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Lecture 1

Path integrals

Gauss integrals

Let us start recalling the formula
00 ) N\ 1/2
“rse- () 1
Joe=( 2

This formula is equivalent to equation

/ / 6—a(:c2+y2)dxdy _r (2)
o0 0 a

which can be easily derived in the polar coordinates (r, 8):

27 0 o) oo
/ / e~ rdrdf == 27r/ e rdr = 7r/ e d(r)? = T (3)
o Jo 0 0 «

Thus the relation (1) is proved.

Completing the square we can also prove:

oo 2 1/2
/ efax2+bm+cdx = exp (i_ + C) (Z) / (4>
oo a a

This can be generalized to higher dimensions:

1 1
/exp {— (§(x, Ax) + (b, z) + c)] dx = (21)"% exp [ﬁ(b’ A7) — c] (detA)~1/2
(5)
where A is n x n matrix, and z, b, ¢ are n-dimensional vectors.

Another important integrals:

Action

s- [ L) (s)

i

to
58 = a—L.IE +/ (8—L - ga_;) 5q0t (9)
6(] t1
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At the equation of motion the second term equals to 0. In the first term we take

dq(ty) = 0. Setting g—s = p we obtain

0S = pdq
From here we obtain:
05 _
dqg b
ds
— =1L
dt
@ — a_S + a_S — a_S + nq
at ot aql” o M
Comparing (12) and (13) we obtain
oS
R Ry
ot pq
or finally
aS
— =-H
ot

Path integral
Let us start by the formula:

K(qp tyqiti) = /Dq€i5/h
In the classical limit

7
K(qs.ty;qiti) ~ exp [ﬁSCI<Qfatf;Qiati)

(10)

(11)

(14)

(15)

(16)

(17)

Change of the action caused by the variation of the last point position can be

evaluated with help of the formulas (11) and (15) leading to
7
K(qp tf; qirti) ~ exp [ﬁ(qu + Etf)]

This implies de Broglie relations:

As a consequence of the relation
S(ar tysainti) = Slay.tria.t) + S(¢, a5, )

5

(18)

(19)

(20)

(21)



the propagation amplitude (16) satisfies the relation:

K(qg,t5;qi,t:) /K a5, tr; 0, 1) K(q, t; g5, t;)dg (22)
The wave function satisfies the relation

(g, t2) :/K(Q2>t2;qlilW(Ql,tl)d% (23)

To evaluate the path integral, we must define the symbol [Dg. We will use a
brute-force definition, by discretization. Break up the time interval from ¢; to
ty into many small pieces of duration dt. Approximate a path as a sequence of

straight line, one in each slice. The action for this discretized path is

S — /: dt <%q2 _ U(q)) N Z [% (Qk+15; @)’ St <Clk+12+ Qk) ] (24)

k

We then define the path integral by

dq1 dgo / dqn - 1 / ko
Dq = . =
/ 1= / C(ot) / cier ) Ce H 25)
To derive differential equation satisfied by the wave function, consider the equa-
tion (23 for the case when ty — t; = 6t. We should have

V(ge,t) = / (;l(%lt) exp [im@T_tqu —i0tU (qrg(Jl) }@/}(qht—&) (26)

As we send 6t — 0 the rapid oscillation of the first term in the exponential

constraints ¢; to be very close to ¢go. We can therefore expand the above expression

of g —q =

U(go, t) = / chlt) exp [Zm((h%—t Q1)2] [1 St (g) + -+ }

82
)23—(]% +-- '}1?(@2775 — 0t)

0 1
X [1 + (1 — (J2)a—q2 + 5(611 — Q2

(27)

:/C‘fgt) exp [/;%2} [1—i6tU(qQ)+---H1+naa +2 522+ Jvtaa t = o)

1 [2mdt , it 0



This expression makes no sense in the limit 6t — 0 unless the factor in paren-

theses equal 1. We can therefore identify the correct definition of C'(dt):

2wt

= 2
Cor) = 2o (29)
Given this definition, we can compare terms of order dt
0 1 02
igptant) = | = 5o+ U@)|d ) (30)

This is the Schrodinger equation.
Using the equation (22) repeating the same steps we obtain that also the
probability amplitude satisfies the Schrodinger equation

2

1 0
K(qo,to, qu,t1) = [_ 5 A2 +U(Q2)]K(QQ,752,Q1,751) (31)

8t2 2m 0q3

for to > t;.
The function K (qq,t2,q1,t1) is set to 0 for to < t;.
Now consider the ty — t;. The function K(qs, t2, q1,%1) in this limit is

1 m(g —q)?
———— 4+ 0(dt ] 32
con P o TOW (32)
This is peaked exponential and it tends to d(¢g2 — ¢1) as 0t — 0. Therefore
it behaves like step function at 0 and being differentiated by t, gives rise to
d(ta — t1) multiplied by d(g2 — ¢1):

82

1 .
K(g,t2,q1,t1) = | —5—%5 + U(Qz)]K(%,tQ, ¢, t1) +10(ta — t1)0(q2 — q1)

8152 2m Oq3 (33)
33

Therefore K(qa,t2,q1,t1) is Green function of the Schrédinger equation.
Evolution operator
Now compute the matrix element of the evolution operator of the one degree
of freedom system
{qr1U(t)]ai) (34)
The Hamiltonian of the system is
~2

H:§—m+U() (35)



The hat denotes the corresponding quantum operator. The evolution operator
which takes a state |¢) at time ¢; to the time ¢y = ¢, + ¢ is

U(t) = e ™t (36)

We calculate the matrix element of U () in the basis {|¢)} of position eigen-
states, where 0t is an infinitesimal time interval. At the first order in &t one
has:

.2 2
—i 21U ot —i B8 P
(de (2’”+ (q)> lq) = (q'|e ( )6"(U(q”‘”eo(&)QICI> (37)

dp i 2 (U
=/—<Q’!€ ( )!p><p\e (w(@at|g)

(22 )]
1

At the first step we used that

€€(A+B) €A _eB _O(e?) (38)

=€ € ¢

In the second step the terms of order (6¢)* have been neglected and inserted a

completeness relation
dp
- =1 39
/ 5, 1P) (P (39)

where [p) is an eigenstate of momentum, with (z|p) = €*. In the last step
we performed a Gauss integration (4) which is strictly valid only when the time
interval 0t has a small negative imaginary part. This assumption will be implicit
in what follows. The quantity in brackets on the last line of (37) is nothing
but the infinitesimal action S(¢’, t; + dt; ¢, t;) corresponding to the passage of the

system from ¢ to ¢’ in a time d¢t. One may therefore write, to first order:
m

(dU(ot)|q) = 515t

Now we consider (g¢|U(t)|¢q;) which is probability amplitude for the system, ini-

expiS(q,ti + 0t; q,t;) (40)

tially at a well-defined position ¢;, to evolve in a finite time ¢ toward the position
¢f. This amplitude is called propagator and may be obtained by dividing the

interval of time ¢ in N subintervals ¢/N and inserting completeness relations:

{arlU®)]ai) = (41)

[ TL dastartt /N aw-s)aw 2106/ lax o)+ (@l U4/N )
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Using (40) in the large N limit one may write:

mN\ N2 Nl
U 0la) =ty (3 ) [ [T ao expisl (12)
where
N-1
Slal = > S(gj+1,t; +t/N;q5,t)) (43)
=0

is the action associated with the discrete trajectory ¢;,j = 0,1---N (g0 = ¢,
to = t; and gn = ¢y, ty = ty). If we define the following functional integration

measure

2mit

mN\ /2
Dq—th%H( ) dq; (44)

we may then write our fundamental result as follows:

@U@ = / DyexpiS(as. tr: 0 t) (45)

where the action is

ty 1
S(ar ty; @i ti) =/ dt (§mq2 - U(q)) (46)
t;
for ¢(¢) with the boundary conditions ¢(t;) = ¢f and ¢(t;) = ¢:.

Correlation function

This formalism may be extended to matrix elements of operators. Suppose,
for instance, that we want to compute the matrix element of an operator O(q) at

an intermediate time ¢ between ¢; and ¢;:

(a7, t710(t)]gi, ti) = (gsle” =00 H]g,) (47)

_ /dq/dq///quiS(qlf,tf;q ,t) <q//‘0|q/>/quiS(q’,t;q,ti)

Let us assume that O is diagonal in the ¢ representation

(¢"0ld") = O(¢)é(¢" — ¢') (48)

The above expression reduces symbolically to

(a5, t/10(0)]ass t) = / DyeStartrat) Olq(p) (49)



This may be further generalized to a time-ordered product of operators:
O1(t1)Ox(ta) - - - >ty > (50)

If they all diagonal in the g representation we have:

(qp, t5|O1(t1)O2(t2) - - - |ai, ti) = /quis(qf’tf;Qi’ti)Ol [q(t1)]O:[q(t2)] -+ (51)

The above expression can be generalized to field theory:

(B(ay) - B(,)) = % / DOD(z,) - - - B(ay) exp —S[D) (52)

where Z is the vacuum functional.
Partition function

The partition function can be expressed as trace of the density operator p

Z =Trp (53)

where
p= exp—pH (54)
where § = % is the inverse temperature. The resemblance between the density
opeartor e and the evolution operator e~ allows for the representation of

the density operator as a functional integral. This introduces the lagrangian
formalism into statistical mechanics. Explicitly consider the kernel of the density

operator for a single degree of freedom
plrys,zi) = (asle™a;) (55)

The path integral is adapted to this kernel by substituting ¢t — —i7 (the Wick
rotation) where 7 is a real variable going from 0 to §. The kernel of the density

operator p becomes then
zy,0
plxy, ;) = / Dx exp —S|[z] (56)
x;,0
The partition function may be expressed

Z = /d:cp(x,x) = /Dxexp =5[] (57)

This time the integration limits are no longer specified: all closed trajectories
x(0) = z(B) contribute.

10



Wick theorem

T[A(x1)A(xq)] =: A(z1)A(22) : +(0|T A(x1)A(x2)]0)

A ?[A(wl) - Alwn)] = Aw) -+ Awn) -
+ Aw) - Awg) - Amy) - Ala) = (0|T Ay A(2)[0) + - -

+ ) Ak Alrg,) - A - Aly,)

k1 <ka<--<kap

X Y (OITA(zp)Alwp,)|0) - (OIT A(zp,, ) Alwp,, ) 0) + -

P

This may be further extended to an expression of the form

T:[A(xy) - Azg)] s - [A(xy) - A(z,)] -

(58)

(59)

(60)

with the restriction that only contraction between distinct normal ordered prod-

ucts occur.

11



Lecture 2

Groups and Algebras Lie

Lie groups are groups of transformations 7'(f) that are described by a finite
set of real continuous parameters 6°.

The group multiplication law then takes the form

T(e)T(0) =T (f(9,0)) (61)

with f%(¢,0) a function of the ¢ s and 6 s. Taking 0* = 0 as the coordinates
of the identity 7'(0) = e, we must have

f40,0) = f(0,0) = 6 (62)

The transformation of such continuous groups must be represented on the
physical Hilbert space by unitary operators U(T'(#)). These operators can be

represented in at least a finite neighborhood of the identity by a power series:

1
U(T(0)) = 140" Xy + 5070 X - (63)
where T
X, = _@'M (64)
20 |,y

Consider the product of the two elements U(7'(#)) and U(T(¢))
U(T(o)U(T(0)) = U(T (f(0,9))) (65)

According to (62) the expansion of f(¢,#) to second order must take the form:
FU0,0) = 6" +0° + f0"6° + - - (66)

with real coefficients f&. The presence of any terms of order ¢? and 6% would
violate (62). Then (65) reads:

1 1
[1+i¢°X, + §¢b¢cxbc o] x 140X, + erecxbc +-- = (67)
1
1+Z(¢a+0a+f;)10¢bec+)Xa+§(¢b+0b+)(¢C+QC+)XI)C

The terms of order 1, ¢, 0, ¢, #* automatically match on both sides of Eq.

(67),but from the ¢f terms we obtain a non-trivial condition:
Xpo = — Xy Xo — i f2X, (68)

12



This shows that if we are given the structure of the group, i.e. the functions
f%#,0), and hence its quadratic coefficients f, we can calculate the second
order terms in U(T'(f)) from the generators appearing in the first order terms.
However, there is a consistency condition: the operator X;. must be symmetric
in b and ¢ ( because it is the second derivative of U(T(6)) with respect to #° and
6°) so Eq. (68) requires that

[Xp, X =iCh. X, (69)
where Cj, are a set of real constants known as structure constants
Cgc = _fli: + gb (70)

Such a set of commutation relations is known as a Lie algebra. For any integer

N oo (r ()]

Letting N — oo and keeping only the first-order terms in U(7'(6/N)) we have
then

U(T(0)) = limy_00 [1 + %GQXG] (72)
and hence
U(T(0)) = exp(i" X,) (73)

Adjoint representation
Jacoby identity
[Xna [Xba XCH + [Xca [XnaXbH + [Xln {XcaXnH =0 (74)

From here we have:

CheCni + CrpCal + Ce, Gy = 0 (75)
Representation is given by matrices R(X) satisfying
R(Xb)mlR(Xc)ln - R(Xc)mlR(Xb)ln - chgcR(Xl)mn (76)

Let us take
R(Xp)mn = iCy (77)

Substituting (77) in (76) we have:
Cii Cen = Cai Gy = CiCly (78)

13



what coincide with the Jacoby identities (75). We proved that (77) gives as the
representation of the Lie algebra. This representation is called adjoint represen-
tation.

Global symmetries and Noether current

Consider the action

S = / £(®,0,8)d x (79)
Consider the transformation
0,® = —iw,G,P (80)

Here w, are infinitesimal parameter of transformation, GG, are generators of trans-
formations, forming the algebra Lie. The transformations are global symmetry
of the system if under (80) with the constant w, the action is invariant: 0.5 = 0.
If we now consider the same transformations but with w an arbitrary function of
position in spacetime

0w ® = —iw, (2)G,P (81)

then in general, the variation of the action will not vanish, but it will have to be

of the form:

5S = / g e g, (82)

* OxH
in order that it should vanish when w,(z) is constant. If we now take the fields
in S(®) to satisfy the field equation the S is stationary with respect to arbitrary
field variations including variation of the form (81) so in this case (82) should

vanish. Integrating by parts we see that J! must satisfy a conservation law:

o Jl =0 (83)
It follows immediately that
dQq
=0 84
o (84)
where
Qu = / A"t J? (85)

There is one such conserved current J# and one constant of motion @), for each
independent infinitesimal symmetry transformation. This represent a general
feature of the canonical formalism, often referred to as Noethers theorem: sym-

metries imply conservation laws.

14



Ward identity
Denoting by X the collection of the fields ®(X;)---®(X,) one can write
according to (52)

(X) = % / DEX exp(—S[B]) (86)
Changing the integration variables according the (81), namely

F(®) = B(x) — (1) Gu(2) (87)
will not change the path integral

(X) = % / DF(®)(X +6X) exp — [5[q>] + / deJgaﬂwa] (88)

and hence assuming the invariance of the measure one has in the first order

/ DE5X exp(—S[®]) + / DOX exp(—S[cp])( / defj@uwa) —0 (89)
: 6X) = [ dn(2(2) )0, (90)

The variation 0.X is explicitly given by

50X = —iZ(@(:pl) o Ga® () - - B(2))wa ) (91)

n

= —i/dxwa(x) D (@(x1) - Ga(@y) - - D(xn))d(x — 27)

=1

Since (90) holds for any infinitesimal function w,(z) we may write the following

local relation:

55 (e (@)@ () - - - Ban)) (92)

= —i Z(@(az‘l) o Ga® (@) - B(wn))0(x — ;)

The Ward identity allows us to identify the conserved charge @, (85) as the
generator of the symmetry transformation in the Hilbert space of quantum states.
Let Y = ®(zy) - ®(z,) and suppose that the time ¢t = z{ is different from all
the times in Y. We integrate the Ward identity (92) in a very thin box bounded

15



by t_ < t by t, > t and by spatial infinity, which excludes all the other points

xg -+ x,. Thintegral of Lh.s of (92) is converted into a surface integral and yields:
(Qa(t4)2(21)Y) — (Qa(t-)2(21)Y) = —i(Ga®(21)Y) (93)

Recalling that a correlation function is the vacuum expectation value of a time-
ordered product in the operator formalism, and assuming, for the sake of argu-

ment, that all other times z{ are less than ¢ we write in the limit ¢ — ¢,
(0[Qa, @(21)]Y'[0) = —i(0[Ga®(21)Y]0) (94)
This being true for an arbitrary Y we conclude
[Qa, @(21)] = —iGaP(21) (95)

In other words the conserved charge @), is the generator of the infinitesimal
symmetry transformation in the operator formalism.

Integrating (92) over all space-time we obtain:

n

O ( (1) - -+ P(2)) = —iwq Z(q)(xl) G ®(wi) - P(2)) (96)

=1

In other words the variation of the correlator under an infinitesimal transforma-

tion vanishes.
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Lecture 3

Conformal group in d > 2 dimensions

We denote by g, the metric tensor in a space-time of dimension d. By
definition a conformal transformation of the coordinates is an invertible mapping

x — o’ which leaves the metric tensor invariant up to a scale:

9 (") = M) g () (97)
where 9 9
, , 0x'Ox
gul/(z ) 8I>‘ OxP = 9xp (98)

In other words, a conformal transformation is locally equivalent to rotation
and a dilatation. For simplicity we assume that the conformal transformation is
an infinitesimal deformation of the standard Cartesian metric g,, = 7,,, where
N = diag(l,...,1).

The set of conformal transformations manifestly forms a group, and it obvi-
ously has the Poincaré group as a subgroup, since the latter corresponds to the
special case A(x) = 1. Let us investigate the consequences of the definition (97)

on an infinitesimal transformation

ot — 't =t + () (99)
It follows from (97)
ox't Ox™ ,
nuu ax/\ 81‘9 = 77)\p (100)
and inserting (99) we obtain in the first order by e:
Oet . 0€¢
Nuv ((%f + %> (5p + 8$9) =M t+ 8)\6[, + 8,,@ (101)

Therefore the requirement that the transformation be conformal implies that
Opey + 0pey = (A = Dy = f(2)10 (102)
The factor f(x) is determined by taking the trace on both sides:
2
160 = S0, (103)

By applying an extra derivative d, on Eq. (102), permuting the indices and

taking a linear combination, we arrive at

20,0v€p = MupOu | + MwpOuf — MOy f (104)

17



Upon contracting with 7, this becomes
20%¢, = (2 — d)O,.f (105)
Applying 9, on this expression and 9% on Eq. (102) we find
2 = )00 f = i f (106)
Finally, contracting with 7,, we end up with
(d—1)0*f =0 (107)

Now we can derive the explicit form of conformal transformation in d dimensions.
First if d = 1 the above equations do not impose any constraint on the function
f, and therefore any smooth transformation is conformal in one dimension. This
is a trivial statement since notion of angle then does not exist. The case d = 2
will be studied in detail later. For the moment we concentrate on the case d > 3.
Equations (106) and (107) imply that 0,0,f = 0 (i.e. that the function is at

most linear in the coordinates):
flz) = A+ B,a" (108)

If we substitute this expression into (104) we see that 0,0,€, is constant, which
means that €, is at most quadratic in the coordinates. We therefore write the

general expression
_ v v,..p _
€ =y + 0@ + o’ Cuup = Copp (109)

Since the constraints above hold for all  we may treat each power of the coordi-
nate separately. It follows that the constant term a, is free of coordinates.This

term amounts to an infinitesimal translation. Substitution of the linear term into

(102) yields

2
buu + byu = C_lbinuu (110)

which implies that b, is the sum of an antisymmetric part and a pure trace:
by = QM + My My = —Myy, (111)

The pure trace represents an infinitesimal scale transformation, whereas the an-
tisymmetric part is an infinitesimal rigid rotation. Substitution of the quadratic
term of (109) into (104) yields

Cuvp = Nupby + Ny — Mupby b, = =cy (112)

18



and the corresponding infinitesimal transformation is
ot =zt 4 2(z - b)z" — ba? (113)

which bears the name of special conformal transformation (SCT).

The finite transformations corresponding to the above are the following: Trans-

lation:
=t 4+ at (114)
Dilation:
" = az* (115)
Rigid Rotation:
't = MHFat MEMYn, = Mo (116)
SCT: b 2
't i (117)

T 1—2x-b+ b2
Taking into account that generators are given by the first derivatives of the trans-
formations (64) we can compute the generator corresponding to the parameter a

via the formula:

7t
o0 a1y
The formula for the infinitesimal translations
o = ot + (119)
implies for the generator of the translations
P, = —i0, (120)
The formula for the infinitesimal scale transformation
" =zt + az® (121)
implies
a;; = o (122)
and yields the generator of dilation
D = —iz"0, (123)

19



For the infinitesimal rotation

' =t + mba” =2t + mynta’ = 2t + —my, (nHa” — nta)

2

we have
ox'*

Om,

= pPhg? — P laP
Inserting this in (118 we get
LY = —i(xP0” — aPO")
Finally for the infinitesimal special conformal transformation
" =2t + 2(x - bzt — ba?
we obtain

ox'*

obv

2
=2x,2" — dhx

and
K, = —i(2z,2"0, — 2%0,)

Collecting all we have:
P, =—i0,
D = —iz"0,
L,, =i(x,0, —x,0,)
K, = —i(2r,2"0, — 2°0,)

(124)

(125)
(126)

(127)

(128)

(129)

(130)
(131)
(132)
(133)

These generators obey the following commutation rules, which in fact define the

conformal algebra:

[D, P,] = iP,

[D, K] = —iK),

(K o] = 2i(nuw D — L)

(K, /W] = 1Moty — N K1)

[P Lyw] = i(npu By = 0pv Fy)

[Lyws U] = {(Npw Lo + NopLvp — MpuLve — NovLiyp)
[Py

(K

b=
K, =0

20



In order to put the above commutation rules into a simpler from, we define the

following generators:
(Pu = Ky) (143)

P, +K,) (144)
(145)

where J,, = —Jp, and a,b € {—1,0,1,...,d}. These new generators obey the
SO(d + 1,1) commutation relations:

[Jaba ch} = i(nadec + nchad - nachd - ndeac) (146)

where the diagonal metric 7, is diag(—1, 1,1, ..., 1). This shows the isomorphism
between the conformal group in d dimensions and the group SO(d + 1,1) with
1(d +2)(d + 1) parameters.
Let us now generalize the formulas (?7) to fileds with internal quantum num-
bers.
We start by studying the subgroup of the Poincare group that leaves th point
x = 0 invariant, that is the Lorentz group. We then introduce a matrix repre-
sentation S* to define the action of infinitesimal Lorentz transformation on the
field
L,,®(0) = S,,8(0) (147)

S .. 18 the spin operator associated with the field . Next,by use of commutation
u y
relations on the Poincare group, we translate the generator L, to a nonzero value
g g "
pf z
eixpPpL/“/e—i]:pPP — S}U/ — :UMPV + quu (148)

The above translation is explicitly calculated by use of the Hausdorff formula
1

1
e Bet = B+ B, Al + 5[[B, Al Al + [IB, A ALA] + -+ (149)
This can be proved noting that
d
%(e’tABetA) = e "B, Ale (150)

Repeatedly using this relation we see that higher derivatives are given by the
repeated commutators and (149) is the Tailor expansion at the value t = 1. This

allows us to write the action of the generators:
P,®(z) = —i0,P(z) (151)
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L,,®(z) =i(x,0, — x,0,) + S, P(x) (152)

We proceed in the same way for the full conform group. The subgroup that
leaves the origin z = 0 invariant is generated by rotations, dilations, and special
conformal transformations. We denote by S, A and &, the respective values of
uwy D, and K, at = 0. The commutations (134) then allows

us to translate the generators, using the Hausdorff formula (149)

the generators L

e De=" = D + 2V P, (153)

eiw”PpKﬂe—ix”PP =K, +2z,D —2z"L,, +2z,(z"P,) — x2P# (154)

from which we arrive finally at the following extra transformation rules:
DO (z) = (—iz"0, + A)P(x) (155)

K, ®(z) = (K, + 22,A — 2275, — 2iz,x"0, +ix°0,) ©(z) (156)

It is possible to show that x, = 0.

