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Lecture 1

Path integrals

Gauss integrals

Let us start recalling the formula∫ ∞
−∞

e−αx
2

dx =
(π
α

)1/2

(1)

This formula is equivalent to equation∫ ∞
−∞

∫ ∞
−∞

e−α(x2+y2)dxdy =
π

α
(2)

which can be easily derived in the polar coordinates (r, θ):∫ 2π

0

∫ ∞
0

e−αr
2

rdrdθ == 2π

∫ ∞
0

e−αr
2

rdr = π

∫ ∞
0

e−αr
2

d(r)2 =
π

α
(3)

Thus the relation (1) is proved.

Completing the square we can also prove:∫ ∞
−∞

e−ax
2+bx+cdx = exp

(
b2

4a
+ c

)(π
a

)1/2

(4)

This can be generalized to higher dimensions:∫
exp

[
−
(

1

2
(x,Ax) + (b, x) + c

)]
dx = (2π)n/2 exp

[
1

2
(b, A−1b)− c

]
(detA)−1/2

(5)

where A is n× n matrix, and x, b, c are n-dimensional vectors.

Another important integrals:∫ ∞
−∞

xe−αx
2

dx = 0 (6)

∫ ∞
−∞

x2e−αx
2

dx =
1

2α

(π
α

)1/2

(7)

Action

S =

∫ tf

ti

L(q, q̇, t) (8)

δS =
∂L

∂q̇
|t2t1 +

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqδt (9)
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At the equation of motion the second term equals to 0. In the first term we take

δq(t1) = 0. Setting ∂L
∂q̇

= p we obtain

δS = pδq (10)

From here we obtain:
∂S

∂q
= p (11)

dS

dt
= L (12)

dS

dt
=
∂S

∂t
+
∂S

∂q
q̇ =

∂S

∂t
+ pq̇ (13)

Comparing (12) and (13) we obtain

∂S

∂t
= L− pq̇ (14)

or finally
∂S

∂t
= −H (15)

Path integral

Let us start by the formula:

K(qf , tf ; qi, ti) =

∫
DqeiS/~ (16)

In the classical limit

K(qf , tf ; qi, ti) ∼ exp
[ i
~
Scl(qf , tf ; qi, ti) (17)

Change of the action caused by the variation of the last point position can be

evaluated with help of the formulas (11) and (15) leading to

K(qf , tf ; qi, ti) ∼ exp
[ i
~

(pqf + Etf )
]

(18)

This implies de Broglie relations:

p = k~ (19)

E = ω~ (20)

As a consequence of the relation

S(qf , tf ; qi, ti) = S(qf , tf ; q, t) + S(q, t; qi, ti) (21)
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the propagation amplitude (16) satisfies the relation:

K(qf , tf ; qi, ti) =

∫
K(qf , tf ; q, t)K(q, t; qi, ti)dq (22)

The wave function satisfies the relation

ψ(q2, t2) =

∫
K(q2, t2; q1, t1)ψ(q1, t1)dq1 (23)

To evaluate the path integral, we must define the symbol
∫
Dq. We will use a

brute-force definition, by discretization. Break up the time interval from ti to

tf into many small pieces of duration δt. Approximate a path as a sequence of

straight line, one in each slice. The action for this discretized path is

S =

∫ tf

ti

dt
(m

2
q̇2 − U(q)

)
→
∑
k

[m
2

(qk+1 − qk)2

δt
− δtU

(
qk+1 + qk

2

)]
(24)

We then define the path integral by∫
Dq =

1

C(δt)

∫
dq1

C(δt)

∫
dq2

C(δt)
· · ·
∫
dqN−1

C(δt)
=

1

C(δt)

∏
k

∫
dqk
C(δt)

(25)

To derive differential equation satisfied by the wave function, consider the equa-

tion (23 for the case when t2 − t1 = δt. We should have

ψ(q2, t) =

∫
dq1

C(δt)
exp

[
i
m(q2 − q1)2

2δt
− iδtU

(
q2 + q1

2

)]
ψ(q1, t− δt) (26)

As we send δt → 0 the rapid oscillation of the first term in the exponential

constraints q1 to be very close to q2. We can therefore expand the above expression

of q1 − q2 ≡ η:

ψ(q2, t) =

∫
dq1

C(δt)
exp

[
i
m(q2 − q1)2

2δt

][
1− iδtU(q2) + · · ·

]
(27)

×
[
1 + (q1 − q2)

∂

∂q2

+
1

2
(q1 − q2)2 ∂

2

∂q2
2

+ · · ·
]
ψ(q2, t− δt)

=

∫
dη

C(δt)
exp

[
i
mη2

2δt

][
1− iδtU(q2) + · · ·

][
1 + η

∂

∂q2

+
1

2
η2 ∂

2

∂q2
2

+ · · ·
]
ψ(q2, t− δt)

ψ(q2, t) =

(
1

C(δt)

√
2πδt

−im

)[
1− iδtU(q2) +

iδt

2m

∂2

∂q2
2

+O(δt2)
]
ψ(q2, t− δt) (28)
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This expression makes no sense in the limit δt→ 0 unless the factor in paren-

theses equal 1. We can therefore identify the correct definition of C(δt):

C(δt) =

√
2πδt

−im
(29)

Given this definition, we can compare terms of order δt

i
∂

∂t
ψ(q2, t) =

[
− 1

2m

∂2

∂q2
2

+ U(q2)
]
ψ(q2, t) (30)

This is the Schrödinger equation.

Using the equation (22) repeating the same steps we obtain that also the

probability amplitude satisfies the Schrödinger equation

i
∂

∂t2
K(q2, t2, q1, t1) =

[
− 1

2m

∂2

∂q2
2

+ U(q2)
]
K(q2, t2, q1, t1) (31)

for t2 > t1.

The function K(q2, t2, q1, t1) is set to 0 for t2 < t1.

Now consider the t2 → t1. The function K(q2, t2, q1, t1) in this limit is

1

C(δt)
exp

[
i
m(q2 − q1)2

2δt
+O(δt)

]
(32)

This is peaked exponential and it tends to δ(q2 − q1) as δt → 0. Therefore

it behaves like step function at 0 and being differentiated by t2 gives rise to

δ(t2 − t1) multiplied by δ(q2 − q1):

i
∂

∂t2
K(q2, t2, q1, t1) =

[
− 1

2m

∂2

∂q2
2

+ U(q2)
]
K(q2, t2, q1, t1) + iδ(t2 − t1)δ(q2 − q1)

(33)

Therefore K(q2, t2, q1, t1) is Green function of the Schrödinger equation.

Evolution operator

Now compute the matrix element of the evolution operator of the one degree

of freedom system

〈qf |U(t)|qi〉 (34)

The Hamiltonian of the system is

H =
p̂2

2m
+ U(q̂) (35)
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The hat denotes the corresponding quantum operator. The evolution operator

which takes a state |ψ〉 at time ti to the time tf = ti + t is

U(t) = e−iHt (36)

We calculate the matrix element of U(δt) in the basis {|q〉} of position eigen-

states, where δt is an infinitesimal time interval. At the first order in δt one

has:

〈q′|e
−i
(
p̂2

2m
+U(q̂)

)
δt
|q〉 = 〈q′|e

−i
(
p̂2δt
2m

)
e−i(U(q̂))δteO(δt)2|q〉 (37)

=

∫
dp

2π
〈q′|e

−i
(
p̂2δt
2m

)
|p〉〈p|e−i(U(q̂))δt|q〉

=

∫
dp

2π
exp

[
− iδt

(
p2

2m
− p(q′ − q)

δt
+ U(q)

)]
=

√
m

2πiδt
exp

[
iδt

(
1

2
m

(q′ − q)2

δt2
− U(q)

)]
At the first step we used that

eε(A+B) = eεAeεBeO(ε2) (38)

In the second step the terms of order (δt)2 have been neglected and inserted a

completeness relation ∫
dp

2π
|p〉〈p| = 1 (39)

where |p〉 is an eigenstate of momentum, with 〈x|p〉 = eipx. In the last step

we performed a Gauss integration (4) which is strictly valid only when the time

interval δt has a small negative imaginary part. This assumption will be implicit

in what follows. The quantity in brackets on the last line of (37) is nothing

but the infinitesimal action S(q′, ti + δt; q, ti) corresponding to the passage of the

system from q to q′ in a time δt. One may therefore write, to first order:

〈q′|U(δt)|q〉 =

√
m

2πiδt
exp iS(q′, ti + δt; q, ti) (40)

Now we consider 〈qf |U(t)|qi〉 which is probability amplitude for the system, ini-

tially at a well-defined position qi, to evolve in a finite time t toward the position

qf . This amplitude is called propagator and may be obtained by dividing the

interval of time t in N subintervals t/N and inserting completeness relations:

〈qf |U(t)|qi〉 = (41)∫ N−1∏
j=1

dqj〈qf |U(t/N)|qN−1〉〈qN−1|U(t/N)|qN−2〉 · · · 〈q1|U(t/N)|qi〉
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Using (40) in the large N limit one may write:

〈qf |U(t)|qi〉 = limN→∞

(
mN

2πit

)N/2 ∫ N−1∏
j=1

dqj exp iS[q] (42)

where

S[q] =
N−1∑
j=0

S(qj+1, tj + t/N ; qj, tj) (43)

is the action associated with the discrete trajectory qj, j = 0, 1 · · ·N (q0 = qi,

t0 = ti and qN = qf , tN = tf ). If we define the following functional integration

measure

Dq = limN→∞

N−1∏
j=1

(
mN

2πit

)1/2

dqj (44)

we may then write our fundamental result as follows:

〈qf |U(t)|qi〉 =

∫
Dq exp iS(qf , tf ; qi, ti) (45)

where the action is

S(qf , tf ; qi, ti) =

∫ tf

ti

dt

(
1

2
mq̇2 − U(q)

)
(46)

for q(t) with the boundary conditions q(tf ) = qf and q(ti) = qi.

Correlation function

This formalism may be extended to matrix elements of operators. Suppose,

for instance, that we want to compute the matrix element of an operator O(q) at

an intermediate time t between ti and tf :

〈qf , tf |O(t)|qi, ti〉 = 〈qf |e−iH(tf−t)Oe−iH(t−ti)|qi〉 (47)

=

∫
dq′dq′′

∫
DqeiS(qf ,tf ;q′′,t)〈q′′|O|q′〉

∫
DqeiS(q′,t;q,ti)

Let us assume that O is diagonal in the q representation

〈q′′|O|q′〉 = O(q′)δ(q′′ − q′) (48)

The above expression reduces symbolically to

〈qf , tf |O(t)|qi, ti〉 =

∫
DqeiS(qf ,tf ;qi,ti)O[q(t)] (49)
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This may be further generalized to a time-ordered product of operators:

O1(t1)O2(t2) · · · t1 ≥ t2 ≥ · · · (50)

If they all diagonal in the q representation we have:

〈qf , tf |O1(t1)O2(t2) · · · |qi, ti〉 =

∫
DqeiS(qf ,tf ;qi,ti)O1[q(t1)]O2[q(t2)] · · · (51)

The above expression can be generalized to field theory:

〈Φ(x1) · · ·Φ(xn)〉 =
1

Z

∫
DΦΦ(x1) · · ·Φ(xn) exp−S[Φ] (52)

where Z is the vacuum functional.

Partition function

The partition function can be expressed as trace of the density operator ρ

Z = Trρ (53)

where

ρ = exp−βH (54)

where β = 1
T

is the inverse temperature. The resemblance between the density

opeartor e−βH and the evolution operator e−itH allows for the representation of

the density operator as a functional integral. This introduces the lagrangian

formalism into statistical mechanics. Explicitly consider the kernel of the density

operator for a single degree of freedom

ρ(xf , xi) = 〈xf |e−βH |xi〉 (55)

The path integral is adapted to this kernel by substituting t → −iτ (the Wick

rotation) where τ is a real variable going from 0 to β. The kernel of the density

operator ρ becomes then

ρ(xf , xi) =

∫ xf ,β

xi,0

Dx exp−S[x] (56)

The partition function may be expressed

Z =

∫
dxρ(x, x) =

∫
Dx exp−S[x] (57)

This time the integration limits are no longer specified: all closed trajectories

x(0) = x(β) contribute.
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Wick theorem

T [A(x1)A(x2)] =: A(x1)A(x2) : +〈0|TA(x1)A(x2)|0〉 (58)

T [A(x1) · · ·A(xn)] =: A(x1) · · ·A(xn) : (59)

+
∑
k<l

: A(x1) · · · ˆA(xk) · · · ˆA(xl) · · ·A(xn) : 〈0|TA(xk)A(xl)|0〉+ · · ·

+
∑

k1<k2<···<k2p

: A(xk1) · · · ˆA(xk2p) · · · ˆA(xl) · · ·A(xn) :

×
∑
P

〈0|TA(xP1)A(xP2)|0〉 · · · 〈0|TA(xP2p−1)A(xP2p)|0〉+ · · ·

This may be further extended to an expression of the form

T : [A(x1) · · ·A(xk)] : · · · : [A(xl) · · ·A(xn)] : (60)

with the restriction that only contraction between distinct normal ordered prod-

ucts occur.
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Lecture 2

Groups and Algebras Lie

Lie groups are groups of transformations T (θ) that are described by a finite

set of real continuous parameters θa.

The group multiplication law then takes the form

T (φ)T (θ) = T (f(φ, θ)) (61)

with fa(φ, θ) a function of the φ s and θ s. Taking θa = 0 as the coordinates

of the identity T (0) = e, we must have

fa(θ, 0) = fa(0, θ) = θa (62)

The transformation of such continuous groups must be represented on the

physical Hilbert space by unitary operators U(T (θ)). These operators can be

represented in at least a finite neighborhood of the identity by a power series:

U(T (θ)) = 1 + iθaXa +
1

2
θbθcXbc + · · · (63)

where

Xa = −i∂U(T (θ))

∂θa

∣∣∣∣
θ=0

(64)

Consider the product of the two elements U(T (θ)) and U(T (φ))

U(T (φ))U(T (θ)) = U(T (f(φ, θ))) (65)

According to (62) the expansion of f(φ, θ) to second order must take the form:

fa(φ, θ) = φa + θa + fabcφ
bθc + · · · (66)

with real coefficients fabc. The presence of any terms of order φ2 and θ2 would

violate (62). Then (65) reads:

[1 + iφaXa +
1

2
φbφcXbc + · · ·]× [1 + iθaXa +

1

2
θbθcXbc + · · ·] = (67)

1 + i(φa + θa + fabcφ
bθc + · · ·)Xa +

1

2
(φb + θb + · · ·)(φc + θc + · · ·)Xbc

The terms of order 1, φ, θ, φ2, θ2 automatically match on both sides of Eq.

(67),but from the φθ terms we obtain a non-trivial condition:

Xbc = −XbXc − ifabcXa (68)
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This shows that if we are given the structure of the group, i.e. the functions

fa(φ, θ), and hence its quadratic coefficients fabc, we can calculate the second

order terms in U(T (θ)) from the generators appearing in the first order terms.

However, there is a consistency condition: the operator Xbc must be symmetric

in b and c ( because it is the second derivative of U(T (θ)) with respect to θb and

θc) so Eq. (68) requires that

[Xb, Xc] = iCa
bcXa (69)

where Ca
bc are a set of real constants known as structure constants

Ca
bc = −fabc + facb (70)

Such a set of commutation relations is known as a Lie algebra. For any integer

N

U(T (θ)) =

[
U

(
T

(
θ

N

))]N
(71)

Letting N → ∞ and keeping only the first-order terms in U(T (θ/N)) we have

then

U(T (θ)) = limN→∞

[
1 +

i

N
θaXa

]N
(72)

and hence

U(T (θ)) = exp(iθaXa) (73)

Adjoint representation

Jacoby identity

[Xn, [Xb, Xc]] + [Xc, [Xn, Xb]] + [Xb, [Xc, Xn]] = 0 (74)

From here we have:

C l
bcC

m
nl + C l

nbC
m
cl + C l

cnC
m
bl = 0 (75)

Representation is given by matrices R(X) satisfying

R(Xb)mlR(Xc)ln −R(Xc)mlR(Xb)ln = iC l
bcR(Xl)mn (76)

Let us take

R(Xb)mn = iCm
bn (77)

Substituting (77) in (76) we have:

Cm
bl C

l
cn − Cm

cl C
l
bn = C l

bcC
m
ln (78)
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what coincide with the Jacoby identities (75). We proved that (77) gives as the

representation of the Lie algebra. This representation is called adjoint represen-

tation.

Global symmetries and Noether current

Consider the action

S =

∫
L(Φ, ∂µΦ)dNx (79)

Consider the transformation

δωΦ = −iωaGaΦ (80)

Here ωa are infinitesimal parameter of transformation, Ga are generators of trans-

formations, forming the algebra Lie. The transformations are global symmetry

of the system if under (80) with the constant ωa the action is invariant: δS = 0.

If we now consider the same transformations but with ω an arbitrary function of

position in spacetime

δωΦ = −iωa(x)GaΦ (81)

then in general, the variation of the action will not vanish, but it will have to be

of the form:

δS =

∫
Jµa
∂ωa
∂xµ

dNx (82)

in order that it should vanish when ωa(x) is constant. If we now take the fields

in S(Φ) to satisfy the field equation the S is stationary with respect to arbitrary

field variations including variation of the form (81) so in this case (82) should

vanish. Integrating by parts we see that Jµa must satisfy a conservation law:

∂µJ
µ
a = 0 (83)

It follows immediately that
dQa

dt
= 0 (84)

where

Qa =

∫
dN−1xJ0

a (85)

There is one such conserved current Jµa and one constant of motion Qa for each

independent infinitesimal symmetry transformation. This represent a general

feature of the canonical formalism, often referred to as Noethers theorem: sym-

metries imply conservation laws.
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Ward identity

Denoting by X the collection of the fields Φ(X1) · · ·Φ(Xn) one can write

according to (52)

〈X〉 =
1

Z

∫
DΦX exp(−S[Φ]) (86)

Changing the integration variables according the (81), namely

F(Φ) = Φ(x)− iωa(x)GaΦ(x) (87)

will not change the path integral

〈X〉 =
1

Z

∫
DF(Φ)(X + δX) exp−

[
S[Φ] +

∫
dNxJµa ∂µωa

]
(88)

and hence assuming the invariance of the measure one has in the first order∫
DΦδX exp(−S[Φ]) +

∫
DΦX exp(−S[Φ])

(∫
dxJµa ∂µωa

)
= 0 (89)

or

〈δX〉 = −
∫
dx〈Jµa (x)X〉∂µωa (90)

The variation δX is explicitly given by

δX = −i
n∑
i=1

(Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn))ωa(xi) (91)

= −i
∫
dxωa(x)

n∑
i=1

(Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn))δ(x− xi)

Since (90) holds for any infinitesimal function ωa(x) we may write the following

local relation:

∂

∂xµ
〈Jµa (x)Φ(x1) · · ·Φ(xn)〉 (92)

= −i
n∑
i=1

〈Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)〉δ(x− xi)

The Ward identity allows us to identify the conserved charge Qa (85) as the

generator of the symmetry transformation in the Hilbert space of quantum states.

Let Y = Φ(x2) · · ·Φ(xn) and suppose that the time t ≡ x0
1 is different from all

the times in Y . We integrate the Ward identity (92) in a very thin box bounded
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by t− < t by t+ > t and by spatial infinity, which excludes all the other points

x2 · · ·xn. Th integral of l.h.s of (92) is converted into a surface integral and yields:

〈Qa(t+)Φ(x1)Y 〉 − 〈Qa(t−)Φ(x1)Y 〉 = −i〈GaΦ(x1)Y 〉 (93)

Recalling that a correlation function is the vacuum expectation value of a time-

ordered product in the operator formalism, and assuming, for the sake of argu-

ment, that all other times x0
i are less than t we write in the limit t− → t+

〈0|[Qa,Φ(x1)]Y |0〉 = −i〈0|GaΦ(x1)Y |0〉 (94)

This being true for an arbitrary Y we conclude

[Qa,Φ(x1)] = −iGaΦ(x1) (95)

In other words the conserved charge Qa is the generator of the infinitesimal

symmetry transformation in the operator formalism.

Integrating (92) over all space-time we obtain:

δωa〈Φ(x1) · · ·Φ(xn)〉 = −iωa
n∑
i=1

〈Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)〉 (96)

In other words the variation of the correlator under an infinitesimal transforma-

tion vanishes.

16



Lecture 3

Conformal group in d > 2 dimensions

We denote by gµν the metric tensor in a space-time of dimension d. By

definition a conformal transformation of the coordinates is an invertible mapping

x→ x′ which leaves the metric tensor invariant up to a scale:

g′µν(x
′) = Λ(x)gµν(x) (97)

where

g′µν(x
′)
∂x′µ

∂xλ
∂x′ν

∂xρ
= gλρ (98)

In other words, a conformal transformation is locally equivalent to rotation

and a dilatation. For simplicity we assume that the conformal transformation is

an infinitesimal deformation of the standard Cartesian metric gµν = ηµν , where

ηµν = diag(1, . . . , 1).

The set of conformal transformations manifestly forms a group, and it obvi-

ously has the Poincaré group as a subgroup, since the latter corresponds to the

special case Λ(x) = 1. Let us investigate the consequences of the definition (97)

on an infinitesimal transformation

xµ → x′µ = xµ + εµ(x) (99)

It follows from (97)

ηµν
∂x′µ

∂xλ
∂x′ν

∂xρ
= Λ−1ηλρ (100)

and inserting (99) we obtain in the first order by ε:

ηµν

(
δµλ +

∂εµ

∂xλ

)(
δνρ +

∂εν

∂xρ

)
= ηλρ + ∂λερ + ∂ρελ (101)

Therefore the requirement that the transformation be conformal implies that

∂µεν + ∂νεµ = (Λ−1 − 1)ηµν = f(x)ηµν (102)

The factor f(x) is determined by taking the trace on both sides:

f(x) =
2

d
∂ρε

ρ (103)

By applying an extra derivative ∂ρ on Eq. (102), permuting the indices and

taking a linear combination, we arrive at

2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf (104)
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Upon contracting with ηµν this becomes

2∂2εµ = (2− d)∂µf (105)

Applying ∂ν on this expression and ∂2 on Eq. (102) we find

(2− d)∂µ∂νf = ηµν∂
2f (106)

Finally, contracting with ηµν we end up with

(d− 1)∂2f = 0 (107)

Now we can derive the explicit form of conformal transformation in d dimensions.

First if d = 1 the above equations do not impose any constraint on the function

f , and therefore any smooth transformation is conformal in one dimension. This

is a trivial statement since notion of angle then does not exist. The case d = 2

will be studied in detail later. For the moment we concentrate on the case d ≥ 3.

Equations (106) and (107) imply that ∂µ∂νf = 0 (i.e. that the function is at

most linear in the coordinates):

f(x) = A+Bµx
µ (108)

If we substitute this expression into (104) we see that ∂µ∂νερ is constant, which

means that εµ is at most quadratic in the coordinates. We therefore write the

general expression

εµ = aµ + bµνx
ν + cµνρx

νxρ, cµνρ = cνµρ (109)

Since the constraints above hold for all x we may treat each power of the coordi-

nate separately. It follows that the constant term aµ is free of coordinates.This

term amounts to an infinitesimal translation. Substitution of the linear term into

(102) yields

bµν + bνµ =
2

d
bλληµν (110)

which implies that bµν is the sum of an antisymmetric part and a pure trace:

bµν = αηµν +mµν mµν = −mνµ (111)

The pure trace represents an infinitesimal scale transformation, whereas the an-

tisymmetric part is an infinitesimal rigid rotation. Substitution of the quadratic

term of (109) into (104) yields

cµνρ = ηµρbν + ηµνbρ − ηνρbµ bµ =
1

d
cσσµ (112)
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and the corresponding infinitesimal transformation is

x′µ = xµ + 2(x · b)xµ − bµx2 (113)

which bears the name of special conformal transformation (SCT).

The finite transformations corresponding to the above are the following: Trans-

lation:

x′µ = xµ + aµ (114)

Dilation:

x′µ = αxµ (115)

Rigid Rotation:

x′µ = Mµ
ν x

µ Mµ
ρM

ν
σηµν = ηρσ (116)

SCT:

x′µ =
xµ − bµx2

1− 2x · b+ b2x2
(117)

Taking into account that generators are given by the first derivatives of the trans-

formations (64) we can compute the generator corresponding to the parameter a

via the formula:

Xa = −i∂x
′µ

∂θa
∂

∂xµ
(118)

The formula for the infinitesimal translations

x′µ = xµ + aµ (119)

implies for the generator of the translations

Pµ = −i∂µ (120)

The formula for the infinitesimal scale transformation

x′µ = xµ + αxµ (121)

implies
∂x′µ

∂α
= xµ (122)

and yields the generator of dilation

D = −ixµ∂µ (123)
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For the infinitesimal rotation

x′µ = xµ +mµ
νx

ν = xµ +mρνη
ρµxν = xµ +

1

2
mρν(η

ρµxν − ηνµxρ) (124)

we have
∂x′µ

∂mρν

= ηρµxν − ηνµxρ (125)

Inserting this in (118 we get

Lρν = −i(xρ∂ν − xρ∂µ) (126)

Finally for the infinitesimal special conformal transformation

x′µ = xµ + 2(x · b)xµ − bµx2 (127)

we obtain
∂x′µ

∂bν
= 2xνx

µ − δµνx2 (128)

and

Kν = −i(2xνxµ∂µ − x2∂ν) (129)

Collecting all we have:

Pµ = −i∂µ (130)

D = −ixµ∂µ (131)

Lµν = i(xµ∂ν − xν∂µ) (132)

Kµ = −i(2xµxν∂ν − x2∂µ) (133)

These generators obey the following commutation rules, which in fact define the

conformal algebra:

[D,Pµ] = iPµ (134)

[D,Kµ] = −iKµ (135)

[Kµ, Pν ] = 2i(ηµνD − Lµν) (136)

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) (137)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ) (138)

[Lµν , Lρσ] = i(ηρνLµσ + ησµLνρ − ηρµLνσ − ησνLµρ) (139)

[Pµ, Pν ] = 0 (140)

[Kµ, Kν ] = 0 (141)

(142)
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In order to put the above commutation rules into a simpler from, we define the

following generators:

Jµν = Lµν J−1,ν =
1

2
(Pµ −Kµ) (143)

J−1,0 = D J0,µ =
1

2
(Pµ +Kµ) (144)

(145)

where Jab = −Jba and a, b ∈ {−1, 0, 1, . . . , d}. These new generators obey the

SO(d+ 1, 1) commutation relations:

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (146)

where the diagonal metric ηab is diag(−1, 1, 1, . . . , 1). This shows the isomorphism

between the conformal group in d dimensions and the group SO(d + 1, 1) with
1
2
(d+ 2)(d+ 1) parameters.

Let us now generalize the formulas (??) to fileds with internal quantum num-

bers.

