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IntrodutionRelevane of the work. One of the main problems in the physis ofmaromoleules is determination of the physial laws de�ning the strutureand biologial funtion of the single-and double-stranded nulei aids. It iswell known that the biologial funtion of biopolymers is determined by theirspatial struture. In this regard, it is important to determine the main fatorsand patterns a�eting onformations and onformational transitions. One ofthese fators is the formation of the seondary struture of nulei aids andthe ourrene of long loops in the areas free from Watson-Crik base pairformations. In addition, there remain a number of open questions related tothe e�et of a heterogeneous sequene of nuleotides on the struture andonformational transitions in nulei aids. The study of these questions is alsointeresting in terms of bioinformatis. The algorithms for the alulation of thethermodynami parameters and optimal predition of the seondary strutureof single-stranded RNA are now widely used in biologial researh. Properaount of loop entropy and sequene heterogeneity will signi�antly improvethe existing algorithms and promote the development of new approahes to theproblem. In light of the above, the relevane of this work is determined by thedevelopment of new approahes to the study of onformational entropy of loopsand e�ets of the nuleotide sequene.The objetives are:1. onstrution of the theory of melting of double-stranded DNA, whihtakes into aount the topologial restritions imposed on long loops2. investigation of the exluded volume e�ets in the formation of long loopsin the double-stranded DNA3. study of the e�et of long loops on the phase behavior of the double�stranded DNA4. onstrution of analytial theory desribing the thermodynami properties4



of single-stranded RNA with a random sequene of nuleotides5. omparative analysis of the phase behavior of ssRNA with and withoutaount of entropy of long loop formation6. alulation of the thermodynami harateristis of the ssRNAThe sienti� novelty onsists in onstruting a model of melting ofthe DNA double helix, without resorting to any prior assumptions about theentropy of long loop formation. Analytial dependene of the loop statistialweight is alulated based on the proposed theory, and not hosen from physialonsiderations. Temperature dependene of suh harateristis of the helix-oiltransition as the free energy, heliity degree, orrelation length and orrelationfuntion was obtained. For the �rst time in melting of double-stranded DNAthe existene of an in�nite order phase transition was shown. The omparisonwith the results obtained in the framework of the Polanda and Sheraga wasperformed. An analytial theory based on the method of annealing with onstraintsdesribing the seondary struture formation of single-stranded RNA was obtained.The omparison with the numerial results shows reasonable quantitative agreement.The temperature dependene of the harateristis of single-stranded RNAdenaturation as the free energy, heliity, entropy and heat apaity was obtained.For the �rst time the presene of two strutural transitions for a randomsequene of nuleotides of two types was shown. Possible onnetion between thelow-temperature strutural transition and old denaturation of ssRNA, whihis observed experimentally, was demonstrated.The main provisions to be defended1. Impossibility of knot formation in melted DNA and the aount of exludedvolume e�ets impat on the loop entropy and, in this way, result in avalue of loop fator c = 1.2. For the loop fator value c = 1 in�nite order phase transition takes plaeduring denaturation of DNA double helix. Near the ritial temperaturethe orrelation length diverges, as it happens during the phase transition5



of the seond order, whereas amplitude of the �utuations tends to zero.Thus there are small but extended �utuations.3. Above the transition temperature the heliity degree is zero, whih di�erssigni�antly from the behavior of the system at usual helix-oil transition.Single-stranded RNA with random nuleotide sequene shows two peaksin the temperature dependene of the spei� heat of the system fora ertain hoie of interation parameters. Suh behavior indiates thepresene of two strutural transitions.4. Low-temperature peak of the spei� heat orresponds to the old meltingof RNA, when the heliity degree dereases signi�antly with temperaturederease. This e�et is due to a large number of thermodynamiallyunfavorable ontats for sequene onsisting of two types of nuleotides.5. The aount of long loops entropy qualitatively does not a�et the behaviorof ssRNA. The presene of two peaks and old melting is observed at thesame values of the interation parameters as without aount of loopentropy.The sienti� and pratial value of the work is due to a signi�aneof the role that thermodynami e�ets play in the funtioning of biologialmaromoleules and their omplexes. In this regard, the theoretial study of theonformational entropy of large loops, e�ets of interations between di�erenttypes of nuleotides, and other harateristis of biologial maromoleules isimportant for the interpretation of experimental results and their preditions.At the same time, understanding the basi priniples underlying the organizationand onformational hanges in biologial maromoleules is of great pratialimportane for solving problems in biology and its medial appliations. Furthermore,the obtained results, ertainly, enable the improvement of the existing bioinformatisalgorithms used to alulate the stability of the seondary struture of RNA.Approbation of the work. Materials of the thesis were presented at
• Taiwan International Workshop on Biologial Physis and Complex Systems,6



Taipei, Taiwan, July 21-26, 2011.
• Winter Shool on Calulus of Variations in Physis and Materials Sieneat Department of Mathematis, University of Wurzburg, Wurzburg, Germany,January 8-13, 2012.
• II Gefenol Summer Shool on Statistial Physis of Complex and SmallSystems, Centro de Cienias de Benasque Pedro Pasual, Spain, September3-14, 2012.
• International Young Sientists Conferene �Perspetives for Developmentof Moleular and Cellular Biology�3�, The Institute of Moleular BiologyNAS RA, Yerevan, Armenia, September 26-29, 2012.Publiations. On the topi of the thesis 8 papers are published.Struture of the thesis. The thesis onsists of an introdution, fourhapters and onlusions (114 pages of text). It ontains 59 �gures and bibliographyonsisting of 103 items. The objetives of the work, the sienti� novelty andpratial value of the results and the main provisions to be defended are statedin the introdution. The �rst hapter is devoted to the review of struture,thermodynamis and biologial funtions of nulei aids. The main propertiesof lassial models of DNA are represented. Also, the literature review ontainsa desription of the basi models of RNA seondary struture and dynamialgorithms for the alulation of its thermodynami parameters. At the end ofthe �rst hapter the statement of the problem addressed in the seond hapter isformulated. The seond hapter is devoted to the DNA model whih takes intoaount the entropy of long loops formation. In the framework of this modelthe main thermodynami parameters of the system are alulated. The thirdhapter is devoted to the thermodynamis of the seondary struture of ssRNAwith random heterogeneous sequene. The alulation of thermodynami funtionsis based on the onstrained annealing approah. The fourth hapter of the thesisis devoted to the in�uene of loop entropy on the thermodynami properties ofthe seondary struture of ssRNA. The work ends with the onlusions.7



Chapter 1Literature review1.1. The struture and biologial funtions of nuleiaids1.1.1. The struture of nulei aidsThe nulei aids are linear polymers with monomers alled nuleotides. Anuleotide onsists of a sugar ring, phosphate group and a nitrogenous base. Thebakbone of the nulei aid onsists of ribose sugar rings linked by phosphategroup. Eah sugar has the one of the four types of nitrogenous bases linked toit as a side group. The 5′ arbon of one ribose and the 3′ arbon of the nextare linked by phosphate group. So, the diretion of hain is 5′3′. The two endsare referred to as 5′ and 3′ ends, sine one end has an unlinked 5′ arbon andone has an unlinked 3′ arbon. There are two types of sugar rings: ribose anddeoxyribose. Let's refer to the hemial di�erenes between ribonulei aid(RNA) and deoxyribonulei aid (DNA). The �rst di�erene is represented inthe hemial names of RNA and DNA, sine one of the OH groups in ribose isreplaed by proton (H) in deoxyribose. The seond di�erene is that, in ontrastto RNA, DNA omprises thymine (T) bases instead of urail (U) bases. In otherwords, the nitrogenous bases in the RNA are adenine, ytosine, guanine andurail (A, C, G, and U), while DNA onsist of adenine, ytosine, guanine andthymine (A, C, G, and T). The third di�erene is that RNA usually ours assingle strands and DNA onsists of two strands. As a result, RNA and DNAhave distintive varieties of strutures. The double helial struture of DNAhas two strands that are perfetly omplementary in sequene. In RNA basepairs are formed intra-moleularly, leading to a omplex arrangement of shorthelies whih are the basis of the seondary struture. Some tertiary strutures8



of RNA are well-de�ned. Thus, RNA strutures are more similar to globularstrutures of proteins than to double helies of DNA. The main role of DNA isto save the geneti information. The role of proteins is to serve as biohemialatalysts. These roles have been reognized for a long time, and it was thoughtthat RNA is an intermediary between proteins and DNA. But now we an saythat RNA is oming to be seen as an important and diversi�ed moleule in itsown right. Let's present the types of RNA.

Fig 1.1. The seondary an tertiary strutures of transport RNA.1.1.2. Types of RNATransfer RNA (tRNA)The ommon number of nuleotides in tRNA is about 76 [1, 2℄. Its seondarystruture is alled lover-leaf and it is very well-de�ned (Fig. 1.1). Every aminoaid has the own tRNA. The middle three bases of the entral loop of tRNA9



ompose the antiodon. The odon in the mRNA and the antiodon in theappropriate tRNA are the same. The main role of tRNA is to bring the aminoaid in the ribosome during protein synthesis. The shape of the tertiary strutureof the tRNA has the form like letter L. Fig. 1.1 shows the lover-leaf seondaryand the L-shaped tertiary strutures of tRNA.Messenger RNA (mRNA)The mRNA has several thousand nuleotides. It is the opy of the partof one of the strands of DNA and it ontains the information about a proteinwhih has to be synthesized by ribosome. The entral portion of mRNA odesthe protein.Ribosomal RNA (rRNA)The protein synthesis takes plae in the ribosome. It possesses bindingsites for mRNA and tRNA. It is the main role of the ribosome. Its diameteris about 250 �A. The ribosome is omposed of two sub-units. Eah of themonsists of three rRNA and about 56 di�erent proteins [3�5℄. The main goalof ribosome is to perform one of the most important proesses in the ell �the protein synthesis. It has the sites that an bind tRNA and mRNA. Duringthe protein synthesis it moves along the mRNA. Thus we an say that tRNAmoleules have the very important role in the funtioning of the ribosome, andas a result, protein synthesis annot be implemented without these moleules.Ribosomal RNAs of many organisms are sequenes, and large databases areaessible giving their strutural models [6�8℄.1.1.3. The elements of the seondary struture of RNAIf there are two omplementary parts of the sequene in the RNA moleule,those parts an form helial strutures. There are possible hydrogen bondsbetween nitrogenous bases C�G and A�U. There may be link between G-U,10



but this pair is less stable. As a rule, helies onsist of at least two pairs,beause isolated pairs usually are unstable. In unbroken helies there are notmore than 10 pairs. There are attrative staking interations between basepairs. They have a great ontribution in the stability of the helix. The stakinginterations are in the approximately parallel planes. To �nd the free energyof the helix usually nearest neighbor model is used. That is to say, there is afree energy term for every two near base pairs. Using di�erent methods we anmeasure the energy and entropy hanges of helix formation in the experiments,when the sequene is short [9℄.In the Fig. 1.2 it is shown several strutures that an our betweenhelies in the single-stranded RNA. Hairpin loops onnet the two sides ofa single helix. The loops whih onnet two helies are alled internal. Theloops that onnet three or more helies are alled multi-branhed. Bulge loops,stems and pseudoknots are also ommon to single-stranded RNA (Fig. 2). Thepseudoknots will be disussed later. Free energy of some loop strutures havebeen measured experimentally, but, as a rule, the helix parameters are knownwith higher auray than the parameters of loops [10℄. For instane, we don'thave any thermodynami data about multi-branhed loops. So, we suppose thatindependene of loop free energy on nuleotide sequene. It hinge on the numberof unpaired bases in the loop. The exeptions to this are tetraloops. Tetraloopsare speial sequenes that onsist of four single-stranded bases. Thanks to thesestrutures the thermodynami stability rises at the expense of interationsbetween the unpaired bases in the length-four hairpin loops, where they oftenour. In the algorithm that predits the seondary struture we have to appointa free energy for every possible struture. After that we must ompare thestabilities of all these strutures. Instead of thermodynami parameters that arenot diretly measured, we an take the reasonable estimates. The free energyof the seondary struture of all sequene will be determined through the freeenergies of di�erent parts of hain. 11



Fig 1.2. Some strutures that an be formed in the single-stranded RNA1.1.4. The tertiary struture of nulei aidsThe progress of seondary struture determination goes on faster thanfor tertiary struture. Until reently we had a little experimental information12



about tertiary struture. In this review we will speak more about seondarystrutures. We will address the information that an and annot be obtainedfrom seondary struture alone. Although our information about tertiary struturereently rises, we assert that the information about seondary struture is veryimportant too. The seondary struture is the �gure that shows the list of basepairs that are in the struture. In the valid seondary struture base pairs haveto satisfy some limitations. Let us suppose that we have the hain onsists ofbases that are numbered from 1 to N . Let us assume that the bases i and j areomplementary. They an form a pair, if . In other words, there must be three ormore unpaired bases in the hairpin loop. Let us suppose that there are formedpairs between (i, j) and (k, l) . They an be ompatible if they an be in thehain simultaneously. For that they must be non-overlapping (i < j < k < l)or one of them must be within other (i < k < l < j). The struture wherethey are interloking (i < k < j < l) is alled pseudoknot (Fig. 1.3). A lot ofdynami programs annot onsider the existene of pseudoknots. In the validseondary struture all base pairs must be onsistent. The seondary strutureof given sequene shows the information about paired and unpaired bases andit annot give us any information about the tertiary struture of the sequene.We an add to the diagram of seondary strutures pseudoknots. If we havethe information about tertiary struture, it will be more omfortable to hangethe seondary struture. The parts of the hain that are lose in the tertiarystruture we an draw near eah other in the seondary struture. Thanks tothis, the seondary struture of hain will ontain some information about ittertiary struture. As a rule, the diagrams of seondary strutures are not drawnthus to ontain a lot of information about tertiary strutures. Nonetheless, theseondary struture of RNA an give us enough information about its tertiarystruture. We an gain the information about the domain struture of moleuleand the mutual positions of the important parts. So, the seondary strutureof RNA ontains muh more information about the shape of its moleule then13



the appropriate diagram of seondary struture of proteins whih is a linearpolymer that onsists of α helies and β sheets.