In principle, we can derive from the above the change of ®(z) under a finite
conformal transformation. However, we shall give the result only for spinless
fields S,, = 0. Under a conformal transformation x — 2 a spinless fields ¢(x)

transform as
AJd

O™ ) (157)

o) = | o

where |%—’:} is the Jacobian of the conformal transformation of the coordinates.
Computing determinant from the both sides of (100) we obtain that Jacobian is

related to the scale factor of the metric :

ox’'

| - Ay (158)
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Lecture 4

Correlation functions

We define a theory with conformal invariance to satisfy the properties:

1. There is a set of fields {A;}, where the index ¢ specifies the different fields.
This set of fields in general is infinite and contains in particular the deriva-
tives of all the fields.

2. There is a subset of fields {¢,;} € {A;}, called quasi-primary that under
global conformal transformations transform according to

Aj/d

X ) (159)

¢j(x) — x

where ‘%—’i‘ is the Jacobian of the conformal transformation of the coordi-

nates.

3. The rest of the {A;} can be expressed as linear combinations of the quasi-

primary fields and their derivatives.

4. There is a vacuum |0) invariant under the global conformal group

Ul0) = 10) (160)
This implies
Taking into account that
ox! |9 ,
U0 = | 5| &i(x) (162)
we obtain
ox’ | M1/4 ox’ |An/4 , ,
<¢1(X1) ce (bn(xn» = a_X e te a_X . <¢1(Xl) ce ¢n(xn)> (163>

Let us now compute the two-point correlation function of the quasi-primary fields.

According to (163) two-point functions have the following transformation rule:

Ay /d Ag/d

(d1(x1) 92 (x32)) (164)

X=X9

ox
ox

ox’

(P1(x1)P2(x2)) = o

X=X]
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If we specialize to a scale transformation x — Ax we obtain:

(P1(x1)2(x2)) = A21F22(6hy (Axy ) o (Ax2)) (165)

Rotation and translation invariance require that:

(1(x1)2(x2)) = f(|x1 — %2]) (166)
where f(x) = A\21F52 f(Ax) by virtue of (165). In other words
(61(3x:)n(002)) = (167)

a |X1 — X2|A1+A2

where C' is a constant coefficient. It remains to use the invariance under special

conformal transformation. Recalling that for such a transformation

ox’ 1
x| (168)
ox (1—-2b-x+ b?x2)?
and the transformation property of the distance under the special conformal
transformations:
IR a— - (69)
(1—2b-xy 4+ b?x%)2(1 — 2b - x5 + b?x3)?
the covariance of the correlation function (167) implies
C C (A1+A2)/2
__C¢ (i) (170)
|X1 _ XZ’A1+A2 ’Yl 1,}/2 2 |X1 _ X2’A1+A2
This constraint is identically satisfied only if A; = As. In other words two

quasy-primary fields correlated only if they have the same scaling dimensions:

(91(x1)P2(x2)) = 0, if Ay # Ay (171)

and o
X X)) = —————— if A=A 172
<¢1( 1)¢2( 2)> |X1 —X2|2A1 1 2 ( )
A similar analysis may be performed on three-point functions. Covariance under
rotations, translations and dilatations forces a generic three-point function to

have the following form

(1) balce) b (33} = ——— (173)

a C
L12Lo3L13
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where z;; = |z; — x;| and with a, b, ¢ such that
a+b—|—c:A1—|—A2+A3 (174)

Under special conformal transformations Eq.(173) becomes

C (7172)a/2(7273)b/2(7173)0/2

- (175)
71AIVQA27:3A3 x12xl2)333§3

For this expression to be of the same form as Eq.(173) all the factors involving

parameter b* must disappear, which leads to the following set of constraints:
a+C:2A1, a+b:2A2, b"—C:QAg (176)
The solution to to these constraints is unique:

a =N+ Ny — Ay (177)
b=Ny+ Ay — A (178)
c=A+ Ay — A, (179)

(180)

Therefore the three-point correlator is

C

<¢1(X1)¢2(X2)¢3(X3)>: AtAs—As AgtAs—A; A +As—A, (181)
D) T3 L3
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Lecture 5

Conformal group in two dimensions

Let us consider the conformal transformations in two dimensions D = 2.

Condition (102) becomes the Cauchy-Riemann equation
8161 = 8262, 6162 = —(9261 (182)

It is then natural to write €(z) = €; — i€y and €(Z) = €; + i€y in the complex
coordinates z = z+iy and Z = x—1y. Two dimensional conformal transformations

thus coincide with the analytic coordinate transformations
z = f(2) z— f(2) (183)
The metric in the complex coordinates is
ds* = dzdz (184)
Under the analytic coordinate transformations

z — f(2) zZ— f(2) (185)

2
ds* = dzdz — of dzdz (186)

z

Thus the group of two-dimensional conformal transformations coincides with the
analytic coordinate transformations. Any holomorphic infinitesimal transforma-

tion may be expressed as:
2 =z+4¢€(2) e(z) = Z cp2™ ! (187)
The effect of such a mapping on a field ¢(z, z) living on the plane is:
3¢ = —e(2)0¢ — &(2)0¢ = Y _{calnd(2, 2) + Caludp(2,2)} (188)

where we have introduced the generators
l, = —2""10, I, =—2z""0; (189)

These generators obey the following commutation relations:

Ly ] = (= M)l (190)
(I, I] = (0 — M)y (191)
[l ] =0 (192)

(193)



Thus the conformal algebra is the direct sum of two isomorphic algebras, each
with very simple commutation relations. The algebra (190) is sometimes called
the de Witt algebra.

Note that [y = —20, and ly = —20; and hence introducing the polar coordi-
nates z = re? we obtain
0 0 0 -
= v ¥ = — 1 4
TaT’ 2824‘282 (l0+l0) (9)
and 5 5 5
=iz —iz— = —i(ly — lp) (195)

o6 0z 0z
Thus (o + ly) generates dilatations and i(ly — ly) generates rotations.
Let us look for generators well-defined globally on the Riemann sphere S? =

C' U 00. Holomorphic conformal transformations are generated by vector fields:
v(z) =— Z apl, = Z a, 2" 1o, (196)

Non-singularity of v(z) as z — 0 allows a,, # 0 only for n > —1.To investigate

the behavior of v(2) as z — oo, we perform the transformation z = —1

1 n+1 dZ -1 1 n—1
= n| —— - w — n\ w 1
v(2) ;a ( w) (dw) 0, ;a < w) 0, (197)
Non-singularity as w — 0 allows a,, # 0 only for n < 1. We see that only the
conformal transformations generated by a,l, for n = 0, +1 are globally defined.

The same considerations apply to anti-holomorphic transformations.

These generators satisfy the commutation relation:

[lo, 1] =14 (198)
[lo,h] = —l (199)
[l1,1-1] = 2o (200)

(201)

and similar for antiholomorphic components.

This is precisely the SU(2) rotation algebra if we identify [y with J,, il; with
J~ =J, —iJ, and il_y with J© = J, 4+ iJ,.

Hence Lie algebra of the global conformal transformation consists of two com-
muting copies of the SU(2) algebra, and therefore coincide with the naively ex-

pected conformal group in two dimensions SO(3,1).
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The fact that the Lie algebra of SO(3, 1) as well isomorphic to two commuting

copies of SU(2) algebra can be seen by means of identifications:

A= (J® T2 (202)
B = (JY, J% J%) (203)
and then taking
1
J = 5(A +iB) (204)
-1 ‘
J=_(A-iB) (205)

It is straightforward to check that SO(3,1) commutation relations imply that J
and J provide two commuting copies of the SU(2) algebra. One can see this also
on the group level. We identify I_; and [_; as generators of translations (globally

z — z+ ), lp and [y as generators of dilatations (globally z — A\z), and I; and

I, as generators of special conformal transformations (globally z — ﬁ The
combined form of these transformations is
+b az + b
P P T2 (206)
cz+d cz+d

where a,b, ¢,d € C and ad—bc = 1. This is the group SL(2,C)/Zy. The quotient
by Zs is due to the fact that (1010) is unaffected by taking all of a, b.c, d to minus
of themselves. It remains to show that the quotient SL(2,C)/Zy is isomorphic
to the Lorentz group SO(3,1).

For this purpose we organize the four-vector X* as hermitian matrix
0 3 1_;y2
where 01, 09, 03 are Pauli matrices and oy = I. Note that
det (XP0%) = (XO)2 - (X1)? — (X)? — (X?)? (208)
The transformation
M (X*Fat) M7 (209)

where M € SL(2,C) leaves the matrix hermitian and does not change the de-
terminant. Therefore this transformation induces the Lorentz transformation of
XH:

M (XH oty M = (AM(M)* X" ") (210)
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where A(M)# € SO(3,1). Since the map (209) is the same for M and —M
therefore A(M)# = A(—M)" and we proved the isomorphism SL(2,C)/Zy ~
SO(3,1).
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Lecture 6

Examples of CFT: Non-linear sigma model
Weyl transformation
G — NG (211)
Remembering that

1
08 =5 / d®z\/gT" 59, (212)

where g = det||g,.||, we obtain that the action is invariant under the Weyl

transformation if the tensor-energy momentum is traceless
™ g, =0 (213)

On the other hand under an arbitrary transformation of the coordinates x* —

x4 e, the action changes as follows:
1
68 = / AT 0,6, = 3 / Az T (D€, + O€,) (214)

where TH is the symmetric energy-momentum tensor. The definition (102) of an
infinitesimal conformal transformation implies that the corresponding variation

of the action is

58 = é / d*zT! 0, (215)

The tracelessness of the energy-momentum tensor then implies the invariant-
ness of the action under conformal transformation.

Consider now the action
S = / d*aVhhP 9, X 05 X" g (X) (216)
x

where h,g is metric on two-dimensional world-sheet ¥, g, (X)) is metric on man-

ifold M. It is Weyl invariant: under h,g — Ah,s we have in d dimension:
Vhh® — AT hho? (217)

and therefore the action is indeed Weyl invariant in two dimensions.

The tensor energy-momentum is

1 =1
Tup = 0aX"05X" g (X) — 5 hash® F O X103 X g (X)) (218)
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and obviously traceless in two-dimensional case:
h*PT,5 =0 (219)

Let us check if the Weyl invariant is not broken by the quantum corrections.
We will work in the dimensional regularization scheme. In d = 2+4¢ dimensions

choosing conformal gauge

hap = €"Nup (220)
we obtain
5— / e 0, X0 X g0 (X) (221)
s
Let expand the field X* around constant solution, a point X'
XH*(o,7) = X + a"(0,T) (222)
where x# (o, 7) quantum fluctuations. Choosing normal Riemann coordinates we
have for metric:

Juv = Nw — gRuAymx)\

where R,,5,, Riemann tensor on manifold M in point X{'. Inserting this in action

1
" — ED,\RM,\,,Rx”m’\:L"‘ SEE (223)

and also expanding e® =1+ €¢ - - - we get
1
S = / d’c [8,13:”8‘193”77“”(1 + ep) — gRM,\V,{a:)‘:U”(?aa:“é?o‘x”(l +ep)+---| (224)
>

Counsider the contraction
d2tek eik(a—a’)
(2m)2e k2

<l‘/\(g)lﬁ(al)>a—>a’ = 7T77>\nhma—>a’/ (225)

Let us compute the integral

(D) = / 7k 1 (226)

(2m)P p? + m?

In polar coordinates it can be written:

d°k 1 Sp [, p, 1
0= [ G = ), W e @0
where 2
2
Sp=1 573 (228)
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is the surface of a unit sphere in D dimensions. The resulting one-dimensional
integral can after the substitution p? = ym?, be cast into the form of an integral

for the Beta function

_ F(OC)F(’V) _ /OO a—1 —a—y
B(a,7) = Taty) dyy* (1 +y) (229)
We then find
S e _ 1 S [ _ _
)= (27:;1)/0 dpp” 1P2 tm?2 2(2£)D(m2)D/2 1/0 dyy™ (1 = ) 230)
Lo DDLU =D/ P
(AmPPT(D)2) () (im)P
Using this in the limit D = lim._,(2 + €) and remembering
1
['(e) ~ - (231)
€
we obtain
A K( ! TIM
(@)™ (o)) gor ~ (232)

This implies that one-loop correction to the metric resulting from the curvature

term is

/ d*op(0)0ar" 02" R, (X)) (233)
P

Here R,,(X{) is Ricci tensor on manifold M. Therefore in general the Weyl
invariance is broken, since in the limit e — 0 the scale factor ¢(o) is remained. We
obtain that the sigma-model action is conformal invariant for Ricci flat manifold
M.

One can consider also sigma model with the B- term

S = / 2oV RhP 0 X 05X g (X) + €P 0y X 05XV B (X) (234)
)
Similar calculations bring to the following condition of the Weyl one-loop invari-
ance .
R, + ZztI;pHMp =0 (235)
where H = dB.
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Lecture 7

Tensor energy-momentum, radial quantization, OPE

Under an arbitrary transformation of the coordinates x* — x# 4 €*, the action

changes as follows:

1
55 = / AT By, = / d T (D6 + Dye,) (236)
where T" is the symmetric energy-momentum tensor. The definition (102) of an
infinitesimal conformal transformation implies that the corresponding variation

of the action is

58 = é / d*zT! O, (237)

The tracelessness of the energy-momentum tensor then implies the invariant-
ness of the action under conformal transformation.

The current of conformal symmetry is
Jy = Te” (238)
This current is conserved because
oJ, =0"T,,e +1,0"€ =0 (239)

which vanishes because the tensor energy-momentum is conserved and trace-
less.

To implement the conservation equations in the complex plane we compute
the components of tensors in the complex coordinates. Since the flat Euclidean
metric ds?> = dz? + dy? in the complex coordinates z = x + iy has the form

ds? = dzdz one has

and )
2z — Uzz — = 241
92 = 92 = 5 (241)
and
g7 =g7=0 (242)
and
gF=g* =2 (243)
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The components of the energy-momentum tensor in this frame are

T, — }l(TOO 9Ty — Thy) (244)
T — }l(Too + 20T — Th) (245)
T =T; = %(Too + 1) = %Ti (246)
(247)
Therefore the tracelessness implies
T,:=1T:, =0. (248)
The conservation law g**d,T,, = 0 gives two relations
O:T.. +9.T:. = 0 (249)
0.1z + 0:1.: =0
Using (248) we obtain
0:T,, =0 and 0,15 =0 (250)
The two non-vanishing components of the energy-momentum tensor
T(2) =T..(2) and T(z) = Te:(2) (251)

thus have only holomorphic and anti-holomorphic dependences.

Consider the system on a cylinder ¥ = R x S = (¢, mod 27), where t is
world-sheet time, and x is compactified space coordinate.

Next we consider the conformal map w — z = e = '™ that maps the
cylinder to the complex plane. Then infinite past and future on the cylinder,
t = oo are mapped to the points z = 0,00 on the plane. Equal time surfaces,
t = const becomes circles of constant radius on the z-plane. Dilatation on the
plane e® becomes time translation ¢4 a on the cylinder, and rotation on the plane
e is space translation x + o on the cylinder. Therefore the dilatation generator
on the conformal plane can be regarded as the Hamiltonian, and the rotation
generator on the conformal plane can be regarded as momentum.

The current of conformal transformations takes the form:

J, =T (2)e(2) (252)
J. = T(@)e()

all
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The conserved charge of the conformal transformations takes the form

Q= 5 %dzT(z) (z) + L i{dzf(z)e(z) (253)

2

Radial ordering

Product of operators make sense if they are radially ordered. This is the
analogue of time ordering for field theory on the cylinder. In the classical theory
the ordering of fields or charges in a product is of course irrelevant. In the
quantum theory they become operators and we have to specify an ordering. The
product of two operators A(x,,t,) and B(xy,t,) can be written with the help of

the Hamiltonian H of the system as

A(xq,t,)B(my, ty) = e A(x,, 0)e Hlee™ B2y, 0)e (254)

H(ra=7) when we Wick rotate. Usually the

The factor e~ (ta=%) hecomes e~
Hamiltonian is bounded from below, but not from above. Then if 7, < 7, the
exponential can take arbitrarily large values, and expectation values of the oper-
ator product are then not defined. Hence in operator product one imposes time

ordering, denoted as
TA(t,)B(ty) = A(t,)B(ty) for t, > t, and B(ty)A(t,) for t, <t (255)

After mapping from the cylinder to the plane, the Euclidean time coordinate

is mapped to the radial coordinate, and time ordering becomes radial ordering
RA(z)B(w) = A(2)B(w) for |z| > |w| and B(w)A(z) for |z| < |w|  (256)
The variation of any field is given by commutator with the charge (253):

5“‘1)( W) = [Q O (w,w)] = (257)
]{ V& (w, @) — B(w, T)T(2)) +

277, dze(2)(T(2)®(w, w) — ®(w, w)T(2))

Let us now analyze the order of operators in the second and the third lines
n (257). We will discuss the holomorphic part, the similar discussion holds
for antiholomorphic part. We have seen that the first term in the commutator
is defined only if |z| > |w|, whereas the second one requires |z| < |w|. Note

however that z is an integration variable, and that the definition of ) did not
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include any prescription for the precise contours to be used. Classically Qis in
fact independent of the contour due to Cauchy’s theorem, because the integrand
is a holomorphic function. On the cylinder this can be interpreted as charge
conservation, i.e. evaluated ) at two different times gives the same answer. In
the quantum theory we have to be more careful. As one usually does, we use the
freedom we have in the classical theory in order to write the quantity on interests
in such a way that it is well-defined after quantization. Nothing forbids us to use

different contours in two terms in commutator:

1

o dze(T(2), D, )] = (258)
1

— dze(2)(T(2)P(w,w) — O(w,w)T(z

i §,, TR 7|{|<|w| (w, ®)T(2))

Using the definition of the radial ordering (256) one can write

2% dze(2)[T(=), ®(w, @)] = (259)

2mi [}{|>le j|{|<|w|} deelz)RT (22w, )

Deforming the contours the result is

1

o de()T(2), D, ) = (260)
% dze(2) R(T(2)®(w, b))

where the integration contour encircles the point w. Collecting all we obtain:

1 1 _
P(w,w) = — O(w, w — é(z 2)P(w, w
0e.eP(w, w) 2m7€}dze(z)R(T(z) (w,w)) + 57 j{}dze(z)R(T(z) (w,w))
(261)
Primary fields possess the following transformation rule:
(o (or\" -
09 - (2) (5) o). 7@ (262)
The infinitesimal transformation of the primary fields of the weight h and h is:
de e ®(w, w) = hoe(w)®(w, W) + €(w)0P(w, w) + (263)
hoe(w)®(w, w) + &é(w)0P(w, W)
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Comparing (260) and (263) we get OPE of the energy-momentum tensor with
the primary field of the weights h, h

0, ®(w, ) (264)

(z —w)? zZ—w

_ h 1

D ®(w, @) (265)

zZ—w
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Lecture 8

Virasoro algebra

Schwarzian derivative

OPE of the tensor energy-momentum with itself takes the form:

T()T(w) = /2 + 2 T(w) +

(z—w)* (2 —w)? z—w

oT (w) (266)

The term on the rhs, with coefficient ¢ a constant, is allowed by analicity,
Bose symmetry, and scale invariance. Apart from this term, (279) is just the
statement that T'(z) is a conformal field of weight (2,0). According to (261) the

variation of 7" under infinitesimal conformal transformation is
1
5T (w) = —— ?{ ()T ()T (w) (267)

- 2mi

1—12683}6(10) + 2T (w)Oye(w) + €(w) 0y, T'(w)

The exponentiation of this infinitesimal variation to a finite transformation

z — w(z) is
dw\ > c
T(z) — (%) T(w(z)) + ES(w, z) (268)
where we have introduced the Schwarzian derivative:
L (Pw/d?) 3 ((dPw/d?)\
S(wi2) = Guja 2\ (dw/dz) (269)

It is the unique weight two object that vanishes when restricted to the global
SL(2,C) subgroup of the two-dimensional group. It also satisfies the composition
law:
df\
S(w, z) = <E) S(w, f)+ S(f,z) (270)
The tensor energy-momentum is thus example of a field that is quasi-primary,
i.e. SL(2,C) primary, but not Virasoro primary. For the exponential map w —
z = e we have
S(e",w)=—-1/2 (271)

SO

Top(w) = (g—i) T(z) + 1—025(2, w) = 2T (2) — 2—04 (272)
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Substituting the mode expansion T'(z) = >_ L,27"2 we find

C

Teg(w) =Y Loz = 2= 3 (Ln - i%) e~ (273)

The translation generator (Lg)e on the cilinder is thus given in terms of the

dilatation generator Ly on ther plane as

c
(Lo)eyt = Lo — B (274)

Virasoro generators

We introduced a current J(z) = T'(z)e(z). Since €(z) is an arbitrary holo-
morphic function, it is natural to expand it in modes. We expect that the cur-
rent T'(z)z""! generates the transformation z — z + ¢,2""!. The corresponding

charges are:

1
L,= 5 dzT(z)z"*! (275)

This relation can be inverted:
T(z)=)» 2 "L, (276)
The commutator of the charges is

ﬁ %dwwmﬂjidzznﬂ [(2 c_/i))4 + E _2w)2T(w) + - _1 waT(w)l =

1 1
— ¢ dww™ ! [—c(n + Dn(n — Dw™ % +2(n + Dw"T(w) + w"H@T(w)} -
2m J, 12

1
—cn(n? — 1)0ntmo +2(n+ 1)Ly — " dw(n +m + 2)w" T (w) =
i J,

1
Ecn(n2 — 1)6ntmo + (n—m)Lyin

Here we used

P = 5 (fi 278)

omi | (2 — zp)n !
Identical consideration for T implies

_ c/2 2 _ 1

T(2)T(w) = OT (w) (279)

(z—w)*  (z—w)? Z—w
T(z)=) z "L, (280)
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- - 1
(L, Lin] = (n—m) Ly + Eén(nQ — 1)0n+m.0

(281)

Since T'(z) and T'(2) have no power law singularity in their product, we have

Ly, L) =0

Correlation functions

(282)

Since global conformal group SL(2,C) preserves vacuum and anomaly free
we have for f(z) in the form (206):

(@1(21.20) - Pulzn, 20)) = [ [ (OF ()" (07(2))" (@1(f(20). F(20)) ...

