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Introdu
tionRelevan
e of the work. One of the main problems in the physi
s ofma
romole
ules is determination of the physi
al laws de�ning the stru
tureand biologi
al fun
tion of the single-and double-stranded nu
lei
 a
ids. It iswell known that the biologi
al fun
tion of biopolymers is determined by theirspatial stru
ture. In this regard, it is important to determine the main fa
torsand patterns a�e
ting 
onformations and 
onformational transitions. One ofthese fa
tors is the formation of the se
ondary stru
ture of nu
lei
 a
ids andthe o

urren
e of long loops in the areas free from Watson-Cri
k base pairformations. In addition, there remain a number of open questions related tothe e�e
t of a heterogeneous sequen
e of nu
leotides on the stru
ture and
onformational transitions in nu
lei
 a
ids. The study of these questions is alsointeresting in terms of bioinformati
s. The algorithms for the 
al
ulation of thethermodynami
 parameters and optimal predi
tion of the se
ondary stru
tureof single-stranded RNA are now widely used in biologi
al resear
h. Propera

ount of loop entropy and sequen
e heterogeneity will signi�
antly improvethe existing algorithms and promote the development of new approa
hes to theproblem. In light of the above, the relevan
e of this work is determined by thedevelopment of new approa
hes to the study of 
onformational entropy of loopsand e�e
ts of the nu
leotide sequen
e.The obje
tives are:1. 
onstru
tion of the theory of melting of double-stranded DNA, whi
htakes into a

ount the topologi
al restri
tions imposed on long loops2. investigation of the ex
luded volume e�e
ts in the formation of long loopsin the double-stranded DNA3. study of the e�e
t of long loops on the phase behavior of the double�stranded DNA4. 
onstru
tion of analyti
al theory des
ribing the thermodynami
 properties4



of single-stranded RNA with a random sequen
e of nu
leotides5. 
omparative analysis of the phase behavior of ssRNA with and withouta

ount of entropy of long loop formation6. 
al
ulation of the thermodynami
 
hara
teristi
s of the ssRNAThe s
ienti�
 novelty 
onsists in 
onstru
ting a model of melting ofthe DNA double helix, without resorting to any prior assumptions about theentropy of long loop formation. Analyti
al dependen
e of the loop statisti
alweight is 
al
ulated based on the proposed theory, and not 
hosen from physi
al
onsiderations. Temperature dependen
e of su
h 
hara
teristi
s of the helix-
oiltransition as the free energy, heli
ity degree, 
orrelation length and 
orrelationfun
tion was obtained. For the �rst time in melting of double-stranded DNAthe existen
e of an in�nite order phase transition was shown. The 
omparisonwith the results obtained in the framework of the Polanda and S
heraga wasperformed. An analyti
al theory based on the method of annealing with 
onstraintsdes
ribing the se
ondary stru
ture formation of single-stranded RNA was obtained.The 
omparison with the numeri
al results shows reasonable quantitative agreement.The temperature dependen
e of the 
hara
teristi
s of single-stranded RNAdenaturation as the free energy, heli
ity, entropy and heat 
apa
ity was obtained.For the �rst time the presen
e of two stru
tural transitions for a randomsequen
e of nu
leotides of two types was shown. Possible 
onne
tion between thelow-temperature stru
tural transition and 
old denaturation of ssRNA, whi
his observed experimentally, was demonstrated.The main provisions to be defended1. Impossibility of knot formation in melted DNA and the a

ount of ex
ludedvolume e�e
ts impa
t on the loop entropy and, in this way, result in avalue of loop fa
tor c = 1.2. For the loop fa
tor value c = 1 in�nite order phase transition takes pla
eduring denaturation of DNA double helix. Near the 
riti
al temperaturethe 
orrelation length diverges, as it happens during the phase transition5



of the se
ond order, whereas amplitude of the �u
tuations tends to zero.Thus there are small but extended �u
tuations.3. Above the transition temperature the heli
ity degree is zero, whi
h di�erssigni�
antly from the behavior of the system at usual helix-
oil transition.Single-stranded RNA with random nu
leotide sequen
e shows two peaksin the temperature dependen
e of the spe
i�
 heat of the system fora 
ertain 
hoi
e of intera
tion parameters. Su
h behavior indi
ates thepresen
e of two stru
tural transitions.4. Low-temperature peak of the spe
i�
 heat 
orresponds to the 
old meltingof RNA, when the heli
ity degree de
reases signi�
antly with temperaturede
rease. This e�e
t is due to a large number of thermodynami
allyunfavorable 
onta
ts for sequen
e 
onsisting of two types of nu
leotides.5. The a

ount of long loops entropy qualitatively does not a�e
t the behaviorof ssRNA. The presen
e of two peaks and 
old melting is observed at thesame values of the intera
tion parameters as without a

ount of loopentropy.The s
ienti�
 and pra
ti
al value of the work is due to a signi�
an
eof the role that thermodynami
 e�e
ts play in the fun
tioning of biologi
alma
romole
ules and their 
omplexes. In this regard, the theoreti
al study of the
onformational entropy of large loops, e�e
ts of intera
tions between di�erenttypes of nu
leotides, and other 
hara
teristi
s of biologi
al ma
romole
ules isimportant for the interpretation of experimental results and their predi
tions.At the same time, understanding the basi
 prin
iples underlying the organizationand 
onformational 
hanges in biologi
al ma
romole
ules is of great pra
ti
alimportan
e for solving problems in biology and its medi
al appli
ations. Furthermore,the obtained results, 
ertainly, enable the improvement of the existing bioinformati
salgorithms used to 
al
ulate the stability of the se
ondary stru
ture of RNA.Approbation of the work. Materials of the thesis were presented at
• Taiwan International Workshop on Biologi
al Physi
s and Complex Systems,6



Taipei, Taiwan, July 21-26, 2011.
• Winter S
hool on Cal
ulus of Variations in Physi
s and Materials S
ien
eat Department of Mathemati
s, University of Wurzburg, Wurzburg, Germany,January 8-13, 2012.
• II Gefenol Summer S
hool on Statisti
al Physi
s of Complex and SmallSystems, Centro de Cien
ias de Benasque Pedro Pas
ual, Spain, September3-14, 2012.
• International Young S
ientists Conferen
e �Perspe
tives for Developmentof Mole
ular and Cellular Biology�3�, The Institute of Mole
ular BiologyNAS RA, Yerevan, Armenia, September 26-29, 2012.Publi
ations. On the topi
 of the thesis 8 papers are published.Stru
ture of the thesis. The thesis 
onsists of an introdu
tion, four
hapters and 
on
lusions (114 pages of text). It 
ontains 59 �gures and bibliography
onsisting of 103 items. The obje
tives of the work, the s
ienti�
 novelty andpra
ti
al value of the results and the main provisions to be defended are statedin the introdu
tion. The �rst 
hapter is devoted to the review of stru
ture,thermodynami
s and biologi
al fun
tions of nu
lei
 a
ids. The main propertiesof 
lassi
al models of DNA are represented. Also, the literature review 
ontainsa des
ription of the basi
 models of RNA se
ondary stru
ture and dynami
algorithms for the 
al
ulation of its thermodynami
 parameters. At the end ofthe �rst 
hapter the statement of the problem addressed in the se
ond 
hapter isformulated. The se
ond 
hapter is devoted to the DNA model whi
h takes intoa

ount the entropy of long loops formation. In the framework of this modelthe main thermodynami
 parameters of the system are 
al
ulated. The third
hapter is devoted to the thermodynami
s of the se
ondary stru
ture of ssRNAwith random heterogeneous sequen
e. The 
al
ulation of thermodynami
 fun
tionsis based on the 
onstrained annealing approa
h. The fourth 
hapter of the thesisis devoted to the in�uen
e of loop entropy on the thermodynami
 properties ofthe se
ondary stru
ture of ssRNA. The work ends with the 
on
lusions.7



Chapter 1Literature review1.1. The stru
ture and biologi
al fun
tions of nu
lei
a
ids1.1.1. The stru
ture of nu
lei
 a
idsThe nu
lei
 a
ids are linear polymers with monomers 
alled nu
leotides. Anu
leotide 
onsists of a sugar ring, phosphate group and a nitrogenous base. Theba
kbone of the nu
lei
 a
id 
onsists of ribose sugar rings linked by phosphategroup. Ea
h sugar has the one of the four types of nitrogenous bases linked toit as a side group. The 5′ 
arbon of one ribose and the 3′ 
arbon of the nextare linked by phosphate group. So, the dire
tion of 
hain is 5′3′. The two endsare referred to as 5′ and 3′ ends, sin
e one end has an unlinked 5′ 
arbon andone has an unlinked 3′ 
arbon. There are two types of sugar rings: ribose anddeoxyribose. Let's refer to the 
hemi
al di�eren
es between ribonu
lei
 a
id(RNA) and deoxyribonu
lei
 a
id (DNA). The �rst di�eren
e is represented inthe 
hemi
al names of RNA and DNA, sin
e one of the OH groups in ribose isrepla
ed by proton (H) in deoxyribose. The se
ond di�eren
e is that, in 
ontrastto RNA, DNA 
omprises thymine (T) bases instead of ura
il (U) bases. In otherwords, the nitrogenous bases in the RNA are adenine, 
ytosine, guanine andura
il (A, C, G, and U), while DNA 
onsist of adenine, 
ytosine, guanine andthymine (A, C, G, and T). The third di�eren
e is that RNA usually o

urs assingle strands and DNA 
onsists of two strands. As a result, RNA and DNAhave distin
tive varieties of stru
tures. The double heli
al stru
ture of DNAhas two strands that are perfe
tly 
omplementary in sequen
e. In RNA basepairs are formed intra-mole
ularly, leading to a 
omplex arrangement of shortheli
es whi
h are the basis of the se
ondary stru
ture. Some tertiary stru
tures8



of RNA are well-de�ned. Thus, RNA stru
tures are more similar to globularstru
tures of proteins than to double heli
es of DNA. The main role of DNA isto save the geneti
 information. The role of proteins is to serve as bio
hemi
al
atalysts. These roles have been re
ognized for a long time, and it was thoughtthat RNA is an intermediary between proteins and DNA. But now we 
an saythat RNA is 
oming to be seen as an important and diversi�ed mole
ule in itsown right. Let's present the types of RNA.

Fig 1.1. The se
ondary an tertiary stru
tures of transport RNA.1.1.2. Types of RNATransfer RNA (tRNA)The 
ommon number of nu
leotides in tRNA is about 76 [1, 2℄. Its se
ondarystru
ture is 
alled 
lover-leaf and it is very well-de�ned (Fig. 1.1). Every aminoa
id has the own tRNA. The middle three bases of the 
entral loop of tRNA9




ompose the anti
odon. The 
odon in the mRNA and the anti
odon in theappropriate tRNA are the same. The main role of tRNA is to bring the aminoa
id in the ribosome during protein synthesis. The shape of the tertiary stru
tureof the tRNA has the form like letter L. Fig. 1.1 shows the 
lover-leaf se
ondaryand the L-shaped tertiary stru
tures of tRNA.Messenger RNA (mRNA)The mRNA has several thousand nu
leotides. It is the 
opy of the partof one of the strands of DNA and it 
ontains the information about a proteinwhi
h has to be synthesized by ribosome. The 
entral portion of mRNA 
odesthe protein.Ribosomal RNA (rRNA)The protein synthesis takes pla
e in the ribosome. It possesses bindingsites for mRNA and tRNA. It is the main role of the ribosome. Its diameteris about 250 �A. The ribosome is 
omposed of two sub-units. Ea
h of them
onsists of three rRNA and about 56 di�erent proteins [3�5℄. The main goalof ribosome is to perform one of the most important pro
esses in the 
ell �the protein synthesis. It has the sites that 
an bind tRNA and mRNA. Duringthe protein synthesis it moves along the mRNA. Thus we 
an say that tRNAmole
ules have the very important role in the fun
tioning of the ribosome, andas a result, protein synthesis 
annot be implemented without these mole
ules.Ribosomal RNAs of many organisms are sequen
es, and large databases area

essible giving their stru
tural models [6�8℄.1.1.3. The elements of the se
ondary stru
ture of RNAIf there are two 
omplementary parts of the sequen
e in the RNA mole
ule,those parts 
an form heli
al stru
tures. There are possible hydrogen bondsbetween nitrogenous bases C�G and A�U. There may be link between G-U,10



but this pair is less stable. As a rule, heli
es 
onsist of at least two pairs,be
ause isolated pairs usually are unstable. In unbroken heli
es there are notmore than 10 pairs. There are attra
tive sta
king intera
tions between basepairs. They have a great 
ontribution in the stability of the helix. The sta
kingintera
tions are in the approximately parallel planes. To �nd the free energyof the helix usually nearest neighbor model is used. That is to say, there is afree energy term for every two near base pairs. Using di�erent methods we 
anmeasure the energy and entropy 
hanges of helix formation in the experiments,when the sequen
e is short [9℄.In the Fig. 1.2 it is shown several stru
tures that 
an o

ur betweenheli
es in the single-stranded RNA. Hairpin loops 
onne
t the two sides ofa single helix. The loops whi
h 
onne
t two heli
es are 
alled internal. Theloops that 
onne
t three or more heli
es are 
alled multi-bran
hed. Bulge loops,stems and pseudoknots are also 
ommon to single-stranded RNA (Fig. 2). Thepseudoknots will be dis
ussed later. Free energy of some loop stru
tures havebeen measured experimentally, but, as a rule, the helix parameters are knownwith higher a

ura
y than the parameters of loops [10℄. For instan
e, we don'thave any thermodynami
 data about multi-bran
hed loops. So, we suppose thatindependen
e of loop free energy on nu
leotide sequen
e. It hinge on the numberof unpaired bases in the loop. The ex
eptions to this are tetraloops. Tetraloopsare spe
ial sequen
es that 
onsist of four single-stranded bases. Thanks to thesestru
tures the thermodynami
 stability rises at the expense of intera
tionsbetween the unpaired bases in the length-four hairpin loops, where they ofteno

ur. In the algorithm that predi
ts the se
ondary stru
ture we have to appointa free energy for every possible stru
ture. After that we must 
ompare thestabilities of all these stru
tures. Instead of thermodynami
 parameters that arenot dire
tly measured, we 
an take the reasonable estimates. The free energyof the se
ondary stru
ture of all sequen
e will be determined through the freeenergies of di�erent parts of 
hain. 11



Fig 1.2. Some stru
tures that 
an be formed in the single-stranded RNA1.1.4. The tertiary stru
ture of nu
lei
 a
idsThe progress of se
ondary stru
ture determination goes on faster thanfor tertiary stru
ture. Until re
ently we had a little experimental information12



about tertiary stru
ture. In this review we will speak more about se
ondarystru
tures. We will address the information that 
an and 
annot be obtainedfrom se
ondary stru
ture alone. Although our information about tertiary stru
turere
ently rises, we assert that the information about se
ondary stru
ture is veryimportant too. The se
ondary stru
ture is the �gure that shows the list of basepairs that are in the stru
ture. In the valid se
ondary stru
ture base pairs haveto satisfy some limitations. Let us suppose that we have the 
hain 
onsists ofbases that are numbered from 1 to N . Let us assume that the bases i and j are
omplementary. They 
an form a pair, if . In other words, there must be three ormore unpaired bases in the hairpin loop. Let us suppose that there are formedpairs between (i, j) and (k, l) . They 
an be 
ompatible if they 
an be in the
hain simultaneously. For that they must be non-overlapping (i < j < k < l)or one of them must be within other (i < k < l < j). The stru
ture wherethey are interlo
king (i < k < j < l) is 
alled pseudoknot (Fig. 1.3). A lot ofdynami
 programs 
annot 
onsider the existen
e of pseudoknots. In the validse
ondary stru
ture all base pairs must be 
onsistent. The se
ondary stru
tureof given sequen
e shows the information about paired and unpaired bases andit 
annot give us any information about the tertiary stru
ture of the sequen
e.We 
an add to the diagram of se
ondary stru
tures pseudoknots. If we havethe information about tertiary stru
ture, it will be more 
omfortable to 
hangethe se
ondary stru
ture. The parts of the 
hain that are 
lose in the tertiarystru
ture we 
an draw near ea
h other in the se
ondary stru
ture. Thanks tothis, the se
ondary stru
ture of 
hain will 
ontain some information about ittertiary stru
ture. As a rule, the diagrams of se
ondary stru
tures are not drawnthus to 
ontain a lot of information about tertiary stru
tures. Nonetheless, these
ondary stru
ture of RNA 
an give us enough information about its tertiarystru
ture. We 
an gain the information about the domain stru
ture of mole
uleand the mutual positions of the important parts. So, the se
ondary stru
tureof RNA 
ontains mu
h more information about the shape of its mole
ule then13



the appropriate diagram of se
ondary stru
ture of proteins whi
h is a linearpolymer that 
onsists of α heli
es and β sheets.