Fig 1.3. The shemati image of pseudoknot.The main advantage of seondary strutures of RNA is that the heliesare thermodynamially very strongly bonded. The hierarhial folding of RNAmeans that �rst forms the stable seondary struture [11�13℄. Afterwards thetertiary struture forms sine a moleule an bend around some areas. Theinterations in the tertiary strutures an hange only the weak elements ofseondary struture. It is so, beause their strength is too small to break theseondary struture. Those interations an hange the positions of bases in themore unstable helix. Unlike the RNAs, very often seondary struture elementsin the proteins are enough unstable on their own. So, it is very di�ult toseparate their seondary and tertiary strutures. As a rule, we ignore theexistene of pseudoknots when we determine the parameters that desribingthe seondary struture. There are a lot of reasons for that. One of them isthat the algorithm that allows us to predit the struture annot aount for14



pseudoknots. For example, in the small sub-unit rRNAs the number of non�overlapping and nested helies is muh more than the number of pseudoknots.So, in this ase we an obtain the su�iently aurate results without inorporatingthe ontribution of pseudoknots. But it is obviously that some types of thepseudoknots frequently our in the RNA and they may have funtional role.Now we have a lot of data about the seondary and tertiary strutures ofpseudoknots [14�17℄. As a result, the new dynami programming algorithmsare able to take into aount pseudoknots [18℄. The main problem of thesealgorithms is absene of information on pseudoknots thermodynami that isneeded.1.2. Thermodynamis of nulei aidsIn this setion we will disuss general mehanisms of DNA melting andrelating experimental results whih are represented in the review [19℄.Aording to the previous setion the deoxyribonulei aid (DNA) onsistsof two polynuleotide strands. They are twisted into a double helix as it isshown on Fig. 1.4. Those two strands are perfetly omplementary. In DNAthere are 2 hydrogen bonds between nitrogenous bases adenine and thymineand 3 hydrogen bonds between ytosine and guanine. The diameter of DNA isabout 20�A. The distane of two neighboring repeating units is approximately3.4�A. Eah twist of DNA onsist of ten to twelve repeating units depending onthe form of DNA (A, B, Z). Dividing 360
◦ over the number of nuleotides inthe twist one will obtain twist angle for one repeating unit.One of the most fundamental thermodynami proesses taking plae inDNA is melting. This proess is also alled the helix-oil transition. The shemeof DNA melting is represented on Fig. 1.5. During this proess the hydrogenbonds between nitrogenous bases are being destroyed, and, in the �nal stage,there are two separate DNA hains, whih an be dealt as Gaussian oils.The helix-oil transition is reversible proess. That is to say, the derease15



Fig 1.4. The double helial struture of DNA.of temperature an lead to the renaturation of DNA. But if DNA is ompletelymelted, the probability of rereation of existed helial struture tends to zero.This is result of very large in�uene of kineti fators. Now let's speak aboutexperimental data onerning DNA melting.

Fig 1.5. The sheme of the helix-oil transition in DNA.There are a number of methods that allow us to study the helix-oiltransition in DNA experimentally. One them is based on absorption of visible�UV radiation by DNA solution. The method is based on the strutural dependeneof absorption property of DNA. The absorptions of nuleotide bases is deferentfor helial and oil regions [20℄. It is aused by the absene of staking interations16



in oil regions in ontrast to helial. The quantity(D −Dmin)/(Dmax −Dmin),where D is the optial density of solution, and the Dmin and Dmax are optialdensities of helial and oil struture orrespondingly, relates to the degree ofdenaturation. Fig. 1.6 shows the temperature dependene of optial densityfor double stranded homopolynuleotide (melting urve). The melting urvesfor homopolynuleotide were studied in [21℄. One an haraterize the meltingurve through two parameters: the melting temperature (Tm) and the width ofmelting interval (∆T ). The width of melting interval is determined with theformula
△T = 1/
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Fig 1.6. The melting urve for homopolynuleotide [22℄.

Fig 1.7. Temperature dependene of melting temperature Tm (◦) and melting interval ∆T(•) of alf thymus DNA [23, 24℄. 17



One of the main harateristis of melting urve is the GC ompositionof DNA. The dependene melting temperature on GC omposition is shown inFig. 1.8. The G-C omposition is de�ned as
x0 = (NG +NC)/(NG +NC +NA +NT ), (1.2)where NA, NT , NC and NG are the numbers of adenine, thymine, ytosine andguanine nitrogen bases. It is seen from Fig. 1.8 that the dependene of Tm on

xo is linear.

Fig 1.8. Dependene of melting temperature on the G-C pairs and the melting temperature[25℄.

Fig 1.9. The relation between perentage of logarithm of the onentration of sodium inthe solution. Line 1 was obtained for M. textitlysodeiktius (x0 = 0.72), line 2 � E. oli(x0 = 0.5), line 3 � S. saprophytius (x0 = 0.33), line 4 � M. myoides var apri (x0 = 0.24).The melting temperature of DNA essentially depends on the solvent omposition.The existene of double-helial struture of DNA is possible in the environment18



with su�ient onentration of positive ions suh as sodium and potassiumions. In ase of neutral pH one an use the empirial formula for the meltingtemperature:
Tm = 176− (2, 6− x0)

(

36− 7, 04 · lg
[

Na+
])

, (1.3)where [Na+] is the moleular onentration of sodium ions. The dependene ofmelting temperature on the sodium ion onentration logarithm is shown in Fig.1.9 [26℄. The Fig. 1.9 was obtained through the formula (1.3) four di�erent DNA.The melting temperature is muh lower when pH < 5 or pH > 9. For mentionedDNA the width of melting interval is about 3
◦. For homopolynuleotide thisparameter is nearly 0, 5

◦. The main part of studying are done in the standardonditions (pH = 7, [Na+] = 0, 196 M).

Fig 1.10. The dependene of the width of melting interval on the onentration of ribonuleasein the solution [27℄.

Fig 1.11. The melting urves for irular, losed polyoma DNA (1) and for the same DNAwith the broken strand in 7.2 M NaClO4 solution (2).19



The substanes that an bond to DNA, also known as ligands, have veryimportant impat on the melting urves. For instane, suh substanes areheavy metal ions (Cu, Fe, et.). As an example of in�uene of organi ligand,the dependene of ∆T on the onentration of the protein ribonulease (D isthe molar onentration of the protein ribonulease in the solution, P is themolar onentration of repeated units in DNA) is shown in Fig. 1.10. Normally
D ≪ P . It is important to say that during experiment those ligands areredistributed on DNA. At a given temperature they take thermodynamiallythe most advantageous state. The experiments are performed for linear unloseddouble stranded DNA. In the ase of the irular losed DNA, then the experimentalresults are deferent. The harateristis of melting urve in this ase werestudied in [28℄. The melting temperature for suh DNA is higher by 20◦ omparedto the linear unlosed DNA (Fig. 1.11). Melting hains remain twisted relativeto eah other in the irular DNA ausing higher melting temperature. As aresult, in this ase the entropy of melting ondition is lower than for the sameondition in the linear DNA. In addition, the width of melting interval for theirular DNA is 2-3 larger times than for the linear DNA.1.3. Dynami programming algorithmsThe most stable seondary struture of RNA moleule is spei�ed bythe minimum of the free energy. We an obtain suh strutures onsideringall possible base pairings and alulating the free energy for eah seondarystruture [29℄. It is possible for very short sequenes, sine the number ofpossible onformations of the moleule grows exponentially with the lengthof the RNA moleule. However, there exist dynami programming algorithmswhih allow alulation of the free energy for muh longer sequenes. Thesealgorithms are based on reursive relations, whih allow obtaining the thermodynamiquantities for longer sequenes referring to already obtained ones for shortsequenes. Now we will disuss the programming algorithm for a very simple20



set of energy rules. In the frameworks of this model we will suppose that eahbase pair ontributes −1 in the energy of whole hain and penalties relatedwith loops are negleted. So, the struture with the minimal free energy isharaterized with the maximum number of base pairs. Therefore, this modelis alled �maximum mathing model� [30℄. Let us suppose that the energy ofbonding between i and j bases (ǫi,j) is −1 if those bases are omplementary andit is ∞, if they are not. Our aim is to �nd the minimal energy of the subhainfrom i to j (Ei,j). If the last base j forms a pair with the base k, then thesequene will be divided into two subsequenes: from i to k− 1 and from k+1to j − 1. We will not disuss strutures ontaining pseudoknots. In the otherwords, the bases that are in the di�erent setions annot form a pair. If j and
k form a pair, the energy will be equal to Ei,k−1+Ek+1,j−1+ ǫi,j. If they do notform a pair, it will be equal to Ei,j−1. So the minimal energy of this subhainis

Ei,j = min(Ei,j−1, mini≤k≤j−4(Ei,k−1 + Ek+1,j−1 + ǫi,j)). (1.4)We will assume that Ei,j = 0, if j− i ≤ 4. Thereafter, we will �nd Ei,j+1,Ei,j+2and so on. As a result we an obtain the minimal energy E1,N of whole hainwith length N . This algorithm estimates the ontribution of individual base

Fig 1.12. Sheme of RNA seondary struture without loops.21



pairs to the energy of the seondary struture of RNA. Suppose we have asequene of nuleotides from B1 to Bn, and it is loated on the irle (Fig.1.12). Let's assume that Bx and By form a pair. Our goal is to �nd out whether
Bx and By form a pair in the seondary struture that we are looking for.The ar BxBy divides the irle into two parts: the upper and lower setions.The exlusion of pseudoknots means that if two nuleotides form a pair, thenboth must be either in upper or lower setion. Thus, nuleotides from di�erentsetions annot form a base pair. So, energy of the seondary struture will bedetermined by the energies of the upper and lower setions and an impat ofthe loal pair BxBy.If we have real biologial sequenes, it is neessary to onsider all thepossible interations. At the same time obtaining the reurrene relations willbe more omplex.Consider the sequene, whih onsists only of nitrogenous bases A and U .In reeipt of it, we assume that with probability P falls A, and with probability
(1− P ) � U . Lets alulate its partition funtion, where the sum is taken overall possible strutures, exept pseudoknots. For that, we distinguish a region
(i, j). Suppose that j + 1 forms pair with k. In this ase we will have twosubsequenes: from i to k − 1 and from k + 1 to j. Without pseudoknots, thepartition funtion of any subhain of ssRNA moleule alulates reursively[31, 32℄ as

Zi,j = Zi,j−1 +

j−1
∑

k=1

Zi,k−1qijZk+1,j−1, (1.5)where Zi,j is the partition funtion of the subhain between nuleotides i and j,
qij = exp(−βǫij) being the statistial weight of the base pair formation betweennuleotides i and j.Fig. 1.13 shows seondary struture of RNA onsisting ofN = 150 nuleotidesobtained with means of relation 1.5).
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Fig 1.13. The shemati piture of the seondary struture of RNA for sequene that onsistof 150 nuleotides.1.4. The existing theories of seondary struturaltransitions in DNA.1.4.1. Zimm-Bragg modelThis model [33℄ is the �rst onsistent and most studied statistial theoryof helix-oil transitions. It is based on the one-dimensional Ising model. Let us23



suppose that the number of amino aids in the hain is N . In the frameworksof this model it is assumed that the state of the repeating unit desribed by thestate of the oxygen atom in the arboxyl group. If that atom forms a hydrogenbond between moleules, we will denote that state by number 1. Other stateswill be denoted by number 0. As a result, we will have the sequene of ones andzeros for eah on�guration. The parameter s is determined by the hange ofthe free energy when the length of the helix inreases by one monomer.
s = exp(−∆F

RT
), (1.6)where ∆F = Fh−Fc. If a monomer, whih follows three or more free repeatingunits, forms a hydrogen bond, free energy inreases. The ooperativity parameter

σ is assoiated with the inrease of free energy:
σ = exp(− Fs

RT
), (1.7)where Fs is the additional free energy. When N ≫ 1 partition funtion reads

Z = TrPN , (1.8)where N is number of repeating units, P is the matrix of statistial weights. Inthis ase
P =





1 σs

1 s



 . (1.9)As a result, the seular equation will have the following form
(1− λ) (s− λ) = σs. (1.10)This is simple equation and we an obtain exat solutions. It is shown [33℄ thatthe helix-oil transition is in the following interval

1−
√
σ ≪ s≪ 1 +

√
σ. (1.11)Considering that σ ≪ 1, we will have that

∆T = 2
√
σ
KT 2

m

∆H
. (1.12)24



Thus, thermodynami analysis of helix-oil transitions beomes possible withmeans of Zimm-Bragg model.1.4.2. Loop entropy in Poland-Sheraga modelThis model helps to desribe the existene of loops in the DNA and it givesus reasonable results [34℄. There are two main interations in DNA: hydrogenbonding and staking. The hydrogen bonds are formed between two bases thatare in the di�erent hains. The staking interations our between neighboringnitrogenous bases. Let suppose that the statistial weight of hydrogen bondsis t and the statistial weight of staking interations is τ . So, if we have theordered sequene that onsists of j bakbone units, the statistial weight ofsequene will be written as
vj = t(tτ)j ≡ σwj, (1.13)where σ ≡ t and w ≡ tτ . The sequene generating funtion [35, 36℄ reads
V (x) =

σw

(x− w)
. (1.14)We will take σ = 1. In this ase we an ignore the inhomogeneities in t and τdepending on the sequene. As a result

V (x) =
w

(x− w)
. (1.15)If we take

U (x) =
1

V (x)
, (1.16)it an be obtained as

U (x) =
x

w
− 1. (1.17)It is obtained in [37℄ that if the loop onsists of N bases, the entropy of thatloop will have the following form

S (N) = R(N lnΩ− [A+
3

2
lnN ]). (1.18)25



The onstantA annot be exatly found. The termRN lnΩ is the onformationalentropy of the free hain.Let us suppose that the hain is plaed on the two-dimensional lattie(square lattie). If there is a loop in the hain, it means that the ends of thatloop must math. As a result the number of moves to the right has to be equalto the number of moves to the left, and the number of moves to the up mustbe equal to the number of moves to the down. So, if the number of bases inthe hain is N , the number of moves in the left-right diretions is N
2 and itis equal to the number of moves in the up-down diretions. So, the number ofloop onformations is

Q =
[
(

N
2

)

!]
2

[(N
4
)!]