Two-point function is

J

az+b
fz) = cz+d
N 1
Jz) = (cz+ d)?
21 — 22

f(Zl) - f(ZQ) - (CZl + d)(022 + d)

C

(P(21, 21)P (20, 22)) = _

(Zl _ 22>2h(21 _ 22)211

Wherehlzhgzh,lezﬁgzﬁ

(D(21,21) P (22, 22) (23, Z3)) = Clas hitha—hs _ho+ha—hi_ha+hi—hs
23

1

12 13

1

212

where z;; = 2z, — z;.

shi+ha—hs 27324-53 —h1 233 +h1—ho
23 13

We can express the invariance rule (283) in infinitesimal form:

n

Z@Z-((Ih(zl,fl) D20, 7)) =0

D (20 + hi)(®1(21,71) - P20, Zn)) = 0

i=1

n

> (20; + 22h:)(@1(21, 1) .. P20, 7)) = 0

=1
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In- and Out- states
We suggest
_ 11\ 1 1
[@(z,2)] =@ (;, ;) o o (292)
To justify the ansatz (292) we consider in- and out- states. Since time t — —o0
on the cylinder corresponds to the origin of the z-plane, it is natural to define
in-states as
|Di) = lim, 5 ,0P(2, 2)|0) (293)

To define (P,,4| we need to construct the analogous object for z — co. If we call

®(w, w) the operator in the coordinates for which w — 0 correspond to the point

at oo, then the natural definition is
(Dot = limy, g50(0]P(w, @) (294)

We need to relate ®(w, @) to ®(z, Z). Recall that for primary fields we have under
w — f(w)

(w, ) = @(f(w), f(@))(Df (w))"(Of ()" (295)
so that in particular under f(w) — 1/w
B(w, @) = (i i) (—w )~ ) (296)

Demanding (®,.| = |P;)T we arrive to (292).
D] = li d(w,w) = i oL 1) L 1 2
(Pout| = limy, 50 (0| P (w, w) = limy, 5-0(0] w' o) W aom (297)
T
litny 550(0|[@(@, w)]T = [nmw,M@(w,ww] = |B,,)f
Let us check that the definition (292) is consistent with the two-point function:

(Bot|Pin) = lim, 2 550 (0| (2, 2)T®(w, @) |0) (298)
= lim. : w002 22 20|®(1/2,1/2)®(w, w)|0)
= lim, ¢, ,£7"€" (0] @ (E, ) (0, 0)[0)

where £ = % and & =

W=

a7z, 2) = (‘Z—w) (%)E@ﬂ(w(z),w(z» (299)
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z=ce"
(I)cyl(w7 U_)) _ Z Z (bm’nefmwefmb
mEZ neZ
(I)Pl(z7 2) — Z Z mefhzfnfﬁ¢m’n
MEZ nEZ
a5 = 33 s rhahg,
mEZ nel

A straightforward Hermitian conjugation on the real surface yields

Bz, 2) = Y he g,

MEZ nEZ

while the definition (292) implies

®(z,2) = 2722720(1/2,1/2) =

272hz72h § § Zm+hzn+h¢mm —

mMEZ nEZ
ISR
MEZ nEZ
Comparing we obtain:
B = D,

Applying (292) to the tensor energy-momentum 7T'(z) = >

T(z)' =Y z "L}

n

n

and

1 1 sn—2

Equating (307) and (308) we receive

Ll =1L_,

(300)
(301)

(302)

(303)

(304)

(305)

(306)

27" 2L, we obtain:

(307)

(308)

(309)

Other important conditions on the L, can be derived by requiring the regularity

of
T(2)[0) =Y Lnz""72|0)

meEZ

at z = 0. Obviously only terms with m < —2 are allowed, o we learn that

L,]0) =0, m>—1
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Taking hermitian conjugation we have
(0|L, =0, m <1 (312)

The only generators annihilating both |0) and (0| are Ly;. This the known
already to us the statement of the SL(2,C') invariance of the vacuum.

Now we can derive the condition ¢ > 0 in unitary theories

g = (0|[Ls, L_5]|0) = (0] Lo L}|0) > 0 (313)

since the norm satisfies ||L]0)||2 > 0 in a positive Hilbert space.

Let us now consider the state
|h, h) = ¢(0,0)|h) (314)

created by a holomorphic field ¢(z) of weight h. From the operator product
expansion (264) between the energy-momentum tensor 7" and a primary field we
find:

Lo, )] = § 52T ), w) = (315)
ﬁz”“ _ w, 1 w,w) | = hn w"o(w, w) + w w, W
oo (ol o)+ 2Bl 0) ) = K+ Do, @) + 0,00, )

so that [L,, ¢(0,0)] =0, n > 0.
The antiholomorphic counterpart of this relation is

(L, ¢(w, @)] = h(n + )a"¢(w, @) + 0" 9,¢(w, @) (316)
Applying this relation to the state (314) we conclude:

and

Ly|h,h) =0 Ly|h,h) =0 n >0 (318)

The state satisfying (317) and (318) is known as a highest weight state.
Using (317) and (318) and (281) we can evaluate

(WL, Lon|h) = (hl[La, Ly]|h) = 2n(h|Lo|h) + %(ns — n){h|h) =(319)

(20 + S - n) (hlh)
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For n = 1 this implies that h > 0.
Let us consider mode expansion of arbitrary holomorphic field ¢(z) of weight
(h,0)

$(z) =D dmz ™" (320)
neL
O = % dzz™ g (2) (321)

Regularity of ¢(z)|0) at z = 0 requires ¢,|0) = 0 for n > —h + 1. From (314) we
see that the state |h) is created by the mode ¢_,: |h) = ¢_4|0). Now calculate
the commutator:

L, 6] = —— 7{ duww™ 1 (h(n + 1) e(w) + w1 9ue(w)) (322)

2T

= ZLm dww™ M (h(n 4+ 1) — (h+m 4+ n)d(w)) =

(n(h = 1) = m)Pmin

So [Lo, ¢m] = —méy,, implying Lo|h) = Lo¢_p|0) = h|h).
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Lecture 9

Free boson

The action of a free massless boson ¢ is
1
S = g/d%@@?“qﬁ

The equation of motion for the field ¢ is:

0? 0?
Uop=|=—+—=— =0
i <3x2 i 31/2) i
In the polar coordinates we have:
o? n 10 N 1 02
or?2  ror  r200?

The solution of the equation or propagator

0.G(x,y) = 6P (x —y)

is

G(Xv y) - lOg T, r= (X - y>2

or in other words
(p(x)o(y)) = —log(x —y)°

in complex coordinates:

(0(2, 2)¢(w, w)) = —(log(z — w) + log(z — w)

(323)

(324)

(325)

(326)

(327)

(328)

(329)

Eq. (329) can be derived also remembering that in complex coordinates the

propagator satisfies the relation:

(8,0; + 0:0.)G(z,w) = 6P (2 —w, Z — @)

and . .
0,— = 0;— = 5(2)(2, Z)
z z

Let us prove (331).
Recall at the beginning the Stokes theorem

/ d22(0.4; — 0;A,) = / (A.dz + A.dz)
M

oM
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Now we can compute:

/MdQ,zé(z,Z)f(z):/Mdeazif(z):/MszGZf(j) :/aMdz

It follows
<az¢(z7 2)8w¢(w7 U_})> ==

(z —w)?

(0202, ) (0,17) = ~——=

The energy-momentum tensor of the free boson is

1 1
T;w = E(augbaugb - 577uu8p¢3p¢)

9 _ j0)
(333)
(334)
(335)
(336)

Denoting 0¢ = 0.¢ and 0¢ = 0s¢, the holomorphic and anti-holomorphic

components of the tensor energy-momentum are
1
T(Z) = —5 . 3¢8¢ .
_ 1 - _
T(z) = —5 0p0¢

The normal ordering means:

T(2) = — 5 lim - (06(2)06(w) — (06(=)00(w)

(337)

(338)

(339)

The OPE of T'(z) with 0¢ may be calculated from Wick’s theorem:

99(2)

T()0(w) = 3 : 90(00(2) o) ~ 2

By expanding 0¢(z) around w we arrive at the OPE
0 0?
bw)  Pow)

(z—w)3  (z-w)

T(2)0p(w) ~

(340)

(341)

This shows that d¢(z) is a primary field with conformal dimension 1. Wick’s

theorem also allows us to calculate the OPE of the energy-momentum tensor with

itself:

T()T(w) = § - 06(000(2) = 06(w)dp(w)
1/2 1 0¢(2)0p(w) :

G-wp  (c-wp
12, 20(w) |, 9T(w)

(z—w)t  (z-w)* (z-w)

[
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Let us introduce the vertex operators:
Va(z, 2) =: 9=

We now demonstrate that these fields are primary with dimensions:

a
ha - ?
We first calculate the OPE of 0¢ with V,,
= (i)™
06(2)Valw. @) = 3~ " 06(2) : o(w, w) 7
n=0 ’
1 - (ZO[ " -\ .n—1
N _iaVQ(w, w)
z—w

From here we can derive:

L L i00(2)dz V(. @) | = —— ¢ 96(2)Va(w, )z = aV(w, @)
i |=5:f

2m J,

Next we calculate the OPE of V, with the energy-momentum tensor:

1 00(2)0¢(2) :: p(w,w) "

w
2 Vo(w, ) | 9pVa(w,w)
2

(z —w)? Z—w

(343)

(344)

(345)

(346)

(347)

To the n-th term in the summation we have applied 2n single contractions and

n(n—1) double contractions. We have replaced d¢(z) by d¢(w) in th last equation

since the difference between the two fields leads to a regular term.

Quantization of the free boson on the cylinder

On a cylinder of circumference L a boson satisfies ¢(x + L, t) = ¢(z,t).

dragt . 1 o ) '
¢($’ t) = ¢o + LO +1 E E (ane%m(ﬂc t)/L _ an627rm(x+t)/L)
n#0
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From reality of ¢ we have
al =a_, (349)

and
(350)

Ql
S —
l

Commutation relations follows from the equal-time commutation rules

o). N =0, Do) 8] =0 | 00l o) =id(e o)
(351)
which imply

[an, am] = 10ptm  [Gn, Gm] = Nopim  [Gn, Gm] =0 (352)

The total momentum of the string is

/0 L 00() = (353)

If we go over to Euclidean space-time (replace ¢ by —i7) and use the conformal

coordinates:
5 = 627r(7'—ix)/L 3 = 627r(’r+ia:)/L (354)
. _ . 1 _ o
¢(z,t) = do —iaglog(2z) +i Y — (anz™ —a,z ") (355)
n#0 n
i0¢(z) = Z anz "t (356)
One has
al =a_, al =a_, (357)
Commutation relations:
[an, am] = N0ptm  [Gn, Gm] = N0pim  [an, am] =0 (358)

can be derived also from the OPE (334)

o] = 2| 74 i f Zm] "u0.0(2)u0() (359)



We have that .
% Ola¢<z)dz = Qo (360)
and therefore

[ag, Va(w,w)] = aV,(w, ) (361)

Using (337) and remembering the mode expansion of the tensor energy-momentum
(276) we obtain:

1
Ln=15 . (362)
meZ
1
Lo=) a_na,+ §a(2) (363)
n>0
let us compute:
1
[Ln,ar] = 5 Z[an_mam, ai] = (364)
meZ
1
5 Z<an—m[am7 ak] + [an—rm ak]am> —
meZ
1 1
5 Z(an—mm6m+k + am(n - m)(sn—m—l-k) = 5(_an+kk - kan-}-k) = _kan+k
meZ
We also have
[Lo, a_pm) = ma_, [Lo, am] = —may, (365)
Ly, Ly = L ML = (366)
ny m| — 2 ny am—kak] -
kEZ
1
2 Z(am—k[fzm ar) + [Ln, am-tlar) =
keZ
1
5 Z(_kamfkarﬂrk - (m - k)anerfkak:)
kEZ

Now let us bring both terms to the normal ordered form.

For normal ordering we will take the following prescription:

caa; =aa; it i<j and aja; i > (367)
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Now for the first term we can write:

> (—kmptnir) = Y (—kapm sner) + Y (—ktm_ganir) = (368)

ICGZ kZ mQ_n k< mz—n
Z (—kam—knir) + Z (—k@niram—1) + Z (=k)(m — k)0pin =
k> k<mzs k<mgs
Z C(—kam_ganik) -+ Z k(k —m)dmin
kEZ k<m

and for the second

> (—(m = k)anm—rar) = (369)

keZ

Z <_(m - k)an—i-m—kak) + Z <_(m - k)an—i-m—kak) =
ko> mdn ko<

Z (—(m — k)anym—rar) + Z (—(m — k)aranim—r) +
k>mEn k<mgn

> (=(m=k)n+m—k)bpin =
k< mdn
D i (—m = k) angmorar) = Y k(k —m)0p 0
keZ k<0

Performing in the first term of the last line in (368) the change of the sum variable
kto k' =n+ k we get

Z (= (K —n)apim_pap) = Z (—(k —n)apym_rag) : (370)
k€L keZ
and uniting it the first term in the last line of (369) we obtain:

%Z (= (k —n)apym—rag) : +% Z s (—(m — k)apsm—rag) := (0 —m) Ly

keZ k€eZ

(371)
For the remaining terms we get:
1 m—1
3 k(k —m)dmin (372)
k=1
Remembering that
- 1
k= @ (373)
k=1

20



and

- D2n+1
Zk2:n<n+ )6(n—|— ) (374)
k=1
we obtain
m—1
1 1 —1 2m — 1 —1
5 k(k - m)5m+n = _5m+n [(m )m( = ) - mm - (375>
2 — 2 6 2
1 3 1 3

Omtn(m” —m) = —0pyn(n” —n)

12 12

Now consider the scalar field compactified on circle of radius R:

d(x+ L,t) = ¢(x,t) + 2rmR (376)

The mode expansion (348) now modifies to

4mn 27TRm ;
gb(:v, t) _ ¢0 + RLt +i Z 27rk:z (z—t)/L _ dke27rk:z(a:+t)/L) (377)
k£0

%, and n should be integer since the

The center-of-mass momentum is ﬁ@tqﬁ =
vertex operator €?® should be single valued under the identification X = X +27R.

If we express this expansion in terms of the complex coordinates z and z, we find

1 1
O(2,2) = o — i (% + §Rm) log(z) + Z Eakz_k (378)
k#0
(2 1Rm log(z) —f—izld 7k
R 2 & P
k#0
i0¢(z) = ( =+ Rm> + ) apz ! (379)
k#0
The expression (363) for Ly and Ly specialize to
L/n 1, \°
LO = Z a_pnQy + 5 E + §Rm (380)
n>0
_ o 1/(n 1 2
LO = Za,nan + 5 E — §Rm (381)
n>0
Free Fermion
The action is 1
S=5- / d*x (YO + oY) (382)

o1



The classical equations of motion are

The propagator is

1
() = —
@ED@) = ——
=90l gp_ L
T* = 22500 = —)0u
2% e g
T% = 22520 = —)0)
= o 0L P
T _288_@(9@ 2L = Wwaw

T%* vanishes on the equation of motion.

The standard holomorphic component is

T(z) = —2nT,, = % c(2)0Y(2) -

where, as before we have used the normal-ordered product

L p(2)09(2) = limy2 (P(2) 09 (w) — (¥ (2)0¢(w)))

I o) 1 u()

T(z)p(w) = =5 : ¥(2)0¢(2) : Y(w) +

2z—w  2(z—w)?

L) ovw)

2(z—w)?  z—w

(383)

(384)
(385)
(386)
(387)

(388)

(389)

(390)

(391)

In contracting 1(z) with ¢ (w) we have carried ¥ (w) over v (z) thus introducing

a (—) sign by Pauli’s principle. We see from this OPE that the fermion ¢ has a

conformal dimension h = %

The OPE of T'(z) with itself is calculated in the same way:

T(2)T(w) = 1 - $(2)00(2) = Y(w)d(w)
4 2T +(827l(@3)

Fermion on a plane

52
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On the plane the fermion field has mode expansion:

= bt (393)
k
We find commutation relations:

st = 2| § 32, § 5] um ()t (394)

]{ m1/27{dz netj2_ —1

21 21 Z—w
d

_ 7{ _w.wm—1/2wn—1/2 = Grimo
271

One can have periodic or anti-periodic boundary conditions having half-integer

or Neveu-Schwarz (NS) and integer or Ramond modings (R) respectively

, 1

P(e™z) = P(z) keZ+ 5 (NS) (395)

Y(e'2) = —v(z) ke (R)
We calculate first the two-point function in the (NS) sector from the mode

expansion
W)= Y w2 ) (396)
k,q€Z+1/2
Z —k—1/2, k—1/2 i 1 (w)n 1
z2\z Z—w
k€Z+1/2,k>0 n=0

This agrees with the fermion OPE. However in the (R) the result is different

W) = Y =™ 2 by (397)

k,q€Z

_ 2\/1% X izkl/Zwkl/Q
L) ]

1l z+w 1 z/w—l—
_2\/zwz— T2 Z—w

Now we compute vev of the tensor energy-momentum. We need to use the

normal ordering prescription
1

() = glimeo (=000 + 900N + 5 ) (305)

23



which leads to (T'(z)) = 0 in the (NS) sector, as is trivially verified. In the (R)
sector

(T(2)) = —ilimeﬁw ( v Z/ij w/z> s (399)

2(z —w)? 1622

To prove it let us compute the derivative:

B (@jw w/z) - = _1w)2 (\/EJF \/§> - lezm (400)

Now setting w = z + ¢, where € — 0 we get

~1/2 1/2
' 14+ 7"+(1+9"7" =2 1
(T'(2)) = —lim._g 1 + 52 (401)
Using expansions:
€\ —1/2 e 3é
1 —) —1- S 28 L 402
( * z 2z + 8 22 + (402)
and " L2
€ € €
| —) — 1= 403
( + z + 2z 822 - (403)
we obtain: .
T = 404
(1) = = (104)
Let us introduce the primary field o with OPE
Y(2)o(w) ~ (2 —w)p(w) + - (405)
and hoo(0)
T(2)0(0)[0) ~ =5=[0) + - (406)
Using this field we can write
(T'(2)) = (0lo(00)T'(2)0(0)]0) (407)
implying h, = 1—16.
Fermion Virasoro generators
1 LN g1j2 k32 .
T =3 > (k+ 57 z  boby, = (408)
k.q

1 1
5 E (k + 5) Z_n_2 . bn—kbk .
k,n

o4



From this, we extract the conformal generator

1 1
Ln=3 > (k + 5) Dby : (409)

k

If we fix the constant to be added to Ly from the vacuum energy density we find

Lo=» kbyb, (NS):k€Z+1/2 (410)
k>0
= kb kbk+— R):keZ (411)
k>0

Fermion vacuum energies on cylinder
Using the formula (274) we obtain

(Lo)eyt = Y kb_ kbk—— (NS):keZ+1/2 (412)
k>0
(LoJeyt = Y kb_ kbk+— R): keZ (413)
k>0

We can obtain the formulas (412) and (413) also in different way, introducing so

called (-function regularization. We have
(Lo)ey1 = = Zk byb =Y kb_ kbk——Zk (414)
k>0 k>0
Boson vacuum energy on cylinder
1 1
(Lo)ey1 = 5 En: DAy = ; a_nQy, + 3 nz>0 n (415)

Therefore we should regularize the sum ), _, & for integer and half-integer mod-

ings. For this purpose we introduce the (-function regularization.

(-function regularization

(z0) =) ! (416)



for Rez > 1.

((2) =((z,1) (417)
I(z) = / ety (418)

Let us change the variable t = (n 4+ q)y, n € N

D) = (n+ ) / g e gy (419)
0
F(Z) /OO -1 _—(n+q)y
= y* e Ty 420
nrar s (420)

Let us sum over n remembering (416)

I'(2)¢(2,q) = i /0 h g le= (M gy (421)
n=0

Exchanging order of the sum and the integral we obtain:
yz_le_qy

P = [ =y (422

So we arrived to the following integral representation of the (- function :

B 1 00 yz—le—qy
((z,q) = m/o T W (423)

Using this expression now we can calculate (- function for negative integer values

by the analytic continuation . Let us split the integral (423) in two parts:

00 ,z—1,—qy 1,2-1,—qy © 2= lo—qy
Yy e Yy e Yy e
P A ey 424
/o 1—cv® /o L—e y+/1 T—ev 2

and replacing

l—e_y:

= By (125)

in the first part. Here B,(q) is the n-th Bernoulli polynomial. After doing this

one can perform the first integration term by term to get

(o) = e S B L > /1°Oy“”ydy (426)

I'(2) nl z+n—-1 T(z 1—ev

n=0

Remembering that when z = —m + ¢, (m € N)

L(=m+e)~ ()" (427)
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and the remaining integral is finite, the second term vanishes as € — 0.

