical dependence of the loop statistical
weight is calculated based on the proposed theory, and not chosen from physical
considerations. Temperature dependence of such characteristics of the helix-coil
transition as the free energy, helicity degree, correlation length and correlation
function was obtained. For the first time in melting of double-stranded DNA
the existence of an infinite order phase transition was shown. The comparison
with the results obtained in the framework of the Polanda and Scheraga was
performed. An analytical theory based on the method of annealing with constraints
describing the secondary structure formation of single-stranded RNA was obtained.
The comparison with the numerical results shows reasonable quantitative agreement.
The temperature dependence of the characteristics of single-stranded RNA
denaturation as the free energy, helicity, entropy and heat capacity was obtained.
For the first time the presence of two structural transitions for a random
sequence of nucleotides of two types was shown. Possible connection between the
low-temperature structural transition and cold denaturation of ssRNA, which
is observed experimentally, was demonstrated.
The main provisions to be defended
1. Impossibility of knot formation in melted DNA and the account of excluded
volume effects impact on the loop entropy and, in this way, result in a
value of loop factor ¢ = 1.
2. For the loop factor value ¢ = 1 infinite order phase transition takes place
during denaturation of DNA double helix. Near the critical temperature

the correlation length diverges, as it happens during the phase transition



of the second order, whereas amplitude of the fluctuations tends to zero.
Thus there are small but extended fluctuations.

3. Above the transition temperature the helicity degree is zero, which differs
significantly from the behavior of the system at usual helix-coil transition.
Single-stranded RNA with random nucleotide sequence shows two peaks
in the temperature dependence of the specific heat of the system for
a certain choice of interaction parameters. Such behavior indicates the
presence of two structural transitions.

4. Low-temperature peak of the specific heat corresponds to the cold melting
of RNA, when the helicity degree decreases significantly with temperature
decrease. This effect is due to a large number of thermodynamically
unfavorable contacts for sequence consisting of two types of nucleotides.

5. The account of long loops entropy qualitatively does not affect the behavior
of ssRNA. The presence of two peaks and cold melting is observed at the
same values of the interaction parameters as without account of loop
entropy.

The scientific and practical value of the work is due to a significance
of the role that thermodynamic effects play in the functioning of biological
macromolecules and their complexes. In this regard, the theoretical study of the
conformational entropy of large loops, effects of interactions between different
types of nucleotides, and other characteristics of biological macromolecules is
important for the interpretation of experimental results and their predictions.
At the same time, understanding the basic principles underlying the organization
and conformational changes in biological macromolecules is of great practical
importance for solving problems in biology and its medical applications. Furthermore,
the obtained results, certainly, enable the improvement of the existing bioinformatics
algorithms used to calculate the stability of the secondary structure of RNA.

Approbation of the work. Materials of the thesis were presented at

e Taiwan International Workshop on Biological Physics and Complex Systems,



Taipei, Taiwan, July 21-26, 2011.

e Winter School on Calculus of Variations in Physics and Materials Science
at Department of Mathematics, University of Wurzburg, Wurzburg, Germany,
January 8-13, 2012.

e II Gefenol Summer School on Statistical Physics of Complex and Small
Systems, Centro de Ciencias de Benasque Pedro Pascual, Spain, September
3-14, 2012.

e International Young Scientists Conference “Perspectives for Development
of Molecular and Cellular Biology—3”, The Institute of Molecular Biology
NAS RA, Yerevan, Armenia, September 26-29, 2012.

Publications. On the topic of the thesis 8 papers are published.

Structure of the thesis. The thesis consists of an introduction, four
chapters and conclusions (114 pages of text). It contains 59 figures and bibliography
consisting of 103 items. The objectives of the work, the scientific novelty and
practical value of the results and the main provisions to be defended are stated
in the introduction. The first chapter is devoted to the review of structure,
thermodynamics and biological functions of nucleic acids. The main properties
of classical models of DNA are represented. Also, the literature review contains
a description of the basic models of RNA secondary structure and dynamic
algorithms for the calculation of its thermodynamic parameters. At the end of
the first chapter the statement of the problem addressed in the second chapter is
formulated. The second chapter is devoted to the DNA model which takes into
account the entropy of long loops formation. In the framework of this model
the main thermodynamic parameters of the system are calculated. The third
chapter is devoted to the thermodynamics of the secondary structure of ssRNA
with random heterogeneous sequence. The calculation of thermodynamic functions
is based on the constrained annealing approach. The fourth chapter of the thesis
is devoted to the influence of loop entropy on the thermodynamic properties of

the secondary structure of ssRNA. The work ends with the conclusions.



Chapter 1

Literature review

1.1. The structure and biological functions of nucleic

acids

1.1.1. The structure of nucleic acids

The nucleic acids are linear polymers with monomers called nucleotides. A
nucleotide consists of a sugar ring, phosphate group and a nitrogenous base. The
backbone of the nucleic acid consists of ribose sugar rings linked by phosphate
group. Each sugar has the one of the four types of nitrogenous bases linked to
it as a side group. The 5’ carbon of one ribose and the 3’ carbon of the next
are linked by phosphate group. So, the direction of chain is 5'3’. The two ends
are referred to as 5" and 3’ ends, since one end has an unlinked 5’ carbon and
one has an unlinked 3’ carbon. There are two types of sugar rings: ribose and
deoxyribose. Let’s refer to the chemical differences between ribonucleic acid
(RNA) and deoxyribonucleic acid (DNA). The first difference is represented in
the chemical names of RNA and DNA, since one of the OH groups in ribose is
replaced by proton (H) in deoxyribose. The second difference is that, in contrast
to RNA, DNA comprises thymine (T) bases instead of uracil (U) bases. In other
words, the nitrogenous bases in the RNA are adenine, cytosine, guanine and
uracil (A, C, G, and U), while DNA consist of adenine, cytosine, guanine and
thymine (A, C, G, and T). The third difference is that RNA usually occurs as
single strands and DNA consists of two strands. As a result, RNA and DNA
have distinctive varieties of structures. The double helical structure of DNA
has two strands that are perfectly complementary in sequence. In RNA base
pairs are formed intra-molecularly, leading to a complex arrangement of short

helices which are the basis of the secondary structure. Some tertiary structures



of RNA are well-defined. Thus, RNA structures are more similar to globular
structures of proteins than to double helices of DNA. The main role of DNA is
to save the genetic information. The role of proteins is to serve as biochemical
catalysts. These roles have been recognized for a long time, and it was thought
that RNA is an intermediary between proteins and DNA. But now we can say
that RNA is coming to be seen as an important and diversified molecule in its

own right. Let’s present the types of RNA.

(A) 3’ _LAmino acid
® attachment site

Amino acid
attachment site

Anticodon Anticodon

Fig 1.1. The secondary an tertiary structures of transport RNA.

1.1.2. Types of RNA
Transfer RNA (tRNA)

The common number of nucleotides in tRNA is about 76 [1, 2]. Its secondary

structure is called clover-leaf and it is very well-defined (Fig. 1.1). Every amino

acid has the own tRNA. The middle three bases of the central loop of tRNA



compose the anticodon. The codon in the mRNA and the anticodon in the
appropriate tRNA are the same. The main role of tRNA is to bring the amino
acid in the ribosome during protein synthesis. The shape of the tertiary structure
of the tRNA has the form like letter L. Fig. 1.1 shows the clover-leaf secondary
and the L-shaped tertiary structures of tRNA.

Messenger RNA (mRNA)

The mRNA has several thousand nucleotides. It is the copy of the part
of one of the strands of DNA and it contains the information about a protein
which has to be synthesized by ribosome. The central portion of mRNA codes
the protein.

Ribosomal RNA (rRNA)

The protein synthesis takes place in the ribosome. It possesses binding
sites for mRNA and tRNA. Tt is the main role of the ribosome. Its diameter
is about 250 A. The ribosome is composed of two sub-units. Each of them
consists of three rRNA and about 56 different proteins [3-5]. The main goal
of ribosome is to perform one of the most important processes in the cell —
the protein synthesis. It has the sites that can bind tRNA and mRNA. During
the protein synthesis it moves along the mRNA. Thus we can say that tRNA
molecules have the very important role in the functioning of the ribosome, and
as a result, protein synthesis cannot be implemented without these molecules.
Ribosomal RNAs of many organisms are sequences, and large databases are

accessible giving their structural models [6-8].

1.1.3. The elements of the secondary structure of RNA

If there are two complementary parts of the sequence in the RNA molecule,
those parts can form helical structures. There are possible hydrogen bonds

between nitrogenous bases C—G and A-U. There may be link between G-U,
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but this pair is less stable. As a rule, helices consist of at least two pairs,
because isolated pairs usually are unstable. In unbroken helices there are not
more than 10 pairs. There are attractive stacking interactions between base
pairs. They have a great contribution in the stability of the helix. The stacking
interactions are in the approximately parallel planes. To find the free energy
of the helix usually nearest neighbor model is used. That is to say, there is a
free energy term for every two near base pairs. Using different methods we can
measure the energy and entropy changes of helix formation in the experiments,
when the sequence is short [9].

In the Fig. 1.2 it is shown several structures that can occur between
helices in the single-stranded RNA. Hairpin loops connect the two sides of
a single helix. The loops which connect two helices are called internal. The
loops that connect three or more helices are called multi-branched. Bulge loops,
stems and pseudoknots are also common to single-stranded RNA (Fig. 2). The
pseudoknots will be discussed later. Free energy of some loop structures have
been measured experimentally, but, as a rule, the helix parameters are known
with higher accuracy than the parameters of loops [10]. For instance, we don’t
have any thermodynamic data about multi-branched loops. So, we suppose that
independence of loop free energy on nucleotide sequence. It hinge on the number
of unpaired bases in the loop. The exceptions to this are tetraloops. Tetraloops
are special sequences that consist of four single-stranded bases. Thanks to these
structures the thermodynamic stability rises at the expense of interactions
between the unpaired bases in the length-four hairpin loops, where they often
occur. In the algorithm that predicts the secondary structure we have to appoint
a free energy for every possible structure. After that we must compare the
stabilities of all these structures. Instead of thermodynamic parameters that are
not directly measured, we can take the reasonable estimates. The free energy
of the secondary structure of all sequence will be determined through the free

energies of different parts of chain.
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Fig 1.2. Some structures that can be formed in the single-stranded RNA

1.1.4. The tertiary structure of nucleic acids

The progress of secondary structure determination goes on faster than

for tertiary structure. Until recently we had a little experimental information
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about tertiary structure. In this review we will speak more about secondary
structures. We will address the information that can and cannot be obtained
from secondary structure alone. Although our information about tertiary structure
recently rises, we assert that the information about secondary structure is very
important too. The secondary structure is the figure that shows the list of base
pairs that are in the structure. In the valid secondary structure base pairs have
to satisfy some limitations. Let us suppose that we have the chain consists of
bases that are numbered from 1 to V. Let us assume that the bases i and j are
complementary. They can form a pair, if . In other words, there must be three or
more unpaired bases in the hairpin loop. Let us suppose that there are formed
pairs between (i, j) and (k,l) . They can be compatible if they can be in the
chain simultaneously. For that they must be non-overlapping (i < j < k < 1)
or one of them must be within other (i < & < [ < j). The structure where
they are interlocking (i < k < j <) is called pseudoknot (Fig. 1.3). A lot of
dynamic programs cannot consider the existence of pseudoknots. In the valid
secondary structure all base pairs must be consistent. The secondary structure
of given sequence shows the information about paired and unpaired bases and
it cannot give us any information about the tertiary structure of the sequence.
We can add to the diagram of secondary structures pseudoknots. If we have
the information about tertiary structure, it will be more comfortable to change
the secondary structure. The parts of the chain that are close in the tertiary
structure we can draw near each other in the secondary structure. Thanks to
this, the secondary structure of chain will contain some information about it
tertiary structure. As a rule, the diagrams of secondary structures are not drawn
thus to contain a lot of information about tertiary structures. Nonetheless, the
secondary structure of RNA can give us enough information about its tertiary
structure. We can gain the information about the domain structure of molecule
and the mutual positions of the important parts. So, the secondary structure

of RNA contains much more information about the shape of its molecule then
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the appropriate diagram of secondary structure of proteins which is a linear

polymer that consists of « helices and S sheets.

Fig 1.3. The schematic image of pseudoknot.

The main advantage of secondary structures of RNA is that the helices
are thermodynamically very strongly bonded. The hierarchical folding of RNA
means that first forms the stable secondary structure [11-13]. Afterwards the
tertiary structure forms since a molecule can bend around some areas. The
interactions in the tertiary structures can change only the weak elements of
secondary structure. It is so, because their strength is too small to break the
secondary structure. Those interactions can change the positions of bases in the
more unstable helix. Unlike the RNAs, very often secondary structure elements
in the proteins are enough unstable on their own. So, it is very difficult to
separate their secondary and tertiary structures. As a rule, we ignore the
existence of pseudoknots when we determine the parameters that describing
the secondary structure. There are a lot of reasons for that. One of them is

that the algorithm that allows us to predict the structure cannot account for
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pseudoknots. For example, in the small sub-unit rRNAs the number of non-
overlapping and nested helices is much more than the number of pseudoknots.
So, in this case we can obtain the sufficiently accurate results without incorporating
the contribution of pseudoknots. But it is obviously that some types of the
pseudoknots frequently occur in the RNA and they may have functional role.
Now we have a lot of data about the secondary and tertiary structures of
pseudoknots [14-17]. As a result, the new dynamic programming algorithms
are able to take into account pseudoknots [18]. The main problem of these
algorithms is absence of information on pseudoknots thermodynamic that is

needed.

1.2. Thermodynamics of nucleic acids

In this section we will discuss general mechanisms of DNA melting and
relating experimental results which are represented in the review [19].