We start by studying the subgroup of the Poincare group that leaves th point

x = 0 invariant, that is the Lorentz group. We then introduce a matrix repre-

sentation Sµν to define the action of infinitesimal Lorentz transformation on the

field

LµνΦ(0) = SµνΦ(0) (147)

Sµν is the spin operator associated with the field Φ. Next,by use of commutation

relations on the Poincare group, we translate the generator Lµν to a nonzero value

pf x

eix
ρPρLµνe

−ixρPρ = Sµν − xµPν + xνPµ (148)

The above translation is explicitly calculated by use of the Hausdorff formula

e−ABeA = B + [B,A] +
1

2!
[[B,A], A] +

1

3!
[[[B,A], A].A] + · · · (149)

This can be proved noting that

d

dt
(e−tABetA) = e−tA[B,A]etA (150)

Repeatedly using this relation we see that higher derivatives are given by the

repeated commutators and (149) is the Tailor expansion at the value t = 1. This

allows us to write the action of the generators:

PµΦ(x) = −i∂µΦ(x) (151)
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LµνΦ(x) = i(xµ∂ν − xν∂µ) + SµνΦ(x) (152)

We proceed in the same way for the full conform group. The subgroup that

leaves the origin x = 0 invariant is generated by rotations, dilations, and special

conformal transformations. We denote by Sµν , ∆ and κµ the respective values of

the generators Lµν , D, and Kµ at x = 0. The commutations (134) then allows

us to translate the generators, using the Hausdorff formula (149)

eix
ρPρDe−ix

ρPρ = D + xνPν (153)

eix
ρPρKµe

−ixρPρ = Kµ + 2xµD − 2xνLµν + 2xµ(xνPν)− x2Pµ (154)

from which we arrive finally at the following extra transformation rules:

DΦ(x) = (−ixν∂ν + ∆)Φ(x) (155)

KµΦ(x) =
(
κµ + 2xµ∆− 2xνSµν − 2ixµx

ν∂ν + ix2∂µ
)

Φ(x) (156)

It is possible to show that κµ = 0.

In principle, we can derive from the above the change of Φ(x) under a finite

conformal transformation. However, we shall give the result only for spinless

fields Sµν = 0. Under a conformal transformation x → x′ a spinless fields φ(x)

transform as

φ(x)→
∣∣∣∣∂x′

∂x

∣∣∣∣∆/dφ(x′) (157)

where
∣∣∂x′
∂x

∣∣ is the Jacobian of the conformal transformation of the coordinates.

Computing determinant from the both sides of (100) we obtain that Jacobian is

related to the scale factor of the metric :∣∣∣∣∂x′

∂x

∣∣∣∣ = Λ(x)−d/2 (158)
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Lecture 4

Correlation functions

We define a theory with conformal invariance to satisfy the properties:

1. There is a set of fields {Ai}, where the index i specifies the different fields.

This set of fields in general is infinite and contains in particular the deriva-

tives of all the fields.

2. There is a subset of fields {φj} ∈ {Ai}, called quasi-primary that under

global conformal transformations transform according to

φj(x)→
∣∣∣∣∂x′

∂x

∣∣∣∣∆j/d

φj(x
′) (159)

where
∣∣∂x′
∂x

∣∣ is the Jacobian of the conformal transformation of the coordi-

nates.

3. The rest of the {Ai} can be expressed as linear combinations of the quasi-

primary fields and their derivatives.

4. There is a vacuum |0〉 invariant under the global conformal group

U |0〉 = |0〉 (160)

This implies

〈0|U−1φ1U · · ·U−1φnU |0〉 = 〈0|φ1 · · ·φn|0〉 (161)

Taking into account that

U−1φj(x)U =

∣∣∣∣∂x′

∂x

∣∣∣∣∆j/d

φj(x
′) (162)

we obtain

〈φ1(x1) . . . φn(xn)〉 =

∣∣∣∣∂x′

∂x

∣∣∣∣∆1/d

x=x1

. . .

∣∣∣∣∂x′

∂x

∣∣∣∣∆n/d

x=xn

〈φ1(x′1) . . . φn(x′n)〉 (163)

Let us now compute the two-point correlation function of the quasi-primary fields.

According to (163) two-point functions have the following transformation rule:

〈φ1(x1)φ2(x2)〉 =

∣∣∣∣∂x′

∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′

∂x

∣∣∣∣∆2/d

x=x2

〈φ1(x′1)φ2(x′2)〉 (164)
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If we specialize to a scale transformation x→ λx we obtain:

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2〈φ1(λx1)φ2(λx2)〉 (165)

Rotation and translation invariance require that:

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|) (166)

where f(x) = λ∆1+∆2f(λx) by virtue of (165). In other words

〈φ1(x1)φ2(x2)〉 =
C

|x1 − x2|∆1+∆2
(167)

where C is a constant coefficient. It remains to use the invariance under special

conformal transformation. Recalling that for such a transformation∣∣∣∣∂x′

∂x

∣∣∣∣ =
1

(1− 2b · x + b2x2)d
(168)

and the transformation property of the distance under the special conformal

transformations:

|x′1 − x′2| =
|x1 − x2|

(1− 2b · x1 + b2x2
1)

1
2 (1− 2b · x2 + b2x2

2)
1
2

(169)

the covariance of the correlation function (167) implies

C

|x1 − x2|∆1+∆2
=

C

γ∆1
1 γ∆2

2

(γ1γ2)(∆1+∆2)/2

|x1 − x2|∆1+∆2
(170)

This constraint is identically satisfied only if ∆1 = ∆2. In other words two

quasy-primary fields correlated only if they have the same scaling dimensions:

〈φ1(x1)φ2(x2)〉 = 0, if ∆1 6= ∆2 (171)

and

〈φ1(x1)φ2(x2)〉 =
C

|x1 − x2|2∆1
if ∆1 = ∆2 (172)

A similar analysis may be performed on three-point functions. Covariance under

rotations, translations and dilatations forces a generic three-point function to

have the following form

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C

xa12x
b
23x

c
13

(173)
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where xij = |xi − xj| and with a, b, c such that

a+ b+ c = ∆1 + ∆2 + ∆3 (174)

Under special conformal transformations Eq.(173) becomes

C

γ∆1
1 γ∆2

2 γ∆3
3

(γ1γ2)a/2(γ2γ3)b/2(γ1γ3)c/2

xa12x
b
23x

c
13

(175)

For this expression to be of the same form as Eq.(173) all the factors involving

parameter bµ must disappear, which leads to the following set of constraints:

a+ c = 2∆1, a+ b = 2∆2, b+ c = 2∆3 (176)

The solution to to these constraints is unique:

a = ∆1 + ∆2 −∆3 (177)

b = ∆2 + ∆3 −∆1 (178)

c = ∆1 + ∆3 −∆2 (179)

(180)

Therefore the three-point correlator is

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

(181)
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Lecture 5

Conformal group in two dimensions

Let us consider the conformal transformations in two dimensions D = 2.

Condition (102) becomes the Cauchy-Riemann equation

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1 (182)

It is then natural to write ε(z) = ε1 − iε2 and ε̄(z̄) = ε1 + iε2 in the complex

coordinates z = x+iy and z̄ = x−iy. Two dimensional conformal transformations

thus coincide with the analytic coordinate transformations

z → f(z) z̄ → f(z̄) (183)

The metric in the complex coordinates is

ds2 = dzdz̄ (184)

Under the analytic coordinate transformations

z → f(z) z̄ → f(z̄) (185)

ds2 = dzdz̄ →
∣∣∣∣∂f∂z

∣∣∣∣2dzdz̄ (186)

Thus the group of two-dimensional conformal transformations coincides with the

analytic coordinate transformations. Any holomorphic infinitesimal transforma-

tion may be expressed as:

z′ = z + ε(z) ε(z) =
∞∑
−∞

cnz
n+1 (187)

The effect of such a mapping on a field φ(z, z̄) living on the plane is:

δφ = −ε(z)∂φ− ε̄(z̄)∂̄φ =
∑
n

{cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄)} (188)

where we have introduced the generators

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (189)

These generators obey the following commutation relations:

[ln, lm] = (n−m)ln+m (190)

[l̄n, l̄m] = (n−m)l̄n+m (191)

[ln, l̄m] = 0 (192)

(193)
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Thus the conformal algebra is the direct sum of two isomorphic algebras, each

with very simple commutation relations. The algebra (190) is sometimes called

the de Witt algebra.

Note that l0 = −z∂z and l̄0 = −z̄∂z̄ and hence introducing the polar coordi-

nates z = reiθ we obtain

r
∂

∂r
= z

∂

∂z
+ z̄

∂

∂z̄
= −(l0 + l̄0) (194)

and
∂

∂θ
= iz

∂

∂z
− iz̄ ∂

∂z̄
= −i(l0 − l̄0) (195)

Thus (l0 + l̄0) generates dilatations and i(l0 − l̄0) generates rotations.

Let us look for generators well-defined globally on the Riemann sphere S2 =

C ∪∞. Holomorphic conformal transformations are generated by vector fields:

v(z) = −
∑
n

anln =
∑
n

anz
n+1∂z (196)

Non-singularity of v(z) as z → 0 allows an 6= 0 only for n ≥ −1.To investigate

the behavior of v(z) as z →∞, we perform the transformation z = − 1
ω

,

v(z) =
∑
n

an

(
− 1

ω

)n+1(
dz

dω

)−1

∂ω =
∑
n

an

(
− 1

ω

)n−1

∂ω (197)

Non-singularity as ω → 0 allows an 6= 0 only for n ≤ 1. We see that only the

conformal transformations generated by anln for n = 0,±1 are globally defined.

The same considerations apply to anti-holomorphic transformations.

These generators satisfy the commutation relation:

[l0, l−1] = l−1 (198)

[l0, l1] = −l1 (199)

[l1, l−1] = 2l0 (200)

(201)

and similar for antiholomorphic components.

This is precisely the SU(2) rotation algebra if we identify l0 with Jz, il1 with

J− = Jx − iJy and il−1 with J+ = Jx + iJy.

Hence Lie algebra of the global conformal transformation consists of two com-

muting copies of the SU(2) algebra, and therefore coincide with the naively ex-

pected conformal group in two dimensions SO(3, 1).
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The fact that the Lie algebra of SO(3, 1) as well isomorphic to two commuting

copies of SU(2) algebra can be seen by means of identifications:

A = (J23, J31, J12) (202)

B = (J10, J20, J30) (203)

and then taking

J =
1

2
(A + iB) (204)

J̄ =
1

2
(A− iB) (205)

It is straightforward to check that SO(3, 1) commutation relations imply that J

and J̄ provide two commuting copies of the SU(2) algebra. One can see this also

on the group level. We identify l−1 and l̄−1 as generators of translations (globally

z → z + α), l0 and l̄0 as generators of dilatations (globally z → λz), and l1 and

l̄1 as generators of special conformal transformations (globally z → 1
1−βz . The

combined form of these transformations is

z → az + b

cz + d
z̄ → āz̄ + b̄

c̄z̄ + d̄
(206)

where a, b, c, d ∈ C and ad−bc = 1. This is the group SL(2,C)/Z2. The quotient

by Z2 is due to the fact that (1010) is unaffected by taking all of a, b.c, d to minus

of themselves. It remains to show that the quotient SL(2,C)/Z2 is isomorphic

to the Lorentz group SO(3, 1).

For this purpose we organize the four-vector Xµ as hermitian matrix

Xµσµ =

(
X0 +X3 X1 − iX2

X1 + iX2 X0 −X3

)
(207)

where σ1, σ2, σ3 are Pauli matrices and σ0 ≡ I. Note that

det (Xµσµ) = (X0)2 − (X1)2 − (X2)2 − (X3)2 (208)

The transformation

M (Xµσµ)M † (209)

where M ∈ SL(2,C) leaves the matrix hermitian and does not change the de-

terminant. Therefore this transformation induces the Lorentz transformation of

Xµ:

M (Xµσµ)M † = (Λ(M)µνX
νσµ) (210)
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where Λ(M)µν ∈ SO(3, 1). Since the map (209) is the same for M and −M
therefore Λ(M)µν = Λ(−M)µν and we proved the isomorphism SL(2,C)/Z2 ≈
SO(3, 1).
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Lecture 6

Examples of CFT: Non-linear sigma model

Weyl transformation

gµν → Λgµν (211)

Remembering that

δS =
1

2

∫
ddx
√
gT µνδgµν (212)

where g = det||gµν ||, we obtain that the action is invariant under the Weyl

transformation if the tensor-energy momentum is traceless

T µνgµν = 0 (213)

On the other hand under an arbitrary transformation of the coordinates xµ →
xµ + εµ, the action changes as follows:

δS =

∫
ddxT µν∂µεν =

1

2

∫
ddxT µν(∂µεν + ∂νεµ) (214)

where T µν is the symmetric energy-momentum tensor. The definition (102) of an

infinitesimal conformal transformation implies that the corresponding variation

of the action is

δS =
1

d

∫
ddxT µµ ∂ρε

ρ (215)

The tracelessness of the energy-momentum tensor then implies the invariant-

ness of the action under conformal transformation.

Consider now the action

S =

∫
Σ

d2σ
√
hhαβ∂αX

µ∂βX
νgµν(X) (216)

where hαβ is metric on two-dimensional world-sheet Σ, gµν(X) is metric on man-

ifold M. It is Weyl invariant: under hαβ → Λhαβ we have in d dimension:

√
hhαβ → Λ

d
2
−1
√
hhαβ (217)

and therefore the action is indeed Weyl invariant in two dimensions.

The tensor energy-momentum is

Tαβ = ∂αX
µ∂βX

νgµν(X)− 1

2
hαβh

α′β′∂α′X
µ∂β′X

νgµν(X) (218)
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and obviously traceless in two-dimensional case:

hαβTαβ = 0 (219)

Let us check if the Weyl invariant is not broken by the quantum corrections.

We will work in the dimensional regularization scheme. In d = 2+ε dimensions

choosing conformal gauge

hαβ = e2φηαβ (220)

we obtain

S =

∫
Σ

d2σeεφ∂αX
µ∂αXνgµν(X) (221)

Let expand the field Xµ around constant solution, a point Xµ
0

Xµ(σ, τ) = Xµ
0 + xµ(σ, τ) (222)

where xµ(σ, τ) quantum fluctuations. Choosing normal Riemann coordinates we

have for metric:

gµν = ηµν −
1

3
Rµλνκx

λxκ − 1

6
DλRµλνκx

ρxλxκ + · · · (223)

where Rµλνκ Riemann tensor on manifold M in point Xµ
0 . Inserting this in action

and also expanding eεφ = 1 + εφ · · · we get

S =

∫
Σ

d2σ
[
∂αx

µ∂αxνηµν(1 + εφ)− 1

3
Rµλνκx

λxκ∂αx
µ∂αxν(1 + εφ) + · · ·

]
(224)

Consider the contraction

〈xλ(σ)xκ(σ′)〉σ→σ′ = πηλκlimσ→σ′

∫
d2+εk

(2π)2+ε

eik(σ−σ′)

k2
(225)

Let us compute the integral

I(D) =

∫
dDk

(2π)D
1

p2 +m2
(226)

In polar coordinates it can be written:

I(D) =

∫
dDk

(2π)D
1

p2 +m2
=

SD
(2π)D

∫ ∞
0

dppD−1 1

p2 +m2
(227)

where

SD =
2πD/2

Γ(D/2)
(228)
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is the surface of a unit sphere in D dimensions. The resulting one-dimensional

integral can after the substitution p2 = ym2, be cast into the form of an integral

for the Beta function

B(α, γ) =
Γ(α)Γ(γ)

Γ(α + γ)
=

∫ ∞
0

dyyα−1(1 + y)−α−γ (229)

We then find

I(D) =
SD

(2π)D

∫ ∞
0

dppD−1 1

p2 +m2
=

SD
2(2π)D

(m2)D/2−1

∫ ∞
0

dyyD/2−1(1− y)−1 =(230)

1

(4π)D/2Γ(D/2)
(m2)D/2−1 Γ(D/2)Γ(1−D/2)

Γ(1)
=

(m2)D/2−1

(4π)D/2
Γ(1−D/2)

Using this in the limit D = limε→0(2 + ε) and remembering

Γ(ε) ∼ 1

ε
(231)

we obtain

〈xλ(σ)xκ(σ′)〉σ→σ′ ∼
ηλκ

2ε
(232)

This implies that one-loop correction to the metric resulting from the curvature

term is ∫
Σ

d2σφ(σ)∂αx
µ∂αxνRµν(X

ρ
0 ) (233)

Here Rµν(X
ρ
0 ) is Ricci tensor on manifold M. Therefore in general the Weyl

invariance is broken, since in the limit ε→ 0 the scale factor φ(σ) is remained. We

obtain that the sigma-model action is conformal invariant for Ricci flat manifold

M.

One can consider also sigma model with the B- term

S =

∫
Σ

d2σ
√
hhαβ∂αX

µ∂βX
νgµν(X) + εαβ∂αX

µ∂βX
νBµν(X) (234)

Similar calculations bring to the following condition of the Weyl one-loop invari-

ance

Rµν +
1

4
Hλρ
µ Hνλρ = 0 (235)

where H = dB.
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Lecture 7

Tensor energy-momentum, radial quantization, OPE

Under an arbitrary transformation of the coordinates xµ → xµ+εµ, the action

changes as follows:

δS =

∫
ddxT µν∂µεν =

1

2

∫
ddxT µν(∂µεν + ∂νεµ) (236)

where T µν is the symmetric energy-momentum tensor. The definition (102) of an

infinitesimal conformal transformation implies that the corresponding variation

of the action is

δS =
1

d

∫
ddxT µµ ∂ρε

ρ (237)

The tracelessness of the energy-momentum tensor then implies the invariant-

ness of the action under conformal transformation.

The current of conformal symmetry is

Jµ = Tµνε
ν (238)

This current is conserved because

∂µJµ = ∂µTµνε
ν + Tµν∂

µεν = 0 (239)

which vanishes because the tensor energy-momentum is conserved and trace-

less.

To implement the conservation equations in the complex plane we compute

the components of tensors in the complex coordinates. Since the flat Euclidean

metric ds2 = dx2 + dy2 in the complex coordinates z = x + iy has the form

ds2 = dzdz̄ one has

gzz = gz̄z̄ = 0 (240)

and

gzz̄ = gz̄z =
1

2
(241)

and

gzz = gz̄z̄ = 0 (242)

and

gzz̄ = gz̄z = 2 (243)
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The components of the energy-momentum tensor in this frame are

Tzz =
1

4
(T00 − 2iT10 − T11) (244)

Tz̄z̄ =
1

4
(T00 + 2iT10 − T11) (245)

Tzz̄ = Tz̄z =
1

4
(T00 + T11) =

1

4
T µµ (246)

(247)

Therefore the tracelessness implies

Tzz̄ = Tz̄z = 0. (248)

The conservation law gαµ∂αTµν = 0 gives two relations

∂z̄Tzz + ∂zTz̄z = 0 (249)

∂zTz̄z̄ + ∂z̄Tzz̄ = 0

Using (248) we obtain

∂z̄Tzz = 0 and ∂zTz̄z̄ = 0 (250)

The two non-vanishing components of the energy-momentum tensor

T (z) ≡ Tzz(z) and T̄ (z̄) ≡ Tz̄z̄(z̄) (251)

thus have only holomorphic and anti-holomorphic dependences.

Consider the system on a cylinder Σ = R × S1 = (t, x mod 2π), where t is

world-sheet time, and x is compactified space coordinate.

Next we consider the conformal map w → z = ew = et+ix, that maps the

cylinder to the complex plane. Then infinite past and future on the cylinder,

t = ±∞ are mapped to the points z = 0,∞ on the plane. Equal time surfaces,

t = const becomes circles of constant radius on the z-plane. Dilatation on the

plane ea becomes time translation t+a on the cylinder, and rotation on the plane

eiα is space translation x+ α on the cylinder. Therefore the dilatation generator

on the conformal plane can be regarded as the Hamiltonian, and the rotation

generator on the conformal plane can be regarded as momentum.

The current of conformal transformations takes the form:

Jz = T (z)ε(z) (252)

Jz̄ = T̄ (z̄)ε̄(z̄)
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The conserved charge of the conformal transformations takes the form

Q =
1

2πi

∮
dzT (z)ε(z) +

1

2πi

∮
dz̄T̄ (z̄)ε̄(z̄) (253)

Radial ordering

Product of operators make sense if they are radially ordered. This is the

analogue of time ordering for field theory on the cylinder. In the classical theory

the ordering of fields or charges in a product is of course irrelevant. In the

quantum theory they become operators and we have to specify an ordering. The

product of two operators A(xa, ta) and B(xb, tb) can be written with the help of

the Hamiltonian H of the system as

A(xa, ta)B(xb, tb) = eiHtaA(xa, 0)e−iHtaeiHtbB(xb, 0)e−iHtb (254)

The factor e−iH(ta−tb) becomes e−H(τa−τb) when we Wick rotate. Usually the

Hamiltonian is bounded from below, but not from above. Then if τa < τb the

exponential can take arbitrarily large values, and expectation values of the oper-

ator product are then not defined. Hence in operator product one imposes time

ordering, denoted as

TA(ta)B(tb) = A(ta)B(tb) for ta > tb and B(tb)A(ta) for ta < tb (255)

After mapping from the cylinder to the plane, the Euclidean time coordinate

is mapped to the radial coordinate, and time ordering becomes radial ordering

RA(z)B(w) = A(z)B(w) for |z| > |w| and B(w)A(z) for |z| < |w| (256)

The variation of any field is given by commutator with the charge (253):

δε,ε̄Φ(w, w̄) = [Q,Φ(w, w̄)] = (257)

1

2πi

∮
dzε(z)(T (z)Φ(w, w̄)− Φ(w, w̄)T (z)) +

1

2πi

∮
dz̄ε̄(z̄)(T̄ (z̄)Φ(w, w̄)− Φ(w, w̄)T̄ (z̄))

Let us now analyze the order of operators in the second and the third lines

in (257). We will discuss the holomorphic part, the similar discussion holds

for antiholomorphic part. We have seen that the first term in the commutator

is defined only if |z| > |w|, whereas the second one requires |z| < |w|. Note

however that z is an integration variable, and that the definition of Q did not
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include any prescription for the precise contours to be used. Classically Qis in

fact independent of the contour due to Cauchy’s theorem, because the integrand

is a holomorphic function. On the cylinder this can be interpreted as charge

conservation, i.e. evaluated Q at two different times gives the same answer. In

the quantum theory we have to be more careful. As one usually does, we use the

freedom we have in the classical theory in order to write the quantity on interests

in such a way that it is well-defined after quantization. Nothing forbids us to use

different contours in two terms in commutator:

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = (258)

1

2πi

∮
|z|>|w|

dzε(z)(T (z)Φ(w, w̄)−
∮
|z|<|w|

Φ(w, w̄)T (z))

Using the definition of the radial ordering (256) one can write

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = (259)

1

2πi

[∮
|z|>|w|

−
∮
|z|<|w|

]
dzε(z)R(T (z)Φ(w, w̄))

Deforming the contours the result is

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = (260)

1

2πi

∮
w

dzε(z)R(T (z)Φ(w, w̄))

where the integration contour encircles the point w. Collecting all we obtain:

δε,ε̄Φ(w, w̄) =
1

2πi

∮
w

dzε(z)R(T (z)Φ(w, w̄)) +
1

2πi

∮
w

dzε̄(z̄)R(T̄ (z̄)Φ(w, w̄))

(261)

Primary fields possess the following transformation rule:

Φ(z, z̄)→
(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
Φ(f(z), f̄(z̄)) (262)

The infinitesimal transformation of the primary fields of the weight h and h̄ is:

δε,ε̄Φ(w, w̄) = h∂ε(w)Φ(w, w̄) + ε(w)∂Φ(w, w̄) + (263)

h̄∂̄ε̄(w̄)Φ(w, w̄) + ε̄(w̄)∂̄Φ(w, w̄)
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Comparing (260) and (263) we get OPE of the energy-momentum tensor with

the primary field of the weights h, h̄

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w
∂wΦ(w, w̄) (264)

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄
∂w̄Φ(w, w̄) (265)
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Lecture 8

Virasoro algebra

Schwarzian derivative

OPE of the tensor energy-momentum with itself takes the form:

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) (266)

The term on the rhs, with coefficient c a constant, is allowed by analicity,

Bose symmetry, and scale invariance. Apart from this term, (279) is just the

statement that T (z) is a conformal field of weight (2, 0). According to (261) the

variation of T under infinitesimal conformal transformation is

δεT (w) =
1

2πi

∮
ε(z)T (z)T (w) (267)

1

12
c∂3

wε(w) + 2T (w)∂wε(w) + ε(w)∂wT (w)

The exponentiation of this infinitesimal variation to a finite transformation

z → w(z) is

T (z)→
(
dw

dz

)2

T (w(z)) +
c

12
S(w; z) (268)

where we have introduced the Schwarzian derivative:

S(w; z) =
(d3w/dz3)

(dw/dz)
− 3

2

(
(d2w/dz2)

(dw/dz)

)2

(269)

It is the unique weight two object that vanishes when restricted to the global

SL(2, C) subgroup of the two-dimensional group. It also satisfies the composition

law:

S(w, z) =

(
df

dz

)2

S(w, f) + S(f, z) (270)

The tensor energy-momentum is thus example of a field that is quasi-primary,

i.e. SL(2, C) primary, but not Virasoro primary. For the exponential map w →
z = ew we have

S(ew, w) = −1/2 (271)

so

Tcyl(w) =

(
∂z

∂w

)2

T (z) +
c

12
S(z, w) = z2T (z)− c

24
(272)
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Substituting the mode expansion T (z) =
∑
Lnz

−n−2 we find

Tcyl(w) =
∑

Lnz
−n − c

24
=
∑
n

(
Ln −

c

24
δn0

)
e−nw (273)

The translation generator (L0)cyl on the cilinder is thus given in terms of the

dilatation generator L0 on ther plane as

(L0)cyl = L0 −
c

24
(274)

Virasoro generators

We introduced a current J(z) = T (z)ε(z). Since ε(z) is an arbitrary holo-

morphic function, it is natural to expand it in modes. We expect that the cur-

rent T (z)zn+1 generates the transformation z → z + cnz
n+1. The corresponding

charges are:

Ln =
1

2πi

∮
dzT (z)zn+1 (275)

This relation can be inverted:

T (z) =
∑
n

z−n−2Ln (276)

The commutator of the charges is

[Ln, Lm] = (277)

1

(2πi)2

∮
0

dwwm+1

∮
w

dzzn+1

[
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w)

]
=

1

2πi

∮
0

dwwm+1

[
1

12
c(n+ 1)n(n− 1)wn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w)

]
=

1

12
cn(n2 − 1)δn+m,0 + 2(n+ 1)Lm+n −

1

2πi

∮
0

dw(n+m+ 2)wn+m+1T (w) =

1

12
cn(n2 − 1)δn+m,0 + (n−m)Lm+n

Here we used

f (n)(z0) =
n!