Fig 1.3. The s
hemati
 image of pseudoknot.The main advantage of se
ondary stru
tures of RNA is that the heli
esare thermodynami
ally very strongly bonded. The hierar
hi
al folding of RNAmeans that �rst forms the stable se
ondary stru
ture [11�13℄. Afterwards thetertiary stru
ture forms sin
e a mole
ule 
an bend around some areas. Theintera
tions in the tertiary stru
tures 
an 
hange only the weak elements ofse
ondary stru
ture. It is so, be
ause their strength is too small to break these
ondary stru
ture. Those intera
tions 
an 
hange the positions of bases in themore unstable helix. Unlike the RNAs, very often se
ondary stru
ture elementsin the proteins are enough unstable on their own. So, it is very di�
ult toseparate their se
ondary and tertiary stru
tures. As a rule, we ignore theexisten
e of pseudoknots when we determine the parameters that des
ribingthe se
ondary stru
ture. There are a lot of reasons for that. One of them isthat the algorithm that allows us to predi
t the stru
ture 
annot a

ount for14



pseudoknots. For example, in the small sub-unit rRNAs the number of non�overlapping and nested heli
es is mu
h more than the number of pseudoknots.So, in this 
ase we 
an obtain the su�
iently a

urate results without in
orporatingthe 
ontribution of pseudoknots. But it is obviously that some types of thepseudoknots frequently o

ur in the RNA and they may have fun
tional role.Now we have a lot of data about the se
ondary and tertiary stru
tures ofpseudoknots [14�17℄. As a result, the new dynami
 programming algorithmsare able to take into a

ount pseudoknots [18℄. The main problem of thesealgorithms is absen
e of information on pseudoknots thermodynami
 that isneeded.1.2. Thermodynami
s of nu
lei
 a
idsIn this se
tion we will dis
uss general me
hanisms of DNA melting andrelating experimental results whi
h are represented in the review [19℄.A

ording to the previous se
tion the deoxyribonu
lei
 a
id (DNA) 
onsistsof two polynu
leotide strands. They are twisted into a double helix as it isshown on Fig. 1.4. Those two strands are perfe
tly 
omplementary. In DNAthere are 2 hydrogen bonds between nitrogenous bases adenine and thymineand 3 hydrogen bonds between 
ytosine and guanine. The diameter of DNA isabout 20�A. The distan
e of two neighboring repeating units is approximately3.4�A. Ea
h twist of DNA 
onsist of ten to twelve repeating units depending onthe form of DNA (A, B, Z). Dividing 360
◦ over the number of nu
leotides inthe twist one will obtain twist angle for one repeating unit.One of the most fundamental thermodynami
 pro
esses taking pla
e inDNA is melting. This pro
ess is also 
alled the helix-
oil transition. The s
hemeof DNA melting is represented on Fig. 1.5. During this pro
ess the hydrogenbonds between nitrogenous bases are being destroyed, and, in the �nal stage,there are two separate DNA 
hains, whi
h 
an be dealt as Gaussian 
oils.The helix-
oil transition is reversible pro
ess. That is to say, the de
rease15



Fig 1.4. The double heli
al stru
ture of DNA.of temperature 
an lead to the renaturation of DNA. But if DNA is 
ompletelymelted, the probability of re
reation of existed heli
al stru
ture tends to zero.This is result of very large in�uen
e of kineti
 fa
tors. Now let's speak aboutexperimental data 
on
erning DNA melting.

Fig 1.5. The s
heme of the helix-
oil transition in DNA.There are a number of methods that allow us to study the helix-
oiltransition in DNA experimentally. One them is based on absorption of visible�UV radiation by DNA solution. The method is based on the stru
tural dependen
eof absorption property of DNA. The absorptions of nu
leotide bases is deferentfor heli
al and 
oil regions [20℄. It is 
aused by the absen
e of sta
king intera
tions16



in 
oil regions in 
ontrast to heli
al. The quantity(D −Dmin)/(Dmax −Dmin),where D is the opti
al density of solution, and the Dmin and Dmax are opti
aldensities of heli
al and 
oil stru
ture 
orrespondingly, relates to the degree ofdenaturation. Fig. 1.6 shows the temperature dependen
e of opti
al densityfor double stranded homopolynu
leotide (melting 
urve). The melting 
urvesfor homopolynu
leotide were studied in [21℄. One 
an 
hara
terize the melting
urve through two parameters: the melting temperature (Tm) and the width ofmelting interval (∆T ). The width of melting interval is determined with theformula
△T = 1/

∣

∣

∣

∣

∂θ

∂T

∣

∣

∣

∣

max

. (1.1)

Fig 1.6. The melting 
urve for homopolynu
leotide [22℄.

Fig 1.7. Temperature dependen
e of melting temperature Tm (◦) and melting interval ∆T(•) of 
alf thymus DNA [23, 24℄. 17



One of the main 
hara
teristi
s of melting 
urve is the GC 
ompositionof DNA. The dependen
e melting temperature on GC 
omposition is shown inFig. 1.8. The G-C 
omposition is de�ned as
x0 = (NG +NC)/(NG +NC +NA +NT ), (1.2)where NA, NT , NC and NG are the numbers of adenine, thymine, 
ytosine andguanine nitrogen bases. It is seen from Fig. 1.8 that the dependen
e of Tm on

xo is linear.

Fig 1.8. Dependen
e of melting temperature on the G-C pairs and the melting temperature[25℄.

Fig 1.9. The relation between per
entage of logarithm of the 
on
entration of sodium inthe solution. Line 1 was obtained for M. textitlysodeikti
us (x0 = 0.72), line 2 � E. 
oli(x0 = 0.5), line 3 � S. saprophyti
us (x0 = 0.33), line 4 � M. my
oides var 
apri (x0 = 0.24).The melting temperature of DNA essentially depends on the solvent 
omposition.The existen
e of double-heli
al stru
ture of DNA is possible in the environment18



with su�
ient 
on
entration of positive ions su
h as sodium and potassiumions. In 
ase of neutral pH one 
an use the empiri
al formula for the meltingtemperature:
Tm = 176− (2, 6− x0)

(

36− 7, 04 · lg
[

Na+
])

, (1.3)where [Na+] is the mole
ular 
on
entration of sodium ions. The dependen
e ofmelting temperature on the sodium ion 
on
entration logarithm is shown in Fig.1.9 [26℄. The Fig. 1.9 was obtained through the formula (1.3) four di�erent DNA.The melting temperature is mu
h lower when pH < 5 or pH > 9. For mentionedDNA the width of melting interval is about 3
◦. For homopolynu
leotide thisparameter is nearly 0, 5

◦. The main part of studying are done in the standard
onditions (pH = 7, [Na+] = 0, 196 M).

Fig 1.10. The dependen
e of the width of melting interval on the 
on
entration of ribonu
leasein the solution [27℄.

Fig 1.11. The melting 
urves for 
ir
ular, 
losed polyoma DNA (1) and for the same DNAwith the broken strand in 7.2 M NaClO4 solution (2).19



The substan
es that 
an bond to DNA, also known as ligands, have veryimportant impa
t on the melting 
urves. For instan
e, su
h substan
es areheavy metal ions (Cu, Fe, et
.). As an example of in�uen
e of organi
 ligand,the dependen
e of ∆T on the 
on
entration of the protein ribonu
lease (D isthe molar 
on
entration of the protein ribonu
lease in the solution, P is themolar 
on
entration of repeated units in DNA) is shown in Fig. 1.10. Normally
D ≪ P . It is important to say that during experiment those ligands areredistributed on DNA. At a given temperature they take thermodynami
allythe most advantageous state. The experiments are performed for linear un
loseddouble stranded DNA. In the 
ase of the 
ir
ular 
losed DNA, then the experimentalresults are deferent. The 
hara
teristi
s of melting 
urve in this 
ase werestudied in [28℄. The melting temperature for su
h DNA is higher by 20◦ 
omparedto the linear un
losed DNA (Fig. 1.11). Melting 
hains remain twisted relativeto ea
h other in the 
ir
ular DNA 
ausing higher melting temperature. As aresult, in this 
ase the entropy of melting 
ondition is lower than for the same
ondition in the linear DNA. In addition, the width of melting interval for the
ir
ular DNA is 2-3 larger times than for the linear DNA.1.3. Dynami
 programming algorithmsThe most stable se
ondary stru
ture of RNA mole
ule is spe
i�ed bythe minimum of the free energy. We 
an obtain su
h stru
tures 
onsideringall possible base pairings and 
al
ulating the free energy for ea
h se
ondarystru
ture [29℄. It is possible for very short sequen
es, sin
e the number ofpossible 
onformations of the mole
ule grows exponentially with the lengthof the RNA mole
ule. However, there exist dynami
 programming algorithmswhi
h allow 
al
ulation of the free energy for mu
h longer sequen
es. Thesealgorithms are based on re
ursive relations, whi
h allow obtaining the thermodynami
quantities for longer sequen
es referring to already obtained ones for shortsequen
es. Now we will dis
uss the programming algorithm for a very simple20



set of energy rules. In the frameworks of this model we will suppose that ea
hbase pair 
ontributes −1 in the energy of whole 
hain and penalties relatedwith loops are negle
ted. So, the stru
ture with the minimal free energy is
hara
terized with the maximum number of base pairs. Therefore, this modelis 
alled �maximum mat
hing model� [30℄. Let us suppose that the energy ofbonding between i and j bases (ǫi,j) is −1 if those bases are 
omplementary andit is ∞, if they are not. Our aim is to �nd the minimal energy of the sub
hainfrom i to j (Ei,j). If the last base j forms a pair with the base k, then thesequen
e will be divided into two subsequen
es: from i to k− 1 and from k+1to j − 1. We will not dis
uss stru
tures 
ontaining pseudoknots. In the otherwords, the bases that are in the di�erent se
tions 
annot form a pair. If j and
k form a pair, the energy will be equal to Ei,k−1+Ek+1,j−1+ ǫi,j. If they do notform a pair, it will be equal to Ei,j−1. So the minimal energy of this sub
hainis

Ei,j = min(Ei,j−1, mini≤k≤j−4(Ei,k−1 + Ek+1,j−1 + ǫi,j)). (1.4)We will assume that Ei,j = 0, if j− i ≤ 4. Thereafter, we will �nd Ei,j+1,Ei,j+2and so on. As a result we 
an obtain the minimal energy E1,N of whole 
hainwith length N . This algorithm estimates the 
ontribution of individual base

Fig 1.12. S
heme of RNA se
ondary stru
ture without loops.21



pairs to the energy of the se
ondary stru
ture of RNA. Suppose we have asequen
e of nu
leotides from B1 to Bn, and it is lo
ated on the 
ir
le (Fig.1.12). Let's assume that Bx and By form a pair. Our goal is to �nd out whether
Bx and By form a pair in the se
ondary stru
ture that we are looking for.The ar
 BxBy divides the 
ir
le into two parts: the upper and lower se
tions.The ex
lusion of pseudoknots means that if two nu
leotides form a pair, thenboth must be either in upper or lower se
tion. Thus, nu
leotides from di�erentse
tions 
annot form a base pair. So, energy of the se
ondary stru
ture will bedetermined by the energies of the upper and lower se
tions and an impa
t ofthe lo
al pair BxBy.If we have real biologi
al sequen
es, it is ne
essary to 
onsider all thepossible intera
tions. At the same time obtaining the re
urren
e relations willbe more 
omplex.Consider the sequen
e, whi
h 
onsists only of nitrogenous bases A and U .In re
eipt of it, we assume that with probability P falls A, and with probability
(1− P ) � U . Lets 
al
ulate its partition fun
tion, where the sum is taken overall possible stru
tures, ex
ept pseudoknots. For that, we distinguish a region
(i, j). Suppose that j + 1 forms pair with k. In this 
ase we will have twosubsequen
es: from i to k − 1 and from k + 1 to j. Without pseudoknots, thepartition fun
tion of any sub
hain of ssRNA mole
ule 
al
ulates re
ursively[31, 32℄ as

Zi,j = Zi,j−1 +

j−1
∑

k=1

Zi,k−1qijZk+1,j−1, (1.5)where Zi,j is the partition fun
tion of the sub
hain between nu
leotides i and j,
qij = exp(−βǫij) being the statisti
al weight of the base pair formation betweennu
leotides i and j.Fig. 1.13 shows se
ondary stru
ture of RNA 
onsisting ofN = 150 nu
leotidesobtained with means of relation 1.5).

22



Fig 1.13. The s
hemati
 pi
ture of the se
ondary stru
ture of RNA for sequen
e that 
onsistof 150 nu
leotides.1.4. The existing theories of se
ondary stru
turaltransitions in DNA.1.4.1. Zimm-Bragg modelThis model [33℄ is the �rst 
onsistent and most studied statisti
al theoryof helix-
oil transitions. It is based on the one-dimensional Ising model. Let us23



suppose that the number of amino a
ids in the 
hain is N . In the frameworksof this model it is assumed that the state of the repeating unit des
ribed by thestate of the oxygen atom in the 
arboxyl group. If that atom forms a hydrogenbond between mole
ules, we will denote that state by number 1. Other stateswill be denoted by number 0. As a result, we will have the sequen
e of ones andzeros for ea
h 
on�guration. The parameter s is determined by the 
hange ofthe free energy when the length of the helix in
reases by one monomer.
s = exp(−∆F

RT
), (1.6)where ∆F = Fh−Fc. If a monomer, whi
h follows three or more free repeatingunits, forms a hydrogen bond, free energy in
reases. The 
ooperativity parameter

σ is asso
iated with the in
rease of free energy:
σ = exp(− Fs

RT
), (1.7)where Fs is the additional free energy. When N ≫ 1 partition fun
tion reads

Z = TrPN , (1.8)where N is number of repeating units, P is the matrix of statisti
al weights. Inthis 
ase
P =





1 σs

1 s



 . (1.9)As a result, the se
ular equation will have the following form
(1− λ) (s− λ) = σs. (1.10)This is simple equation and we 
an obtain exa
t solutions. It is shown [33℄ thatthe helix-
oil transition is in the following interval

1−
√
σ ≪ s≪ 1 +

√
σ. (1.11)Considering that σ ≪ 1, we will have that

∆T = 2
√
σ
KT 2

m

∆H
. (1.12)24



Thus, thermodynami
 analysis of helix-
oil transitions be
omes possible withmeans of Zimm-Bragg model.1.4.2. Loop entropy in Poland-S
heraga modelThis model helps to des
ribe the existen
e of loops in the DNA and it givesus reasonable results [34℄. There are two main intera
tions in DNA: hydrogenbonding and sta
king. The hydrogen bonds are formed between two bases thatare in the di�erent 
hains. The sta
king intera
tions o

ur between neighboringnitrogenous bases. Let suppose that the statisti
al weight of hydrogen bondsis t and the statisti
al weight of sta
king intera
tions is τ . So, if we have theordered sequen
e that 
onsists of j ba
kbone units, the statisti
al weight ofsequen
e will be written as
vj = t(tτ)j ≡ σwj, (1.13)where σ ≡ t and w ≡ tτ . The sequen
e generating fun
tion [35, 36℄ reads
V (x) =

σw

(x− w)
. (1.14)We will take σ = 1. In this 
ase we 
an ignore the inhomogeneities in t and τdepending on the sequen
e. As a result

V (x) =
w

(x− w)
. (1.15)If we take

U (x) =
1

V (x)
, (1.16)it 
an be obtained as

U (x) =
x

w
− 1. (1.17)It is obtained in [37℄ that if the loop 
onsists of N bases, the entropy of thatloop will have the following form

S (N) = R(N lnΩ− [A+
3

2
lnN ]). (1.18)25



The 
onstantA 
annot be exa
tly found. The termRN lnΩ is the 
onformationalentropy of the free 
hain.Let us suppose that the 
hain is pla
ed on the two-dimensional latti
e(square latti
e). If there is a loop in the 
hain, it means that the ends of thatloop must mat
h. As a result the number of moves to the right has to be equalto the number of moves to the left, and the number of moves to the up mustbe equal to the number of moves to the down. So, if the number of bases inthe 
hain is N , the number of moves in the left-right dire
tions is N
2 and itis equal to the number of moves in the up-down dire
tions. So, the number ofloop 
onformations is

Q =
[
(

N
2

)

!]
2

[(N
4
)!]