4 (1.19)If we use Stirling's approximation
n! = e−nnn(2πn)

1
2 , (1.20)we will obtain

Q = N ln 2− [ln
(π

4

)

+ lnN ]. (1.21)For the three-dimensional ase (ubi lattie) we will have that the numbers ofmoves in the ±x, ±y and ±z diretions is equal to N
3
, when N is large. As aresult, the number of loop onformations reads

Q =

[(

N
3

)

!
]3

[
(

N
6

)

!]
6 . (1.22)Using Stirling's approximation lnn! = nlnn − n, we will get

lnQ = N ln 2 − [ln
(π

6

)
3
2

+
3

2
lnN ]. (1.23)It is obvious that Eqs. (1.18) and (1.23) are similar. So, we an write that

lnQ = Na′ − (b′ + clnN ), (1.24)where c = 1 for the square lattie and c = 3
2 for the ubi lattie. As a resultwe an say that the entropy of the loop will be obtained through the following26



equation
Sloop (N) = R [Na− (b+ clnN )] (1.25)where c = d/2, if we ignore the exluded-volume interations. The quantity dis the dimensionality of the spae. The statistial weight of a free hain is

uN = (ea)N , (1.26)and so,
uN = e

[Sloop(N)]
R = (ea)Ne−bN−c. (1.27)For the nulei aids N = 2 (i+ 1) ≈ 2i. When d = 3, we have

ui = (constant)uii−3/2. (1.28)It is shown in the artile [38℄ that if we onsider the long-range ontats anduse the series expansions, we will obtain that the quantity c has the followingvalues
c ∼ 1, 75, (1.29)when dimensionality if the spae is equal to three and
c ∼ 1, 46 (1.30)for 2D.The model suggested by Mukamel is Poland-Sheraga type. In the frameworkof this model authors onsidered the e�ets of exluded-volume interations.Although they onsidered those interations approximately, obtained resultsallow understanding of dependene between the unbinding mehanism and thenature of the transition.Aording to this model, the monomers in DNA an be found in two states:bounded and unbounded. So, the hain is represented as a sequene of thesestates. The binding energy is the same for all monomers. The statistial weightof a bounded pair is

ω = exp

(

−E0

T

)

, (1.31)27



where E0 < 0 is binding energy and T is the temperature. If a segment ofthe hain onsists of k bounded units, the statistial weight of that sequene isgiven by
ωk = exp

(

−kE0

T

)

. (1.32)The statistial weight of the unbounded hain of length k will be determined bythe hange of entropy. For large k it has the form Ask

kc
, where s is non-universalonstant. The exponent  desribes properties of a loop. Authors onsider asewhere A = 1. The grand anonial partition funtion will be determined by

Z =

∞
∑

M=0

G(M)zM =
V0 (z)UL(z)

1− U (z) V (z)
(1.33)where G(M) is the anonial partition funtion of the hain with length M , zis the fugaity,

U (z) =

∞
∑

k=1

sk

kc
zk, (1.34)

V (z) =
∞
∑

k=1

ωkzk, (1.35)
V0 (z) = 1 + V (z) and UL (z) = 1 + U(z). The quantities V0(z) and UL(z)an be found for boundaries. The average hain length an be obtained frompartition funtion as

< L >=
∂lnZ

∂ln z
. (1.36)When < L >→ ∞, the order parameter θ will be funtion of temperature. Theaverage number of bounded pairs will be determined by

< m >=
∂lnZ

∂lnω
. (1.37)So,

θ = lim
L→∞

< m >

< L >
=
∂ln z∗

∂lnω
, (1.38)where z∗ is the fugaity when < L >→ ∞. Using

V (z) =
ωz

(1− ωz)
, (1.39)28



we will obtain that
U (z∗) =

1

(ωz∗)
− 1. (1.40)The nature of transition will be determined through the dependene of z∗ on

ω. It is shown in [39, 40℄ that there are 3 ases:1. when c ≤ 1, there is no phase transition.2. when 1 < c ≤ 2, transition is ontinuous.3. when c > 2, we have a �rst order transition.The exponent is c = dν, where d is the dimension of spae. If the walks arerandom and ideal, c = d
2 . So, when d ≤ 2, there is no transition, when 2 < d ≤

4, the transition is ontinuous and the transition is �rst order, when d ≥ 4.1.4.3. Peyrard-Bishop modelThe transfer integral method was used for the analysis of Peyrard-Bishopmodel [41�45℄. In this model authors used the fat that there exists an analogybetween the study of the onformational properties through statistial physisand the di�usivity equation. The DNA denaturation problem was modeled asa partile in the Morse potential, whih desribes the hydrogen bonding. Itwas introdued a pair of variables for every repeating unit. That pair desribesthe deviation of hain segment in the frameworks of every repeating unit inthe diretion, whih is parallel to the axis of DNA helix. Certain deviation wasonsidered. If the value of deviation is larger, the hydrogen bonds are destroyed.Also, the harmoni pairing, whih simulates the staking between neighboringrepeating units, was studied.The Hamiltonian of this model will have the following form:
H =

∑

n

p2n
2m

+W (yn, yn−1) + V (yn), (1.41)where pn = mdyn
dt , m is the redued mass of bases. The potential V (yn)desribes the interations between two repeating units. In other words, it desribes29



the hydrogen bonding. The potential W (yn, yn−1) desribes the interationsbetween two repeating units along the DNA moleule (staking interations).It is onvenient to use the Morse potential, beause it is standard for desriptionof the hemial bonds and it has appropriate form. We have strong repulsion atshort distanes, the minimum in balane and it beomes �at at large distanes.Through the Hamiltonian we an �nd the dependene of average value ofdeviation from equilibrium on value of the onstant pairing. The average deviationharaterizes the degree of denaturation.1.4.4. The preliminary model of helix-oil transition indouble-stranded DNAConsider a double-stranded homopolynuleotide with omplementary bindingin the region of helix-oil transition. This is possible if we onsider a real DNAwith an approximation that energies of AT and GC pairs are equal.To addressthe order of the phase transition in double-strand DNA we need to onsiderhomopolymeri DNA with omplementary base pairing. Experimentally, it anbe reated using the stability inversion approah, proposed in [46℄. In preseneof the appropriate onentrations of alkylammonium ompounds, stability of
GC and AT pairs an be equalized or even inversed. In ase of the same stabilityof the GC and AT pairs double-strand DNA behaves as a homopolynuleotidewith symmetri loops. In other ase, we onsider the random heteropolymerwhih onsists of AT omplementary base pairs only. One hain is the randomsequene of A and T nuleotides and another hain is omplementary to the�rst one. We an say the same for the GC pairs. In this ase, the energy ofthe hydrogen bond formation will be the onstant along the hain. We anassume that the inter-hain hydrogen bonds are formed only between the baseshaving the same number. So all loops are symmetri. The maromoleule isshematially presented in Fig. 2.1. We study the formation of hydrogen bondsbetween omplementary repeated units of two hains. For simpliity, let us30



assume that the �rst repeated units are bound. As it was introdued in [47℄,the Hamiltonian for the maromoleule is
− βH = J

N
∑

i=1

δ
(i)
1 , (1.42)where β = T−1, J = U

T , U is the energy of the hydrogen bond formationin one omplementary pair, δ(i)1 takes value 1 if a hydrogen bond of the ithomplementary pair is formed and 0 if not. Sine the �rst pair is bound, δ(i)1is nonzero if two hains form a losed yle between the �rst and ith repeatedunits. The presene of other yles inside the interval [1, i] is possible. Atually,this model is a Poland-Sheraga (PS) type model [34℄. The partition funtionfor Hamiltonian (1.42) is
Λ =

∑

{~γi}
exp (−βH) =

∑

{~γi}

N
∏

i=1

(

1 + vδ
(i)
1

) (1.43)where v = eJ−1. Let ~γi be a set of all possible values 1, 2, ..., Qwhih enumerateonformations of the hain. The partition funtion an by developed as theseries in v. By using the relationship δ
(k)
1 δ

(m)
1 = δ

(k)
1 δ

(m−k)
k+1 we an write theterm orresponding to vf as

vfδ
(k1)
1 δ

(k2−k1)
k1+1 δ

(k3−k2)
k2+1 . . . δ

(kf−kf−1)
kf−1+1 (1.44)Imposing yli onditions and de�ning mi as ki − ki−1 we obtain

Λ = QN
∑

f

vf
∑

m1

ϕ (m1) . . .
∑

f

ϕ (mf) (1.45)where
ϕ (m) = Q−m

∑

γ1

∑

γ2

. . .
∑

γm

δ
(m)
1 . (1.46)Aording to (1.46), ϕ(m) is the ratio of a number of states orresponding tothe formation of a loop of length m and all states of the hain of length m. Sothe funtion ϕ(m) may be interpreted as the probability of the loop formation31



of the length m. Using the ondition f
∑

i=1

mi = N and multiplying (1.45) byfator δ( f
∑

k=1

mk −N

), we obtain
Λ =

1

2πi

∮
z−N−1

N
∑

f=1

(

v
∞
∑

m=1

ϕ (m) zm

)f

dz (1.47)In [47℄ the funtion ϕ(m) was hosen approximately as
ϕ(m) =











Q−m, m ≤ ∆

Q−∆, m > ∆
(1.48)Using the saddle-point approah, one an show that the harateristi equationfor the free energy in the thermodynami limit is the same as in the GMPCmodel, whih is a Potts like one-dimensional model. This representation of

ϕ(m) is empiri and ignores the loop formation with length less than ∆ whihharaterizes the single-hain rigidity.In the present study, we generalize the model to the ase of loops of anarbitrary length. To this end, the problem of loop formation will be representedin terms of random walks.
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Chapter 2The random walk model of helix-oil transitionsin double-stranded homopolynuleotides2.1. Desription of the basi random walk model (ModelA)The struture of a homopolynuleotide is onsidered as a sequene ofalternating helial and oil regions. Helial regions, whih are essentially one�dimensional, are stabilized by hydrogen bonds and staking interations. Coilregions are apparently d-dimensional, where d is the topologial dimensionof the spae where the DNA hain is embedded. We will fous on the three�dimensional ase, d = 3.The main onept of the random walk desription is quite simple. Weonsider the moleule of DNA as two random hains whih are initiated from thesame point. As it was mentioned above, the omplementary pairs of nitrogenousbases are able to reate hydrogen bonds, and eah binding orresponds tothe intersetion of two random hains. We label the pairs of omplementarypolymer units (whih an be potentially bonded) by integers 1, 2, ..., N , andonstrut N planes perpendiular to the polymer axis in suh a way that bothunits of the i-th pair lie on the i-th plane with the oordinates xi and yi. Ifthe omplementary units are bounded, they are represented by a single point(xi = yi) on the orresponding plane. The projetion of all N planes onto asingle plane gives the olletion of points xi, yi, i = 1, 2, ..., N whih an beonsidered as the position of 2D random walks at the moments of disrete times
i = 1, 2, ..., N (Fig. 2.1). This onstrution admits arbitrary onformations ofpolymer hains with a single but important exlusion: all planes 1, 2, ..., N arerossed by polymer hains sequentially from the �rst to the last one and any33



return from the i-th to the (i− 1)-th plane is forbidden.In the absene of meanders this guarantees the exlusion of three-dimensionalknots and additional base pairs inside the loops. Thus, our approah [48, 49℄desribes three-dimensional loop statistis more adequately than the traditionalone [34℄.
1 2 3 .. .. N

Fig 2.1. Sheme of the modelFor the sake of onveniene, we onsider a simple random walk on thequadrati lattie. The 2D simple random walk jumps one lattie left, right, upor down at eah disrete time step. Later on we will extend this model to thease when a stay at the origin during several stops is allowed.To write the partition funtion (1.43) in terms of a random walk, we referto the well-known generating funtions [50℄. The generating funtion for the�rst return is
F (z) =

∞
∑

m=1

fmz
m, (2.1)where fm is the probability of the �rst return at the m-th step. The generating

34



funtion for any return is
P (z) =

∞
∑

m=1

pmz
m, (2.2)where pm is the probability of any return at the m-th step. P (z) an also berepresented as an integral whih, in the ase of two-dimensional random walkon the quadrati lattie, is [50℄

P (z) =
1

(2π)2

π∫

−π

π∫

−π

dϕdψ

1− z
2(cosϕ + cosψ)

=
2

π
K(z2), (2.3)where K(z) is the omplete ellipti integral of the �rst kind. Using the knownrelation between F (z) and P (z)

F (z) = 1− 1

P (z)
, (2.4)we obtain the analytial expression for F (z). Taking into aount that ϕ(m) =

pm is the return probability on the m-th step and N is the whole number ofsteps, we an rewrite (1.47) in terms of the generating funtion for P (z) as
Λ =

1

2πi

∮
z−N−1

N
∑

f=1

vf(P (z)− 1)fdz. (2.5)Now let us onsider the partition funtion in terms of the generatingfuntion of the �rst return F (z). Eah time the partile returns to the origin,we add a weight k = e
−U
T to the random walk whih is the statistial weightof the base pair formation. The probability of the �nal return of the partileto the origin after N steps, i.e., the partition funtion of the double hain withonneted �rst and last monomers reads:

Λ =

∞
∑

j=0

kjF (z)j|zN =
1

2πi

∮

C0

1

1− kF (z)

dz

zN+1
, (2.6)where the ontour C0 enloses the origin in a lokwise manner. We disuss twoases for the value of hydrogen bond energy U . When U < 0, k > 1 we haveattration of a partile at the origin. 35



2.1.1. Calulation of partition funtion (k > 1)To estimate the integral Λ in (2.6) for the ase k > 1 around a ontour
C0 enlosing the origin, we onsider another one around C1, onsisting of theirular part with the radius 1 + δ and indentation around branh points at
z = ±1 (Fig. 2.2) [51, 52℄. Further, we will hoose a positive δ small enoughto use an asymptoti expression of (2.4) near the points ±1 on the indentationpart of C1.