According to the previous section the deoxyribonucleic acid (DNA) consists
of two polynucleotide strands. They are twisted into a double helix as it is
shown on Fig. 1.4. Those two strands are perfectly complementary. In DNA
there are 2 hydrogen bonds between nitrogenous bases adenine and thymine
and 3 hydrogen bonds between cytosine and guanine. The diameter of DNA is
about 20A. The distance of two neighboring repeating units is approximately
3.4A. Each twist of DNA consist of ten to twelve repeating units depending on
the form of DNA (A, B, Z). Dividing 360" over the number of nucleotides in
the twist one will obtain twist angle for one repeating unit.

One of the most fundamental thermodynamic processes taking place in
DNA is melting. This process is also called the helix-coil transition. The scheme
of DNA melting is represented on Fig. 1.5. During this process the hydrogen
bonds between nitrogenous bases are being destroyed, and, in the final stage,
there are two separate DNA chains, which can be dealt as Gaussian coils.

The helix-coil transition is reversible process. That is to say, the decrease

15



Sugar
Phosphate
Backbone

Adenine

Thymine

Guanine

Cytosine

A<T(

Fig 1.4. The double helical structure of DNA.

of temperature can lead to the renaturation of DNA. But if DNA is completely
melted, the probability of recreation of existed helical structure tends to zero.
This is result of very large influence of kinetic factors. Now let’s speak about

experimental data concerning DNA melting.

H
|

a) b) °)
Fig 1.5. The scheme of the helix-coil transition in DNA.

There are a number of methods that allow us to study the helix-coil
transition in DNA experimentally. One them is based on absorption of visible
—~UV radiation by DNA solution. The method is based on the structural dependence
of absorption property of DNA. The absorptions of nucleotide bases is deferent

for helical and coil regions [20]. It is caused by the absence of stacking interactions
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in coil regions in contrast to helical. The quantity (D — Dyin)/(Dmaz — Dimin),
where D is the optical density of solution, and the D,,;, and D,,,, are optical
densities of helical and coil structure correspondingly, relates to the degree of
denaturation. Fig. 1.6 shows the temperature dependence of optical density
for double stranded homopolynucleotide (melting curve). The melting curves
for homopolynucleotide were studied in [21]. One can characterize the melting
curve through two parameters: the melting temperature (7,,) and the width of
melting interval (AT). The width of melting interval is determined with the
formula

AT = 1/‘3—? (1.1)

max

Optical density

W 2 M T
Fig 1.6. The melting curve for homopolynucleotide [22].
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Fig 1.7. Temperature dependence of melting temperature 7,, (o) and melting interval AT

(o) of calf thymus DNA [23, 24].
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One of the main characteristics of melting curve is the GC composition
of DNA. The dependence melting temperature on GC composition is shown in

Fig. 1.8. The G-C composition is defined as

o = (Ng—}—Nc)/(NG—f—Nc—f—NA—f—NT), (12)

where N4, Ny, No and Ng are the numbers of adenine, thymine, cytosine and

guanine nitrogen bases. It is seen from Fig. 1.8 that the dependence of T}, on

T, 1s linear.
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Fig 1.8. Dependence of melting temperature on the G-C pairs and the melting temperature

[25].
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Fig 1.9. The relation between percentage of logarithm of the concentration of sodium in
the solution. Line 1 was obtained for M. textitlysodeikticus (zo = 0.72), line 2 — E. coli
(zog = 0.5), line 3 — S. saprophyticus (xy = 0.33), line 4 — M. mycoides var capri (xg = 0.24).
The melting temperature of DNA essentially depends on the solvent composition.

The existence of double-helical structure of DNA is possible in the environment
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with sufficient concentration of positive ions such as sodium and potassium

ions. In case of neutral pH one can use the empirical formula for the melting

temperature:
Ty, =176 — (2,6 — x0) (36 — 7,04 - 1g [Na*]) (1.3)

where [N aﬂ is the molecular concentration of sodium ions. The dependence of
melting temperature on the sodium ion concentration logarithm is shown in Fig.
1.9]26]. The Fig. 1.9 was obtained through the formula (1.3) four different DNA.
The melting temperature is much lower when pH < 5or pH > 9. For mentioned
DNA the width of melting interval is about 3°. For homopolynucleotide this
parameter is nearly 0,5 . The main part of studying are done in the standard

conditions (pH =7, [Na+] = 0,196 M).
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Fig 1.10. The dependence of the width of melting interval on the concentration of ribonuclease

in the solution [27].

Fig 1.11. The melting curves for circular, closed polyoma DNA (1) and for the same DNA

with the broken strand in 7.2 M NaClO, solution (2).
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The substances that can bond to DNA, also known as ligands, have very
important impact on the melting curves. For instance, such substances are
heavy metal ions (Cu, Fe, etc.). As an example of influence of organic ligand,
the dependence of AT on the concentration of the protein ribonuclease (D is
the molar concentration of the protein ribonuclease in the solution, P is the
molar concentration of repeated units in DNA) is shown in Fig. 1.10. Normally
D < P. It is important to say that during experiment those ligands are
redistributed on DNA. At a given temperature they take thermodynamically
the most advantageous state. The experiments are performed for linear unclosed
double stranded DNA. In the case of the circular closed DNA, then the experimental
results are deferent. The characteristics of melting curve in this case were
studied in [28]. The melting temperature for such DNA is higher by 20° compared
to the linear unclosed DNA (Fig. 1.11). Melting chains remain twisted relative
to each other in the circular DNA causing higher melting temperature. As a
result, in this case the entropy of melting condition is lower than for the same
condition in the linear DNA. In addition, the width of melting interval for the
circular DNA is 2-3 larger times than for the linear DNA.

1.3. Dynamic programming algorithms

The most stable secondary structure of RNA molecule is specified by
the minimum of the free energy. We can obtain such structures considering
all possible base pairings and calculating the free energy for each secondary
structure [29]. It is possible for very short sequences, since the number of
possible conformations of the molecule grows exponentially with the length
of the RNA molecule. However, there exist dynamic programming algorithms
which allow calculation of the free energy for much longer sequences. These
algorithms are based on recursive relations, which allow obtaining the thermodynamic
quantities for longer sequences referring to already obtained ones for short

sequences. Now we will discuss the programming algorithm for a very simple
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set of energy rules. In the frameworks of this model we will suppose that each
base pair contributes —1 in the energy of whole chain and penalties related
with loops are neglected. So, the structure with the minimal free energy is
characterized with the maximum number of base pairs. Therefore, this model
is called “maximum matching model” [30]. Let us suppose that the energy of
bonding between i and j bases (¢; ;) is —1 if those bases are complementary and
it is 0o, if they are not. Our aim is to find the minimal energy of the subchain
from i to j (E;;). If the last base j forms a pair with the base k, then the
sequence will be divided into two subsequences: from i to k — 1 and from k£ +1
to 7 — 1. We will not discuss structures containing pseudoknots. In the other
words, the bases that are in the different sections cannot form a pair. If j and
k form a pair, the energy will be equal to E; 1 + Ej11 j—1 +¢€ ;. If they do not
form a pair, it will be equal to E; ;1. So the minimal energy of this subchain
1s

Eij =min(E; j_1, mini<g<j—s(Eig—1+ Err1,-1 + € 5)). (1.4)
We will assume that £; ; = 0, if j —¢ < 4. Thereafter, we will find E; j 11,5 j12
and so on. As a result we can obtain the minimal energy E) x of whole chain

with length N. This algorithm estimates the contribution of individual base

upper
section

|ower
section

B:

B:
.Bj B: B.. B

Fig 1.12. Scheme of RNA secondary structure without loops.
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pairs to the energy of the secondary structure of RNA. Suppose we have a
sequence of nucleotides from Bj to B, and it is located on the circle (Fig.
1.12). Let’s assume that B, and B, form a pair. Our goal is to find out whether
B, and B, form a pair in the secondary structure that we are looking for.
The arc B, B, divides the circle into two parts: the upper and lower sections.
The exclusion of pseudoknots means that if two nucleotides form a pair, then
both must be either in upper or lower section. Thus, nucleotides from different
sections cannot form a base pair. So, energy of the secondary structure will be
determined by the energies of the upper and lower sections and an impact of
the local pair B, B,,.

If we have real biological sequences, it is necessary to consider all the
possible interactions. At the same time obtaining the recurrence relations will
be more complex.

Consider the sequence, which consists only of nitrogenous bases A and U.
In receipt of it, we assume that with probability P falls A, and with probability
(1 — P) — U. Lets calculate its partition function, where the sum is taken over
all possible structures, except pseudoknots. For that, we distinguish a region
(i,7). Suppose that j 4+ 1 forms pair with k. In this case we will have two
subsequences: from ¢ to kK — 1 and from k + 1 to 7. Without pseudoknots, the
partition function of any subchain of ssRNA molecule calculates recursively

31, 32] as

j—1

Zij = Zij-1+ Z Z; k-14ij Lk+1,5-1 (1.5)
k=1

where Z; ; is the partition function of the subchain between nucleotides 7 and 7,
qij = exp(—p¢;;) being the statistical weight of the base pair formation between
nucleotides ¢ and j.

Fig. 1.13 shows secondary structure of RNA consisting of N = 150 nucleotides

obtained with means of relation 1.5).
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Fig 1.13. The schematic picture of the secondary structure of RNA for sequence that consist

of 150 nucleotides.

1.4. The existing theories of secondary structural
transitions in DNA.

1.4.1. Zimm-Bragg model

This model [33] is the first consistent and most studied statistical theory

of helix-coil transitions. It is based on the one-dimensional Ising model. Let us
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suppose that the number of amino acids in the chain is N. In the frameworks
of this model it is assumed that the state of the repeating unit described by the
state of the oxygen atom in the carboxyl group. If that atom forms a hydrogen
bond between molecules, we will denote that state by number 1. Other states
will be denoted by number 0. As a result, we will have the sequence of ones and
zeros for each configuration. The parameter s is determined by the change of
the free energy when the length of the helix increases by one monomer.

AF

s = exp(—ﬁ), (1.6)

where AF = I}, — F,.. If a monomer, which follows three or more free repeating
units, forms a hydrogen bond, free energy increases. The cooperativity parameter
o is associated with the increase of free energy:

o= exp(—%), (1.7)

where Fj is the additional free energy. When N > 1 partition function reads
7 =TrP", (1.8)

where N is number of repeating units, P is the matrix of statistical weights. In

this case

1 os
P = ) (1.9)
1 s

As a result, the secular equation will have the following form
(I=X)(s—A) =os. (1.10)

This is simple equation and we can obtain exact solutions. It is shown [33] that

the helix-coil transition is in the following interval

1—Vo<s<1l+4/o. (1.11)

Considering that o < 1, we will have that

KT?
m 1.12
AT (1.12)

AT = 2\/o
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Thus, thermodynamic analysis of helix-coil transitions becomes possible with

means of Zimm-Bragg model.

1.4.2. Loop entropy in Poland-Scheraga model

This model helps to describe the existence of loops in the DNA and it gives
us reasonable results [34]. There are two main interactions in DNA: hydrogen
bonding and stacking. The hydrogen bonds are formed between two bases that
are in the different chains. The stacking interactions occur between neighboring
nitrogenous bases. Let suppose that the statistical weight of hydrogen bonds
is t and the statistical weight of stacking interactions is 7. So, if we have the
ordered sequence that consists of 7 backbone units, the statistical weight of

sequence will be written as
v; = t(tr)) = ou, (1.13)
where o = t and w = t7. The sequence generating function [35, 36| reads

V(z) = . (1.14)

We will take 0 = 1. In this case we can ignore the inhomogeneities in ¢ and 7

depending on the sequence. As a result

w
Vi(z)= @—w) (1.15)
If we take
1
Ul(x) = Vi) (1.16)
it can be obtained as
U(z) = % _ 1 (1.17)

It is obtained in [37] that if the loop consists of N bases, the entropy of that

loop will have the following form

S(N) = R(NInQ — [A—i—glnN]). (1.18)
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The constant A cannot be exactly found. The term RNIn {2 is the conformational
entropy of the free chain.

Let us suppose that the chain is placed on the two-dimensional lattice
(square lattice). If there is a loop in the chain, it means that the ends of that
loop must match. As a result the number of moves to the right has to be equal
to the number of moves to the left, and the number of moves to the up must
be equal to the number of moves to the down. So, if the number of bases in
the chain is IV, the number of moves in the left-right directions is % and it

is equal to the number of moves in the up-down directions. So, the number of

loop conformations is

Q= ‘4 (1.19)
If we use Stirling’s approximation
n! = e_”n”(27m)%, (1.20)

we will obtain

QQ=NIn2—[In (g)—i-lnN]. (1.21)

For the three-dimensional case (cubic lattice) we will have that the numbers of

moves in the +x, +y and 4z directions is equal to %, when N is large. As a

result, the number of loop conformations reads

0 — (DT 1.2
5 :
(%))
Using Stirling’s approximation Inn! = nlnn — n, we will get
7\ 3 3
nQ = Nln2 — [In (g) +SmN ] (1.23)

It is obvious that Eqs. (1.18) and (1.23) are similar. So, we can write that
In@ = Nd — (V' +cnN ), (1.24)

where ¢ = 1 for the square lattice and ¢ = % for the cubic lattice. As a result

we can say that the entropy of the loop will be obtained through the following
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equation

Stoop (N) = R[Na — (b+cIn N )] (1.25)

where ¢ = d/2, if we ignore the excluded-volume interactions. The quantity d

is the dimensionality of the space. The statistical weight of a free chain is

uy = ()", (1.26)
and so,
[Sloop(N)] N b
uy=¢e £ = (") e "N “ (1.27)

For the nucleic acids N = 2 (i + 1) ~ 2i. When d = 3, we have
u; = (constant)u'i /2. (1.28)

It is shown in the article [38] that if we consider the long-range contacts and
use the series expansions, we will obtain that the quantity ¢ has the following
values

¢~ 1,75, (1.29)

when dimensionality if the space is equal to three and
c~ 1,46 (1.30)

for 2D.

The model suggested by Mukamel is Poland-Scheraga type. In the framework
of this model authors considered the effects of excluded-volume interactions.
Although they considered those interactions approximately, obtained results
allow understanding of dependence between the unbinding mechanism and the
nature of the transition.