4 (1.19)If we use Stirling's approximation
n! = e−nnn(2πn)

1
2 , (1.20)we will obtain

Q = N ln 2− [ln
(π

4

)

+ lnN ]. (1.21)For the three-dimensional 
ase (
ubi
 latti
e) we will have that the numbers ofmoves in the ±x, ±y and ±z dire
tions is equal to N
3
, when N is large. As aresult, the number of loop 
onformations reads

Q =

[(

N
3

)

!
]3

[
(

N
6

)

!]
6 . (1.22)Using Stirling's approximation lnn! = nlnn − n, we will get

lnQ = N ln 2 − [ln
(π

6

)
3
2

+
3

2
lnN ]. (1.23)It is obvious that Eqs. (1.18) and (1.23) are similar. So, we 
an write that

lnQ = Na′ − (b′ + clnN ), (1.24)where c = 1 for the square latti
e and c = 3
2 for the 
ubi
 latti
e. As a resultwe 
an say that the entropy of the loop will be obtained through the following26



equation
Sloop (N) = R [Na− (b+ clnN )] (1.25)where c = d/2, if we ignore the ex
luded-volume intera
tions. The quantity dis the dimensionality of the spa
e. The statisti
al weight of a free 
hain is

uN = (ea)N , (1.26)and so,
uN = e

[Sloop(N)]
R = (ea)Ne−bN−c. (1.27)For the nu
lei
 a
ids N = 2 (i+ 1) ≈ 2i. When d = 3, we have

ui = (constant)uii−3/2. (1.28)It is shown in the arti
le [38℄ that if we 
onsider the long-range 
onta
ts anduse the series expansions, we will obtain that the quantity c has the followingvalues
c ∼ 1, 75, (1.29)when dimensionality if the spa
e is equal to three and
c ∼ 1, 46 (1.30)for 2D.The model suggested by Mukamel is Poland-S
heraga type. In the frameworkof this model authors 
onsidered the e�e
ts of ex
luded-volume intera
tions.Although they 
onsidered those intera
tions approximately, obtained resultsallow understanding of dependen
e between the unbinding me
hanism and thenature of the transition.A

ording to this model, the monomers in DNA 
an be found in two states:bounded and unbounded. So, the 
hain is represented as a sequen
e of thesestates. The binding energy is the same for all monomers. The statisti
al weightof a bounded pair is

ω = exp

(

−E0

T

)

, (1.31)27



where E0 < 0 is binding energy and T is the temperature. If a segment ofthe 
hain 
onsists of k bounded units, the statisti
al weight of that sequen
e isgiven by
ωk = exp

(

−kE0

T

)

. (1.32)The statisti
al weight of the unbounded 
hain of length k will be determined bythe 
hange of entropy. For large k it has the form Ask

kc
, where s is non-universal
onstant. The exponent 
 des
ribes properties of a loop. Authors 
onsider 
asewhere A = 1. The grand 
anoni
al partition fun
tion will be determined by

Z =

∞
∑

M=0

G(M)zM =
V0 (z)UL(z)

1− U (z) V (z)
(1.33)where G(M) is the 
anoni
al partition fun
tion of the 
hain with length M , zis the fuga
ity,

U (z) =

∞
∑

k=1

sk

kc
zk, (1.34)

V (z) =
∞
∑

k=1

ωkzk, (1.35)
V0 (z) = 1 + V (z) and UL (z) = 1 + U(z). The quantities V0(z) and UL(z)
an be found for boundaries. The average 
hain length 
an be obtained frompartition fun
tion as

< L >=
∂lnZ

∂ln z
. (1.36)When < L >→ ∞, the order parameter θ will be fun
tion of temperature. Theaverage number of bounded pairs will be determined by

< m >=
∂lnZ

∂lnω
. (1.37)So,

θ = lim
L→∞

< m >

< L >
=
∂ln z∗

∂lnω
, (1.38)where z∗ is the fuga
ity when < L >→ ∞. Using

V (z) =
ωz

(1− ωz)
, (1.39)28



we will obtain that
U (z∗) =

1

(ωz∗)
− 1. (1.40)The nature of transition will be determined through the dependen
e of z∗ on

ω. It is shown in [39, 40℄ that there are 3 
ases:1. when c ≤ 1, there is no phase transition.2. when 1 < c ≤ 2, transition is 
ontinuous.3. when c > 2, we have a �rst order transition.The exponent is c = dν, where d is the dimension of spa
e. If the walks arerandom and ideal, c = d
2 . So, when d ≤ 2, there is no transition, when 2 < d ≤

4, the transition is 
ontinuous and the transition is �rst order, when d ≥ 4.1.4.3. Peyrard-Bishop modelThe transfer integral method was used for the analysis of Peyrard-Bishopmodel [41�45℄. In this model authors used the fa
t that there exists an analogybetween the study of the 
onformational properties through statisti
al physi
sand the di�usivity equation. The DNA denaturation problem was modeled asa parti
le in the Morse potential, whi
h des
ribes the hydrogen bonding. Itwas introdu
ed a pair of variables for every repeating unit. That pair des
ribesthe deviation of 
hain segment in the frameworks of every repeating unit inthe dire
tion, whi
h is parallel to the axis of DNA helix. Certain deviation was
onsidered. If the value of deviation is larger, the hydrogen bonds are destroyed.Also, the harmoni
 pairing, whi
h simulates the sta
king between neighboringrepeating units, was studied.The Hamiltonian of this model will have the following form:
H =

∑

n

p2n
2m

+W (yn, yn−1) + V (yn), (1.41)where pn = mdyn
dt , m is the redu
ed mass of bases. The potential V (yn)des
ribes the intera
tions between two repeating units. In other words, it des
ribes29



the hydrogen bonding. The potential W (yn, yn−1) des
ribes the intera
tionsbetween two repeating units along the DNA mole
ule (sta
king intera
tions).It is 
onvenient to use the Morse potential, be
ause it is standard for des
riptionof the 
hemi
al bonds and it has appropriate form. We have strong repulsion atshort distan
es, the minimum in balan
e and it be
omes �at at large distan
es.Through the Hamiltonian we 
an �nd the dependen
e of average value ofdeviation from equilibrium on value of the 
onstant pairing. The average deviation
hara
terizes the degree of denaturation.1.4.4. The preliminary model of helix-
oil transition indouble-stranded DNAConsider a double-stranded homopolynu
leotide with 
omplementary bindingin the region of helix-
oil transition. This is possible if we 
onsider a real DNAwith an approximation that energies of AT and GC pairs are equal.To addressthe order of the phase transition in double-strand DNA we need to 
onsiderhomopolymeri
 DNA with 
omplementary base pairing. Experimentally, it 
anbe 
reated using the stability inversion approa
h, proposed in [46℄. In presen
eof the appropriate 
on
entrations of alkylammonium 
ompounds, stability of
GC and AT pairs 
an be equalized or even inversed. In 
ase of the same stabilityof the GC and AT pairs double-strand DNA behaves as a homopolynu
leotidewith symmetri
 loops. In other 
ase, we 
onsider the random heteropolymerwhi
h 
onsists of AT 
omplementary base pairs only. One 
hain is the randomsequen
e of A and T nu
leotides and another 
hain is 
omplementary to the�rst one. We 
an say the same for the GC pairs. In this 
ase, the energy ofthe hydrogen bond formation will be the 
onstant along the 
hain. We 
anassume that the inter-
hain hydrogen bonds are formed only between the baseshaving the same number. So all loops are symmetri
. The ma
romole
ule iss
hemati
ally presented in Fig. 2.1. We study the formation of hydrogen bondsbetween 
omplementary repeated units of two 
hains. For simpli
ity, let us30



assume that the �rst repeated units are bound. As it was introdu
ed in [47℄,the Hamiltonian for the ma
romole
ule is
− βH = J

N
∑

i=1

δ
(i)
1 , (1.42)where β = T−1, J = U

T , U is the energy of the hydrogen bond formationin one 
omplementary pair, δ(i)1 takes value 1 if a hydrogen bond of the ith
omplementary pair is formed and 0 if not. Sin
e the �rst pair is bound, δ(i)1is nonzero if two 
hains form a 
losed 
y
le between the �rst and ith repeatedunits. The presen
e of other 
y
les inside the interval [1, i] is possible. A
tually,this model is a Poland-Sheraga (PS) type model [34℄. The partition fun
tionfor Hamiltonian (1.42) is
Λ =

∑

{~γi}
exp (−βH) =

∑

{~γi}

N
∏

i=1

(

1 + vδ
(i)
1

) (1.43)where v = eJ−1. Let ~γi be a set of all possible values 1, 2, ..., Qwhi
h enumerate
onformations of the 
hain. The partition fun
tion 
an by developed as theseries in v. By using the relationship δ
(k)
1 δ

(m)
1 = δ

(k)
1 δ

(m−k)
k+1 we 
an write theterm 
orresponding to vf as

vfδ
(k1)
1 δ

(k2−k1)
k1+1 δ

(k3−k2)
k2+1 . . . δ

(kf−kf−1)
kf−1+1 (1.44)Imposing 
y
li
 
onditions and de�ning mi as ki − ki−1 we obtain

Λ = QN
∑

f

vf
∑

m1

ϕ (m1) . . .
∑

f

ϕ (mf) (1.45)where
ϕ (m) = Q−m

∑

γ1

∑

γ2

. . .
∑

γm

δ
(m)
1 . (1.46)A

ording to (1.46), ϕ(m) is the ratio of a number of states 
orresponding tothe formation of a loop of length m and all states of the 
hain of length m. Sothe fun
tion ϕ(m) may be interpreted as the probability of the loop formation31



of the length m. Using the 
ondition f
∑

i=1

mi = N and multiplying (1.45) byfa
tor δ( f
∑

k=1

mk −N

), we obtain
Λ =

1

2πi

∮
z−N−1

N
∑

f=1

(

v
∞
∑

m=1

ϕ (m) zm

)f

dz (1.47)In [47℄ the fun
tion ϕ(m) was 
hosen approximately as
ϕ(m) =











Q−m, m ≤ ∆

Q−∆, m > ∆
(1.48)Using the saddle-point approa
h, one 
an show that the 
hara
teristi
 equationfor the free energy in the thermodynami
 limit is the same as in the GMPCmodel, whi
h is a Potts like one-dimensional model. This representation of

ϕ(m) is empiri
 and ignores the loop formation with length less than ∆ whi
h
hara
terizes the single-
hain rigidity.In the present study, we generalize the model to the 
ase of loops of anarbitrary length. To this end, the problem of loop formation will be representedin terms of random walks.
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Chapter 2The random walk model of helix-
oil transitionsin double-stranded homopolynu
leotides2.1. Des
ription of the basi
 random walk model (ModelA)The stru
ture of a homopolynu
leotide is 
onsidered as a sequen
e ofalternating heli
al and 
oil regions. Heli
al regions, whi
h are essentially one�dimensional, are stabilized by hydrogen bonds and sta
king intera
tions. Coilregions are apparently d-dimensional, where d is the topologi
al dimensionof the spa
e where the DNA 
hain is embedded. We will fo
us on the three�dimensional 
ase, d = 3.The main 
on
ept of the random walk des
ription is quite simple. We
onsider the mole
ule of DNA as two random 
hains whi
h are initiated from thesame point. As it was mentioned above, the 
omplementary pairs of nitrogenousbases are able to 
reate hydrogen bonds, and ea
h binding 
orresponds tothe interse
tion of two random 
hains. We label the pairs of 
omplementarypolymer units (whi
h 
an be potentially bonded) by integers 1, 2, ..., N , and
onstru
t N planes perpendi
ular to the polymer axis in su
h a way that bothunits of the i-th pair lie on the i-th plane with the 
oordinates xi and yi. Ifthe 
omplementary units are bounded, they are represented by a single point(xi = yi) on the 
orresponding plane. The proje
tion of all N planes onto asingle plane gives the 
olle
tion of points xi, yi, i = 1, 2, ..., N whi
h 
an be
onsidered as the position of 2D random walks at the moments of dis
rete times
i = 1, 2, ..., N (Fig. 2.1). This 
onstru
tion admits arbitrary 
onformations ofpolymer 
hains with a single but important ex
lusion: all planes 1, 2, ..., N are
rossed by polymer 
hains sequentially from the �rst to the last one and any33



return from the i-th to the (i− 1)-th plane is forbidden.In the absen
e of meanders this guarantees the ex
lusion of three-dimensionalknots and additional base pairs inside the loops. Thus, our approa
h [48, 49℄des
ribes three-dimensional loop statisti
s more adequately than the traditionalone [34℄.
1 2 3 .. .. N

Fig 2.1. S
heme of the modelFor the sake of 
onvenien
e, we 
onsider a simple random walk on thequadrati
 latti
e. The 2D simple random walk jumps one latti
e left, right, upor down at ea
h dis
rete time step. Later on we will extend this model to the
ase when a stay at the origin during several stops is allowed.To write the partition fun
tion (1.43) in terms of a random walk, we referto the well-known generating fun
tions [50℄. The generating fun
tion for the�rst return is
F (z) =

∞
∑

m=1

fmz
m, (2.1)where fm is the probability of the �rst return at the m-th step. The generating
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fun
tion for any return is
P (z) =

∞
∑

m=1

pmz
m, (2.2)where pm is the probability of any return at the m-th step. P (z) 
an also berepresented as an integral whi
h, in the 
ase of two-dimensional random walkon the quadrati
 latti
e, is [50℄

P (z) =
1

(2π)2

π∫

−π

π∫

−π

dϕdψ

1− z
2(cosϕ + cosψ)

=
2

π
K(z2), (2.3)where K(z) is the 
omplete ellipti
 integral of the �rst kind. Using the knownrelation between F (z) and P (z)

F (z) = 1− 1

P (z)
, (2.4)we obtain the analyti
al expression for F (z). Taking into a

ount that ϕ(m) =

pm is the return probability on the m-th step and N is the whole number ofsteps, we 
an rewrite (1.47) in terms of the generating fun
tion for P (z) as
Λ =

1

2πi

∮
z−N−1

N
∑

f=1

vf(P (z)− 1)fdz. (2.5)Now let us 
onsider the partition fun
tion in terms of the generatingfun
tion of the �rst return F (z). Ea
h time the parti
le returns to the origin,we add a weight k = e
−U
T to the random walk whi
h is the statisti
al weightof the base pair formation. The probability of the �nal return of the parti
leto the origin after N steps, i.e., the partition fun
tion of the double 
hain with
onne
ted �rst and last monomers reads:

Λ =

∞
∑

j=0

kjF (z)j|zN =
1

2πi

∮

C0

1

1− kF (z)

dz

zN+1
, (2.6)where the 
ontour C0 en
loses the origin in a 
lo
kwise manner. We dis
uss two
ases for the value of hydrogen bond energy U . When U < 0, k > 1 we haveattra
tion of a parti
le at the origin. 35



2.1.1. Cal
ulation of partition fun
tion (k > 1)To estimate the integral Λ in (2.6) for the 
ase k > 1 around a 
ontour
C0 en
losing the origin, we 
onsider another one around C1, 
onsisting of the
ir
ular part with the radius 1 + δ and indentation around bran
h points at
z = ±1 (Fig. 2.2) [51, 52℄. Further, we will 
hoose a positive δ small enoughto use an asymptoti
 expression of (2.4) near the points ±1 on the indentationpart of C1.

1
C

0
C

C
+

C
-

11-

z
+

z
- 0

Fig 2.2. The 
hoi
e of the 
ontour in the 
omplex-z for the 
ase of attra
tive originNoti
e that there are two simple poles z+ and z− inside the 
ontour C1,whi
h 
an be found by solving the equation F (z) = 1
k . To 
ompute the 
ontourintegral, we subtra
t integrals around C+ and C− en
losing the poles z+ and

z− from the integral around C1

Λ =

∮

C0

=

∮

C1

−
∮

C+

−
∮

C−

. (2.7)
36



For the last two integrals we obtain
−

∮

C+

=
1

zN+1
+

1

kF ′(z+)

−
∮

C−

=
1

zN+1
−

1

kF ′(z−)
. (2.8)As the fun
tion F [z] is even on the interval (−1, 1), we get F ′(z+) = −F ′(z−).Using the fa
t that N is even, it 
an be shown that

∮

C+

+

∮

C−

= 2

∮

C+

. (2.9)To estimate ∮
C1

, we noti
e that the integral around the 
ir
ular part of the
ontour is proportional to 1
(1+δ)−N , whi
h is negligible 
ompared to ∮

C+

and ∮
C−for large N as z+ = |z−| < 1. The integral around indentation of the points 1and −1 
an also be ignored be
ause it is bounded in magnitude by a numberindependent of N . We will evaluate the last one more expli
itly in 2.1.2.For the asymptoti
 expression of the integral Λ for large N we get

Λ =
2

zN+1
+ kF ′(z+)

, (2.10)where z+ is the positive pole of integrand in (2.6) de�ned from the trans
endentalequation
F (z) =

1

k
. (2.11)2.1.2. The asymptoti
 analysis of the partition fun
tion (k < 1)In this se
tion, we give asymptoti
 analysis of the integral Λ in (2.6) forthe 
ase k < 1. This 
ase is when U > 0, and it 
orresponds to a repulsiveorigin. In this 
ase we have no poles z+ and z−; therefore, we must estimate thevalue of the integrals ΛMP and ΛM ′P ′ on the indentation parts MP and M ′P ′of the points ±1 of the 
ontour C1 (Fig. 2.3). As the number N is even, wehave ΛM ′P ′ = ΛMP . For the 2D random walks, the generating fun
tion F (z)37



is expressed by the 
omplete ellipti
 integral of the �rst kind K(z) and has anasymptoti
 limit near point 1
F (z) = 1− 1

2
πK (z2)

−−→
z→1

1− 1

− 1
π log(1− z)

. (2.12)Substituting F (z) in the formula for Λ we obtain
Λ =

1

2πi

P∫

M

1

zN+1

dz

1− k
(

1− 1
− 1

π
log(1−z)

) (2.13)Let us divide integration (2.13) into two partsMR and RP , where R is a pointof interse
tion between 
ontour C1 and the real axis. Considering the bran
hesof the logarithmi
 fun
tion on MR and RP separately we get
Λ =

1

2πi

R∫

M

1

zN+1

dz

1− k
(

1− 1
− 1

π
(log(z−1)+iπ)

)+
1

2πi

P∫

R

1

zN+1

dz

1− k
(

1− 1
− 1

π
log(z−1)−iπ

)(2.14)After joining these two integrals and turning to a new variable z′ = z − 1 weobtain
Λ =

δ∫

0

1

(z′ + 1)N+1

k/π dz′
[

k − 1−k
π

log(z′)
]2

+ (1− k)2
. (2.15)For a �xed small δ, formula (2.15) 
an be rewritten as

Λ =
kπ

(1− k)2

δ∫

0

1

(z′ + 1)N+1

dz′

log2(z′)
. (2.16)To pro
eed with the asymptoti
 analysis for large N , we denote by y = Nzand get for the integral part of (2.16)

Λ1 =
1

N

Nδ∫

0

1

( y
N
+ 1)N+1

dy

(log(y)− log(N))2
∼ 1

N log2(N)

Nδ∫

0

e−ydy
(

1− log(y)
log(N)

)2 .(2.17)Further, we divide the integral expression in (2.17) into two parts, integrating38



Fig 2.3. The 
hoi
e of the 
ontour in the 
omplex-z for the 
ase of repulsive originfrom 0 to 1/N and from 1/N to Nδ. For the �rst part, we have
1

N log2(N)

1/N∫

0

e−ydy
(

1− log(y)
log(N)

)2 .
1

N

1/N∫

0

dy

log2(y)
∼ 1

N2 log2(N)
. (2.18)For the se
ond part of integration, we derive

1

N log2(N)

Nδ∫

1/N

e−ydy
(

1− log(y)
log(N)

)2 =
1

N log2(N)
(1 +O(

1

log(N)
)). (2.19)We see that (2.18) is negligible 
ompared to (2.19) and �nally we obtain anasymptoti
 expression of the partition fun
tion

Λ =
kπ

(1− k)2
1

N log2(N)
(2.20)and the average energy vanishes in the limit N → ∞.