1
C

0
C

C
+

C
-

11-

z
+

z
- 0

Fig 2.2. The hoie of the ontour in the omplex-z for the ase of attrative originNotie that there are two simple poles z+ and z− inside the ontour C1,whih an be found by solving the equation F (z) = 1
k . To ompute the ontourintegral, we subtrat integrals around C+ and C− enlosing the poles z+ and

z− from the integral around C1

Λ =

∮

C0

=

∮

C1

−
∮

C+

−
∮

C−

. (2.7)
36



For the last two integrals we obtain
−

∮

C+

=
1

zN+1
+

1

kF ′(z+)

−
∮

C−

=
1

zN+1
−

1

kF ′(z−)
. (2.8)As the funtion F [z] is even on the interval (−1, 1), we get F ′(z+) = −F ′(z−).Using the fat that N is even, it an be shown that

∮

C+

+

∮

C−

= 2

∮

C+

. (2.9)To estimate ∮
C1

, we notie that the integral around the irular part of theontour is proportional to 1
(1+δ)−N , whih is negligible ompared to ∮

C+

and ∮
C−for large N as z+ = |z−| < 1. The integral around indentation of the points 1and −1 an also be ignored beause it is bounded in magnitude by a numberindependent of N . We will evaluate the last one more expliitly in 2.1.2.For the asymptoti expression of the integral Λ for large N we get

Λ =
2

zN+1
+ kF ′(z+)

, (2.10)where z+ is the positive pole of integrand in (2.6) de�ned from the transendentalequation
F (z) =

1

k
. (2.11)2.1.2. The asymptoti analysis of the partition funtion (k < 1)In this setion, we give asymptoti analysis of the integral Λ in (2.6) forthe ase k < 1. This ase is when U > 0, and it orresponds to a repulsiveorigin. In this ase we have no poles z+ and z−; therefore, we must estimate thevalue of the integrals ΛMP and ΛM ′P ′ on the indentation parts MP and M ′P ′of the points ±1 of the ontour C1 (Fig. 2.3). As the number N is even, wehave ΛM ′P ′ = ΛMP . For the 2D random walks, the generating funtion F (z)37



is expressed by the omplete ellipti integral of the �rst kind K(z) and has anasymptoti limit near point 1
F (z) = 1− 1

2
πK (z2)

−−→
z→1

1− 1

− 1
π log(1− z)

. (2.12)Substituting F (z) in the formula for Λ we obtain
Λ =

1

2πi

P∫

M

1

zN+1

dz

1− k
(

1− 1
− 1

π
log(1−z)

) (2.13)Let us divide integration (2.13) into two partsMR and RP , where R is a pointof intersetion between ontour C1 and the real axis. Considering the branhesof the logarithmi funtion on MR and RP separately we get
Λ =

1

2πi

R∫

M

1

zN+1

dz

1− k
(

1− 1
− 1

π
(log(z−1)+iπ)

)+
1

2πi

P∫

R

1

zN+1

dz

1− k
(

1− 1
− 1

π
log(z−1)−iπ

)(2.14)After joining these two integrals and turning to a new variable z′ = z − 1 weobtain
Λ =

δ∫

0

1

(z′ + 1)N+1

k/π dz′
[

k − 1−k
π

log(z′)
]2

+ (1− k)2
. (2.15)For a �xed small δ, formula (2.15) an be rewritten as

Λ =
kπ

(1− k)2

δ∫

0

1

(z′ + 1)N+1

dz′

log2(z′)
. (2.16)To proeed with the asymptoti analysis for large N , we denote by y = Nzand get for the integral part of (2.16)

Λ1 =
1

N

Nδ∫

0

1

( y
N
+ 1)N+1

dy

(log(y)− log(N))2
∼ 1

N log2(N)

Nδ∫

0

e−ydy
(

1− log(y)
log(N)

)2 .(2.17)Further, we divide the integral expression in (2.17) into two parts, integrating38



Fig 2.3. The hoie of the ontour in the omplex-z for the ase of repulsive originfrom 0 to 1/N and from 1/N to Nδ. For the �rst part, we have
1

N log2(N)

1/N∫

0

e−ydy
(

1− log(y)
log(N)

)2 .
1

N

1/N∫

0

dy

log2(y)
∼ 1

N2 log2(N)
. (2.18)For the seond part of integration, we derive

1

N log2(N)

Nδ∫

1/N

e−ydy
(

1− log(y)
log(N)

)2 =
1

N log2(N)
(1 +O(

1

log(N)
)). (2.19)We see that (2.18) is negligible ompared to (2.19) and �nally we obtain anasymptoti expression of the partition funtion

Λ =
kπ

(1− k)2
1

N log2(N)
(2.20)and the average energy vanishes in the limit N → ∞.
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For the average energy per step and heliity we obtain
E = −(1 + k) log k

(1− k)

1

N

θ =
1 + k

1− k

1

N
(2.21)whih tend to 0 when N goes to in�nity.2.2. The thermodynami harateristis of the Model AThe internal energy per step, in units T , is given by

E = −k log k
N

∂ log Λ

∂k
= − k log k

2πiNΛ

∮
F (z)

(1− kF (z))2
dz

zN+1
(2.22)The alulations similar to those for derivation of (2.10) from (2.6) lead in thelimit of large N to:

E = − log k

kz+F ′(z+)
. (2.23)The heliity degree θ is de�ned as an average fration of hydrogen bondsin the biopolymer, i.e. is the ratio of the average and maximal numbers of thehydrogen bonds. For the simple random walk model, the maximal number ofreturns to the origin and, therefore, the maximal number of bonds is N

2
. Using(2.23) we an write the heliity degree as

θ =
2

kz+F ′(z+)
. (2.24)The thermal dependene of the heliity degree is shown in Fig. 2.4. Theslow deay of θ demonstrates the gradual helix-oil transition.2.3. Modi�ed model with aount of entropy of base pairformation (Model B)Eah nuleotide is a group of atoms desribed by internal degrees of freedom,the dihedral angles. The base pair formation gains the energy but results in the40



Fig 2.4. Heliity degree (θ) of the Model A in dependene on temperature (T )
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Fig 2.5. Correlation funtion of Model Aentropy loss. To address the issue of the internal struture of nuleotides, wemodify the statistial weight of single base pair, so that, it isw = exp(−∆U−T∆S
T

),where ∆U is the energy and ∆S is the entropy of the base pair formation.41
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Fig 2.6. Free energy of Model AEah nuleotide is a group of atoms having internal degrees of freedom, thedihedral angles. The base pair formation gains the energy ∆U < 0, but resultsin the entropy loss ∆S < 0, beause the formation of eah base pair requiresappropriate relative orientation of the nitrogen bases. Thus, eah time thepartile returns to the origin, we add the statistial weight w.The �nal return of a partile to the origin after N steps orresponds tothe partition funtion of the double hain with the onneted �rst and lastmonomers:
ΛN =

∞
∑

j=0

wjF (z)j|zN =
1

2πi

∮

C0

1

1− wF (z)

dz

zN+1
, (2.25)where the ontour C0 enloses the origin in a lokwise manner.The temperature behavior of the system is enoded in the singularities ofthe integrand of the partition funtion (2.25). Notie that there are two simplepoles z+ and z− inside the ontour C1 (Fig. 2.7) whih an be found by solvingthe transendent equation:

F (z) =
1

w
. (2.26)42



Fig 2.7. The hoie of the ontour in the omplex-z for the ase of attrative originThe ritial temperature Tc exists, whih is de�ned by the equation
wc = 1. (2.27)We have to onsider two ases. The ase w > 1 (T < Tc) orresponds tothe attration of the walk to the origin. The opposite ase w < 1 (T > Tc)orresponds to the repulsive origin, and we have no poles z+ and z− inside theontour C1. To estimate the integral ΛN in (2.25) for the ase w > 1 around theontour C0 enlosing the origin, we onsider another one around C1, onsistingof the irular part with the radius 1+ ε and an indentation around the branhpoints at z = ±1 (Fig. 2.7) [51, 52℄. Further, we will hoose a positive ε smallenough to use an asymptoti expression of (2.3) and (2.4) near the points ±1on the indentation part of C1.As number N is even, we have

∮

C+

+

∮

C−

= 2

∮

C+

=
2

zN+1
+ wF ′(z+)

. (2.28)The ontribution of the integral on the indentation parts MRP and M ′R′P ′43



of the ontour C1 (Fig. 2.7) is δΛN . For large N we get
δΛN ≃ w

(1− w)2
π

N log2(N)
. (2.29)The ontribution from the rest of the ontour C1 is proportional to (1 + ε)−N ,whih is negligible ompared to both values of (2.28) and (2.29). Then, for largebut �nite N (T < Tc) we obtain

ΛN =
2

zN+1
+ wF ′(z+)

+
w

(1− w)2
π

N log2(N)
. (2.30)In the ase w < 1 (T > Tc), ΛN vanishes as δΛN for large N .To estimate the value of the parameter c, responsible for the order oftransition, we address the probability fm of the �rst return at the m-th step.Asymptotis of fm an be derived from the probability of the �rst return to theorigin after time t: Prob(t > m) ∼ π/ logm [53℄. Di�erentiating, we obtain:

fm ∼ π

m log2(m)
. (2.31)Of ourse, one an get the same result using the method similar to thederivation of (2.29) where the ontour integration is applied to the funtion

F (z) [54℄. Thus, the long loops asymptotis of the proposed model orrespondsto c = 1 in the expression δS(m) = −c logm mentioned in Introdution.2.4. The thermodynami harateristis of the model BAording to the formulation of the model, Eq. (2.25) an be interpretedas a partition funtion of the hain starting from the �rst and ending by the
L-th base pair. In the limit N → ∞ below the ritial temperature Tc, we getfrom Eq. (2.30)

Λ1,L =
2

zN+1
+ wF ′(z+)

, (2.32)where L = N
2
is the total number of base pairs in the hain. For T < Tc, thedensity of the free energy F in the thermodynami limit is:

F = T log z+. (2.33)44
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Fig 2.8. Free energy of Model BTo desribe the ritial behavior of F near Tc, one should notie that thepole z+ tends to 1 when T → Tc−0. Solving Eq. (2.26) by using the asymptotiexpression of P (z) and F (z) near point 1, we �nd
z+ → 1− e−

πw
w−1 , (2.34)where w = exp(−∆U−T∆S

T
). Then, using Eqs. (2.33) and (2.55), we obtain theasymptotis of the free energy density in the ase of T → Tc − 0:

F ≃ Tc exp

(

− T 2
c

|∆U |(Tc − T )

)

. (2.35)The main observable quantity of the melting DNA is the heliity degree θde�ned as an average fration of the base pairs Nbp in the biopolymer,
θ =

1

L
〈Nbp〉 =

w

L

∂ log Λ1,L

∂w
(2.36)or the degree of denaturation, η = 1−θ, whih is de�ned as an average frationof the non-bounded base pairs. Using (2.32) we an write the heliity degreefor T < Tc as

θ =
2

wz+F ′(z+)
. (2.37)45



The heliity degree and the density of free energy ompletely vanish abovethe ritial temperature Tc in the limit L→ ∞.
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Fig 2.9. Heliity degree of Model B

Fig 2.10. Dependene of the degree of denaturation, η = 1− θ on the temperature.The thermal dependene of the heliity degree is shown in Fig. 2.10. Weonlude that the model desribes the omplete denaturation transition at the46



�nite temperature Tc.To address the �utuations of the base pair formation, we de�ne thepairwise orrelation funtion as
g(i, j) = P (i, j)− P (i)P (j), (2.38)where P (i, j) is the probability of the i-th and j-th base pair formation:

P (i, j) =
Λ1,iΛi,jΛj,L

Λ1,L
, (2.39)and P (i) is the probability of the i-th base pair formation:

P (i) =
Λ1,iΛi,L

Λ1,L
. (2.40)By substituting (3.31) and (2.40) in (2.38), the orrelation funtion an beexpressed as

g(i, j) =
Λ1,iΛi,jΛj,L

Λ1,L
− Λ1,iΛi,L

Λ1,L

Λ1,jΛj,L

Λ1,L
. (2.41)In the ase of the long DNA, the points i and j are far away from the endsof the hain, but the distane |i− j| is �nite. Thus, we need an expression forthe ΛL for large, but �nite L (T < Tc). Taking into aount Eq. (2.30) andEqs. (2.37, 2.41), we obtain the orrelation funtion for T < Tc in the form

g(r) ≃ θw

(1− w)2

exp(−r
ξ )

r log2(r)
, (2.42)where r = |i− j|, and the orrelation length is

ξ = − 1

log z+
. (2.43)The asymptotis of the orrelation length ξ at temperatures T → Tc − 0follows from Eqs. (2.55) and (2.34)

ξ ≃ exp

(

T 2
c

|∆U |(Tc − T )

)

. (2.44)
47
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Fig 2.11. Correlation funtionof Model B2.5. Results and disussion of Model BThe main idea of the proposed approah is the mapping of two interatingthree-dimensional polymer strands onto the single two-dimensional randomwalk interating with the origin [55℄.The ompletely denatured state (θ = 0) with unbounded two DNA strandsappears at the �nite temperature T = Tc (see Fig. 2.10). To understand thephase behavior of the model, the asymptotis of the density of the free energy Fnear the transition point Tc has been found. The results are given by Eq. (2.35).This kind of temperature behavior an be identi�ed with the in�nite orderphase transition. That is new for DNA, but onsidered formerly, for instanein [56�59℄.At T → Tc−0 the tendeny to 0 of the order parameter θ an be expressedin terms of the orrelation length ξ (2.44):
θ ≃ T 2

c

ξ(Tc − T )2
. (2.45)In the viinity of Tc, the orrelation length diverges at T → Tc − 0. If in the48



ase of the seond order phase transition the length of orrelations diverges bythe power-law ∼ |Tc−T |−x, then in our ase it diverges qualitatively di�erentlyas ∼ exp( constTc−T ) (see Eq. (2.44)). At the same time, the free energy (2.35) isontinuous over the temperature, and the phase transition an be interpretedas an in�nite order.When ξ → ∞ (T → Tc − 0) the orrelation funtion g(r) deays as thepower-law
g(r) ∼ 1

r log2(r)
. (2.46)The pre-fator of the orrelation funtion g(r) in Eq. (2.42) behaves as∼ θw

(1−w)2 .Sine the heliity degree θ tends to zero as ∼ exp( constTc−T ) (see Eq. (2.45)), thevalue of orrelation as a funtion of temperature vanishes in the same way.Thus, we have unusual thermal behavior at T → Tc − 0, where the orrelationlength diverges as an exponent but at the same time the value of orrelationtends to zero.The phase transition of the in�nite order was obtained before, e.g., in [56,57℄ for the one-dimensional lassial spin model with long-range interations andthe singled out interation enter on the lattie. A similar result was presentedin [59℄, where the Ising model on the growing network was addressed. There, theorder parameter deays as ∼ exp(− 1√
Tc−T

), whih is qualitatively similar to ourresults in (2.45). That and existene of long-range interations in the system arethe ommon point with our model for the denaturated loops arbitrary lengths.The phase transition of the in�nite order onsidered in this work takes plaein the ase of c = 1 at the end of melting, where θ = 0. The given senario is inagreement with the experimental data obtained in [60℄. The sharp kink of themelting urve was interpreted in [60℄ as a phase transition of the seond order.However, the number of experimental points is not enough to de�ne the orderof transition without �utuational analysis. At the same time, the omparisonof the melting urves presented in Fig. 2.10 and in Fig. 1 of Ref.[60℄ showsvery lose similarity. Thus, the phase transition obtained in [60℄ experimentally49



ould be of the in�nite order but not the seond order.The order of phase transition in the double-stranded DNA is sensitive tothe way of taking into aount the loop entropy δS(m) = −c lnm, where m isthe length of the loop. In our approah, no assumptions about the value of chas been made. Considering denaturated loops expliitly in some approximationjusti�ed above we obtain c = 1. In ontrast to the results derived in [40, 61, 62℄we got the ontinuous phase transition of the in�nite order. The various phasebehavior is explained by the di�erent onsideration of the denaturated loops.2.6. Random walks with stops at the origin (Model C)In this setion, we onsider another kind of a random walk whih admitsa more detailed desription of the interation between polymer hains [63, 64℄.One of the key-points of the double-stranded DNA denaturation is the so�alled �loop fator� desribing the entropy of the one-loop formation, ∆S(m) =