2πi

∮
f(z)dz

(z − z0)n+1
(278)

Identical consideration for T̄ implies

T̄ (z̄)T̄ (w̄) =
c/2

(z̄ − w̄)4
+

2

(z̄ − w̄)2
T̄ (w̄) +

1

z̄ − w̄
∂T̄ (w̄) (279)

T̄ (z̄) =
∑
n

z̄−n−2L̄n (280)
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[L̄n, L̄m] = (n−m)L̄m+n +
1

12
c̄n(n2 − 1)δn+m,0 (281)

Since T (z) and T̄ (z̄) have no power law singularity in their product, we have

[Ln, L̄m] = 0 (282)

Correlation functions

Since global conformal group SL(2, C) preserves vacuum and anomaly free

we have for f(z) in the form (206):

〈Φ1(z1, z̄1) . . .Φn(zn, z̄n)〉 =
∏
j

(∂f(zj))
hj
(
∂̄f̄(z̄j)

)h̄j 〈Φ1(f(z1), f̄(z̄1)) . . .Φn(f(zn), f̄(z̄n)〉

(283)

f(z) =
az + b

cz + d
(284)

f ′(z) =
1

(cz + d)2
(285)

f(z1)− f(z2) =
z1 − z2

(cz1 + d)(cz2 + d)
(286)

Two-point function is

〈Φ(z1, z̄1)Φ(z2, z̄2)〉 =
C

(z1 − z2)2h(z̄1 − z̄2)2h̄
(287)

where h1 = h2 = h, h̄1 = h̄2 = h̄

〈Φ(z1, z̄1)Φ(z2, z̄2)Φ(z3, z̄3)〉 = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

× (288)

1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄3+h̄1−h̄2
13

where zij = zi − zj.
We can express the invariance rule (283) in infinitesimal form:

n∑
i=1

∂i〈Φ1(z1, z̄1) . . .Φn(zn, z̄n)〉 = 0 (289)

n∑
i=1

(zi∂i + hi)〈Φ1(z1, z̄1) . . .Φn(zn, z̄n)〉 = 0 (290)

n∑
i=1

(z2
i ∂i + 2zihi)〈Φ1(z1, z̄1) . . .Φn(zn, z̄n)〉 = 0 (291)
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In- and Out- states

We suggest

[Φ(z, z̄)]† = Φ

(
1

z̄
,
1

z

)
1

z̄2h

1

z2h̄
(292)

To justify the ansatz (292) we consider in- and out- states. Since time t→ −∞
on the cylinder corresponds to the origin of the z-plane, it is natural to define

in-states as

|Φin〉 ≡ limz,z̄→0Φ(z, z̄)|0〉 (293)

To define 〈Φout| we need to construct the analogous object for z →∞. If we call

Φ̃(w, w̄) the operator in the coordinates for which w → 0 correspond to the point

at ∞, then the natural definition is

〈Φout| ≡ limw,w̄→0〈0|Φ̃(w, w̄) (294)

We need to relate Φ̃(w, w̄) to Φ(z, z̄). Recall that for primary fields we have under

w → f(w)

Φ̃(w, w̄) = Φ(f(w), f̄(w̄))(∂f(w))h(∂̄f̄(w̄))h̄ (295)

so that in particular under f(w)→ 1/w

Φ̃(w, w̄) = Φ

(
1

w
,

1

w̄

)
(−w−2)h(−w̄−2)h̄ (296)

Demanding 〈Φout| = |Φin〉† we arrive to (292).

〈Φout| = limw,w̄→0〈0|Φ̃(w, w̄) = limw,w̄→0〈0|Φ
(

1

w
,

1

w̄

)
1

w2h

1

w̄2h̄
(297)

limw,w̄→0〈0|[Φ(w̄, w)]† =
[
limw,w̄→0Φ(w̄, w)|0〉

]†
= |Φin〉†

Let us check that the definition (292) is consistent with the two-point function:

〈Φout|Φin〉 = limz,z̄,w,w̄→0〈0|Φ(z, z̄)†Φ(w, w̄)|0〉 (298)

= limz,z̄,w,w̄→0z̄
−2hz−2h̄〈0|Φ(1/z̄, 1/z)Φ(w, w̄)|0〉

= limξ,ξ̄→∞ξ̄
2hξ2h̄〈0|Φ(ξ̄, ξ)Φ(0, 0)|0〉

where ξ = 1
z

and ξ̄ = 1
z̄
.

Φpl(z, z̄) =

(
∂w

∂z

)h(
∂w̄

∂z̄

)h̄
Φcyl(w(z), w̄(z̄)) (299)
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z = ew (300)

Φcyl(w, w̄) =
∑
m∈Z

∑
n∈Z

φm,ne
−mwe−nw̄ (301)

Φpl(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄φm,n (302)

Φ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄φm,n (303)

A straightforward Hermitian conjugation on the real surface yields

Φ(z, z̄)† =
∑
m∈Z

∑
n∈Z

z̄−m−hz̄−n−h̄φ†m,n (304)

while the definition (292) implies

Φ(z, z̄)† = z̄−2hz−2h̄Φ(1/z̄, 1/z) = (305)

z̄−2hz−2h̄
∑
m∈Z

∑
n∈Z

z̄m+hzn+h̄φm,n =∑
m∈Z

∑
n∈Z

z̄−m−hz−n−h̄φ−m,−n

Comparing we obtain:

φ†m,n = φ−m,−n (306)

Applying (292) to the tensor energy-momentum T (z) =
∑

n z
−n−2Ln we obtain:

T (z)† =
∑
n

z̄−n−2L†n (307)

and

T

(
1

z̄

)
1

z̄4
=
∑
n

z̄n−2Ln (308)

Equating (307) and (308) we receive

L†n = L−n (309)

Other important conditions on the Ln can be derived by requiring the regularity

of

T (z)|0〉 =
∑
m∈Z

Lmz
−m−2|0〉 (310)

at z = 0. Obviously only terms with m ≤ −2 are allowed, o we learn that

Lm|0〉 = 0, m ≥ −1 (311)
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Taking hermitian conjugation we have

〈0|Lm = 0, m ≤ 1 (312)

The only generators annihilating both |0〉 and 〈0| are L±1,0. This the known

already to us the statement of the SL(2, C) invariance of the vacuum.

Now we can derive the condition c > 0 in unitary theories

c

2
= 〈0|[L2, L−2]|0〉 = 〈0|L2L

†
2|0〉 ≥ 0 (313)

since the norm satisfies ||L†2|0〉||2 ≥ 0 in a positive Hilbert space.

Let us now consider the state

|h, h̄〉 = φ(0, 0)|h〉 (314)

created by a holomorphic field φ(z) of weight h. From the operator product

expansion (264) between the energy-momentum tensor T and a primary field we

find:

[Ln, φ(w, w̄)] =

∮
dz

2πi
zn+1T (z)φ(w, w̄) = (315)∮

dz

2πi
zn+1

(
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄)

)
= h(n+ 1)wnφ(w, w̄) + wn+1∂wφ(w, w̄)

so that [Ln, φ(0, 0)] = 0, n > 0.

The antiholomorphic counterpart of this relation is

[L̄n, φ(w, w̄)] = h̄(n+ 1)w̄nφ(w, w̄) + w̄n+1∂wφ(w, w̄) (316)

Applying this relation to the state (314) we conclude:

L0|h, h̄〉 = h|h, h̄〉 L̄0|h, h̄〉 = h̄|h, h̄〉 (317)

and

Ln|h, h̄〉 = 0 L̄n|h, h̄〉 = 0 n > 0 (318)

The state satisfying (317) and (318) is known as a highest weight state.

Using (317) and (318) and (281) we can evaluate

〈h|L†−nL−n|h〉 = 〈h|[Ln, L−n]|h〉 = 2n〈h|L0|h〉+
c

12
(n3 − n)〈h|h〉 =(319)(

2nh+
c

12
(n3 − n)

)
〈h|h〉
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For n = 1 this implies that h ≥ 0.

Let us consider mode expansion of arbitrary holomorphic field φ(z) of weight

(h, 0)

φ(z) =
∑
n∈Z

φmz
−m−h (320)

φm =
1

2πi

∮
dzzm+h−1φ(z) (321)

Regularity of φ(z)|0〉 at z = 0 requires φn|0〉 = 0 for n ≥ −h+ 1. From (314) we

see that the state |h〉 is created by the mode φ−h: |h〉 = φ−h|0〉. Now calculate

the commutator:

[Ln, φm] =
1

2πi

∮
dwwm+h−1(h(n+ 1)wnφ(w) + wn+1∂wφ(w)) (322)

=
1

2πi

∮
dwwm+h+n−1(h(n+ 1)− (h+m+ n)φ(w)) =

(n(h− 1)−m)φm+n

So [L0, φm] = −mφm, implying L0|h〉 = L0φ−h|0〉 = h|h〉.
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Lecture 9

Free boson

The action of a free massless boson φ is

S =
1

8π

∫
d2x∂µφ∂

µφ (323)

The equation of motion for the field φ is:

�φ =

(
∂2

∂x2
+

∂2

∂y2

)
φ = 0 (324)

In the polar coordinates we have:

� =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(325)

The solution of the equation or propagator

�xG(x,y) = δ(2)(x− y) (326)

is

G(x,y) = log r, r = (x− y)2 (327)

or in other words

〈φ(x)φ(y)〉 = − log(x− y)2 (328)

in complex coordinates:

〈φ(z, z̄)φ(w, w̄)〉 = −(log(z − w) + log(z̄ − w̄) (329)

Eq. (329) can be derived also remembering that in complex coordinates the

propagator satisfies the relation:

(∂z∂z̄ + ∂z̄∂z)G(z, w) = δ(2)(z − w, z̄ − w̄) (330)

and

∂z
1

z̄
= ∂z̄

1

z
= δ(2)(z, z̄) (331)

Let us prove (331).

Recall at the beginning the Stokes theorem∫
M

d2z(∂zAz̄ − ∂z̄Az) =

∫
∂M

(Azdz + Az̄dz̄) (332)
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Now we can compute:∫
M

d2zδ(z, z̄)f(z) =

∫
M

d2z∂z̄
1

z
f(z) =

∫
M

d2z∂z̄
f(z)

z
=

∫
∂M

dz
f(z)

z
= f(0)

(333)

It follows

〈∂zφ(z, z̄)∂wφ(w, w̄)〉 = − 1

(z − w)2
(334)

〈∂z̄φ(z, z̄)∂w̄φ(w, w̄)〉 = − 1

(z̄ − w̄)2
(335)

The energy-momentum tensor of the free boson is

Tµν =
1

4π
(∂µφ∂νφ−

1

2
ηµν∂ρφ∂

ρφ) (336)

Denoting ∂φ ≡ ∂zφ and ∂̄φ ≡ ∂z̄φ, the holomorphic and anti-holomorphic

components of the tensor energy-momentum are

T (z) = −1

2
: ∂φ∂φ : (337)

T̄ (z̄) = −1

2
: ∂̄φ∂̄φ : (338)

The normal ordering means:

T (z) = −1

2
limw→z(∂φ(z)∂φ(w)− 〈∂φ(z)∂φ(w)〉) (339)

The OPE of T (z) with ∂φ may be calculated from Wick’s theorem:

T (z)∂φ(w) = −1

2
: ∂φ(z)∂φ(z) : ∂φ(w) ∼ ∂φ(z)

(z − w)2
(340)

By expanding ∂φ(z) around w we arrive at the OPE

T (z)∂φ(w) ∼ ∂φ(w)

(z − w)2
+
∂2φ(w)

(z − w)
(341)

This shows that ∂φ(z) is a primary field with conformal dimension 1. Wick’s

theorem also allows us to calculate the OPE of the energy-momentum tensor with

itself:

T (z)T (w) =
1

4
: ∂φ(z)∂φ(z) :: ∂φ(w)∂φ(w) : (342)

∼ 1/2

(z − w)4
− : ∂φ(z)∂φ(w) :

(z − w)2

∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
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Let us introduce the vertex operators:

Vα(z, z̄) =: eiαφ(z,z̄) : (343)

We now demonstrate that these fields are primary with dimensions:

hα =
α2

2
(344)

We first calculate the OPE of ∂φ with Vα

∂φ(z)Vα(w, w̄) =
∞∑
n=0

(iα)n

n!
∂φ(z) : φ(w, w̄) :n (345)

∼ − 1

z − w

∞∑
n=1

(iα)n

(n− 1)!
: φ(w, w̄) :n−1

∼ −iαVα(w, w̄)

z − w

From here we can derive:[
1

2πi

∮
0

i∂φ(z)dz,Vα(w, w̄)

]
=

1

2πi

∮
w

∂φ(z)Vα(w, w̄)dz = αVα(w, w̄) (346)

Next we calculate the OPE of Vα with the energy-momentum tensor:

T (z)Vα(w, w̄) = −1

2

∞∑
n=0

(iα)n

n!
: ∂φ(z)∂φ(z) :: φ(w, w̄) :n (347)

∼ −1

2

1

(z − w)2

∞∑
n=2

(iα)n

(n− 2)!
: φ(w, w̄) :n−2

+
1

z − w

∞∑
n=1

(iα)n

n!
n : ∂φ(z) :: φ(w, w̄) :n−1

∼ α2

2

Vα(w, w̄)

(z − w)2
+
∂wVα(w, w̄)

z − w

To the n-th term in the summation we have applied 2n single contractions and

n(n−1) double contractions. We have replaced ∂φ(z) by ∂φ(w) in th last equation

since the difference between the two fields leads to a regular term.

Quantization of the free boson on the cylinder

On a cylinder of circumference L a boson satisfies φ(x+ L, t) = φ(x, t).

φ(x, t) = φ0 +
4πa0t

L
+ i
∑
n6=0

1

n

(
ane

2πni(x−t)/L − āne2πni(x+t)/L
)

(348)
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From reality of φ we have

a†n = a−n (349)

and

ā†n = ā−n (350)

Commutation relations follows from the equal-time commutation rules

[φ(x), φ(x′)] = 0, [∂tφ(x), ∂tφ(x′)] = 0

[
1

4π
∂tφ(x), φ(x′)

]
= iδ(x− x′)

(351)

which imply

[an, am] = nδn+m [ān, ām] = nδn+m [an, ām] = 0 (352)

The total momentum of the string is∫ L

0

1

4π
∂tφ(x) = a0 (353)

If we go over to Euclidean space-time (replace t by −iτ) and use the conformal

coordinates:

z = e2π(τ−ix)/L z̄ = e2π(τ+ix)/L (354)

φ(x, t) = φ0 − ia0 log(zz̄) + i
∑
n6=0

1

n

(
anz

−n − ānz̄−n
)

(355)

i∂φ(z) =
∑
n

anz
−n−1 (356)

One has

a†n = a−n ā†n = ā−n (357)

Commutation relations:

[an, am] = nδn+m [ān, ām] = nδn+m [an, ām] = 0 (358)

can be derived also from the OPE (334)

[an, am] = i2
[ ∮

dz

2πi
,

∮
dw

2πi

]
znwm∂zφ(z)∂wφ(w) (359)

= i2
∮

dw

2πi
wm
∮

dz

2πi
zn

1

(z − w)2

=

∮
dw

2πi
nwmwn−1 = nδn+m,0
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We have that
1

2πi

∮
0

i∂φ(z)dz = a0 (360)

and therefore

[a0, Vα(w, w̄)] = αVα(w, w̄) (361)

Using (337) and remembering the mode expansion of the tensor energy-momentum

(276) we obtain:

Ln =
1

2

∑
m∈Z

an−mam (362)

L0 =
∑
n>0

a−nan +
1

2
a2

0 (363)

let us compute:

[Ln, ak] =
1

2

∑
m∈Z

[an−mam, ak] = (364)

1

2

∑
m∈Z

(an−m[am, ak] + [an−m, ak]am) =

1

2

∑
m∈Z

(an−mmδm+k + am(n−m)δn−m+k) =
1

2
(−an+kk − kan+k) = −kan+k

We also have

[L0, a−m] = ma−m [L0, am] = −mam (365)

[Ln, Lm] =
1

2

∑
k∈Z

[Ln, am−kak] = (366)

1

2

∑
k∈Z

(am−k[Ln, ak] + [Ln, am−k]ak) =

1

2

∑
k∈Z

(−kam−kan+k − (m− k)an+m−kak)

Now let us bring both terms to the normal ordered form.

For normal ordering we will take the following prescription:

: aiaj := aiaj if i ≤ j and ajai if i > j (367)
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Now for the first term we can write:∑
k∈Z

(−kam−kan+k) =
∑

k≥m−n
2

(−kam−kan+k) +
∑

k<m−n
2

(−kam−kan+k) = (368)

∑
k≥m−n

2

(−kam−kan+k) +
∑

k<m−n
2

(−kan+kam−k) +
∑

k<m−n
2

(−k)(m− k)δm+n =

∑
k∈Z

: (−kam−kan+k) : +
∑
k<m

k(k −m)δm+n

and for the second∑
k∈Z

(−(m− k)an+m−kak) = (369)∑
k≥m+n

2

(−(m− k)an+m−kak) +
∑

k<m+n
2

(−(m− k)an+m−kak) =

∑
k≥m+n

2

(−(m− k)an+m−kak) +
∑

k<m+n
2

(−(m− k)akan+m−k) +

∑
k<m+n

2

(−(m− k)(n+m− k)δm+n =

∑
k∈Z

: (−(m− k)an+m−kak) : −
∑
k<0

k(k −m)δm+n

Performing in the first term of the last line in (368) the change of the sum variable

k to k′ = n+ k we get∑
k′∈Z

: (−(k′ − n)an+m−k′ak′) :=
∑
k∈Z

: (−(k − n)an+m−kak) : (370)

and uniting it the first term in the last line of (369) we obtain:

1

2

∑
k∈Z

: (−(k − n)an+m−kak) : +
1

2

∑
k∈Z

: (−(m− k)an+m−kak) := (n−m)Ln+m

(371)

For the remaining terms we get:

1

2

m−1∑
k=1

k(k −m)δm+n (372)

Remembering that
n∑
k=1

k =
n(n+ 1)

2
(373)
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and
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(374)

we obtain

1

2

m−1∑
k=1

k(k −m)δm+n =
1

2
δm+n

[(m− 1)m(2m− 1)

6
−mm(m− 1)

2

]
= (375)

− 1

12
δm+n(m3 −m) =

1

12
δm+n(n3 − n)

Now consider the scalar field compactified on circle of radius R:

φ(x+ L, t) = φ(x, t) + 2πmR (376)

The mode expansion (348) now modifies to

φ(x, t) = φ0 +
4πn

RL
t+

2πRm

L
x+ i

∑
k 6=0

1

k

(
ake

2πki(x−t)/L − āke2πki(x+t)/L
)

(377)

The center-of-mass momentum is L
4π
∂tφ = n

R
, and n should be integer since the

vertex operator eipx should be single valued under the identificationX ≡ X+2πR.

If we express this expansion in terms of the complex coordinates z and z̄, we find

φ(z, z̄) = φ0 − i
(
n

R
+

1

2
Rm

)
log(z) + i

∑
k 6=0

1

k
akz

−k (378)

−i
(
n

R
− 1

2
Rm

)
log(z̄) + i

∑
k 6=0

1

k
ākz̄

−k

i∂φ(z) =

(
n

R
+

1

2
Rm

)
1

z
+
∑
k 6=0

akz
−k−1 (379)

The expression (363) for L0 and L̄0 specialize to

L0 =
∑
n>0

a−nan +
1

2

(
n

R
+

1

2
Rm

)2

(380)

L̄0 =
∑
n>0

ā−nān +
1

2

(
n

R
− 1

2
Rm

)2

(381)

Free Fermion

The action is

S =
1

2π

∫
d2x(ψ∂̄ψ + ψ̄∂ψ̄) (382)
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The classical equations of motion are

∂ψ̄ = 0 and ∂̄ψ = 0 (383)

The propagator is

〈ψ(z)ψ(w)〉 =
1

z − w
(384)

〈ψ̄(z̄)ψ̄(w̄)〉 =
1

z̄ − w̄
(385)

T z̄z̄ = 2
∂L
∂∂̄Φ

∂Φ =
1

π
ψ∂ψ (386)

T zz = 2
∂L
∂∂Φ

∂̄Φ =
1

π
ψ̄∂̄ψ̄ (387)

T zz̄ = 2
∂L
∂∂Φ

∂Φ− 2L = − 1

π
ψ∂̄ψ (388)

T zz̄ vanishes on the equation of motion.

The standard holomorphic component is

T (z) = −2πTzz =
1

2
: ψ(z)∂ψ(z) : (389)

where, as before we have used the normal-ordered product

: ψ(z)∂ψ(z) := limw→z(ψ(z)∂ψ(w)− 〈ψ(z)∂ψ(w)〉) (390)

T (z)ψ(w) = −1

2
: ψ(z)∂ψ(z) : ψ(w) ∼ 1

2

∂ψ(z)

z − w
+

1

2

ψ(z)

(z − w)2
(391)

∼ 1

2

ψ(w)

(z − w)2
+
∂ψ(w)

z − w

In contracting ψ(z) with ψ(w) we have carried ψ(w) over ∂ψ(z) thus introducing

a (−) sign by Pauli’s principle. We see from this OPE that the fermion ψ has a

conformal dimension h = 1
2
.

The OPE of T (z) with itself is calculated in the same way:

T (z)T (w) =
1

4
: ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) : (392)

∼ 1/4

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

Fermion on a plane
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On the plane the fermion field has mode expansion:

ψ(z) =
∑
k

bkz
−k−1/2 (393)

We find commutation relations:

{bn, bm} = i2
[ ∮

dz

2πi
,

∮
dw

2πi

]
zn−1/2wm−1/2ψ(z)ψ(w) (394)

= i2
∮

dw

2πi
wm−1/2

∮
dz

2πi
zn−1/2 −1

z − w

=

∮
dw

2πi
wm−1/2wn−1/2 = δn+m,0

One can have periodic or anti-periodic boundary conditions having half-integer

or Neveu-Schwarz (NS) and integer or Ramond modings (R) respectively

ψ(e2πiz) = ψ(z) k ∈ Z +
1

2
(NS) (395)

ψ(e2πiz) = −ψ(z) k ∈ Z (R)

We calculate first the two-point function in the (NS) sector from the mode

expansion

〈ψ(z)ψ(w)〉 =
∑

k,q∈Z+1/2

z−k−1/2w−q−1/2〈bkbq〉 (396)

=
∑

k∈Z+1/2,k>0

z−k−1/2wk−1/2 =
∞∑
n=0

1

z

(w
z

)n
=

1

z − w

This agrees with the fermion OPE. However in the (R) the result is different

〈ψ(z)ψ(w)〉 =
∑
k,q∈Z

z−k−1/2w−q−1/2〈bkbq〉 (397)

=
1

2
√
zw

+
∞∑
k=1

z−k−1/2wk−1/2

=
1√
zw

[
1

2
+
∞∑
k=1

(w
z

)k]

=
1

2
√
zw

z + w

z − w
=

1

2

√
z/w +

√
w/z

z − w
Now we compute vev of the tensor energy-momentum. We need to use the

normal ordering prescription

〈T (z)〉 =
1

2
limε→0

(
−〈ψ(z + ε)∂ψ(z)〉+

1

ε2

)
(398)
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which leads to 〈T (z)〉 = 0 in the (NS) sector, as is trivially verified. In the (R)

sector

〈T (z)〉 = −1

4
limw→z∂w

(√
z/w +

√
w/z

z − w

)
+

1

2(z − w)2
=

1

16z2
(399)

To prove it let us compute the derivative:

∂w

(√
z/w +

√
w/z

z − w

)
=

1

(z − w)2

(√
z

w
+

√
w

z

)
− 1

2w3/2z1/2
(400)

Now setting w = z + ε, where ε→ 0 we get

〈T (z)〉 = −limε→0

(
1 + ε

z

)−1/2
+
(
1 + ε

z

)1/2 − 2

4ε2
+

1

8z2
(401)

Using expansions: (
1 +

ε

z

)−1/2

= 1− ε

2z
+

3

8

ε2

z2
+ · · · (402)

and (
1 +

ε

z

)1/2

= 1 +
ε

2z
− 1

8

ε2

z2
+ · · · (403)

we obtain:

〈T (z)〉 =
1

16z2
(404)

Let us introduce the primary field σ with OPE

ψ(z)σ(w) ∼ (z − w)1/2µ(w) + · · · (405)

and

T (z)σ(0)|0〉 ∼ hσσ(0)

z2
|0〉+ · · · (406)

Using this field we can write

〈T (z)〉 = 〈0|σ(∞)T (z)σ(0)|0〉 (407)

implying hσ = 1
16

.

Fermion Virasoro generators

Tpl =
1

2

∑
k,q

(
k +

1

2

)
z−q−1/2z−k−3/2 : bqbk := (408)

1

2

∑
k,n

(
k +

1

2

)
z−n−2 : bn−kbk :
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From this, we extract the conformal generator

Ln =
1

2

∑
k

(
k +

1

2

)
: bn−kbk : (409)

If we fix the constant to be added to L0 from the vacuum energy density we find

L0 =
∑
k>0

kb−kbk (NS) : k ∈ Z + 1/2 (410)

L0 =
∑
k>0

kb−kbk +
1

16
(R) : k ∈ Z (411)

Fermion vacuum energies on cylinder

Using the formula (274) we obtain

(L0)cyl =
∑
k>0

kb−kbk −
1

48
(NS) : k ∈ Z + 1/2 (412)

(L0)cyl =
∑
k>0

kb−kbk +
1

24
(R) : k ∈ Z (413)

We can obtain the formulas (412) and (413) also in different way, introducing so

called ζ-function regularization. We have

(L0)cyl =
1

2

∑
k

k : b−kbk :=
∑
k>0

kb−kbk −
1

2

∑
k>0

k (414)

Boson vacuum energy on cylinder

(L0)cyl =
1

2

∑
n

: a−nan :=
∑
n>0

a−nan +
1

2

∑
n>0

n (415)

Therefore we should regularize the sum
∑

k>0 k for integer and half-integer mod-

ings. For this purpose we introduce the ζ-function regularization.

ζ-function regularization

ζ(z, q) =
∞∑
n=0

1

(n+ q)z
(416)
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for Rez > 1.

ζ(z) ≡ ζ(z, 1) (417)

Γ(z) =

∫ ∞
0

tz−1e−tdt (418)

Let us change the variable t = (n+ q)y, n ∈ N

Γ(z) = (n+ q)z
∫ ∞

0

yz−1e−(n+q)ydy (419)

Γ(z)

(n+ q)z
=

∫ ∞
0

yz−1e−(n+q)ydy (420)

Let us sum over n remembering (416)

Γ(z)ζ(z, q) =
∞∑
n=0

∫ ∞
0

yz−1e−(n+q)ydy (421)

Exchanging order of the sum and the integral we obtain:

Γ(z)ζ(z, q) =

∫ ∞
0

yz−1e−qy

1− e−y
dy (422)

So we arrived to the following integral representation of the ζ- function :

ζ(z, q) =
1

Γ(z)

∫ ∞
0

yz−1e−qy

1− e−y
dy (423)

Using this expression now we can calculate ζ- function for negative integer values

by the analytic continuation . Let us split the integral (423) in two parts:∫ ∞
0

yz−1e−qy

1− e−y
dy =

∫ 1

0

yz−1e−qy

1− e−y
dy +

∫ ∞
1

yz−1e−qy

1− e−y
dy (424)

and replacing
ye−qy

1− e−y
=
∞∑
n=0

(−)nBn(q)
yn

n!
(425)

in the first part. Here Bn(q) is the n-th Bernoulli polynomial. After doing this

one can perform the first integration term by term to get

ζ(z, q) =
1

Γ(z)

∞∑
n=0

(−)n
Bn(q)

n!

1

z + n− 1
+

1

Γ(z)

∫ ∞
1

yz−1e−qy

1− e−y
dy (426)

Remembering that when z = −m+ ε, (m ∈ N)

Γ(−m+ ε) ∼ (−)m
1

m!ε
(427)
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and the remaining integral is finite, the second term vanishes as ε→ 0.

ζ(z, q) =
1

Γ(z)

∞∑
n=0

(−)n
Bn(q)

n!

1

z + n− 1
(428)

As for the series, in this limit survives only one term n = m+1 yielding the finite

limit:

limε→0ζ(−m+ ε, q) = −Bm+1(q)

m+ 1
(429)

To evaluate the vacuum energy note that from (416) follows that the infinite

sum in (414) can be written as

−1

2
ζ(−1,

1

2
) (430)

in NS sector and as

−1

2
ζ(−1, 1) (431)

in R sector.