39



For the average energy per step and heli
ity we obtain
E = −(1 + k) log k

(1− k)

1

N

θ =
1 + k

1− k

1

N
(2.21)whi
h tend to 0 when N goes to in�nity.2.2. The thermodynami
 
hara
teristi
s of the Model AThe internal energy per step, in units T , is given by

E = −k log k
N

∂ log Λ

∂k
= − k log k

2πiNΛ

∮
F (z)

(1− kF (z))2
dz

zN+1
(2.22)The 
al
ulations similar to those for derivation of (2.10) from (2.6) lead in thelimit of large N to:

E = − log k

kz+F ′(z+)
. (2.23)The heli
ity degree θ is de�ned as an average fra
tion of hydrogen bondsin the biopolymer, i.e. is the ratio of the average and maximal numbers of thehydrogen bonds. For the simple random walk model, the maximal number ofreturns to the origin and, therefore, the maximal number of bonds is N

2
. Using(2.23) we 
an write the heli
ity degree as

θ =
2

kz+F ′(z+)
. (2.24)The thermal dependen
e of the heli
ity degree is shown in Fig. 2.4. Theslow de
ay of θ demonstrates the gradual helix-
oil transition.2.3. Modi�ed model with a

ount of entropy of base pairformation (Model B)Ea
h nu
leotide is a group of atoms des
ribed by internal degrees of freedom,the dihedral angles. The base pair formation gains the energy but results in the40



Fig 2.4. Heli
ity degree (θ) of the Model A in dependen
e on temperature (T )
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Fig 2.5. Correlation fun
tion of Model Aentropy loss. To address the issue of the internal stru
ture of nu
leotides, wemodify the statisti
al weight of single base pair, so that, it isw = exp(−∆U−T∆S
T

),where ∆U is the energy and ∆S is the entropy of the base pair formation.41
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Fig 2.6. Free energy of Model AEa
h nu
leotide is a group of atoms having internal degrees of freedom, thedihedral angles. The base pair formation gains the energy ∆U < 0, but resultsin the entropy loss ∆S < 0, be
ause the formation of ea
h base pair requiresappropriate relative orientation of the nitrogen bases. Thus, ea
h time theparti
le returns to the origin, we add the statisti
al weight w.The �nal return of a parti
le to the origin after N steps 
orresponds tothe partition fun
tion of the double 
hain with the 
onne
ted �rst and lastmonomers:
ΛN =

∞
∑

j=0

wjF (z)j|zN =
1

2πi

∮

C0

1

1− wF (z)

dz

zN+1
, (2.25)where the 
ontour C0 en
loses the origin in a 
lo
kwise manner.The temperature behavior of the system is en
oded in the singularities ofthe integrand of the partition fun
tion (2.25). Noti
e that there are two simplepoles z+ and z− inside the 
ontour C1 (Fig. 2.7) whi
h 
an be found by solvingthe trans
endent equation:

F (z) =
1

w
. (2.26)42



Fig 2.7. The 
hoi
e of the 
ontour in the 
omplex-z for the 
ase of attra
tive originThe 
riti
al temperature Tc exists, whi
h is de�ned by the equation
wc = 1. (2.27)We have to 
onsider two 
ases. The 
ase w > 1 (T < Tc) 
orresponds tothe attra
tion of the walk to the origin. The opposite 
ase w < 1 (T > Tc)
orresponds to the repulsive origin, and we have no poles z+ and z− inside the
ontour C1. To estimate the integral ΛN in (2.25) for the 
ase w > 1 around the
ontour C0 en
losing the origin, we 
onsider another one around C1, 
onsistingof the 
ir
ular part with the radius 1+ ε and an indentation around the bran
hpoints at z = ±1 (Fig. 2.7) [51, 52℄. Further, we will 
hoose a positive ε smallenough to use an asymptoti
 expression of (2.3) and (2.4) near the points ±1on the indentation part of C1.As number N is even, we have

∮

C+

+

∮

C−

= 2

∮

C+

=
2

zN+1
+ wF ′(z+)

. (2.28)The 
ontribution of the integral on the indentation parts MRP and M ′R′P ′43



of the 
ontour C1 (Fig. 2.7) is δΛN . For large N we get
δΛN ≃ w

(1− w)2
π

N log2(N)
. (2.29)The 
ontribution from the rest of the 
ontour C1 is proportional to (1 + ε)−N ,whi
h is negligible 
ompared to both values of (2.28) and (2.29). Then, for largebut �nite N (T < Tc) we obtain

ΛN =
2

zN+1
+ wF ′(z+)

+
w

(1− w)2
π

N log2(N)
. (2.30)In the 
ase w < 1 (T > Tc), ΛN vanishes as δΛN for large N .To estimate the value of the parameter c, responsible for the order oftransition, we address the probability fm of the �rst return at the m-th step.Asymptoti
s of fm 
an be derived from the probability of the �rst return to theorigin after time t: Prob(t > m) ∼ π/ logm [53℄. Di�erentiating, we obtain:

fm ∼ π

m log2(m)
. (2.31)Of 
ourse, one 
an get the same result using the method similar to thederivation of (2.29) where the 
ontour integration is applied to the fun
tion

F (z) [54℄. Thus, the long loops asymptoti
s of the proposed model 
orrespondsto c = 1 in the expression δS(m) = −c logm mentioned in Introdu
tion.2.4. The thermodynami
 
hara
teristi
s of the model BA

ording to the formulation of the model, Eq. (2.25) 
an be interpretedas a partition fun
tion of the 
hain starting from the �rst and ending by the
L-th base pair. In the limit N → ∞ below the 
riti
al temperature Tc, we getfrom Eq. (2.30)

Λ1,L =
2

zN+1
+ wF ′(z+)

, (2.32)where L = N
2
is the total number of base pairs in the 
hain. For T < Tc, thedensity of the free energy F in the thermodynami
 limit is:

F = T log z+. (2.33)44
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Fig 2.8. Free energy of Model BTo des
ribe the 
riti
al behavior of F near Tc, one should noti
e that thepole z+ tends to 1 when T → Tc−0. Solving Eq. (2.26) by using the asymptoti
expression of P (z) and F (z) near point 1, we �nd
z+ → 1− e−

πw
w−1 , (2.34)where w = exp(−∆U−T∆S

T
). Then, using Eqs. (2.33) and (2.55), we obtain theasymptoti
s of the free energy density in the 
ase of T → Tc − 0:

F ≃ Tc exp

(

− T 2
c

|∆U |(Tc − T )

)

. (2.35)The main observable quantity of the melting DNA is the heli
ity degree θde�ned as an average fra
tion of the base pairs Nbp in the biopolymer,
θ =

1

L
〈Nbp〉 =

w

L

∂ log Λ1,L

∂w
(2.36)or the degree of denaturation, η = 1−θ, whi
h is de�ned as an average fra
tionof the non-bounded base pairs. Using (2.32) we 
an write the heli
ity degreefor T < Tc as

θ =
2

wz+F ′(z+)
. (2.37)45



The heli
ity degree and the density of free energy 
ompletely vanish abovethe 
riti
al temperature Tc in the limit L→ ∞.
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Fig 2.9. Heli
ity degree of Model B

Fig 2.10. Dependen
e of the degree of denaturation, η = 1− θ on the temperature.The thermal dependen
e of the heli
ity degree is shown in Fig. 2.10. We
on
lude that the model des
ribes the 
omplete denaturation transition at the46



�nite temperature Tc.To address the �u
tuations of the base pair formation, we de�ne thepairwise 
orrelation fun
tion as
g(i, j) = P (i, j)− P (i)P (j), (2.38)where P (i, j) is the probability of the i-th and j-th base pair formation:

P (i, j) =
Λ1,iΛi,jΛj,L

Λ1,L
, (2.39)and P (i) is the probability of the i-th base pair formation:

P (i) =
Λ1,iΛi,L

Λ1,L
. (2.40)By substituting (3.31) and (2.40) in (2.38), the 
orrelation fun
tion 
an beexpressed as

g(i, j) =
Λ1,iΛi,jΛj,L

Λ1,L
− Λ1,iΛi,L

Λ1,L

Λ1,jΛj,L

Λ1,L
. (2.41)In the 
ase of the long DNA, the points i and j are far away from the endsof the 
hain, but the distan
e |i− j| is �nite. Thus, we need an expression forthe ΛL for large, but �nite L (T < Tc). Taking into a

ount Eq. (2.30) andEqs. (2.37, 2.41), we obtain the 
orrelation fun
tion for T < Tc in the form

g(r) ≃ θw

(1− w)2

exp(−r
ξ )

r log2(r)
, (2.42)where r = |i− j|, and the 
orrelation length is

ξ = − 1

log z+
. (2.43)The asymptoti
s of the 
orrelation length ξ at temperatures T → Tc − 0follows from Eqs. (2.55) and (2.34)

ξ ≃ exp

(

T 2
c

|∆U |(Tc − T )

)

. (2.44)
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Fig 2.11. Correlation fun
tionof Model B2.5. Results and dis
ussion of Model BThe main idea of the proposed approa
h is the mapping of two intera
tingthree-dimensional polymer strands onto the single two-dimensional randomwalk intera
ting with the origin [55℄.The 
ompletely denatured state (θ = 0) with unbounded two DNA strandsappears at the �nite temperature T = Tc (see Fig. 2.10). To understand thephase behavior of the model, the asymptoti
s of the density of the free energy Fnear the transition point Tc has been found. The results are given by Eq. (2.35).This kind of temperature behavior 
an be identi�ed with the in�nite orderphase transition. That is new for DNA, but 
onsidered formerly, for instan
ein [56�59℄.At T → Tc−0 the tenden
y to 0 of the order parameter θ 
an be expressedin terms of the 
orrelation length ξ (2.44):
θ ≃ T 2

c

ξ(Tc − T )2
. (2.45)In the vi
inity of Tc, the 
orrelation length diverges at T → Tc − 0. If in the48




ase of the se
ond order phase transition the length of 
orrelations diverges bythe power-law ∼ |Tc−T |−x, then in our 
ase it diverges qualitatively di�erentlyas ∼ exp( constTc−T ) (see Eq. (2.44)). At the same time, the free energy (2.35) is
ontinuous over the temperature, and the phase transition 
an be interpretedas an in�nite order.When ξ → ∞ (T → Tc − 0) the 
orrelation fun
tion g(r) de
ays as thepower-law
g(r) ∼ 1

r log2(r)
. (2.46)The pre-fa
tor of the 
orrelation fun
tion g(r) in Eq. (2.42) behaves as∼ θw

(1−w)2 .Sin
e the heli
ity degree θ tends to zero as ∼ exp( constTc−T ) (see Eq. (2.45)), thevalue of 
orrelation as a fun
tion of temperature vanishes in the same way.Thus, we have unusual thermal behavior at T → Tc − 0, where the 
orrelationlength diverges as an exponent but at the same time the value of 
orrelationtends to zero.The phase transition of the in�nite order was obtained before, e.g., in [56,57℄ for the one-dimensional 
lassi
al spin model with long-range intera
tions andthe singled out intera
tion 
enter on the latti
e. A similar result was presentedin [59℄, where the Ising model on the growing network was addressed. There, theorder parameter de
ays as ∼ exp(− 1√
Tc−T

), whi
h is qualitatively similar to ourresults in (2.45). That and existen
e of long-range intera
tions in the system arethe 
ommon point with our model for the denaturated loops arbitrary lengths.The phase transition of the in�nite order 
onsidered in this work takes pla
ein the 
ase of c = 1 at the end of melting, where θ = 0. The given s
enario is inagreement with the experimental data obtained in [60℄. The sharp kink of themelting 
urve was interpreted in [60℄ as a phase transition of the se
ond order.However, the number of experimental points is not enough to de�ne the orderof transition without �u
tuational analysis. At the same time, the 
omparisonof the melting 
urves presented in Fig. 2.10 and in Fig. 1 of Ref.[60℄ showsvery 
lose similarity. Thus, the phase transition obtained in [60℄ experimentally49




ould be of the in�nite order but not the se
ond order.The order of phase transition in the double-stranded DNA is sensitive tothe way of taking into a

ount the loop entropy δS(m) = −c lnm, where m isthe length of the loop. In our approa
h, no assumptions about the value of chas been made. Considering denaturated loops expli
itly in some approximationjusti�ed above we obtain c = 1. In 
ontrast to the results derived in [40, 61, 62℄we got the 
ontinuous phase transition of the in�nite order. The various phasebehavior is explained by the di�erent 
onsideration of the denaturated loops.2.6. Random walks with stops at the origin (Model C)In this se
tion, we 
onsider another kind of a random walk whi
h admitsa more detailed des
ription of the intera
tion between polymer 
hains [63, 64℄.One of the key-points of the double-stranded DNA denaturation is the so�
alled �loop fa
tor� des
ribing the entropy of the one-loop formation, ∆S(m) =