(o) = o 3 (o BelD) 1 (428)

I'(z) & nl z4+n-1
As for the series, in this limit survives only one term n = m -+ 1 yielding the finite
limit: Byr(a)
lim, — _ _Pm+1@) 429
imoG(—m + €,q) = —— L (429)

To evaluate the vacuum energy note that from (416) follows that the infinite

sum in (414) can be written as

1 1
~5¢(-1,3) (430)
in NS sector and as .

in R sector.
Note that B, (1) = B, is the n-th Bernoulli number defined by the generating

function

U e VR T
ST =2 () B (432)
n=0

To compute necessary for us By, By, By we rewrite (432) in the form:

2 3 2

1

;(y+%+%---)(Bo—31y+32%-”): (433)
2 2

(1+%+%-~)(Bo—31y+32%'“):1

Putting By = 1, and equating coefficients of ™ to zero we obtain:

B
70 — B =0 (434)

and
By, By By

2 2 6

From here we have B, = % and By = %. Hence we recovered the vacuum energy

=0 (435)

in the Ramond sector (413). Now we compute the second Bernoulli polynomial.
Using (432) we can rewrite (425) in the form:
2

(BO_Bly+B2% . ')(1+qy+%‘y2+' ) = (BO(Q)+31(Q)ZU+B2(Q)%2 -++) (436)
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From here we have

Bo(q) = Bo (437)
Bi(q) = qBo — B (438)
and
Bs(q) = Bog> — 2B1q + By (439)
Hence By(q) = ¢* —q+ %, and we find Bg(%) = —%, thus deriving the vacuum

energy (412) in the NS sector.
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Lecture 10

Correlation functions and OPE of vertex operators

Baker-Campbell-Hausdorff theorem
Let us prove here the Baker-Campbell-Hausdorff theorem

eAtB = eBelet (440)

where
C =[A, B] (441)
and satisfies [C, A] = [C, B] = 0. Consider the following operator:

F(a) = e*tPB (442)

Z—z :Zii[(aAmB =D Z (@A + BB)*A(aA + BB)" 1

L dov
1 = n—1 n—2
> =Y ((aA+BB) A+ (n—Fk—1)(aA+ BB) ﬁC)
n(

(o

0A+ a0 =Y 4y ﬁB)“ﬁC)

2
= F(a) (A + %) (443)
Integrating (443) we obtain:
F(a) = F(0)e(A+%) (444)

Remembering that F(0) = ¢’8 and C' commutes with A we arrive to (440).
Exchanging A and B we also get:

A8 = eAeBe2 (445)

etePeT = eBele? (446)

and therefore:

eleB = ePetel (447)



Now using (447) we will establish the following identity:
(et e et ) =exp Z(AZAJ-) (448)
i<j

where A; = a;a+ f;a’ and a and a' are operators of creation and annihilation

satisfying the commutation relation:

[a,a] =1 (449)
Using (447) we obtain
wa ZG/T ZaT wa wz
evle*t = e** e (450)
We also have:
L= gfiel grie (451)

Az |,

In calculating the normal ordered product of a string : et :: e e of

vertex operators we want to bring all the annihilation operators to the right. For
instance, it follows from (450) that

eaiaeﬁi-uaT . eﬁnaT — eﬁi-!—laT . eﬁnaT eaiaeai(ﬁi+1+ﬁi+2+“ﬂn) (452)
Since [e*i®, e*%] = 0, this implies
e At efAn i g L pfn @0 (Bita HBivatBn) (453)
Applying this in succession from i =1 to i = n — 1, we find

Az e o (Bt n)al pleattan)e o Z ;B (454)

1<j

re
Since (A;A;) = a;; we obtain
cett etz e = e Ay Z<AiAj> (455)

1<J

Taking expectation value leads to (448).
Since a free field is simply an assembly of decoupled harmonic oscillators, we

have
L1 o P92 = paditboz . pab(die) (456)
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This relation yields
Valz, 2)Vs(w, ) ~ |2 = w*Vosp(w, @) (457)

The vertex operator has the form:

Va(z, 2) = el Oy )y ) (158)
where
osc 10p°5¢(z) 1 n 1 —-n
V(z) =€ = exp [— a E —Q_pZ ] exp [a E —apz ] (459)
n n
n>0 n>0

where ¢°°(z) is the oscillator part of the scalar, and
[¢0, CL(]] =1 (460)

From the mode expansion of ¢*¢(z)

(6°(2)¢™ (w)) = — Z %2_”w_m<anam> = Z% (%)" =—1In (1 - %)

n>0

(461)
From here and (455) we have
(Ve (z1) - V() = [ [z = 2 ™ (462)
i<j
For zero modes using
[ag, €14%°] = ae*% (463)
we get
<€ia1¢0€a1ao In(z171) | |, eiand)oeanao ln(znin)> _ H ’Zi‘Zaiaj (464)
i<j
when

> ;=0 (465)

i=1
and zero otherwise.
Collecting all we get
Vol D)V, @)} = | — ] 2 (466)
(Veu (21, 21) -+ Vi, (20, Z0)) = H |2 — 25l (467)

1<j
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when .
D ;=0 (468)
=1

and zero otherwise.
Let us give also path integral derivation of the vertex operator correlation
function. First of all note that the path integral generalization of the integral (5)

takes the form:

/D¢exp |:i/¢D¢dQZ+/idQZJ(Z>¢(Z):| = Z exp |:/d22d2Z/J(Z)G(Z,Z/)J(Z/):|
(469)
where G(z, 2') is free field propagator (327).
According to (52)

{exp { / idzzJ(z)¢(z)]> = exp { / szdQZ’J(z)G(z,z’)J(z’)} (470)

Now correlation function of the vertex operators can be derived taking

J(z) = Z ;0% (z — z) (471)

Inserting (471) in (470) we again obtain (467), omitting because of the normal
ordering the coinciding terms 7 = j.
Neutrality via the Ward identity

Let we have a symmetry with the infinitesimal transformation law
P'(z) = P(x) — iw,G,P(x) (472)

with the conserved current j#(z).

0
p

= Z Sz — 2){(®(21) - Go®(x;) - - D(,))

Ja(w)®(x) - - () (473)

Since the variation of the vertex operator under shift ¢ — ¢ + a is 6V, = taaV

and the corresponding conserved current is j# = —0"¢/4x the relation (473) takes
form:
i(@“gzﬁ(x)X) =— i ard(z — x)(X) (474)
oxH p
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where X =V, (21,21) -+ Va, (20, Zn).

Integrating the relation (474) over all space we obtain

X)) = 7{ dz(0pX) — f dz(06X) (475)

Since the integration contours circle around all space, that is, around point in
infinity the integrals hove no singularity outside the contours and the two contour

integrals vanish.
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Lecture 11

Coulomb gas

OPE
Consider the holomorphic part of the three-point function (288) in the limit
21 — 2. The leading term is:

(019s(21) B (22) dr(23)|0) = Cigulz1 — 22)"* M 7"2 (21 — 25) 72" (476)

The last term looks like the propagator of the field ¢3 and the expression sug-
gest that the two primary fields ¢; and ¢; contain in their product the field ¢s,
with strength Cj;,. The precise statement of this fact is the operator product
expansion, which says that the product of two operators O;(x) and O;(y) in field

theory can be expanded in a complete set of operators Og(z)
y) =Y Ciji(r — y)Ox(x) (477)
k

In conformal field theory we can take as the basis all primaries and a complete

set of descendants. Then the operator product expansion has the form:
¢i(z, 2)p;(w, w) Z Ciji(z — w)=hi=hi(z — )w=hi=hi g, (4 i) 4 descendants

(478)
Action

On a general Riemann surface the action of the scalar field would have a form:

S = % / d*21/9(9,00" ¢ + 2o R) (479)

where v is a constant. The above action is no longer invariant upon a translation
¢ — ¢ + a. The variation of the action is

- 7—7‘: / Pz /GR (480)

But the Gauss-Bonnet theorem states that the above expression is a topological

invariant:
/de\/gR = 87(1 — h) (481)

where h is the number of handles in the manifold. For the Riemann sphere h = 0.

Therefore the variation of thr action upon a shift is
dS = 2avy (482)
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Since the corresponding Noether current now is not conserved: the Ward identity
gets modified:

Z o = 7{ dz(0pX) — f{ dZ(06X) + 27y(X) (483)

Here X stands X = V5, (21,71) Vs, (2n, Zn). Denoting v = iv/2aq, the
neutrality condition (468) modifies to

> a; =209 (484)
=1

Tensor energy-momentum of the boson with the background charge

The tensor-energy momentum

1
T,uu - T( - 5 <a &ld) nuuaa aﬁb) (485)
The holomorphic component is then
1
T(z) = —5 DpdG = +iv 2000} (486)

We calculate the OPE of the energy-momentum tensor with the primary
field of the free boson and with itself. We have to look only at the extra term
iv2000%p. We easily find:

 2V2iay dp(w) D*p(w)
T(2)9¢(w) = (z —w)3 * (z — w)? + (z —w)

We see that d¢(w) is no longer a primary field. However the vertex operators are

Potalu) ~

what means that the conformal dimension of V, is now

(487)

still primary:

Vo (w) (488)

he = a* — 20 (489)

The dimension (489) is invariant under o« — 2y — a. Therefore the vertex
operators V,, and Vs,,_, have the same dimension.

The OPE of T" with itself receives the following contribution from the extra
term:

1 0?

—5iV2a0: 96(2)96(2) : 6 (w) = iv200, [ e (w))z v ¢(“’))
w

20 207 03
ooy [2000) 2000, Pote)

(z-w)  (z-w)? (2

+ reg} (490)

+ reg]
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—%i\/ﬁaoa%(z) 0 (w)O(w) - (491)

o [0ew) e oo
- ﬂ"@[ <z—w>2] V2000
2020%0(2)0b(w) % (192)

Summing all these contributions we find usual OPE of T with itself with the
central charge
c=1-24a? (493)

Consider the operator 9 of the conformal dimension h, = 1. Its integral
A ?f dzi(2) (494)

is invariant under conformal transformation.
There are only two local fields of dimension 1 available for the construction

of screening operators: the vertex operators V. defined as:

Vi = Vai (495)

ar =apt /a2 +1 (496)

One can check that the conformal dimension is

where

ot —2aia =1 (497)

Note that
ap +a_ =2aq (498)
aro_ =—1 (499)

Hence we have two screening operators

Qi+ = %dzvi(z) = jédzeiﬁai‘b(z) (500)

Inserting ), or ()_ an integer number of times in a correlator will not affect
its conformal properties but will completely screen the charge in some cases,
since @), and ()_ carry charges o, and a_ respectively. The modified two-point

function

(Va(2)Va(w) QT Q) (501)

66



should satisfy the neutrality condition
20+ may +na- =209 = aq + o (502)
Accordingly the admissible charges are
1 1
Qo = 5(1 —m)ay + 5(1 —n)a_ (503)

and denote
Vinn =V,

am,n

(504)

The conformal dimensions of these fields are

1
(€)= J(ma +na )? = o (505)
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Lecture 12

Minimal models
Consider oy and «_ satisfying the relation
pa;+pa_ =0 (506)
for some integers p and p’ (p > p’) . Then we have the periodicity condition
Qriplstp = Qs (507)
Using (498) and (499) we obtain:
ar = /v (508)

and
o = _\/p/_/p (509)

from which it follows that

1 p—p
Am.n = p(l - m) - p/(l - n) Qo = (510)
2\p'p 2\p'p
The relation leads: 6 o
c=1— Llp) (511)
pp
N2 (o N2
b (mp —np')* — (p —p) (512)
’ 4pp’
These are famous relations for minimal models.
The conformal dimensions (512) satisfy
hm’n - hp’—l—m,p—i—n (513)
P = Py —mp—n (514)

Let us derive the fusion rules. We want to find the fields ¢;; appearing in the
OPE of ¢,,, and ¢, ;. To do this we only need to concentrate on the thee-point
function. In the Coulomb gas representations, and using SL(2,C) invariance,

there are three equivalent ways of representing the three point function:
(Viz(00) Vinn(1)V2,6(0) QY Q) (515)
(Via (00) Vi (D V2o (0)QY Q7) (516)
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t

Vit (00) Vi n(D)Vis(0) Q4 Q)

(517)

The notation V5 indicates here out-state Vo,,—_q. The neutrality condition (484)

of (515) implies:

2000 — Qg+ Qg + Qs Hlioy Hloan = 20
or
1 1 1 1
—5(1 —k)ay — 5(1 —Da_ + 5(1 —m)ay + 5(1 —n)a_
1 1
+§(1 —7r)ay + 5(1 —s)a_ +tiap +t_a_ =0
implying
Ek—m+1—r+2t, =0

and

l—m+1—5+2t_=0

From here we obtain
E<m+r-—1 and m+7r—k—11s even

[<n+s-—-1 and n+s—101—11s even

Similar constraints come (516) and (517) thus leading to

k<m-+r—1
m<k+r—1
r<m+k-—1

m+7r+k is odd

and
[<n+s-—1
n<s+l(-—1
s<l+n-1

l+n+s is odd

Conditions (524) and (525) imply
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(520)

(521)

(522)

(523)

(524)

(525)



m4r—1 n+s—1

¢m,n X ¢r,s = Z Z ¢k,l

k=|m—r|+1,k+m+r=o0dd I=|n—s|+1,n+l+s=o0dd

Eq. (514) requires that simultaneously

2p' —m—r—1 2p—n—s—1

¢m,n X ¢r,s = Z Z ¢k,l

k=|m—r|+1,k+m+r=o0dd I=|n—s|+1,n+l+s=o0dd
Egs. (526) and (527) are compatible as long as

min(m+r—1,2p'—m—r—1) min(n+s+1,2p—n—s—1)

¢m,n X ¢r,s = Z Z (,bk,l

k=|m—r|+1,k+m+r=odd I=|n—s|+1,n+l+s=odd

what is well known fusion rule for minimal models.

(526)

(527)

(528)

It is then straightforward matter to see that the following set of indices

1<r<yp 1<s<p

(529)

closes under the above formula. This therefore constitute a legitimate truncation

of the set of admissible charges a; ; in the sense that the operator algebra closes

within this set.

Unitary minimal model

If one requires that Ay, , as defined in (512) is always not negative one obtains

the condition of unitary minimal models

Ip'—p| =1

Ising model

Take p' = 3 and p = 4. Then ¢ = %, oy = \%, and a_ = —73.
1 .
Qg1 = _% h2’1 — 5 € ez\/iazlﬁb
ayp = - hio = 1 o = eVI2é
’ 2 ’ 16

The corresponding OPE is

oxo=1+4¢
oXeE=0

exe=1
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Lecture 13

CFT on torus and Modular transformation

Torus
A torus may be defined by specifying two linearly independent lattice vectors
on the plane and identifying points that differ by an integer combination of these
vectors. On the complex plane these lattice vectors may be represented by two
complex numbers w; and w, which we call the periods of the lattice and hence
we have
W AW+ nwy + mws (534)

Naturally the properties of conformal field theories defined on a torus do not
depend on the overall scale of the lattice, nor on the absolute orientation of the
lattice vectors. The relevant parameter is the ration 7 = wy/wy, the so called
modular parameter. Hence we can choose wy = 277 and w; = 2.

Partition function on torus

Conformal field theory on a cylinder coordinatized by w can now be trans-
fered to a torus as follows. We let H and P denote the energy and momentum
operators, i.e. the operators that effect translations in the space and time direc-
tions Rew and Imw respectively. On the plane we saw that Lo+ Lo and Ly — Ly
respectively generated dilatations and rotations, so according to the discussion of
radial quantization we have H = (Lg)ey1 + (Lo)eyt and P = (Lg)eyt — (Lo)ey1. To
define a torus we need to identify two periods in w. It is convenient to redefine
w — 1w and as we discussed before to choose w = w + 27 and w = w + 277.

Denote by 7 and 7 real and imaginary parts of 7
T=7+1T (535)

This means that the surfaces Imw = 277 and Imw = 0 are identified after a
shift by Rew — Rew + 2771. Since we are defining (imaginary) time translation
of Imw by its period 277, to be accompanied by a spatial translation of Rew by
2771, the operator implementation for the partition function of a theory on torus

with modular parameter 7 is
7 — /65' _ Tre27T’L'T1P6727TT2H — Tre%rin((Lo)cyl—(zo)cyl)e—QWTQ((LO)Cy1+(ZO)Cy1) (536)
= Tre2mim(Lo)eyig=2miT(Lo)ey — TquLo_i(?Eo_i = (CJ@_ﬁTquoqio

where ¢ = ™7,
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Modular Invariance

The main advantage of studying conformal field theories on a torus is the
imposition of constraints on the operator content of the theory from the require-
ment that the partition function be independent of the choice of periods w; and
wy for a given torus.

We let w; and w) be two periods describing the same lattice as w; and ws.
Since the points w] and w) belongs to the lattice, they must be expressible as

integer combinations of w; and ws:

wy = aw + bwsy (537)
wy = cwy + dws
where a,b,c,d, € Z and ad — bc = 1.
These transformations (537) form group SL(2,Z).

Under the change of period (537) the modular parameter transforms as

at +b
— 538
T +d (538)
The generators of the transformations (538) are
T:7—71+1 (539)
and )
ST — —— (540)
T
The Hilbert space of the conformal field theory has the form:
H = &,;;Ri(c) @ Ri(c) (541)

R;(c) is the chiral algebra highest weight i representation. Hence defining the

character
Xi(T) = 'I‘rRiqLO_C/24 (542)

one can write

2(7) = 32 Noalr)x(7) (513)

where N;; denotes multiplicity of occurrence of R;(c) ® R;(c) in H. The first
obvious condition for the partition function to be modular invariant is that the

characters x;(7) define a representation space of the modular transpositions:
S xi — SIx; (544)
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T:x; — eQWi(hFC/M)Xi (545)

where h; is the conformal weight of the highest weight ¢. The matrix V;; in
the partition function is determined by demanding modular invariance of the

partition function of the model.

The free fermion torus partition function

To compute partition function of the fermion on torus we should specify
boundary condition of fermion in both direction. The fermion periodic (P) in
space direction has integer moding, and fermion antiperiodic (A) in space direc-
tion has half-integer moding. Also switching the boundary condition from the
anti-periodic to the periodic in the time direction is reached by the inserting of

F anticommuting with the fermion field 1 , where F is

the parity operator, (—)
fermion number operator. Denoting by the first index the boundary condition
in the space direction, and by the second the boundary condition in the time

direction and also remembering vacuum energies we obtain:

1 1
7 — — Ty(=\Fglo—1/48 — Tr(—)F g2n ko-rbr+1/24 546
1 1
7 — —— Trglo=1/48 — _— Tyg2n kb-kbrt1/24 547
VoI ol (547)
ZA p= TI.(_)FqL()—l/48 — Tl”(—)FqZ’f kb_kbk—1/48 (548)
ZA,A — Tqu0*1/48 — Tquk kb,kbk71/48 (549)

These partition functions may be easily calculated, since ¢g*° factorizes into an
infinite product of operators, one for each fermion mode (the same is true of

(—)¥. For example
ZA,P — q_1/48TI-qub—k:bk(_)Fk — q—1/48 H (Tqub—kbk(_)Fk) (550)
k>0 k>0

For a given fermion mode, there are only two states and the traces are trivially
calculated:
Trg-% =1 4 ¢* (551)

Tqu’b_kbk(_)Fk —1— qk’ (552)

73



We may therefore write the following infinite product for the partition functions,

and relate them to the theta functions:

o0

1
Zpp = ﬁq”% [[a-¢H=0

n=0

1 s Oy (T
n=0

_ q—1/48 H (1-¢") = 04(7)

i n(r)

Zan= g8 Tl_llﬂ(l +q) = 9;((:))
ba(7) = 24" [ J(1 = )1+ ¢")?
O5(m) = [[(1 = ¢") (1 +¢"/2)?

7)== —qg)

n(r)=¢"> (1 -q")

n=1

These functions have following modular transformation properties:

Or(7+ 1) = /40, (1)
O5(1 + 1) = 04(7)
Os(7 + 1) = 63(7)
e+ 1) = /()
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(556)

(557)

(558)

(559)

(560)
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The modular invariant partition functions has the form:
Z =\Zpal> +|Zap|> +|Zaal (563)

The Virasoro characters are

1
X1,1 = E(ZA,A +Zap) (564)
1
X2,1 = §(ZA,A — Zap) (565)
-1z (566)
X1,2 = \/§ PA

In the terms of Virasoro characters the partition function (563) takes form

Z =2(Ix11 + [x21)* + [x1.2%) (567)

The matrix of the modular transformation is

V2
V2 (568)

1 1
1 1
V2 —V2 0

1
=3
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Lecture 14

Free boson on torus
Recall the action of the free boson:
1 _
S=— /8¢8¢ (569)
27
We assume a bosonic coordinate compactified on a circle of radius R:
»=o¢+2rR (570)

That means that there exist instanton sectors with n,n’ windings of the boson

on a torus:
Go(z4+ 1,2+ T) = do(z,2) + 2nRn/ (571)

Go(z+ 1,24 1) = ¢o(2,2) + 2 Rn (572)

A doublet of integers (n,n') then specifies a topological class of configurations
obeying the above periodicity conditions, and a partition function Z, , is defined
by integrating over the configurations of such a class. The integration may be
done by decomposing over the configurations of such a class. The integration
may be done by decomposing ¢ into a special configuration, which is also a
classical solution to the equation of motion , ¢f"™ (with vanishing Laplacian)
and a periodic field. This reads

=" + ¢ (573)
/ 1
o = QWR%(TL/(Z —Z)+n(tz —Tz) (574)

The action S(¢) is then the sum of S(¢) (the action of the periodic field) plus
the action S (¢8’”,) of the classical linear configuration. Indeed, since nggv”’ =0,

the crossed terms in the action S(¢) are proportional to

/ P, 9 — — / P20 = 0 (575)

where an integration by parts has been performed. S (gbgm/) is easily calculated
n,n’ 1 n,n' 5 n,n’ WRQ / 2

S5 = 5 [ 0657 00 =T '~ n (576)
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Here we have taken into account that the torus area A = 75. Hence the path

integral can be written as
/ Doe > = Steg™ / D' e (577)

where the prime in the integration measure D’ gg indicates that the constant part is
excluded. Now remembering the values of the gaussian integrals we can formally

write

; > V2R
/7 —S(é) 17 fd m¢D¢
Jrieso - [padeiommym o

To compute (578) we will expand the field ¢ along the normalized eigenfunctions

¢, of the [ with eigenvalues —\,:

n

The functional integral over the nonzero modes is then

/ D' ge 5@ — / H \C/l;w exp ( - %zﬂ: Ancg) = 1;[ (%ﬂ)m (580)

The additional factor R+/27, comes from the constant mode integration. The

factor /7 = V/A comes from the normalization of the zero mode, and factor R
comes from the integration of the constant part : [ dpy = 27 R.
To evaluate det’[] as a formal product of eigenvalues, we work with a basis of

eigenfunctions:
.1 _ _
@Dnm _ GZWlE(n(zfz)%»m(Tszz)) (581)

single-valued under both 2 —+ 2+ 1 and z — z + 7. The regularized determinant
is defined by omitting the eigenfunction with n =m =0

2
det'0] = H 7r—2(n —71m)(n —7Tm) (582)
m,n#0,0 2

The infinite product may be evaluated using again (-function regularization.