Note that Bn(1) ≡ Bn is the n-th Bernoulli number defined by the generating

function
y

ey − 1
=
∞∑
n=0

(−)nBn
yn

n!
(432)

To compute necessary for us B0, B1, B2 we rewrite (432) in the form:

1

y
(y +

y2

2
+
y3

6
· · ·)(B0 −B1y +B2

y2

2
· · ·) = (433)

(1 +
y

2
+
y2

6
· · ·)(B0 −B1y +B2

y2

2
· · ·) = 1

Putting B0 = 1, and equating coefficients of yn to zero we obtain:

B0

2
−B1 = 0 (434)

and
B2

2
− B1

2
+
B0

6
= 0 (435)

From here we have B1 = 1
2

and B2 = 1
6
. Hence we recovered the vacuum energy

in the Ramond sector (413). Now we compute the second Bernoulli polynomial.

Using (432) we can rewrite (425) in the form:

(B0−B1y+B2
y2

2
· · ·)(1+qy+

q2y2

2
+· · ·) = (B0(q)+B1(q)y+B2(q)

y2

2
· · ·) (436)
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From here we have

B0(q) = B0 (437)

B1(q) = qB0 −B1 (438)

and

B2(q) = B0q
2 − 2B1q +B2 (439)

Hence B2(q) = q2−q+ 1
6
, and we find B2(1

2
) = − 1

12
, thus deriving the vacuum

energy (412) in the NS sector.
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Lecture 10

Correlation functions and OPE of vertex operators

Baker-Campbell-Hausdorff theorem

Let us prove here the Baker-Campbell-Hausdorff theorem

eA+B = eBeAe
C
2 (440)

where

C = [A,B] (441)

and satisfies [C,A] = [C,B] = 0. Consider the following operator:

F (α) = eαA+βB (442)

dF

dα
=
∑
n

1

n!

d

dα
[(αA+ βB)n] =

∑
n

1

n!

n−1∑
k=0

(αA+ βB)kA(αA+ βB)n−k−1

=
∑
n

1

n!

n−1∑
k=0

(
(αA+ βB)n−1A+ (n− k − 1)(αA+ βB)n−2βC

)
=
∑
n

1

n!

(
n(αA+ βB)n−1A+

n(n− 1)

2
(αA+ βB)n−2βC

)
= F (α)

(
A+

βC

2

)
(443)

Integrating (443) we obtain:

F (α) = F (0)eα(A+βC
2 ) (444)

Remembering that F (0) = eβB and C commutes with A we arrive to (440).

Exchanging A and B we also get:

eA+B = eAeBe
−C
2 (445)

Equating (440) and (445) we derive

eAeBe−
C
2 = eBeAe

C
2 (446)

and therefore:

eAeB = eBeAeC (447)
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Now using (447) we will establish the following identity:

〈: eA1 :: eA2 · · · : eAn :〉 = exp
n∑
i<j

〈AiAj〉 (448)

where Ai = αia+βia
† and a and a† are operators of creation and annihilation

satisfying the commutation relation:

[a, a†] = 1 (449)

Using (447) we obtain

ewaeza
†

= eza
†
ewaewz (450)

We also have:

: eAi := eβia
†
eαia (451)

In calculating the normal ordered product of a string : eA1 :: eA2 · · · : eAn : of

vertex operators we want to bring all the annihilation operators to the right. For

instance, it follows from (450) that

eαiaeβi+1a
† · · · eβna† = eβi+1a

† · · · eβna†eαiaeαi(βi+1+βi+2+···βn) (452)

Since [eαia, eαja] = 0, this implies

eαia : eAi+1 : · · · : eAn :=: eAi+1 : · · · : eAn : eαiaeαi(βi+1+βi+2+···βn) (453)

Applying this in succession from i = 1 to i = n− 1, we find

: eA1 :: eA2 · · · : eAn := e(β1+···+βn)a†e(α1+···+αn)a exp
n∑
i<j

αiβj (454)

Since 〈AiAj〉 = αiβj we obtain

: eA1 :: eA2 · · · : eAn :=: eA1+···+An : exp
n∑
i<j

〈AiAj〉 (455)

Taking expectation value leads to (448).

Since a free field is simply an assembly of decoupled harmonic oscillators, we

have

: eaφ1 :: ebφ2 := eaφ1+bφ2 : eab〈φ1φ2〉 (456)
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This relation yields

Vα(z, z̄)Vβ(w, w̄) ∼ |z − w|2αβVα+β(w, w̄) (457)

The vertex operator has the form:

Vα(z, z̄) = eiαφ0eαa0 ln(zz̄)V osc
α (z)V osc

α (z̄) (458)

where

V osc
α (z) =: eiαφ

osc(z) := exp
[
− α

∑
n>0

1

n
a−nz

n
]

exp
[
α
∑
n>0

1

n
anz

−n
]

(459)

where φosc(z) is the oscillator part of the scalar, and

[φ0, a0] = i (460)

From the mode expansion of φosc(z)

〈φosc(z)φosc(w)〉 = −
∑
n,m

1

nm
z−nw−m〈anam〉 =

∑
n>0

1

n

(w
z

)n
= − ln

(
1− w

z

)
(461)

From here and (455) we have

〈V osc
α1

(z1) · · ·V osc
αn (zn)〉 =

∏
i<j

(zi − zj)αiαjz
−αiαj
i (462)

For zero modes using

[a0, e
iαφ0 ] = αeiαφ0 (463)

we get

〈eiα1φ0eα1a0 ln(z1z̄1) · · · eiαnφ0eαna0 ln(znz̄n)〉 =
∏
i<j

|zi|2αiαj (464)

when
n∑
i=1

αi = 0 (465)

and zero otherwise.

Collecting all we get

〈Vα(z, z̄)V−α(w, w̄)〉 = |z − w|−2α2

(466)

〈Vα1(z1, z̄1) · · · Vαn(zn, z̄n)〉 =
∏
i<j

|zi − zj|4αiαj (467)

61



when
n∑
i=1

αi = 0 (468)

and zero otherwise.

Let us give also path integral derivation of the vertex operator correlation

function. First of all note that the path integral generalization of the integral (5)

takes the form:∫
Dφ exp

[
i

∫
φ�φd2z+

∫
id2zJ(z)φ(z)

]
= Z exp

[ ∫
d2zd2z′J(z)G(z, z′)J(z′)

]
(469)

where G(z, z′) is free field propagator (327).

According to (52)

〈exp

[ ∫
id2zJ(z)φ(z)

]
〉 = exp

[ ∫
d2zd2z′J(z)G(z, z′)J(z′)

]
(470)

Now correlation function of the vertex operators can be derived taking

J(z) =
N∑
i=1

αiδ
2(z − zi) (471)

Inserting (471) in (470) we again obtain (467), omitting because of the normal

ordering the coinciding terms i = j.

Neutrality via the Ward identity

Let we have a symmetry with the infinitesimal transformation law

Φ′(x) = Φ(x)− iωaGaΦ(x) (472)

with the conserved current jµa (x).

∂

∂xµ
〈jµa (x)Φ(x1) · · ·Φ(xn)〉 (473)

= −i
n∑
i=1

δ(x− xi)〈Φ(x1) · · ·GaΦ(xi) · · ·Φ(xn)〉

Since the variation of the vertex operator under shift φ → φ + a is δVα = iaαV

and the corresponding conserved current is µ = −∂µφ/4π the relation (473) takes

form:

∂

∂xµ
〈∂µφ(x)X〉 = −i

n∑
k=1

αkδ(x− xk)〈X〉 (474)
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where X = Vα1(z1, z̄1) · · · Vαn(zn, z̄n).

Integrating the relation (474) over all space we obtain

i〈X〉
n∑
k=1

αk =

∮
dz〈∂φX〉 −

∮
dz̄〈∂̄φX〉 (475)

Since the integration contours circle around all space, that is, around point in

infinity the integrals hove no singularity outside the contours and the two contour

integrals vanish.
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Lecture 11

Coulomb gas

OPE

Consider the holomorphic part of the three-point function (288) in the limit

z1 → z2. The leading term is:

〈0|φi(z1)φj(z2)φk(z3)|0〉 = Cijk(z1 − z2)h3−h1−h2(z1 − z3)−2h3 (476)

The last term looks like the propagator of the field φ3 and the expression sug-

gest that the two primary fields φi and φj contain in their product the field φ3,

with strength Cijk. The precise statement of this fact is the operator product

expansion, which says that the product of two operators Oi(x) and Oj(y) in field

theory can be expanded in a complete set of operators Ok(x)

Oi(x)Oj(y) =
∑
k

Cijk(x− y)Ok(x) (477)

In conformal field theory we can take as the basis all primaries and a complete

set of descendants. Then the operator product expansion has the form:

φi(z, z̄)φj(w, w̄) =
∑
k

Cijk(z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄jφk(w, w̄) + descendants

(478)

Action

On a general Riemann surface the action of the scalar field would have a form:

S =
1

8π

∫
d2x
√
g(∂µφ∂

µφ+ 2γφR) (479)

where γ is a constant. The above action is no longer invariant upon a translation

φ→ φ+ a. The variation of the action is

δS =
γa

4π

∫
d2x
√
gR (480)

But the Gauss-Bonnet theorem states that the above expression is a topological

invariant: ∫
d2x
√
gR = 8π(1− h) (481)

where h is the number of handles in the manifold. For the Riemann sphere h = 0.

Therefore the variation of thr action upon a shift is

δS = 2aγ (482)
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Since the corresponding Noether current now is not conserved: the Ward identity

gets modified:

i
√

2〈X〉
n∑
k=1

αk =

∮
dz〈∂φX〉 −

∮
dz̄〈∂̄φX〉+ 2γ〈X〉 (483)

Here X stands X = V√2α1
(z1, z̄1) · · · V√2αn

(zn, z̄n). Denoting γ = i
√

2α0, the

neutrality condition (468) modifies to

n∑
i=1

αi = 2α0 (484)

Tensor energy-momentum of the boson with the background charge

The tensor-energy momentum

Tµν = T (0)
µν −

γ

2π

(
∂µ∂νφ−

1

2
ηµν∂

α∂αφ

)
(485)

The holomorphic component is then

T (z) = −1

2
: ∂φ∂φ : +i

√
2α0∂

2φ (486)

We calculate the OPE of the energy-momentum tensor with the primary

field of the free boson and with itself. We have to look only at the extra term

i
√

2α0∂
2φ. We easily find:

T (z)∂φ(w) =
2
√

2iα0

(z − w)3
+

∂φ(w)

(z − w)2
+
∂2φ(w)

(z − w)
(487)

We see that ∂φ(w) is no longer a primary field. However the vertex operators are

still primary:

∂2φ(w)Vα(w) ∼ i
√

2α

(z − w)2
Vα(w) (488)

what means that the conformal dimension of Vα is now

hα = α2 − 2α0α (489)

The dimension (489) is invariant under α → 2α0 − α. Therefore the vertex

operators Vα and V2α0−α have the same dimension.

The OPE of T with itself receives the following contribution from the extra

term:

−1

2
i
√

2α0 : ∂φ(z)∂φ(z) : ∂2φ(w) = i
√

2α0∂w

[
∂φ(w)

(z − w)2
+
∂2φ(w)

(z − w)
+ reg

]
(490)

= i
√

2α0

[
2∂φ(w)

(z − w)3
+

2∂2φ(w)

(z − w)2
+
∂3φ(w)

(z − w)
+ reg

]
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−1

2
i
√

2α0∂
2φ(z) : ∂φ(w)∂φ(w) : (491)

= −i
√

2α0∂z

[
− ∂φ(w)

(z − w)2

]
= −i2

√
2α0

∂φ(w)

(z − w)3

−2α2
0∂

2φ(z)∂2φ(w) =
−12α2

0

(z − w)4
(492)

Summing all these contributions we find usual OPE of T with itself with the

central charge

c = 1− 24α2
0 (493)

Consider the operator ψ of the conformal dimension hψ = 1. Its integral

A =

∮
dzψ(z) (494)

is invariant under conformal transformation.

There are only two local fields of dimension 1 available for the construction

of screening operators: the vertex operators V± defined as:

V± ≡ Vα± (495)

where

α± = α0 ±
√
α2

0 + 1 (496)

One can check that the conformal dimension is

α2
± − 2α±α0 = 1 (497)

Note that

α+ + α− = 2α0 (498)

α+α− = −1 (499)

Hence we have two screening operators

Q± =

∮
dzV±(z) =

∮
dzei

√
2α±φ(z) (500)

Inserting Q+ or Q− an integer number of times in a correlator will not affect

its conformal properties but will completely screen the charge in some cases,

since Q+ and Q− carry charges α+ and α− respectively. The modified two-point

function

〈Vα(z)Vα(w)Qm
+Q

n
−〉 (501)
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should satisfy the neutrality condition

2α +mα+ + nα− = 2α0 = α+ + α− (502)

Accordingly the admissible charges are

αm,n =
1

2
(1−m)α+ +

1

2
(1− n)α− (503)

and denote

Vm,n = Vαm,n (504)

The conformal dimensions of these fields are

hm,n(c) =
1

4
(mα+ + nα−)2 − α2

0 (505)
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Lecture 12

Minimal models

Consider α+ and α− satisfying the relation

p′α+ + pα− = 0 (506)

for some integers p and p′ (p > p′) . Then we have the periodicity condition

αr+p′,s+p = αr,s (507)

Using (498) and (499) we obtain:

α+ =
√
p/p′ (508)

and

α− = −
√
p′/p (509)

from which it follows that

αm,n =
1

2
√
p′p

[
p(1−m)− p′(1− n)

]
α0 =

p− p′

2
√
p′p

(510)

The relation leads:

c = 1− 6(p− p′)2

pp′
(511)

hm,n =
(mp− np′)2 − (p− p′)2

4pp′
(512)

These are famous relations for minimal models.

The conformal dimensions (512) satisfy

hm,n = hp′+m,p+n (513)

hm,n = hp′−m,p−n (514)

Let us derive the fusion rules. We want to find the fields φk,l appearing in the

OPE of φm,n and φr,s. To do this we only need to concentrate on the thee-point

function. In the Coulomb gas representations, and using SL(2, C) invariance,

there are three equivalent ways of representing the three point function:

〈Vk,l(∞)Vm,n(1)Vr,s(0)Q
t+
+ Q

t−
− 〉 (515)

〈Vk,l(∞)Vm,n(1)Vr,s(0)Q
t′+
+ Q

t′−
− 〉 (516)
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〈Vk,l(∞)Vm,n(1)Vr,s(0)Q
t′′+
+ Q

t′′−
− 〉 (517)

The notation Vα indicates here out-state V2α0−α. The neutrality condition (484)

of (515) implies:

2α0 − αk,l + αm,n + αr,s + t+α+ + t−α− = 2α0 (518)

or

−1

2
(1− k)α+ −

1

2
(1− l)α− +

1

2
(1−m)α+ +

1

2
(1− n)α− (519)

+
1

2
(1− r)α+ +

1

2
(1− s)α− + t+α+ + t−α− = 0

implying

k −m+ 1− r + 2t+ = 0 (520)

and

l − n+ 1− s+ 2t− = 0 (521)

From here we obtain

k ≤ m+ r − 1 and m+ r − k − 1 is even (522)

l ≤ n+ s− 1 and n+ s− l − 1 is even (523)

Similar constraints come (516) and (517) thus leading to

k ≤ m+ r − 1 (524)

m ≤ k + r − 1

r ≤ m+ k − 1

m+ r + k is odd

and

l ≤ n+ s− 1 (525)

n ≤ s+ l − 1

s ≤ l + n− 1

l + n+ s is odd

Conditions (524) and (525) imply
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φm,n × φr,s =
m+r−1∑

k=|m−r|+1,k+m+r=odd

n+s−1∑
l=|n−s|+1,n+l+s=odd

φk,l (526)

Eq. (514) requires that simultaneously

φm,n × φr,s =

2p′−m−r−1∑
k=|m−r|+1,k+m+r=odd

2p−n−s−1∑
l=|n−s|+1,n+l+s=odd

φk,l (527)

Eqs. (526) and (527) are compatible as long as

φm,n × φr,s =

min(m+r−1,2p′−m−r−1)∑
k=|m−r|+1,k+m+r=odd

min(n+s+1,2p−n−s−1)∑
l=|n−s|+1,n+l+s=odd

φk,l (528)

what is well known fusion rule for minimal models.

It is then straightforward matter to see that the following set of indices

1 ≤ r < p′ 1 ≤ s < p (529)

closes under the above formula. This therefore constitute a legitimate truncation

of the set of admissible charges αr,s in the sense that the operator algebra closes

within this set.

Unitary minimal model

If one requires that hm,n as defined in (512) is always not negative one obtains

the condition of unitary minimal models

|p′ − p| = 1 (530)

Ising model

Take p′ = 3 and p = 4. Then c = 1
2
, α+ = 2√

3
, and α− = −

√
3

2
.

α2,1 = −α+

2
h2,1 =

1

2
ε = ei

√
2α2,1φ (531)

α1,2 = −α−
2

h1,2 =
1

16
σ = ei

√
2α1,2φ (532)

The corresponding OPE is

σ × σ = I + ε (533)

σ × ε = σ

ε× ε = I
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Lecture 13

CFT on torus and Modular transformation

Torus

A torus may be defined by specifying two linearly independent lattice vectors

on the plane and identifying points that differ by an integer combination of these

vectors. On the complex plane these lattice vectors may be represented by two

complex numbers ω1 and ω2 which we call the periods of the lattice and hence

we have

w ≈ w + nω1 +mω2 (534)

Naturally the properties of conformal field theories defined on a torus do not

depend on the overall scale of the lattice, nor on the absolute orientation of the

lattice vectors. The relevant parameter is the ration τ = ω2/ω1, the so called

modular parameter. Hence we can choose ω2 = 2πτ and ω1 = 2π.

Partition function on torus

Conformal field theory on a cylinder coordinatized by w can now be trans-

fered to a torus as follows. We let H and P denote the energy and momentum

operators, i.e. the operators that effect translations in the space and time direc-

tions Rew and Imw respectively. On the plane we saw that L0 + L̄0 and L0− L̄0

respectively generated dilatations and rotations, so according to the discussion of

radial quantization we have H = (L0)cyl + (L̄0)cyl and P = (L0)cyl − (L̄0)cyl. To

define a torus we need to identify two periods in w. It is convenient to redefine

w → iw and as we discussed before to choose w ≡ w + 2π and w ≡ w + 2πτ .

Denote by τ1 and τ2 real and imaginary parts of τ

τ = τ1 + iτ2 (535)

This means that the surfaces Imw = 2πτ2 and Imw = 0 are identified after a

shift by Rew → Rew + 2πτ1. Since we are defining (imaginary) time translation

of Imw by its period 2πτ2 to be accompanied by a spatial translation of Rew by

2πτ1, the operator implementation for the partition function of a theory on torus

with modular parameter τ is

Z =

∫
e−S = Tre2πiτ1P e−2πτ2H = Tre2πiτ1((L0)cyl−(L̄0)cyl)e−2πτ2((L0)cyl+(L̄0)cyl) (536)

= Tre2πiτ(L0)cyle−2πiτ̄(L̄0)cyl = TrqL0− c
24 q̄L̄0− c

24 = (qq̄)−
c
24 TrqL0 q̄L̄0

where q = e2πiτ .
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Modular Invariance

The main advantage of studying conformal field theories on a torus is the

imposition of constraints on the operator content of the theory from the require-

ment that the partition function be independent of the choice of periods ω1 and

ω2 for a given torus.

We let ω′1 and ω′2 be two periods describing the same lattice as ω1 and ω2.

Since the points ω′1 and ω′2 belongs to the lattice, they must be expressible as

integer combinations of ω1 and ω2:

ω′1 = aω1 + bω2 (537)

ω′2 = cω1 + dω2

where a, b, c, d,∈ Z and ad− bc = 1.

These transformations (537) form group SL(2,Z).

Under the change of period (537) the modular parameter transforms as

τ → aτ + b

cτ + d
(538)

The generators of the transformations (538) are

T : τ → τ + 1 (539)

and

S : τ → −1

τ
(540)

The Hilbert space of the conformal field theory has the form:

H = ⊕i,̄iRi(c)⊗Rī(c) (541)

Ri(c) is the chiral algebra highest weight i representation. Hence defining the

character

χi(τ) = TrRiq
L0−c/24 (542)

one can write

Z(τ) =
∑
i,h̄

Ni,̄iχi(τ)χ̄ī(τ̄) (543)

where Ni,̄i denotes multiplicity of occurrence of Ri(c) ⊗ Rī(c) in H. The first

obvious condition for the partition function to be modular invariant is that the

characters χi(τ) define a representation space of the modular transpositions:

S : χi → Sjiχj (544)
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T : χi → e2πi(hi−c/24)χi (545)

where hi is the conformal weight of the highest weight i. The matrix Ni,̄i in

the partition function is determined by demanding modular invariance of the

partition function of the model.

The free fermion torus partition function

To compute partition function of the fermion on torus we should specify

boundary condition of fermion in both direction. The fermion periodic (P) in

space direction has integer moding, and fermion antiperiodic (A) in space direc-

tion has half-integer moding. Also switching the boundary condition from the

anti-periodic to the periodic in the time direction is reached by the inserting of

the parity operator, (−)F anticommuting with the fermion field ψ , where F is

fermion number operator. Denoting by the first index the boundary condition

in the space direction, and by the second the boundary condition in the time

direction and also remembering vacuum energies we obtain:

ZP,P =
1√
2

Tr(−)F qL0−1/48 =
1√
2

Tr(−)F q
∑
k kb−kbk+1/24 (546)

ZP,A =
1√
2

TrqL0−1/48 =
1√
2

Trq
∑
k kb−kbk+1/24 (547)

ZA,P = Tr(−)F qL0−1/48 = Tr(−)F q
∑
k kb−kbk−1/48 (548)

ZA,A = TrqL0−1/48 = Trq
∑
k kb−kbk−1/48 (549)

These partition functions may be easily calculated, since qL0 factorizes into an

infinite product of operators, one for each fermion mode (the same is true of

(−)F . For example

ZA,P = q−1/48Tr
∏
k>0

qkb−kbk(−)Fk = q−1/48
∏
k>0

(
Trqkb−kbk(−)Fk

)
(550)

For a given fermion mode, there are only two states and the traces are trivially

calculated:

Trqkb−kbk = 1 + qk (551)

Trqkb−kbk(−)Fk = 1− qk (552)
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We may therefore write the following infinite product for the partition functions,

and relate them to the theta functions:

ZP,P =
1√
2
q1/24

∞∏
n=0

(1− qn) = 0 (553)

ZP,A =
1√
2
q1/24

∞∏
n=0

(1 + qn) =

√
θ2(τ)

η(τ)
(554)

ZA,P = q−1/48

∞∏
r=1/2

(1− qr) =

√
θ4(τ)

η(τ)
(555)

ZA,A = q−1/48

∞∏
r=1/2

(1 + qr) =

√
θ3(τ)

η(τ)
(556)

θ2(τ) = 2q1/8

∞∏
n=1

(1− qn)(1 + qn)2 (557)

θ3(τ) =
∞∏
n=1

(1− qn)(1 + qn−1/2)2 (558)

θ4(τ) =
∞∏
n=1

(1− qn)(1− qn−1/2)2 (559)

η(τ) = q1/24

∞∏
n=1

(1− qn) (560)

These functions have following modular transformation properties:

θ2(−1/τ) =
√
−iτθ4(τ) (561)

θ3(−1/τ) =
√
−iτθ3(τ)

θ4(−1/τ) =
√
−iτθ2(τ)

η(−1/τ) =
√
−iτη(τ)

θ2(τ + 1) = eiπ/4θ2(τ) (562)

θ3(τ + 1) = θ4(τ)

θ4(τ + 1) = θ3(τ)

η(τ + 1) = eiπ/12η(τ)
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The modular invariant partition functions has the form:

Z = |ZP,A|2 + |ZA,P |2 + |ZA,A|2 (563)

The Virasoro characters are

χ1,1 =
1

2
(ZA,A + ZA,P ) (564)

χ2,1 =
1

2
(ZA,A − ZA,P ) (565)

χ1,2 =
1√
2
ZP,A (566)

In the terms of Virasoro characters the partition function (563) takes form

Z = 2(|χ1,1|2 + |χ2,1|2 + |χ1,2|2) (567)

The matrix of the modular transformation is

S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −

√
2 0

 (568)
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Lecture 14

Free boson on torus

Recall the action of the free boson:

S =
1

2π

∫
∂φ∂̄φ (569)

We assume a bosonic coordinate compactified on a circle of radius R:

φ ≡ φ+ 2πR (570)

That means that there exist instanton sectors with n, n′ windings of the boson

on a torus:

φ0(z + τ, z̄ + τ̄) = φ0(z, z̄) + 2πRn′ (571)

φ0(z + 1, z̄ + 1) = φ0(z, z̄) + 2πRn (572)

A doublet of integers (n, n′) then specifies a topological class of configurations

obeying the above periodicity conditions, and a partition function Zn,n′ is defined

by integrating over the configurations of such a class. The integration may be

done by decomposing over the configurations of such a class. The integration

may be done by decomposing φ into a special configuration, which is also a

classical solution to the equation of motion , φn,n
′

0 (with vanishing Laplacian)

and a periodic field. This reads

φ = φn,n
′

0 + φ̃ (573)

φn,n
′

0 = 2πR
1

2iτ2

(n′(z − z̄) + n(τ z̄ − τ̄ z) (574)

The action S(φ) is then the sum of S(φ̃) (the action of the periodic field) plus

the action S(φn,n
′

0 ) of the classical linear configuration. Indeed, since �φn,n
′

0 = 0,

the crossed terms in the action S(φ) are proportional to∫
d2x∂µφ

n,n′

0 ∂µφ̃ = −
∫
d2xφ̃�φn,n

′

0 = 0 (575)

where an integration by parts has been performed. S(φn,n
′

0 ) is easily calculated

S(φn,n
′

0 ) =
1

2π

∫
∂φn,n

′

0 ∂̄φn,n
′

0 =
πR2

2τ2

|n′ − nτ |2 (576)
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Here we have taken into account that the torus area A = τ2. Hence the path

integral can be written as∫
Dφe−S =

∞∑
n,n′=−∞

e−S(φn,n
′

0 )

∫
D′φ̃e−S(φ̃) (577)

where the prime in the integration measure D′φ̃ indicates that the constant part is

excluded. Now remembering the values of the gaussian integrals we can formally

write ∫
D′φ̃e−S(φ̃) =

∫
D′φ̃e

∫
d2xφ̃�φ̃ =

√
2R√

det′�

√
τ2 (578)

To compute (578) we will expand the field φ along the normalized eigenfunctions

φn of the � with eigenvalues −λn:

φ(x) =
∑
n

cnφn (579)

The functional integral over the nonzero modes is then∫
D′φ̃e−S(φ̃) =

∫ ∏
i

dci√
2π

exp

(
− 1

2

∑
n

λnc
2
n

)
=
∏
n

(
1

λn

)1/2

(580)

The additional factor R
√

2τ2 comes from the constant mode integration. The

factor
√
τ2 =

√
A comes from the normalization of the zero mode, and factor R

comes from the integration of the constant part :
∫
dφ0 = 2πR.