According to this model, the monomers in DNA can be found in two states:
bounded and unbounded. So, the chain is represented as a sequence of these

states. The binding energy is the same for all monomers. The statistical weight

W = exp (—%) , (1.31)
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where Ey < 0 is binding energy and T' is the temperature. If a segment of

the chain consists of £ bounded units, the statistical weight of that sequence is

given by
kE
k 0
= —_— . 1.32
w exp( T) (1.32)
The statistical weight of the unbounded chain of length £ will be determined by

Ash

.+, where s is non-universal

the change of entropy. For large k it has the form
constant. The exponent ¢ describes properties of a loop. Authors consider case
where A = 1. The grand canonical partition function will be determined by
S Vo (2) Ur(2)
Z=Y GM)M= 1.33
A;O M) = v (1.33)

where G(M) is the canonical partition function of the chain with length M, 2z

is the fugacity,

-k

Uz) =Y Z—zk (1.34)
k=1

V(z) = Zwkzk,
k=1

(1.35)

Vo(z2) = 1+ V(2) and Ur(2) = 1+ U(z). The quantities Vy(z) and Up(z)
can be found for boundaries. The average chain length can be obtained from

partition function as

B Oln Z
~ Olnz

When < L >— 00, the order parameter 6 will be function of temperature. The

<L >

(1.36)

average number of bounded pairs will be determined by

Oln 7

— . 1.37
e Olnw (1:37)
So,
<m>  Olnz"
= i = L.

/ [ox < L > Jnw ’ (1:38)

where 2* is the fugacity when < L >— oo. Using

wz

Vv S 1.39
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we will obtain that
1

(wz*)

The nature of transition will be determined through the dependence of z* on

U (") = ~1. (1.40)

w. It is shown in [39, 40] that there are 3 cases:

1. when ¢ < 1, there is no phase transition.
2. when 1 < ¢ < 2, transition is continuous.

3. when ¢ > 2, we have a first order transition.

The exponent is ¢ = dv, where d is the dimension of space. If the walks are
random and ideal, ¢ = %. So, when d < 2, there is no transition, when 2 < d <

4, the transition is continuous and the transition is first order, when d > 4.

1.4.3. Peyrard-Bishop model

The transfer integral method was used for the analysis of Peyrard-Bishop
model [41-45]. In this model authors used the fact that there exists an analogy
between the study of the conformational properties through statistical physics
and the diffusivity equation. The DNA denaturation problem was modeled as
a particle in the Morse potential, which describes the hydrogen bonding. It
was introduced a pair of variables for every repeating unit. That pair describes
the deviation of chain segment in the frameworks of every repeating unit in
the direction, which is parallel to the axis of DNA helix. Certain deviation was
considered. If the value of deviation is larger, the hydrogen bonds are destroyed.
Also, the harmonic pairing, which simulates the stacking between neighboring
repeating units, was studied.

The Hamiltonian of this model will have the following form:

2
Pn
H = g o + W (Yn, Yn-1) + V(yn), (1.41)

where p,, = m%, m is the reduced mass of bases. The potential V (y,)

describes the interactions between two repeating units. In other words, it describes
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the hydrogen bonding. The potential W (y,, y,—1) describes the interactions
between two repeating units along the DNA molecule (stacking interactions).
[t is convenient to use the Morse potential, because it is standard for description
of the chemical bonds and it has appropriate form. We have strong repulsion at
short distances, the minimum in balance and it becomes flat at large distances.
Through the Hamiltonian we can find the dependence of average value of
deviation from equilibrium on value of the constant pairing. The average deviation

characterizes the degree of denaturation.

1.4.4. The preliminary model of helix-coil transition in

double-stranded DNA

Consider a double-stranded homopolynucleotide with complementary binding
in the region of helix-coil transition. This is possible if we consider a real DNA
with an approximation that energies of AT and GC pairs are equal.To address
the order of the phase transition in double-strand DNA we need to consider
homopolymeric DNA with complementary base pairing. Experimentally, it can
be created using the stability inversion approach, proposed in [46]. In presence
of the appropriate concentrations of alkylammonium compounds, stability of
GC and AT pairs can be equalized or even inversed. In case of the same stability
of the GC' and AT pairs double-strand DNA behaves as a homopolynucleotide
with symmetric loops. In other case, we consider the random heteropolymer
which consists of AT complementary base pairs only. One chain is the random
sequence of A and T nucleotides and another chain is complementary to the
first one. We can say the same for the GC pairs. In this case, the energy of
the hydrogen bond formation will be the constant along the chain. We can
assume that the inter-chain hydrogen bonds are formed only between the bases
having the same number. So all loops are symmetric. The macromolecule is
schematically presented in Fig. 2.1. We study the formation of hydrogen bonds

between complementary repeated units of two chains. For simplicity, let us

30



assume that the first repeated units are bound. As it was introduced in [47],

the Hamiltonian for the macromolecule is

N
~BH =74, (1.42)
=1

where 3 = T71, J = %, U is the energy of the hydrogen bond formation
in one complementary pair, 5@ takes value 1 if a hydrogen bond of the ith
complementary pair is formed and 0 if not. Since the first pair is bound, 5@
is nonzero if two chains form a closed cycle between the first and ith repeated
units. The presence of other cycles inside the interval [1, ] is possible. Actually,

this model is a Poland-Sheraga (PS) type model [34]. The partition function
for Hamiltonian (1.42) is

::12

A= Zexp —BH) =
{7} {7:} =1

(1 + sl ) (1.43)

where v = e/ —1. Let 7 be a set of all possible values 1, 2, ..., () which enumerate
conformations of the chain. The partition function can by developed as the

we can write the

(k)(;gm) _ 55@5(7”—7@

series in v. By using the relationship ¢, b1

term corresponding to v/ as

Ky —k1) (ks—ko (kp—kp_1)
of o ge g k) gt (1.44)

Imposing cyclic conditions and defining m; as k; — k;_1 we obtain

A=QYY vy o(m)... ) e(my) (1.45)
/ my f

where
— mzz 25 (1.46)

According to (1.46), ¢(m) is the ratio of a number of states corresponding to
the formation of a loop of length m and all states of the chain of length m. So

the function p(m) may be interpreted as the probability of the loop formation
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f
of the length m. Using the condition > m; = N and multiplying (1.45) by
i=1

f
factor d (Z my — N), we obtain
k=1

N 00 f
A= Qmeﬁle fz_; (U zjlgp (m) zm> dz (1.47)

In [47] the function ¢(m) was chosen approximately as

Q™" m <A
p(m) = (1.48)

Q2 m>A
Using the saddle-point approach, one can show that the characteristic equation
for the free energy in the thermodynamic limit is the same as in the GMPC
model, which is a Potts like one-dimensional model. This representation of
©(m) is empiric and ignores the loop formation with length less than A which

characterizes the single-chain rigidity.

In the present study, we generalize the model to the case of loops of an
arbitrary length. To this end, the problem of loop formation will be represented

in terms of random walks.
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Chapter 2

The random walk model of helix-coil transitions

in double-stranded homopolynucleotides

2.1. Description of the basic random walk model (Model
A)

The structure of a homopolynucleotide is considered as a sequence of
alternating helical and coil regions. Helical regions, which are essentially one-
dimensional, are stabilized by hydrogen bonds and stacking interactions. Coil
regions are apparently d-dimensional, where d is the topological dimension
of the space where the DNA chain is embedded. We will focus on the three-
dimensional case, d = 3.

The main concept of the random walk description is quite simple. We
consider the molecule of DNA as two random chains which are initiated from the
same point. As it was mentioned above, the complementary pairs of nitrogenous
bases are able to create hydrogen bonds, and each binding corresponds to
the intersection of two random chains. We label the pairs of complementary
polymer units (which can be potentially bonded) by integers 1,2, ..., N, and
construct NV planes perpendicular to the polymer axis in such a way that both
units of the i-th pair lie on the i-th plane with the coordinates x; and y;. If
the complementary units are bounded, they are represented by a single point
(x; = y;) on the corresponding plane. The projection of all N planes onto a
single plane gives the collection of points x;, y;, ¢ = 1,2, ..., N which can be
considered as the position of 2D random walks at the moments of discrete times
i=1,2,...,N (Fig. 2.1). This construction admits arbitrary conformations of
polymer chains with a single but important exclusion: all planes 1,2, ..., N are

crossed by polymer chains sequentially from the first to the last one and any
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return from the i-th to the (i — 1)-th plane is forbidden.

In the absence of meanders this guarantees the exclusion of three-dimensional
knots and additional base pairs inside the loops. Thus, our approach [48, 49]
describes three-dimensional loop statistics more adequately than the traditional

one [34].

Fig 2.1. Scheme of the model

For the sake of convenience, we consider a simple random walk on the
quadratic lattice. The 2D simple random walk jumps one lattice left, right, up
or down at each discrete time step. Later on we will extend this model to the
case when a stay at the origin during several stops is allowed.

To write the partition function (1.43) in terms of a random walk, we refer
to the well-known generating functions [50]. The generating function for the

first return is
F(z) =) fn2", (2.1)
m=1

where f,, is the probability of the first return at the m-th step. The generating
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function for any return is
o0
= mezm, (2.2)
m=1

where p,, is the probability of any return at the m-th step. P(z) can also be
represented as an integral which, in the case of two-dimensional random walk

on the quadratic lattice, is [50]

[ dpdy 2,
J J 1—%(cosp +cosy) gK(Z ). (2.3)

27)?

where K (z) is the complete elliptic integral of the first kind. Using the known
relation between F'(z) and P(z)

1

F(z)zl—P(z),

(2.4)

we obtain the analytical expression for F'(z). Taking into account that ¢(m) =
pm 18 the return probability on the m-th step and N is the whole number of

steps, we can rewrite (1.47) in terms of the generating function for P(z) as

_ —N-1 f _ 1)/
A= 2ij Z 1)7dz. (2.5)

Now let us consider the partltlon function in terms of the generating
function of the first return F(z). Each time the particle returns to the origin,
we add a weight k£ = eT to the random walk which is the statistical weight
of the base pair formation. The probability of the final return of the particle
to the origin after N steps, i.e., the partition function of the double chain with

connected first and last monomers reads:

1 1 dz
A= TF(z 2.
Zk 2%2%1—]{:]7(2)2]\7“’ (2:6)
Co

where the contour Cj encloses the origin in a clockwise manner. We discuss two

cases for the value of hydrogen bond energy U. When U < 0, k > 1 we have

attraction of a particle at the origin.
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2.1.1. Calculation of partition function (k > 1)

To estimate the integral A in (2.6) for the case k > 1 around a contour
C)y enclosing the origin, we consider another one around C', consisting of the
circular part with the radius 1 + ¢ and indentation around branch points at
z = +1 (Fig. 2.2) [51, 52]. Further, we will choose a positive § small enough
to use an asymptotic expression of (2.4) near the points =1 on the indentation

part of Cf.

Fig 2.2. The choice of the contour in the complex-z for the case of attractive origin

Notice that there are two simple poles z, and z_ inside the contour Cf,
which can be found by solving the equation F(z) = ;. To compute the contour
integral, we subtract integrals around C'; and C_ enclosing the poles z, and

z_ from the integral around C}

- f-f-§-f
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For the last two integrals we obtain

- fﬁ 1
Zf—’—l kF/(Z+)
c,
1 1
— = 2.
$ = = FF(=) (28)
C_

As the function F'[z] is even on the interval (—1,1), we get F'(zy) = —F'(z_).

Using the fact that N is even, it can be shown that

fogesg

c, C_ Cy

To estimate ¢, we notice that the integral around the circular part of the
contour is pr(f[l)ortional to m, which is negligible compared to ng and (;ﬁ
for large N as z, = |z_| < 1. The integral around indentation of the+points 1
and —1 can also be ignored because it is bounded in magnitude by a number
independent of N. We will evaluate the last one more explicitly in 2.1.2.

For the asymptotic expression of the integral A for large N we get

2

AR ()

(2.10)

where z, is the positive pole of integrand in (2.6) defined from the transcendental
equation

F(z) = % (2.11)

2.1.2. The asymptotic analysis of the partition function (k < 1)

In this section, we give asymptotic analysis of the integral A in (2.6) for
the case £k < 1. This case is when U > 0, and it corresponds to a repulsive
origin. In this case we have no poles z, and z_; therefore, we must estimate the
value of the integrals Ay p and Ay p on the indentation parts M P and M'P’
of the points +1 of the contour Cy (Fig. 2.3). As the number N is even, we

have Ayypr = App. For the 2D random walks, the generating function F(z)
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is expressed by the complete elliptic integral of the first kind K (z) and has an

asymptotic limit near point 1

1 1
F(z)=1- > 1 — . 2.12
(2) 2K (2%) =1 —Llog(1 — 2) (2.12)

Substituting F(z) in the formula for A we obtain

P

A 1J ! 4z (2.13)

T 9 | AN+ 1
M 1—k <1 o %log(lz)>

Let us divide integration (2.13) into two parts M R and RP, where R is a point
of intersection between contour C' and the real axis. Considering the branches

of the logarithmic function on M R and RP separately we get

R P
1 1 dz 1 1 dz
A=— +—
2mi ZNHl—k:(l— 1 ) 2mi ZNHl—k(l— 1 >
M —1 (log(z—1)+i) R —Llog(z—1)—im
(2.14)
After joining these two integrals and turning to a new variable 2’ = z — 1 we
obtain s
1 k/m dz
A= J " k / - . (2.15)
J (" DM - Lhog ()] + (1 - k)?