−c lnm, wherem is the length of the loop. The phase behavior, e.g., the order ofthe phase transition depends on the value of the c fator [34, 40, 61, 62, 65℄. Thisfator was onsidered in many semi-empirial mean �eld theories [62, 66, 67℄ as amodi�ation of Stokmayer's theory for su�iently long hains. In e.g. [40℄, theexluded-volume interations within denatured loops were taken into aountand, on the basis of the Poland and Sheraga model [34℄ phase transitions ofdi�erent order were shown to arise depending on the value of a loop exponent.However, in spite of extensive researh the real-life phase behavior of the double�strand DNA still remains unlear. For instane, in [40℄ and referenes thereina phase transition of the �rst order was reported. At the same time, in [60℄evidene is provided for seond order phase transition at the end of the double�strand DNA melting. Suh diversity of experimental results is mainly ausedby di�erent experimental onditions. Conformational statistis of the long loopsand parameter c are highly sensitive to the ounter-ion onentration, pH et.The problem whih still remains unsolved is the relationship between very50



diverse experimental onditions of and the value of the c fator.As well as in the previous setions, the main idea of the proposed approahis the mapping of two interating three-dimensional polymer hains to a singletwo-dimensional random walk interating with the origin.Our approah has a number of advantages. First of all, we have takeninto aount the self-avoiding e�ets of eah hain, sine the helix initialization(�rst base-pair formation in the helix) takes plae only at the �rst return ofthe two-dimensional random walk. Seond, the approah used permits one toavoid the meander- and knot-like onformations. The traditional approah using
∆S(m) deals with any return of the random walk. At the same time, to addressthe loop entropy ∆S(m) orretly, it is neessary to use only the �rst returnsof the random walk, as in our ase. Thus, our approah deals with two-strandpolynuleotides without any preliminary assumptions onerning ∆S(m).The interation between two strands and the self-interation inside eahstrand in the oil regions inlude mainly Van-der-Waals and eletrostati interations.The latter is the most long-range one among the non-helial interations. Happily,the DNA-solvent system as a whole an be onsidered as eletro-neutral one,sine it ontains di�erent salts and other low-moleular ompounds whih sreenthe eletrostati interations on the length sale rD, where rD is the Debyeradius.We disuss two ways of the hydrogen bond formation. The �rst one is aninstant ontat between the polymer hains whih leads to the reation of asingle hydrogen bond with subsequent free evolution of both polymers. Thisontat interation is ompensated by the short range intermoleular repulsion,and we asribe the energy U1 > 0 to it. The seond way is the reation of asequene of hydrogen bonds. This ase orresponds to �glued� polymer hains inthe helial phase where intermoleular repulsion is suppressed. We asribe theenergy U2 < 0 to the monomer-monomer ontats in the helial region. Thisenergy atually is the sum of two terms: the energy of hydrogen bonds and the51



energy of staking interation between the given base pair and the preedingbase pair in the helial region.Eah nuleotide is a group of atoms desribed by internal degrees of freedom,the dihedral angles. The base pair formation gains the energy but results in theentropy loss. To address the issue of the internal struture of nuleotides, weintrodue a new fator q = e∆S, where∆S is the entropy loss aused by one basepair formation. We suppose that there is no another interation in the middlepart of the loop beause the radius rD is short enough at the physiologialonditions.The one-strand loop is presented as a walk of the partile. E�etively, wemultiply the whole weight of the random walk trajetory by k1 = e
−U1
T forvisiting the origin and by k2 = e

−U2
T for staying at the origin. The partitionfuntion for this model is

Λ =
∞
∑

j=0

(qk1)
jF (z)j

( ∞
∑

m=0

(qk2z)
m

)j

|zN =
1

2πi

∮

C0

1

zN+1

dz

1− qk1F (z)
1−qk2z

. (2.47)The e�etive interation U1 > 0 depends on the result of ompetitionbetween the repulsive interation and the binding energy. U2 < 0 orrespondsto the attrative standing at the origin. The fator q with q < 1 mimis thefat that eah base pair formation is unfavorable entropially. A mirosopistudy of these ompeting interations using the analogy with the self-avoidingrandom walks was onsidered in [40℄.2.6.1. The analysis of the partition funtionNow let us disuss the partition funtion (2.47)
Λ =

1

2πi

∮

C0

1

zN+1

(1− qk2z)dz

1− qk2z − qk1F (z)
, (2.48)where we onsider two ases depending on values k1, k2 and q.If k1 + k2 >

1
q for 0 < q < 1 we have a simple pole only at the positive52



point z+ whih an be found by solving the equation
k2z+ + k1F (z+) =

1

q
. (2.49)For the integral Λ we derive (2.54)In the seond ase, when k1+k2 < 1

q , there are no poles inside the ontour
C1 exept 0, so it is neessary to estimate an integral along indentation aroundthe points ±1:

ΛMP =
1

2πi

P∫

M

1

zN+1

(1− qk2z)dz

1− qk2z − qk1

(

1− 1
− 1

π
log(1−z)

) =

δ∫

0

1

(z + 1)N+1

×
1
π(1− qk2(z + 1))(qk1 + qk2(1 + z) 1π log(z))dz

[

qk1 − (1− qk1 − qk2(z + 1)) 1π log(z)
]2

+ [1− qk1 − qk2(z + 1)]2
. (2.50)Using the fat that δ is small, we get

ΛMP =
(1− qk2)k1π

(1− qk1 − qk2)2

δ∫

0

1

(z + 1)N+1

dz

log2(z)

=
(1− qk2)qk1π

(1− qk1 − qk2)2
1

N log2(N)
. (2.51)In the same way, we an show that

ΛM ′P ′ =
(1 + qk2)qk1π

(1− qk1 + qk2)2
1

N log2(N)
. (2.52)Thus, for the whole integral Λ we obtain

Λ =

(

(1− qk2)qk1π

(1− qk1 − qk2)2
+

(1 + qk2)qk1π

(1− qk1 + qk2)2

)

1

N log2(N)
(2.53)Finally, to �nd an average energy per step and heliity, we substitute (2.53)in formulas (2.56) and obtain 0 for both of them in the limit of large N .2.7. Results and disussion of Model CThe thermal behavior of the system is enoded in the singularities of theintegrand of the partition funtion (2.47). Depending on the parameters of the53



model the ritial temperature Tc exists where the singular behavior is hanged.The analysis of possible ases is presented in 2.6.1. Spei�ally, we derive for
T < Tc

Λ =
1

zN+1
+

1− qk2z+
qk2 + qk1F ′(z+)

. (2.54)and for T > Tc Λ tends to 0 as a 1
N log2(N)

. The ritial temperature Tc isdetermined from the equation
k1 + k2 =

1

q
. (2.55)To �nd the average energy and heliity, we use the formulas generalizing(2.22)

E = − 1

N
k1 log k1

∂ log Λ

∂k1
− 1

N
k2 log k2

∂ log Λ

∂k2

θ =
1

N
k1
∂ log Λ

∂k1
+

1

N
k2
∂ log Λ

∂k2
, (2.56)whih give for T < Tc:

E = − k1 log k1F (z+)

z+(k2 + k1F ′(z+))
+

qk1k2 log k2F (z+)

(k2 + k1F ′(z+))(qz+k2 − 1)

θ = − k1F (z+)

z+(k2 + k1F ′(z+))(qz+k2 − 1)
. (2.57)The irles on Fig. 2.12 show that the heliity degree ompletely vanishesabove the ritial temperature Tc. This is in ontrast with the simple randomwalk model with k > 1 shown by squares, where θ tends to zero asymptotiallydue to entropy e�ets. We onlude that the model with stops at the origindesribes the helix-oil sharp transition. The same behavior takes plae for theaverage energy.If the ontat interation is attrative with k > 1 (U < 0), the systemexhibits a gradual helix-oil transition. In the ase of repulsive interation with

k < 1 (U > 0) we have zero heliity in the double-stranded region. Moreinteresting behavior appears for a ompeting interation of the random walkwith the origin when k1 < 1 (U1 > 0) for the instantaneous ontats between54



Fig 2.12. Dependene of heliity degree on the temperature. Squares show the ase of thesimple random walk model. Cirles show the behavior of the random walk with stops at theorigin (U1 = 1, U2 = 1.5, q = 0.4, U = −1.5).polymer hains and k2 > 1 (U2 < 0) for their long ontat. We also introduea fator q whih aounts for the entropy derease in the base pair formation.Under these onditions the system exhibits a sharp denaturation transition.The ompletely denatured state (θ = 0) with two ompletely unbound DNAstrands appears at �nite temperatures T > Tc.The key point of our study is the entropi nature of the parameter q =

e∆S, where ∆S is the entropy loss aused by the base-pair formation. Also,we obligatorily need a repulsion between non-paired nuleotides to obtain asharp denaturation transition. In the opposite ase, where there is attrationbetween non-paired nuleotides or there is no interation between non-pairednuleotides, we have smooth denaturation. The given result is in qualitativeagreement with [40℄, where the sharpness of the DNA melting was also assignedto repulsive interations.The main harateristis of the melting urve θ on the temperature T are55



the melting temperature Tm and the interval of transition ∆T . The meltingtemperature is the measure of stability of the helial struture de�ned by theondition θ = 1
2 [34℄. The melting interval∆T is usually onsidered as a measureof ooperativity of a helix-oil transition [34℄. It is haraterized by the slope ofthe melting urve at the point Tm, ∆T = | dθ

dT
|−1
T=Tm

. Figure 2.13 learly showsthat the helix stability inreases with the strength of attration U2. At thesame time, the melting ooperativity substantially dereases with the strengthof attration. The growth of stability is quite natural beause attration U2stabilizes the double-helix.
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de�ned as the slope of themelting urve at the melting temperature Tm.Thus, using a very simple random walk model, one is able to desribe theessentially omplex behavior of the double-stranded polynuleotide.The proposed model is in qualitative agreement with experimental resultspresented in [60℄, where sharp transition is exhibited at the end of the melting56
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Chapter 3The seondary strutural transitions insingle-stranded RNA. The basi model.3.1. Statement of the problem.Single � stranded RNA (ssRNA) plays a entral role in moleular biology.In addition to transmitting geneti information from DNA to proteins, RNAmoleules partiipate atively in a variety of ellular proesses [68℄. Examplesare translation (rRNA, tRNA, and tmRNA), editing of mRNA, intraellularprotein targeting, nulear spliing of pre-mRNA, and X-hromosome inativation.Seondary struture of ssRNA is usually muh more stable than tertiary struture.It an be explained by stronger interations like hydrogen bonds an staking�interations, stabilizing seondary struture in omparison with tertiary [13℄.Another explanation is the additional entropy loss, neessary for the stabletertiary formation, as it was shown in [69℄. Thus, independent on the spei�origin of the higher stability of seondary struture, the seondary struturepredition is possible without taking into aount the tertiary struture formation.Sine the pioneering work of Higgs and Morgan [29, 70℄ and Bundshuhand Hwa [71, 72℄, several authors have studied the statistial physis of RNAseondary strutures both for homopolymeri and heterogeneous RNAs and[71�75℄. In dependene on model peuliarities ssRNA exhibits rih phase behaviorinluding folding transitions, ontinuous freezing transition between moltenand glass phase et. Not muh is known about the freezing transition, evenfrom numerial work; indeed its loalization is non-trivial [76℄. Better studiednumerially is the glass phase at strong disorder, or equivalently zero temperature[71, 73, 77, 78℄. However, the nature of the freezing transition and of the low�temperature phase are still poorly understood, and ontraditory results are59



reported [78℄. The main problem is to address the e�et of the sequene disorderon the thermodynamis of ssRNA. The ommonly used replia approah [79�84℄still remain non-e�etive for ssRNA seondary struture investigation. The glassphase appears in the solution of [71, 72℄ for the partition funtion for n = 2replias (instead of n = 0 relevant for the disordered system) and in numerialsimulations [71, 73, 78, 85, 86℄.The main goal of the present report is to develop an approah to investigatethermodynamis of ssRNA with taking into aount sequene heterogeneity.3.2. The onstrained annealing approahWe propose to study random ssRNA sequenes omposed of A, C, G,and U bases. Pairing is permitted only between A and U and between C and
G bases. The topologial rules that determine whih strutures are allowedare the essential feature that makes workable the numerial alulation of thefree energy of seondary struture. The main rule is elimination of so alledpseudoknots (Fig.3.1) from the set of available seondary strutures as in mostother work on ssRNA [29℄.In this ase the full partition funtion ZN for the ssRNA hain of thelength N an be alulated reursively at any given temperature T [29, 71℄. Tomake the sequene e�et tratable analytially we propose to use an approahdeveloped by M. Serva and G. Paladin in [87℄. Following by [87�89℄, the freeenergy of ssRNA with quenhed random sequene of nuleotides an be estimaedon the basis of annealed averages of the partition funtion with appropriateonstraints. Given approah is substantially variational and an be realized bythe aid of Lagrange multipliers, whih serve as a variational parameters. Therelationship between the quenhed and annealed disorder in ssRNA has beenaddressed numerially in [90℄.Disordered systems like spin glasses or random heteropolymers are haraterizedby two types of degrees of freedom: annealed whih arrange themselves to60



minimize the free energy and quenhed whih an be onsidered as onstantin time. In ase of ssRNA annealed degrees of freedom are Watson-Crik basepairs. The nuleotides sequene an be addressed as a set of quenhed degrees offreedom. Aording to [87℄ the free energy of the ssRNA with random quenhedsequene of nuleotides an be estimated as
f ≥ g(T, µ) ≥ fA, (3.1)where f and fA are the redued quenhed and annealed free energy per nuleotide,orrespondingly and

g(T, µ) = − 1

N
lnZ(seq)e−Nµα(seq). (3.2)

Z(seq) is the parition funtion of ssRNA with given sequene realization seqand α(seq) is the appropriate self-averaging quenhed quantity. O means theaverage over sequene distribution funtion. We will refer given approah belowas a "onstraint annealing approah".3.3. The modelA primary RNA struture is fully determined by the base sequene whih isa list of nuleotides, ytosine (C), guanine (G), adenine (A), or urail (U) with
N entries. In agreement with previous treatments, a valid seondary strutureis a list of all base pairs with the onstraint that a base an be part of at mostone pair. In addition, pseudoknots are not allowed, i.e., for any two base pairs
(i, j) and (k, l) with i < j, k < l, and i < k we have either i < k < l < j or
i < j < k < l.Hamiltonian of the model is written as