−c lnm, wherem is the length of the loop. The phase behavior, e.g., the order ofthe phase transition depends on the value of the c fa
tor [34, 40, 61, 62, 65℄. Thisfa
tor was 
onsidered in many semi-empiri
al mean �eld theories [62, 66, 67℄ as amodi�
ation of Sto
kmayer's theory for su�
iently long 
hains. In e.g. [40℄, theex
luded-volume intera
tions within denatured loops were taken into a

ountand, on the basis of the Poland and S
heraga model [34℄ phase transitions ofdi�erent order were shown to arise depending on the value of a loop exponent.However, in spite of extensive resear
h the real-life phase behavior of the double�strand DNA still remains un
lear. For instan
e, in [40℄ and referen
es thereina phase transition of the �rst order was reported. At the same time, in [60℄eviden
e is provided for se
ond order phase transition at the end of the double�strand DNA melting. Su
h diversity of experimental results is mainly 
ausedby di�erent experimental 
onditions. Conformational statisti
s of the long loopsand parameter c are highly sensitive to the 
ounter-ion 
on
entration, pH et
.The problem whi
h still remains unsolved is the relationship between very50



diverse experimental 
onditions of and the value of the c fa
tor.As well as in the previous se
tions, the main idea of the proposed approa
his the mapping of two intera
ting three-dimensional polymer 
hains to a singletwo-dimensional random walk intera
ting with the origin.Our approa
h has a number of advantages. First of all, we have takeninto a

ount the self-avoiding e�e
ts of ea
h 
hain, sin
e the helix initialization(�rst base-pair formation in the helix) takes pla
e only at the �rst return ofthe two-dimensional random walk. Se
ond, the approa
h used permits one toavoid the meander- and knot-like 
onformations. The traditional approa
h using
∆S(m) deals with any return of the random walk. At the same time, to addressthe loop entropy ∆S(m) 
orre
tly, it is ne
essary to use only the �rst returnsof the random walk, as in our 
ase. Thus, our approa
h deals with two-strandpolynu
leotides without any preliminary assumptions 
on
erning ∆S(m).The intera
tion between two strands and the self-intera
tion inside ea
hstrand in the 
oil regions in
lude mainly Van-der-Waals and ele
trostati
 intera
tions.The latter is the most long-range one among the non-heli
al intera
tions. Happily,the DNA-solvent system as a whole 
an be 
onsidered as ele
tro-neutral one,sin
e it 
ontains di�erent salts and other low-mole
ular 
ompounds whi
h s
reenthe ele
trostati
 intera
tions on the length s
ale rD, where rD is the Debyeradius.We dis
uss two ways of the hydrogen bond formation. The �rst one is aninstant 
onta
t between the polymer 
hains whi
h leads to the 
reation of asingle hydrogen bond with subsequent free evolution of both polymers. This
onta
t intera
tion is 
ompensated by the short range intermole
ular repulsion,and we as
ribe the energy U1 > 0 to it. The se
ond way is the 
reation of asequen
e of hydrogen bonds. This 
ase 
orresponds to �glued� polymer 
hains inthe heli
al phase where intermole
ular repulsion is suppressed. We as
ribe theenergy U2 < 0 to the monomer-monomer 
onta
ts in the heli
al region. Thisenergy a
tually is the sum of two terms: the energy of hydrogen bonds and the51



energy of sta
king intera
tion between the given base pair and the pre
edingbase pair in the heli
al region.Ea
h nu
leotide is a group of atoms des
ribed by internal degrees of freedom,the dihedral angles. The base pair formation gains the energy but results in theentropy loss. To address the issue of the internal stru
ture of nu
leotides, weintrodu
e a new fa
tor q = e∆S, where∆S is the entropy loss 
aused by one basepair formation. We suppose that there is no another intera
tion in the middlepart of the loop be
ause the radius rD is short enough at the physiologi
al
onditions.The one-strand loop is presented as a walk of the parti
le. E�e
tively, wemultiply the whole weight of the random walk traje
tory by k1 = e
−U1
T forvisiting the origin and by k2 = e

−U2
T for staying at the origin. The partitionfun
tion for this model is

Λ =
∞
∑

j=0

(qk1)
jF (z)j

( ∞
∑

m=0

(qk2z)
m

)j

|zN =
1

2πi

∮

C0

1

zN+1

dz

1− qk1F (z)
1−qk2z

. (2.47)The e�e
tive intera
tion U1 > 0 depends on the result of 
ompetitionbetween the repulsive intera
tion and the binding energy. U2 < 0 
orrespondsto the attra
tive standing at the origin. The fa
tor q with q < 1 mimi
s thefa
t that ea
h base pair formation is unfavorable entropi
ally. A mi
ros
opi
study of these 
ompeting intera
tions using the analogy with the self-avoidingrandom walks was 
onsidered in [40℄.2.6.1. The analysis of the partition fun
tionNow let us dis
uss the partition fun
tion (2.47)
Λ =

1

2πi

∮

C0

1

zN+1

(1− qk2z)dz

1− qk2z − qk1F (z)
, (2.48)where we 
onsider two 
ases depending on values k1, k2 and q.If k1 + k2 >

1
q for 0 < q < 1 we have a simple pole only at the positive52



point z+ whi
h 
an be found by solving the equation
k2z+ + k1F (z+) =

1

q
. (2.49)For the integral Λ we derive (2.54)In the se
ond 
ase, when k1+k2 < 1

q , there are no poles inside the 
ontour
C1 ex
ept 0, so it is ne
essary to estimate an integral along indentation aroundthe points ±1:

ΛMP =
1

2πi

P∫

M

1

zN+1

(1− qk2z)dz

1− qk2z − qk1

(

1− 1
− 1

π
log(1−z)

) =

δ∫

0

1

(z + 1)N+1

×
1
π(1− qk2(z + 1))(qk1 + qk2(1 + z) 1π log(z))dz

[

qk1 − (1− qk1 − qk2(z + 1)) 1π log(z)
]2

+ [1− qk1 − qk2(z + 1)]2
. (2.50)Using the fa
t that δ is small, we get

ΛMP =
(1− qk2)k1π

(1− qk1 − qk2)2

δ∫

0

1

(z + 1)N+1

dz

log2(z)

=
(1− qk2)qk1π

(1− qk1 − qk2)2
1

N log2(N)
. (2.51)In the same way, we 
an show that

ΛM ′P ′ =
(1 + qk2)qk1π

(1− qk1 + qk2)2
1

N log2(N)
. (2.52)Thus, for the whole integral Λ we obtain

Λ =

(

(1− qk2)qk1π

(1− qk1 − qk2)2
+

(1 + qk2)qk1π

(1− qk1 + qk2)2

)

1

N log2(N)
(2.53)Finally, to �nd an average energy per step and heli
ity, we substitute (2.53)in formulas (2.56) and obtain 0 for both of them in the limit of large N .2.7. Results and dis
ussion of Model CThe thermal behavior of the system is en
oded in the singularities of theintegrand of the partition fun
tion (2.47). Depending on the parameters of the53



model the 
riti
al temperature Tc exists where the singular behavior is 
hanged.The analysis of possible 
ases is presented in 2.6.1. Spe
i�
ally, we derive for
T < Tc

Λ =
1

zN+1
+

1− qk2z+
qk2 + qk1F ′(z+)

. (2.54)and for T > Tc Λ tends to 0 as a 1
N log2(N)

. The 
riti
al temperature Tc isdetermined from the equation
k1 + k2 =

1

q
. (2.55)To �nd the average energy and heli
ity, we use the formulas generalizing(2.22)

E = − 1

N
k1 log k1

∂ log Λ

∂k1
− 1

N
k2 log k2

∂ log Λ

∂k2

θ =
1

N
k1
∂ log Λ

∂k1
+

1

N
k2
∂ log Λ

∂k2
, (2.56)whi
h give for T < Tc:

E = − k1 log k1F (z+)

z+(k2 + k1F ′(z+))
+

qk1k2 log k2F (z+)

(k2 + k1F ′(z+))(qz+k2 − 1)

θ = − k1F (z+)

z+(k2 + k1F ′(z+))(qz+k2 − 1)
. (2.57)The 
ir
les on Fig. 2.12 show that the heli
ity degree 
ompletely vanishesabove the 
riti
al temperature Tc. This is in 
ontrast with the simple randomwalk model with k > 1 shown by squares, where θ tends to zero asymptoti
allydue to entropy e�e
ts. We 
on
lude that the model with stops at the origindes
ribes the helix-
oil sharp transition. The same behavior takes pla
e for theaverage energy.If the 
onta
t intera
tion is attra
tive with k > 1 (U < 0), the systemexhibits a gradual helix-
oil transition. In the 
ase of repulsive intera
tion with

k < 1 (U > 0) we have zero heli
ity in the double-stranded region. Moreinteresting behavior appears for a 
ompeting intera
tion of the random walkwith the origin when k1 < 1 (U1 > 0) for the instantaneous 
onta
ts between54



Fig 2.12. Dependen
e of heli
ity degree on the temperature. Squares show the 
ase of thesimple random walk model. Cir
les show the behavior of the random walk with stops at theorigin (U1 = 1, U2 = 1.5, q = 0.4, U = −1.5).polymer 
hains and k2 > 1 (U2 < 0) for their long 
onta
t. We also introdu
ea fa
tor q whi
h a

ounts for the entropy de
rease in the base pair formation.Under these 
onditions the system exhibits a sharp denaturation transition.The 
ompletely denatured state (θ = 0) with two 
ompletely unbound DNAstrands appears at �nite temperatures T > Tc.The key point of our study is the entropi
 nature of the parameter q =

e∆S, where ∆S is the entropy loss 
aused by the base-pair formation. Also,we obligatorily need a repulsion between non-paired nu
leotides to obtain asharp denaturation transition. In the opposite 
ase, where there is attra
tionbetween non-paired nu
leotides or there is no intera
tion between non-pairednu
leotides, we have smooth denaturation. The given result is in qualitativeagreement with [40℄, where the sharpness of the DNA melting was also assignedto repulsive intera
tions.The main 
hara
teristi
s of the melting 
urve θ on the temperature T are55



the melting temperature Tm and the interval of transition ∆T . The meltingtemperature is the measure of stability of the heli
al stru
ture de�ned by the
ondition θ = 1
2 [34℄. The melting interval∆T is usually 
onsidered as a measureof 
ooperativity of a helix-
oil transition [34℄. It is 
hara
terized by the slope ofthe melting 
urve at the point Tm, ∆T = | dθ

dT
|−1
T=Tm

. Figure 2.13 
learly showsthat the helix stability in
reases with the strength of attra
tion U2. At thesame time, the melting 
ooperativity substantially de
reases with the strengthof attra
tion. The growth of stability is quite natural be
ause attra
tion U2stabilizes the double-helix.
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Fig 2.13. Heli
ity degree of Model C. Dependen
e of the heli
ity degree on the temperaturein the 
ase q = 0.4, U1 = 1 and di�erent values of U2. The melting temperature Tm de�nedat the point where θ = 0.5. The melting interval ∆T = | dθ
dT
|−1

T=Tm

de�ned as the slope of themelting 
urve at the melting temperature Tm.Thus, using a very simple random walk model, one is able to des
ribe theessentially 
omplex behavior of the double-stranded polynu
leotide.The proposed model is in qualitative agreement with experimental resultspresented in [60℄, where sharp transition is exhibited at the end of the melting56
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Chapter 3The se
ondary stru
tural transitions insingle-stranded RNA. The basi
 model.3.1. Statement of the problem.Single � stranded RNA (ssRNA) plays a 
entral role in mole
ular biology.In addition to transmitting geneti
 information from DNA to proteins, RNAmole
ules parti
ipate a
tively in a variety of 
ellular pro
esses [68℄. Examplesare translation (rRNA, tRNA, and tmRNA), editing of mRNA, intra
ellularprotein targeting, nu
lear spli
ing of pre-mRNA, and X-
hromosome ina
tivation.Se
ondary stru
ture of ssRNA is usually mu
h more stable than tertiary stru
ture.It 
an be explained by stronger intera
tions like hydrogen bonds an sta
king�intera
tions, stabilizing se
ondary stru
ture in 
omparison with tertiary [13℄.Another explanation is the additional entropy loss, ne
essary for the stabletertiary formation, as it was shown in [69℄. Thus, independent on the spe
i�
origin of the higher stability of se
ondary stru
ture, the se
ondary stru
turepredi
tion is possible without taking into a

ount the tertiary stru
ture formation.Sin
e the pioneering work of Higgs and Morgan [29, 70℄ and Bunds
huhand Hwa [71, 72℄, several authors have studied the statisti
al physi
s of RNAse
ondary stru
tures both for homopolymeri
 and heterogeneous RNAs and[71�75℄. In dependen
e on model pe
uliarities ssRNA exhibits ri
h phase behaviorin
luding folding transitions, 
ontinuous freezing transition between moltenand glass phase et
. Not mu
h is known about the freezing transition, evenfrom numeri
al work; indeed its lo
alization is non-trivial [76℄. Better studiednumeri
ally is the glass phase at strong disorder, or equivalently zero temperature[71, 73, 77, 78℄. However, the nature of the freezing transition and of the low�temperature phase are still poorly understood, and 
ontradi
tory results are59



reported [78℄. The main problem is to address the e�e
t of the sequen
e disorderon the thermodynami
s of ssRNA. The 
ommonly used repli
a approa
h [79�84℄still remain non-e�e
tive for ssRNA se
ondary stru
ture investigation. The glassphase appears in the solution of [71, 72℄ for the partition fun
tion for n = 2repli
as (instead of n = 0 relevant for the disordered system) and in numeri
alsimulations [71, 73, 78, 85, 86℄.The main goal of the present report is to develop an approa
h to investigatethermodynami
s of ssRNA with taking into a

ount sequen
e heterogeneity.3.2. The 
onstrained annealing approa
hWe propose to study random ssRNA sequen
es 
omposed of A, C, G,and U bases. Pairing is permitted only between A and U and between C and
G bases. The topologi
al rules that determine whi
h stru
tures are allowedare the essential feature that makes workable the numeri
al 
al
ulation of thefree energy of se
ondary stru
ture. The main rule is elimination of so 
alledpseudoknots (Fig.3.1) from the set of available se
ondary stru
tures as in mostother work on ssRNA [29℄.In this 
ase the full partition fun
tion ZN for the ssRNA 
hain of thelength N 
an be 
al
ulated re
ursively at any given temperature T [29, 71℄. Tomake the sequen
e e�e
t tra
table analyti
ally we propose to use an approa
hdeveloped by M. Serva and G. Paladin in [87℄. Following by [87�89℄, the freeenergy of ssRNA with quen
hed random sequen
e of nu
leotides 
an be estimaedon the basis of annealed averages of the partition fun
tion with appropriate
onstraints. Given approa
h is substantially variational and 
an be realized bythe aid of Lagrange multipliers, whi
h serve as a variational parameters. Therelationship between the quen
hed and annealed disorder in ssRNA has beenaddressed numeri
ally in [90℄.Disordered systems like spin glasses or random heteropolymers are 
hara
terizedby two types of degrees of freedom: annealed whi
h arrange themselves to60



minimize the free energy and quen
hed whi
h 
an be 
onsidered as 
onstantin time. In 
ase of ssRNA annealed degrees of freedom are Watson-Cri
k basepairs. The nu
leotides sequen
e 
an be addressed as a set of quen
hed degrees offreedom. A

ording to [87℄ the free energy of the ssRNA with random quen
hedsequen
e of nu
leotides 
an be estimated as
f ≥ g(T, µ) ≥ fA, (3.1)where f and fA are the redu
ed quen
hed and annealed free energy per nu
leotide,
orrespondingly and

g(T, µ) = − 1

N
lnZ(seq)e−Nµα(seq). (3.2)

Z(seq) is the parition fun
tion of ssRNA with given sequen
e realization seqand α(seq) is the appropriate self-averaging quen
hed quantity. O means theaverage over sequen
e distribution fun
tion. We will refer given approa
h belowas a "
onstraint annealing approa
h".3.3. The modelA primary RNA stru
ture is fully determined by the base sequen
e whi
h isa list of nu
leotides, 
ytosine (C), guanine (G), adenine (A), or ura
il (U) with
N entries. In agreement with previous treatments, a valid se
ondary stru
tureis a list of all base pairs with the 
onstraint that a base 
an be part of at mostone pair. In addition, pseudoknots are not allowed, i.e., for any two base pairs
(i, j) and (k, l) with i < j, k < l, and i < k we have either i < k < l < j or
i < j < k < l.Hamiltonian of the model is written as

H(m̂, {h}) =
∑

i<j

mij(ǫ0 + ǫhihj), (3.3)where sum is taken over all non-repeated base pairs, mij = 1 if the bases i and
j are paired and mij = 0 otherwise. The partition fun
tion for the ssRNA 
hain61



Fig 3.1. A pseudoknot is an RNA se
ondary stru
ture 
ontaining at least two stem-loopstru
tures in whi
h half of one stem is inter
alated between the two halves of another stem.of N nu
leotides is written as
ZN({h}) =

∑′

m̂
exp[−βH(m̂, {h})], (3.4)where β = 1

kBT
and the sum is taken over all realizations of the matrix m̂, whi
hare not in
lude pseudoknots and 
ontaining not more than one unity on ea
hrow or 
olumn. The latter 
ondition des
ribes the saturation of base pairing.3.3.1. Gaussian disorderLet us 
onsider �rst the 
ase of Gaussian disorder. Then, the distributionfun
tion for the sequen
e {h} is written

P{h} =
N
∏

i=1

ρ(hi), (3.5)where ρ(hi) = (2πD)−1/2e−
h2i
2D . The redu
ed free energy per nu
leotide is writtenas
f{h} = − 1

N
lnZN({h}) (3.6)
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In the thermodynami
 limit N → ∞ the free energy be
omes a non-randomquantity and f{h} = f , where f is the quen
hed free energy
f = − 1

N
lnZN({h}) (3.7)Following by [87℄ the quen
hed free energy 
an be estimated as maxµ g(T, µ)using the inequality (4.5). Let us introdu
e the following 
onstraints for thequen
hed variables {h}

α1{h} =
1

N

N
∑

i=1

hi (3.8)
α2{h} =

1

N

N
∑

i=1

(h2i −D)The e�e
tive partition fun
tion is written
ZN = e−Nµ1α1{h}−Nµ2α2{h}ZN ({h}) (3.9)and 
an be presented as (see se
tion 3.5 for details )

ZN = ωNZ0
N(ǫ̃), (3.10)where

Z0
N(ǫ̃) =

∑′

m̂
e−β(ǫ0+ǫ̃)

∑

i<j mijand
ω =

eµ2D+
D̃µ21
2

√

D̃√
D

(3.11)
D̃ =

D

1 + 2Dµ2

βǫ̃ =
βǫµ21D̃

2

1 + βǫD̃
+

1

2
ln

[

1− (βǫD̃)2
]