For a fixed small ¢, formula (2.15) can be rewritten as

5
km J 1 dz

(T=F2 | 4 DT log ()

A= (2.16)

To proceed with the asymptotic analysis for large /N, we denote by y = Nz
and get for the integral part of (2.16)

N§ N§

W - E 7 | T
N G DY og(y) —los(V))? T NIogT(N) (1 ety )

0 0 log(N)
(2.17)

Further, we divide the integral expression in (2.17) into two parts, integrating
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Fig 2.3. The choice of the contour in the complex-z for the case of repulsive origin

from 0 to 1/N and from 1/N to Nd. For the first part, we have

1N 1N
1 —Id 1 d 1
' J c Y <= J LN . (2.18)
Nlog“(N) ) (1 _ 110g((]g<7))> N ) log”(y)  NZ2log”(N)
og

For the second part of integration, we derive

N§
1 J e Ydy

Nlog?(N) (1- sty >2 - Nlog*()
1/N log(N)

(1+O( ). (2.19)

log(N)

We see that (2.18) is negligible compared to (2.19) and finally we obtain an

asymptotic expression of the partition function

km 1
A= (1 — k)2 N log(N) (2:20)

and the average energy vanishes in the limit N — oo.
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For the average energy per step and helicity we obtain

o _(tk)loghk1

(1-k N
1+k1

which tend to 0 when N goes to infinity.

2.2. The thermodynamic characteristics of the Model A

The internal energy per step, in units 7', is given by

B

1 log A 1 F
klogkOlogA  k ogk% (2) dz (2.22)

N 0k 2miNAJ (1 —kF(2))2 2N+
The calculations similar to those for derivation of (2.10) from (2.6) lead in the

limit of large N to:
B log k
kZ+F/(Z+) .

The helicity degree 6 is defined as an average fraction of hydrogen bonds

E= (2.23)

in the biopolymer, i.e. is the ratio of the average and maximal numbers of the
hydrogen bonds. For the simple random walk model, the maximal number of
returns to the origin and, therefore, the maximal number of bonds is % Using

(2.23) we can write the helicity degree as

2

0=——.
kZ+F/(Z+)

(2.24)

The thermal dependence of the helicity degree is shown in Fig. 2.4. The

slow decay of # demonstrates the gradual helix-coil transition.

2.3. Modified model with account of entropy of base pair
formation (Model B)

Each nucleotide is a group of atoms described by internal degrees of freedom,

the dihedral angles. The base pair formation gains the energy but results in the
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Fig 2.4. Helicity degree () of the Model A in dependence on temperature (7)

0.00007
0.00006
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0.00004
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0.00001

0.00000 ]

Fig 2.5. Correlation function of Model A

entropy loss. To address the issue of the internal structure of nucleotides, we

_AU-TASY

modify the statistical weight of single base pair, so that, it is w = exp( 7

where AU is the energy and AS is the entropy of the base pair formation.
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Fig 2.6. Free energy of Model A

Each nucleotide is a group of atoms having internal degrees of freedom, the
dihedral angles. The base pair formation gains the energy AU < 0, but results
in the entropy loss AS < 0, because the formation of each base pair requires
appropriate relative orientation of the nitrogen bases. Thus, each time the
particle returns to the origin, we add the statistical weight w.

The final return of a particle to the origin after N steps corresponds to
the partition function of the double chain with the connected first and last

monomers:

S , 1 1 dz
Ay = TF(2) v = 2.25
N jz;w (Z) |ZN I7i % 1—U)F(Z> SN+17 ( >
= Sy

where the contour Cjy encloses the origin in a clockwise manner.

The temperature behavior of the system is encoded in the singularities of
the integrand of the partition function (2.25). Notice that there are two simple
poles z; and z_ inside the contour C (Fig. 2.7) which can be found by solving
the transcendent equation:

F(z) = (2.26)

1
"
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Fig 2.7. The choice of the contour in the complex-z for the case of attractive origin

The critical temperature T, exists, which is defined by the equation
w. = 1. (2.27)

We have to consider two cases. The case w > 1 (T < T,) corresponds to
the attraction of the walk to the origin. The opposite case w < 1 (T > T,)
corresponds to the repulsive origin, and we have no poles z, and z_ inside the
contour C. To estimate the integral Ay in (2.25) for the case w > 1 around the
contour Cj enclosing the origin, we consider another one around Cf, consisting
of the circular part with the radius 1+ ¢ and an indentation around the branch
points at z = £1 (Fig. 2.7) [51, 52|. Further, we will choose a positive £ small
enough to use an asymptotic expression of (2.3) and (2.4) near the points £1
on the indentation part of Cf.

As number N is even, we have

§ 4 ﬁS .y fﬁ _ Zf+1w2F/(Z+). (2.28)

c, C. o

The contribution of the integral on the indentation parts M RP and M'R'P’
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of the contour C (Fig. 2.7) is §Ay. For large N we get

w ™

0NN =~ :
N (1 —w)?Nlog*(N)

(2.29)

The contribution from the rest of the contour Cf is proportional to (1 +¢)~%,

which is negligible compared to both values of (2.28) and (2.29). Then, for large
but finite N (7" < T,) we obtain

Aw — 2 n w 7
N (zy) (= w2 Nlogk(N)

In the case w < 1 (T > T.), Ay vanishes as 0Ay for large V.

(2.30)

To estimate the value of the parameter ¢, responsible for the order of
transition, we address the probability f,, of the first return at the m-th step.
Asymptotics of f,, can be derived from the probability of the first return to the
origin after time ¢: Prob(t > m) ~ 7/logm [53]. Differentiating, we obtain:

™

Jm ~ (2.31)

mlog?(m)’

Of course, one can get the same result using the method similar to the
derivation of (2.29) where the contour integration is applied to the function
F(2) |54]. Thus, the long loops asymptotics of the proposed model corresponds

to ¢ = 1 in the expression 65(m) = —clogm mentioned in Introduction.

2.4. The thermodynamic characteristics of the model B

According to the formulation of the model, Eq. (2.25) can be interpreted
as a partition function of the chain starting from the first and ending by the
L-th base pair. In the limit N — oo below the critical temperature T,, we get
from Eq. (2.30)

2
A= ,
YA (2)

is the total number of base pairs in the chain. For T" < T, the

(2.32)

N

where [ = 5

density of the free energy § in the thermodynamic limit is:

§="Tlogz,. (2.33)
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Fig 2.8. Free energy of Model B

To describe the critical behavior of § near T, one should notice that the
pole z; tends to 1 when T — T..—0. Solving Eq. (2.26) by using the asymptotic

expression of P(z) and F(z) near point 1, we find
zp =1 —e v, (2.34)

where w = exp(—2Z22), Then, using Eqgs. (2.33) and (2.55), we obtain the

asymptotics of the free energy density in the case of T"— T, — 0:

T?
§ ~ T.exp <— AT, = T)) (2.35)

The main observable quantity of the melting DNA is the helicity degree ¢
defined as an average fraction of the base pairs /Vy, in the biopolymer,

B wdlog Ay 1,
(Nip) = £ (2.36)

1

"=1

or the degree of denaturation, n = 1 — 6, which is defined as an average fraction
of the non-bounded base pairs. Using (2.32) we can write the helicity degree

for T'< T, as

2
- 2.
f wzy F'(z4) (2:37)
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The helicity degree and the density of free energy completely vanish above

the critical temperature 7, in the limit L — oo.
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Fig 2.9. Helicity degree of Model B
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Fig 2.10. Dependence of the degree of denaturation, n = 1 — @ on the temperature.

The thermal dependence of the helicity degree is shown in Fig. 2.10. We

conclude that the model describes the complete denaturation transition at the
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finite temperature 7.
To address the fluctuations of the base pair formation, we define the

pairwise correlation function as

9(i,J) = P(i,7) = P(i)P(5), (2:38)

where P(i, 7) is the probability of the i-th and j-th base pair formation:

A1 A
P(i, j) = ==, (2.39)
Avr
and P(i) is the probability of the i-th base pair formation:
A
P(i) = =k (2.40)
Air

By substituting (3.31) and (2.40) in (2.38), the correlation function can be

expressed as
g(i, ) = AN - Avilip Ayjhjr
’ Al,L A1,L Al,L .

In the case of the long DNA, the points ¢ and j are far away from the ends

(2.41)

of the chain, but the distance |i — j| is finite. Thus, we need an expression for
the Ay for large, but finite L (T < T.). Taking into account Eq. (2.30) and
Eqs. (2.37, 2.41), we obtain the correlation function for 7' < T in the form

Ow exp(—%)
r) o~ , 2.42
g( ) (1 . w)2rlog2(7“) ( )
where r = |i — j|, and the correlation length is
1
= — : 2.43
S P (2:43)

The asymptotics of the correlation length & at temperatures T — T, — 0
follows from Eqs. (2.55) and (2.34)

¢ ~ exp (\AUI(TJ{—T)) (2.44)
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Fig 2.11. Correlation functionof Model B
2.5. Results and discussion of Model B

The main idea of the proposed approach is the mapping of two interacting
three-dimensional polymer strands onto the single two-dimensional random
walk interacting with the origin [55].

The completely denatured state (§ = 0) with unbounded two DNA strands
appears at the finite temperature T = T, (see Fig. 2.10). To understand the
phase behavior of the model, the asymptotics of the density of the free energy §
near the transition point 7. has been found. The results are given by Eq. (2.35).
This kind of temperature behavior can be identified with the infinite order
phase transition. That is new for DNA, but considered formerly, for instance
in [56-59].

At T'— T.—0 the tendency to 0 of the order parameter 6 can be expressed
in terms of the correlation length £ (2.44):

T2
0 ~ m (2.45)

In the vicinity of T, the correlation length diverges at T" — T, — 0. If in the
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case of the second order phase transition the length of correlations diverges by
the power-law ~ |T.—T|~*, then in our case it diverges qualitatively differently
as ~ exp(#%7) (see Eq. (2.44)). At the same time, the free energy (2.35) is
continuous over the temperature, and the phase transition can be interpreted
as an infinite order.

When & — oo (T" — T, — 0) the correlation function g(r) decays as the

power-law
1

h rlog®(r)’
The pre-factor of the correlation function g(r) in Eq. (2.42) behaves as ~ ( fro

1—w)?"

g(r) (2.46)

Since the helicity degree 6 tends to zero as ~ exp(#2) (see Eq. (2.45)), the

value of correlation as a function of temperature vanishes in the same way.
Thus, we have unusual thermal behavior at T" — 1. — 0, where the correlation
length diverges as an exponent but at the same time the value of correlation
tends to zero.

The phase transition of the infinite order was obtained before, e.g., in [56,
57] for the one-dimensional classical spin model with long-range interactions and
the singled out interaction center on the lattice. A similar result was presented
in [59], where the Ising model on the growing network was addressed. There, the
order parameter decays as ~ exp(—ﬁ), which is qualitatively similar to our
results in (2.45). That and existence of long-range interactions in the system are
the common point with our model for the denaturated loops arbitrary lengths.

The phase transition of the infinite order considered in this work takes place
in the case of ¢ = 1 at the end of melting, where § = 0. The given scenario is in
agreement with the experimental data obtained in [60]. The sharp kink of the
melting curve was interpreted in [60] as a phase transition of the second order.
However, the number of experimental points is not enough to define the order
of transition without fluctuational analysis. At the same time, the comparison
of the melting curves presented in Fig. 2.10 and in Fig. 1 of Ref.[60] shows

very close similarity. Thus, the phase transition obtained in [60] experimentally
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could be of the infinite order but not the second order.

The order of phase transition in the double-stranded DNA is sensitive to
the way of taking into account the loop entropy 65(m) = —clnm, where m is
the length of the loop. In our approach, no assumptions about the value of ¢
has been made. Considering denaturated loops explicitly in some approximation
justified above we obtain ¢ = 1. In contrast to the results derived in [40, 61, 62]
we got the continuous phase transition of the infinite order. The various phase

behavior is explained by the different consideration of the denaturated loops.

2.6. Random walks with stops at the origin (Model C)

In this section, we consider another kind of a random walk which admits
a more detailed description of the interaction between polymer chains [63, 64].

One of the key-points of the double-stranded DNA denaturation is the so-
called “loop factor” describing the entropy of the one-loop formation, AS(m) =
—clInm, where m is the length of the loop. The phase behavior, e.g., the order of
the phase transition depends on the value of the ¢ factor [34, 40, 61, 62, 65|. This
factor was considered in many semi-empirical mean field theories |62, 66, 67| as a
modification of Stockmayer’s theory for sufficiently long chains. In e.g. [40], the
excluded-volume interactions within denatured loops were taken into account
and, on the basis of the Poland and Scheraga model [34] phase transitions of
different order were shown to arise depending on the value of a loop exponent.
However, in spite of extensive research the real-life phase behavior of the double-
strand DNA still remains unclear. For instance, in [40] and references therein
a phase transition of the first order was reported. At the same time, in [60]
evidence is provided for second order phase transition at the end of the double-
strand DNA melting. Such diversity of experimental results is mainly caused
by different experimental conditions. Conformational statistics of the long loops
and parameter ¢ are highly sensitive to the counter-ion concentration, pH etc.

The problem which still remains unsolved is the relationship between very
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diverse experimental conditions of and the value of the ¢ factor.

As well as in the previous sections, the main idea of the proposed approach
is the mapping of two interacting three-dimensional polymer chains to a single
two-dimensional random walk interacting with the origin.

Our approach has a number of advantages. First of all, we have taken
into account the self-avoiding effects of each chain, since the helix initialization
(first base-pair formation in the helix) takes place only at the first return of
the two-dimensional random walk. Second, the approach used permits one to
avoid the meander- and knot-like conformations. The traditional approach using
AS(m) deals with any return of the random walk. At the same time, to address
the loop entropy AS(m) correctly, it is necessary to use only the first returns
of the random walk, as in our case. Thus, our approach deals with two-strand
polynucleotides without any preliminary assumptions concerning AS(m).

The interaction between two strands and the self-interaction inside each
strand in the coil regions include mainly Van-der-Waals and electrostatic interactions.
The latter is the most long-range one among the non-helical interactions. Happily,
the DNA-solvent system as a whole can be considered as electro-neutral one,
since it contains different salts and other low-molecular compounds which screen
the electrostatic interactions on the length scale rp, where rp is the Debye
radius.