To evaluate det′� as a formal product of eigenvalues, we work with a basis of

eigenfunctions:

ψnm = e
2πi 1

2iτ2
(n(z−z̄)+m(τ z̄−τ̄ z))

(581)

single-valued under both z → z + 1 and z → z + τ . The regularized determinant

is defined by omitting the eigenfunction with n = m = 0

det′� =
∏

m,n 6=0,0

π2

τ 2
2

(n− τm)(n− τ̄m) (582)

The infinite product may be evaluated using again ζ-function regularization.

Recall the following special values of ζ-function (416):

ζ(s) =
∞∑
n=1

n−s (583)

ζ(−1) = − 1

12
, ζ(0) = −1

2
(584)
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and

ζ ′(0) = −1

2
ln 2π (585)

In this regularization scheme we have:

∞∏
n=1

a = aζ(0) = a−1/2 (586)

and
∞∏
−∞

a = a2ζ(0)+1 = 1 (587)

∞∏
m=1

q−m = q−ζ(−1) = q1/12 (588)

Taking into account that

ζ ′(0) = −
∞∑
n=1

lnn (589)

we obtain:
∞∏
n=1

nα = e−αζ
′(0) = (2π)α/2 (590)

From (587) we get ∏
m,n 6=0,0

π2

τ 2
2

=
τ 2

2

π2

∏
m,n

π2

τ 2
2

=
τ 2

2

π2
(591)

From (590) we derive ∏
n6=0

n2 = (2π)2 (592)

Now using (591) we can write:

det′� =
∏

m,n 6=0,0

π2

τ 2
2

(n− τm)(n− τ̄m) =
τ 2

2

π2

∏
m,n 6=0,0

(n− τm)(n− τ̄m) (593)

Then separating m = 0 and m 6= 0 terms and using (592) we derive

det′� =
τ 2

2

π2

∏
n6=0

n2
∏

m6=0,n∈Z

(n− τm)(n− τ̄m) =
τ 2

2

π2
(2π)2

∏
m6=0,n∈Z

(n− τm)(n− τ̄m)

(594)

Using

πa

∞∏
n=1

(
1− a2

n2

)
= sinπa (595)
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and (592), (586) we can also establish:

∞∏
n=−∞

(n+ a) = a
∞∏
n=1

(−n2)

(
1− a2

n2

)
= 2i sin πa (596)

Now separating m > 0 and m < 0 terms and using (596) we obtain

det′� =
τ 2

2

π2
(2π)2

∏
m>0,n∈Z

(n− τm)(n+ τm)(n− τ̄m)(n+ τ̄m) (597)

= 4τ 2
2

∏
m>0

(e−πimτ − eπimτ )2(e−πimτ̄ − eπimτ̄ )2

= 4τ 2
2

∏
m>0

(qq̄)−m(1− qm)2(1− q̄m)2

And remembering (588) we end up with

det′� = 4τ 2
2 (qq̄)1/12

∏
m>0

(1− qm)2(1− q̄m)2 = 4τ 2
2 η

2η̄2 (598)

Inserting (598) in (578) we obtain the first contribution to the partition func-

tion: ∫
D′φ̃e

∫
d2xφ̃�φ̃ =

R√
2τ2

1

ηη̄
(599)

Note that the expression (599) is modular invariant. Under the modular trans-

formation S

τ2 →
τ2

|τ |2
(600)

Remembering the modular transformation of the η function

η(−1/τ) =
√
−iτη(τ) (601)

we see that (599) is indeed modular invariant.

Now let us turn to the instanton contribution:

Zinst =
∞∑

n,n′=−∞

e−S(φn,n
′

0 ) =
∞∑

n,n′=−∞

e
−πR

2

2τ2
|n′−nτ |2

(602)

It is simple to check that (602) is modular invariant as well. Under a general

SL(2,Z) mapping τ → aτ+b
cτ+d

the τ dependent part of the exponent becomes

|n′ − nτ |2

Imτ
→ |n

′ − (naτ + nb)/(cτ + d)|2|cτ + d|2

Im[(aτ + b)(cτ̄ + d)]
(603)
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Using that ad− bc = 1 we easily obtain:

Im[(aτ + b)(cτ̄ + d)] = Imτ (604)

hence
|n′ − nτ |2

Imτ
→ |n

′cτ + n′d− (naτ + nb)|2

Imτ
(605)

Thus the modular transformation acts on n, n′ doublet as the following SL(2,Z)

mapping :

n→ na− n′c (606)

n′ → −nb+ n′d (607)

Since the SL(2,Z) mapping does not change the lattice of doublets n, n′ the

sum (602) is modular invariant. For example under the generators T and S the

doublets of windings transform:

T : n→ n and n′ → −n+ n′ (608)

and

S : n→ n′ and n′ → −n (609)

obviously leaving the full sum over n, n′ invariant.

For the purpose to compare the partition function (577) computed in the

path integral approach, with the partition function calculated in the operator

approach, we rewrite now the instanton contribution in the different for, which

can be reached via Poisson resummation. Let us at the beginning recall the

Poisson resummation formula.

Poisson resummation formula∑
m

f(m) =
∑
n

f̃(n) (610)

where f̃(p) is the Fourier transform of f(x)

f̃(p) =

∫ ∞
−∞

e2πixpf(x)dx (611)

To prove this relation we introduce the auxiliary function

F (z) =
∞∑

n=−∞

f(z + n) (612)

80



This function is manifestly a periodic function of z, which can thus be Fourier

expanded as

F (z) =
∞∑

p=−∞

e−2πizmF̃ (m) (613)

with

F̃ (m) =

∫ 1

0

dye2πiymF (y) (614)

Now we substitute (614) in (613) and also use the definition of F (z) to obtain:

F (z) =
∞∑

m=−∞

e−2πizm

∫ 1

0

dye2πiym

∞∑
n=−∞

f(y + n) (615)

Using that e2πiym = e2πi(y+n)m we can change the variable y′ = y + n. Combined

summation over n and integration by y can be written as an integration over the

whole R, thus yielding

F (z) =
∞∑

m=−∞

e−2πizm

∫ ∞
−∞

e2πiy′mf(y′)dy′ (616)

Using (611) we obtain:

F (z) =
∞∑

m=−∞

e−2πizmf̃(m) (617)

The Poisson resummation formula (610) can be derived from here remembering

the definition of F (z) (612) and by setting z = 0.

Let us apply the Poisson resummation formula (610) to the sum over n′ in

(602):

Zinst =
∑
n

e
−πR

2

2τ2
τ τ̄n2 ∑

n′

e
−πR

2

2τ2
(n′2−n′n(τ+τ̄))

(618)

∫ ∞
−∞

e
−πR

2

2τ2
(x2−xn(τ+τ̄))

e2πixpdx =

√
2τ2

R
e

[
πR2

8τ2
n2(τ+τ̄)2+2inpπτ1− 2p2πτ2

R2

]
(619)

Hence we have

Zinst =

√
2τ2

R

∑
n

e
−πR

2

2τ2
τ τ̄n2 ∑

m

e

[
πR2

8τ2
n2(τ+τ̄)2+2inmπτ1− 2m2πτ2

R2

]
(620)

=

√
2τ2

R

∑
n,m

e

[
− 1

2
πR2n2τ2+2inmπτ1− 2m2πτ2

R2

]

=

√
2τ2

R

∑
m,n

q
1
2(mR+nR

2 )
2

q̄
1
2(mR−

nR
2 )

2
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Collecting all we have

Z =
1

ηη̄

∑
m,n

q
1
2(mR+nR

2 )
2

q̄
1
2(mR−

nR
2 )

2

(621)

The η factors have clear Hamiltonian interpretation. The bosonic Fock space

generated by α−k consists of all states of the form |m,n〉, α−k|m,n〉, α2
−k|m,n〉.

Hence calculating trace in the |m,n〉 sector we obtain:

TrqL0 =
∞∏
k=1

(1 + qk + q2k + · · ·) =
∞∏
k=1

1

1− qk
(622)

The instanton part is easily obtained from formulas (380) and (381).

U(1)k theory

The U(1)k chiral algebra (k ∈ Z) contains, besides the Gaussian U(1) current

J = i
√

2k∂X, two additional generators

Γ± = e±i
√

2kX (623)

of integer dimension k and charge ±2k. The primary fields of the extended theory

are those vertex operators eiγX whose OPEs with the generators (623) are local.

This fixes γ to be

γ =
n√
2k

, n ∈ Z (624)

Their conformal dimension is ∆n = n2

4k
. For primary fields, the range of n must

be restricted to the fundamental domain n = −k + 1,−k + 2, . . . , k since a shift

of n by 2k in einX/
√

2k amounts to an insertion of the ladder operator Γ+, which

thereby produces a descendant field.

From the point of view of the extended algebra the characters are easily

derived. A factor q∆n−1/24/η(q) takes care of the action of the free boson gen-

erators. To account for the effect of the distinct multiple applications of the

generators (623), which yield shifts of the momentum n by integer multiples

of 2k, we must replace n by n+ l2k and sum over l. The net result is

ψn(q) =
1

η(q)

∑
l∈Z

qk(l+n/2k)2

. (625)

The action of the modular transformation S on the characters (625) is

ψn(q′) =
1√
2k

∑
n′

e
−iπnn′

k ψn′(q) q = e2πiτ τ ′ = −1

τ
. (626)
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Lecture 15

Crossing symmetry and Fusion matrix

Consider the for 4-point correlation function 〈Φi(∞)Φk(1, 1)Φj(z, z̄)Φl(0, 0)〉.
Using OPE:

Φ(jj̄)(z, z̄)Φ(ll̄)(0, 0) =
∑
p,p̄

C
(pp̄)

(jj̄)(ll̄)
zhp−hj−hl z̄h̄p−h̄j−h̄lΨp,p̄(z, z̄|0, 0) (627)

where

Ψp,p̄(z, z̄|0, 0) =
∑
k,k̄

βp,kjl β̄
p̄,k̄

j̄l̄
zK z̄K̄φk,k̄p,p̄(0, 0) (628)

where K =
∑
ki.

one can write ∑
pp̄

Cpp̄

jj̄ll̄
C īi
kk̄pp̄Fp

[
k j

i l

]
(z)Fp̄

[
k̄ j̄

ī l̄

]
(z̄) (629)

where

Fp

[
k j

i l

]
(z) = zhp−hj−hl

∑
k

βp,kjl z
K 〈hi|Φk(1)L−k1 · · ·L−kN |hp〉

〈hi|Φk(1)|hp〉
(630)

is so called conformal block. This conformal block is normalized

limz→0Fp

[
k j

i l

]
(z) = zhp−hj−hl + · · · (631)

By conformal transformation z → 1− z we can write the correlation function in

the form ∑
qq̄

Cqq̄

kk̄jj̄
C īi
qq̄ll̄Fq

[
l j

i k

]
(1− z)Fq̄

[
l̄ j̄

ī k̄

]
(1− z̄) , (632)

These two conformal blocks are related by the fusing matrix

Fp

[
k j

i l

]
(z) =

∑
q

Fp,q

[
k j

i l

]
Fq

[
l j

i k

]
(1− z) , (633)

and hence one has: ∑
pp̄

Cpp̄

jj̄ll̄
C īi
kk̄pp̄Fp,q

[
k j

i l

]
Fp̄,q̄

[
k̄ j̄

ī l̄

]
= (634)

Cqq̄

kk̄jj̄
C īi
qq̄ll̄ .
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Using the relation

∑
q̄

Fp̄,q̄∗

[
k̄ j̄

ī l̄

]
Fq̄,s

[
j̄ l̄

k̄∗ ī∗

]
= δp̄s, (635)

Eq. (634) can be written in the form:

∑
p

Cpp̄

jj̄ll̄
C īi
kk̄pp̄Fp,q

[
k j

i l

]
= (636)

∑
q̄

Cqq̄

kk̄jj̄
C īi
qq̄ll̄Fq̄∗,p̄

[
j̄ l̄

k̄∗ ī∗

]
.

Putting in (634) i = ī = 0 we obtain the following useful relation:

Ck∗,k̄∗

jj̄ll̄
C0
kk̄,k∗k̄∗ = C l∗ l̄∗

kk̄jj̄C
0
l∗ l̄∗,ll̄ . (637)

For diagonal model

Cpp̄

kk̄īi
= Cp

kiδp̄p∗δk̄k∗δīi∗ (638)

Eq. (636) takes the form:

Ci
kpC

p
jlFp,q

[
k j

i l

]
= Cq

kjC
i
qlFq,p

[
k∗ i

j l∗

]
. (639)

To derive (639) we also used the symmetry properties

Fp,q

[
k j

i l

]
= Fp∗,q

[
j k

l∗ i∗

]
= Fp,q∗

[
i∗ l

k∗ j

]
= Fp∗,q∗

[
l i∗

j∗ k

]
. (640)

Using (637), (639) takes the form

Cp∗

ki∗C
p
jlC

0
pp∗Fp,q

[
k j

i l

]
= Cq

kjC
q∗

i∗lC
0
qq∗Fq,p

[
k∗ i

j l∗

]
. (641)

To derive (641) we used (637) and the commutativity of the structure constants

by two lower indices in diagonal models :

Cj
ik,cc̄ = Cj

ki,cc̄ . (642)

Setting q = 0, k = j∗, i = l in (641), and using

C0
ii∗ =

Cii∗

C00

, (643)

84



where Cii∗ are two-point functions, we obtain:

(
Cp
ij

)2
=

Cjj∗Cii∗F0,p

[
j i

j i∗

]

C00Cpp∗Fp,0

[
j∗ j

i i

] . (644)

Using the relation

F0,i

[
j k

j k∗

]
Fi,0

[
k∗ k

j j

]
=
FjFk
Fi

, (645)

where

Fi ≡ F0,0

[
i i∗

i i

]
. (646)

we can write (644) in two forms

Cp
ij =

ηiηj
η0ηp

F0,p

[
j i

j i∗

]
, (647)

and

Cp
ij =

ξiξj
ξ0ξp

1

Fp,0

[
j∗ j

i i

] , (648)

where

ηi =
√
Cii∗/Fi , (649)

and

ξi = ηiFi =
√
Cii∗Fi . (650)
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Lecture 16

Conformal blocks of the Ising model

Consider correlation functions requiring a single screening operator. For instance:

〈Vn,mV1,2V1,2Vn,m〉 (651)

has charge 2α0 − α− and therefore requires one Q−, and

〈Vn,mV2,1V2,1Vn,m〉 (652)

has charge 2α0 − α+ and therefore requires one Q+.

Hence these conformal blocks have general form:∮
dw〈Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)V±(w)〉 (653)

We can write this block in a more canonical form using SL(2, C) invariance∮
dw〈Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)V±(w)〉 = (654)∮

dw
4∏
i=1

(czi + d)−2hi〈
4∏
i=1

Vαi

(
azi + b

czi + d

)
V±(w)〉

Since w is integrated and V±(w) is a 1-form, we can forget about the w trans-

formation. We now choose a, b, c, d, so that z1 → ∞, z2 → 1, z3 → η, z4 → 0,

where

η =
z12z34

z13z24

(655)

This is achieved by

w =
(z − z4)(z1 − z2)

(z1 − z)(z2 − z4)
(656)

leading to∮
dw〈Vα1(z1)Vα2(z2)Vα3(z3)Vα4(z4)V±(w)〉 (657)

=

(
z12z14

z24

)h2+h3+h4−h1 (1− η)2α2α3η2α3α4

z2h2
12 z

2h3
13 z

2h4
14

∮
dw(1− w)2α2α±(η − w)2α3α±w2α4α±

There are two independent contours C1 = [0, η] and C2 = [1,∞[ , leading to the

two functions: ∮ η

0

dw(1− w)α(η − w)βwγ (658)

=
Γ(1 + γ)Γ(1 + β)

Γ(2 + γ + β)
η1+β+γF (−α, 1 + γ, 2 + γ + β; η)
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∮ ∞
1

dw(1− w)α(η − w)βwγ (659)

=
Γ(1 + α)Γ(−α− β − γ − 1)

Γ(−γ − β)
F (−β,−α− β − γ − 1,−γ − β; η)

We need the following properties of hypergeometric function:

F (a, b, c, ; z) = (1− z)c−a−bF (c− a, c− b, c, ; z) (660)

F (−n, n, c; z) =
1

(c)n
z1−c(1− z)n−b+c

dn

dzn
[zn+c−1(1− z)b−c] (661)

where (c)n = c(c+ 1) · · · (c+ n− 1).

cos az = cos zF

(
1

2
+
a

2
,
1

2
− a

2
,
1

2
; sin2 z

)
(662)

sin az = a cos z sin zF

(
1 +

a

2
, 1− a

2
,
3

2
; sin2 z

)
(663)

Let us consider the four-spin correlator 〈σσσσ〉.
In this case α1 = α2 = α3 = α4 = −α−

2
. The conformal blocks are given

by the integrals (658) and (659) with α = β = γ = 2αiα− = −α2
− = −3

4
. The

corresponding functions are:

1
√
η
F

(
3

4
,
1

4
,
1

2
, η

)
(664)

and

F

(
3

4
,
5

4
,
3

2
, η

)
(665)

Using (662) and (663) we obtain for (664)√
1 +
√

1− η
2η(1− η)

(666)

and for (665)

1

2

√
1−
√

1− η
2η(1− η)

(667)

Multiplying also by (1− η)3/8η3/8 in front of integral we get for (664) :

1

η1/8(1− η)1/8

√
1 +
√

1− η
2

(668)
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and for (665)

1

η1/8(1− η)1/8

1

2

√
1−
√

1− η
2

(669)

Now we should fix normalizations. In the limit η → 0 in (668) yields η1/8.

Therefore the normalization is correct. In the same limit (669) should yields

η3/8. Therefore the correctly normalized block is

√
2

η1/8(1− η)1/8

√
1−

√
1− η (670)

Thus we obtained for conformal blocks:

FI =
1

η1/8(1− η)1/8

√
1 +
√

1− η
2

(671)

and

Fε =

√
2

η1/8(1− η)1/8

√
1−

√
1− η (672)

The full correlation function is

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉 (673)

=
1

|z13z24η(1− η)|1/4

(
1

2
(CI

σσ)2|1 +
√

1− η|+ 2(Cε
σσ)2|1−

√
1− η|

)
The structure constant CI

σσ is fixed by normalization to be 1. The other structure

constant Cε
σσ can be found from the requirement of the (673) to be invariant

under fusion. To check the invariance it is convenient to introduce the variable

η = sin2 z and write the expression in the parenthesis in the form:

cos
z

2
cos

z̄

2
+ 4(Cε

σσ)2 sin
z

2
sin

z̄

2
(674)

The transformation η → 1 − η takes the form z → π
2
− z. For Cε

σσ = 1
2

(674)

reads

cos

(
z − z̄

2

)
(675)

which obviously invariant under z → π
2
− z.

Let us find fusion matrix. The relevant transforming part of conformal blocks

using the z variable are

fI = cos
z

2
(676)

and

fε = 2 sin
z

2
(677)
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These functions under the transformation z → π
2
− z transform in the following

way

fI

(π
2
− z
)

=
1√
2

(
fI +

1

2
fε

)
(678)

fε

(π
2
− z
)

=
1√
2

(2fI − fε) (679)

leading to the following elements of fusion matrix

FII

[
σ σ

σ σ

]
=

1√
2

FIε

[
σ σ

σ σ

]
=

1

2

1√
2

(680)

FεI

[
σ σ

σ σ

]
=

2√
2

Fεε

[
σ σ

σ σ

]
= − 1√

2
(681)

Collecting all we obtain for correlation function

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉 (682)

=
1

2

∣∣∣∣ z13z24

z12z23z34z41

∣∣∣∣1/4(|1 +
√

1− η|+ |1−
√

1− η|
)

This can also be written in the form:

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉 (683)

=
1√
2

∣∣∣∣ z13z24

z12z23z34z41

∣∣∣∣1/4(1 + |η|+ |1− η|
)1/2

89



Lecture 17

Topological preliminaries

Vector fields-Tangent space

X(fg) = Xf · g + f ·Xg (684)

Xf = X i ∂f

∂xi
(685)

[X, Y ]f = X(Y f)− Y (Xf) (686)

Cotangent space

α(X) = αiX
i (687)

dxi
(

∂

∂xj

)
= δij (688)

α = αidx
i (689)

df(X) = Xf = X i ∂f

∂xi
(690)

This implies

df =
∂f

∂xi
dxi (691)

Differential form:

ω(Xσ(i1), · · ·Xσ(in)) = εσω(X1, · · ·Xn) (692)

dxi1 ∧ · · · ∧ dxin =
∑
σ

εσ
(
dxσ(i1) ∧ · · · ∧ dxσ(in)

)
(693)

The expression (693) is antisymmetric towards permutation of indices

dxσ(i1) ∧ · · · ∧ dxσ(in) = εσdx
i1 ∧ · · · ∧ dxin (694)

The expression (693) form the basis in the space of the antisymmetric tensors:

ω =
1

n!
ωi1...indx

i1 ∧ · · · ∧ dxin (695)

Dimension is Cn
N = N !

n!(N−n)!
.

The wedge product

α =
1

n!
αi1...indx

i1 ∧ · · · ∧ dxin (696)

β =
1

m!
βj1...jmdx

j1 ∧ · · · ∧ dxjm (697)
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α ∧ β =
1

n!m!
αi1...inβj1...jmdx

i1 ∧ · · · ∧ dxin ∧ dxj1 ∧ · · · ∧ dxjm (698)

(α∧β)(X1, . . . Xn+m) =
∑
σ

εσα(Xσ(1), . . . , Xσ(n))β(Xσ(n+1), . . . , Xσ(n+m)) (699)

where sum runs over all permutations σ with the property

σ(1) < . . . < σ(n) and σ(n+ 1) < . . . < σ(n+m) (700)

Exterior derivative

dω =
1

n!
dωi1...in ∧ dxi1 ∧ · · · ∧ dxin =

1

n!

∂ωi1...in
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxin (701)

In components

dωj1...jn+1 =
n+1∑
a=1

(−)a+1
∂ωj1...ĵa...jn+1

∂xja
(702)

Hat means here omitted.

We also have

dω(X1, . . . Xm+1) = (703)
m+1∑
a=1

(−)a+1Xaω(X1, . . . , X̂a, . . . , Xm+1) +

+
m∑
a=1

m+1∑
b=a+1

(−)a+bω([Xa, Xb], X1, . . . , X̂a, . . . , X̂a, . . . , Xm+1)

The exterior derivative has the following properties:

d2 = 0 (704)

d(θ ∧ ω) = dθ ∧ ω + (−)mθ ∧ dω (705)

where m is the degree of θ.

Pullback

Assume we have map of two manifolds F : X → Y .

Then we have map of C∞(Y)→ C∞(X ) given by

fX(x) = fY (F (x)) = fY ◦ F (x) (706)
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Map (706) defines the map of vector fields on X to vector fields on Ym called

differential of the F

Y = dF (X)(fY ) = X(fY ◦ F ) (707)

Now we can define pullback of the differential form, mapping F ∗ : Ω(Y)→ Ω(X )

F ∗ω(X1, . . . Xm) = ω(dF (X1), . . . dF (Xm)) (708)

where ω is a form of degree m on Y .

We can write the map F in the local coordinates as

yj = F j(x1, . . . xN), j = 1, . . .M (709)

Then the differential map in components take the form:

Y j =
∂F j

∂xi
X i (710)

The pullback form has components:

(F ∗ω)i1...im =
∂F j1

∂xi1
· · · ∂F

jm

∂xim
ωj1...jm ◦ F (711)

The exterior derivative commutes with the pullback map:

dF ∗ω = F ∗dω (712)

The form satisfying

dω = 0 (713)

is called closed. The form satisfying

ω = dα (714)

is exact. Every exact form is closed, but vice verse in general is not true. Consider

the exterior derivative acting on forms Ωm of degree m. The factor of closed forms

by exact is called cohomology of degree m:

Hm = kerd/Imd (715)

Integration

Consider the form:

ω =
1

n!
ωi1...indx

i1 ∧ · · · ∧ dxin (716)
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In the different coordinate system xi
′

it has the form:

ω =
1

n!
ωi′1...i′ndx

i′1 ∧ · · · ∧ dxi′n (717)

with the components:

ωi1...in =
∂xi

′
1

∂xi1
· · · ∂x

i′n

∂xin
ωi′1...i′n (718)

Consider the differential form of the maximum degree N , equal to the dimension

of the space. It has one component

ω = ρdx1 ∧ · · · ∧ xN (719)

which transforms as a density, namely gets multiplied by the Jacobian:

ρ′ = ρJ (720)

Therefore the integral ∫
X
ρdx1 ∧ · · · ∧ xN (721)

is independent on the change of the coordinates.

Stoks theorem

If the manifold has a boundary we have the Stoks theorem:∫
X
dω =

∫
∂X
dω (722)

Homotopy groups

Two smooth maps f and g between X and Y are homotopic if there exist a

smooth map

F : X × I → Y I = [0, 1] (723)

such that

F (x, 0) = f(x) and F (x, 1) = g(x) (724)

By other words f and g homotopic if can be smoothly deformed to each other

via the family of maps ft = F (x, t). Under the relation of the homotopy all maps

between X and Y divided to classes, homotopy classes. The homotopy classes of

the maps of sphere Sn to a manifold called group of homotopy πn(M).
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Lecture 18

WZW model-Action

The world-sheet action of the bulk WZW model is

SWZW(g) =
k

4π

∫
Σ

Tr(∂zg
−1∂z̄g)dzdz̄ +

k

4π

∫
B

1

3
tr(g−1dg)3 (725)

≡ k

4π

[∫
Σ

dzdz̄Lkin +

∫
B

ωWZ

]
,

B is a 3-manifold such that ∂B = Σ. This action depends on the extension

of the field on three-manifold B. However this extension is not unique, hence

there is a potential ambiguity in the definition of the second term. Indeed, in a

compactified three-dimensional space, a compact two-dimensional space delimits

two distinct three-manifolds. The difference between two choices quantifies the

ambiguity. Taking the orientation into account, the difference is given by the

second term but with the integration range extended over the whole compact

three-dimensional space. Since the latter is topological equivalent to the three-

sphere one can write

∆SWZW =

∫
S3

ωWZ (726)

Now we show that this integral is integer. First of all using the relation

δωWZ = d[Tr(δgg−1(dgg−1)2)] (727)

we obtain: ∫
S3

δωWZ = 0 (728)

Hence the integral (726) is invariant under the continuous deformation of g. It

implies that the integral depends only on the homotopy class of g. On the other

hand the Polyakov-Wiegmann identity

ωWZ(gh) = ωWZ(g) + ωWZ(h)− d
(

Tr(g−1dgdhh−1)
)
, (729)

implies ∫
S3

ωWZ(gh) =

∫
S3

ωWZ(g) +

∫
S3

ωWZ(h) (730)

Let us also recall that π3(G) = Z. Therefore homotopy classes of the map

g : S3 → G are labelled by integer numbers, and maps belonging to different

classes have different value of the integral (726). Choosing the map g1 with the
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unit value of the integral we can take as representative of other classes the maps

gn1 . Each such representative has value n of (726). Therefore with k integer the

functional integral is well defined.

We can also show that for G = SU(2) the integral (726) coincide with degree

of map.