H(m̂, {h}) =
∑

i<j

mij(ǫ0 + ǫhihj), (3.3)where sum is taken over all non-repeated base pairs, mij = 1 if the bases i and
j are paired and mij = 0 otherwise. The partition funtion for the ssRNA hain61



Fig 3.1. A pseudoknot is an RNA seondary struture ontaining at least two stem-loopstrutures in whih half of one stem is interalated between the two halves of another stem.of N nuleotides is written as
ZN({h}) =

∑′

m̂
exp[−βH(m̂, {h})], (3.4)where β = 1

kBT
and the sum is taken over all realizations of the matrix m̂, whihare not inlude pseudoknots and ontaining not more than one unity on eahrow or olumn. The latter ondition desribes the saturation of base pairing.3.3.1. Gaussian disorderLet us onsider �rst the ase of Gaussian disorder. Then, the distributionfuntion for the sequene {h} is written

P{h} =
N
∏

i=1

ρ(hi), (3.5)where ρ(hi) = (2πD)−1/2e−
h2i
2D . The redued free energy per nuleotide is writtenas
f{h} = − 1

N
lnZN({h}) (3.6)
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In the thermodynami limit N → ∞ the free energy beomes a non-randomquantity and f{h} = f , where f is the quenhed free energy
f = − 1

N
lnZN({h}) (3.7)Following by [87℄ the quenhed free energy an be estimated as maxµ g(T, µ)using the inequality (4.5). Let us introdue the following onstraints for thequenhed variables {h}

α1{h} =
1

N

N
∑

i=1

hi (3.8)
α2{h} =

1

N

N
∑

i=1

(h2i −D)The e�etive partition funtion is written
ZN = e−Nµ1α1{h}−Nµ2α2{h}ZN ({h}) (3.9)and an be presented as (see setion 3.5 for details )

ZN = ωNZ0
N(ǫ̃), (3.10)where

Z0
N(ǫ̃) =

∑′

m̂
e−β(ǫ0+ǫ̃)

∑

i<j mijand
ω =

eµ2D+
D̃µ21
2

√

D̃√
D

(3.11)
D̃ =

D

1 + 2Dµ2

βǫ̃ =
βǫµ21D̃

2

1 + βǫD̃
+

1

2
ln

[

1− (βǫD̃)2
]

Z0
N(ǫ̃) is the partition funtion of homopolymeri ssRNA with e�etiveenergy ǫ = ǫ0 + ǫ̃. As it was shown in [71℄,

Z0
N(ǫ̃) = A0(Q)N

−θ0z(Q)N , (3.12)63



where θ0 = 3/2, Q = eβ(ǫ0+ǫ̃) and
z(Q) = 1 + 2

√

Q (3.13)
A0(Q) =

√

1 + 2
√
Q

4πQ3/2The variational redued free enery g(β, µ1, µ2) = − 1
N lnZN is written

g(β, µ1, µ2) = −1

2
ln
D̃

D
−µ2D− D̃µ21

2
− ln

(

1+2[1−(βǫD̃)2]−1/4e
−βǫ0

2 −µ21
2

βǫD̃2

1+βǫD̃

)(3.14)
g(β, µ1, µ2) reah maximal value at µ1 = 0 (see setion 3.6 for details ). Thus,we need to maximize the variational free energy over the variable D̃

g(β, D̃) = −1

2
ln
D̃

D
+

1

2
− D

2D̃
− ln

(

1 + 2[1− (βǫD̃)2]−1/4e−
βǫ0
2

) (3.15)Maximization results to the equation
D

D̃
= 1 +

(βǫD̃)2

1− (βǫD̃)2
Θ(ln 2− βǫ0

2
− 1

4
ln[1− (βǫD̃)2]), (3.16)whereΘ(x) = ex

1+ex is logial funtion. Equation (3.16) an be solved numerially,and its solution is unique, positive and ontinuously hanging with temperature.The free energy per monomer of the system is estimated as
f(β) =

g(β)

β
, (3.17)where g(β) = g(β, D̃0) and D̃0 is solution of the equation (3.16). The entropyper monomer is written as

s(β) = −g(β) + β
dg(β)

dβ
(3.18)and the spei� heat

cV (β) = −β2d
2g(β)

dβ2
(3.19)Let us de�ne heliity degree as the mean part of Watson-Crik base pairs

θ =
2

N
〈
∑

i<j

mij〉 = Θ(ln 2− βǫ0
2

− 1

4
ln[1− (βǫD̃0)

2]), (3.20)64



where 〈O〉 is thermodynami average and D̃0 is the solution of the equation(3.16). Temperature behavior of the thermodynami parameters is alulatedon the basis of equations (3.16,3.17,3.18,3.19,3.30).The entropy of the model with disorder is substantially less than thosefor homopolymer. In the low-temperature limit the entropy of the model withGaussian disorder exhibits logarithmi divergene with temperature as (fordetails see setion 3.7).
s ≃ −ln(ǫβD) (3.21)Thus, at low enough, but �nite temperatures entropy beomes negative s <

0. However, despite of ordinary and spin glasses, entropy risis itself doesnot haraterize the glass phase appearane, beause of our model ontainsontinuous degrees of freedom ({h}).In dependene on parameters ǫ0, ǫ andD model exhibits di�erent temperaturebehavior of thermodynami parameters. At the de�nite hoie of the parametersthe temperature behavior of spei� heat exhibits two peaks. The high-temperaturepeak orresponds to the melting transition. It is neessary to mention thateven at the in�nitely large temperatures heliity degree still remain θ = 2/3.In the area of the low-temperature peak the heliity degree θ ≈ 1. Fromthe equations (3.21) and cV = T (ds/dT ) it straightforwardly follows that
cV (T = 0) > 0. Thus, at low- and even zero-temperatures system has availabledegrees of freedom, although the entropy is drastially dereased in omparisonwith homopolymeri ase. Similar temperature behavior of the spei� heat hasbeen observed reently e.g. in some models displaying glassy behavior at zerotemperature due to entropi barriers [91℄. From the one side we have a low�energy ground state (at T = 0) pratially without unbounded base pairs (θ ≈
1). From another side, spei� heat behaves as a lassial model with Maxwell�Boltzmann statistis at the high-temperature area. Thus, at low temperatureswe have a highly ordered system (θ ≈ 1) with de�nite onformational freedom,whih is signalling about the possibility of the low-temperature glassy state65



appearane. However, Gaussian model does not provide enough evidene forthe glass transition and we need to investigate more realisti model of ssRNA.3.3.2. Bimodal disorderIn previous onsiderations of ssRNA folding the sequene disorder usuallysupposed to be Gaussian [71, 92�96℄ to make model tratable analytially.However, the real RNA sequene is omposed from four-literal alphabet. For thesake of simpliity we onsider the ase of two-literal sequene to assign variable
hi = ±1 to eah i-th nuleotide. It orresponds e.g. to random poly(AU)sequene.Then, the distribution funtion for the sequene {h} is written

P{h} =

N
∏

i=1

P (hi), (3.22)where P (hi) = qδ(hi − 1) + (1− q)δ(hi + 1).Let us introdue the following onstraints for the quenhed variables {h}
a1{h} =

1

N

N
∑

i=1

[hi − (2q − 1)] (3.23)
a2{h} =

1

N

N
∑

i=1

[(hi − (2q − 1))2 − 4q(1− q)]It is obvious that a1{h} = 0 and a2{h} = 0. The e�etive partition funtion iswritten
ZN = e−Nµ1a1{h}−Nµ2a2{h}ZN({h}) (3.24)and an be presented as (see setion 3.8 for details )

ZN = eNµ(2q−1)ΩNZ0
N(ǭ), (3.25)where

Z0
N(ǭ) =

∑′

m̂
e−β(ǫ0+ǭ)

∑

i<j mij , (3.26)66



µ = µ1 − 2(2q − 1)µ2 and
Ω(µ) = qe−µ + (1− q)eµ (3.27)

W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ

e−βǭ =
W (µ, β, ǫ)

Ω(µ)2Thus, parameters µ1 and µ2 presented in ZN only as µ = µ1 − 2(2q − 1)µ2and variational problem beomes one-parameter. We need to maximize thevariational potential
g(β, µ) = −µ(2q − 1)− lnΩ(µ)− ln(1 + 2

√

Q̄) (3.28)over µ, where Q̄ = e−β(ǫ0+ǭ). Maximization results to the equation
2q − 1 =

[

2
√

Q̄

1 + 2
√

Q̄
− 1

]

d lnΩ(µ)

dµ
− 1

2

2
√

Q̄

1 + 2
√

Q̄

∂ lnW (µ, β, ǫ)

∂µ
(3.29)
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θ =

2

N
〈
∑

i<j

mij〉 =
2
√

Q̄

1 + 2
√

Q̄
, (3.30)where 〈O〉 is thermodynami average. The r.h.s of the Eq. (3.30) is given bythe expression of heliity degree of the homopolymeri RNA, straightforwardlyobtained from the partition funtion of homopolymeri ssRNA [71℄. Thus,in the onstrained annealing approximation, heliity degree is written as forhomopolymeri RNA with the e�etive statistialite weight Q̄.Out of Eq. (3.30) the heliity degree an be estimated numerially bymaking use of the probability of base pair formation between nuleotides i and

j [71℄
pij = 〈mij〉 =

QijZi+1,j−1Zj+1,N+i−1

Z1,N
. (3.31)73



Fig 3.14. Free energy (a), spei� heat (b) per nuleotide, heliity degree (), and thefration of unfavorable ontats (d) vs temperature T = 1/β. Thin red lines are alulatedusing MCaskill's algorithm for the 30 random realizations of the N = 50 nuleotides withparameters ǫ0 = −1, ǫ = 1.5 and q = 0.75. The thik blue line is alulated in variationalapproximation f ≈ maxµ g(β, µ) in the thermodynami limit N → ∞. The thik dashedblak line is the mean value of the quantity, averaged over all random realisations.Partition funtions on the r.h.s. of the Eq. (3.31) have been alulated reursively(1.5) and the heliity degree for the spei� realization of sequene of nuleotidesis estimated as
θseq. =

2

N

∑

i<j

pij. (3.32)In Fig. 3.14 we ompare heliity degrees, obtained by the onstrained annealingwith those diretly alulated using Eqs. (1.5,3.31,3.32) for the pool of randomly74



Fig 3.15. Temperature behavior of the heliity degree (a) and the spei� heat per nuleotide(b). Blak dashed lines are alulated using MCaskill algorithm and averaged over randomrealizations of the N = 50 nuleotides with parameters ǫ0 = −1.5, ǫ = 1.0 and q = 0.75. Theblue lines are the quantities, alulated by the onstrained annealing method.generated sequenes. The mean value of the heliity degree, alulated numeriallyis in a good agreement with those, alulated with the help of onstrainedannealing method. As seen from Fig. 3.14, heliity degree abruptly inreaseswith temperature and then, after some temperature around T = 0.5 point,begins dereasing. Suh reentrane of heliity degree indiates the presene ofboth high- and low-temperature melting and, perhaps denaturation.The high temperature limit orresponds to the homopolymeri ase, wherethe impat of inter-nuleotide interations is not so essential. For the sakeof simpliity the temperature dependene of the (free) energy of base pairformation is negleted and limT→∞ θ = 2/3. For more realisti hoie e.g.
ǫ0 = ∆H − T∆S the high-temperature limit of the heliity degree will bede�ned mainly by the loss of entropy ∆S of one base pair formation. Here ∆His the enthalpy per one base pair. When ompared against Figs. 3.14b the low�temperature peak of heat apaity ould be assigned to low-temperature (old)75



denaturation, while the high-temperature one to the usual hot denaturation.Heliity degree an be also represented through the frations of energetiallyunfavorable (between similar nuleotides) and favorable (between di�erent nuleotides)ontats as θ = η+ + η−, where
η± =

2

N
〈
∑

i<j

δ(hihj ∓ 1)mij〉, (3.33)normalized by the maximal number of base pairs, N
2
. The onsideration oftemperature dependenies of these quantities reveals the origin of low-temperaturemelting. The fration of unfavorable ontats an be written as η+ = 1

2(θ+ η),where the auxiliary quantity η is written
η =

2

N
〈
∑

i<j

hihjmij〉 = 2
∂g(β, µ0)

∂(βǫ)
. (3.34)

θ and η quantities are alulated analytially (see SI for details). We alsoestimate η numerially, using the same approah as for heliity degree (seeEqs. (3.31,3.32)). In Fig.3.14d, we ompare the frations of unfavorable ontats
η+, obtained using the Eqs. (3.30,3.34) and those alulated numerially.In Fig.3.14d, we show the derease of the fration of unfavorable ontatswith lowered temperature. It is quite natural, sine for unfavorable ontats theBoltzmann weight Qij < 1 and tends to zero at low temperature. At the sametime, the fration of favorable ontats η− inreases with the temperature. Forthe bilateral A and U alphabet, the probability to �nd the unfavorable pair ofnuleotides is higher than to �nd the favorable one (see SI). That is why thederease of η+ results in low temperature melting.To the best of our knowledge the double-peaked behavior of spei� heathas never resulted before. Pagniani et al onsidered equal probabilities (q = 1

2
)for two letters (A and U) to appear and reported a single-peaked spei� heat[86℄. From our Eqs. (3.28,3.29) it straightforwardly follows that if done so,

µ0(β) = 0 and the ompletely annealed ase with a single peak of heat apaityand no low temperature melting results. In ompliment to �ndings of Pagniani76



et al [86℄, our results indiate that single peak of heat apaity results for q = 0.5ase only, and for other values of q there are always two peaks.To address the e�et of interation parameters we distinguish two ases.The �rst, when the similar nuleotides (AA or UU) are repulsive and the seondone, when they are still attrative with less strength than AU. The di�erenebetween the two ases is haraterised by ∆ = ǫ0 + ǫ parameter. The low�temperature melting, desribed above (see Fig. 3.14) takes plae if ∆ > 0and the similar nuleotides are repulsive. On the other hand, if the similarnuleotides are attrative (∆ < 0), temperature behavior of heliity degreehanges drastially and low-temperature melting disappears (see Fig.3.15a).Spei� heat behavior remains the same as for ∆ > 0 (see in Fig.3.15b). Givensenario on�rms our suggestion, that the reason for low-temperature meltingis the derease of the fration of energetially unfavorable ontats η+.Fig. 3.16 summarizes the obtained results in a phase diagram. However,
q parameter values belong to the interval 0 ≤ q ≤ 1, we onsider only 0.5 ≤
q ≤ 1, beause of system behavior is symmetri with respet to q = 0.5.In the upper half of the diagram the temperature behavior of heliity degreeis presented, in dependene on the energy of similar nuleotides interations,
ǫ0+ǫ for the typial value of q = 0.75. While the similar nuleotides interationhanges from attration to repulsion, the system goes from the thermal meltingsenario to the both old and thermal one. In the bottom half of the diagram thetemperature behavior of the heliity degree is presented in dependene on theprobability q values. In the left-bottom orner the similar nuleotides attrationis addressed and in the right-bottom, the repulsion one. If in ase of attration,the growth of the probablity q just dereases the heliity degree, the similarnuleotides repulsion is haraterised by more ompliated behavior. While theprobability q is growing in the interval 0 ≤ q ≤ 1, the heliity degree behaviorhanges from the purely hot to the purely old melting. At the intermediatevalues of q the system exhibits both old and hot melting.77