We discuss two ways of the hydrogen bond formation. The first one is an
instant contact between the polymer chains which leads to the creation of a
single hydrogen bond with subsequent free evolution of both polymers. This
contact interaction is compensated by the short range intermolecular repulsion,
and we ascribe the energy U; > 0 to it. The second way is the creation of a
sequence of hydrogen bonds. This case corresponds to “glued” polymer chains in
the helical phase where intermolecular repulsion is suppressed. We ascribe the
energy Us < 0 to the monomer-monomer contacts in the helical region. This

energy actually is the sum of two terms: the energy of hydrogen bonds and the
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energy of stacking interaction between the given base pair and the preceding
base pair in the helical region.

Each nucleotide is a group of atoms described by internal degrees of freedom,
the dihedral angles. The base pair formation gains the energy but results in the
entropy loss. To address the issue of the internal structure of nucleotides, we
introduce a new factor ¢ = e™°, where AS is the entropy loss caused by one base
pair formation. We suppose that there is no another interaction in the middle
part of the loop because the radius rp is short enough at the physiological
conditions.

The one-strand loop is presented as a walk of the particle. Effectively, we
multiply the whole weight of the random walk trajectory by ki = e for
visiting the origin and by ko = e for staying at the origin. The partition

function for this model is

; ; m 1 1 dz
A=Y gk} F(2) (Z(quz) ) [ov = 5 é; g (247

7=0 m=0 - 1—qksz

Co

The effective interaction U; > 0 depends on the result of competition
between the repulsive interaction and the binding energy. U; < 0 corresponds
to the attractive standing at the origin. The factor ¢ with ¢ < 1 mimics the
fact that each base pair formation is unfavorable entropically. A microscopic
study of these competing interactions using the analogy with the self-avoiding

random walks was considered in [40].

2.6.1. The analysis of the partition function

Now let us discuss the partition function (2.47)

1 § 1 (1 — gkq2)dz

A =
2mi | 2NTUT — qhoz — gk F(2)’

(2.48)

Co
where we consider two cases depending on values k1, ks and gq.

If k1 + ko > % for 0 < ¢ < 1 we have a simple pole only at the positive
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point z;, which can be found by solving the equation
1
k22+ + le(Z+) = 5 (249)

For the integral A we derive (2.54)
In the second case, when ki + ko < %, there are no poles inside the contour
C except 0, so it is necessary to estimate an integral along indentation around

the points +1:

P 5
A 1 J 1 (1 — qkoz)dz J 1
MP pum— ; pum— S —
m J =1 — qhoz — gy (1 — 7%1%(12)) . (z+1)
L(1 = gha(z + 1)) (g1 + gko(1 + 2) L log(2))d= (2.50)

[qk:l — (1 — qky — qko(z + 1))% log(z)]2 +[1 — qky — qko(z + 1)]2.

Using the fact that ¢ is small, we get

A . (1 — qk2>k1’ﬂ' J 1 dz
M (= gk — )’ ) (2 + )M og?(2)
1— 1
( qk2>qk1”2 S— (2.51)
(1 — gk1 — gk2)> N log*(N)
In the same way, we can show that
(1 + Qkfg)qklﬂ' 1
Ayppr = : 2.52
MP (1 — gk +q/€2)2N10g2(N) ( )
Thus, for the whole integral A we obtain
(1 — qko)qhkym (1 + qks)qkym ) 1
A= + 2.53
((1 —qky —qk2)? (1 —qki +qk2)? ) Nlog®(N) (2.33)

Finally, to find an average energy per step and helicity, we substitute (2.53)
in formulas (2.56) and obtain 0 for both of them in the limit of large N,

2.7. Results and discussion of Model C

The thermal behavior of the system is encoded in the singularities of the

integrand of the partition function (2.47). Depending on the parameters of the
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model the critical temperature T, exists where the singular behavior is changed.

The analysis of possible cases is presented in 2.6.1. Specifically, we derive for

T < T,
1 1 — qkozy
2N gk + gk F'(24)

and for T" > T, A tends to 0 as a

A=

(2.54)

NlOQQ(N). The critical temperature T, is

determined from the equation
1
ki+ ko = —. (255)
q

To find the average energy and helicity, we use the formulas generalizing

(2.22)

E = —ikl logklag)]iA - %kﬂogkf?]iA
h = Nklag);iA +%kgag)]iA, (2.56)
which give for T < T
T o _ kilog ki F(z) qkikolog ko F'(24)
2 (ke + k1 F'(24)) - (ke + ki F'(24))(qz4 k2 — 1)
h = — b F(z) . (2.57)

2y (ko + k1 F'(21))(qzi ke — 1)

The circles on Fig. 2.12 show that the helicity degree completely vanishes
above the critical temperature 7. This is in contrast with the simple random
walk model with k£ > 1 shown by squares, where 6 tends to zero asymptotically
due to entropy effects. We conclude that the model with stops at the origin
describes the helix-coil sharp transition. The same behavior takes place for the
average energy.

If the contact interaction is attractive with & > 1 (U < 0), the system
exhibits a gradual helix-coil transition. In the case of repulsive interaction with
k < 1 (U > 0) we have zero helicity in the double-stranded region. More
interesting behavior appears for a competing interaction of the random walk

with the origin when k; < 1 (U; > 0) for the instantaneous contacts between
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Fig 2.12. Dependence of helicity degree on the temperature. Squares show the case of the
simple random walk model. Circles show the behavior of the random walk with stops at the
origin (U, = 1,Us = 1.5,¢ = 0.4, U = —1.5).
polymer chains and ko > 1 (Us < 0) for their long contact. We also introduce
a factor ¢ which accounts for the entropy decrease in the base pair formation.

Under these conditions the system exhibits a sharp denaturation transition.
The completely denatured state (§ = 0) with two completely unbound DNA
strands appears at finite temperatures T" > T...

The key point of our study is the entropic nature of the parameter g =
e where AS is the entropy loss caused by the base-pair formation. Also,
we obligatorily need a repulsion between non-paired nucleotides to obtain a
sharp denaturation transition. In the opposite case, where there is attraction
between non-paired nucleotides or there is no interaction between non-paired
nucleotides, we have smooth denaturation. The given result is in qualitative
agreement with [40], where the sharpness of the DNA melting was also assigned
to repulsive interactions.

The main characteristics of the melting curve 6 on the temperature 1" are
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the melting temperature 7;, and the interval of transition AT. The melting
temperature is the measure of stability of the helical structure defined by the
condition f = % [34]. The melting interval AT is usually considered as a measure

of cooperativity of a helix-coil transition [34]. It is characterized by the slope of

do

the melting curve at the point T,, AT = | 7=

|%1=Tm' Figure 2.13 clearly shows
that the helix stability increases with the strength of attraction Us. At the
same time, the melting cooperativity substantially decreases with the strength
of attraction. The growth of stability is quite natural because attraction Us

stabilizes the double-helix.
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Fig 2.13. Helicity degree of Model C. Dependence of the helicity degree on the temperature
in the case ¢ = 0.4, U; = 1 and different values of Us. The melting temperature 7, defined
at the point where # = 0.5. The melting interval AT dg |;iTm defined as the slope of the

— lar

melting curve at the melting temperature 7,,.

Thus, using a very simple random walk model, one is able to describe the
essentially complex behavior of the double-stranded polynucleotide.
The proposed model is in qualitative agreement with experimental results

presented in [60], where sharp transition is exhibited at the end of the melting
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Fig 2.15. Helicity degree of Model C: cold denaturation
transition (6 = 0). To our knowledge this is the first case when the theoretical
phase behavior is confirmed by experiment. The order of the transition was

interpreted by authors [60] as the second order. However, the number of measured
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Fig 2.16. Free energy of Model C

points seems not to be enough to observe this experimentally. Our model
clearly shows a sharp but continuous denaturation transition at the temperature
T =T, and at the same time, gives a melting curve which qualitatively agrees

with experiment [60].
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Chapter 3

The secondary structural transitions in

single-stranded RNA. The basic model.

3.1. Statement of the problem.

Single — stranded RNA (ssRNA) plays a central role in molecular biology.
In addition to transmitting genetic information from DNA to proteins, RNA
molecules participate actively in a variety of cellular processes [68]. Examples
are translation (rRNA, tRNA | and tmRNA), editing of mRNA, intracellular
protein targeting, nuclear splicing of pre-mRNA, and X-chromosome inactivation.
Secondary structure of ssRNA is usually much more stable than tertiary structure.
It can be explained by stronger interactions like hydrogen bonds an stacking-
interactions, stabilizing secondary structure in comparison with tertiary [13].
Another explanation is the additional entropy loss, necessary for the stable
tertiary formation, as it was shown in [69]. Thus, independent on the specific
origin of the higher stability of secondary structure, the secondary structure
prediction is possible without taking into account the tertiary structure formation.

Since the pioneering work of Higgs and Morgan [29, 70| and Bundschuh
and Hwa [71, 72|, several authors have studied the statistical physics of RNA
secondary structures both for homopolymeric and heterogeneous RNAs and
[71-75]. In dependence on model peculiarities ssRNA exhibits rich phase behavior
including folding transitions, continuous freezing transition between molten
and glass phase etc. Not much is known about the freezing transition, even
from numerical work; indeed its localization is non-trivial [76]. Better studied
numerically is the glass phase at strong disorder, or equivalently zero temperature
|71, 73, 77, 78]. However, the nature of the freezing transition and of the low-

temperature phase are still poorly understood, and contradictory results are
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reported [78|. The main problem is to address the effect of the sequence disorder
on the thermodynamics of ssRNA. The commonly used replica approach [79-84]
still remain non-effective for ssRNA secondary structure investigation. The glass
phase appears in the solution of [71, 72| for the partition function for n = 2
replicas (instead of n = 0 relevant for the disordered system) and in numerical
simulations [71, 73, 78, 85, 86].

The main goal of the present report is to develop an approach to investigate

thermodynamics of ssRNA with taking into account sequence heterogeneity.

3.2. The constrained annealing approach

We propose to study random ssRNA sequences composed of A, C, G,
and U bases. Pairing is permitted only between A and U and between C and
G bases. The topological rules that determine which structures are allowed
are the essential feature that makes workable the numerical calculation of the
free energy of secondary structure. The main rule is elimination of so called
pseudoknots (Fig.3.1) from the set of available secondary structures as in most
other work on ssRNA [29].

In this case the full partition function Zy for the ssRNA chain of the
length N can be calculated recursively at any given temperature 7' [29, 71]. To
make the sequence effect tractable analytically we propose to use an approach
developed by M. Serva and G. Paladin in [87]. Following by [87-89], the free
energy of ssRNA with quenched random sequence of nucleotides can be estimaed
on the basis of annealed averages of the partition function with appropriate
constraints. Given approach is substantially variational and can be realized by
the aid of Lagrange multipliers, which serve as a variational parameters. The
relationship between the quenched and annealed disorder in ssRNA has been
addressed numerically in [90].

Disordered systems like spin glasses or random heteropolymers are characterized

by two types of degrees of freedom: annealed which arrange themselves to
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minimize the free energy and quenched which can be considered as constant
in time. In case of ssRNA annealed degrees of freedom are Watson-Crick base
pairs. The nucleotides sequence can be addressed as a set of quenched degrees of
freedom. According to [87] the free energy of the ssRNA with random quenched

sequence of nucleotides can be estimated as

fz9(T, 1) = fa, (3.1)

where f and f4 are the reduced quenched and annealed free energy per nucleotide,

correspondingly and

1
g(T,pn) = N In Z(seq)e—Nuolseq), (3.2)

Z(seq) is the parition function of ssSRNA with given sequence realization seq
and a(seq) is the appropriate self-averaging quenched quantity. @ means the
average over sequence distribution function. We will refer given approach below

as a "constraint annealing approach".

3.3. The model

A primary RNA structure is fully determined by the base sequence which is
a list of nucleotides, cytosine (C'), guanine (G), adenine (A), or uracil (U) with
N entries. In agreement with previous treatments, a valid secondary structure
is a list of all base pairs with the constraint that a base can be part of at most
one pair. In addition, pseudoknots are not allowed, i.e., for any two base pairs
(4,7) and (k,l) with ¢ < j, k < [, and i < k we have either i < k <[ < j or
1<) < k<l
Hamiltonian of the model is written as
H(m,{h}) = Z m;j(€o + €h;h;), (3.3)
i<j
where sum is taken over all non-repeated base pairs, m;; = 1 if the bases ¢ and

g are paired and m;; = 0 otherwise. The partition function for the ssRNA chain

61



Fig 3.1. A pseudoknot is an RNA secondary structure containing at least two stem-loop

structures in which half of one stem is intercalated between the two halves of another stem.

of N nucleotides is written as

Zn({h}) = Z exp[—FH (i, {h})], (34)

where = == and the sum is taken over all realizations of the matrix 7, which
are not, 1nclude pseudoknots and containing not more than one unity on each

row or column. The latter condition describes the saturation of base pairing.

3.3.1. Gaussian disorder

Let us consider first the case of Gaussian disorder. Then, the distribution

function for the sequence {h} is written

Ph} = 1] (k). (3.5)

2
where p(h;) = (2nD)~'/2¢725. The reduced free energy per nucleotide is written

as

F{h} =~ n Zy({h}) (3.6
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In the thermodynamic limit N — oo the free energy becomes a non-random

quantity and f{h} = f, where f is the quenched free energy

1

f =~ Zx({h]) (3.7)

Following by [87] the quenched free energy can be estimated as max, g(T’, u1)
using the inequality (4.5). Let us introduce the following constraints for the

quenched variables {h}

1 N

ar{h} = N Z(h? — D)

1=1

The effective partition function is written

Zy = e~ Nmon{h}=Npsao{h} 7 ({1 }) (3.9)
and can be presented as (see section 3.5 for details )
Zy =WV Z3.(9), (3.10)

where

and

Du? =
eu2D+Tl A/ D

w = 3.11
VD (3.11)
[):L
_ BeiD* 1 [ ~2]
E=——-——+_-In|l1—(BeD
g 1+ BeD 2 (BeD)

Z%(€) is the partition function of homopolymeric ssRNA with effective

energy € = €y + €. As it was shown in |71],

Z3(8) = A(Q)N""2(Q)", (3.12)
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where 0y = 3/2, Q = %9 and

2(Q) =1+2/Q (3.13)
O 1+2Q
wie) = 1200
The variational reduced free enery g(3, p1, p12) = —% In Zy is written
1. D D2 i s 2 s
9(B, i, pi2) = _EIHB_MD—%—ln (1+2[1—(66D)2]—1/4e - i
(3.14)

g(B, 1, p12) reach maximal value at p; = 0 (see section 3.6 for details ). Thus,

we need to maximize the variational free energy over the variable D

. 1. D 1 D

g(B,D) = 545 0 In (1 +2[1 — (ﬁebf]—l/‘le—@) (3.15)

Maximization results to the equation

D (BeD)? Bey 1 -y

— =14+ ——=—06(In2 - — — - In|1 — (BeD)?]), 3.16

5= T GO - gl - (D)), 619
where O(z) = 1iz is logical function. Equation (3.16) can be solved numerically,

and its solution is unique, positive and continuously changing with temperature.