Recall the following special values of (-function (416):

= f: n (583)

¢(0) = -3 (584)



and

1
¢'(0) = —3 In 27 (585)
In this regularization scheme we have:
H a=a"'®=q1/? (586)
n=1
and .
[[a=a*O" =1 (587)
H g = q—g(—l) _ q1/12 (588)
m=1
Taking into account that
¢(0)==> Inn (589)
n=1
we obtain: .
[[n* =@ = (@2m)/” (590)
n=1
From (587) we get
™ Ty T
=== (591)
m,go,o T2 2 nll 2 2
From (590) we derive
n? = (2m)? (592)
n#0
Now using (591) we can write:
det'O= ][ —22(n —7m)(n—7m) =% I (n—mm)(n—7m) (593)

m,n#0,0

Then separating m = 0 and m # 0 terms and using (592) we derive

det'D:%l—In2 H (n—Tm)(n—?m):%(Qﬂ)Q H (n—71m)(n—7m)

n#0 m#0neZ m#0,neZ

(594)

0 2
ra [ (1 = a—2> — sina (595)
n
n=1
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and (592), (586) we can also establish:

0 2

[ n+a)= aﬁ(—nz) (1 - %) — 2isinra (596)

n=—oo

Now separating m > 0 and m < 0 terms and using (596) we obtain

2
T _ _
det'0] = 7r—22(27r)2 H (n—71m)(n+7m)(n —7m)(n+ 7m) (597)
m>0,n€Z
_ 47_22 H (e—ﬂ'imr o eﬂimT)Q(e—mmi’ _ eﬂim’?)Z
m>0
=473 [[ (@) (1 = ¢™)*(1 — q™)”

m>0

And remembering (588) we end up with

detD = 473(q0)? [T (1 — a0 a7 = asdiP? (598)
m>0
Inserting (598) in (578) we obtain the first contribution to the partition func-

tion:

e |
D' el Toobo — —_ — 599
/ V21 (599)

Note that the expression (599) is modular invariant. Under the modular trans-

formation S
T2

72

Remembering the modular transformation of the n function

(600)

n(=1/7) = v~irn(7) (601)

we see that (599) is indeed modular invariant.
Now let us turn to the instanton contribution:

[e.9] o0

/ xR2 |
A D G AR (602)

n,n'=—oo n,n'=—oo

It is simple to check that (602) is modular invariant as well. Under a general

SL(2,7Z) mapping 7 — Z:ig the 7 dependent part of the exponent becomes

In" —n7|? |0’ — (nat + nb)/(ct + d)|*|eT + d?
Imr Im[(aT + b)(cT + d)]

(603)
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Using that ad — bc = 1 we easily obtain:
Im[(aT + b)(cT + d)] = Im7 (604)

hence

In' —nrl|? . |n'cr +n'd — (nat + nb)|? (605)

Im7 Im7
Thus the modular transformation acts on n, n’ doublet as the following SL(2, Z)
mapping :
n — na—n'c (606)

n' — —nb+n'd (607)

Since the SL(2,Z) mapping does not change the lattice of doublets n,n’ the
sum (602) is modular invariant. For example under the generators 7" and S the
doublets of windings transform:

T: n—n and n' — —n+n (608)

and
S n—n' and n — —n (609)

obviously leaving the full sum over n,n’ invariant.

For the purpose to compare the partition function (577) computed in the
path integral approach, with the partition function calculated in the operator
approach, we rewrite now the instanton contribution in the different for, which
can be reached via Poisson resummation. Let us at the beginning recall the
Poisson resummation formula.

Poisson resummation formula
> fm) =) fn) (610)

where f(p) is the Fourier transform of f(z)

f(p) = /00 ™ f (2)dw (611)

—00

To prove this relation we introduce the auxiliary function

F(z)= Y f(z+n) (612)

n=—0oo
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This function is manifestly a periodic function of 2z, which can thus be Fourier

expanded as

F(z)= Y e F(m) (613)
with . .
Fm) = [ dye=m ) (614)

Now we substitute (614) in (613) and also use the definition of F'(z) to obtain:

F(z)= Y e / dye™™ N " f(y+n) (615)

0

m=—00 n=-—oo
Using that e?™™ = 2™ (u+m)™ we can change the variable ¢/ = y + n. Combined
summation over n and integration by y can be written as an integration over the
whole R, thus yielding

F(Z) _ Z e—Qwizm/ 627riy’mf(y/)dy/ (616)
Using (611) we obtain:
P = 3 e fm) (017

The Poisson resummation formula (610) can be derived from here remembering
the definition of F'(z) (612) and by setting z = 0.
Let us apply the Poisson resummation formula (610) to the sum over n’ in

(602):

xR2 - 2 TR2 12 ’ =
- TN - (n"?=n'n(r+7))
Zinst = E e E e (618)
n n’
2 _ . 2 27r‘r'
00 2 / nR n2(7+7)2+2inprT — P 772
/ ¢ B (@Hmen(THD) pminn gy 272 e [ i " (619)
—00
Hence we have
R2 2 —\2 . 2m27r7‘
/27.2 —ERQ . |:7§T2 n?(7+7)%+2inmmrT — 72 2
Zinst - R E e -2 E (& - (620)
n m
\/2_7_2 |:— %WR2n2TQ +2inmmnT) — QmR;”?
= E (&
R
n,m
\/ 2T 1 R)2 1 R)2
= YN () ()
R m,n



Collecting all we have
7=2% glae) )’ (621)

The 7 factors have clear Hamiltonian interpretation. The bosonic Fock space
generated by o consists of all states of the form |m,n), a_|m,n), a?,|m,n).

Hence calculating trace in the |m,n) sector we obtain:

00 S 1
Tquo:H(1+qk+q2k+):H1_qk (622)
k=1 k=1

The instanton part is easily obtained from formulas (380) and (381).
U(1)y theory

The U(1)g chiral algebra (k € Z) contains, besides the Gaussian U(1) current
J = 1v2k0X, two additional generators

[ = eHiV2kY (623)

of integer dimension k and charge +2k. The primary fields of the extended theory
are those vertex operators €% whose OPEs with the generators (623) are local.
This fixes v to be

neZz (624)

Their conformal dimension is A,, = g. For primary fields, the range of n must
be restricted to the fundamental domain n = —k + 1, —k 4+ 2, ..., k since a shift

inX/V2k amounts to an insertion of the ladder operator I't, which

of n by 2k in e
thereby produces a descendant field.

From the point of view of the extended algebra the characters are easily
derived. A factor ¢®»~/2*/n(q) takes care of the action of the free boson gen-
erators. To account for the effect of the distinct multiple applications of the
generators (623), which yield shifts of the momentum n by integer multiples

of 2k, we must replace n by n + (2k and sum over [. The net result is

1 2
Unl@) = —~ D ¢" 2 (625)
1(q) ;
The action of the modular transformation S on the characters (625) is
1 —imnn’ . 1
n(q) = — e F Yy L 626
Uald) = 7= ; Yu(a) g - (626)
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Lecture 15

Crossing symmetry and Fusion matrix

Consider the for 4-point correlation function (®;(c0)®(1,1)®,(z, 2)®;(0,0)).
Using OPE:

D j5(2, ) Zc o Shohi=hughy=hi~hig (2 210, 0) (627)
where
U, (2, 210,0) = Y B BEE N ZK 6k (0, 0) (628)
kk
where K = > k;.

one can write

21 k ] ];: j —
> CoiCiian T [ i ] (2)F5 [ ; z‘] (2) (629)
pp

where

kg — Shp—hi—h pk K(h |(I)k( )L—kl ) "L—kN|hp>
z, [ i ] (2) = gﬁ ], (0] (630)

is so called conformal block. This conformal block is normalized

k
lim,_,oF, ‘; ] (z) = 2P .o (631)
By conformal transformation z — 1 — z we can write the correlation function in
the form o
cu _Ci o F, L 1 Fi L 1—2z 632
Z kkjj qqll ik ( —Z) ik ( _Z>7 ( )

These two conformal blocks are related by the fusing matrix
kg ko J LJ
fp[i l](z)_ZFp,q Z, l]fq[, ](l—z), (633)
q

ik
and hence one has:

kg

N

Fpaq

~ .

Z ijjpllclzﬁpp ] = (634)
PP

aq it
kkjj~ qqll
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Using the relation

k j il
S Foa | - 0| Fas | L | = O (635)
— ! B A
q
Eq. (634) can be written in the form:
(2 k ‘]
> ichetin | 1 |- 0
ll 5 l_
ZCZZ]] qqll [ ]%* 5* ] :

Putting in (634) ¢ = i = 0 we obtain the following useful relation:

k* k;* l*l*
Cﬂzz Clgk k*kx — Ckkgjclgl* - (637)
For diagonal model
Citi = CRilpp O O (638)

Eq. (636) takes the form:

Cy CPE,,

kp™~ 5l

= COL.C\F,

kj~ql

LR ] | (639)
J

To derive (639) we also used the symmetry properties

ko ik ol Lo
prq l - Fp*7q l* Z* - Fp7q* k* j - Fp*,q* j* k ] . (640)
Using (637), (639) takes the form
« k g k* 1
cr.enes B, | 7 | =cret et Fy, | ;* ] . (641)
J

To derive (641) we used (637) and the commutativity of the structure constants

by two lower indices in diagonal models :

Cz]k e = Cljcz ,cC* (642>
Setting ¢ =0, k = j*, ¢ = [ in (641), and using
Ci
cp. =2, 643
Coc (643)
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where Cj;« are two-point functions, we obtain:

J o1
CijCiwFop |
2
(Ch)" = P
COOcpp* p,0 i
Using the relation
FO,i j " Fz‘,o . =ik
J k J F;
where _
F; EFO,O Z Z. ] .
11

we can write (644) in two forms

joi
g

1

7 2

! foprolj* j]
b, . .

ni =/ Cii= | Fi,

min;
Czp = J FO
T nomp T
and
where
and

& :771'Fi =
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(644)

(645)

(646)

(647)

(648)

(649)

(650)



Lecture 16

Conformal blocks of the Ising model
Consider correlation functions requiring a single screening operator. For instance:
(VamV12V12Vm) (651)
has charge 2oy — a_ and therefore requires one )_, and
(VamV21 Va1 Vi) (652)

has charge 2ay — a, and therefore requires one @) .

Hence these conformal blocks have general form:

]{ dw (Vi (21) Vay (22) Vs (23) Ve (24) Vie (w)) (653)

We can write this block in a more canonical form using SL(2,C) invariance

f 0 (Vi (1) Viny (22) Vi (2) Vs (20) Vi () = (654)

¢ dwllj@zi - d“”}j Vo, (j_ 2) Vi(w)

Since w is integrated and Vi (w) is a 1-form, we can forget about the w trans-

formation. We now choose a, b, c,d, so that z; — 00, 20 = 1, 23 — 1, 24 — O,

where
212234

n= (655)

213224

This is achieved by

(2= z) (2 — )
v (21 — 2)(22 — 24) (656)

leading to
7{ dw(Va, (21)Va, (22) Vas (23) Vo (22) Vi (w)) (657)
ho+hz+ha—h1 2aia03 .23
2127 - n 2 377 3 Qoo aza Qi
= (—lj 14) ( 2h2) 2h3 _2h4 j{dw(l —w)2 : i(n—w)z Bk
24 2127213 %14

There are two independent contours Cy = [0,7] and Cy = [1,00[ , leading to the

two functions:
n
f dw(1l —w)*(n — w)’w? (658)
0

_ (1 +~)I(1 + ﬁ)nHB”F
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dwt - w2 - e (659)
rl+a)l(—a—p—-—~v-1) .
= F(—fy—ﬂ) F(—ﬁ,—a_ﬁ_7_17_7_6777)

We need the following properties of hypergeometric function:

F(a,b,c,;2) = (1 -2 F(c—a,c—b,c,;2) (660)
F(—n,n,c;z) = Lzl_c(l — z)”_b+c£[z"+c_1(1 — 2)b7] (661)
y 105 Gy (C)n dzn

where (¢), =c(c+1)---(c+n—1).

1 1 1
cosaz = cos zF (§+g,§—g,§;sin22) (662)
. . a a3 .,
sinaz =acoszsinzF [ 1+ =,1— = —;sin“z (663)
2’ 2 2

Let us consider the four-spin correlator (cooo).

In this case oy = ag = a3 = g = —%. The conformal blocks are given
by the integrals (658) and (659) with o = 8 = v = 2a;a- = —a? = —3. The
corresponding functions are:

1 311
—F (- - = 664
7 ( YL 2,77) (664)
and 55 3
=z 2= 665
(3.5.5) (665)
Using (662) and (663) we obtain for (664)
141
+ L A/ (666)
2p(1—n)
and for (665)
1=vi=n (667)
2(1—n)
Multiplying also by (1 — 7)3/®1%/® in front of integral we get for (664) :
RV
e (665)
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and for (665)

1 1 /1—+1-—
- 1 (669)
LT
Now we should fix normalizations. In the limit  — 0 in (668) yields n'/®.
Therefore the normalization is correct. In the same limit (669) should yields

n®/8. Therefore the correctly normalized block is

W% 1— /17 (670)

Thus we obtained for conformal blocks:

1 1+v1—-n

Fr=
PR YT

(671)

and /3
2
o= nt/8(1 —n)l/8 1—y/1-n (672)

The full correlation function is
<0’(2’1721)0’(22,22)0'(23,23)0’(24,24)) (673)

1 RE (%(Cc{g)z’l—i- V1=nl+2(C5,)? 1 — m')

B |Z1322477(1 -1

The structure constant C!_ is fixed by normalization to be 1. The other structure
constant C¢_ can be found from the requirement of the (673) to be invariant

under fusion. To check the invariance it is convenient to introduce the variable
2

1 = sin” z and write the expression in the parenthesis in the form:
cos g cos % + 4(C¢,)? sin g sin g (674)
The transformation n — 1 — 7 takes the form z — 5 — z. For C¢, = 3 (674)

reads

cos (Z 5 z ) (675)

which obviously invariant under z — § — z.
Let us find fusion matrix. The relevant transforming part of conformal blocks

using the z variable are

fr = cos g (676)
and
fe=2 sin% (677)
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These functions under the transformation z — 7 — 2 transform in the following

way

(5= =2 (ff + %f) (678)
fi(5-2)= -1 (679)

leading to the following elements of fusion matrix

o o 1 o o 11
F =— Fq = _—— 680
Tls o V2 | o 0] 22 (680)
_0 0'- 2 o o 1
F. =— F. = —— 681
! o o \/§ o O'] \/§ ( )

Collecting all we obtain for correlation function

<O'(21, 21)0'(22, 22)0'(23, 23)0'(24, 24)> (682)
1| 23204 |7
=5l (VI = VI
212723734741

This can also be written in the form:

(0(z1,21)0(22, 22)0 (23, 23)0 (24, Z4)) (683)

1 1/4 1/2
(1 gl 41— n|)

V2

212723234241
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Lecture 17

Topological preliminaries

Vector fields-Tangent space

X(fg)=Xf-g+[f Xg (684)
Of
Xf=X"—
f 5o (685)
(X Y]f=X(Y[f) =Y (X)) (686)
Cotangent space
a(X) = a; X" (687)
i 0 i
a = ada’ (689)
Of
X)=Xf=X'—
Af(X) = Xf = X2 (690)
This implies
af . .
df = ——dzx' 1
f = o5da (691)
Differential form:
W(Xo (i) Xo(in)) = €W (X1, -+ Xn) (692)
dz™ A« ANda'm = Z €o (dx"(“) ARERWN d:v”(i")) (693)

o

The expression (693) is antisymmetric towards permutation of indices
dz®@ A A dxln) = e da™ A - A dat (694)

The expression (693) form the basis in the space of the antisymmetric tensors:

1

W= —'wilmindx“ A« Adat (695)

n!
Dimension is C} = %
The wedge product

1 . ,

o= —'ail,_indm“ A Ada'™ (696)
n!
1 jl ]m
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aAB=———ay i B indx™ Ao Ndx' Adz?t A A dam (698)

nIm!

(@AB)X1, o Xogm) = Y €0t(Xoq1), s Xo@)B(Xawmer), - Xomem)) (699)

[

where sum runs over all permutations o with the property
o(l)<...<o(n) and on+1)<...<o(n+m) (700)

Exterior derivative

1 . ; a 91...9 j
A = —duy i, N2 Ao Ao = =Skt det A dah A Adatt(T01)
n! n! 7
In components
n+1 aw A .
a+1 J1---Ja---In+1
dwjlmjnﬂ = ;(_) i T (702)
Hat means here omitted.
We also have
dw(X7, .. Xpi1) = (703)
m—+1
> () Xew(Xa, o Koy X)) +
a=1
m  m+1
+Z Z )T ([ Xa, Xo], X1y, Xay oo Xay ooy Xong1)
a=1 b=a+1

The exterior derivative has the following properties:
=0 (704)

d@Nw)=dINw+ (—)"0 A dw (705)

where m is the degree of 6.
Pullback
Assume we have map of two manifolds F': X — ).
Then we have map of C*(Y) — C*>(X) given by

fx(x) = fy(F(z)) = fy o F(2) (706)

91



Map (706) defines the map of vector fields on X to vector fields on Ym called
differential of the I
Y =dF(X)(fy) = X(fy o F) (707)

Now we can define pullback of the differential form, mapping F* : Q()) — Q(X)
Fro(Xh,. .. Xon) = w(dF(X)),...dF (X)) (708)

where w is a form of degree m on ).

We can write the map F' in the local coordinates as
y = F(2q,...2n), j=1,...M (709)

Then the differential map in components take the form:

OFJ _ .
_ X

Y/ = — 710
o (710)
The pullback form has components:
(F )i i = g g Wit © F (711)
The exterior derivative commutes with the pullback map:
dF*w = F*dw (712)
The form satisfying
dw =0 (713)
is called closed. The form satisfying
w=do (714)

is exact. Every exact form is closed, but vice verse in general is not true. Consider
the exterior derivative acting on forms €2 of degree m. The factor of closed forms

by exact is called cohomology of degree m:
H™ = kerd/Imd (715)

Integration

Counsider the form:

dz"™ A -+ Adz™ (716)

= Ewil...in
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In the different coordinate system z it has the form:

1 y y
w=—wy gdx't N--- ANdz' (717)
nl v
with the components:
oz Qx'n
Wiy — W4 718
= O (M)

Consider the differential form of the maximum degree N, equal to the dimension

of the space. It has one component
B R (719)
which transforms as a density, namely gets multiplied by the Jacobian:
p=pJ (720)

Therefore the integral
/ pdzt A AN (721)
X

is independent on the change of the coordinates.
Stoks theorem

If the manifold has a boundary we have the Stoks theorem:
/ dw = / dw (722)
X ox

Two smooth maps f and g between X and ) are homotopic if there exist a

Homotopy groups

smooth map

F:XxI—=Y  I=]0,1] (723)
such that
F(z,0) = f(z) and F(z,1) = g(z) (724)

By other words f and g homotopic if can be smoothly deformed to each other
via the family of maps f; = F'(x,t). Under the relation of the homotopy all maps
between X and ) divided to classes, homotopy classes. The homotopy classes of

the maps of sphere S™ to a manifold called group of homotopy m, (M).
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Lecture 18
WZW model-Action

The world-sheet action of the bulk WZW model is

k _ _ Kk I,
SWIW () = i ZTr(@zg lﬂzg)dzdz—l—E/Bgtr(g ldg)? (725)

ﬁ [/ dszLkin—i-/wWZ} ,
A | s B

B is a 3-manifold such that 0B = . This action depends on the extension

of the field on three-manifold B. However this extension is not unique, hence
there is a potential ambiguity in the definition of the second term. Indeed, in a
compactified three-dimensional space, a compact two-dimensional space delimits
two distinct three-manifolds. The difference between two choices quantifies the
ambiguity. Taking the orientation into account, the difference is given by the
second term but with the integration range extended over the whole compact
three-dimensional space. Since the latter is topological equivalent to the three-

sphere one can write

ASWVEW — / wW? (726)
S3
Now we show that this integral is integer. First of all using the relation
0w"? = d[Tr(dgg™" (dgg~")*)] (727)
we obtain:
/ swWV% =0 (728)
S3

Hence the integral (726) is invariant under the continuous deformation of g. It
implies that the integral depends only on the homotopy class of g. On the other
hand the Polyakov-Wiegmann identity

WwV2(gh) = wW2(g) + wWVE(R) — d(Tr(g_ldgdhh_1)> , (729)

implies

/S i wV%(gh) = /S i WV (g) + /S 3 wWVZ(h) (730)

Let us also recall that m3(G) = Z. Therefore homotopy classes of the map
g : S® — @ are labelled by integer numbers, and maps belonging to different
classes have different value of the integral (726). Choosing the map g; with the

94



unit value of the integral we can take as representative of other classes the maps
g7. Each such representative has value n of (726). Therefore with k integer the
functional integral is well defined.

We can also show that for G = SU(2) the integral (726) coincide with degree

of map.