Fig 3.16. Phase diagram ǫ0 + ǫ, q.Temperature behavior of the spei� heat is depited in Fig. 3.17. While inase q = 0.5 only high-temperature peak is survived, in (homopolymeri) ase
q = 1 spei� heat exhibits only low-temperature peak. In the rossover regime
0.5 < q < 1 spei� heat exhibits two-peak behavior that is orresponding tothe hot and old melting in the right-bottom orner in the Fig. 3.16.The obtained theoretially old melting, gives insight into the sequenee�et on the old denaturation [98℄. Cold denaturation usually assigned to thepositive spei� heat di�erene between the denaturated and native states [98�100℄ or to the ompeting between the inter- and intramoleular hydrogen bonds[101℄. Aording to our onsideration, the two transitions takes plae only if q 6=78



Fig 3.17. Temperature behavior of the spei� heat for the di�erent values of q parameterand ǫ0 + ǫ > 0 (ǫ0 = −1, ǫ = 1.5). Value of the probability q is hanging from q = 0.5 up to
q = 1.0, while the line olor is hanging from the red to the blue one.
1/2. The reason is that the probability to �nd the unfavorable pair of nuleotidesis higher than to �nd the favorable one. These probabilities are equal only if
q = 1/2. Thus, the potential number of unfavorable ontats seems to be one ofthe main prerequisites of the old melting and, perhaps the old denaturation.At the same time, old melting requires ∆ > 0, where the similar nuleotidesare repulsive. That is the free energy hange, aused by non-Watson-Crik pairsformation should be positive. Thus, the experimental onditions, suitable forthe old denaturation are based on the interplay between the potential numberof unfavorable ontats (sequene) and the non-Watson-Crik pairs stability.3.5. E�etive partition funtion: Gaussian ase.Let us obtain e�etive partition funtion with onstraints de�ned by equations

α1{h} =
1

N

N
∑

i=1

(hi − h̄) (3.35)
α2{h} =

1

N

N
∑

i=1

((hi − h̄)2 −D),
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where h̄ is the mean value of hi and orresponding distribution funtion is givenby
ρ(hi) = (2πD)−1/2e−

(hi−h̄)2

2D (3.36)The e�etive partition funtionZN = e−Nµ1α1{h}−Nµ2α2{h}ZN({h}) is transformedas
ZN = eN(µ1h̄+µ2D)

∑′

m̂
e−βǫ0

∑

i<j mij

∫
DhP{h}e−βǫ

2 (h,m̂h)−µ1(e,h)−µ2

∑

j(hj−h̄)2,(3.37)where (a,b) is the salar produt of the vetors a and b, h = (h1, h2, ..., hN)and e = (1, 1, ..., 1). Let us average over the distribution funtion P{h}
∫
DhP{h}e−βǫ

2 (h,m̂h)−µ1(e,h)−µ2

∑

j(hj−h̄)2 = (3.38)
=

∫
DhP{h} exp{−βǫ

2
(h, m̂h)− µ1(e,h)−

−µ2(h, êh) + 2µ2h̄(e,h)− µ2Nh̄
2} =

= e−Nh̄2(µ2+
1
2D )(2πD)−N/2

∫
Dh exp

{

− 1

2

(

h,

[

βǫm̂+ ê(2µ2 + 1/D)

]

h

)

−

−(µ1 − 2µ2h̄− h̄/D)(e,h)

}

,where ê is the unit matrix. Thus, the e�etive partition funtion (3.37) is written
ZN =

eN(µ1h̄+µ2D)−Nh̄2

2 (2µ2+
1
D
)

(2πD)N/2

∑′

m̂
e−βǫ0

∑

i<j mij × (3.39)
×
∫
Dh exp

{

− 1

2

(

h,

[

βǫm̂+ ê(2µ2 + 1/D)

]

h

)

−

−(µ1 − h̄(2µ2 + 1/D))(e,h)

}

=

=
eN(µ1h̄+µ2D)−Nh̄2

2 (2µ2+
1
D
)

(2πD)N/2

∑′

m̂
exp

{

− 1

2
ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

+

+
1

2
[µ1 − h̄(2µ2 + 1/D)]2

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij

}
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Let us alulate �rst the ln det term in the last equation
ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

= (3.40)
= Tr ln

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

=

= −N ln(2πD̃) +
∞
∑

k=1

(−1)k

k
(βǫD̃)kTr(m̂k),where D̃ = D

1+2Dµ2
. Let us alulate a few �rst terms Tr(m̂k).

• (k = 1) Tr(m̂) = 0

• (k = 2) Tr(m̂2) =
∑

i

∑

jmijmji =
∑

ijmij

• (k = 3)
Tr(m̂3) =

∑

i

∑

ij

mijmjkmki =
∑

i

∑

jk

mijmjkmkiδijδik,beause of e.g. mijmjk 6= 0 only if i = k. Thus,
Tr(m̂3) =

∑

i

∑

jk

mijmjkmkiδijδik =
∑

ij

mijmjimiiδij = 0

• (k = 4)
Tr(m̂4) =

∑

i

∑

jkl

mijmjkmklmli =
∑

i

∑

jkl

mijmjkmklmliδikδjlδki =
∑

ij

mij

• (k = 5) in the same manner we an show that Tr(m̂5) = 0 et.Thus,
Tr(m̂k) =







∑

ijmij , if k is even
0 , if k is odd (3.41)and eq.(3.40) is written as

ln det

(

βǫm̂+ ê(2µ2 + 1/D)

2π

)

= (3.42)
= −N ln(2πD̃) +

∑

ij

mij

∞
∑

m=1

(−1)2m+1

2m
(βǫD̃)2m =

= −N ln(2πD̃) +
1

2
ln[1− (βǫD̃)2]81



The sum of the elements of inverse matrix in the exponent of eq.(3.39) is written
∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = D̃

∑

ij

[βǫD̃m̂+ ê]−1
ij (3.43)The inverse matrix is expanded as [βǫD̃m̂ +̂e]−1 =

∑∞
l=0(−1)l(βǫD̃)lm̂l. Thus,eq.(3.43) is rewritten as

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = D̃

∞
∑

l=0

(−1)l(βǫD̃)l
∑

ij

(m̂l)ij (3.44)In analogy with Tr(m̂l) we an show that
∑

ij

(m̂l)ij =







∑

ijmij , if l=1,2,3,...
N , if l=0 (3.45)Thus,

∑

ij

[βǫm̂+ ê(2µ2 + 1/D)]−1
ij = ND̃ − βǫD̃2

1 + βǫD̃
(3.46)Finally, the e�etive partition funtion is written

ZN =

(

D̃

D

)N/2

exp

[

Nµ1h̄+Nµ2D +
ND̃

2
µ1(µ1 − 2h̄/D̃)

]

× (3.47)
×
∑′

m̂
e−β(ǫ0+ǫ̃)

∑

i<j mij ,where
βǫ̃ =

1

2
ln[1− (βǫD̃)2] + (µ1 − h̄/D̃)2

βǫD̃2

1 + βǫD̃
(3.48)3.6. Variational equation.Let us address the ase, where h̄ = 0. With taking into aount notations

D̃ = D/(1 + 2Dµ2) and µ1 = µ variational redued free energy is written
g(β, µ, D̃) = −1

2
ln
D̃

D
− D

2
+

1

2
− D̃µ2

2
− (3.49)

− ln

(

1 + 2[1− (βǫD̃)2]−1/4e
−βǫ0

2 −µ2

2
βǫD̃2

1+βǫD̃

)

82



Let us �nd the point of extrema over the µ variable
0 =

∂g

∂µ
= −D̃µ+ µ

βǫD̃2

1 + βǫD̃
S(X), (3.50)where X = ln 2− βǫ0

2 − µ2

2
βǫD̃2

1+βǫD̃
− 1

4 ln[1− (βǫD̃)2] and S(x) = ex

1+ex is so alledlogial funtion. Eq.(3.50) has two solutions, µ = 0 and
1 =

βǫD̃

1 + βǫD̃
S(X) (3.51)Beause of 0 < S(x) < 1 at any �nite value of x, the right side of the lastequation is less than 1. That is why eq.(3.51) has no solution and the uniquesolution of the eq.(3.50) is µ = 0.3.7. Entropy: low-temperature limit.To estimate entropy in the low-temperature area let us estimate value of

D̃, maximizing variational free energy g0(β, D̃) = g(β, 0, D̃), where g(β, 0, D̃)is de�ned by eq.(3.49). From the equation 0 = ∂g0
∂D̃

it follows that
D

D̃
= 1 +

(βǫD̃)2

1− (βǫD̃)2
S(X), (3.52)where X = ln 2− βǫ0

2 − µ2

2
βǫD̃2

1+βǫD̃
− 1

4 ln[1− (βǫD̃)2]. Let us suppose, βǫD̃ → 1(β → ∞) as (βǫD̃)2 = 1− r, where r ≪ 1. Thus, eq.(3.52) is written
βǫ(1 + r/2) ≈ 1 +

(

1

r
− 1

)[

1− r1/4

2
eβǫ0/2 +O(eβǫ0

√
r)

] (3.53)We are foused on the ase ǫ0 < 0. The last equation an be expanded up tothe linear term over r and written as
βǫDr ≃ 1− r1/4eβǫ0/2

2
+O(eβǫ0

√
r) (3.54)Thus, in the limit β → ∞

r ≃ 1

βǫD
(3.55)83



In the low-temperature area
g0(β, D̃) ≃ 1

4
ln(βǫD) +

1

4βǫD
+

1

4
− βǫD

2
− ln 2 +

βǫ0
2

(3.56)and entropy s = −g0 + β dg0
dβ in the limit β → ∞ is estimated as

s0 ≃ −1

4
ln(βǫD) (3.57)3.8. E�etive partition funtion: bimodal disorder.Let us obtain e�etive partition funtion with onstraints de�ned by equations

a1{h} =
1

N

N
∑

i=1

[hi − (2q − 1)] (3.58)
a2{h} =

1

N

N
∑

i=1

[(hi − (2q − 1))2 − 4q(1− q)],where the orresponding distribution funtion is given by
P (hi) = qδ(hi − 1) + (1− q)δ(hi + 1) (3.59)The e�etive partition funtionZN = e−Nµ1a1{h}−Nµ2a2{h}ZN({h}) is transformedas

ZN = eN(2q−1)µ
∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}), (3.60)where µ = µ1 − 2(2q − 1)µ2. Let us alulate separately

∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}) = (3.61)

=
∑′

m̂
e−βǫ0

∑

i<j mij

∑

{h}

N
∏

j=1

P (hj)e
−µhj

∏

k<l

(1 +mklVkl),where Vkl = e−βǫhkhl − 1. Thus,
∑

{h}

N
∏

j=1

P (hj)e
−µhjZN({h}) =

∑′

m̂
e−βǫ0

∑

i<j mij

∑

{h}

N
∏

j=1

P (hj)e
−µhj × (3.62)

×
{

1 +
∑

k<l

mklVkl +
∑

k<l

∑

p<q

mklmpqVklVpq +
∑

k<l

∑

p<q

∑

t<n

mklmpqmtnVklVpqVtn + ...

}
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Summation in the last equation is taken over p non-repeating pairs of nuleotides
iα < jα, where p = 1, 2, 3, .... At the same time eah of pairs di�ers from otherpairs at least by one nuleotide. Thus, eah sum of p pairs of nuleotides an bedivided by two parts. The �rst one, ontaining no ommon nuleotides and theseond one, ontaining at least one ommon nuleotide. Let us address the sumover p non-repeating base pairs ontaining at least one ommon nuleotide, e.g.
J

∑

i1<j1

...
∑

ik

...
∑

jl

...
∑

ip<jp

mi1j1...mikJ ...mJjl...mipjpVi1j1...VikJ ...VJjl...Vipjp = (3.63)
=
∑

i1<j1

...
∑

ik

...
∑

jl

...
∑

ip<jp

mi1j1...mikJ ...δikjl...mJjl...mipjpVi1j1...VikJ ...VJjl...Vipjpbeause of mikJmJjl 6= 0 only if ik = jl. At the same time δikjl in eq.(3.63) isalways equal to zero beause of eah pair in the sum (3.63) di�ers from otherpairs at least by one nuleotide and onsequently ik 6= jl. Thus,
∑

i1<j1

...
∑

ip<jp

mi1j1...mipjpVi1j1...Vipjp =
∑

(i1<j1)

...
∑

(ip<jp)

mi1j1...mipjpVi1j1...Vipjp (3.64)is taken over p non-repeated pairs of nuleotides without any ommon nuleotide.Thus, we an average fators Vi1j1,..., Vipjp in the eq.(3.62) independently and
∑

{h}

N
∏

j=1

P (hj)e
−µhjVi1j1...Vipjp = (3.65)

=

(

∑

h=±1

P (h)e−µh

)N−2p(
∑

h,h′=±1

P (h)P (h′)e−µ(h+h′)[e−βǫhh′ − 1]

)p

=

= ΩN−2p

(

− Ω2 + e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ
)p

= ΩN V̄ p,where
Ω(µ) = qe−µ + (1− q)eµ (3.66)
W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ

V̄ =
W (µ, β, ǫ)

Ω(µ)2
− 1 85



Finally obtaining from the eqs.(3.60,3.62 and 3.65)
ZN = eN(2q−1)µΩN

∑′

m̂
e−β(ǫ0+ǭ)

∑

i<j mij , (3.67)where e−βǭ = V̄ + 1.3.9. Probabilities.Energetially unfavorable ontats are ++ and −−. In assumption ofstatistial independene of the hi variables the probability to �nd the unfavorablepair of nuleotides is
Punfav. = q2 + (1− q)2 = 1− 2q(1− q) (3.68)and the probability to �nd the favorable one is written

Pfav. = 2q(1− q) (3.69)Thus, always
Punfav. > Pfav., (3.70)if q 6= 1

2 and Punfav. = Pfav. if q = 1
2 (see Figure 3.18).