Z0
N(ǫ̃) is the partition fun
tion of homopolymeri
 ssRNA with e�e
tiveenergy ǫ = ǫ0 + ǫ̃. As it was shown in [71℄,

Z0
N(ǫ̃) = A0(Q)N

−θ0z(Q)N , (3.12)63



where θ0 = 3/2, Q = eβ(ǫ0+ǫ̃) and
z(Q) = 1 + 2

√

Q (3.13)
A0(Q) =

√

1 + 2
√
Q

4πQ3/2The variational redu
ed free enery g(β, µ1, µ2) = − 1
N lnZN is written

g(β, µ1, µ2) = −1

2
ln
D̃

D
−µ2D− D̃µ21

2
− ln

(

1+2[1−(βǫD̃)2]−1/4e
−βǫ0

2 −µ21
2

βǫD̃2

1+βǫD̃

)(3.14)
g(β, µ1, µ2) rea
h maximal value at µ1 = 0 (see se
tion 3.6 for details ). Thus,we need to maximize the variational free energy over the variable D̃

g(β, D̃) = −1

2
ln
D̃

D
+

1

2
− D

2D̃
− ln

(

1 + 2[1− (βǫD̃)2]−1/4e−
βǫ0
2

) (3.15)Maximization results to the equation
D

D̃
= 1 +

(βǫD̃)2

1− (βǫD̃)2
Θ(ln 2− βǫ0

2
− 1

4
ln[1− (βǫD̃)2]), (3.16)whereΘ(x) = ex

1+ex is logi
al fun
tion. Equation (3.16) 
an be solved numeri
ally,and its solution is unique, positive and 
ontinuously 
hanging with temperature.The free energy per monomer of the system is estimated as
f(β) =

g(β)

β
, (3.17)where g(β) = g(β, D̃0) and D̃0 is solution of the equation (3.16). The entropyper monomer is written as

s(β) = −g(β) + β
dg(β)

dβ
(3.18)and the spe
i�
 heat

cV (β) = −β2d
2g(β)

dβ2
(3.19)Let us de�ne heli
ity degree as the mean part of Watson-Cri
k base pairs

θ =
2

N
〈
∑

i<j

mij〉 = Θ(ln 2− βǫ0
2

− 1

4
ln[1− (βǫD̃0)

2]), (3.20)64



where 〈O〉 is thermodynami
 average and D̃0 is the solution of the equation(3.16). Temperature behavior of the thermodynami
 parameters is 
al
ulatedon the basis of equations (3.16,3.17,3.18,3.19,3.30).The entropy of the model with disorder is substantially less than thosefor homopolymer. In the low-temperature limit the entropy of the model withGaussian disorder exhibits logarithmi
 divergen
e with temperature as (fordetails see se
tion 3.7).
s ≃ −ln(ǫβD) (3.21)Thus, at low enough, but �nite temperatures entropy be
omes negative s <

0. However, despite of ordinary and spin glasses, entropy 
risis itself doesnot 
hara
terize the glass phase appearan
e, be
ause of our model 
ontains
ontinuous degrees of freedom ({h}).In dependen
e on parameters ǫ0, ǫ andD model exhibits di�erent temperaturebehavior of thermodynami
 parameters. At the de�nite 
hoi
e of the parametersthe temperature behavior of spe
i�
 heat exhibits two peaks. The high-temperaturepeak 
orresponds to the melting transition. It is ne
essary to mention thateven at the in�nitely large temperatures heli
ity degree still remain θ = 2/3.In the area of the low-temperature peak the heli
ity degree θ ≈ 1. Fromthe equations (3.21) and cV = T (ds/dT ) it straightforwardly follows that
cV (T = 0) > 0. Thus, at low- and even zero-temperatures system has availabledegrees of freedom, although the entropy is drasti
ally de
reased in 
omparisonwith homopolymeri
 
ase. Similar temperature behavior of the spe
i�
 heat hasbeen observed re
ently e.g. in some models displaying glassy behavior at zerotemperature due to entropi
 barriers [91℄. From the one side we have a low�energy ground state (at T = 0) pra
ti
ally without unbounded base pairs (θ ≈
1). From another side, spe
i�
 heat behaves as a 
lassi
al model with Maxwell�Boltzmann statisti
s at the high-temperature area. Thus, at low temperatureswe have a highly ordered system (θ ≈ 1) with de�nite 
onformational freedom,whi
h is signalling about the possibility of the low-temperature glassy state65



appearan
e. However, Gaussian model does not provide enough eviden
e forthe glass transition and we need to investigate more realisti
 model of ssRNA.3.3.2. Bimodal disorderIn previous 
onsiderations of ssRNA folding the sequen
e disorder usuallysupposed to be Gaussian [71, 92�96℄ to make model tra
table analyti
ally.However, the real RNA sequen
e is 
omposed from four-literal alphabet. For thesake of simpli
ity we 
onsider the 
ase of two-literal sequen
e to assign variable
hi = ±1 to ea
h i-th nu
leotide. It 
orresponds e.g. to random poly(AU)sequen
e.Then, the distribution fun
tion for the sequen
e {h} is written

P{h} =

N
∏

i=1

P (hi), (3.22)where P (hi) = qδ(hi − 1) + (1− q)δ(hi + 1).Let us introdu
e the following 
onstraints for the quen
hed variables {h}
a1{h} =

1

N

N
∑

i=1

[hi − (2q − 1)] (3.23)
a2{h} =

1

N

N
∑

i=1

[(hi − (2q − 1))2 − 4q(1− q)]It is obvious that a1{h} = 0 and a2{h} = 0. The e�e
tive partition fun
tion iswritten
ZN = e−Nµ1a1{h}−Nµ2a2{h}ZN({h}) (3.24)and 
an be presented as (see se
tion 3.8 for details )

ZN = eNµ(2q−1)ΩNZ0
N(ǭ), (3.25)where

Z0
N(ǭ) =

∑′

m̂
e−β(ǫ0+ǭ)

∑

i<j mij , (3.26)66



µ = µ1 − 2(2q − 1)µ2 and
Ω(µ) = qe−µ + (1− q)eµ (3.27)

W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ

e−βǭ =
W (µ, β, ǫ)

Ω(µ)2Thus, parameters µ1 and µ2 presented in ZN only as µ = µ1 − 2(2q − 1)µ2and variational problem be
omes one-parameter. We need to maximize thevariational potential
g(β, µ) = −µ(2q − 1)− lnΩ(µ)− ln(1 + 2

√

Q̄) (3.28)over µ, where Q̄ = e−β(ǫ0+ǭ). Maximization results to the equation
2q − 1 =

[

2
√

Q̄

1 + 2
√

Q̄
− 1

]

d lnΩ(µ)

dµ
− 1

2

2
√

Q̄

1 + 2
√

Q̄

∂ lnW (µ, β, ǫ)

∂µ
(3.29)
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ulated numeri
ally is in a good agreement70



0.0 0.5 1.0 1.5 2.0 2.5
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0
 = -1.5

 = 1
q = 0.75
N = 100

 McCaskill algorithm
 Constrained annealing

TFig 3.9. Dependen
e of heli
ity degree on temperature.

0.0 0.5 1.0 1.5 2.0 2.5
0.6

0.7

0.8

0.9

1.0

1.1

0
 = -1.5

 = 1
q = 0.75
N = 100

 McCaskill algorithm
 Constrained annealing

S

TFig 3.10. Dependen
e of entropy on temperature.with the free energy estimated with the help of 
onstrained annealing method[97℄. In Fig.3.14b, we 
ompare spe
i�
 heats, obtained by 
onstrained annealing71



0.0 0.5 1.0 1.5 2.0 2.5

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 McCaskill algorithm
 Constrained annealing

0
 = -1.5

 = 1
q = 0.75
N = 100

C
V

TFig 3.11. Dependen
e of spe
i�
 heat on temperature.

0.0 0.5 1.0 1.5 2.0 2.5

0.35

0.40

0.45

0.50

0.55

0.60
0
 = -1.5

 = 1
q = 0.75
N = 100

 McCaskill algorithm
 Constrained annealing

TFig 3.12. Dependen
e of the portion of the energeti
ally favorable 
onta
ts on temperature.versus the dire
tly 
al
ulated using M
Caskill's algorithm [32℄, based on Eq. (1.5)with subsequent numeri
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ts on temperature.with the M
Caskill's results and exhibits two-peaks, a sign of two stru
turaltransitions.To assign the spe
i�
 heat behavior to the stru
tural transformations ofssRNA let us de�ne heli
ity degree as a mean portion of Watson-Cri
k basepairs
θ =

2

N
〈
∑

i<j

mij〉 =
2
√

Q̄

1 + 2
√

Q̄
, (3.30)where 〈O〉 is thermodynami
 average. The r.h.s of the Eq. (3.30) is given bythe expression of heli
ity degree of the homopolymeri
 RNA, straightforwardlyobtained from the partition fun
tion of homopolymeri
 ssRNA [71℄. Thus,in the 
onstrained annealing approximation, heli
ity degree is written as forhomopolymeri
 RNA with the e�e
tive statisti
al
ite weight Q̄.Out of Eq. (3.30) the heli
ity degree 
an be estimated numeri
ally bymaking use of the probability of base pair formation between nu
leotides i and

j [71℄
pij = 〈mij〉 =

QijZi+1,j−1Zj+1,N+i−1

Z1,N
. (3.31)73



Fig 3.14. Free energy (a), spe
i�
 heat (b) per nu
leotide, heli
ity degree (
), and thefra
tion of unfavorable 
onta
ts (d) vs temperature T = 1/β. Thin red lines are 
al
ulatedusing M
Caskill's algorithm for the 30 random realizations of the N = 50 nu
leotides withparameters ǫ0 = −1, ǫ = 1.5 and q = 0.75. The thi
k blue line is 
al
ulated in variationalapproximation f ≈ maxµ g(β, µ) in the thermodynami
 limit N → ∞. The thi
k dashedbla
k line is the mean value of the quantity, averaged over all random realisations.Partition fun
tions on the r.h.s. of the Eq. (3.31) have been 
al
ulated re
ursively(1.5) and the heli
ity degree for the spe
i�
 realization of sequen
e of nu
leotidesis estimated as
θseq. =

2

N

∑

i<j

pij. (3.32)In Fig. 3.14
 we 
ompare heli
ity degrees, obtained by the 
onstrained annealingwith those dire
tly 
al
ulated using Eqs. (1.5,3.31,3.32) for the pool of randomly74



Fig 3.15. Temperature behavior of the heli
ity degree (a) and the spe
i�
 heat per nu
leotide(b). Bla
k dashed lines are 
al
ulated using M
Caskill algorithm and averaged over randomrealizations of the N = 50 nu
leotides with parameters ǫ0 = −1.5, ǫ = 1.0 and q = 0.75. Theblue lines are the quantities, 
al
ulated by the 
onstrained annealing method.generated sequen
es. The mean value of the heli
ity degree, 
al
ulated numeri
allyis in a good agreement with those, 
al
ulated with the help of 
onstrainedannealing method. As seen from Fig. 3.14
, heli
ity degree abruptly in
reaseswith temperature and then, after some temperature around T = 0.5 point,begins de
reasing. Su
h reentran
e of heli
ity degree indi
ates the presen
e ofboth high- and low-temperature melting and, perhaps denaturation.The high temperature limit 
orresponds to the homopolymeri
 
ase, wherethe impa
t of inter-nu
leotide intera
tions is not so essential. For the sakeof simpli
ity the temperature dependen
e of the (free) energy of base pairformation is negle
ted and limT→∞ θ = 2/3. For more realisti
 
hoi
e e.g.
ǫ0 = ∆H − T∆S the high-temperature limit of the heli
ity degree will bede�ned mainly by the loss of entropy ∆S of one base pair formation. Here ∆His the enthalpy per one base pair. When 
ompared against Figs. 3.14b the low�temperature peak of heat 
apa
ity 
ould be assigned to low-temperature (
old)75



denaturation, while the high-temperature one to the usual hot denaturation.Heli
ity degree 
an be also represented through the fra
tions of energeti
allyunfavorable (between similar nu
leotides) and favorable (between di�erent nu
leotides)
onta
ts as θ = η+ + η−, where
η± =

2

N
〈
∑

i<j

δ(hihj ∓ 1)mij〉, (3.33)normalized by the maximal number of base pairs, N
2
. The 
onsideration oftemperature dependen
ies of these quantities reveals the origin of low-temperaturemelting. The fra
tion of unfavorable 
onta
ts 
an be written as η+ = 1

2(θ+ η),where the auxiliary quantity η is written
η =

2

N
〈
∑

i<j

hihjmij〉 = 2
∂g(β, µ0)

∂(βǫ)
. (3.34)

θ and η quantities are 
al
ulated analyti
ally (see SI for details). We alsoestimate η numeri
ally, using the same approa
h as for heli
ity degree (seeEqs. (3.31,3.32)). In Fig.3.14d, we 
ompare the fra
tions of unfavorable 
onta
ts
η+, obtained using the Eqs. (3.30,3.34) and those 
al
ulated numeri
ally.In Fig.3.14d, we show the de
rease of the fra
tion of unfavorable 
onta
tswith lowered temperature. It is quite natural, sin
e for unfavorable 
onta
ts theBoltzmann weight Qij < 1 and tends to zero at low temperature. At the sametime, the fra
tion of favorable 
onta
ts η− in
reases with the temperature. Forthe bilateral A and U alphabet, the probability to �nd the unfavorable pair ofnu
leotides is higher than to �nd the favorable one (see SI). That is why thede
rease of η+ results in low temperature melting.To the best of our knowledge the double-peaked behavior of spe
i�
 heathas never resulted before. Pagniani et al 
onsidered equal probabilities (q = 1

2
)for two letters (A and U) to appear and reported a single-peaked spe
i�
 heat[86℄. From our Eqs. (3.28,3.29) it straightforwardly follows that if done so,

µ0(β) = 0 and the 
ompletely annealed 
ase with a single peak of heat 
apa
ityand no low temperature melting results. In 
ompliment to �ndings of Pagniani76



et al [86℄, our results indi
ate that single peak of heat 
apa
ity results for q = 0.5
ase only, and for other values of q there are always two peaks.To address the e�e
t of intera
tion parameters we distinguish two 
ases.The �rst, when the similar nu
leotides (AA or UU) are repulsive and the se
ondone, when they are still attra
tive with less strength than AU. The di�eren
ebetween the two 
ases is 
hara
terised by ∆ = ǫ0 + ǫ parameter. The low�temperature melting, des
ribed above (see Fig. 3.14
) takes pla
e if ∆ > 0and the similar nu
leotides are repulsive. On the other hand, if the similarnu
leotides are attra
tive (∆ < 0), temperature behavior of heli
ity degree
hanges drasti
ally and low-temperature melting disappears (see Fig.3.15a).Spe
i�
 heat behavior remains the same as for ∆ > 0 (see in Fig.3.15b). Givens
enario 
on�rms our suggestion, that the reason for low-temperature meltingis the de
rease of the fra
tion of energeti
ally unfavorable 
onta
ts η+.Fig. 3.16 summarizes the obtained results in a phase diagram. However,
q parameter values belong to the interval 0 ≤ q ≤ 1, we 
onsider only 0.5 ≤
q ≤ 1, be
ause of system behavior is symmetri
 with respe
t to q = 0.5.In the upper half of the diagram the temperature behavior of heli
ity degreeis presented, in dependen
e on the energy of similar nu
leotides intera
tions,
ǫ0+ǫ for the typi
al value of q = 0.75. While the similar nu
leotides intera
tion
hanges from attra
tion to repulsion, the system goes from the thermal meltings
enario to the both 
old and thermal one. In the bottom half of the diagram thetemperature behavior of the heli
ity degree is presented in dependen
e on theprobability q values. In the left-bottom 
orner the similar nu
leotides attra
tionis addressed and in the right-bottom, the repulsion one. If in 
ase of attra
tion,the growth of the probablity q just de
reases the heli
ity degree, the similarnu
leotides repulsion is 
hara
terised by more 
ompli
ated behavior. While theprobability q is growing in the interval 0 ≤ q ≤ 1, the heli
ity degree behavior
hanges from the purely hot to the purely 
old melting. At the intermediatevalues of q the system exhibits both 
old and hot melting.77