δ(Tr(∂zg
−1∂z̄g)) = (731)

Tr
(
δgg−1[2∂z∂z̄gg

−1 − ∂z̄gg−1∂zgg
−1 − ∂zgg−1∂z̄gg

−1]
)

−Tr
(
∂z(δgg

−1∂z̄gg
−1) + ∂z̄(δgg

−1∂zgg
−1)
)

= Tr
(
δgg−1[∂z̄(∂zgg

−1) + ∂z(∂z̄gg
−1)]− ∂z(δgg−1∂z̄gg

−1)− ∂z̄(δgg−1∂zgg
−1)
)

δωWZ = d[Tr(δgg−1(dgg−1)2)] (732)∫
B

δωWZ =

∫
Σ

Tr(δgg−1[∂z̄gg
−1∂zgg

−1 − ∂zgg−1∂z̄gg
−1] (733)

=

∫
Σ

Tr(δgg−1[∂z̄(∂zgg
−1)− ∂z(∂z̄gg−1)]

Taking the sum of (731) and (733) and omitting the full derivative terms we

obtain:

δSWZW(g) =
k

2π

∫
Σ

dzdz̄Tr[δgg−1∂z̄(∂zgg
−1)] (734)

Alternatively we can write:

δ(Tr(∂zg
−1∂z̄g)) = (735)

= Tr
[
g−1δg[∂z̄(g

−1∂zg) + ∂z(g
−1∂z̄g)]− ∂z(δgg−1∂z̄gg

−1)− ∂z̄(δgg−1∂zgg
−1)
]

δωWZ = d[Tr(g−1δg(g−1dg)2)] (736)∫
B

δωWZ =

∫
Σ

Tr(g−1δg[g−1∂z̄gg
−1∂zg − g−1∂zgg

−1∂z̄g] (737)

=

∫
Σ

Tr(g−1δg[∂z(g
−1∂z̄g)− ∂z̄(g−1∂zg)]

Again taking the sum of (735) and (737) and omitting the full derivative terms

we obtain:

δSWZW(g) =
k

2π

∫
Σ

dzdz̄Tr[g−1δg∂z(g
−1∂z̄g)] (738)
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Let us draw conclusions from equations (734) and (738). Taking δgg−1or g−1δg

arbitrary we get that EOM of the WZW model is

∂z̄(∂zgg
−1) = 0 (739)

or equivalently

∂z(g
−1∂z̄g) = 0 (740)

On the other hand taking δgg−1 ≡ ω(z) holomorphic we see from (734) using the

integration by parts that δωS = 0 identically. Therefore the WZW action (725)

has the symmetry

δg = ω(z)g (741)

and the corresponding conserved current is

J(z) = −k∂zgg−1 (742)

The EOM in the form (739) coincides with the condition of of the conservation of

the current (742). Therefore the current (742) is holomorphic. Similarly taking

g−1δg ≡ ω̄(z̄) anti-holomorphic we receive from (738) using the integration by

parts that δω̄S = 0 identically. Hence the action (725) has additionally the

symmetry

δω̄g = −gω̄(z̄) (743)

and the corresponding conserved current is

J̄(z) = kg−1∂z̄g (744)

Again the EOM in the form (740) coincides with the condition of of the con-

servation of the current (744). Therefore the current (744) is anti-holomorphic.

Classically the components of the tensor-energy momentum are

T =
1

2k
TrJ2 (745)

T̄ =
1

2k
TrJ̄2 (746)

The symmetries of the WZW model can be also derived using the Polyakov-

Wiegmann identities:

Lkin(gh) = Lkin(g) + Lkin(h)−
(

Tr(g−1∂zg∂z̄hh
−1) + Tr(g−1∂z̄g∂zhh

−1)
)

(747)

96



ωWZ(gh) = ωWZ(g) + ωWZ(h)− d
(

Tr(g−1dgdhh−1)
)
, (748)

Let us elaborate the WZW action for SU(2) group. A three-sphere S3 is a group

manifold of the SU(2) group. A generic element in this group can be written as

g = X0σ0 + i(X1σ1 +X2σ2 +X3σ3) =

(
X0 + iX3 X2 + iX1

−(X2 − iX1) X0 − iX3

)
(749)

subject to condition that the determinant is equal to one

X2
0 +X2

1 +X2
2 +X2

3 = 1 . (750)

The metric on S3 can be written in the following three ways, which will be used

in the main text. Firstly, using the Euler parametrisation of the group element

we have

g = eiχ
σ3
2 eiθ̃

σ1
2 eiϕ

σ3
2 (751)

ds2 =
1

4

(
(dχ+ cos θ̃dϕ)2 + dθ̃2 + sin2 θ̃dϕ2

)
= (752)

1

4

(
dχ2 + dϕ2 + dθ̃2 + 2 cos θ̃dχdϕ

)
The ranges of coordinates are 0 ≤ θ̃ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ χ ≤ 4π.

Secondly, we can use coordinates that are analogue to the global coordinate

for AdS3

X0 + iX3 = cos θeiφ̃ , X2 + iX1 = sin θeiφ (753)

ds2 = dθ2 + cos2 θdφ̃2 + sin2 θdφ2 . (754)

The relation between the metrics (751) and (753) is given by

χ = φ̃+ φ , ϕ = φ̃− φ , θ =
θ̃

2
. (755)

The ranges of coordinates are −π ≤ φ̃, φ ≤ π and 0 ≤ θ ≤ π
2
.

Thirdly, the standard metric on S3 is given by (~n is a unit vector on S2)

g = e2iψ ~n·~σ
2 , ds2 = dψ2 + sin2 ψ(dξ2 + sin2 ξdη2) (756)

X0 + iX3 = cosψ + i sinψ cos ξ , X2 + iX1 = sinψ sin ξeiη . (757)

The ranges of the coordinates are 0 ≤ ψ , ξ ≤ π and 0 ≤ η ≤ 2π.
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In the parametrisation (751) we have

g−1dg = i(L1σ1 + L2σ2 + L3σ3) (758)

where

L1 =
1

2
(−dθ̃ sinϕ+ sin θ̃ cosϕdχ) (759)

L2 =
1

2
(dθ̃ cosϕ+ sin θ̃ sinϕdχ)

L3 =
1

2
(dϕ+ cos θ̃dχ)

Tr(dg−1dg) = 2ds2 (760)

1

3
Tr(g−1dg)3 = −2iL1 ∧ L2 ∧ L3Trσ1σ2σ3 = (761)

4L1 ∧ L2 ∧ L3 =
1

2
sin θ̃dχdθ̃dϕ
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Lecture 19

WZW model-Quantization

Remembering (260) we have

δω,ω̄X = − 1

2πi

∮
dz
∑
a

ωaJaX +
1

2πi

∮
dz̄
∑
a

ω̄aJ̄aX (762)

where

J =
∑
a

JaT a, ω =
∑
a

ωaT a, and Tr(T aT b) = δab (763)

The transformation law for the currents follows from (741) and (742)

δωJ = −k(∂z(δωg)g−1 − ∂zgg−1δωgg−1) (764)

−k(∂zωg + ω∂zg)g−1 + k∂zgg
−1ω

[ω, J ]− k∂zω

It can be rewritten as

δωJ =
∑
b,c

ifabcω
bJ c − k∂zωa (765)

Comparing (762) and (764) we arrive

Ja(z)Ja(w) ∼ kδab
(z − w)2

+
∑
c

ifabc
J c(w)

(z − w)
(766)

This will be called a current algebra. Introducing the modes Jan from the

Laurent expansion

Ja(z) =
∑
n∈Z

z−n−1Jan (767)

we can obtain the commutation relations of the affine algebra Lie at the level

k:

[Jan, J
b
m] =

∑
c

ifabcJ
c
n+m + knδabδn+m,0 (768)

The transformation property of J̄ is

δω̄J̄ = [ω̄, J̄ ]− k∂zω̄ (769)

This yields another copy of the affine algebra for the modes J̄ bm. Since ω̄(z̄) is

independent of z

δω̄J = 0 (770)
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This implies

[Jan, J̄
b
m] = 0 (771)

Normal ordering

The OPE of A and B is written as

A(z)B(w) =
N∑

n=−∞

{AB}n(w)

(z − w)n
(772)

then the normal-ordered version is

(AB)(w) = {AB}0(w) (773)

The contraction is defined to include all the singular terms of the OPE

A(z)B(w) =
N∑
n=1

{AB}n(w)

(z − w)n
(774)

Hence the above expression for the normal ordered product can be written as:

(AB)(w) = limz→w

[
A(z)B(w)− A(z)B(w)

]
(775)

The method of contour integration provides another useful representation of our

newly introduced normal ordering:

(AB)(w) =
1

2πi

∮
w

dz

z − w
A(z)B(w) (776)

A(z)(BC)(w) =
1

2πi

∮
w

dx

x− w
{A(z)B(x)C(w) +B(x)A(z)C(w)} (777)

Consider now the normal ordered version of the tensor energy-momentum:

T (z) = γ
∑
a

(JaJa)(z) (778)

Ja(z)(JaJa)(w) =
1

2πi

∮
w

dx

x− w

[
Ja(z)J b(x)J b(w) + J b(x)Ja(z)J b(w)

]
= (779)

1

2πi

∮
w

dx

x− w

[(
kδab

(z − x)2
+
∑
c

ifabc
J c(x)

(z − x)

)
J b(w)

+J b(x)

(
kδab

(z − w)2
+
∑
c

ifabc
J c(x)

(z − w)

)]
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Developing OPE we obtain:

Ja(z)(JaJa)(w) =
1

2πi

∮
w

dx

x− w

[
kδabJ

b(w)

(z − x)2
(780)

+
∑
c

ifabc
(z − x)

(
ifcbd

Jd(w)

(x− w)
+

kδcb
(x− w)2

+ (J cJ b)(w)

)
+
kδabJ

b(w)

(z − w)2
+
∑
c

ifabc
(J bJ c)(w)

(z − w)

]
Due to the antisymmetry of the structure constant fabc the term fabcδcb vanishes.

We now sum the result over b and use

−
∑
b,c

fabcfcbd =
∑
b,c

fabcfdbc = 2hGδad (781)

where hG is the dual Coxeter number. Moreover we also have∑
b,c

fabc[(J
bJ c) + (J cJ b)]0 = (782)

We end up with

Ja(z)
∑
b

(J bJ b)(w) = 2(k + hG)
Ja(w)

(z − w)2
(783)

Inverting the order of the fields we obtain:

T (z)Ja(w) = 2γ(k + hG)
Ja(z)

(z − w)2
= 2γ(k + hG)

[
Ja(w)

(z − w)2
+
∂Ja(w)

(z − w)

]
(784)

The request of the current to have the weight one leads to the condition:

γ =
1

2(k + hG)
(785)

Finally for the tensor energy-momentum we get:

T (z) =
1

2(k + hG)

∑
a

(JaJa)(z) (786)

Having calculated the OPE T (z)Ja(w) now we turn to the singular terms in

the OPE T (z)T (w):

T (z)T (w) = (787)

1

2(k + hG)

1

2πi

∮
w

dx

x− w
∑
a

[
T (z)Ja(x)Ja(w) + Ja(x)T (z)Ja(w)

]
=

c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
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with

c =
kdimg

k + hG
(788)

In the components we have

Ln =
1

2(k + hG)

∑
a

∑
m

: JamJ
a
n−m : (789)

Normal ordering is necessary only for n 6= 0 , since for these n Jam and Jan−m
commute. For n = 0 normal ordering means us usual that positive indices modes

placed at the rightmost position. Collecting all, we have the following set of the

commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (790)

[Ln, J
a
m] = −mJan+m

[Jan, J
b
m] =

∑
c

ifabcJ
c
n+m + knδabδn+m,0

Proof via the mode expansion

2(k + hG)[Ln, J
a
m] =

∑
b

∑
r

[J brJ
b
n−r, J

a
m] = (791)∑

b

∑
r

J br [J
b
n−r, J

a
m] + [J br , J

a
m]J bn−r

∑
b

∑
r

J br

(∑
c

ifbacJ
c
n−r+m + k(n− r)δabδn−r+m,0

)
+

∑
b

∑
r

(∑
c

ifbacJ
c
r+m + krδabδr+m,0

)
J bn−r

The delta symbols terms from the both lines yield:

−2kmJan+m (792)

The first terms in both lines should be brought to the normal ordered form with

lower index placed to the left position:∑
b

∑
r

∑
c

ifbacJ
b
rJ

c
n−r+m = (793)∑

b

∑
r≤n+m

2

∑
c

ifbacJ
b
rJ

c
n−r+m +

∑
b

∑
r>n+m

2

∑
c

ifbac(J
c
n−r+mJ

b
r +

∑
d

ifbcdJ
d
n+m) =
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∑
b

∑
r

∑
c

ifbac : J brJ
c
n−r+m : +

∑
b

∑
r>n+m

2

∑
c

ifbac
∑
d

ifbcdJ
d
n+m =

∑
b

∑
r

∑
c

ifbac : J brJ
c
n−r+m : +2

∑
r>n+m

2

hGJ
a
n+m

∑
b

∑
r

∑
c

ifbacJ
c
r+mJ

b
n−r = (794)∑

b

∑
r≤n−m

2

∑
c

ifbacJ
c
r+mJ

b
n−r +

∑
b

∑
r>n−m

2

∑
c

ifbac(J
b
n−rJ

c
r+m −

∑
d

ifbcdJ
d
n+m) =

∑
b

∑
r

∑
c

ifbac : J cr+mJ
b
n−r : −

∑
b

∑
r>n+m

2

∑
c

ifbac
∑
d

ifbcdJ
d
n+m =

∑
b

∑
r

∑
c

ifbac : J cr+mJ
b
n−r : −2

∑
r>n−m

2

hGJ
a
n+m

Changing the summing variable r → r+m the normal ordered terms get canceled

due to difference in the order of the b and c indices. The difference of the second

terms gives

−2mhGJ
a
n+m (795)

as we expected.

[Ln, Lm] =
1

2(k + hG)

∑
a

∑
r

[Ln, J
a
r J

a
m−r] = (796)

1

2(k + hG)

∑
a

∑
r

(
[Ln, J

a
r ]Jam−r + Jar [Ln, J

a
m−r]

)
=

1

2(k + hG)

∑
a

∑
r

(
−rJan+rJ

a
m−r + (r −m)Jar J

a
n+m−r

)
Bringing both terms to the normal ordered form, i.e. moving the higher index to

the right position we obtain:

[Ln, Lm] =
1

2(k + hG)

∑
a

∑
r

(
−r : Jan+rJ

a
m−r : +(r −m) : Jar J

a
n+m−r :

)
(797)

+
kdimg

2(k + hG)
δm+n

 ∑
r>m−n

2

(−r)(n+ r) +
∑

r>m+n
2

(r −m)r


Changing the summation variable in the first term r′ = r + n the first two term

yield

(n−m)Lm+n (798)
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The last line can be written as

kdimg

2(k + hG)
δm+n

 ∑
r>m−n

2

(−r)(n+ r) +
∑

r>m+n
2

(r −m)r

 = (799)

kdimg

2(k + hG)
δm+n

m∑
r=0

r(m− r) =
kdimg

12(k + hG)
(n3 − n)δm+n
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Lecture 20

Representations of the affine algebras

Here we will review the Cartan-Weyl basis of the algebra and the general facts

on the highest weight representations.

In the Cartan-Weyl basis the generators are constructed as follows.

One first finds the maximal set of commuting generators: H i, i = 1, . . . r:

[H i, Hj] = 0 (800)

r is called the rank of the algebra. This set of generators form the Cartan

subalgebra h.

The generators of the Cartan algebra can all be diagonalized simultaneously.

The remaining generators can be chosen to satisfy:

[H i, Eα] = αiEα (801)

The vector is called root and Eα is the corresponding ladder operator. Equation

(801) via its Hermitian conjugate, shows that if −α is a root as well with

E−α = (Eα)† (802)

In the following ∆ denotes the set of all roots. To find the remaining commutators

we first observe that the Jacobi identity implies:

[H i, [Eα, Eβ]] = (αi + βi)[Eα, Eβ] (803)

If α + β ∈ ∆, the commutator [Eα, Eβ] must be proportional to Eα+β, and it

must vanish if α + β is not root. When α = −β, [Eα, E−α] commutes with all

H i, which is possible only if it is a linear combination of the generators of the

Cartan subalgebra. The normalization of the ladder operator is fixed by setting

this commutator equal to 2α ·H/|α|2 where

α ·H =
r∑
i

αiH i, |α|2 =
r∑
i

αiαi (804)

So, the set of the commutation relations in the Cartan-Weyl basis is

[H i, Hj] = 0 (805)

[H i, Eα] = αiEα

[Eα, Eβ] = Nα,βE
α+β, if α + β ∈ ∆

= 2α ·H/|α|2 if α = −β
= 0 otherwise
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The Killing form

K(X, Y ) =
1

2g
Tr(adXadY ) (806)

g is the dual Coxeter number of the algebra. The standard basis {J c} is

understood to be orthonormal with respect to K:

K(Ja, J b) = δab (807)

The same normalization holds for the generators of the Cartan subalgebra:

K(H i, Hj) = δij (808)

The cyclic property of the trace yields the identity:

K([Z,X], Y ]) +K(X, [Z, Y ]) = 0 (809)

Hence we obtain:

K(Eα, E−α) =
2

|α|2
(810)

Positive roots

Let us fix the basis in the space of roots {β1, · · · βr}. Any root can be expanded

in this basis:

α =
r∑
1

niβi (811)

α is said positive if the first nonzero number in the sequence (n1, n2, · · · , nr). The

set of positive roots we denote by ∆+.

A simple root αi is defined to be a root that cannot be written as the sum

of two positive roots. There necessarily r simple roots and their set {α1, · · ·αr}
provides the most convenient basis for the r -dimensional space of roots.

Highest root

A distinguished element of ∆ is the highest root θ. It is unique root and

which, in the expansion
∑

imiαi the sum
∑

imi is maximized.

Highest weight representations

For an arbitrary representation a basis |λ〉 can be found such that

H i|λ〉 = λi|λ〉 (812)

. The eigenvalues λi form the vector λ = (λ1, · · ·λr) called a weight. Roots

are weights of the adjoint representation. The commutator (801) shows that Eα

changes the eigenvalue of a state by α:

H iEα|λ〉 = [H iEα]|λ〉+ EαH i|λ〉 = (αi + λi)Eα|λ〉 (813)
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so that Eα|λ〉 if not zero, must be proportional to a state |λ+ α〉. This why Eα

is called ladder operator. Let us consider finite-dimensional representations. For

these we will get very important relation. For any state in a finite-dimensional

representation, there are necessarily two possible integer p and q such that

(Eα)p+1|λ〉 ∼ Eα|λ+ pα〉 = 0 (814)

(E−α)q+1|λ〉 ∼ E−α|λ− qα〉 = 0 (815)

for any root α. Notice that the triplet of generators Eα, E−α, and α ·H/|α|2

forms an su(2) subalgebra analogues to the set [J+, J−, J3] with commutation

relations

[J+, J−] = 2J3, [J3, J±] = ±J± (816)

Therefore if |λ〉 belongs to a finite-dimensional representation, its projec-

tion onto the su(2) subalgebra associated with the root α must also be finite-

dimensional. Let the dimension of the latter be 2j + 1; then from the state |λ〉
the state with highest J3 = α · H/|α|2 projection (m = j) can be reached by a

finite number, say p applications of J+ = Eα, whereas, say, q, applications of

J− = E−α lead to the state with m = −j

j =
(α, λ)

|α|2
+ p − j =

(α, λ)

|α|2
− q (817)

Eliminating j from the above two equations yields:

2
(α, λ)

|α|2
= −(p− q) (818)

Hence any weight in a finite-dimensional representation is such that 2 (α,λ)
|α|2 is an

integer.

Since the weights are roots of the adjoint representation the scalar products

of the simple roots defines the integer entries Cartan matrix:

Aij =
2(αi · αj)

α2
j

(819)

Finding all the Cartan matrices leads to the Dynkin classification of the Lie

algebras.

Among all the weights in the representation the highest weight is the one

for which the sum of the coefficients expansions in the basis of simple roots is

maximal. As a result for any positive root α λ+ α cannot be a weight, so that
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Eα|λ〉 = 0, (820)

for any positive root.

Starting from the highest weight state λ〉,all the states in the representation

space can be obtained by the action of the lowering operators as

E−βE−γ · · ·E−η for β, γ, . . . , η ∈ ∆+ (821)

Highest weights of the affine algebra

In the Cartan-Weyl basis the commutation relation of the affine algebra takes

the form:

[H i
n, H

j
m] = knδijδn+m,0 (822)

[H i
n, E

α
m] = αiEα

n+m

[Eα
n , E

β
m] = Nα,βE

α+β
n+m, if α + β ∈ ∆

=
2

|α|2
(α ·Hn+m + knδn+m,0) if α = −β

= 0 otherwise

The highest weight state now is defined to satisfy:

H i
n|λ〉 = E±αn |λ〉 = 0, n > 0 (823)

H i
0|λ〉 = λi|λ〉, and Eα

0 |λ〉 = 0, α > 0

Consider again the su(2) subalgebra generated by: Eα
0 , E−α0 , 2

|α|2α ·H0. Com-

mutation relations imply:

〈λ|Eα
0E
−α
0 |λ〉 = 〈λ|[Eα

0E
−α
0 ]|λ〉 =

2

|α|2
α · λ〈λ|λ〉 ≥ 0 (824)

Hence we must have α · λ ≥ 0.

Now look another su(2) subalgebra generated by: Eα
−1, E−α1 , 2

|α|2 (−α ·H0 +k).

From (822) we have

〈λ|E−α1 Eα
−1|λ〉 = 〈λ|[E−α1 Eα

−1]|λ〉 =
2

|α|2
(−α · λ+ k)〈λ|λ〉 ≥ 0 (825)

Restrict ourself for simplicity to the case of unitary algebras for which all

roots normalized to 2.
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Since the component of the J3 generatot of su(2) are integer , and we know

that for any weight λ 2
|α|2α · λ is integer, we obtain that k is integer.

Then it follows from (825) that any highest weight shold satisfy the inequility

α · λ ≤ k (826)

The condition (827) is stringent for the highest root θ

θ · λ ≤ k (827)

Using the expression (790) for L0 we derive the conformal weight of the highest

weight state:

L0|λ〉 =
Cλ

2(k + hG)
|λ〉 (828)

where Cλ is the quadratic Casimir of the representation λ.

Let us specialize to the SU(2) group. Note that the normalization of structure

constant, f ijk =
√

2εijk. It comes from the requirement Tr(T iT j) = δij, which

implies that for SU(2) we should take T i = σi√
2
. Because of the

√
2 in the

commutation rules, we need to take

I± =
1√
2

(J1
0 ± iJ2

0 ) and I3 =
1√
2
J3

0 (829)

to give a conventionally normalized su(2) algebra [I+, I−] = 2I3, [I3, I±] = ±I±,

in which 2I3 has integer eigenvalue in any finite dimensional representation. But

from the commutation relation of the affine su(2) algebra we find that

Ĩ+ =
1√
2

(J1
+1 − iJ2

+1), Ĩ− =
1√
2

(J1
−1 + iJ2

−1) and Ĩ3 =
1

2
k− 1√

2
J3

0 (830)

as well satisfy [Ĩ+, Ĩ−] = 2Ĩ3, [Ĩ3, Ĩ±] = ±Ĩ±, so 2Ĩ3 = k−2I3 also has integer

eigenvalues. It follows that k ∈ Z for unitary highest weight representations.

Since the quadratic Casimir in the chosen normalization, in the representation j

has value Cj = 2j(j + 1), therefore in the adjoint representation j = 1, Cadj = 4,

hSU(2) = 2,

and the central charge of the corresponding affine algebra is

c =
3k

k + 2
(831)

Here we have one root and all weights are given by half-integer numbers j.

0 < 〈j|Ĩ+Ĩ−|j〉 = 〈j|[Ĩ+Ĩ−]|j〉 = 〈j|k − 2I3|j〉 = k − 2j (832)
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and the highest weights of the su(2) affine algebra are given by the half-integer

j satisfying the inequality:

2j ≤ k (833)

The conformal weight of these states are:

hj =
j(j + 1)

k + 2
(834)

The matrix of the modular transformation is

Saj =

√
2

k + 2
sin

(
(2a+ 1)(2j + 1)π

k + 2

)
. (835)

Characters are

χl =
Θl+1,k+2 −Θ−l−1,k+2

Θ1,2 −Θ−1,2

(836)

Θm,k(τ, z, u) = e−2πimu
∑

n∈Z+m/2k

e2πim(n2τ−nz) (837)
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Lecture 21: Coset models

GKO construction

Assume we have subgroup H of group G: H ⊂ G. We denote the G currents

by JaG and the H currents by J iH , where i runs only over the ajoint representation

of H, i.e. from 1 to |H| ≡ dimH. We can now construct two stress-energy tensors

TG(z) =
1

2(kG + hG)

|G|∑
a=1

: JaG(z)JaG(z) : (838)

and also

TH(z) =
1

2(kH + hH)

|H|∑
a=1

: J iH(z)J iH(z) : (839)

Now we have:

TG(z)J iH(w) ∼ J iH(w)

(z − w)2
+
∂J iH(w)

(z − w)
(840)

but as well that

TH(z)J iH(w) ∼ J iH(w)

(z − w)2
+
∂J iH(w)

(z − w)
(841)

We see that the OPE of (TG − TH) with J iH is non-singular. Since TH above is

constructed entirely from H currents J iH it also follows that TG/H ≡ TG−TH has

a nonsingular OPE with all of TH . This means that

TG = (TG − TH) + TH ≡ TG/H + TH (842)

gives an orthogonal decomposition of the Virasoro algebra generated by TG into

two commuting Virasoro subalgebras, [TG/H , TH ] = 0. To compute the central

charge of the Virasoro subalgebra generated by TG/H , we note that the most

singular part of the OPE of two TG’s decomposes as

TGTG =
cG/2

(z − w)4
∼ TG/HTG/H + THTH ∼

cG/2 + cH/2

(z − w)4
(843)

The result is

cG/H = cG − cH =
kG|G|
kG + hG

− kH |H|
kH + hH

(844)

To understand better the states that arise in the G/H theory, we need to consider

how the representation of G decompose under (842). We denote the represen-

tation space of affine G at level kG by |cG, λG〉, where cG is the central charge
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appropriate to kG, and λG is the highest weight of the vacuum representation.

Under the orthogonal decomposition of the Virasoro algebra TG = TG/H + TH ,

this space must decompose as some direct sum of irreducible representations

|cG, λG〉 = ⊕j|cG/H , hjG/H〉 ⊗ |cH , λ
j
H〉 (845)

where |cG/H , hjG/H〉 denotes an irreducible representation of TG/H with lowest L0

eigenvalue hjG/H . It follows immediately from the decomposition (845) that the

character of an affine G representation with highest weight λa satisfies:

χkGλaG
(τ) =

∑
j

χ
cG/H

hG/H(λaG,λ
j
H)

(τ)χkH
λjH
≡ χG/H · χHλH (846)

In (846) the L0 eigenvalues hG/H characterizing the TG/H Virasoro representation

depend implicitly on the highest weights λaG and λjH characterizing the associated

G and H representation. On the r.h.s. of (846) we have introduced a matrix

notation.