Fig 3.18. Probabilities of favorable and unfavorable pairs of nuleotides vs. q are given bydashed and solid lines orrespondingly. 86



Chapter 4The seondary strutural transitions insingle-stranded RNA. Aount of the loopformation.4.1. Statement of the problemIn this hapter we develop the model of random ssRNA by taking intoonsideration loop formation. As has beame ommon in theory,onformationalweight asribed to a loop with length m is m−c. Thus, entropi impat ofsuh loop will be −c lnm. The role of loop fator c is ritial in seondarystrutural phase transitions, partiularly, in thermal-indued phase transitions.Loop strutures suh as hairpin loops,internal loops, multi-loops with three ormore emerging loops, whih are ommon for ssRNA are haraterized with thevalue of c ≈ 2.1. However, aording to [74℄, mentioned phase transitions ourin the spei� range of loop exponent 2 < c < 2.479. Our aim is to modifythe model introdued in the previous hapter, and study the dependene ofthermodynami parameters, suh as spei� heat and heliity degree, on thevalue of loop exponent c. We onentrate our attention on the ase of bimodaldisorder, sine it is relatively simple, but, at the same time, it displays gooddesription of the phenomena. However, as a rule, a sequene of a ssRNA isnot ompletely random, usually it is optimized for distint native struture.Nevertheless, to understand the role of suh optimization we have to studythermodynamis of ssRNA with bimodal disorder.We exploit the partition funtion of homopolymeri ssRNA in the preseneof loops [74, 102℄ by ombining it with the modi�ed statistial weight Q =

e−β(ǫ0+ǭ).
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4.2. The modelFor the sake of simpliity we propose to study random ssRNA sequenesomposed only of A and U bases. The topologial rules that determine allowedstrutures are essential for e�ient numerial alulation of the free energy ofseondary strutures. The main rule is the elimination of so-alled pseudoknotsfrom the set of available seondary strutures as in most other works on ssRNA.Thus, for any two base pairs (i, j) and (k, l) with i < j, k < l, and i < k wehave either i < k < l < j or i < j < k < l [103℄. Besides, a valid seondarystruture is a list of all base pairs with the onstraint that a base an be partof at most one pair.Hamiltonian of the model reads
H(m̂, {hi}) =

∑

i<j

mijǫij, (4.1)where the interation onstants ǫij = ǫ0 + ǫhihj , sum is taken over all non�repeated base pairs, mij = 1 if the bases i and j are paired and mij = 0otherwise. Variables {hi} desribe the type of nuleotide and hi = ±1, where
hi = +1 orresponds to A, and hi = −1 to U. The partition funtion for thessRNA hain of N nuleotides is written as

ZN({hi}) =
∑′

m̂
exp[−βH(m̂, {hi})], (4.2)where β = 1

kBT
and the sum is taken over all realizations without pseudoknotsof the matrix m̂, whih ontains no more than one unity on eah row or olumn.The latter ondition desribes the saturation of base pairing. The {hi} sequeneis supposed to be randomly generated with the distribution funtion

P{h} =
N
∏

i=1

ρ(hi), (4.3)where ρ(hi) = qδ(hi − 1) + (1− q)δ(hi + 1).The redued free energy for the given {hi} sequene of nuleotides iswritten as f{hi} = − 1
N
lnZN({hi}). Due to self-averaging, the free energy88



in the thermodynami limit N → ∞ beomes a non-random quantity and
f{hi} = f = − 1

N
lnZN({h}), (4.4)where f is the redued quenhed free energy and O means the average oversequene distribution funtion (4.3). Aording to [87℄, the free energy of thessRNA with random quenhed sequene of nuleotides satis�es the onditions

f ≥ g(β, µ) ≥ fa, (4.5)where fa is the redued annealed free energy and
g(β, µ) = − 1

N
lnZN = − 1

N
lnZN({hi})e−Nµα({hi}). (4.6)Here α({hi}) is the appropriate self-averaging sequene-dependent quantity.Thus, g(β, µ) gives the lower bound of the quenhed free energy f . Aording to[87℄, the best lower bound of the quenhed free energy is given by maxµ g(β, µ)and we an estimate the free energy of the ssRNA moleule with randomlygenerated sequene as

f ≈ max
µ

g(β, µ). (4.7)The simplest onstraint imposed on the quenhed variables {hi} is given by
α({hi}) = 1

N

∑N
i=1[hi − (2q − 1)], whih does not �x the types of individualmonomers hi, but just the mean value of the sum ∑

i hi. After some algebra(see for details SI) the e�etive partition funtion ZN , de�ned in Eq. (4.6) reads
ZN = eNµ(2q−1)ΩNZ0

N(ǫ0 + ǭ), (4.8)where Z0
N(ǫ0 + ǭ) is the partition funtion (4.2) of the homopolymeri ssRNAwith the e�etive interation onstant ǫij = ǫ0 + ǭ. Here

ǭ = −1

β
ln
W (µ, β, ǫ)

Ω(µ)2
, (4.9)

Ω(µ) = qe−µ + (1− q)eµ,

W (µ, β, ǫ) = e−βǫ[q2e−2µ + (1− q)2e2µ] + 2q(1− q)eβǫ.89



4.3. Calulation of thermodynami harateristis of themodel with loopsAs it was shown above, the variational redued free energy g(µ, β) =

− 1
N
lnZN ould be written as

g(β, µ) = −µ(2q − 1)− lnΩ(µ)− 1

N
lnZ0

N(Q(µ, β)) (4.10)Aording to [74, 102℄
Z0

N ≃ z−N
d , (4.11)where zd is the dominant singularity of grand anonial partition funtion ofhomopolymeri ssRNA, whih is de�ned as the singularity whih is nearest tothe origin in the omplex z-plane. In partiular, our grand partition funtionhas two singularities: a branhing point and a pole. Depending on the value ofstatistial weight Q we have

zd =











zp, Q < Qc

zb, Q > Qc

. (4.12)Here Qc is ritial value of Q:
Qc =

Lic−1(1)− Lic(1)

(Lic−1(1)− 2Lic(1))
2 (4.13)where the polylogarithm Lic(x) =

∑∞
n=1 x

n/nc is used. To obtain branhingpoint zb, we have to solve following system of equations










κ (κ− 1) = QLic (zbκ)

κ2 = Q (Lic−1 (zbκ)− Lic (zbκ))
(4.14)Whereas,

zp =
2

1 +
√

1 + 4QLic(1)
(4.15)From (4.14) by dividing equations we obtain90



1− 1

κ
=

Lic (zbκ)

Lic−1 (zbκ)− Lic (zbκ)
(4.16)So,

κ =
Lic−1 (zbκ)− Lic (zbκ)

Lic−1 (zbκ)− 2Lic (zbκ)
(4.17)Here we introdue variable t = zbκ. By substituting κ = t

zb
in (4.17) wearrive to











t
zb
= Lic−1(t)−Lic(t)

Lic−1(t)−2Lic(t)

t2

z2b
= Q (Lic−1 (t)− Lic (t))

(4.18)By modifying (4.18) we obtain
Lic−1 (t)− Lic (t) = Q (Lic−1 (t)− 2Lic (t))

2 (4.19)and
zb = t

Lic−1 (t)− 2Lic (t)

Lic−1 (t)− Lic (t)
(4.20)This transformation allows us to solve (4.14) numerially. First, we derive tfrom (4.19), and thereafter, by substituting it in (4.20), we obtain zb. Now,let's return to alulation of free energy.Aording to onstrained annealingapproah we have to maximize free energy by solving

∂g(µ, β)

∂µ
= 0 (4.21)for µ. Hereupon, we an write free energy as g(β) = g(µ0, β), where µ0 issolution of (4.21). The free energy per monomer of the system is estimated as

f(β) =
g(β)

β
, (4.22)The entropy per monomer is written as

s(β) = −g(β) + β
dg(β)

dβ
(4.23)and the spei� heat

cV (β) = −β2d
2g(β)

dβ2
. (4.24)91



To alulate (4.23) and (4.36), we have to onsider two ases (4.12). Let's �rstimplement derivation of (4.23) for the ases zd = zp when Q < Qc.
∂g(β)

∂β
=

∂

∂β
ln zp(Q(µ0, β)) =

1

zp(Q)

(

∂zp
∂β

)

=
1

zp(Q)

(

∂zp
∂Q

)(

∂Q

∂β

) (4.25)where in aordane with (4.15) and (3.27)
∂zp
∂Q

= − 4Lic(1)
(

1 +
√

1 + 4QLic(1)
)2√

1 + 4QLic(1)
, (4.26)

∂Q

∂β
=
∂e−β(ǫ0+ǭ)

∂β
= −ǫ0Q+

e−βǫ0

Ω2

(

∂W

∂β

)

, (4.27)and
∂Q

∂β
= −ǫe−βǫ

(

q2e−2µ + (1− q)2e2µ
)

+ 2ǫq(1− q)eβǫ. (4.28)One an substitute (4.26) and (4.27) in (4.25) and obtain the �nal expressionfor derivative of the redued free energy when Q < Qc:
∂g(β)

∂β
= − 2Lic(1)

(

1 + 4QLic(1) +
√

1 + 4QLic(1)
)

(

−ǫ0Q +
e−βǫ0

Ω2

(

∂W

∂β

))

.(4.29)where
∂W

∂β
= −ǫe−βǫ

(

q2e−2µ + (1− q)2e2µ
)

+ 2ǫq(1− q)eβǫ. (4.30)Therefore, the expression for entropy (when Q < Qc) an be written as
s(β) = −µ(2q − 1)− lnΩ(µ)− ln

2

1 +
√

1 + 4QLic(1)
− (4.31)

−β 2Lic(1)
(

1 + 4QLic(1) +
√

1 + 4QLic(1)
)

(

−ǫ0Q+
e−βǫ0

Ω2

(

∂W

∂β

))

.To represent entropy for the ase when Q > Qc, we have to alulate ∂zb
∂Q .Sine being unable to do it expliitly, we perform following transformation:

∂zb
∂Q

=

(

∂zb
∂t

)

(

∂Q
∂t

) . (4.32)92



Taking into aount (4.19) and (4.20) we obtain
∂zb
∂Q

=
tLic(t) (Lic−1(t)− 2Lic(t))

3

Lic−1(t) (Lic−1(t)− Lic(t))
2 . (4.33)One an ombine (4.20), (4.27) and (4.33) in ∂g(β)

∂β = 1
zb(Q)

(

∂zb
∂Q

)(

∂Q
∂β

) andobtain
∂g(β)

∂β
=
Lic(t) (Lic−1(t)− 2Lic(t))

2

Lic−1(t) (Lic−1(t)− Lic(t))

(

−ǫ0Q +
e−βǫ0

Ω2

(

∂W

∂β

))

. (4.34)Hene,
s(β) = µ(2q − 1)− ln Ω(µ)− ln

2

1 +
√

1 + 4QLic(1)
+ (4.35)

+β
Lic(t) (Lic−1(t)− 2Lic(t))

2

Lic−1(t) (Lic−1(t)− Lic(t))

(

−ǫ0Q+
e−βǫ0

Ω2

(

∂W

∂β

))Expliit analyti expressions for spei� heat are more ompliated, however,they ould be obtained from general analyti expression
cV (β) = −β ds

dβ
(4.36)Now let's refer to another important thermodynami harateristi,namely,to heliity degree:

θ =
2

N

d lnZ
d lnQ

(4.37)where N → ∞. Aording to (4.11)
θ = −2Q

dzd
dQ

(4.38)4.4. Results and DisussionFree energy in dependene on temperature is presented in Figs. 4.1,4.2.Just as in the Chapter 3, we distinguish two ases, aording to the energy ofinteration between similar nuleotides ǫ0+ ǫ. There is no qualitative di�erenebetween the temperature behavior of the free energy in the ases of repulsionand attration, haraterized by ǫ0 + ǫ > 0 and ǫ0 + ǫ < 0 orrespondingly.93
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strutural transitions at that stage, and another phase transition is possible.In terms of e�etive attration and repulsion we may interpret the ase when
ǫ+ ǫ0 = 0 as the situation when similar nuleotides (AA or UU) neither attratnor repulse eah other, meanwhile, di�erent nuleotides are attrated by eahother.
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loops onerns the heat e�et of transitions. The heat of the low-temperaturetransition in higher without loops, while the heat of high-temperature transitionis higher with loops. The melting urves (see Figs. 4.9,4.10) are qualitativelythe same with and without loops and �t well in the low-temperature region.
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stranded RNA is not so important. Given senario is substantially di�ers fromthose for double - stranded DNA, where the loop entropy fator c hangesdrastially phase behavior of the system. While in the homogeneous ssRNAphase transition exists only for the values 2 < c < c∗ ≈ 2.479, homogeneousdsDNA exhibits muh more rih phase behavior. Homogeneous dsDNA exhibitsphase transition of the seond order if 1 < c < 2, and of the �rst order one, if
2 < c. ssRNA exhibits muh more smooth transition of the fourth order.
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Conlusions1. The impossibility of knot formation in melted regions of DNA and exludedvolume interations signi�antly a�et the entropy of loop formation andgive a value of loop fator c = 1.2. A phase transition of in�nite order takes plae for the loop fator value
c = 1 during denaturation of DNA double helix. The phase transitionours almost in the end of the melting where heliity degree has smallvalues. Above the phase transition temperature heliity degree is zero.3. Near the ritial temperature, the orrelation length diverges, as it oursduring the phase transition of seond order, whereas the amplitude of�utuations tends to zero. Thus small but extended �utuations shouldtake plae for the hains with �nite length.4. Single-stranded RNA with random bimodal nuleotide sequene showstwo peaks in the temperature dependene of the spei� heat of thesystem both for the attration and repulsion between the same nuleotidesand also for various perentages of the two types of nuleotides. Suhbehavior indiates the presene of two strutural transitions.5. For the ase of repulsion between the nuleotides of the same type, low�temperature peak of spei� heat orresponds to the old melting ofRNA when the heliity degree dereases signi�antly with dereasingtemperature. This e�et is aused by a large number of thermodynamiallyunfavorable ontats for a sequene onsisting of two types of nuleotides.6. The aount of the entropy of long loop formation does not qualitativelya�et the behavior of the spei� heat and the heliity degree of single�stranded RNA with a bimodal sequene. The presene of two peaks andold melting is observed at the same values of the interation parameters102



as without the aount of loop entropy.7. The sequene heterogeneity does not a�et the existene of a phase transitionof the forth order, whih takes plae when 2 ≤ c ≤ c∗ in a homogeneoussingle-stranded RNA.When c < 2 in a single-stranded RNA phase transitiondoes not our both in homo- and heterogeneous sequenes.
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