Fig 3.16. Phase diagram ǫ0 + ǫ, q.Temperature behavior of the spe
i�
 heat is depi
ted in Fig. 3.17. While in
ase q = 0.5 only high-temperature peak is survived, in (homopolymeri
) 
ase
q = 1 spe
i�
 heat exhibits only low-temperature peak. In the 
rossover regime
0.5 < q < 1 spe
i�
 heat exhibits two-peak behavior that is 
orresponding tothe hot and 
old melting in the right-bottom 
orner in the Fig. 3.16.The obtained theoreti
ally 
old melting, gives insight into the sequen
ee�e
t on the 
old denaturation [98℄. Cold denaturation usually assigned to thepositive spe
i�
 heat di�eren
e between the denaturated and native states [98�100℄ or to the 
ompeting between the inter- and intramole
ular hydrogen bonds[101℄. A

ording to our 
onsideration, the two transitions takes pla
e only if q 6=78



Fig 3.17. Temperature behavior of the spe
i�
 heat for the di�erent values of q parameterand ǫ0 + ǫ > 0 (ǫ0 = −1, ǫ = 1.5). Value of the probability q is 
hanging from q = 0.5 up to
q = 1.0, while the line 
olor is 
hanging from the red to the blue one.
1/2. The reason is that the probability to �nd the unfavorable pair of nu
leotidesis higher than to �nd the favorable one. These probabilities are equal only if
q = 1/2. Thus, the potential number of unfavorable 
onta
ts seems to be one ofthe main prerequisites of the 
old melting and, perhaps the 
old denaturation.At the same time, 
old melting requires ∆ > 0, where the similar nu
leotidesare repulsive. That is the free energy 
hange, 
aused by non-Watson-Cri
k pairsformation should be positive. Thus, the experimental 
onditions, suitable forthe 
old denaturation are based on the interplay between the potential numberof unfavorable 
onta
ts (sequen
e) and the non-Watson-Cri
k pairs stability.3.5. E�e
tive partition fun
tion: Gaussian 
ase.Let us obtain e�e
tive partition fun
tion with 
onstraints de�ned by equations

α1{h} =
1

N

N
∑

i=1

(hi − h̄) (3.35)
α2{h} =

1

N

N
∑

i=1

((hi − h̄)2 −D),

79



where h̄ is the mean value of hi and 
orresponding distribution fun
tion is givenby
ρ(hi) = (2πD)−1/2e−

(hi−h̄)2

2D (3.36)The e�e
tive partition fun
tionZN = e−Nµ1α1{h}−Nµ2α2{h}ZN({h}) is transformedas
ZN = eN(µ1h̄+µ2D)

∑′

m̂
e−βǫ0

∑

i<j mij

∫
DhP{h}e−βǫ

2 (h,m̂h)−µ1(e,h)−µ2

∑

j(hj−h̄)2,(3.37)where (a,b) is the s
alar produ
t of the ve
tors a and b, h = (h1, h2, ..., hN)and e = (1, 1, ..., 1). Let us average over the distribution fun
tion P{h}
∫
DhP{h}e−βǫ

2 (h,m̂h)−µ1(e,h)−µ2

∑

j(hj−h̄)2 = (3.38)
=

∫
DhP{h} exp{−βǫ

2
(h, m̂h)− µ1(e,h)−

−µ2(h, êh) + 2µ2h̄(e,h)− µ2Nh̄
2} =

= e−Nh̄2(µ2+
1
2D )(2πD)−N/2

∫
Dh exp

{

− 1

2

(

h,

[

βǫm̂+ ê(2µ2 + 1/D)

]

h

)

−

−(µ1 − 2µ2h̄− h̄/D)(e,h)

}

,where ê is the unit matrix. Thus, the e�e
tive partition fun
tion (3.37) is written
ZN =

eN(µ1h̄+µ2D)−Nh̄2

2 (2µ2+
1
D
)

(2πD)N/2

∑′

m̂
e−βǫ0

∑

i<j mij × (3.39)
×
∫
Dh exp

{

− 1

2

(

h,

[

βǫm̂+ ê(2µ2 + 1/D)

]

h

)

−

−(µ1 − h̄(2µ2 + 1/D))(e,h)

}

=

=
eN(µ1h̄+µ2D)−Nh̄2

2 (2µ2+
1
D
)

(2πD)N/2

∑′

m̂
exp

{

− 1

2
ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

+

+
1

2
[µ1 − h̄(2µ2 + 1/D)]2

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij

}
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Let us 
al
ulate �rst the ln det term in the last equation
ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

= (3.40)
= Tr ln

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

=

= −N ln(2πD̃) +
∞
∑

k=1

(−1)k

k
(βǫD̃)kTr(m̂k),where D̃ = D

1+2Dµ2
. Let us 
al
ulate a few �rst terms Tr(m̂k).

• (k = 1) Tr(m̂) = 0

• (k = 2) Tr(m̂2) =
∑

i

∑

jmijmji =
∑

ijmij

• (k = 3)
Tr(m̂3) =

∑

i

∑

ij

mijmjkmki =
∑

i

∑

jk

mijmjkmkiδijδik,be
ause of e.g. mijmjk 6= 0 only if i = k. Thus,
Tr(m̂3) =

∑

i

∑

jk

mijmjkmkiδijδik =
∑

ij

mijmjimiiδij = 0

• (k = 4)
Tr(m̂4) =

∑

i

∑

jkl

mijmjkmklmli =
∑

i

∑

jkl

mijmjkmklmliδikδjlδki =
∑

ij

mij

• (k = 5) in the same manner we 
an show that Tr(m̂5) = 0 et
.Thus,
Tr(m̂k) =







∑

ijmij , if k is even
0 , if k is odd (3.41)and eq.(3.40) is written as

ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

= (3.42)
= −N ln(2πD̃) +

∑

ij

mij

∞
∑

m=1

(−1)2m+1

2m
(βǫD̃)2m =

= −N ln(2πD̃) +
1

2
ln[1− (βǫD̃)2]81



The sum of the elements of inverse matrix in the exponent of eq.(3.39) is written
∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = D̃

∑

ij

[βǫD̃m̂+ ê]−1
ij (3.43)The inverse matrix is expanded as [βǫD̃m̂ +̂e]−1 =

∑∞
l=0(−1)l(βǫD̃)lm̂l. Thus,eq.(3.43) is rewritten as

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = D̃

∞
∑

l=0

(−1)l(βǫD̃)l
∑

ij

(m̂l)ij (3.44)In analogy with Tr(m̂l) we 
an show that
∑

ij

(m̂l)ij =







∑

ijmij , if l=1,2,3,...
N , if l=0 (3.45)Thus,

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = ND̃ − βǫD̃2

1 + βǫD̃
(3.46)Finally, the e�e
tive partition fun
tion is written

ZN =

(

D̃

D

)N/2

exp

[

Nµ1h̄+Nµ2D +
ND̃

2
µ1(µ1 − 2h̄/D̃)

]

× (3.47)
×
∑′

m̂
e−β(ǫ0+ǫ̃)

∑

i<j mij ,where
βǫ̃ =

1

2
ln[1− (βǫD̃)2] + (µ1 − h̄/D̃)2

βǫD̃2

1 + βǫD̃
(3.48)3.6. Variational equation.Let us address the 
ase, where h̄ = 0. With taking into a

ount notations

D̃ = D/(1 + 2Dµ2) and µ1 = µ variational redu
ed free energy is written
g(β, µ, D̃) = −1

2
ln
D̃

D
− D

2
+

1

2
− D̃µ2

2
− (3.49)

− ln

(

1 + 2[1− (βǫD̃)2]−1/4e
−βǫ0

2 −µ2

2
βǫD̃2

1+βǫD̃

)
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Let us �nd the point of extrema over the µ variable
0 =

∂g

∂µ
= −D̃µ+ µ

βǫD̃2

1 + βǫD̃
S(X), (3.50)where X = ln 2− βǫ0

2 − µ2

2
βǫD̃2

1+βǫD̃
− 1

4 ln[1− (βǫD̃)2] and S(x) = ex

1+ex is so 
alledlogi
al fun
tion. Eq.(3.50) has two solutions, µ = 0 and
1 =

βǫD̃

1 + βǫD̃
S(X) (3.51)Be
ause of 0 < S(x) < 1 at any �nite value of x, the right side of the lastequation is less than 1. That is why eq.(3.51) has no solution and the uniquesolution of the eq.(3.50) is µ = 0.3.7. Entropy: low-temperature limit.To estimate entropy in the low-temperature area let us estimate value of

D̃, maximizing variational free energy g0(β, D̃) = g(β, 0, D̃), where g(β, 0, D̃)is de�ned by eq.(3.49). From the equation 0 = ∂g0
∂D̃

it follows that
D

D̃
= 1 +

(βǫD̃)2

1− (βǫD̃)2
S(X), (3.52)where X = ln 2− βǫ0

2 − µ2

2
βǫD̃2

1+βǫD̃
− 1

4 ln[1− (βǫD̃)2]. Let us suppose, βǫD̃ → 1(β → ∞) as (βǫD̃)2 = 1− r, where r ≪ 1. Thus, eq.(3.52) is written
βǫ(1 + r/2) ≈ 1 +

(

1

r
− 1

)[

1− r1/4

2
eβǫ0/2 +O(eβǫ0

√
r)

] (3.53)We are fo
used on the 
ase ǫ0 < 0. The last equation 
an be expanded up tothe linear term over r and written as
βǫDr ≃ 1− r1/4eβǫ0/2

2
+O(eβǫ0

√
r) (3.54)Thus, in the limit β → ∞

r ≃ 1

βǫD
(3.55)83



In the low-temperature area
g0(β, D̃) ≃ 1

4
ln(βǫD) +

1

4βǫD
+

1

4
− βǫD

2
− ln 2 +

βǫ0
2

(3.56)and entropy s = −g0 + β dg0
dβ in the limit β → ∞ is estimated as

s0 ≃ −1

4
ln(βǫD) (3.57)3.8. E�e
tive partition fun
tion: bimodal disorder.Let us obtain e�e
tive partition fun
tion with 
onstraints de�ned by equations

a1{h} =
1

N

N
∑

i=1

[hi − (2q − 1)] (3.58)
a2{h} =

1

N

N
∑

i=1

[(hi − (2q − 1))2 − 4q(1− q)],where the 
orresponding distribution fun
tion is given by
P (hi) = qδ(hi − 1) + (1− q)δ(hi + 1) (3.59)The e�e
tive partition fun
tionZN = e−Nµ1a1{h}−Nµ2a2{h}ZN({h}) is transformedas

ZN = eN(2q−1)µ
∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}), (3.60)where µ = µ1 − 2(2q − 1)µ2. Let us 
al
ulate separately

∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}) = (3.61)

=
∑′

m̂
e−βǫ0

∑

i<j mij

∑

{h}

N
∏

j=1

P (hj)e
−µhj

∏

k<l

(1 +mklVkl),where Vkl = e−βǫhkhl − 1. Thus,
∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}) =

∑′

m̂
e−βǫ0

∑

i<j mij

∑

{h}

N
∏

j=1

P (hj)e
−µhj × (3.62)

×
{

1 +
∑

k<l

mklVkl +
∑

k<l

∑

p<q

mklmpqVklVpq +
∑

k<l

∑

p<q

∑

t<n

mklmpqmtnVklVpqVtn + ...

}

,84



Summation in the last equation is taken over p non-repeating pairs of nu
leotides
iα < jα, where p = 1, 2, 3, .... At the same time ea
h of pairs di�ers from otherpairs at least by one nu
leotide. Thus, ea
h sum of p pairs of nu
leotides 
an bedivided by two parts. The �rst one, 
ontaining no 
ommon nu
leotides and these
ond one, 
ontaining at least one 
ommon nu
leotide. Let us address the sumover p non-repeating base pairs 
ontaining at least one 
ommon nu
leotide, e.g.
J

∑

i1<j1

...
∑

ik

...
∑

jl

...
∑

ip<jp

mi1j1...mikJ ...mJjl...mipjpVi1j1...VikJ ...VJjl...Vipjp = (3.63)
=
∑

i1<j1

...
∑

ik

...
∑

jl

...
∑

ip<jp

mi1j1...mikJ ...δikjl...mJjl...mipjpVi1j1...VikJ ...VJjl...Vipjpbe
ause of mikJmJjl 6= 0 only if ik = jl. At the same time δikjl in eq.(3.63) isalways equal to zero be
ause of ea
h pair in the sum (3.63) di�ers from otherpairs at least by one nu
leotide and 
onsequently ik 6= jl. Thus,
∑

i1<j1

...
∑

ip<jp

mi1j1...mipjpVi1j1...Vipjp =
∑

(i1<j1)

...
∑

(ip<jp)

mi1j1...mipjpVi1j1...Vipjp (3.64)is taken over p non-repeated pairs of nu
leotides without any 
ommon nu
leotide.Thus, we 
an average fa
tors Vi1j1,..., Vipjp in the eq.(3.62) independently and
∑

{h}

N
∏

j=1

P (hj)e
−µhjVi1j1...Vipjp = (3.65)

=

(

∑

h=±1

P (h)e−µh

)N−2p(
∑

h,h′=±1

P (h)P (h′)e−µ(h+h′)[e−βǫhh′ − 1]

)p

=

= ΩN−2p

(

− Ω2 + e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ
)p

= ΩN V̄ p,where
Ω(µ) = qe−µ + (1− q)eµ (3.66)
W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ

V̄ =
W (µ, β, ǫ)

Ω(µ)2
− 1 85



Finally obtaining from the eqs.(3.60,3.62 and 3.65)
ZN = eN(2q−1)µΩN

∑′

m̂
e−β(ǫ0+ǭ)

∑

i<j mij , (3.67)where e−βǭ = V̄ + 1.3.9. Probabilities.Energeti
ally unfavorable 
onta
ts are ++ and −−. In assumption ofstatisti
al independen
e of the hi variables the probability to �nd the unfavorablepair of nu
leotides is
Punfav. = q2 + (1− q)2 = 1− 2q(1− q) (3.68)and the probability to �nd the favorable one is written

Pfav. = 2q(1− q) (3.69)Thus, always
Punfav. > Pfav., (3.70)if q 6= 1

2 and Punfav. = Pfav. if q = 1
2 (see Figure 3.18).

Fig 3.18. Probabilities of favorable and unfavorable pairs of nu
leotides vs. q are given bydashed and solid lines 
orrespondingly. 86



Chapter 4The se
ondary stru
tural transitions insingle-stranded RNA. A

ount of the loopformation.4.1. Statement of the problemIn this 
hapter we develop the model of random ssRNA by taking into
onsideration loop formation. As has be
ame 
ommon in theory,
onformationalweight as
ribed to a loop with length m is m−c. Thus, entropi
 impa
t ofsu
h loop will be −c lnm. The role of loop fa
tor c is 
riti
al in se
ondarystru
tural phase transitions, parti
ularly, in thermal-indu
ed phase transitions.Loop stru
tures su
h as hairpin loops,internal loops, multi-loops with three ormore emerging loops, whi
h are 
ommon for ssRNA are 
hara
terized with thevalue of c ≈ 2.1. However, a

ording to [74℄, mentioned phase transitions o

urin the spe
i�
 range of loop exponent 2 < c < 2.479. Our aim is to modifythe model introdu
ed in the previous 
hapter, and study the dependen
e ofthermodynami
 parameters, su
h as spe
i�
 heat and heli
ity degree, on thevalue of loop exponent c. We 
on
entrate our attention on the 
ase of bimodaldisorder, sin
e it is relatively simple, but, at the same time, it displays gooddes
ription of the phenomena. However, as a rule, a sequen
e of a ssRNA isnot 
ompletely random, usually it is optimized for distin
t native stru
ture.Nevertheless, to understand the role of su
h optimization we have to studythermodynami
s of ssRNA with bimodal disorder.We exploit the partition fun
tion of homopolymeri
 ssRNA in the presen
eof loops [74, 102℄ by 
ombining it with the modi�ed statisti
al weight Q =

e−β(ǫ0+ǭ).
87



4.2. The modelFor the sake of simpli
ity we propose to study random ssRNA sequen
es
omposed only of A and U bases. The topologi
al rules that determine allowedstru
tures are essential for e�
ient numeri
al 
al
ulation of the free energy ofse
ondary stru
tures. The main rule is the elimination of so-
alled pseudoknotsfrom the set of available se
ondary stru
tures as in most other works on ssRNA.Thus, for any two base pairs (i, j) and (k, l) with i < j, k < l, and i < k wehave either i < k < l < j or i < j < k < l [103℄. Besides, a valid se
ondarystru
ture is a list of all base pairs with the 
onstraint that a base 
an be partof at most one pair.Hamiltonian of the model reads
H(m̂, {hi}) =

∑

i<j

mijǫij, (4.1)where the intera
tion 
onstants ǫij = ǫ0 + ǫhihj , sum is taken over all non�repeated base pairs, mij = 1 if the bases i and j are paired and mij = 0otherwise. Variables {hi} des
ribe the type of nu
leotide and hi = ±1, where
hi = +1 
orresponds to A, and hi = −1 to U. The partition fun
tion for thessRNA 
hain of N nu
leotides is written as

ZN({hi}) =
∑′

m̂
exp[−βH(m̂, {hi})], (4.2)where β = 1

kBT
and the sum is taken over all realizations without pseudoknotsof the matrix m̂, whi
h 
ontains no more than one unity on ea
h row or 
olumn.The latter 
ondition des
ribes the saturation of base pairing. The {hi} sequen
eis supposed to be randomly generated with the distribution fun
tion

P{h} =
N
∏

i=1

ρ(hi), (4.3)where ρ(hi) = qδ(hi − 1) + (1− q)δ(hi + 1).The redu
ed free energy for the given {hi} sequen
e of nu
leotides iswritten as f{hi} = − 1
N
lnZN({hi}). Due to self-averaging, the free energy88



in the thermodynami
 limit N → ∞ be
omes a non-random quantity and
f{hi} = f = − 1