5(Tr(0zg*182g)) = (731)
Tr (599*1[2628299*1 — .99 0,99 — 0zgg*10599’1])

—~Tr <3z(5gg’1azgg’l) - 05(599718,299*1))
=Tr (599‘1[82(8zgg‘1) +0,(0:997")] — 0.(6g9 ' 0:997") — 82(599‘1@99‘1))

dw"? = d[Tr(dgg~ ' (dgg~")?)] (732)

/ b ? = / Tr(dgg ' [0:99 0.9~ " — 8.99 " 0:99™"] (733)
B >
= / Tr(6gg9 '[0:(9.99") — 0.(0:99 )]
>

Taking the sum of (731) and (733) and omitting the full derivative terms we

obtain:

k
sSWVEW (g) = %/ dzdzTr[6gg 1 0:(0.99 )] (734)
)
Alternatively we can write:
0(Tr(9.97'0z9)) = (735)

=Tr [9*159[82(?1@9) +0.(97'0:9)] — 0.(0gg 0299~ ") — 9:(699 0,997 ")

5w = d[Tr(g " 6g(g "dg))] (736)

/ oW = / Tr(g~"'dglg™ D299~ 0.9 — g~ 'D.99™ " D:g] (737)
B b
= / Tr(g~'0g[0.(g9™ " 0zg) — 0z(g™'0.9)]
Y

Again taking the sum of (735) and (737) and omitting the full derivative terms

we obtain: )
55V (g) = o / d=d=Tr[g 690, (g~ 0:9)] (738)
>

™
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Let us draw conclusions from equations (734) and (738). Taking dgg~tor g 1dg
arbitrary we get that EOM of the WZW model is

0-(0.997") = 0 (739)

or equivalently
0.(97'9:9) = 0 (740)

On the other hand taking dgg~! = w(2) holomorphic we see from (734) using the
integration by parts that §,,S = 0 identically. Therefore the WZW action (725)
has the symmetry

59 = w(2)g (741)

and the corresponding conserved current is
J(z) = —kO,gg™" (742)

The EOM in the form (739) coincides with the condition of of the conservation of
the current (742). Therefore the current (742) is holomorphic. Similarly taking
g 10g = @(Z) anti-holomorphic we receive from (738) using the integration by
parts that 955 = 0 identically. Hence the action (725) has additionally the
symmetry

0zg = —gw(2) (743)

and the corresponding conserved current is
J(z) = kg 0.9 (744)

Again the EOM in the form (740) coincides with the condition of of the con-
servation of the current (744). Therefore the current (744) is anti-holomorphic.

(Classically the components of the tensor-energy momentum are

1
T = %Trﬁ (745)
_ 1 -

T =5 TeJ (746)

The symmetries of the WZW model can be also derived using the Polyakov-

Wiegmann identities:

LY (gh) = LM"(g) + LM"(h) — (Tr(g‘lazgé’ghh‘l) + Tr(g‘lazgazhh‘1)> (747)
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WWV2(gh) = WwW2(g) + wWVE(R) — d(Tr(g_ldgdhh_1)> , (748)

Let us elaborate the WZW action for SU(2) group. A three-sphere S is a group

manifold of the SU(2) group. A generic element in this group can be written as

. Xo + 11X, Xo+1X
g = X()O'O + Z<X10'1 + XQO'Q + X30'3) = ( 0 3 2 ! ) (749)

— (X —iXy) Xo—iX3
subject to condition that the determinant is equal to one
X0+ Xi+XJ+X;=1. (750)

The metric on S? can be written in the following three ways, which will be used

in the main text. Firstly, using the Euler parametrisation of the group element

we have
g = eix%eié%ew% (751)
1 - ~ ~
ds? = 1 <(dX + cos 0dip)? 4 df? + sin? 9dc,02> = (752)

1 N _
7 (dx2 +dp? + df? + 2 cos dedgo)

The ranges of coordinates are 0 < 0 <m 0<p<2rand 0 <y <A4r.
Secondly, we can use coordinates that are analogue to the global coordinate
for Ad53

Xo+iX; = cosfe®, X,+iX; = sinfe (753)
ds?> = d6? + cos® 0d@? + sin® Hd¢? . (754)

The relation between the metrics (751) and (753) is given by

X=¢+to, p=9¢—0, 0= (755)

2
2
| ™

The ranges of coordinates are —m < gE, ¢p<mand 0 <6 < 7.

Thirdly, the standard metric on S® is given by (7 is a unit vector on S?)

g = 2057 , ds? = dy? + sin® ¢ (d€? + sin® £dn?) (756)
Xo+1iXs = cosy +isinpcos€, X, +iX; =sinysinée™.  (757)

The ranges of the coordinates are 0 <, £ <7 and 0 < n < 27.
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In the parametrisation (751) we have

gildg = i(LlUl + LQO’Q + L30’3)
where

1 x .z

L, = 5(—(19 sin ¢ + sin 6 cos pdy)
1 -~ .

Ly = 5((19 cos ¢ + sin 0 sin pdy)
1 .

Ly = E(dgo + cos Od)

Tr(dg'dg) = 2ds*

1 _
ng(g 'dg)® =

1 ~ ~
4L1 N L2 VAN L3 = 5 sin dededgp

—2ZL1 A\ L2 A\ L3T1"0'10'20'3 =

98
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(759)

(760)
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Lecture 19
WZW model-Quantization

Remembering (260) we have

1 a Ja a (l
doaX = —5 dsz JX+—fdsz JoX (762)
where
J=Y"JT", w=)» w'T" and Ti(T"T") =" (763)

The transformation law for the currents follows from (741) and (742)

0pd = —k(@z(&ug)g_l — 8Zgg_15wgg_1) (764)
—k(0.wg + wd,q)g ' + kd.gg 'w
(w, J] — ko,w

It can be rewritten as

Oud = ifapew’ I — k.0 (765)
b,c

Comparing (762) and (764) we arrive

kdap J(w)
JU2) I (w) ~ — i fape (766)
(z —w)? Z (z —w)
This will be called a current algebra. Introducing the modes J from the
Laurent expansion
JUz) =Y N8 (767)
neZ

we can obtain the commutation relations of the affine algebra Lie at the level

I8, T0) = i fabe T + KnOabOnmo (768)

[

The transformation property of J is

8o = @, J] — koo (769)

This yields another copy of the affine algebra for the modes J,. Since (%) is
independent of z
0ud =0 (770)
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This implies
[J2,J2] =0 (771)

n“m

Normal ordering
The OPE of A and B is written as

A)Bw) = Y {éB_ };j;? (772)
then the normal-ordered version is
(AB)(w) = {AB}o(w) (773)

The contraction is defined to include all the singular terms of the OPE

A(z)B(w) =) % (774)

Hence the above expression for the normal ordered product can be written as:
(AB)(w) = lim, ., [A(Z)B(w) — A(z)B(w) (775)

The method of contour integration provides another useful representation of our

newly introduced normal ordering;:

(AB)(w) = —— 7{ ) Bw) (776)

27 Z—wW

A (BO)(w) = —— 74 ¥ ADB@CW) + B@)ARCw)}  (777)

271 T —w

Consider now the normal ordered version of the tensor energy-momentum:

T(z) =7 ) (J"I)(z) (778)

1

P ) = o

r—w

[J“(z)Jb(:c)Jb(w) + Jb(x)Ja(z)Jb(w)} — (779)

211

1 dz Kday ; J¢(x) b
2mi wx—w{((z—x)Q—i_; fabc(z—x)>J( )

+J°(x) ((Zk_éa;y + Zifabc—(;]c_(qzj)> }
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Developing OPE we obtain:

T4 (2) (T (w) = 2% ]{ gixw {kfz”if;‘;) (780)
Z.fabc ‘]d( ) kj(SCb c7b w
R ><”%—ww+@—wv+“JX))

kéabJ (JPJ°) (w
Z fabc _ <)):|

Due to the antisymmetry of the structure constant f,;. the term f,;.0., vanishes.

We now sum the result over b and use

- Z fabcfcbd - Z fabcfdbc = 2h/G(Sad (781)
b,c b,c
where hg is the dual Coxeter number. Moreover we also have
Z Fapel(J0T0) + (J2T")]0 = (782)
We end up with
J(w)
Je J' I (w) = 2(k + ha) ———5 783
(&) =20k +he) (783)
Inverting the order of the fields we obtain:
J(z) J*(w) 0J*(w)
T(z)J® =29k +hg)—= =2v(k+h 784
(97°(0) =1+ he) s =2kt h) | s P (7sa

The request of the current to have the weight one leads to the condition:

1
S 785
70k + he) (785)
Finally for the tensor energy-momentum we get:
1
T — a Ja
)= e 2T (756)

Having calculated the OPE T'(z)J%(w) now we turn to the singular terms in
the OPE T'(2)T (w):

T T(w) = (787)

2(k i he) % m{xw Z [WJ“(w) + J(2)T(2)Jo(w)
¢/2 , 2T(w) , IT(w)

(z—w)t  (z-w)?  (z-w)
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with
kdimg

e

(788)

In the components we have

1 a ja .
Ln = m ;; . Jm‘]n—m . (789)

Normal ordering is necessary only for n # 0 , since for these n J¢ and J¢_
commute. For n = 0 normal ordering means us usual that positive indices modes
placed at the rightmost position. Collecting all, we have the following set of the

commutation relations

(L, Ly = (0 —m) Ly + 5 . - )0 4m.0 (790)
Ly Jp] = —mJ i,

[‘]ga Jqlq)l] Z ifabc n+m + knaab(sn-i-m,o

[

Proof via the mode expansion

2(k + he)[Ln, J2&) = ZZ [Jege . Je] = (791)

22 IV T TR
Z Z ‘]f? (Z Z.fbacJTCL,Ter + k:(n — r)(sab(;n—r-i-m,O) —+
b T C
Z Z <Z ifbact]:+m + kr(5a65r+m70> JZ_T
b T c

The delta symbols terms from the both lines yield:

—2kmJ?

n+m

(792)

The first terms in both lines should be brought to the normal ordered form with

lower index placed to the left position:
Z Z Z ifbachlﬂ)JfL r+m (793)
b r c
Z Z Zifbacjf‘]ri r+m + Z Z szbac n—r—+m r + ZZbed n+m -

b ,,,<n+m c n+m
- 2
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ZZZ@fbac J,I?JTCL r4m - +Z Z Zlfbaczlfbcd ntm =
b r c

b r> n+m c

Zzzifbac J;)JTCL r+m'+2 Z hG ntm
b r c

r> n+m

Zzzlfbac r+m n r (794)
Z Z szbac r4+m n T+Z Z szbac Jn rjf.t,_m szbcd n—i—m) =

b r<Bgm b r> 0o d
Zzzl‘fbac' r+m n = Z Z Zlfbaczszcd n+m —
>nim
Zzzszac- rtmIn— r'_2 Z ha Iy im
r> 0o

Changing the summing variable » — r+m the normal ordered terms get canceled
due to difference in the order of the b and ¢ indices. The difference of the second

terms gives

—2mhe i (795)
as we expected.
[Ln,L k+ hG ZZ L JT ‘]m r = (796)
—Z(k; i) ZZ (L, JOIE_, + T Ly, JE_]) =
—1 a a a Ta
2(k + he) ZZ e (=) )

Bringing both terms to the normal ordered form, i.e. moving the higher index to

the right position we obtain:

oL = Sy Do (o Ty s+ ) P ) (79T)

kdimg
+W(5m+n Z (—7")(71 + 7’) + Z (7” — m)r

m—n m+n
> >

Changing the summation variable in the first term r’ = r + n the first two term
yield
(n—m)Ly1n (798)
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The last line can be written as

kdimg
—— man —r)n+r)+ r—m)r| = 799
irigte | Z e+ X e-m (799)
kdimg = kdimg 3
/7 . 7 - = Ts77 1~ - 5m n
20+ o) ; =) = g g T WO
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Lecture 20

Representations of the affine algebras

Here we will review the Cartan-Weyl basis of the algebra and the general facts
on the highest weight representations.
In the Cartan-Weyl basis the generators are constructed as follows.

One first finds the maximal set of commuting generators: H',i =1,...r:
[H', H'] =0 (800)

r is called the rank of the algebra. This set of generators form the Cartan
subalgebra h.
The generators of the Cartan algebra can all be diagonalized simultaneously.

The remaining generators can be chosen to satisfy:
[H', E*] = o'E” (801)

The vector is called root and E® is the corresponding ladder operator. Equation

(801) via its Hermitian conjugate, shows that if —« is a root as well with
E~ = (E*)f (802)

In the following A denotes the set of all roots. To find the remaining commutators

we first observe that the Jacobi identity implies:
[H',[E*, EF]] = (o' + 5")[E*, B (803)

If a + 3 € A, the commutator [E®, E] must be proportional to E**# and it
must vanish if « + § is not root. When o = —f, [E*, E~%] commutes with all
H', which is possible only if it is a linear combination of the generators of the
Cartan subalgebra. The normalization of the ladder operator is fixed by setting

this commutator equal to 2« - H/|a|* where
a-H=>) o'H, o> =) oo’ (804)

So, the set of the commutation relations in the Cartan-Weyl basis is

[H', H'] =0 (805)
[H', E°] = o' E~
[E*, EP] = Ny gE*"P, if a+p8€A

=2a - H/|af if a=-p

=0 otherwise
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The Killing form
1
K(X,Y) = Q—Tr(aandY) (806)
g

g is the dual Coxeter number of the algebra. The standard basis {J¢} is

understood to be orthonormal with respect to K:
K(J?, Jb) = &% (807)
The same normalization holds for the generators of the Cartan subalgebra:
K(H', H) =" (808)

The cyclic property of the trace yields the identity:

K(Z,X],Y)+ K(X,[Z,Y])=0 (809)
Hence we obtain:
K(E® E) = m% (810)

Positive roots
Let us fix the basis in the space of roots {31, - - - 5, }. Any root can be expanded

in this basis: .
1

« is said positive if the first nonzero number in the sequence (nq,ng, -+, n,). The
set of positive roots we denote by A, .

A simple root «; is defined to be a root that cannot be written as the sum
of two positive roots. There necessarily r simple roots and their set {ay, -, }
provides the most convenient basis for the r -dimensional space of roots.

Highest root

A distinguished element of A is the highest root #. It is unique root and
which, in the expansion ) . m;q; the sum ) . m; is maximized.

Highest weight representations

For an arbitrary representation a basis |A) can be found such that

HYN) = X[\ (812)
The eigenvalues A’ form the vector A\ = (A',---\") called a weight. Roots

are weights of the adjoint representation. The commutator (801) shows that E*

changes the eigenvalue of a state by a:
H'EY|\) = [H'E®]|\) + E“H'|\) = (' + \)E¥|\) (813)
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so that E*|\) if not zero, must be proportional to a state |A 4+ «). This why E*
is called ladder operator. Let us consider finite-dimensional representations. For
these we will get very important relation. For any state in a finite-dimensional

representation, there are necessarily two possible integer p and ¢ such that

(BTN ~ E*| A4 pa) =0 (814)

(B~ N) ~ E7*A —ga) =0 (815)

for any root a.. Notice that the triplet of generators E%, E~% and a - H/|a/?
forms an su(2) subalgebra analogues to the set [J*,J~, J?] with commutation
relations

[JT,J7] =23, [J3, J5] = +£JF (816)

Therefore if |[A) belongs to a finite-dimensional representation, its projec-
tion onto the su(2) subalgebra associated with the root o must also be finite-
dimensional. Let the dimension of the latter be 25 4 1; then from the state |\)
the state with highest J® = « - H/|a|? projection (m = j) can be reached by a
finite number, say p applications of J* = E®, whereas, say, ¢, applications of
J~ = E~* lead to the state with m = —j

o (a,N) ()
_ i _ 817
= Tap +p I =g T4 (817)

Eliminating j from the above two equations yields:

(@, A)

2 P =—(p—2q (818)

(a,))
|a?

Hence any weight in a finite-dimensional representation is such that 2 is an
integer.
Since the weights are roots of the adjoint representation the scalar products

of the simple roots defines the integer entries Cartan matrix:

v - s
AU:% (819)
J

Finding all the Cartan matrices leads to the Dynkin classification of the Lie
algebras.

Among all the weights in the representation the highest weight is the one
for which the sum of the coefficients expansions in the basis of simple roots is

maximal. As a result for any positive root @ A + o cannot be a weight, so that
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E*|A) =0, (820)

for any positive root.
Starting from the highest weight state A),all the states in the representation

space can be obtained by the action of the lowering operators as
EPE=...E™" for By, ....,n€e AL (821)

Highest weights of the affine algebra
In the Cartan-Weyl basis the commutation relation of the affine algebra takes
the form:

[H!, H?] = knd” 8, 4mo (822)
[H,, Ep) = o' By,
(B, B3] = NagEntm, if a+BeA

2

‘&‘2 (Oé Hn+m + kn5n+m 0) if = —5

=0 otherwise
The highest weight state now is defined to satisfy:

Hi\) = EX¥|\) =0, n>0 (823)
HiIN) = M|\, and ESI\) =0, a >0

Consider again the su(2) subalgebra generated by: Ef, E,°, ﬁa - Hy. Com-

mutation relations imply:

(ALEGEy N = (AEGE, “|A) = AAA) = (824)

2
"
Hence we must have oo - A > 0.

Now look another su(2) subalgebra generated by: E,, E“, ﬁ(—a-Hoqu‘).
From (822) we have

AECESA) = (MEUES N = |2|2( a-A+k)AN) = (825)

Restrict ourself for simplicity to the case of unitary algebras for which all

roots normalized to 2.
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Since the component of the J3 generatot of su(2) are integer , and we know
that for any weight A #a -\ is integer, we obtain that £ is integer.
Then it follows from (825) that any highest weight shold satisfy the inequility

a- A<k (826)
The condition (827) is stringent for the highest root 6
0- A<k (827)

Using the expression (790) for Ly we derive the conformal weight of the highest

weight state:
C

2(k + he)

where () is the quadratic Casimir of the representation A.

Lo|\) = A) (828)

Let us specialize to the SU(2) group. Note that the normalization of structure
constant, f7% = \/2¢7*. It comes from the requirement Tr(7°77) = §“, which
implies that for SU(2) we should take T = % Because of the v/2 in the
commutation rules, we need to take

1 1
I =—Jt+iJ? and P =——
3 ) Ve

to give a conventionally normalized su(2) algebra [IT, 7] = 213, [I?, I¥] = &I+,

I (829)

in which 273 has integer eigenvalue in any finite dimensional representation. But

from the commutation relation of the affine su(2) algebra we find that

N 1 . 1 1 1
It=—=J, —iJ2), I =-—x=(J+iJ%) and [3:§/<:—EJ§’ (830)

V2 V2

as well satisfy [+, 17] = 2I°, [I*, I*] = I+, so 2I° = k—2I? also has integer
eigenvalues. It follows that £ € Z for unitary highest weight representations.
Since the quadratic Casimir in the chosen normalization, in the representation j

has value C; = 2j(j + 1), therefore in the adjoint representation j = 1, C,q; = 4,

hsu(2) = 2,
and the central charge of the corresponding affine algebra is
3k
= — 831
“Tht2 (831)

Here we have one root and all weights are given by half-integer numbers j.
0 < (GITI715) = GILTTTNG) = (lk = 21°]5) = k — 2 (832)
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and the highest weights of the su(2) affine algebra are given by the half-integer
7 satisfying the inequality:
27 <k (833)

The conformal weight of these states are:

iG+1)
h = 4
A ;) (834)

The matrix of the modular transformation is

2 ((2a+1)(2j + Dr
S, = . 835
! krooh < k+2 (835)

Characters are o o
I+1,k+2 — Y—l—-1,k+2
= : : 836
X1 @172 — @_172 ( )
@m,k(Ta z, U) — o 2mimu Z eZm’m(nQTfnz) (837)
n€Z+m/2k
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Lecture 21: Coset models

GKO construction
Assume we have subgroup H of group G: H C GG. We denote the G currents
by J& and the H currents by Ji;, where i runs only over the ajoint representation

of H,i.e. from 1 to |H| = dimH. We can now construct two stress-energy tensors

1G]
Tol2) = i 2t H4 () (839)

and also -
Th(s) = gy 2 ¢ T () (539)

Now we have:

Tilw) | 0i(w)

TG(Z)J}{(M)N (z—w)2 (Z—U))

(840)
but as well that

Ty(w) | 0Jy(w)

2

Ty (2) Ty (w) ~ (841)

(z —w) (z —w)

We see that the OPE of (Tg — Ty) with J}; is non-singular. Since Ty above is
constructed entirely from H currents J% it also follows that Tg /i =1Tg— Ty has

a nonsingular OPE with all of T. This means that
T = (TG - TH) + Ty = Tg/H + Ty (842)

gives an orthogonal decomposition of the Virasoro algebra generated by T into
two commuting Virasoro subalgebras, [T /g, Ty] = 0. To compute the central
charge of the Virasoro subalgebra generated by T¢/m, we note that the most
singular part of the OPE of two Tz’s decomposes as

cq/2 ca/2+ cy/2

Tclg=——""— ~Tg/x1 TyTy ~ 843

The result is
ka|G| ke |H|

ko +he ki +hi
To understand better the states that arise in the G/H theory, we need to consider

(844)

CG/H = CG — CH =

how the representation of G decompose under (842). We denote the represen-

tation space of affine G at level kg by |cg, Ag), where ¢ is the central charge
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appropriate to kg, and Ag is the highest weight of the vacuum representation.
Under the orthogonal decomposition of the Virasoro algebra Tg = Tg/p + T,

this space must decompose as some direct sum of irreducible representations
lcas Aa) = @jlearu, by ) © len, Xy) (845)

where |cq/m, hé, / ;) denotes an irreducible representation of T¢,y with lowest Ly
eigenvalue hg g 1t follows immediately from the decomposition (845) that the
character of an affine G representation with highest weight A\ satisfies:
k c ki _
X3 () = DX G/H(A“G,AJ,;)(T)XAZ = XG/H * Xay (846)

hc/u

J

In (846) the Ly eigenvalues hg/y characterizing the Ty, Virasoro representation
depend implicitly on the highest weights A& and )\%{ characterizing the associated
G and H representation. On the r.h.s. of (846) we have introduced a matrix
notation.