Under modular transformation:

γ : τ → aτ + b

cτ + d
(847)

the characters allowed at any given fixed level kG of an affine algebra transform

as a unitary representation

χkG(τ ′) = MkG(γ)χkG(τ) (848)

with (MkG)ba a unitary matrix. But from (846) we also have

χkG(τ ′) = χkG/H (τ ′)MkH (γ)χkH (τ) (849)

Linear independence of the G and H characters then allows us to solve for the

modular transformation properties of the TG/H characters as

χkG/H (τ ′) = MkG(γ)χkG/H (τ)MkH (γ)−1 (850)

By other words

MG/H(γ)(λaG,λ
i
H);(λbG,λ

j
H) = MkG(γ)λaG,λbGM

kH (γ)λiH ,λ
j
H

(851)

Also we have

hG/H(λaG, λ
i
H) = hGλaG − h

H
λiH

+ n (852)
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Lagrangian of coset model: Gauged WZW model

Let G be a compact, simply connected, non-abelian group. The G/H coset

CFT, where H is a subgroup of G, can be described in terms of a gauged WZW

action, where the symmetry

g → hgh−1 (853)

g ∈ G, h ∈ H is gauged away. An H Lie algebra valued world sheet vector field A

is added to the system, and the G/H action on a world-sheet without boundary

becomes,

SG/H = SG/H + Sgauge (854)

=
kG
4π

[ ∫
Σ

d2zLkin +

∫
B

ωWZW

]
+
kG
2π

∫
Σ

d2zTr[Az̄∂zgg
−1 − Az∂z̄gg−1 + Az̄gAzg

−1 − Az̄Az]

Introduce H group element valued world sheet fields U and Ũ as

Az = ∂zUU
−1 (855)

Az̄ = ∂z̄Ũ Ũ
−1 (856)

Then the coset action becomes:

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ) (857)

The level kH of the SH term is related to kG through the embedding index of

H in G. The model has then the following symmetries . First of all one should

identify configurations related by the local gauge transformation

g(z, z̄)→ h(z, z̄)g(z, z̄)h−1(z, z̄) (858)

U(z, z̄)→ h(z, z̄)U(z, z̄)

Ũ(z, z̄)→ h(z, z̄)Ũ(z, z̄)

with h(z, z̄) ∈ H.

Minimal model

Now we turn to the specific case of coset spaces of the form G×G/G, where

the group G in the denominator is the diagonal subgroup. If we call the generators

of the two groups in the numerator Ja = Ja(1) + Ja(2).The most singular part of

their OPE is

Ja(z)J b(w) ∼ Ja(1)(z)J b(1)(w) + Ja(2)(z)J b(2)(w) ∼ (k1 + k2)δab

(z − w)2
+ · · · (859)
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so that the level the G in the denominator is determined by the diagonal embed-

ding to be k1 + k2. A simple example of this type is provided by

G/H = SU(2)k × SU(2)1 × /SU(2)k+1 (860)

in which case

cG/H =
3k

k + 2
+ 1− 3(k + 1)

k + 1 + 2
= 1− 6

(k + 2)(k + 3)
(861)

We can write the conformal dimensions of the minimal models in the form:

hr,s =
(r − s)2

4
+

r2 − 1

4(k + 2)
− s2 − 1

4(k + 3)
(862)

Solving r2 − 1 = 4j(j + 1), and s2 − 1 = 4n(n + 1) we get r = 2j + 1, and

s = 2n+ 1.

The parafermion APF (k) = SU(2)k
U(1)k

The chiral algebra of this theory has a set of irreducible representations described

by pairs (j, n) where j ∈ 1
2
Z, 0 ≤ j ≤ k/2, and n is an integer defined modulo 2k.

The pairs are subject to a constraint 2j+n = 0mod2, and an equivalence relation

(j, n) ∼ (k/2 − j, k + n). The character of the representation (j, n), denoted by

χj,n(q), is determined implicitly by the decomposition

χ
SU(2)
j (q) =

k+1∑
n=−k

χkj,n(q)ψn(q) . (863)

The action of modular group on the character is

χkj,n(q′) =
∑

(j′,n′)

SPF(j,n),(j′n′)χ
k
j′,n′(q) (864)

and the PF S-matrix is

SPF(j,n),(j′n′) =
1√
2k
e
iπnn′
k Sjj′ , (865)

where Sjj′ defined in (1076).

When combining left and right-movers, the simplest modular invariant parti-

tion function of the parafermion theory is obtained by summing over all distinct

representations

Z =
∑

(j,n)∈PFk

|χj,n|2 . (866)
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The parafermion theory has a global Zk symmetry under which the fields ψj,n

generating the representation (j, n) transform as

g : ψj,n → ωnψj,n, ω = e
2πi
k . (867)

Therefore we can orbifold the theory by this group. Taking the symmetric orbifold

by Zk of (866) leads to the partition function

Z =
∑

(j,n)∈PFk

χj,nχ̄j,−n . (868)

We see that effect of the orbifold is to change the relative sign between the left

and right movers of the U(1) group with which we orbifold. Therefore the Zk

orbifold of the parafermion theory at level k is T-dual to the original theory. This

fact will be the basis of many constructions in the main text.

J+(z) =
√
kψpare

i
√

2/kφ(z) (869)

J−(z) =
√
kψ†pare

−i
√

2/kφ(z)

J0(z) =
√

2k∂zφ(z)

115



Lecture 22: C=1 Orbifold model

In conformal field theory the notion of orbifold acquires the following meaning.

We start by taking a given modular invariant theory T , whose Hilbert space

admits a discrete symmetry G consistent with the interactions or operator algebra

of the theory, and constructing a modded-out theory T /G that is also modular

invariant.

Orbifold conformal field theories occasionally have a geometric interpretation

as σ-models whose target space is the geometrical orbifold. This we shall confirm

momentarily in the case of the S1/Z2 example. But we shall see examples however

where the geometrical interpretation non-existent. Consequently it is preferable

to regard orbifold conformal field theories from the more abstract standpoint of

modding out a modular invariant theory by a Hilbert space symmetry. We will

consider here the case of the abelian symmetry group G.

The construction of an orbifold conformal field theory T /G begins with a

Hilbert space projection onto G invariant states.

Therefore the first part of the partition function has the form:

Z
(1)
orb = |q|−c/12 1

|G|
Tr
∑
g∈G

gqL0 q̄L̄0 (870)

This means that we sum over all insertions of the operator realization of group

element g in the trace over states, or alternatively this can be understood as

twisting in the time direction. To have modular invariant partition function

we should add contribution of the configurations twisted in the space direction

x(z + 1) = hẋ(z):

Zorb = |q|−c/12 1

|G|
∑
g,h∈G

Trhgq
L0 q̄L̄0 (871)

Now let us consider the free boson orbifolded by Z2 symmetry φ→ −φ.

According to (871) the partition function takes the form

Zorb = |q|−1/12 1

2
Tr+(1 +G)qL0 q̄L̄0 + |q|−1/12 1

2
Tr−(1 +G)qL0 q̄L̄0 (872)

Here G is the operator realization of the inversion φ→ −φ, Tr+ denotes the trace

over untwisted sector considered before and Tr− denotes the trace over twisted

anti-periodic sector φ(x+ L, t) = −φ.

Let us analyze the chiral contributions. Consider the projected contribution

in untwisted sector:
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f0, 1
2

= Tr+Gq
L0−1/24 = Tr+Gq

∑
n∈N anan−1/24 (873)

To compute this trace note that the inversion flips signs all the creation and

annihilation operators and the winding and momentum zero modes. Therefore

we can split the untwisted chiral Hilbert space into G = ±1 eigenspaces H±:

H+ = {α−n1 · · ·α−n2k
(|m,n〉+ | −m,−n〉)}+ (874)

{α−n1 · · ·α−n2k+1
(|m,n〉 − | −m,−n〉)}

H− = {α−n1 · · ·α−n2k
(|m,n〉 − | −m,−n〉)}+ (875)

{α−n1 · · ·α−n2k+1
(|m,n〉+ | −m,−n〉)}

Since the first line in H+ has the same L0 eigenvalue as the first line in H−,

but opposite G eigenvalue, their contributions get canceled. By the same reason

get canceled also contribution of the second lines in H+ and H−. Hence the only

contribution comes from the |0, 0〉 sector. Summarizing we obtain:

f0, 1
2

= q−1/24

∞∏
n=1

1

1 + qn
=

√
2η(τ)

θ2(τ)
(876)

Now we address the twisted sectors. Oscillators in the twisted sectors half-integer

modded. Therefore the L0 has an expansion:

L0 =
1

2

∑
n∈Z+1/2

: anan :=
∑

n∈N+1/2

anan +
1

2

∑
n∈N+1/2

n (877)

Using ζ-function regularized value of the sum of half-integer numbers, we get:

L0 =
∑

n∈N+1/2

anan +
1

48
(878)

Hence we have for chiral contributions:

f 1
2
,0 = Tr−q

L0 = q1/48
∏

r=N+1/2

1

1− qr
=

√
η(τ)

θ4(τ)
(879)

f 1
2
, 1
2

= Tr−Gq
L0 = q1/48

∏
r=N+1/2

1

1 + qr
=

√
η(τ)

θ3(τ)
(880)
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Also taking into account that we have two twisted sectors differing by two

ways of acting on φ: φ→ −φ and φ→ 2π − φ we end up with

Zorb =
1

2

(
Z(R) + |f0, 1

2
|2 + 2|f 1

2
,0|2 + 2|f 1

2
, 1
2
|2
)

= (881)

1

2
Z(R) +

|η|
|θ2|

+
|η|
|θ3|

+ +
|η|
|θ4|
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Lecture 23

Boundary c=1 systems

Let us consider a conformal field theory on the σ − τ strip, 0 ≤ σ ≤ π, peri-

odic in the τ -direction with a period T . The manifold is an annulus with the

modular parameter q ≡ exp(−2πiT ). Given certain boundary conditions on the

boundaries of the annulus, labelled α and β, the partition function is:

Zαβ = Tr exp(−2πiTHαβ) , (882)

where Hαβ is the Hamiltonian corresponding to these boundary conditions. This

is the open-string channel. One may also calculate the partition function using

the Hamiltonian acting in the σ-direction . This will be the Hamiltonian H(P )

for the cylinder, which is related by the exponential mapping ζ = exp(−i(t+ iσ))

to the Virasoro generators in the whole ζ-plane by H(P ) = L
(P )
0 + L0

(P ) − c/12,

where we have used the superscript to stress that they are not the same as the

generators of the boundary Virasoro algebra. To every boundary condition α,

there corresponds a particular boundary state |α〉 in the Hilbert space of the

closed strings; this enables us to compute the partition function by the following

formula:

Zαβ = 〈α| exp(−πiH(P )/T )|β〉 = 〈α|(q̃1/2)L
(P )
0 +L0

(P )−c/12|β〉 , (883)

where q̃ ≡ e−2πi/T .

This is the closed-string tree channel.

The boundary entropy for each boundary is defined by Affleck and Ludwig:

gα = 〈0|α〉 . (884)

The phases of |0〉 and |α〉 can be chosen such that 〈0|α〉 is real and positive for all

boundary states |α〉. In the path integrand language, gα is the value of the disc

diagramm satisfying α type boundary condition. Affleck and Ludwig have shown

that, at least in conformal perturbation theory, the value of g always decreases

with the flow of the renormalization group.

The equality of (882) and (883) provides a convenient way to calculate g, as

shown in the following.
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Boundary action

S =

∫
∂X∂̄Xdx+dx− (885)

The variation of the action in the presence of the boundary takes form:

δS = −
∫

2∂∂̄XδXdx+dx− +

∫
(∂Xdx+ − ∂̄Xdx−)δX (886)

Now let us take:

x+ = τ + σ (887)

x− = τ − σ (888)

∂τ = ∂ + ∂̄ (889)

∂σ = ∂ − ∂̄ (890)

Assume that boundary located at σ = 0 (open string loop channel).

In this case the boundary term takes the form:∫
(∂Xdx+ − ∂̄Xdx−)δX =

∫
∂σXδXdτ (891)

and we have two kinds of boundary condition: Neumann boundary condition

∂σX|σ=0 (892)

and Dirichlet boundary condition is

X|σ=0 = 0 (893)

If the boundary located at τ = 0, the boundary term takes the form:∫
(∂Xdx+ − ∂̄Xdx−)δX =

∫
∂τXδXdσ (894)

and the Neumann boundary condition takes the form:

∂τX|τ=0 (895)

and the Dirichlet boundary condition is

X|τ=0 = 0 (896)

Neumann boundary conditions
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Closed string tree-channel

The action with the Neumann boundary condition can include also the Wilson

line term at the boundary :

S =
1

2π

∫ π

0

dσ

∫
dτ∂αX∂

αX +
∑
B

iyB
π

∫
B

dX , (897)

where B labels boundaries and yB are the constant modes of the U(1) gauge

potential coupling to the boundaries (and are periodic, with periods π/R). We

assume that the boundaries carry also Chan-Paton factors whose index we choose

to take two values, 1 and 2. Thus at the enhanced symmetry point we have a

U(2) gauge symmetry, which is generically broken down to U(1) × U(1) by the

Wilson line.

Here we consider a world-sheet with two boundaries, the annulus diagram.

In order to find the boundary entropy, the theory should be compared in two

channels: the closed-string tree channel and the open-string loop channel.

In the closed-string channel the first task is to find the boundary states |Ni〉,
with Chan-Paton factor i, which are found by imposing the corresponding bound-

ary conditions. The boundary is located at τ = 0 and one has the usual condition

of vanishing momentum flow:

∂τX(σ, 0) = P (σ, 0) = 0 . (898)

Inserting the mode expansion:

X(σ, τ) = x+ 2wRσ +
pτ

R
+
i

2

∑
n6=0

1

n
[αne

−2in(τ−σ) + α̃ne
−2in(τ+σ)] , (899)

where p and w are correspondingly integer momenta and winding numbers, we

get:

p = 0, αn = −α̃−n . (900)

Taking into account the properties of coherent state and the U(1) modes yi we

get for |Ni〉:

|Ni〉 = gN
∑
w

e−2iyiwR exp

(∑
n>0

−α−nα̃−n
n

)
|0, w〉 , (901)

where the phase factor comes from the Wilson line term:

iyB
π

∫
dσ∂σX = 2iyBwBR , (902)
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where wB is the winding number of the boundary.

We see that the normalization factor gN = 〈0|Ni〉 gives us the boundary

entropy. Inserting the expression for |Ni〉 and the closed string Hamiltonian

H =
p2

4R2
+ w2R2 +N + Ñ − 1

12
(903)

in (883), we obtain for the partition function in the closed string channel:

Z12 = g2
N〈N2| exp

(
−iπw2R2

T

)
exp

[
−iπ
T

(N + Ñ − 1

12
)

]
|N1〉 =

g2
N

η(q̃)

∑
w

e−2i(y1−y2)wR exp

(
−iπw2R2

T

)
=

g2
N

η(q̃)
θ3

(
−R2

T
, (y2 − y1)R

)
, (904)

where

η(q) = q1/24

∞∏
n=1

(1− qn) (905)

is the Dedekind function, and

θ3(τ, z) =
∞∑

n=−∞

exp(iπn2τ + 2inz) (906)

is the third theta function with the modular parameter τ . To calculate gNi one

turns to the open string loop channel.

Open string loop-channel

The Hamiltonian should be computed with a given boundary condition. First

consider the mode expansion for X. The action takes form

S =
1

2π

∫ π

0

dσ

∫
dτ∂αX∂

αX +
y2

π

∫
dτ∂τX −

y1

π

∫
dτ∂τX , (907)

We see that the space-time momentum gets modified

P =

∫ π

0

(
1

π
∂τX +

y2

π
δ(σ)− y1

π
δ(π − σ)

)
=
p

R
+
y2 − y1

π
(908)

Therefore the mode expansion of the solution of the equation of motion with the

Wilson lines parameters y1 and y2 is:

X = x+

(
p

R
+
y2 − y1

π

)
τ + i

∑
n6=0

1

n
αn cos(nσ) exp(−inτ) , (909)

where p is an integer. Inserting this in the open-string Hamiltonian, we obtain:

H =
1

2

(
p

R
+
y2 − y1

π

)2

+N − 1

12
. (910)

122



The partition function in this channel is :

Z =
e
−iT (y2−y1)2

π

η(q)

∑
p

exp

(
−iπTp2

R2
− 2iTp(y2 − y1)

R

)
(911)

= e
−iT (y2−y1)2

π
1

η(q)
θ3

(
− T

R2
,−T (y2 − y1)

R

)
.

Equating (904) and (911) and using the properties of modular transformations:

θ3

(
1

τ
, z

)
= τ 1/2eiτz

2/πθ3(τ, τz) (912)

η(q̃) = (−T )1/2η(q) , (913)

we obtain:

g2
N = R , (914)

Dirichlet boundary conditions

Closed string tree-channel

The boundary entropy for the open string with Dirichlet boundary condition

is similarly evaluated, starting again with the closed string channel.

The boundary condition determining the boundary state is :

X|τ=0 = y (915)

leading to:

w = 0, αn = α̃−n . (916)

From these conditions, for the boundary state located at the point y we get

|Dy〉 = gDyδ(x−y) exp

(∑
n>0

α−nα̃−n
n

)
|0〉 = gDy

∑
p

e
−ipy
R exp

(∑
n>0

α−nα̃−n
n

)∣∣∣ p
R
, 0
〉
.

(917)

Inserting this in (883) we have for the partition function in this channel:

Z12 = g2
D〈Dy2| exp

(
−iπp2

4R2T

)
exp

[
−iπ
T

(N + Ñ − 1

12
)

]
|Dy1〉 =

g2
D

η(q̃)

∑
p

e
−ip(y1−y2)

R exp

(
−iπp2

4R2T

)
=

g2
D

η(q̃)
θ3

(
− 1

4TR2
,
y2 − y1

2R

)
. (918)

Open string loop channel
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In order to analyse the open-string loop channel, according to (882), the

Hamiltonian must be expressed with the Dirichlet boundary condition. The mode

expansion of the coordinate X with the boundary conditions

X|σ=0 = y1 (919)

X|σ=π = y2 (920)

is

X = y1 +

(
y2 − y1

π
+ 2wR

)
σ + i

∑
n6=0

1

n
αn sin(nσ) exp(−inτ) (921)

Substituting it in the open-string Hamiltonian leads to:

H =
1

2

(
y2 − y1

π
+ 2wR

)2

+N − 1

12
. (922)

Finally, the partition function in this channel is:

Z12 =
e−iT (y2−y1)2

η(q)

∑
w

exp
(
−4iπTw2R2 − 4iwRT (y2 − y1)

)
= (923)

1

η(q)
θ3(−4TR2,−2RT (y2 − y1)) .

Equating the partition functions in the two channels and using (912), one obtains:

g2
D =

1

2R
. (924)

Results are consistent with T -duality.

Neumann-Dirichlet mixed annulus diagram

Closed string tree-channel

ZND = gDgN〈D| exp

[
−iπ
T

(N + Ñ − 1

12
)

]
|N〉 =

1√
2
q̃−1/24

∞∏
1

1

1 + q̃n
=

√
η(q̃)

θ2(q̃)
(925)

Open string loop channel

The mode expansion with the Dirichlet boundary conditions on one side

∂τX|σ=0 = 0 (926)

124



and Neumann boundary condition on other side

∂σX|σ=π = 0 (927)

is

XDN = x0 + 2i
∑

n∈Z+ 1
2

an
n
e−inτ sin(nσ) (928)

The partition function is

ZND = q1/48
∏

n∈N+ 1
2

1

1− qn
=

√
η(q)

θ4(q)
(929)
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Lecture 24

Boundary rational conformal field theory

Suppose we have a theory containing besides tensor energy-momentum T the set

of conserved currents W (r). The boundary conditions in the upper half plane are

T (z) = T̄ (z̄)|z=z̄ W (r)(z) = W (r)(z̄)|z=z̄ (930)

The first of these conditions has the direct physical meaning of the absence of

energy-momentum flow across the boundary Txt = 0. In this case, the eigenstates

of Hαβ will be organized into highest weight representations Ri of the extended

algebra. These representations Ri will be labelled by an index i whose speci-

fication includes the L0-eigenvalue of the highest weight state. We then define

the non-negative integer niαβ to be the number of times that the representation i

occurs in the spectrum of Hαβ. The partition function in the open string channel

(882) is then

Zαβ = Tr exp(−2πiTHαβ) =
∑
i

niαβχi(q) (931)

where χi(q) is the character of the representation i.

Corresponding boundary states should satisfy(
W (r)
n − (−)hWW

(r)

−n

)
|α〉 = 0 (932)

Define the anti-unitary operator U acting in the way

UW
(r)

−n = (−)hWW
(r)

−nU (933)

Using |j,N〉, N ∈ N, to denote an orthonormal basis of Ri, one can define

Ishibashi states:

|j〉〉 =
∞∑
N=0

|j,N〉 ⊗ U |j,N〉 (934)

Let us show that the Ishibashi states are solutions of (932). To see this,

consider the vectors 〈k,N1| ⊗ U〈l, N2|. Then

〈k,N1| ⊗ U〈l, N2|
(
W (r)
n − (−)hWW

(r)

−n

)
|j〉〉 (935)

∞∑
N=0

〈k,N1| ⊗ U〈l, N2|
(
W (r)
n − (−)hWW

(r)

−n

)
|j,N〉 ⊗ U |j,N〉

=
∞∑
N=0

[
〈k,N1|(W (r)

n |j,N〉〈l, N2||j,N〉
∗
− (−)hW 〈k,N1||j,N〉〈l, N2|U †W

(r)

−nU |j,N〉
∗
]

= 〈k,N1|(W (r)
n |l, N2〉 − 〈l, N2|W

(r)

−n|k,N1〉
∗

= 0
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Ishibashi states satisfy

〈〈j|q̃L0−c/24|i〉〉 = δi,jχi(q̃) (936)

The boundary states are linear combinations of the Ishibashi states:

|α〉 =
∑

Bi
α|i〉〉 (937)

Inserting expansions (937) in the expression (883) for the partition function in

the closed string channel we obtain:

Zαβ =
∑
i

(Bi
α)∗Bi

βχi(q̃) (938)

Performing modular transformation we get for partition function in the open

string channel:

Zαβ =
∑
i,j

(Bi
α)∗Bi

βSijχj(q) (939)

Equating (931) and (939) we derive∑
i

(Bi
α)∗Bi

βSij = njαβ (940)

Cardy has found a solution with the help of the Verlinde formula

Nk
ij =

∑
l

SilSjlS
∗
lk

S0l

(941)

In Cardy’s solution, the boundary states |α〉 carry the same labels as the irre-

ducible representations, and their expansion into Ishibashi states is

|α〉 =
∑
i

Sαi√
S0i

|i〉〉 (942)

The second part of the condition (930) may be generalized to incorporate a

possible “gluing automorphism” Ω

W (z) = ΩW (z̄)|z=z̄ (943)

The corresponding boundary state |α〉Ω satisfy the condition(
W (r)
n − (−)hWΩ(W

(r)

−n)
)
|α〉Ω = 0 (944)

The state |α〉Ω is given by a linear combination of twisted Ishibashi states |i〉〉Ω:

|i〉〉Ω = (Id⊗ VΩ)|i〉〉 (945)

where VΩ is the representation of Ω on Hilbert space.
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Lecture 25

Cardy-Lewellen equation

Let us derive the cluster condition for usual branes. Consider a boundary state

|α〉 =
∑
i

Bi
α|i〉〉 (946)

where i runs over primaries, and |i〉〉 are Ishibashi states. Recall the relation

between coefficients Bi
α and one-point functions

〈Φ(īi)(z, z̄)〉α =
U i
αδi∗ ī

(z − z̄)2∆i
(947)

in the presence of the boundary condition α:

U i
α =

Bi
α

B0
α

eiπ∆i (948)

Consider now two-point function 〈Φi(z1, z̄1)Φj(z2, z̄2)〉α in the presence of

boundary in two pictures. In the first picture one applies first bulk OPE

Φ(z1, z̄1)(īi)Φ(z2, z̄2)(jj̄) =
∑
k,k̄

C
(kk̄)

(īi)(jj̄)

(z1 − z2)∆i+∆j−∆k(z̄1 − z̄2)∆ī+∆j̄−∆k̄
Φ(kk̄)(z2, z̄2)+. . .

(949)

and then evaluates one-point function resulting in:

〈Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2)〉α =
∑
k,a,ā

C
(k,k∗)

(īi)(jj̄)
Uk
αFk∗

[
j ī

i∗ j̄

]
(950)

where

Fk∗
[
j ī

i∗ j̄

]
(951)

is conformal block.

In the second picture one first applies bulk-boundary OPE

Φ(īi)(z, z̄) =
∑
m,s

R
(īi)
m,s,(α)

(z − z̄)∆i+∆ī−∆m
ψαα,sm + . . . (952)

where, and index s counts different boundary fields and runs s = 1, . . . nmαα, where

nmαα coefficient of character χm in the annulus partition function between brane
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α with itself, and then evaluates two-point function of boundary fields resulting

in

〈Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2)〉α =
∑
m,s1,s2

R
(īi)
m,s1(α)R

(jj̄)
m∗,s2(α)c

α,s1,s2
m Fm∗

[
ī j

i∗ j̄

]
(953)

where

〈ψαα,s1m (x1)ψαα,s2n (x2)〉 =
cα,s1,s2m δmn∗

|x2 − x1|2∆m
(954)

and

Fm∗
[
ī j

i∗ j̄

]
(955)

is conformal block. Using braiding relations between chiral blocks

Fk∗
[
j ī

i∗ j̄

]
=
∑
m

B
(+)
k∗m∗

[
j ī

i∗ j̄

]
Fm∗

[
ī j

i∗ j̄

]
(956)

one derives:∑
k

C
(k,k∗)

(īi)(jj̄)
Uk
αB

(+)
k∗m∗

[
j ī

i∗ j̄

]
=
∑
s1,s2

R
(īi)
m,s1,(α)R

(jj̄)
m∗,s2,(α)c

α,s1,s2
m (957)

Putting m = 0 one obtains:

∑
k

C
(k,k∗)
(ii∗)(jj∗)U

k
αB

(+)
k∗0

[
j i∗

i∗ j∗

]
= U i

(α)U
j
(α) (958)

where we took into account that Rīi
0(α) = U i

αδi∗ ī. The traditionally used reflection

amplitudes differ by phase

U i
(α) = Ũ i

(α)e
iπ∆i (959)

They have the advantage, that related to boundary states coefficients without

phase factor:

Ũ i
(α) =

Bi
α

B0
α

(960)

Recalling relation between braiding and fusion matrices:

B(+)
pq

[
i j

k l

]
= eiπ(∆k+∆l−∆p−∆q)Fpq

[
i l

k j

]
(961)

and symmetry properties of fusion matrix

Fpq

[
k j

i l

]
= Fp∗q∗

[
l i∗

j∗ k

]
(962)
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we receive that Ũ i
(α) obey the equation:

∑
k

C
(k,k∗)
(ii∗)(jj∗)Ũ

k
αFk0

[
i∗ i

j j

]
= Ũ i

(α)Ũ
j
(α) (963)

Using the relation

Cp
ij =

ξiξj
ξ0ξp

1

Fp,0

[
j∗ j

i i

] , (964)

where

ξi =
√
Cii∗Fi . (965)

we obtain

∑
k

ŨkNk
ij

ξiξj
ξ0ξk

= Ũ iŨ j , (966)

where Nk
ij are the fusion coefficients. Defining

Ũk = Ψk ξk
ξ0

(967)

one can write (966) in the form:∑
k

ΨkNk
ij = ΨiΨj . (968)

In rational conformal field theory one has also the relation

Fk =
S00

S0k

, (969)

where Sab is the matrix of the modular transformations.