N
lnZN({h}), (4.4)where f is the redu
ed quen
hed free energy and O means the average oversequen
e distribution fun
tion (4.3). A

ording to [87℄, the free energy of thessRNA with random quen
hed sequen
e of nu
leotides satis�es the 
onditions

f ≥ g(β, µ) ≥ fa, (4.5)where fa is the redu
ed annealed free energy and
g(β, µ) = − 1

N
lnZN = − 1

N
lnZN({hi})e−Nµα({hi}). (4.6)Here α({hi}) is the appropriate self-averaging sequen
e-dependent quantity.Thus, g(β, µ) gives the lower bound of the quen
hed free energy f . A

ording to[87℄, the best lower bound of the quen
hed free energy is given by maxµ g(β, µ)and we 
an estimate the free energy of the ssRNA mole
ule with randomlygenerated sequen
e as

f ≈ max
µ

g(β, µ). (4.7)The simplest 
onstraint imposed on the quen
hed variables {hi} is given by
α({hi}) = 1

N

∑N
i=1[hi − (2q − 1)], whi
h does not �x the types of individualmonomers hi, but just the mean value of the sum ∑

i hi. After some algebra(see for details SI) the e�e
tive partition fun
tion ZN , de�ned in Eq. (4.6) reads
ZN = eNµ(2q−1)ΩNZ0

N(ǫ0 + ǭ), (4.8)where Z0
N(ǫ0 + ǭ) is the partition fun
tion (4.2) of the homopolymeri
 ssRNAwith the e�e
tive intera
tion 
onstant ǫij = ǫ0 + ǭ. Here

ǭ = −1

β
ln
W (µ, β, ǫ)

Ω(µ)2
, (4.9)

Ω(µ) = qe−µ + (1− q)eµ,

W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ.89



4.3. Cal
ulation of thermodynami
 
hara
teristi
s of themodel with loopsAs it was shown above, the variational redu
ed free energy g(µ, β) =

− 1
N
lnZN 
ould be written as

g(β, µ) = −µ(2q − 1)− lnΩ(µ)− 1

N
lnZ0

N(Q(µ, β)) (4.10)A

ording to [74, 102℄
Z0

N ≃ z−N
d , (4.11)where zd is the dominant singularity of grand 
anoni
al partition fun
tion ofhomopolymeri
 ssRNA, whi
h is de�ned as the singularity whi
h is nearest tothe origin in the 
omplex z-plane. In parti
ular, our grand partition fun
tionhas two singularities: a bran
hing point and a pole. Depending on the value ofstatisti
al weight Q we have

zd =











zp, Q < Qc

zb, Q > Qc

. (4.12)Here Qc is 
riti
al value of Q:
Qc =

Lic−1(1)− Lic(1)

(Lic−1(1)− 2Lic(1))
2 (4.13)where the polylogarithm Lic(x) =

∑∞
n=1 x

n/nc is used. To obtain bran
hingpoint zb, we have to solve following system of equations










κ (κ− 1) = QLic (zbκ)

κ2 = Q (Lic−1 (zbκ)− Lic (zbκ))
(4.14)Whereas,

zp =
2

1 +
√

1 + 4QLic(1)
(4.15)From (4.14) by dividing equations we obtain90



1− 1

κ
=

Lic (zbκ)

Lic−1 (zbκ)− Lic (zbκ)
(4.16)So,

κ =
Lic−1 (zbκ)− Lic (zbκ)

Lic−1 (zbκ)− 2Lic (zbκ)
(4.17)Here we introdu
e variable t = zbκ. By substituting κ = t

zb
in (4.17) wearrive to











t
zb
= Lic−1(t)−Lic(t)

Lic−1(t)−2Lic(t)

t2

z2b
= Q (Lic−1 (t)− Lic (t))

(4.18)By modifying (4.18) we obtain
Lic−1 (t)− Lic (t) = Q (Lic−1 (t)− 2Lic (t))

2 (4.19)and
zb = t

Lic−1 (t)− 2Lic (t)

Lic−1 (t)− Lic (t)
(4.20)This transformation allows us to solve (4.14) numeri
ally. First, we derive tfrom (4.19), and thereafter, by substituting it in (4.20), we obtain zb. Now,let's return to 
al
ulation of free energy.A

ording to 
onstrained annealingapproa
h we have to maximize free energy by solving

∂g(µ, β)

∂µ
= 0 (4.21)for µ. Hereupon, we 
an write free energy as g(β) = g(µ0, β), where µ0 issolution of (4.21). The free energy per monomer of the system is estimated as

f(β) =
g(β)

β
, (4.22)The entropy per monomer is written as

s(β) = −g(β) + β
dg(β)

dβ
(4.23)and the spe
i�
 heat

cV (β) = −β2d
2g(β)

dβ2
. (4.24)91



To 
al
ulate (4.23) and (4.36), we have to 
onsider two 
ases (4.12). Let's �rstimplement derivation of (4.23) for the 
ases zd = zp when Q < Qc.
∂g(β)

∂β
=

∂

∂β
ln zp(Q(µ0, β)) =

1

zp(Q)

(

∂zp
∂β

)

=
1

zp(Q)

(

∂zp
∂Q

)(

∂Q

∂β

) (4.25)where in a

ordan
e with (4.15) and (3.27)
∂zp
∂Q

= − 4Lic(1)
(

1 +
√

1 + 4QLic(1)
)2√

1 + 4QLic(1)
, (4.26)

∂Q

∂β
=
∂e−β(ǫ0+ǭ)

∂β
= −ǫ0Q+

e−βǫ0

Ω2

(

∂W

∂β

)

, (4.27)and
∂Q

∂β
= −ǫe−βǫ

(

q2e−2µ + (1− q)2e2µ
)

+ 2ǫq(1− q)eβǫ. (4.28)One 
an substitute (4.26) and (4.27) in (4.25) and obtain the �nal expressionfor derivative of the redu
ed free energy when Q < Qc:
∂g(β)

∂β
= − 2Lic(1)

(

1 + 4QLic(1) +
√

1 + 4QLic(1)
)

(

−ǫ0Q +
e−βǫ0

Ω2

(

∂W

∂β

))

.(4.29)where
∂W

∂β
= −ǫe−βǫ

(

q2e−2µ + (1− q)2e2µ
)

+ 2ǫq(1− q)eβǫ. (4.30)Therefore, the expression for entropy (when Q < Qc) 
an be written as
s(β) = −µ(2q − 1)− lnΩ(µ)− ln

2

1 +
√

1 + 4QLic(1)
− (4.31)

−β 2Lic(1)
(

1 + 4QLic(1) +
√

1 + 4QLic(1)
)

(

−ǫ0Q+
e−βǫ0

Ω2

(

∂W

∂β

))

.To represent entropy for the 
ase when Q > Qc, we have to 
al
ulate ∂zb
∂Q .Sin
e being unable to do it expli
itly, we perform following transformation:

∂zb
∂Q

=

(

∂zb
∂t

)

(

∂Q
∂t

) . (4.32)92



Taking into a

ount (4.19) and (4.20) we obtain
∂zb
∂Q

=
tLic(t) (Lic−1(t)− 2Lic(t))

3

Lic−1(t) (Lic−1(t)− Lic(t))
2 . (4.33)One 
an 
ombine (4.20), (4.27) and (4.33) in ∂g(β)

∂β = 1
zb(Q)

(

∂zb
∂Q

)(

∂Q
∂β

) andobtain
∂g(β)

∂β
=
Lic(t) (Lic−1(t)− 2Lic(t))

2

Lic−1(t) (Lic−1(t)− Lic(t))

(

−ǫ0Q +
e−βǫ0

Ω2

(

∂W

∂β

))

. (4.34)Hen
e,
s(β) = µ(2q − 1)− ln Ω(µ)− ln

2

1 +
√

1 + 4QLic(1)
+ (4.35)

+β
Lic(t) (Lic−1(t)− 2Lic(t))

2

Lic−1(t) (Lic−1(t)− Lic(t))

(

−ǫ0Q+
e−βǫ0

Ω2

(

∂W

∂β

))Expli
it analyti
 expressions for spe
i�
 heat are more 
ompli
ated, however,they 
ould be obtained from general analyti
 expression
cV (β) = −β ds

dβ
(4.36)Now let's refer to another important thermodynami
 
hara
teristi
,namely,to heli
ity degree:

θ =
2

N

d lnZ
d lnQ

(4.37)where N → ∞. A

ording to (4.11)
θ = −2Q

dzd
dQ

(4.38)4.4. Results and Dis
ussionFree energy in dependen
e on temperature is presented in Figs. 4.1,4.2.Just as in the Chapter 3, we distinguish two 
ases, a

ording to the energy ofintera
tion between similar nu
leotides ǫ0+ ǫ. There is no qualitative di�eren
ebetween the temperature behavior of the free energy in the 
ases of repulsionand attra
tion, 
hara
terized by ǫ0 + ǫ > 0 and ǫ0 + ǫ < 0 
orrespondingly.93
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e of redu
ed free energy on temperature, where ǫ0 + ǫ > 0.As we 
an see from Figs. 4.3,4.4 thermal behavior of the entropy does not
hange qualitatively until ǫ0 be
omes equal to −ǫ. The rapid de
rease of theentropy at low temperatures may lead us to the idea that there is a room for94



stru
tural transitions at that stage, and another phase transition is possible.In terms of e�e
tive attra
tion and repulsion we may interpret the 
ase when
ǫ+ ǫ0 = 0 as the situation when similar nu
leotides (AA or UU) neither attra
tnor repulse ea
h other, meanwhile, di�erent nu
leotides are attra
ted by ea
hother.
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Fig 4.3. Dependen
e of entropy on temperature.To provide thermal dependen
e of spe
i�
 heat (Fig. 4.5) we implementednumeri
 
al
ulations on the basis of the formula 4.36. The 
al
ulations wereperformed for di�erent values of ǫ0 with the in
rement equal to 0.5. In 
ontrastto the thermal dependen
ies of the free energy and the entropy (Figs 4.1 and4.3), the thermal dependen
e of spe
i�
 heat is more sensitive to the 
hange of
ǫ0, the di�eren
e between peaks �attens with the de
rease of ǫ0. Noti
e that,two peaks 
ompletely vanish when ǫ = −ǫ0, and, therefore, there is only onephase transition. For the remaining 
ases ǫ0+ǫ < 0, and, therefore, a

ording to(3.3), similar nu
leotides weakly attra
t ea
h other. Thus, we obtain non-trivialresult that even if ǫ0 + ǫ < 0 we observe existen
e of two phase transitions.One may noti
e that the fa
t of attra
tion between similar nu
leotides is95
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e of entropy on temperature.more evidently presented on Fig. 4.6. At low temperature limit heli
ity degreeis equal to one, i.e., all nu
leotides are involved in formation of 
omplementarypairs. However, in the 
ase when ǫ0 + ǫ = 0, or, as it was mentioned above,attra
tion and repulsion between similar nu
leotides is absent, heli
ity degreedoes not rea
h its maximal value equal to one.In 
ase of repulsion between similar nu
leotides, ǫ0+ǫ > 0 spe
i�
 heat alsoexhibits two peaks presented in the Fig. 4.7. Thus, we observe two stru
turaltransitions. While the high-temperature peak 
orresponds to the usual thermaldenaturation presented in the Fig.4.8, the low-temperature one indi
ates theexisten
e of 
old denaturation. In this 
ase, the heli
ity degree in the Fig. 4.8drasti
ally drops down to the values lower than the high-temperature level ofheli
ity degree.Comparison of the temperature behavior of thermodynami
 
hara
teristi
sof random ssRNA elu
idate a few 
ommon points of the se
ondary stru
tureformation. Spe
i�
 heat exhibits two-peaks behavior both without loops formationand with loops. Given e�e
t is independent on the type of intera
tion between96
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leotides. The energy of intera
tion between similar nu
leotides isequal to ǫ0 + ǫ. In the Figs. 4.11,4.12 is presented the temperature dependen
eof the spe
i�
 heat in 
ase of ǫ0 + ǫ < 0 and ǫ0 + ǫ > 0, 
orrespondingly. Two�97
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e of heli
ity degree on temperature.peaks behavior observed in both 
ases. Besides, the temperature of these twostru
tural transitions remain almost the same with and without loops.The main di�eren
e between spe
i�
 heat behavior with and without98



loops 
on
erns the heat e�e
t of transitions. The heat of the low-temperaturetransition in higher without loops, while the heat of high-temperature transitionis higher with loops. The melting 
urves (see Figs. 4.9,4.10) are qualitativelythe same with and without loops and �t well in the low-temperature region.
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TFig 4.9. Dependen
e of heli
ity degree on temperature.To interpret this result, let's take into a

ount the fa
t that with de
line oftemperature amount of loops also de
reases. Therefore, di�eren
e between themelting 
urves of models with and without loops vanishes. In 
ase of repulsionbetween similar nu
leotides, 
hara
terized by ǫ0 + ǫ > 0, the high-temperaturedenaturation results to lower values of heli
ity degree with taking into a

ountloops formation. At the same time, low-temperature maximum of spe
i�
 heateviden
es the existen
e of 
old denaturation, whi
h leads to small values ofheli
ity degree at low temperatures. This results in in
rease of impa
t of loopsin spe
i�
 heat behavior in the 
ase of repulsion between similar nu
leotides.In 
ase of attra
tion between similar nu
leotides, ǫ0 + ǫ < 0, the di�eren
eof high-temperature heli
ity degree with and without loops is not pronoun
edso well. Furthermore,the gap between spe
i�
 heat with and without loops in99



0.0 0.5 1.0 1.5 2.0
0.50

0.55

0.60

0.65

0.70

0.75

0
 = -1

 = 1.5
q = 0.75

 Model with loops (c=2.3)
 Model without loops

TFig 4.10. Dependen
e of heli
ity degree on temperature.the high-temperature region is almost the same in both 
ases of attra
tion andrepulsion.
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 heat degree on temperature.Thus, the e�e
t of long loops entropy on the phase behavior of single -100



stranded RNA is not so important. Given s
enario is substantially di�ers fromthose for double - stranded DNA, where the loop entropy fa
tor c 
hangesdrasti
ally phase behavior of the system. While in the homogeneous ssRNAphase transition exists only for the values 2 < c < c∗ ≈ 2.479, homogeneousdsDNA exhibits mu
h more ri
h phase behavior. Homogeneous dsDNA exhibitsphase transition of the se
ond order if 1 < c < 2, and of the �rst order one, if
2 < c. ssRNA exhibits mu
h more smooth transition of the fourth order.
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TFig 4.12. Dependen
e of spe
i�
 heat degree on temperature.In the frameworks of the proposed approa
h, the variational free energy iswritten in terms of the free energy of the homogeneous RNA with the e�e
tiveparameters of intera
tion (see Eqn.(4.10)). Thus, the sequen
e disorder has noe�e
t on the (fourth) order of the phase transition in ssRNA.

101



Con
lusions1. The impossibility of knot formation in melted regions of DNA and ex
ludedvolume intera
tions signi�
antly a�e
t the entropy of loop formation andgive a value of loop fa
tor c = 1.2. A phase transition of in�nite order takes pla
e for the loop fa
tor value
c = 1 during denaturation of DNA double helix. The phase transitiono

urs almost in the end of the melting where heli
ity degree has smallvalues. Above the phase transition temperature heli
ity degree is zero.3. Near the 
riti
al temperature, the 
orrelation length diverges, as it o

ursduring the phase transition of se
ond order, whereas the amplitude of�u
tuations tends to zero. Thus small but extended �u
tuations shouldtake pla
e for the 
hains with �nite length.4. Single-stranded RNA with random bimodal nu
leotide sequen
e showstwo peaks in the temperature dependen
e of the spe
i�
 heat of thesystem both for the attra
tion and repulsion between the same nu
leotidesand also for various per
entages of the two types of nu
leotides. Su
hbehavior indi
ates the presen
e of two stru
tural transitions.5. For the 
ase of repulsion between the nu
leotides of the same type, low�temperature peak of spe
i�
 heat 
orresponds to the 
old melting ofRNA when the heli
ity degree de
reases signi�
antly with de
reasingtemperature. This e�e
t is 
aused by a large number of thermodynami
allyunfavorable 
onta
ts for a sequen
e 
onsisting of two types of nu
leotides.6. The a

ount of the entropy of long loop formation does not qualitativelya�e
t the behavior of the spe
i�
 heat and the heli
ity degree of single�stranded RNA with a bimodal sequen
e. The presen
e of two peaks and
old melting is observed at the same values of the intera
tion parameters102



as without the a

ount of loop entropy.7. The sequen
e heterogeneity does not a�e
t the existen
e of a phase transitionof the forth order, whi
h takes pla
e when 2 ≤ c ≤ c∗ in a homogeneoussingle-stranded RNA.When c < 2 in a single-stranded RNA phase transitiondoes not o

ur both in homo- and heterogeneous sequen
es.
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