The free energy per monomer of the system is estimated as

f(B) === (3.17)

where ¢(8) = g(8, Do) and Dy is solution of the equation (3.16). The entropy

per monomer is written as

d
s(B) = —g(B) + 6—9(5) (3.18)
dp
and the specific heat
d’g(B)
2
cv(f) =—p 5 (3.19)
Let us define helicity degree as the mean part of Watson-Crick base pairs
0 = N<Z mij) = 6(In2 — == — 2 In[l — (BeD)?)), (3.20)

i<j
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where (O) is thermodynamic average and Dy is the solution of the equation
(3.16). Temperature behavior of the thermodynamic parameters is calculated
on the basis of equations (3.16,3.17,3.18,3.19,3.30).

The entropy of the model with disorder is substantially less than those
for homopolymer. In the low-temperature limit the entropy of the model with
Gaussian disorder exhibits logarithmic divergence with temperature as (for

details see section 3.7).

s ~ —In(efD) (3.21)

Thus, at low enough, but finite temperatures entropy becomes negative s <
0. However, despite of ordinary and spin glasses, entropy crisis itself does
not characterize the glass phase appearance, because of our model contains
continuous degrees of freedom ({h}).

In dependence on parameters ¢y, € and D model exhibits different temperature
behavior of thermodynamic parameters. At the definite choice of the parameters
the temperature behavior of specific heat exhibits two peaks. The high-temperature
peak corresponds to the melting transition. It is necessary to mention that
even at the infinitely large temperatures helicity degree still remain 6 = 2/3.
In the area of the low-temperature peak the helicity degree § ~ 1. From
the equations (3.21) and ¢y = T(ds/dT) it straightforwardly follows that
cy(T = 0) > 0. Thus, at low- and even zero-temperatures system has available
degrees of freedom, although the entropy is drastically decreased in comparison
with homopolymeric case. Similar temperature behavior of the specific heat has
been observed recently e.g. in some models displaying glassy behavior at zero
temperature due to entropic barriers [91]. From the one side we have a low-
energy ground state (at 7' = 0) practically without unbounded base pairs (6 =~
1). From another side, specific heat behaves as a classical model with Maxwell-
Boltzmann statistics at the high-temperature area. Thus, at low temperatures
we have a highly ordered system (6 ~ 1) with definite conformational freedom,

which is signalling about the possibility of the low-temperature glassy state
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appearance. However, Gaussian model does not provide enough evidence for

the glass transition and we need to investigate more realistic model of ssRNA.

3.3.2. Bimodal disorder

In previous considerations of ssRNA folding the sequence disorder usually
supposed to be Gaussian [71, 92-96] to make model tractable analytically.
However, the real RNA sequence is composed from four-literal alphabet. For the
sake of simplicity we consider the case of two-literal sequence to assign variable
h; = 41 to each i-th nucleotide. It corresponds e.g. to random poly(AU)
sequence.

Then, the distribution function for the sequence {h} is written

P{n} =] P(h). (3.22)

where P(h;) = qd(h; — 1) + (1 — q)o(h; + 1).
Let us introduce the following constraints for the quenched variables {h}

N

an{h} = %Z[hi (20— 1)] (3.23)

1 N

ax{h} =+ > [(hi — (20 — 1))* — 4q(1 — q)]

1=1

[t is obvious that a;{h} = 0 and as{h} = 0. The effective partition function is

written

ZN _ e—Nulal{h}*NﬂzaQ{h}ZN({h}) (324)

and can be presented as (see section 3.8 for details )

Zy = NN Z0(8), (3.25)
where
Zy(e) = Z'A e Bleotd Licsmis (3.26)
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fo=p1 —2(2g — 1)ps and

Q) = g + (1 — g)e” (3.27)
W(p, B,€) = e " [gPe " + (1 — q)%e™] + 2¢(1 — q)e’
6—5€ _ W(:“) 67 6)

Q(p)?

Thus, parameters p; and po presented in Zy only as p = p; — 2(2g — 1)
and variational problem becomes one-parameter. We need to maximize the

variational potential

9(B,p) = —pu(2g — 1) = InQ(p) — In(1 +2/Q) (3.28)

(€0+€)

over i, where Q = ™" . Maximization results to the equation

2q_1:[ 21/Q _1]d1nﬂ<u>_1 2/Q O W (u, B, ¢)
dp 2142/Q o

(3.29)
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Fig 3.2. Dependence of reduced free energy on temperature.
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Fig 3.3. Dependence of helicity degree on temperature.
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Fig 3.4. Dependence of entropy on temperature.
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Fig 3.5. Dependence of specific heat on temperature.
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Fig 3.6. Dependence of the portion of the energetically favorable contacts on temperature.

3.4. Results and Discussion

In this section we presents results mainly relating to the case of bimodal

disorder. We believe that this case is the most relevant for the RNA sequence.
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Fig 3.7. Dependence of the portion of the energetically unfavorable contacts on temperature.
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Fig 3.8. Dependence of reduced free energy on temperature.

In Fig.3.14a we compare free energies obtained by constrained annealing
versus directly calculated using the recursion algorithm, based on Eq. (1.5). The

mean value of the free energy calculated numerically is in a good agreement
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Fig 3.9. Dependence of helicity degree on temperature.
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Fig 3.10. Dependence of entropy on temperature.

with the free energy estimated with the help of constrained annealing method
|97].

In Fig.3.14b, we compare specific heats, obtained by constrained annealing
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Fig 3.11. Dependence of specific heat on temperature.
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Fig 3.12. Dependence of the portion of the energetically favorable contacts on temperature.

versus the directly calculated using McCaskill’s algorithm [32], based on Eq. (1.5)
with subsequent numerical differentiation of the free energy by temperature.

The temperature behavior of the specific heat is in a reasonable agreement
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Fig 3.13. Dependence of the portion of the energetically unfavorable contacts on temperature.

with the McCaskill’s results and exhibits two-peaks, a sign of two structural
transitions.

To assign the specific heat behavior to the structural transformations of
ssRNA let us define helicity degree as a mean portion of Watson-Crick base
pairs

2VQ
;m ) (3.30)

where (O) is thermodynamic average. The r.h.s of the Eq. (3.30) is given by
the expression of helicity degree of the homopolymeric RNA, straightforwardly
obtained from the partition function of homopolymeric ssRNA [71]. Thus,
in the constrained annealing approximation, helicity degree is written as for
homopolymeric RNA with the effective statisticalcite weight Q.

Out of Eq. (3.30) the helicity degree can be estimated numerically by
making use of the probability of base pair formation between nucleotides ¢ and

J 171

QZ] i+1,7— 1Zj+1 N+i— 1 (331>

pij = (myj) = Zix
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0.4

0.20

Fig 3.14. Free energy (a), specific heat (b) per nucleotide, helicity degree (c), and the
fraction of unfavorable contacts (d) vs temperature 7' = 1/5. Thin red lines are calculated
using McCaskill’s algorithm for the 30 random realizations of the N = 50 nucleotides with
parameters ¢g = —1, ¢ = 1.5 and ¢ = 0.75. The thick blue line is calculated in variational
approximation f ~ max, ¢g(f,p) in the thermodynamic limit N — oo. The thick dashed

black line is the mean value of the quantity, averaged over all random realisations.

Partition functions on the r.h.s. of the Eq. (3.31) have been calculated recursively
(1.5) and the helicity degree for the specific realization of sequence of nucleotides

is estimated as

2
Qseq. = N ZPZ] (332)

i<j
In Fig. 3.14c we compare helicity degrees, obtained by the constrained annealing

with those directly calculated using Eqgs. (1.5,3.31,3.32) for the pool of randomly
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Fig 3.15. Temperature behavior of the helicity degree (a) and the specific heat per nucleotide
(b). Black dashed lines are calculated using McCaskill algorithm and averaged over random
realizations of the N = 50 nucleotides with parameters ¢ = —1.5, ¢ = 1.0 and ¢ = 0.75. The

blue lines are the quantities, calculated by the constrained annealing method.

generated sequences. The mean value of the helicity degree, calculated numerically
is in a good agreement with those, calculated with the help of constrained
annealing method. As seen from Fig. 3.14c, helicity degree abruptly increases
with temperature and then, after some temperature around 7" = 0.5 point,
begins decreasing. Such reentrance of helicity degree indicates the presence of
both high- and low-temperature melting and, perhaps denaturation.

The high temperature limit corresponds to the homopolymeric case, where
the impact of inter-nucleotide interactions is not so essential. For the sake
of simplicity the temperature dependence of the (free) energy of base pair
formation is neglected and limy .0 = 2/3. For more realistic choice e.g.
¢g = AH — TAS the high-temperature limit of the helicity degree will be
defined mainly by the loss of entropy AS of one base pair formation. Here AH
is the enthalpy per one base pair. When compared against Figs. 3.14b the low-

temperature peak of heat capacity could be assigned to low-temperature (cold)
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denaturation, while the high-temperature one to the usual hot denaturation.
Helicity degree can be also represented through the fractions of energetically
unfavorable (between similar nucleotides) and favorable (between different nucleotides)

contacts as 6 = nt + n~, where

2
0t = N<Z 8(hih; T 1)my;), (3.33)
i<j
normalized by the maximal number of base pairs, % The consideration of

temperature dependencies of these quantities reveals the origin of low-temperature
melting. The fraction of unfavorable contacts can be written as n* = 1(6 +n),

where the auxiliary quantity 7 is written

n = %(Z hihjmj;) = 2%. (3.34)

6 and n quantities are calculated analytically (see SI for details). We also
estimate 7 numerically, using the same approach as for helicity degree (see
Egs. (3.31,3.32)). In Fig.3.14d, we compare the fractions of unfavorable contacts
n™, obtained using the Eqgs. (3.30,3.34) and those calculated numerically.

In Fig.3.14d, we show the decrease of the fraction of unfavorable contacts
with lowered temperature. It is quite natural, since for unfavorable contacts the
Boltzmann weight ();; < 1 and tends to zero at low temperature. At the same
time, the fraction of favorable contacts n~ increases with the temperature. For
the bilateral A and U alphabet, the probability to find the unfavorable pair of
nucleotides is higher than to find the favorable one (see SI). That is why the
decrease of n™ results in low temperature melting.

To the best of our knowledge the double-peaked behavior of specific heat
has never resulted before. Pagniani et al considered equal probabilities (¢ = %)
for two letters (A and U) to appear and reported a single-peaked specific heat
[86]. From our Eqs. (3.28,3.29) it straightforwardly follows that if done so,
to(5) = 0 and the completely annealed case with a single peak of heat capacity

and no low temperature melting results. In compliment to findings of Pagniani
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et al [86], our results indicate that single peak of heat capacity results for ¢ = 0.5
case only, and for other values of ¢ there are always two peaks.

To address the effect of interaction parameters we distinguish two cases.
The first, when the similar nucleotides (AA or UU) are repulsive and the second
one, when they are still attractive with less strength than AU. The difference
between the two cases is characterised by A = €y + € parameter. The low-
temperature melting, described above (see Fig. 3.14c¢) takes place if A > 0
and the similar nucleotides are repulsive. On the other hand, if the similar
nucleotides are attractive (A < 0), temperature behavior of helicity degree
changes drastically and low-temperature melting disappears (see Fig.3.15a).
Specific heat behavior remains the same as for A > 0 (see in Fig.3.15b). Given
scenario confirms our suggestion, that the reason for low-temperature melting
is the decrease of the fraction of energetically unfavorable contacts n*.

Fig. 3.16 summarizes the obtained results in a phase diagram. However,
q parameter values belong to the interval 0 < g < 1, we consider only 0.5 <
g < 1, because of system behavior is symmetric with respect to ¢ = 0.5.
In the upper half of the diagram the temperature behavior of helicity degree
is presented, in dependence on the energy of similar nucleotides interactions,
€p+ € for the typical value of ¢ = 0.75. While the similar nucleotides interaction
changes from attraction to repulsion, the system goes from the thermal melting
scenario to the both cold and thermal one. In the bottom half of the diagram the
temperature behavior of the helicity degree is presented in dependence on the
probability ¢ values. In the left-bottom corner the similar nucleotides attraction
is addressed and in the right-bottom, the repulsion one. If in case of attraction,
the growth of the probablity ¢ just decreases the helicity degree, the similar
nucleotides repulsion is characterised by more complicated behavior. While the
probability ¢ is growing in the interval 0 < ¢ < 1, the helicity degree behavior
changes from the purely hot to the purely cold melting. At the intermediate
values of ¢ the system exhibits both cold and hot melting.
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Fig 3.16. Phase diagram ¢, + ¢, q.

Temperature behavior of the specific heat is depicted in Fig. 3.17. While in
case ¢ = 0.5 only high-temperature peak is survived, in (homopolymeric) case
g = 1 specific heat exhibits only low-temperature peak. In the crossover regime
0.5 < g < 1 specific heat exhibits two-peak behavior that is corresponding to
the hot and cold melting in the right-bottom corner in the Fig. 3.16.