Under modular transformation:

ar +b
ct +d

viT = (847)

the characters allowed at any given fixed level kg of an affine algebra transform

as a unitary representation
Xt (') = M*e(y)xte(r) (848)
with (M*¢)? a unitary matrix. But from (846) we also have
XFa (') = xFer (7 ) ME ()" (7) (849)

Linear independence of the G and H characters then allows us to solve for the

modular transformation properties of the T, g characters as

xterm (r) = MR (y)x e (r) MM (7)) (850)
By other words
MG/H('Y)()\GG,,\;I);()\%,A;{) = M*e ('V)Ag,A’éMkH (V)A%,)\;{ (851)
Also we have
hayu(N Ay) = by, — by, +n (852)
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Lagrangian of coset model: Gauged WZW model
Let G be a compact, simply connected, non-abelian group. The G/H coset
CFT, where H is a subgroup of GG, can be described in terms of a gauged WZW
action, where the symmetry
g — hgh™ (853)

g € G, h € H is gauged away. An H Lie algebra valued world sheet vector field A
is added to the system, and the G/H action on a world-sheet without boundary

becomes,
GG/H _ gG/H | geauge (854)
_ i_i [/EdQZLkin _I_/wazwl
+]2€—7C; g *2Tr[A:0.997" — A.0:99 " + AsgA.g~ " — A A,

Introduce H group element valued world sheet fields U and U as

A, =0,UU! (855)
A= 0.00 (856)

Then the coset action becomes:
SCG/H — SCMH(=1gU)) — SH(UTLD) (857)

The level ky of the S¥ term is related to kg through the embedding index of
H in G. The model has then the following symmetries . First of all one should

identify configurations related by the local gauge transformation

9(z,2) = h(z,2)9(z,2)h (2, 2) (858)
U(z,z) = h(z,2)U(z,2)

U(z,2) = h(z,2)U(z,z)

with h(z,2) € H.

Minimal model

Now we turn to the specific case of coset spaces of the form G x G/G, where
the group G in the denominator is the diagonal subgroup. If we call the generators
of the two groups in the numerator J* = J(“l) + J&).The most singular part of
their OPE is

ab
J(2)J(w) ~ J&)(Z)Jé’l)(w) + Jé)(z)J(bQ) (w) ~ M + - (859)

(2 —w)?
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so that the level the G in the denominator is determined by the diagonal embed-
ding to be ki + ky. A simple example of this type is provided by

G/H = SU2)r x SU(2)1 x /SU(2)41 (860)
in which case
3k 3(k+1) 6
= k+1+2 (k+2)(k + 3) (861)
We can write the conformal dimensions of the minimal models in the form:
(r—s)? r?—1 s2—1
hys = — 862
, I T Adk+2)  i(k13) (862)

Solving r2 — 1 = 4j(j + 1), and s> — 1 = 4n(n + 1) we get r = 25 + 1, and
s=12n+ 1.

The parafermion A7F*%) = SU(2)y

U(Dk

The chiral algebra of this theory has a set of irreducible representations described
by pairs (j,n) where j € 37,0 < j < k/2, and n is an integer defined modulo 2k.
The pairs are subject to a constraint 2j +n = Omod2, and an equivalence relation
(j,n) ~ (k/2 — 7,k +n). The character of the representation (j,n), denoted by
Xjn(q), is determined implicitly by the decomposition

k+1

X7 =D X @ala) (863)

n=—k

The action of modular group on the character is

Xnld) = Y S0 G X (@) (864)
G

and the PF S-matrix is

1 iwnn/
PF o Ann
Stm).irn) = me E S (865)

where S;;; defined in (1076).
When combining left and right-movers, the simplest modular invariant parti-
tion function of the parafermion theory is obtained by summing over all distinct

representations

Z= > |ual* (866)

(],TL)EPFk
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The parafermion theory has a global Z; symmetry under which the fields ;,

generating the representation (j,n) transform as

27

g: Yin W jn, w=er . (867)

Therefore we can orbifold the theory by this group. Taking the symmetric orbifold
by Zj. of (866) leads to the partition function

Z= Y XjnXi-n- (868)

(4,n)EPFY

We see that effect of the orbifold is to change the relative sign between the left
and right movers of the U(1) group with which we orbifold. Therefore the Zj
orbifold of the parafermion theory at level k is T-dual to the original theory. This

fact will be the basis of many constructions in the main text.
TH(2) = Vb V/HE) (869)

J7(2) = Vil e VR
JO(2) = V2kd.¢(z)
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Lecture 22: C=1 Orbifold model

In conformal field theory the notion of orbifold acquires the following meaning.
We start by taking a given modular invariant theory 7, whose Hilbert space
admits a discrete symmetry G consistent with the interactions or operator algebra
of the theory, and constructing a modded-out theory 7 /G that is also modular
invariant.

Orbifold conformal field theories occasionally have a geometric interpretation
as o-models whose target space is the geometrical orbifold. This we shall confirm
momentarily in the case of the S*/Z, example. But we shall see examples however
where the geometrical interpretation non-existent. Consequently it is preferable
to regard orbifold conformal field theories from the more abstract standpoint of
modding out a modular invariant theory by a Hilbert space symmetry. We will
consider here the case of the abelian symmetry group G.

The construction of an orbifold conformal field theory 7 /G begins with a
Hilbert space projection onto GG invariant states.

Therefore the first part of the partition function has the form:

Z5h = lal ™ lzéTngqLOq‘LO (870)
9€G
This means that we sum over all insertions of the operator realization of group
element g in the trace over states, or alternatively this can be understood as
twisting in the time direction. To have modular invariant partition function
we should add contribution of the configurations twisted in the space direction
x(z+ 1) = hi(z):
Zorh = |q|_c/l2é Z Trrgg™ g (871)
g.heG
Now let us consider the free boson orbifolded by Z5 symmetry ¢ — —¢.
According to (871) the partition function takes the form

1 - 1 r
Zowy, = | 1/12§T1"+(1 + G)g" g™ + |q| 1/12§Tr—(1 + G)ghoqh (872)

Here G is the operator realization of the inversion ¢ — —¢, Tr, denotes the trace
over untwisted sector considered before and Tr_ denotes the trace over twisted
anti-periodic sector ¢(z + L,t) = —¢.

Let us analyze the chiral contributions. Consider the projected contribution

in untwisted sector:
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f(),% = Tr+GqL°_1/24 = Tr+GaneN anan—1/24 (873)

To compute this trace note that the inversion flips signs all the creation and
annihilation operators and the winding and momentum zero modes. Therefore

we can split the untwisted chiral Hilbert space into G’ = %1 eigenspaces H:

H' ={an, - acn,(Im,n) + ] —m,—n))} + (874)
{a—m T a—n2k+1(|m> TL> - | - m, _n>)}
H™ ={an o, (lm,n) — [ —m,—n))} + (875)

{an, -y, (Imyn) 4+ [ = m, —n))}

Since the first line in H* has the same Ly eigenvalue as the first line in H ™,
but opposite G eigenvalue, their contributions get canceled. By the same reason
get canceled also contribution of the second lines in H* and H~. Hence the only

contribution comes from the |0,0) sector. Summarizing we obtain:

B ad 1 2n(7)
for=q % = 876
0»2 71;[1 1 + qn 92 (7_) ( )

Now we address the twisted sectors. Oscillators in the twisted sectors half-integer

modded. Therefore the Ly has an expansion:
Ly = ! E D ApQy, = E oy, + 1 g n (877)
2 2
nez+1/2 nEN+1/2 neN+1/2

Using (-function regularized value of the sum of half-integer numbers, we get:

1
Lo = E —
0 anan+48 (878)
neN+1/2

Hence we have for chiral contributions:

1 n(7)
L = Tr_glo = g1/48 = 879
f;,o q q NH —q 04(7) (879)
r=N+1/2
fii=Tr_Gg" =¢/* ] Lo [ (880)
22 1+ qr 63 (T)

r=N+1/2
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Also taking into account that we have two twisted sectors differing by two
ways of acting on ¢: ¢ — —¢ and ¢ — 27 — ¢ we end up with

1
Zow = 5 (Z(R) + 1o P+ 2l fy ol +21f5 1) = (881)
1 nl Il |
~Z(R)+ = + o + o
22 15, T el T e
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Lecture 23

Boundary c=1 systems

Let us consider a conformal field theory on the ¢ — 7 strip, 0 < o < 7, peri-
odic in the 7-direction with a period 7. The manifold is an annulus with the
modular parameter ¢ = exp(—2miT"). Given certain boundary conditions on the

boundaries of the annulus, labelled o and 3, the partition function is:
Zop = Trexp(—2miT H,p) | (882)

where H,p is the Hamiltonian corresponding to these boundary conditions. This
is the open-string channel. One may also calculate the partition function using
the Hamiltonian acting in the o-direction . This will be the Hamiltonian H®)
for the cylinder, which is related by the exponential mapping ¢ = exp(—i(t+io))
to the Virasoro generators in the whole ¢(-plane by H") = LE)P) + L_O(P) — /12,
where we have used the superscript to stress that they are not the same as the
generators of the boundary Virasoro algebra. To every boundary condition «,
there corresponds a particular boundary state |«) in the Hilbert space of the
closed strings; this enables us to compute the partition function by the following

formula:

Zos = {a| exp(—miHP JT)|8) = (a|(@/2)= +T0" =125} (883)

where § = e 2™/,

This is the closed-string tree channel.

The boundary entropy for each boundary is defined by Affleck and Ludwig:
9o = (0]a) . (884)

The phases of |0) and |a) can be chosen such that (0|«) is real and positive for all
boundary states |«). In the path integrand language, g, is the value of the disc
diagramm satisfying « type boundary condition. Affleck and Ludwig have shown
that, at least in conformal perturbation theory, the value of g always decreases
with the flow of the renormalization group.

The equality of (882) and (883) provides a convenient way to calculate g, as

shown in the following.
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Boundary action

S = / 0X0Xdxtdx~ (885)
The variation of the action in the presence of the boundary takes form:
68 = — / 200X 6 X dxtdr™ + /(8de+ —0Xdx™)6X (886)
Now let us take:
T =740 (887)
T =T—0 (888)
Oy =0—0 (890)
Assume that boundary located at o = 0 (open string loop channel).
In this case the boundary term takes the form:
/(8Xda:+ —0Xdz™)0X = /&,X&XdT (891)

and we have two kinds of boundary condition: Neumann boundary condition
95X |o=0 (892)
and Dirichlet boundary condition is
Xlo=0=0 (893)
If the boundary located at 7 = 0, the boundary term takes the form:
/ (OXde" — X dz )X = / 0. X5 Xdo (894)
and the Neumann boundary condition takes the form:
07 X[ r=o (895)
and the Dirichlet boundary condition is
X|r=0=0 (896)
Neumann boundary conditions
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Closed string tree-channel
The action with the Neumann boundary condition can include also the Wilson

line term at the boundary :

_ 1 " o 1B
S_%/O do—/dTaaxa X+§ W /BdX, (897)

where B labels boundaries and yp are the constant modes of the U(1) gauge
potential coupling to the boundaries (and are periodic, with periods 7/R). We
assume that the boundaries carry also Chan-Paton factors whose index we choose
to take two values, 1 and 2. Thus at the enhanced symmetry point we have a
U(2) gauge symmetry, which is generically broken down to U(1) x U(1) by the
Wilson line.

Here we consider a world-sheet with two boundaries, the annulus diagram.

In order to find the boundary entropy, the theory should be compared in two
channels: the closed-string tree channel and the open-string loop channel.

In the closed-string channel the first task is to find the boundary states |V;),
with Chan-Paton factor ¢, which are found by imposing the corresponding bound-
ary conditions. The boundary is located at 7 = 0 and one has the usual condition

of vanishing momentum flow:
0.X(0,0) = P(0,0)=0. (898)
Inserting the mode expansion:
— pT i 1 —2in(t—0) ~ _—2in(t+0)
X(o,7) —m—|—2wR0+E—l—§nZ#)E[ane + dpe . (899)

where p and w are correspondingly integer momenta and winding numbers, we
get:
p =0, ap = —Q_y . (900)

Taking into account the properties of coherent state and the U(1) modes y; we
get for |N;):

N;) = —rwiwelt _Omnlon ) g 901
)= oy e e (0 oo

n>0

where the phase factor comes from the Wilson line term:
B :
— [ dod,X = 2iypwpR , (902)

0
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where wp is the winding number of the boundary.
We see that the normalization factor gy = (0|V;) gives us the boundary
entropy. Inserting the expression for |V;) and the closed string Hamiltonian
P’ 2 2 Y 1
H:4—R2—i—wR +N+N—ﬁ (903)

in (883), we obtain for the partition function in the closed string channel:

—iTw? R? —im - 1
Zy2 = gr(Na|exp (—) exp {T(N +N - —)} [N1) =

T 12
2 2 D2 2 2
an —2i(y1—y2)wR (—m’w R ) _ 9n 0 <_R )
= e exp| —— | = = — (2 —y1)R | , (904
n(q) Zw: T n@ "\ T (82 = 3) (504)
where .
n(q) =q"* T -q") (905)
n=1
is the Dedekind function, and
O5(7,2) = Z exp(imn®t + 2inz) (906)

is the third theta function with the modular parameter 7. To calculate gy, one
turns to the open string loop channel.

Open string loop-channel

The Hamiltonian should be computed with a given boundary condition. First

consider the mode expansion for X. The action takes form

1 T
S=_— / do / drd X" X + 22 / dro, X — 2L / Ao, X | (907)
2m Jo ™ T
We see that the space-time momentum gets modified
(1 Yo Y P Y2— W
P= —0. X + = — =4(m — == 908
[ (Gox 2oty - Lom )] = B4 B2 o0y

Therefore the mode expansion of the solution of the equation of motion with the

Wilson lines parameters y; and ys is:

— 1
X =z+ (% - %) T4+ HZ;AO —an cos(no) exp(—inTt) , (909)
where p is an integer. Inserting this in the open-string Hamiltonian, we obtain:
Lip p-—u\ 1
H=-|=>+4+"—7— N——. 910
2 (R + s + 12 (910)
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The partition function in this channel is :

R —ir TP 2Tp(ys — )
2= S e ( - ) 011
n(q) zp: R R o
—iTwr-yp)? 1 ( T  T(yo _y1>>
R Y (S D
n(q) R R
Equating (904) and (911) and using the properties of modular transformations:
1 1/2 itz% /7
O5( =,z | =717 Os(7,72) (912)
T
(@) = (=1)"*n(q) , (913)
we obtain:
& =R, (914)

Dirichlet boundary conditions

Closed string tree-channel

The boundary entropy for the open string with Dirichlet boundary condition
is similarly evaluated, starting again with the closed string channel.

The boundary condition determining the boundary state is :
X|ro =y (915)

leading to:
w =0, ap = a_y, . (916)

From these conditions, for the boundary state located at the point y we get

|Dy) = gp,0(x—y) exp (Z a_nn&—n> 0) = gp, Ze% exp (Z Oé—nnd_n> ’%70> :

n>0 P n>0
(917)
Inserting this in (883) we have for the partition function in this channel:
Zis = (D, —imp? —in N—l D)=
12 = gp\Ly, | €XP AR2T exp T( + ﬁ) |Dy,) =
2 . 2 2
9D —ip(y1 —y2) —1TTp 9p 1 yo—
— = 05 | — . 918
TOR IR exp<4R2T) (@) 3( TR 2R ) 1)

Open string loop channel

123



In order to analyse the open-string loop channel, according to (882), the

Hamiltonian must be expressed with the Dirichlet boundary condition. The mode

expansion of the coordinate X with the boundary conditions

Xlo=0 =1 (919)
X|0:7r = Y2 (920)
is .
Y2 — : . .
X = 2R -y, — 921
Y1+ < - L ow ) o+1 RZ#) —a sin(no) exp(—inT) (921)

Substituting it in the open-string Hamiltonian leads to:

1 (yo— 2 1
H= 2w N-—-—. 22
2( - -+ R>+ B (922)

Finally, the partition function in this channel is:

e~ T (y2—y1)?

Zhy = Z exp (—4inTw?R? — 4iwRT (yo — 1)) = (923)

@93(—@}?, —2RT(y2 — y1)) -

Equating the partition functions in the two channels and using (912), one obtains:

9 =755 - (924)

2R

Results are consistent with 7T-duality.
Neumann-Dirichlet mixed annulus diagram

Closed string tree-channel

—im ~ 1
ZND = ngN<D|eXp |:T(N+N — —)] ‘N) =

i~—1/z4<><> I 1)
Al =g

Open string loop channel
The mode expansion with the Dirichlet boundary conditions on one side

(925)

0:X 5o =0 (926)
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and Neumann boundary condition on other side

0o X|o=r =0 (927)
is
XPN — 20+ 2i Z I g—int sin(no) (928)
n
nGZ-F%
The partition function is
1 n(q)
Znp = q"* = 929
ND q H ) 1 — qn 04((]) ( )
’I’LGN""g
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Lecture 24

Boundary rational conformal field theory

Suppose we have a theory containing besides tensor energy-momentum 7" the set

of conserved currents W), The boundary conditions in the upper half plane are
T(2) = T(2)].== WO(z) = WO(2)|.— (930)

The first of these conditions has the direct physical meaning of the absence of
energy-momentum flow across the boundary T,; = 0. In this case, the eigenstates
of H,s will be organized into highest weight representations R; of the extended
algebra. These representations R; will be labelled by an index ¢ whose speci-
fication includes the Lg-eigenvalue of the highest weight state. We then define
the non-negative integer nfw to be the number of times that the representation ¢
occurs in the spectrum of H,z. The partition function in the open string channel
(882) is then

Zap = Trexp(—2miTHap) = > nlgxi(q) (931)

where x;(q) is the character of the representation i.

Corresponding boundary states should satisfy

<W(’") . (—)hWW(fi) ) =0 (932)

Define the anti-unitary operator U acting in the way
oW = (—yw WU (933)
Using |7, N), N € N, to denote an orthonormal basis of R;, one can define
Ishibashi states:

) =1, N)@Ulj,N) (934)

Let us show that the Ishibashi states are solutions of (932). To see this,

consider the vectors (k, N1| ® U(l, Ny|. Then

(k, Nl @ UTL N (W3 = (=) W) ) 1)
>k Na| @ UL N (Wi = (=) W) 15, N) @ UTj, )
N=0

(935)

=) [<’@N1|<W,$’“>|j7 N N[5, N = (=) (e, Ny L, MY NoJUT 0 U N
N=0

= (e, N | (WL, Ny — 0 No W e VL) =0
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Ishibashi states satisfy
((F1a i) = di(@) (936)

The boundary states are linear combinations of the Ishibashi states:

= BLli) (937)

Inserting expansions (937) in the expression (883) for the partition function in
the closed string channel we obtain:

Zas = )_(BL) Byxild) (938)

Performing modular transformation we get for partition function in the open

string channel:

Zag =Y _(BL)"BSix;(a) (939)

.3

Equating (931) and (939) we derive
> (B BySy =i (940)

%

Cardy has found a solution with the help of the Verlinde formula

S SjiSi
941
Z S, (941)

In Cardy’s solution, the boundary states |«) carry the same labels as the irre-

ducible representations, and their expansion into Ishibashi states is

Z \/S_m (942)

The second part of the condition (930) may be generalized to incorporate a

possible “gluing automorphism” 2
W(z) = QW (2)|.—= (943)
The corresponding boundary state |«a)gq satisfy the condition

(W = () aT,)) laja = 0 (944)

n

The state |a)q is given by a linear combination of twisted Ishibashi states |i))q:
i) = (Id@ Va)li) (945)

where Vj, is the representation of €2 on Hilbert space.
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Lecture 25

Cardy-Lewellen equation
Let us derive the cluster condition for usual branes. Consider a boundary state

=2 Bali)) (946)

where @ runs over primaries, and [|i)) are Ishibashi states. Recall the relation

between coefficients BY, and one-point functions

_ Uldi;
<(I)(ﬁ)(2’, Z))a = m (947)
in the presence of the boundary condition a:
) Bt
Ut = aemA (948)

« BO

Consider now two-point function (®;(z1,21)®P;(22,%22)) in the presence of

boundary in two pictures. In the first picture one applies first bulk OPE

_ _ (zz)( 7) _
(21, 21) 7y P22, 22) () = Z (o1 — ) A B Ba (5, — 5y A D(ry (22, Z2)+. ..

kk

(949)

and then evaluates one-point function resulting in:

(i (21, 21) @) (22, 22)) ZC(M Uk Fi- [z*

k,a,a

] (950)

BN ERSN|

where

o~
ESH RN

Fie [ J ] (951)
is conformal block.
In the second picture one first applies bulk-boundary OPE
R “
O (2,2) =Y =7 T v O (952)

m,s

where, and index s counts different boundary fields and runs s = 1, . where

OLOH

n coeflicient of character y,, in the annulus partition function between brane
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a with itself, and then evaluates two-point function of boundary fields resulting
in

(g jj ,51,8 ? .
(@ (21, 2) ) (22, 2))a = 3 RUD (RYD s [ t ] (953)

m,s1,82 ! ]
where 51,52 §
aQ,Sy a,s2 — M 954
(Wit @)y @) = 2 mE (954)
and

F [ : j ] (955)

is conformal block. Using braiding relations between chiral blocks

] ZB j]Fm[Z ?] (956)

] ZRMI 197 82 () Co72 (957)

Fe

ECH N

one derives:

ch ;Uk 5

Putting m = 0 one obtains:

J

7;*

ol =

(k,k*) kp(+) i
Z Clih i U B

(i )(JJ

= UlyUl,, (958)

where we took into account that Rg(a) = U!§;+;. The traditionally used reflection
amplitudes differ by phase

i i imA
They have the advantage, that related to boundary states coefficients without
phase factor: A

=i _ Da

Ul = B0 (960)
Recalling relation between braiding and fusion matrices:

(+)[i j] (At A—Ap—Ag)

B = 'M\BkTRIT2r™2d) [

pq l{? l pq

il
. j] (961)

and symmetry properties of fusion matrix
ko j
l

F

pq

:F**

P q

L ] (962)

129



we receive that U (ia) obey the equation:

() |k A N
Z CollimUbR | | = U0, (963)
J J
Using the relation
iS; 1
Ch = Siby , (964)
§o&p g
Fp,O . .
i
where
&=V CuFi. (965)
we obtain
> URN} & _ grig (966)
g,
where N} are the fusion coefficients. Defining
{7k — gk (967)
€o
one can write (966) in the form:
S UENS = 0w (968)

k

In rational conformal field theory one has also the relation

So0
F,=— 969
where S, 1s the matrix of the modular transformations.
In RCFT two-points functions can be normalized to 1. Therefore in RCF'T

& = m Eq. (968) is solved by
g = Sk
¢ S[)a
Taking into account the relation between one-point functions U* and coefficients
of the boundary state B¥

(970)

N BF

Ut = 0 (971)
we obtain the formulae for the Cardy states:
Sak

Bk

“ = o (972)
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Lecture 26
Boundary WZW model

Let us consider boundary conditions satisfying the relations:
J*=J a=1,---dim G (973)

As we explained before in the absence of the boundary the WZW action

possesses the affine G X G symmetry:
g = hi(2)ghz'(2) (974)

The boundary condition (973) implies that the symmetry (974) is broken to the
diagonal symmetry, requiring that h;, = hg = h on the boundary. The presence
of this symmetry constraints the boundary conditions that can be placed on g.
Allowing g(boundary) = f for some f € G we must also allow g(boundary) =
hfh™ = C; for every h € G. This means that g on the boundary takes value
in the conjugacy class containing f. Now we are going to write down the corre-
sponding boundary Lagrangian. Recall that to write the WZW model we used
the three-manifold B satisfying the condition 0B = ¥. When the world-sheet ¥
has itself boundaries, it cannot be the boundary of a three dimensional manifold,
since a boundary cannot have boundary. To define the WZW term for this case,
one should fill holes in the worldsheet by adding auxiliary discs, and extend the
mapping from the worldsheet into the group manifold to these discs. One fur-
ther demands that the whole disc D is mapped into a region inside the conjugacy
class in which the corresponding boundary lies. B will then be defined as a three-
manifold bounded by the union > U D,which now has no boundaries. To make
the action independent on the location of the auxiliary disc inside conjugacy class
we should demand that

VY (e, = duy (975)

and modify the action by the boundary term

k
Sboundary — SWZW . E /Dwf (976)

First of all using the Polyakov-Wiegmann identities it is easy to check that indeed
(975) for C; = kfk~! fulfilled with:

wp(k) = Te(k~'dk k' dkf ) (977)
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Now we can check that the action (976) is invariant under the transformation
9 = hi(z)ghy' (2) (978)

with the boundary condition Ay, (2)|boundary = PR (Z)boundary = h(T).