In RCFT two-points functions can be normalized to 1. Therefore in RCFT

ξk =
√
S00√
S0k

. Eq. (968) is solved by

Ψk
a =

Sak
S0a

. (970)

Taking into account the relation between one-point functions Uk and coefficients

of the boundary state Bk

Ũk =
Bk

B0
, (971)

we obtain the formulae for the Cardy states:

Bk
a =

Sak√
S0k

, (972)
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Lecture 26

Boundary WZW model

Let us consider boundary conditions satisfying the relations:

Ja = J̄a, a = 1, · · · dim G (973)

As we explained before in the absence of the boundary the WZW action

possesses the affine GL ×GR symmetry:

g → hL(z)gh−1
R (z̄) (974)

The boundary condition (973) implies that the symmetry (974) is broken to the

diagonal symmetry, requiring that hL = hR = h on the boundary. The presence

of this symmetry constraints the boundary conditions that can be placed on g.

Allowing g(boundary) = f for some f ∈ G we must also allow g(boundary) =

hfh−1 = Cf for every h ∈ G. This means that g on the boundary takes value

in the conjugacy class containing f . Now we are going to write down the corre-

sponding boundary Lagrangian. Recall that to write the WZW model we used

the three-manifold B satisfying the condition ∂B = Σ. When the world-sheet Σ

has itself boundaries, it cannot be the boundary of a three dimensional manifold,

since a boundary cannot have boundary. To define the WZW term for this case,

one should fill holes in the worldsheet by adding auxiliary discs, and extend the

mapping from the worldsheet into the group manifold to these discs. One fur-

ther demands that the whole disc D is mapped into a region inside the conjugacy

class in which the corresponding boundary lies. B will then be defined as a three-

manifold bounded by the union Σ ∪ D,which now has no boundaries. To make

the action independent on the location of the auxiliary disc inside conjugacy class

we should demand that

ωWZW(g)|g∈Cf = dωf (975)

and modify the action by the boundary term

Sboundary = SWZW − k

4π

∫
D

ωf (976)

First of all using the Polyakov-Wiegmann identities it is easy to check that indeed

(975) for Cf = kfk−1 fulfilled with:

ωf (k) = Tr(k−1dkfk−1dkf−1) (977)
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Now we can check that the action (976) is invariant under the transformation

g → hL(z)gh−1
R (z̄) (978)

with the boundary condition hL(z)|boundary = hR(z̄)boundary = h(τ).

Under this transformation, the change in the Lkin term is canceled by the

corresponding Σ integral of the boundary term from the change in the ωWZW

term. In the presence of a world-sheet boundary there remains the contribution

from D to the latter change. And since according to the Polyakov-Wiegmann

identity

ωWZW(hgh−1)− ωWZW(g) = d(Tr[h−1dh(gh−1dhg−1 − g−1dg − dgg−1)]) (979)

we have

∆(Skin + SWZW) =
k

4π

∫
D

Tr[h−1dh(gh−1dhg−1 − g−1dg − dgg−1)] (980)

On the other hand under this transformation k → hk and

ωf (hk)− ωf (k) = Tr[h−1dh(gh−1dhg−1 − g−1dg − dgg−1)] (981)

Here g = Cf = kfk−1.

Equations (980) and (981) imply invariance of the action (976) under (978).

Let us now elaborate boundary equation of motion. The full derivatives terms

from (731) gives the following contribution to the boundary terms:∫
Tr[δgg−1∂zgg

−1dz − δgg−1∂z̄gg
−1dz̄] (982)

To find contribution from the ωWZW and ωf (k) terms note the identity:

Tr(g−1δg(g−1dg)2)|g=C − δωf (k) = dAf (k) . (983)

Af (k) = Tr[k−1δk(f−1k−1dkf − fk−1dkf−1)] . (984)

Using the parametrization

z = τ + iσ z̄ = τ − iσ (985)

and taking boundary at the σ = 0 we get∫
Tr
[
δgg−1∂zgg

−1 − δgg−1∂z̄gg
−1 + k−1δkf−1k−1dk

dτ
f − k−1δkfk−1dk

dτ
f−1
]
dτ

(986)
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Remembering that g = kfk−1, after some transformation we obtain:∫
Tr
[
2δkk−1

(
g−1∂z̄g + ∂zgg

−1
) ]
dτ (987)

Therefore boundary equations of motion imply

g−1∂z̄g + ∂zgg
−1 = 0 (988)

or recalling the definition of currents

J = J̄ (989)

as expected.

Global issues

The modified action (976) is independent, by construction, of continuous de-

formation of D inside Cf . However, in general, the second homotopy of a conju-

gacy class π2(Cf ) is non-trivial. If we compare then the value of the action for D

and D′, two different choices of embedding the disc in Cf with the same bound-

ary, D′ may not be a continuous deformation of D in Cf . In that case the above

analysis does not imply that the two ways to evaluate the action (976) agree.

Since there is no natural way to choose between the two embeddings, (976) is not

yet a well defined action. In particular, for G = SU(2) the conjugacy clases Cf
have the topology of S2, the two-sphere generated by all possible axes of rotation

by a fixed angle in three dimensions. One may then choose D and D′ such that

their union covers the whole of S2. In that case the difference between the action

SD, the value of (976) with embedding D, and SD′ with embedding D′ is

∆S =
k

4π

[ ∫
B

ωWZW −
∫
Cf
ωf
]

(990)

where B is the three-volume in SU(2) bounded by the two-sphere Cf . For the

case of SU(2), which has the topology of S3, the form ωWZW 4 times the volume

form on the unit three sphere. For Cf with f = eiψσ3 , the first term in (990) is∫
B

ωWZW = 8π(ψ − 1

2
sin(2ψ)) (991)

As to the two-form ωf it is proportional to the volume form of the unit two-sphere.

We can directly compute for Cψ

ωf = sin(2ψ)volS2 (992)
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This gives for the change in the action for two topologically different embeddings

∆S = 2kψ (993)

Although this is non-zero, the quantum theory is still well-defined if ∆S is an

multiple of 2π. We find that the possible conjugacy classes on which a boundary

state live are quantized, the corresponding ψ must satisfy

ψ = 2π
j

k
(994)

Boundary states geometry

Given a boundary state,

|a〉C =
∑
j

Saj√
S0j

|j〉〉 (995)

the shape of the brane can be deduced by considering the overlap of the

boundary state with the localised bulk state |~θ〉, with ~θ denoting the three SU(2)

angles in some coordinate system. As we will see, the boundary state wave

function over the configuration space of all localised bulk states peaks precisely

at those states which are localised at positions derived by the effective methods

in the previous sections. In the large k limit, the eigen-position bulk state is

given by

|~θ〉 =
∑
j,m,m′

√
2j + 1Djmm′(~θ)|j,m,m

′〉 , (996)

where Djmm′ are the Wigner D-functions:

Djmm′ = 〈jm|g(~θ)|jm′〉, 〈jm|jm′〉 = δm,m′ (997)

where |jm〉 are a basis for the spin j representation of SU(2). To calculate the

overlap with the boundary state, we will need the knowledge of S-matrix of SU(2)

at level k,

Saj =

√
2

k + 2
sin

(
(2a+ 1)(2j + 1)π

k + 2

)
. (998)

In the large-k limit the ratio of S-matrix elements appearing in the boundary

state simplifies to

Saj√
S0j

∼ (2(k + 2))1/4√
π(2j + 1)

sin[(2j + 1)ψ̂] , (999)
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where, to shorten the notation, we have introduced ψ̂ = (2a+1)π
k+2

. Using these

results, the overlap between the boundary state and the localised bulk state

becomes

〈~θ|a〉C ∼
∑
j,m,n

(2(k + 2))1/4

√
π

sin[(2j + 1)ψ̂]Djmm(g(~θ) . (1000)

Finally, one needs the property of the Wigner D-functions that
∑

nDjnn(g) =
sin(2j+1)ψ

sinψ
, where ψ is the angle of the standard metric (756) and defined by the

relation Trg = 2 cosψ. The overlap (1078) becomes

〈~θ|a〉C ∼
(2k + 4)1/4

√
π sinψ

∑
j

sin[(2j + 1)ψ̂] sin[(2j + 1)ψ] (1001)

and from the completeness of sin(nψ) on the interval [0, π] one concludes

〈~θ|a〉C ∼
√
π(k + 2)1/4

27/4 sinψ
δ(ψ − ψ̂) . (1002)

Hence we see that the brane wave function is localized on ψ = const. .
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Lecture 27

Non-maximally symmetric boundary states in WZW model

Lagrangian construction Let us consider the D-brane as a product of the

conjugacy class with the U(1) subgroup:

g|boundary = LC = Lhfh−1 (1003)

where L ∈ U(1). We should check that on this subset exists a two-form ω(2)

satisfying the condition:

dω(2) = ωWZW|boundary (1004)

It may be easily checked using the Polyakov-Wiegmann identity:

ωWZW(LC) = ωWZW(L) + ωWZW(C)− dTr(L−1dLdCC−1) (1005)

Using that for the abelian group, L, ωWZW(L) = 0, and

ωWZW(C) = dωf (h) = dTrh−1dhfh−1dhf−1 (1006)

we get that indeed

ωWZW|boundary = dω(2)(L, h) (1007)

where

ω(2)(L, h) = ωf (h)− Tr(L−1dLdCC−1) (1008)

Now the action is

S = SWZW − k

4π

∫
D

ω(2)(L, h) (1009)

Let us show that the action (1009) is invariant under the symmetry

g(z, z̄)→ hL(z)g(z, z̄)hR(z̄) (1010)

with hL(z)|boundary = hR(z̄)boundary = k(τ), k ∈ U(1). Under this transformation

L→ kLk and C → k−1Ck and h→ k−1h.

Under the transformation (1010), as before the change in the Lkin term is

canceled by the corresponding Σ integral of the boundary term from the change

in the ωWZW term. In the presence of a world sheet boundary there remains the

contribution from D to the latter change

∆SWZW =
k

4π

∫
D

Tr[k−1dk(g−1dg − gk−1dkg−1 − dgg−1)] (1011)
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where g = LC. Substituting this value in (1011) we get

∆SWZW =
k

4π

∫
D

Tr[k−1dk(C−1dC−Ck−1dkC−1+C−1L−1dLC−dLL−1−dCC−1)]

(1012)

Now we compute ω(2)(kLk, k−1h)− ω(2)(L, h) using that

ω(f)(k−1h)− ω(f)(h) = Tr[k−1dk(Ck−1dkC−1 + C−1dC + dCC−1)] (1013)

and

Tr[(kLk)−1d(kLk)d(k−1Ck)k−1C−1k − L−1dLdCC−1] (1014)

= Tr[k−1dk(2dCC−1 + 2Ck−1dkC−1 + L−1dL− C−1L−1dLC)]

resulting in

ω(2)(kLk, k−1h)− ω(2)(L, h) = Tr[k−1dk(C−1dC − Ck−1dkC−1 −(1015)

dCC−1 − L−1dL+ C−1L−1dLC)]

which cancels (1012).

Geometry

Brane is given by the conjugacy class multiplied by the U(1)σ3 group: ĝ ≡
g = hfh−1eiα

σ3
2 ≡ CL. The geometry of the image can be determined as follows

. Using the fact that Tr C = Trf = const = 2 cosψ we can write

Tr
(
ge−iα

σ3
2

)
= 2 cosψ . (1016)

From here we see that the element g belongs to the image of the brane surface

if and only if there is a U(1) element (eiα
σ3
2 ) such that the equation (1016) is

satisfied. So let us determine for which g this equation admits solutions for

α. Denoting with θ, φ̃ and φ the coordinates of g in the parametrization given

in (753), the equation (1016) takes the form

cos θ cos(φ̃− α

2
) = cosψ , (1017)

or equivalently,

0 ≤ cos2(φ̃− α

2
) =

cos2 ψ

cos2 θ
≤ 1 . (1018)

Hence, equation (1018) can be solved for α only when cos2 θ ≥ cos2 ψ, or equiva-

lently when

cos θ̃ ≥ cos 2ψ , θ̃ = 2θ . (1019)
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We see that the image of the brane is a three-dimensional surface defined by the

inequality (1019).

Boundary state

Let us start by reviewing the T-duality between a Lens space and the SU(2)

theory. Geometrically, a Lens space is obtained by quotienting the group manifold

by the right action of the subgroup Zk of the U(1), and in the Euler coordinates

it corresponds to the identification ϕ ∼ ϕ + 4π
k

. In terms of the SU(2) WZW

model this is the orbifold SU(2)/ZR
k , where ZR

k is embedded in the right U(1).

The partition function for this theory is

Z =
∑
j

χ
SU(2)
j (q)χPFjn (q̄)ψ

U(1)
−n (q̄) (1020)

and coincides with the one for the SU(2) group, up to T-duality. This relation

enables one to construct new D-branes in the SU(2) theory starting from the

known ones. As a first step one constructs the brane in the Lens theory. As is

usual for orbifolds, this is achieved by summing over images of D-branes under

the right Zk multiplications. Performing then the T-duality on the Lens theory

brings us back to the SU(2) theory and maps the orbifolded brane to a new

SU(2) brane.

Our starting point is a maximally symmetric A-brane, preserving the sym-

metries. If we shift the brane by the right multiplication with some element

ωl = e
2πli
k
σ3 of the ZR

k group, then the symmetries preserved by this brane are

Ja + ωlJ̄aω−l = 0 , (a = 1, 2, 3) , (1021)

while the brane is described by the Cardy state with rotated Ishibashi state

|A, a〉ωlC =
∑
j

Saj√
S0j

∑
N

|j,N〉 ⊗ (ωl|j,N〉) . (1022)

Summing over the images one obtains a ZR
k invariant state, present in the Lens

theory
k∑
l=0

|A, a〉ωlC =
∑
j

Saj√
S0j

k∑
l=0

∑
N

|j,N〉 ⊗ (ωl|j,N〉) . (1023)

To compute the sum of the Ishibashi states on the right-hand side, one next uses

the orbifold decomposition of SU(2)k

SU(2)k = (APF (k) ⊗ U(1)k)/Zk . (1024)
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This decomposition implies that Ishibashi states for the maximally symmetric

A-brane can be written as

|A, j〉〉SU(2) =
2k∑
n=1

1 + (−1)2j+n

2
|A, j, n〉〉PFu ⊗ |A, n〉〉U(1)

u , (1025)

where

|A, j, n〉〉PFu =
∑
N

|j, n,N〉 ⊗ |j, n,N〉 , (1026)

and

|Ar〉〉U(1)
u = exp

[
∞∑
n=1

α−nα̃−n
n

]∑
l∈Z

|r + 2kl√
2k
〉 ⊗ |r + 2kl√

2k
〉 , (1027)

are the A-type Ishibashi states for the parafermion and U(1)k theories. If the

ZR
k subgroup lies in the U(1) group appearing in the decomposition (1024), then

under the action of element ωl ∈ ZR
k the expression (1025) transform as

|A, j〉〉SU(2) →
2k∑
n=1

1 + (−1)2j+n

2
ωln|A, j, n〉〉PFu ⊗ |A, n〉〉U(1)

u . (1028)

Hence summing over images projects onto the ZR
k -invariant Ishibashi states for

which n is restricted to the two values 0 and k. Performing T-duality, flips the

sign of the right moving U(1) sector and one gets a B-type Ishibashi state of the

original SU(2) theory,

|B, j〉〉SU(2) =

[
1 + (−1)2j

2
|A, j, 0〉〉PFu ⊗ |B, 0〉〉U(1)

u + (1029)

1 + (−1)2j+k

2
|A, j, k〉〉PFu ⊗ |B, k〉〉U(1)

u

]
,

where

|Br〉〉U(1)
u = exp

[
−
∞∑
n=1

α−nα̃−n
n

]∑
l∈Z

|r + 2kl√
2k
〉 ⊗ | − r + 2kl√

2k
〉 , (1030)

is a B-type Ishibashi state of U(1)k theory satisfying the Neumann boundary

conditions. Knowing the T-dual expression of the (1023) allows one to write

down the boundary state for the B-type brane

|B, a〉SU(2)
C =

∑
j∈Z

√
kSaj√
S0j

|Aj, 0〉〉PFu ⊗ (|B0〉〉U(1)
u + η|Bk〉〉U(1)

u ) . (1031)
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where η = (−1)2a. In deriving this expression one uses the field identification

rule (j, n) ∼ (k/2− j, k+n) and the following property of the matrix of modular

transformation (1076)

Sa,k/2−j = (−1)2aSaj . (1032)

To derive the symmetries preserved by the B-brane, one observes from (1021)

that a ZR
k invariant superposition of the A-branes preserves only the current

J3 + J̄3 and breaks all other currents; namely, any two ZR
k images only have this

preserved current in common. Performing further T-duality in the J̄3 direction

flips the relative sign between the two terms in this current and hence implies

that the only current preserved by the B-brane is

J3 − J̄3 = 0 . (1033)

Overlap of the state and the coordinate wave function

We will now show that the boundary state (1031) reproduces the effective

brane geometry (1019). In the large k limit the second term in (1031) can be ig-

nored. As in the case of Cardy state one should compute the overlap 〈~θ|B, a〉SU(2)
C .

We will again use the formula (996), but taking into account that the matrixD has

left and right indices 0. Therefore, the overlap is again given by formula (1078),

but with n set to zero. Hence we arrive at the equation

〈~θ|B, a〉SU(2)
C ∼

∑
j

k3/2

π
sin[(2j + 1)ψ̂]Dj00(g(~θ)) (1034)

Next we will need the relation between the Wigner D-functions and the Legendre

polynomials Pj(cos θ̃) given by Dj00 = Pj(cos θ̃), as well as the formula for the

generating function for Legendre polynomials∑
n

tnPn(x) =
1√

1− 2tx+ t2
. (1035)

Using these expressions equation (1034) can be simplified to

〈~θ|B, a〉SU(2)
C ∼ Θ(cos θ̃ − cos 2ψ)√

cos θ̃ − cos 2ψ
, (1036)

where Θ is the step function. This indeed coincides with the expression for the

effective geometry (1019).

Open strings in gauged WZW model
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As we explained before the action of the gauged WZW model using the

Polyakov-Wiegamnn identities can be written in the form:

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ) (1037)

Consider the action (1037) on a world-sheet with a boundary. Following the

corresponding discussion of the WZW model on a a world-sheet with a boundary

we suggest the following boundary conditions:

U−1gŨ |boundary = (U−1n)f(U−1n)−1, n, f ∈ G (1038)

and

U−1Ũ |boundary = (U−1p)l−1(U−1p)−1 p, l ∈ H (1039)

Conditions (1038) and (1039) imply

g|boundary = nfn−1plp−1 = c1c2 (1040)

where c1 = nfn−1 and c2 = plp−1, and also on the boundary

Ũ = pl−1p−1U (1041)

Now we can write the action of the gauged WZW model in the presence of a

boundary:

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ)− k

4π

∫
D

ω(f)(U−1n) +
k

4π

∫
D

ω(l−1)(U−1p)

(1042)

Using again PW identities we obtain

SG/H = SG/H + Sgauge (1043)

=
kG
4π

[ ∫
Σ

d2zLkin +

∫
B

ωWZW

]
+
kG
2π

∫
Σ

d2zTr[Az̄∂zgg
−1 − Az∂z̄gg−1 + Az̄gAzg

−1 − Az̄Az]−
k

4π

∫
D

Ω

with

Ω = ω(f)(U−1n)− ω(l−1)(U−1p) (1044)

+Tr
[
g−1dgdŨŨ−1 − dUU−1dgg−1 − dUU−1gdŨŨ−1g−1 + dUU−1dŨŨ−1

]
After some straightforward calculations we obtain for boundary term

Ω = ω(f)(n) + ω(l)(p) + Tr(dc2c
−1
2 c−1

1 dc1) (1045)

It is easy to check that:

ωWZW(c1c2) = dΩ (1046)
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Lecture 28

Defects in WZW model

The construction of defects lines is analogous to that of boundary condition.

We define defect lines as operators X, satisfying relations:

T (1) = T (2) W (1) = W (2) (1047)

T̄ (1) = T̄ (2) W̄ (1) = W̄ (2) (1048)

After modular transformation these defects are given by operators X, satis-

fying relations:

[Ln, X] = [L̄n, X] = 0 (1049)

[Wn, X] = [W̄n, X] = 0 (1050)

As in the case of the boundary conditions, there are also consistency condi-

tions, analogous to the Cardy and Cardy-Lewellen constraints, which must be

satisfied by the operator X. For simplicity we shall write all the formulae for di-

agonal models. To formulate these conditions, one first note that as consequence

of (1049) and (1050) X is a sum of projectors

X =
∑
i,̄i

D(i,̄i)P (i,̄i) (1051)

where

P (i,̄i) =
∑
N,N̄

(|i, N〉 ⊗ |̄i, N̄〉)(〈i, N | ⊗ 〈̄i, N̄ |) (1052)

An analogue of the Cardy condition for defects requires that partition function

with insertion of a pair defects after modular transformation can be expressed as

sum of characters with non-negative integers.

Namely using a Hamiltonian picture with time moving perpendicular to the

lines, the torus partition function may be written

Zab = Tr
(
X†aXbq̃

L0− c
24 ˜̄q

L̄0− c
24

)
=
∑
i,̄i

(D(i,̄i)
a )∗D(i,̄i)

b χi(q̃)χī(¯̃q) (1053)

A second representation of the same partition function may be obtained by con-

sidering time running parallel to the defect lines. In this case, the definition of

the disorder line (1050) insures one may still construct two sets of generators Wn
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and W̄n satisfying the chiral algebra. Hence the Hilbert space decomposes into

irreducible representations

Hab = ⊕i,̄iV b
i,̄i;aRi ⊗ R̄ī (1054)

for some non-negative integers V b
i,̄i;a, and the partition function becomes

Zab = TrHabq
L0−c/24q̄L̄0−c/24 =

∑
i,̄i

V b
i,̄i;aχi(q)χī(q̄) (1055)

We may equate these two expressions using the modular transformation proper-

ties of the characters

V b
i,̄i;a =

∑
j,j̄

SjiSj̄ī(D(i,̄i)
a )∗D(i,̄i)

b (1056)

It is found that for diagonal models one can solve this condition taking for each

primary a

D(i,̄i)
a =

Sai
S0i

(1057)

for which one has:

Zab = Tr
(
X†aXbq̃

L0− c
24 ˜̄q

L̄0− c
24

)
=
∑
k,īi

Na
bkN

k
īiχi(q)χī(q̄) (1058)

Topological defects can act on boundary states producing new boundary

states. The action of defects (1057) on Cardy states is easily obtained using

the Verlinde formula:

Xa|b〉 =
∑
d

Nd
ab|d〉 (1059)

Topological defects can be fused. For defects (1057) again using the Verlinde

formula one derives:

XaXb =
∑
c

N c
abXc (1060)

Lagrangian approach to defects in the WZW model

Let us assume that one has a defect line S separating the world-sheet into

two regions Σ1 and Σ2. In such a situation the WZW model is defined by pair of

maps g1 and g2. On the defect line itself one has to impose conditions that relate

the two maps. The necessary data are captured by the geometrical structure of

a bibrane: a bibrane is in particular a submanifold of the Cartesian product of
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the group G with itself : Q ⊂ G×G. The pair of maps (g1, g2) are restricted by

the requirement that the combined map

S → (G×G) : s→ (g1(s), g2(s) ∈ Q (1061)

takes its value in the submanifold Q. Additionally one should require, that on

the submanifold Q a two-form $(g1, g2) exists satisfying the relation

d$(g1, g2) = ωWZ(g1)|Q − ωWZ(g2)|Q . (1062)

To write the action of the WZW model with defect one should introduce an

auxiliary disc D satisfying the conditions:

∂B1 = Σ1 +D and ∂B2 = Σ2 + D̄ , (1063)

and continue the fields g1 and g2 on this disc always holding the condition (1061).

After this preparations the topological part of the action takes the form :

Stop−def =
k

4π

∫
B1

ωWZ(g1) +
k

4π

∫
B2

ωWZ(g2)− k

4π

∫
D

$(g1, g2) . (1064)

Equation (1062) guarantees that (1064) is well defined.

The full action is

S = Skin + Stop−def (1065)

where

Skin−def(g1, g2) =
k

4π

∫
Σ1

Lkin(g1)d2z +
k

4π

∫
Σ2

Lkin(g2)d2z (1066)

Denote by Cµ a conjugacy class in group G:

Cµ = {hfµh−1 = he2iπµ/kh−1, h ∈ G} , (1067)

where µ ≡µ ·H is a highest weight representation integrable at level k, taking

value in the Cartan subalgebra of the G Lie algebra.

Let us consider as the bibrane Q the submanifold:

(g1, g2) = (Cµp, p) (1068)

or alternatively

g1g
−1
2 = Cµ (1069)
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We can easily check that the equation (1062) is satisfied with

$(C, p) = ω(f)(h)− Tr(C−1
µ dCµdpp

−1) (1070)

It is straightforward to prove that

Tr(g−1
1 δg1(g−1

1 dg1)2)− Tr(g−1
2 δg2(g−1

2 dg2)2)− δ$ = dBµ . (1071)

where

Bµ = Aµ(h)− Tr(δpp−1C−1dC) + Tr(C−1δCdpp−1) (1072)

Recalling that the first two terms come from the equation

δωWZ = d[Tr(g−1δg(g−1dg)2)] , (1073)

we see that the existence of the one-form B satisfying (1071) is a consequence of

the equation (1062).

The defect equation of motion is

Tr
[
δg1g

−1
1 (∂zg1g

−1
1 − ∂z̄g1g

−1
1 )
]
dτ − Tr

[
δg2g

−1
2 (∂zg2g

−1
2 − ∂z̄g2g

−1
2 )
]
dτ +Bµ = 0

(1074)

After some calculation one can show that (1074) implies:

J1 = J2 and J̄1 = J̄2 (1075)

Overlap of the Defect operator with the coordinate wave function

To calculate the overlap with the boundary state, we will need the knowledge

of S-matrix of SU(2) at level k,

Saj =

√
2

k + 2
sin

(
(2a+ 1)(2j + 1)π

k + 2

)
. (1076)

In the large-k limit the ratio of S-matrix elements appearing in the boundary

state simplifies to
Saj
S0j

∼ (k + 2)

π(2j + 1)
sin[(2j + 1)ψ̂] , (1077)
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where, to shorten the notation, we have introduced ψ̂ = (2a+1)π
k+2

. Using these

results, the overlap between the boundary state and the localised bulk state

becomes

〈~θ1|Xa|~θ2〉 ∼
∑
j,m,n

(k + 2)

π
sin[(2j + 1)ψ̂]Djnm(g1(~θ1))Djmn(g−1

2 (~θ2)) . (1078)

To simplify this expression we need the identity∑
m

Djnm(g1(~θ1))Djmn′(g
−1
2 (~θ2)) = Djnn′(g1(~θ1)g−1

2 (~θ2)) , (1079)

which follows from the fact that the matrices Djnm form a representation of

the group. Finally, one needs the property of the Wigner D-functions that∑
nDjnn(g) = sin(2j+1)ψ

sinψ
, where ψ is the angle of the standard metric (756) and

defined by the relation Trg = 2 cosψ (or in our case Tr(g1g
−1
2 ) = 2 cosψ). The

overlap (1078) becomes

〈~θ1|Xa|~θ2〉 ∼
k + 2

π sinψ

∑
j

sin[(2j + 1)ψ̂] sin[(2j + 1)ψ] (1080)

and from the completeness of sin(nψ) on the interval [0, π] one concludes

〈~θ1|Xa|~θ2〉 ∼
k + 2

4 sinψ
δ(ψ − ψ̂) . (1081)

We see that the brane wave function is localised on ψ = const. bulk states.
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