The obtained theoretically cold melting, gives insight into the sequence
effect on the cold denaturation [98]. Cold denaturation usually assigned to the
positive specific heat difference between the denaturated and native states [98—
100] or to the competing between the inter- and intramolecular hydrogen bonds

[101]. According to our consideration, the two transitions takes place only if ¢ #
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T

Fig 3.17. Temperature behavior of the specific heat for the different values of ¢ parameter
and € + ¢ > 0 (g = —1, € = 1.5). Value of the probability ¢ is changing from ¢ = 0.5 up to

q = 1.0, while the line color is changing from the red to the blue one.

1/2. The reason is that the probability to find the unfavorable pair of nucleotides
is higher than to find the favorable one. These probabilities are equal only if
q = 1/2. Thus, the potential number of unfavorable contacts seems to be one of
the main prerequisites of the cold melting and, perhaps the cold denaturation.
At the same time, cold melting requires A > 0, where the similar nucleotides
are repulsive. That is the free energy change, caused by non-Watson-Crick pairs
formation should be positive. Thus, the experimental conditions, suitable for
the cold denaturation are based on the interplay between the potential number

of unfavorable contacts (sequence) and the non-Watson-Crick pairs stability.

3.5. Effective partition function: Gaussian case.

Let us obtain effective partition function with constraints defined by equations

N

ar{h} = %Z(hi _h) (3.35)

1 & _

ar{h} = > ((hi —h)’ = D),

=1
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where h is the mean value of h; and corresponding distribution function is given

by
(hj—h)?

p(h;) = (2n D)2~ (3.36)

The effective partition function Zy = e~ Nmer{h}—Npsaoih} 7, ({h}) is transformed

as

Zn = eV (mahtp2D) Z/ e B0 i< mw‘J p;ﬂ){h}e—%(hﬂﬁh)—m(e,h)—ua Zj(hj—h)27
(3.37)
where (a, b) is the scalar product of the vectors a and b, h = (hy, hy, ..., hy)

and e = (1,1, ..., 1). Let us average over the distribution function P{h}

2

J DhP (e s i) —pm(eh) - 3, (hy ) _ (3.38)
— J DhP{h} exp{—%(h, mh) — (e, h) —

—p2(h, éh) + 2uoh(e, h) — py NA?} =

= e_NBQ(“QJF%)(%rD)_N/QJ Dhexp { — %(h, [5€m +é(2u2 + 1/D)} h) -

(i — 2 — B/ D), h)},

where é is the unit matrix. Thus, the effective partition function (3.37) is written

. 72
eN(thJruzD)*%(?Her%)

(27 D)V
« J Dhexp { - %(h [@em (2 41 /D)} h) _
(o~ (22 + 1/D)e ) | =

N (unhbp2 D)= N (254 5) 1 W+ 6(2 1/D
_° Zl expq — —Indet ferm + &2, + 1/ D) +
(2w D)N/2 i 2 27
1 _

45l = B2 + 1/ D)2 [Bern + (22 + 1/ D”@f}

ZN =
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Let us calculate first the Indet term in the last equation

n+ée(2 1/D
In det (ﬁem et 1 )) = (3.40)
2T
n+ ée(2 1/D
=Trln (ﬁem—l—e( po+ 1/ )> =
2m
— —NIn(27D) Z DT (15,
k=1
where D = 1+2D . Let us calculate a few first terms T'r(1n").

e (k=1)Tr(m)=0

o (k=2)Tr(m?) =32, mijmji = Y Mij

:E g mijmjkmkzizg g I 0O

(Y] 1 gk

because of e.g. m;;jm;, # 0 only if ¢ = k. Thus,

~3 E E E
Tr(m ) = mijmjkmm%&k = mijmjim,-i&-j =0
ij

i gk

:E g T T = g g MMM 030 1O = g oy

i gkl i gkl

e (k =5) in the same manner we can show that Tr(m°) = 0 etc.

Thus,
my; , if k is even
Tr(mk) = 25 ™ (3.41)
0 , if k is odd
and eq.(3.40) is written as
n 4+ e(2 1/D
In det (Bem i 6(2'u2 1 )> = (3.42)
7T

= —NIn(27D) + > mi; Y %(&D)?m =

ij m=1
— —NIn(2rD) + %ln[l — (BeD)’]
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The sum of the elements of inverse matrix in the exponent of eq.(3.39) is written
> [Berm+é(2u2 +1/D)];; = D Z [BeDrn +7el;! (3.43)

ij
The inverse matrix is expanded as [BeDrn+e] ' = 372 (—1)!(BeD)4n!. Thus,

eq.(3.43) is rewritten as

> [Bem+é(2u2 +1/D)]; = D> (=1)/(BeD)" Y (i) (3.44)

i =0 17

In analogy with Tr(m') we can show that

my; if1=1,2,3,...
> (mh)ij = 2.5 M (3.45)
Thus, )
L _ ~ BeD?
em 4+ é(2us +1/D);it = ND — 22— 3.46
> B (2u2 + 1/D)];; 7 5D (3.46)

ij

Finally, the effective partition function is written

N/2 ) ND -
Zy = (5> exp [Nulh + NpsD + Tul(ul —2h/D)| x (3.47)

eoJre ici Mg
X E <3
where N
5 B eD?

1 i -
fe= 5 n[l — (B¢D)?] + (11 — h/D) 1+ 5D

(3.48)

3.6. Variational equation.

Let us address the case, where h = 0. With taking into account notations

D = D/(14 2Dpy) and iy = p variational reduced free energy is written

N 1. D D 1 142
D)= —~-In—= -~ 4-_—22 _ 4
ﬂf 2 eﬁ2
In (1+2[1—(5GD)] /=~ ”?ﬁm)
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Let us find the point of extrema over the p variable

dg ~ BeD?

0=—-2 = —Dyu+pu——""8(X), 3.50
. I u1+5ED (X) (3.50)

where X =1n2— &0 — %% —1In[1 — (BeD)?] and S(z) = = is so called

logical function. Eq.(3.50) has two solutions, u = 0 and
D
1= LS(X) (3.51)
1+ BeD
Because of 0 < S(x) < 1 at any finite value of z, the right side of the last

equation is less than 1. That is why eq.(3.51) has no solution and the unique

solution of the eq.(3.50) is u = 0.

3.7. Entropy: low-temperature limit.

To estimate entropy in the low-temperature area let us estimate value of
D, maximizing variational free energy go(8, D) = g(8,0, D), where ¢(3,0, D)
is defined by eq.(3.49). From the equation 0 = % it follows that
D (BeD)?

==1+ WS(X), (3.52)

where X =1n2 — % — %% — iln[l — (BeD)?]. Let us suppose, feD — 1

(B — 00) as (BeD)? = 1 — r, where r < 1. Thus, eq.(3.52) is written

1 /4
Be(1+7r/2) ~ 1+ (; - 1) [1 - 76&0/2 + O(eP /1) (3.53)

We are focused on the case ¢y < 0. The last equation can be expanded up to

the linear term over r and written as

r1/4Be0/2
BeDr~1————+ O(e”\/r) (3.54)
Thus, in the limit § — oo
~ ! (3.55)
r =~ BCD .



In the low-temperature area

_ 1 1 BGD 560
1 D)+ ——+- —In2+ :
90(B, D) =~ —1In(BeD) + Bh 1 2 5 (3.56)
and entropy s = —go + B in the limit  — oo is estimated as
1
S0~ In(BeD) (3.57)

3.8. Effective partition function: bimodal disorder.

Let us obtain effective partition function with constraints defined by equations

N

a{h} = S [ = (24— 1) (3.59

an{h) = 1 3l — (20— 1))~ 4g(1 — )],

1=1

where the corresponding distribution function is given by

P(hi) = q6(hi —1) + (1 = q)6(h;i + 1) (3.59)

The effective partition function Zy = e~ Nma{ht=Nuzaz{h} 7\ ({h}) is transformed

as

N@g=1n ZHP e i Zn ({h)), (3.60)

{h} j=1

where = 1 — 2(2q — 1)po. Let us calculate separately

ZHP e i Zn({h}) = (3.61)

{h} j=1

_ Z/A —Beo iy i Z H P(hj)e —Hh; H (1 + mp Vi),

(h} j=1 k<l

where Vi = e #™M — 1 Thus,

ZHP Y Zn({h}) =" e ﬂfomewZHp hy)e i x (3.62)

{h} j=1 {h} j=1
e S v+ 5wt Vi + 3 50 3 o Vitiglio + |
k<l k<l p<q k<l p<q t<n
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Summation in the last equation is taken over p non-repeating pairs of nucleotides
ta < Ja, Where p=1,2,3,.... At the same time each of pairs differs from other
pairs at least by one nucleotide. Thus, each sum of p pairs of nucleotides can be
divided by two parts. The first one, containing no common nucleotides and the
second one, containing at least one common nucleotide. Let us address the sum
over p non-repeating base pairs containing at least one common nucleotide, e.g.

J

Z Z Z Z mllh msz mle mlpjp‘/lljl Vl:kJ'.'Vle'."/ipjp — (363)

’L1<]1 n Zp<jp
= g g g g Mgy MGy Oty gy W 5 Vi Vi g Vg Vg
11<J1 ip<Jp

because of m;, ymyj, # 0 only if 4, = j;. At the same time §;,j, in eq.(3.63) is
always equal to zero because of each pair in the sum (3.63) differs from other

pairs at least by one nucleotide and consequently ;. # 7;. Thus,

E : E :miljl"'mipjp‘/iljl""/;pjp - : : E : mll]l mlp]p 111" ‘/;pjp (364)
W<ji ip<jp (1<ji)  (ip<lp)

is taken over p non-repeated pairs of nucleotides without any common nucleotide.

Thus, we can average factors Vj j,,..., Vj ; in the eq.(3.62) independently and

ZHP e MV Vi = (3.65)

{h} j=1

N-—2p p
_ ( Z P(h)euh) ( Z P h/ 6 u(h+h)[ *ﬂdlh’ o 1]) _
h==+1 h,h/'=
p
= QN2p< — e e + (1 — q)e™] + 2¢(1 — Q)6ﬂ€> = Qv

where

Q) = ge™ + (1 — g)e” (3.66)
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Finally obtaining from the eqs.(3.60,3.62 and 3.65)
ZN _ eN(Qq—l)MQN Z/A 6_5(60—1—5) Zi<j mij’ (367)

where e ¢ =V + 1.

3.9. Probabilities.

Energetically unfavorable contacts are ++ and ——. In assumption of
statistical independence of the h; variables the probability to find the unfavorable

pair of nucleotides is
Pungar. = ¢ + (1 —q)* = 1= 2q(1 — q) (3.68)
and the probability to find the favorable one is written
Prav. = 2q(1 — q) (3.69)

Thus, always
Punfav. > Pfav.a (370)

if g # % and Puntav. = Pav. if ¢ = % (see Figure 3.18).

0.8¢

0.6¢

0.4r

0.2f

q 0.6 0.8 1

Fig 3.18. Probabilities of favorable and unfavorable pairs of nucleotides vs. ¢ are given by

dashed and solid lines correspondingly.
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Chapter 4

The secondary structural transitions in
single-stranded RNA. Account of the loop

formation.

4.1. Statement of the problem

In this chapter we develop the model of random ssRNA by taking into
consideration loop formation. As has became common in theory,conformational

€. Thus, entropic impact of

weight ascribed to a loop with length m is m~
such loop will be —clnm. The role of loop factor ¢ is critical in secondary
structural phase transitions, particularly, in thermal-induced phase transitions.
Loop structures such as hairpin loops,internal loops, multi-loops with three or
more emerging loops, which are common for ssRNA are characterized with the
value of ¢ &~ 2.1. However, according to [74], mentioned phase transitions occur
in the specific range of loop exponent 2 < ¢ < 2.479. Our aim is to modify
the model introduced in the previous chapter, and study the dependence of
thermodynamic parameters, such as specific heat and helicity degree, on the
value of loop exponent ¢. We concentrate our attention on the case of bimodal
disorder, since it is relatively simple, but, at the same time, it displays good
description of the phenomena. However, as a rule, a sequence of a ssRNA is
not completely random, usually it is optimized for distinct native structure.
Nevertheless, to understand the role of such optimization we have to study
thermodynamics of ssRNA with bimodal disorder.

We exploit the partition function of homopolymeric ssRNA in the presence

of loops [74, 102] by combining it with the modified statistical weight @ =

e_ﬁ(€0+€) .
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4.2. The model

For the sake of simplicity we propose to study random ssRNA sequences
composed only of A and U bases. The topological rules that determine allowed
structures are essential for efficient numerical calculation of the free energy of
secondary structures. The main rule is the elimination of so-called pseudoknots
from the set of available secondary structures as in most other works on ssRNA.
Thus, for any two base pairs (i, j) and (k,l) with i < j, k <[, and i < k we
have either 1 < k <l < jori < j < k < [103]. Besides, a valid secondary
structure 1s a list of all base pairs with the constraint that a base can be part
of at most one pair.