Under this transformation, the change in the L¥" term is canceled by the

corresponding ¥ integral of the boundary term from the change in the wW%W

term. In the presence of a world-sheet boundary there remains the contribution
from D to the latter change. And since according to the Polyakov-Wiegmann

identity
WV (hgh™') — WV W(g) = d(Tx[h " 'dh(gh 'dhg™" — g 'dg — dgg™")]) (979)
we have

. k
A(Skln + SWZW) — 4:_/DTI,[h—ldh(gh_ldhg_l _ g—ldg — dgg_1>] (980)

™

On the other hand under this transformation k — hk and
wy(hk) = ws(k) = Tr[h ™ dh(gh™ dhg™ — g~'dg — dgg™")] (981)

Here g = C; = kfk™'.
Equations (980) and (981) imply invariance of the action (976) under (978).
Let us now elaborate boundary equation of motion. The full derivatives terms

from (731) gives the following contribution to the boundary terms:
/ Tr[6gg~'0.99 'dz — g9~ ' 0:99 " dz] (982)

To find contribution from the w"*V and w;(k) terms note the identity:

Tr(g~'0g(g™"dg)*)|g=c — dwy(k) = dAg(k) . (983)

Ap(k) = Te[k 0k(f k1t dkf — fE~ Yk f). (984)
Using the parametrization
z2=T+1i0 Z=T—10 (985)

and taking boundary at the o = 0 we get

dk

ak .4
de dr

(936)

/Tr [599‘18Zgg_1 — 099 '0:g97 + k‘_lék:f_lk‘_lgf — k7 YkfE?
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Remembering that g = kfk™!, after some transformation we obtain:

/ Tr [25%—1 (97'0:9 + D.997") }dT (987)

Therefore boundary equations of motion imply
g '0:9+0.997" =0 (988)
or recalling the definition of currents
J=J (989)

as expected.

Global issues

The modified action (976) is independent, by construction, of continuous de-
formation of D inside Cy. However, in general, the second homotopy of a conju-
gacy class my(Cy) is non-trivial. If we compare then the value of the action for D
and D', two different choices of embedding the disc in Cy with the same bound-
ary, D' may not be a continuous deformation of D in Cy. In that case the above
analysis does not imply that the two ways to evaluate the action (976) agree.
Since there is no natural way to choose between the two embeddings, (976) is not
yet a well defined action. In particular, for G = SU(2) the conjugacy clases C;
have the topology of S?, the two-sphere generated by all possible axes of rotation
by a fixed angle in three dimensions. One may then choose D and D’ such that
their union covers the whole of S2. In that case the difference between the action
Sp, the value of (976) with embedding D, and Sp with embedding D’ is

AS:%[/BWWZW—/QM] (990)

where B is the three-volume in SU(2) bounded by the two-sphere C;. For the
case of SU(2), which has the topology of S2, the form wW#W 4 times the volume
form on the unit three sphere. For C; with f = €™ the first term in (990) is

/B WwVEWV = 8 (ep — %sin(w)) (991)

As to the two-form w it is proportional to the volume form of the unit two-sphere.

We can directly compute for Cy
w! = sin(21))volS? (992)
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This gives for the change in the action for two topologically different embeddings
AS =2k (993)

Although this is non-zero, the quantum theory is still well-defined if AS is an
multiple of 2. We find that the possible conjugacy classes on which a boundary

state live are quantized, the corresponding v must satisfy
wzzw% (994)

Boundary states geometry

Given a boundary state,

a)e _.jij (995)
VEZ

the shape of the brane can be deduced by considering the overlap of the

boundary state with the localised bulk state |6), with § denoting the three SU(2)

angles in some coordinate system. As we will see, the boundary state wave

function over the configuration space of all localised bulk states peaks precisely

at those states which are localised at positions derived by the effective methods

in the previous sections. In the large k limit, the eigen-position bulk state is

Z V25 +1D7 (0)|f, m,m), (996)

jm,m/’

given by

where Dfnm, are the Wigner D-functions:

Dznm’ - <]m|g(§)|]m/>’ <]m|]m/> = 5m,m’ (997)

where [jm) are a basis for the spin j representation of SU(2). To calculate the
overlap with the boundary state, we will need the knowledge of S-matrix of SU(2)
at level k,

Suj =

(998)

2 . ((2a+1)(2j+ Dr
S1n .
k+2 k42

In the large-k limit the ratio of S-matrix elements appearing in the boundary

state simplifies to

Saj (2(k-+—2))1/4

\/ng A/ T 2j+
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where, to shorten the notation, we have introduced zﬂ = (2212)’7. Using these

results, the overlap between the boundary state and the localised bulk state

becomes

" 2(k +2))1/4 ~ -
Flte~ B sul (2 + )IIDy 06 (1000
Finally, one needs the property of the Wigner D-functions that Y D7 (g) =
W, where 1) is the angle of the standard metric (756) and defined by the
relation Trg = 2 cos®. The overlap (1078) becomes
- (2k +4)'*

(Ola)c ~ sy Zsm 2j + 1)¢] sin[(2 + 1)¢] (1001)

and from the completeness of sin(ni) on the interval [0, 7] one concludes

= V(k 4 2)1/4

Blade ~ Frrgmg 0@ —¥). (1002)

Hence we see that the brane wave function is localized on 1 = const. .
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Lecture 27

Non-maximally symmetric boundary states in WZW model

Lagrangian construction Let us consider the D-brane as a product of the
conjugacy class with the U(1) subgroup:

lboundary = LC = Lhfh™" (1003)

where L € U(1). We should check that on this subset exists a two-form w(®)
satisfying the condition:
dw(z) - wWZW|boundary (1004>

It may be easily checked using the Polyakov-Wiegmann identity:
WwVWV(LO) = WwVEY(L) + WwVEY(O) — d Tr (L' dLdCC ™) (1005)

Using that for the abelian group, L, wWZW (L) = 0, and

WwVW(C) = dw! (h) = d Trh~'dhfh~'dhf™! (1006)

we get that indeed
WV W oundary = dw® (L, h) (1007)

where
w?(L,h) = wf(h) — Te(L*dLdCC™Y) (1008)
Now the action is
5= gwaw _ * / w(L,h) (1009)
i Jp

Let us show that the action (1009) is invariant under the symmetry
9(2,2) = hi(2)g(z, 2)hr(Z) (1010)

with hr(2)|boundary = Pr(Z)boundary = k(7), k € U(1). Under this transformation
L — kLk and C — k~'Ck and h — k™ 'h.

Under the transformation (1010), as before the change in the LY term is
canceled by the corresponding ¥ integral of the boundary term from the change
in the wWV%W term. In the presence of a world sheet boundary there remains the

contribution from D to the latter change

k
ASWEW — E/ Tr[k~tdk(g dg — gk *dkg™" — dgg™")] (1011)
D
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where g = LC'. Substituting this value in (1011) we get

ASVEW — %/ Tr[k~'dk(C1dC—Ck™'dkC'+C ' L7 dLC—dLL ™ —dCC™)]
T JD

(1012)
Now we compute w® (kLk, k~'h) — w® (L, h) using that

WO (k) — WP (h) = Te[krdk(CkrdkC™ + C7HC + dCC™Y)]  (1013)
and

Tr[(kLk) td(kLk)d(k™*Ck)k™'C™ 'k — L™'dLdCC ™" (1014)
= Tr[k'dk(2dCC™" +2Ck™ dkC™ + L7'dL — C~'L™*dLC)]

resulting in

WA (kLk, k7 h) — w (L, h) = Te[k~1dk(C~*dC — Ck~tdkC~ —(1015)
dCC™' — L7YdL + C7' L' dLC))

which cancels (1012).

Geometry

Brane is given by the conjugacy class multiplied by the U(1),, group: § =
g=nhf h=le% = CL. The geometry of the image can be determined as follows
. Using the fact that TrC = Trf = const = 2 cos ¢ we can write

Tr (ge_io‘%> =2cos. (1016)

From here we see that the element g belongs to the image of the brane surface
if and only if there is a U(1) element (%) such that the equation (1016) is
satisfied. So let us determine for which ¢ this equation admits solutions for
. Denoting with 6, ¢ and ¢ the coordinates of ¢ in the parametrization given
in (753), the equation (1016) takes the form

cos 6 cos(¢p — %) = cos, (1017)
or equivalently,
~ a, cos?
< cos?(p— =) = <1. 101
0 < cos®(¢p 2) o2 = (1018)

Hence, equation (1018) can be solved for a only when cos? # > cos? 1, or equiva-
lently when
cosf > cos2 , 6 =20. (1019)
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We see that the image of the brane is a three-dimensional surface defined by the
inequality (1019).

Boundary state

Let us start by reviewing the T-duality between a Lens space and the SU(2)
theory. Geometrically, a Lens space is obtained by quotienting the group manifold
by the right action of the subgroup Zj of the U(1), and in the Euler coordinates
it corresponds to the identification ¢ ~ ¢ + 47”. In terms of the SU(2) WZW
model this is the orbifold SU(2)/Z[, where ZE is embedded in the right U(1).

The partition function for this theory is

Z = ZXSU(2) X @e (@) (1020)

and coincides with the one for the SU(2) group, up to T-duality. This relation
enables one to construct new D-branes in the SU(2) theory starting from the
known ones. As a first step one constructs the brane in the Lens theory. As is
usual for orbifolds, this is achieved by summing over images of D-branes under
the right Z multiplications. Performing then the T-duality on the Lens theory
brings us back to the SU(2) theory and maps the orbifolded brane to a new
SU(2) brane.

Our starting point is a maximally symmetric A-brane, preserving the sym-
metries. If we shift the brane by the right multiplication with some element

w! = €573 of the Z& group, then the symmetries preserved by this brane are

J*+ut 0t =0, (a=1,2,3), (1021)

while the brane is described by the Cardy state with rotated Ishibashi state

A, a)% Z\/S—O]ZIJ, (W', N)) . (1022)

Summing over the images one obtains a Z{ invariant state, present in the Lens

theory
k

> 1A ) Z ZZIL (w'lj, N)) - (1023)

=0 JlON

To compute the sum of the Ishibashl states on the right-hand side, one next uses
the orbifold decomposition of SU(2)

SUQ2), = (AP @ U(1))/Zs . (1024)
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This decomposition implies that Ishibashi states for the maximally symmetric

A-brane can be written as

2k ;
. 1+ (=D¥+m
A = Y G e ), (1025)
n=1
where
A, j,n Z 5,n, N) @ 1j,n, N, (1026)
and

AL = exp

2 a0, r+2kl r+2kzl
St | SR o 2 e

n=1 leZ
are the A-type Ishibashi states for the parafermion and U(1); theories. If the
ZE subgroup lies in the U(1) group appearing in the decomposition (1024), then

under the action of element w! € Z[ the expression (1025) transform as

25 14 (—1)%Hn
A G = D ————w" A ) @ A n)) (1028)

n=1

Hence summing over images projects onto the Z/-invariant Ishibashi states for
which n is restricted to the two values 0 and k. Performing T-duality, flips the
sign of the right moving U (1) sector and one gets a B-type Ishibashi state of the
original SU(2) theory,
1 1
maye = [P o s st + o
1+ (_1)2j+k

A DET 8 )

where

a0, r4 2kl r+ 2kl
[Br))y " = exp [— y o ] Z | - —), (1030)
leZ \/ﬁ

n=1

is a B-type Ishibashi state of U(1); theory satisfying the Neumann boundary
conditions. Knowing the T-dual expression of the (1023) allows one to write

down the boundary state for the B-type brane

Z\/\/_g—owlfl 00" @ (1BO))y ™ +n|Bk));/ D). (1031)
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2a_ In deriving this expression one uses the field identification

where n = (—1)
rule (j,n) ~ (k/2 —j,k+n) and the following property of the matrix of modular
transformation (1076)

Saksa—j = (—1)*Sy; . (1032)

To derive the symmetries preserved by the B-brane, one observes from (1021)
that a Z[ invariant superposition of the A-branes preserves only the current
J3 + J® and breaks all other currents; namely, any two Zf images only have this
preserved current in common. Performing further T-duality in the J? direction
flips the relative sign between the two terms in this current and hence implies

that the only current preserved by the B-brane is
=T =0. (1033)

Overlap of the state and the coordinate wave function

We will now show that the boundary state (1031) reproduces the effective
brane geometry (1019). In the large & limit the second term in (1031) can be ig-
nored. As in the case of Cardy state one should compute the overlap (6] B, a>gU(2).
We will again use the formula (996), but taking into account that the matrix D has
left and right indices 0. Therefore, the overlap is again given by formula (1078),
but with n set to zero. Hence we arrive at the equation

3/2 . ) .
(@B, a)"® ~ Zk—sln 127+ 1)0] Dl (9(8)) (1034)

Next we will need the relation between the Wigner D-functions and the Legendre
polynomials Pj(cos @) given by D), = P;(cosf), as well as the formula for the

generating function for Legendre polynomials

> t"Py(x) = \/ﬁ (1035)

Using these expressions equation (1034) can be simplified to

n

@B, a)gU@) N O(cosf — cos 21)) (1036)

\/0085—0052¢

where © is the step function. This indeed coincides with the expression for the

effective geometry (1019).
Open strings in gauged WZW model

140



As we explained before the action of the gauged WZW model using the

Polyakov-Wiegamnn identities can be written in the form:
SC/H — SCIH (=1q07) — SH(UID) (1037)
Consider the action (1037) on a world-sheet with a boundary. Following the

corresponding discussion of the WZW model on a a world-sheet with a boundary

we suggest the following boundary conditions:
U~ gUoundary = (U n) f(Un) 71, n,f €G (1038)

and

U~ 0 |poundary = (U™ 1p)I7H (U 1p) ™! pl € H (1039)
Conditions (1038) and (1039) imply
g|boundary = nfn_lplp_l = C1C2 (1040)

where ¢; = nfn~! and ¢, = plp~!, and also on the boundary

U=pl p U (1041)
Now we can write the action of the gauged WZW model in the presence of a
boundary:
N . k k -
SEM = gG/H(U=tgl) — ST (UTT) — —/ w (U n) + —/ WO (U p)
AT Jp Am Jp
(1042)
Using again PW identities we obtain
SG/H — SG/H 4 Ggauge (1043)
_ k’_G[/ 42 [Kin +/ wWZW}
A7 | Js B
k k
+52 | d?2Ti[A:0.997" — A0:99~" + AzgA.g ™ — A A — — / Q
2m Js At Jp
with
Q=wDU ) - IU ) (1044)

T [g—ldgdm?—l —dUU 'dgg™" — dUU " gd0T g~ + dUU—ldUU—l]
After some straightforward calculations we obtain for boundary term
Q = w () +wB(p) + Tr(desey ey tdey) (1045)
It is easy to check that:
WVW(c1cy) = dQ (1046)
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Lecture 28
Defects in WZW model

The construction of defects lines is analogous to that of boundary condition.

We define defect lines as operators X, satisfying relations:

7O — 72 w = W@ (1047)
7O — 7(2) w = 5@ (1048)

After modular transformation these defects are given by operators X, satis-
fying relations:
(L, X]=[L,, X]=0 (1049)

(Wi, X] = Wy, X] = 0 (1050)

As in the case of the boundary conditions, there are also consistency condi-
tions, analogous to the Cardy and Cardy-Lewellen constraints, which must be
satisfied by the operator X. For simplicity we shall write all the formulae for di-
agonal models. To formulate these conditions, one first note that as consequence
of (1049) and (1050) X is a sum of projectors

X =Y ptipid (1051)
where
PO =3 "(|i, N) ® [i, N))((i, N| ® (i, N|) (1052)
N,N

An analogue of the Cardy condition for defects requires that partition function
with insertion of a pair defects after modular transformation can be expressed as
sum of characters with non-negative integers.

Namely using a Hamiltonian picture with time moving perpendicular to the

lines, the torus partition function may be written
Zoy="Tr (X[Xg" 57" 5) = 30U DI @@ (1058)

A second representation of the same partition function may be obtained by con-
sidering time running parallel to the defect lines. In this case, the definition of

the disorder line (1050) insures one may still construct two sets of generators W,
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and W, satisfying the chiral algebra. Hence the Hilbert space decomposes into

irreducible representations

Hap = D3V Ri @ Rs (1054)

,15a

for some non-negative integers Vz‘bi-aa and the partition function becomes
Zap = Trp, "M =3V xi(@)xa(@) (1055)
i
We may equate these two expressions using the modular transformation proper-

ties of the characters

Z S;:S5(DU ) D (1056)

It is found that for diagonal models one can solve this condition taking for each

primary a
S
Dl = =2 1057
(9= (1057)
for which one has:
Zop = Tr (XX, 55575 ) = 3 N Nexa(a)xa(@) (1058)
kit

Topological defects can act on boundary states producing new boundary
states. The action of defects (1057) on Cardy states is easily obtained using

the Verlinde formula:

X,|b) = Z < \d) (1059)

Topological defects can be fused. For defects (1057) again using the Verlinde

formula one derives:

XXy =) Ny X. (1060)

Lagrangian approach to defects in the WZW model

Let us assume that one has a defect line S separating the world-sheet into
two regions >; and 5. In such a situation the WZW model is defined by pair of
maps g; and go. On the defect line itself one has to impose conditions that relate
the two maps. The necessary data are captured by the geometrical structure of

a bibrane: a bibrane is in particular a submanifold of the Cartesian product of

143



the group G with itself : @ C G x G. The pair of maps (g1, g2) are restricted by

the requirement that the combined map
S = (GxG):s—(g91(8),92(8) € Q (1061)

takes its value in the submanifold (). Additionally one should require, that on

the submanifold Q) a two-form w(gi, g2) exists satisfying the relation

dw (g1, 92) = w7 (g1)le — w"(g2)lq - (1062)

To write the action of the WZW model with defect one should introduce an

auxiliary disc D satisfying the conditions:
OB =1 +D and 0B, =%, + D, (1063)

and continue the fields g; and g, on this disc always holding the condition (1061).
After this preparations the topological part of the action takes the form :

k k k
top—def _ W2z . wz - w . 1064
S dr /B wlat g /32 v a) 4%/9 (91,92 (1064)

Equation (1062) guarantees that (1064) is well defined.

The full action is

S = Skin + Stop—def (1065)
where
in—de k in k in
S (g ) = - [ Dg)Ee s [ DR (1000
T o, 47T paN

Denote by C), a conjugacy class in group G:
C, = {hf,h™ ' = he*™/*p=t b€ GY, (1067)

where © =p - H is a highest weight representation integrable at level k, taking
value in the Cartan subalgebra of the G Lie algebra.

Let us consider as the bibrane () the submanifold:

(91, 92) = (Cup; p) (1068)

or alternatively
9195 = C,, (1069)
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We can easily check that the equation (1062) is satisfied with
w(C,p) = wD(h) - Tr(C, 'dC,dpp™") (1070)
It is straightforward to prove that
Tr(g7 '0g1(g7 'dgr)?) — Tr(g; 092(95 ' dgs)?) — dww = dB, . (1071)

where

B, = A,(h) — Tre(dpp~'C1dC) + Tr(C~'5Cdpp™) (1072)
Recalling that the first two terms come from the equation

ow"? = d[Tr(g~"dg(g~ " dg)*)], (1073)

we see that the existence of the one-form B satisfying (1071) is a consequence of
the equation (1062).

The defect equation of motion is

ﬂﬁwﬁ@&%*—m%ﬂﬁ—ﬂﬁwfﬁm%“-mﬁﬂﬁ+&=0
(1074)

After some calculation one can show that (1074) implies:

Jl = :]2 and Jl = JQ (1075)

Overlap of the Defect operator with the coordinate wave function

To calculate the overlap with the boundary state, we will need the knowledge
of S-matrix of SU(2) at level k,

o 2 [ Qa+1)(25+ )
Saj = g e < 19 : (1076)

In the large-k limit the ratio of S-matrix elements appearing in the boundary

state simplifies to
Saj  (k+2) . . )

145



(2a+1)7
k+2

results, the overlap between the boundary state and the localised bulk state

where, to shorten the notation, we have introduced zﬂ = . Using these

becomes

i ~ 3 P2 a2 + 001D (0 BP0 ). (1078)

]7m7n

To simplify this expression we need the identity
ZD (91(00))D},, (95 (02)) = D} (91 (1) g5 () (1079)

which follows from the fact that the matrices D? =~ form a representation of
the group. Finally, one needs the property of the Wigner D-functions that
>, Di (g9) = W, where 9 is the angle of the standard metric (756) and
defined by the relation Trg = 2cos (or in our case Tr(gig, ') = 2cos®). The

overlap (1078) becomes

k+2
T sin ¢

<§1|Xa|§2>

Zsm 2j 4 1)¢] sin[(2j + 1)¢] (1080)

and from the completeness of sin(ni) on the interval [0, 7] one concludes

+2 .
w9, (1081)

We see that the brane wave function is localised on 1 = const. bulk states.

(01 Xa|0a) ~
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