Hamiltonian of the model reads

m, {hi}) = mijei, (4.1)

i<j
where the interaction constants €;; = €y + €eh;h;, sum is taken over all non-
repeated base pairs, m;; = 1 if the bases ¢ and j are paired and m;; = 0
otherwise. Variables {h;} describe the type of nucleotide and h; = £1, where
h; = +1 corresponds to A, and h; = —1 to U. The partition function for the

ssRNA chain of N nucleotides is written as

v({hi}) = Z exp[—BH (11, {hi})], (4.2)

where 3 = = and the sum is taken over all realizations without pseudoknots
of the matrix m, which contains no more than one unity on each row or column.
The latter condition describes the saturation of base pairing. The {h;} sequence

is supposed to be randomly generated with the distribution function

P{h} = Hp(hi)v (4.3)

where p(h;) = qd(h; — 1)+ (1 —q)d(h; + 1).
The reduced free energy for the given {h;} sequence of nucleotides is

written as f{h;} = —%InZx({h:}). Due to self-averaging, the free energy

88



in the thermodynamic limit N — oo becomes a non-random quantity and

Fih} = f =~ Zu((00), (4.4

where f is the reduced quenched free energy and O means the average over
sequence distribution function (4.3). According to [87], the free energy of the

ssRNA with random quenched sequence of nucleotides satisfies the conditions

f>a9(B8,1) > fa, (4.5)

where f, is the reduced annealed free energy and

1 1
9B, p) = =y 2y = =57 In Zy({hi})e-Nuatib, (4.6)

Here a({h;}) is the appropriate self-averaging sequence-dependent quantity.
Thus, g(5, p) gives the lower bound of the quenched free energy f. According to
[87], the best lower bound of the quenched free energy is given by max, g(3, )
and we can estimate the free energy of the ssRNA molecule with randomly

generated sequence as

f 7 maxg(B, n). (4.7)
The simplest constraint imposed on the quenched variables {h;} is given by
a({h}) = % Zij\il[hi — (2¢ — 1)], which does not fix the types of individual
monomers h;, but just the mean value of the sum ). h,. After some algebra

(see for details SI) the effective partition function Zy, defined in Eq. (4.6) reads
ZN = 6NM(2q_1)QNZR;(EO + (TZ), (48)

where Z% (e + €) is the partition function (4.2) of the homopolymeric ssRNA

with the effective interaction constant €;; = €y + €. Here

(4.9)

W (p, B,€) = e [gPe " + (1 — q)%e*] + 2q(1 — q)e”.
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4.3. Calculation of thermodynamic characteristics of the

model with loops

As it was shown above, the variational reduced free energy g(u, ) =

—% In Zy could be written as

95, 1) = ~n(20 1) ~ WOp) ~ M ZQUuB)  (410)

According to [74, 102]
28~ 2V, (4.11)

where z; is the dominant singularity of grand canonical partition function of
homopolymeric ssRNA, which is defined as the singularity which is nearest to
the origin in the complex z-plane. In particular, our grand partition function
has two singularities: a branching point and a pole. Depending on the value of
statistical weight () we have

=4 @@ (4.12)

Zb, Q > QC
Here (). is critical value of Q):

Licfl(l) B ch(l)
(Lio_1(1) — 2Li (1))

Qe = (4.13)

where the polylogarithm Li.(z) = Y 2, 2"/n® is used. To obtain branching

point z;, we have to solve following system of equations

k(k—1)=QLi.(zrK)

k* = Q (Li.1 (2pKk) — Li. (2k))

(4.14)

Whereas,
2

14 /1+4QLi.(1)
From (4.14) by dividing equations we obtain

Zp (4.15)
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| I Li. (zpk)
Kk Lie1 (zpk) — Li, (zK)

(4.16)

So,
~ Li.y (k) — Lic (2pk)
" Liey (zk) — 2Li, (k)

Here we introduce variable ¢t = z. By substituting & = - in (4.17) we

K (4.17)

arrive to
t _ Lic_1(t)—Lic(t)

% Lie_1(t)—2Li(t)

(4.18)
£~ Q(Lis () - Lic (1)
By modifying (4.18) we obtain
Lic—y (t) — Lic (t) = Q (Lic— (t) — 2Lic (1))* (4.19)
and | |
., Lic.y (t) — 2Li. (t) (4.20)

" Li, (t) — Li, (t)
This transformation allows us to solve (4.14) numerically. First, we derive ¢
from (4.19), and thereafter, by substituting it in (4.20), we obtain z,. Now,
let’s return to calculation of free energy.According to constrained annealing

approach we have to maximize free energy by solving

dg(u, B)

— 4.21
on ! (4.21)

for . Hereupon, we can write free energy as ¢g(8) = ¢g(po, 3), where pyg is

solution of (4.21). The free energy per monomer of the system is estimated as

o =242, (4.22)
The entropy per monomer is written as
s(B) = —g(B) + B%ﬁﬂ) (4.23)
and the specific heat
cv(B) —BQd?ﬂ(f ) (4.24)



To calculate (4.23) and (4.36), we have to consider two cases (4.12). Let’s first

implement derivation of (4.23) for the cases z4 = 2, when Q < Q..

"5 = 5 a(QUu. 9) = ) (%) -2 (ga) ((Zfé) (4.25)

where in accordance with (4.15) and (3.27)

0z, 4Li.(1)
9z ) , (4.26)
0Q (1+ \/1+4QLz'C(1)) V1+4QLi(1)
0Q Pt P (W
o5~ o5 Yt (%) | 20
and
S = e e (L 0P 2eq(L - ). (429

One can substitute (4.26) and (4.27) in (4.25) and obtain the final expression

for derivative of the reduced free energy when @) < Q..

99(8) _ 2Li(1) (—60@ L (LW)) |
op (1 +4QLi(1) + /T + 4@Lic(1)> 22\ op
(4.29)
where
%—V;/ — —ee P (q26_2” + (1 —q)% 2“) + 2eq(1 — q)e’ . (4.30)
Therefore, the expression for entropy (when @ < Q.) can be written as
2
S(3) = 0= 1)~ ) T (4)
2Li.(1) ( e~ feo (aW ))
— —eQQ+— | =5 -
’ (1 +AQLi(1) + /1 + 4QLz'c(1)) T \ 0B
9z

To represent entropy for the case when ) > ()., we have to calculate 90"

Since being unable to do it explicitly, we perform following transformation:

0z, (3)
%)

(4.32)

92



Taking into account (4.19) and (4.20) we obtain

02, tLio(t) (Lie_1(t) — 2Li(t))’

= : 4.33
0Q  Lic-r(t) (Lic(t) — Lic(t))* )
. . (9 Zh
One can combine (4.20), (4.27) and (4.33) in %(f) = zb(lQ) (?TQ) (%) and

obtain

0g(B)  Lic(t) (Lic_1(t) — 2Lic(1))* o0 [ O
96 Lica(t) (Lic1(t) — Lic(t)) ( ( )) . (434)

Hence,

2

s(8) = p(2¢ = 1) = In Q) —In - +/1+4QLi.(1) i

(4.35)

Lio(t) (Lie—1(t) — 2Li (1)) e o (W
L1 (8) Lies(0) — Liclt) (‘“W Q2 <%>>

Explicit analytic expressions for specific heat are more complicated, however,

they could be obtained from general analytic expression
ds
c = —f[— 4.36
W(B) = ~B5 (4.36)
Now let’s refer to another important thermodynamic characteristic,namely,

to helicity degree:
2dlnZ

where N — oco. According to (4.11)
dZd
0=—-20— 4.38
Q' (439

4.4. Results and Discussion

Free energy in dependence on temperature is presented in Figs. 4.1,4.2.
Just as in the Chapter 3, we distinguish two cases, according to the energy of
interaction between similar nucleotides €y + €. There is no qualitative difference
between the temperature behavior of the free energy in the cases of repulsion

and attraction, characterized by €y + € > 0 and ¢y + € < 0 correspondingly.
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Fig 4.1. Dependence of reduced free energy on temperature , where ¢y + € < 0.

Fig 4.2. Dependence of reduced free energy on temperature, where ¢y + ¢ > 0.

As we can see from Figs. 4.3,4.4 thermal behavior of the entropy does not
change qualitatively until ¢y becomes equal to —e. The rapid decrease of the

entropy at low temperatures may lead us to the idea that there is a room for
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structural transitions at that stage, and another phase transition is possible.
In terms of effective attraction and repulsion we may interpret the case when
€+ ¢y = 0 as the situation when similar nucleotides (AA or UU) neither attract
nor repulse each other, meanwhile, different nucleotides are attracted by each

other.

0.60
0.55

0.50

T

0.45

T

0.40

T

T

0.35

0.30

T

0.25 |-

0.20

Fig 4.3. Dependence of entropy on temperature.

To provide thermal dependence of specific heat (Fig. 4.5) we implemented
numeric calculations on the basis of the formula 4.36. The calculations were
performed for different values of ¢y with the increment equal to 0.5. In contrast
to the thermal dependencies of the free energy and the entropy (Figs 4.1 and
4.3), the thermal dependence of specific heat is more sensitive to the change of
€p, the difference between peaks flattens with the decrease of ¢;. Notice that,
two peaks completely vanish when € = —¢j, and, therefore, there is only one
phase transition. For the remaining cases ¢y+¢€ < 0, and, therefore, according to
(3.3), similar nucleotides weakly attract each other. Thus, we obtain non-trivial
result that even if ¢y + € < 0 we observe existence of two phase transitions.

One may notice that the fact of attraction between similar nucleotides is
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Fig 4.4. Dependence of entropy on temperature.

more evidently presented on Fig. 4.6. At low temperature limit helicity degree
is equal to one, i.e., all nucleotides are involved in formation of complementary
pairs. However, in the case when ¢y + ¢ = 0, or, as it was mentioned above,
attraction and repulsion between similar nucleotides is absent, helicity degree
does not reach its maximal value equal to one.

In case of repulsion between similar nucleotides, ¢p+¢ > 0 specific heat also
exhibits two peaks presented in the Fig. 4.7. Thus, we observe two structural
transitions. While the high-temperature peak corresponds to the usual thermal
denaturation presented in the Fig.4.8, the low-temperature one indicates the
existence of cold denaturation. In this case, the helicity degree in the Fig. 4.8
drastically drops down to the values lower than the high-temperature level of
helicity degree.

Comparison of the temperature behavior of thermodynamic characteristics
of random ssRNA elucidate a few common points of the secondary structure
formation. Specific heat exhibits two-peaks behavior both without loops formation

and with loops. Given effect is independent on the type of interaction between
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Fig 4.5. Dependence of specific heat on temperature.
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Fig 4.6. Dependence of helicity degree on temperature.

similar nucleotides. The energy of interaction between similar nucleotides is
equal to €y + €. In the Figs. 4.11,4.12 is presented the temperature dependence

of the specific heat in case of ¢y + ¢ < 0 and ¢y + ¢ > 0, correspondingly. Two-
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Fig 4.7. Dependence of specific heat on temperature.
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Fig 4.8. Dependence of helicity degree on temperature.

peaks behavior observed in both cases. Besides, the temperature of these two
structural transitions remain almost the same with and without loops.

The main difference between specific heat behavior with and without
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loops concerns the heat effect of transitions. The heat of the low-temperature
transition in higher without loops, while the heat of high-temperature transition
is higher with loops. The melting curves (see Figs. 4.9,4.10) are qualitatively

the same with and without loops and fit well in the low-temperature region.

1.00
—— Model with loops (¢c=2.3)
- - = Model without loops
095 |
€, = -1.5
0.90 |+ e=1
q=0.75
o 085
0.80 |
0.75
0.70 . L . L . L . |
0.0 0.5 1.0 1.5 2.0

Fig 4.9. Dependence of helicity degree on temperature.

To interpret this result, let’s take into account the fact that with decline of
temperature amount of loops also decreases. Therefore, difference between the
melting curves of models with and without loops vanishes. In case of repulsion
between similar nucleotides, characterized by €y + € > 0, the high-temperature
denaturation results to lower values of helicity degree with taking into account
loops formation. At the same time, low-temperature maximum of specific heat
evidences the existence of cold denaturation, which leads to small values of
helicity degree at low temperatures. This results in increase of impact of loops
in specific heat behavior in the case of repulsion between similar nucleotides.
In case of attraction between similar nucleotides, ¢y + ¢ < 0, the difference
of high-temperature helicity degree with and without loops is not pronounced

so well. Furthermore,the gap between specific heat with and without loops in
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Fig 4.10. Dependence of helicity degree on temperature.

the high-temperature region is almost the same in both cases of attraction and

repulsion.
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Fig 4.11. Dependence of specific heat degree on temperature.

Thus, the effect of long loops entropy on the phase behavior of single -
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stranded RNA is not so important. Given scenario is substantially differs from
those for double - stranded DNA, where the loop entropy factor ¢ changes
drastically phase behavior of the system. While in the homogeneous ssRNA
phase transition exists only for the values 2 < ¢ < ¢* &~ 2.479, homogeneous
dsDNA exhibits much more rich phase behavior. Homogeneous dsDNA exhibits
phase transition of the second order if 1 < ¢ < 2, and of the first order one, if

2 < c. ssRNA exhibits much more smooth transition of the fourth order.

0.22

Model with loops (c=2.3)

0.20 L \‘ - - = Model without loops

0.18 |-

0.16 |-

012 -

T

0.10

0.08 |-

0.06

Fig 4.12. Dependence of specific heat degree on temperature.

In the frameworks of the proposed approach, the variational free energy is
written in terms of the free energy of the homogeneous RNA with the effective
parameters of interaction (see Eqn.(4.10)). Thus, the sequence disorder has no

effect on the (fourth) order of the phase transition in ssRNA.
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Conclusions

. The impossibility of knot formation in melted regions of DNA and excluded
volume interactions significantly affect the entropy of loop formation and

give a value of loop factor ¢ = 1.

. A phase transition of infinite order takes place for the loop factor value
¢ = 1 during denaturation of DNA double helix. The phase transition
occurs almost in the end of the melting where helicity degree has small

values. Above the phase transition temperature helicity degree is zero.

. Near the critical temperature, the correlation length diverges, as it occurs
during the phase transition of second order, whereas the amplitude of
fluctuations tends to zero. Thus small but extended fluctuations should

take place for the chains with finite length.

. Single-stranded RNA with random bimodal nucleotide sequence shows
two peaks in the temperature dependence of the specific heat of the
system both for the attraction and repulsion between the same nucleotides
and also for various percentages of the two types of nucleotides. Such

behavior indicates the presence of two structural transitions.

. For the case of repulsion between the nucleotides of the same type, low-
temperature peak of specific heat corresponds to the cold melting of
RNA when the helicity degree decreases significantly with decreasing
temperature. This effect is caused by a large number of thermodynamically

unfavorable contacts for a sequence consisting of two types of nucleotides.

. The account of the entropy of long loop formation does not qualitatively
affect the behavior of the specific heat and the helicity degree of single-
stranded RNA with a bimodal sequence. The presence of two peaks and

cold melting is observed at the same values of the interaction parameters
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as without the account of loop entropy.

. The sequence heterogeneity does not affect the existence of a phase transition
of the forth order, which takes place when 2 < ¢ < ¢* in a homogeneous
single-stranded RNA. When ¢ < 2 in a single-stranded RNA phase transition

does not occur both in homo- and heterogeneous sequences.
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