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Theme 1. Macromolecules Architecture: 

linear, branched and comb -- like chains; models of macromolecules in a continues and discrete 

space; real and ideal chains 

A polymer molecule consists of the same repeating units, called monomers, or of different 

but resembling units. Figure 1.1 shows an example of a vinyl polymer, an industrially important 

class of polymer. In the repeating unit, X is one of the mono- functional units such as H, CH3, Cl, 

and C6H5 (phenyl).  

 

Fig. 1.1. Vinyl polymer. 

 

The respective polymers would be called polyethylene, polypropylene, poly(vinyl chloride), 

and poly- styrene. A double bond in a vinyl monomer CH2=CHX opens to form a covalent bond to 

the adjacent monomer. Repeating this polymerization step, a polymer mol- ecule is formed that 

consists of n repeating units. We call n the degree of polymer- ization (DP). Usually, n is very 

large. It is not uncommon to find polymers with n in the range of 104 - 105. 

In the solid state, polymer molecules pack the space with little voids either in a regular array 

(crystalline) or at random (amorphous). The molecules are in close contact with other polymer 

molecules. In solutions, in contrast, each polymer mole- cule is surrounded by solvent molecules. 

The large n makes many of the properties common to all polymer molecules but not shared by small 

molecules. A difference in the chemical structure of the repeating unit plays a secondary role. The 

difference is usually represented by parameters in the expression of each physical property. 

 

Fig. 1.2. Architecture of polymer chain: a linear chain (a), a branched chain (b), and a 

cross-linked polymer (c). 

 

Figure 1.2 shows three architectures of a polymer molecule: a linear chain (a), a branched 

chain (b), and a cross-linked polymer (c).  



A bead represents a monomer here. A vinyl polymer is a typical linear polymer. A branched 

chain has branches, long and short. A cross-linked polymer forms a network encompassing the 

entire system. In fact, there can be just one supermolecule in a container. In the branched chain, in 

contrast, the branching does not lead to a supermolecule. A cross-linked polymer can only be 

swollen in a solvent. It cannot be dissolved. We will learn linear chain polymers in detail and about 

branched polymers to a lesser extent. 

Some polymer molecules consist of more than one kind of monomers. An A -- B copolymer 

has two constituent monomers, A and B. When the monomer sequence is random, i.e., the 

probability of a given monomer to be A does not depend on its neighbor, then the copolymer is 

called a random copolymer. There is a different class of linear copolymers. In an A -- B diblock 

copolymer, a whole chain consists of an A block, a B block, and a joint between them. In a triblock 

copoly- mer, the chain has three blocks, A, B, and C. The C block can be another A block. A 

polymer consisting of a single type of monomers is distinguished from the copoly- mers and is 

called a homopolymer. 

A polymer chain in the solution is changing its shape incessantly. An instantaneous shape of 

a polymer chain in solution (Fig. 1.3a) is called a conformation. To represent the overall chain 

confor- mation, we strip all of the atoms except for those on the backbone (Fig. 1.3b). Then, we 

remove the atoms and represent the chain by connected bonds (Fig. 1.3c). In linear polyethylene, for 

instance, the chain is now represented by a link of carbon - carbon bonds only. We can further 

convert the conformation to a smoothed line of thread (Fig. 1.3d). In the last model, a polymer chain 

is a geometrical object of a thin flexible thread. 

 

Fig. 1.3. Simplification of chain conformation from an atomistic model (a) to main-chain 

atoms only (b), and then to bonds on the main chain only (c), and finally to a flexible thread 

model (d). 

 

Several coarse-grained geometrical models other than the skeletal chain model are being 

used to predict how various physical quantities depend on the chain length, the polymer 

concentration, and so forth, and to perform computer simula- tions. Figure 1.4 illustrates a bead-

stick model (a), a bead-spring model (b), and a pearl-necklace model (c). 



 

Fig. 1.4. Various models for a linear chain polymer in a continuous space: a bead-stick 

Model (a), a bead-spring model (b), and a pearl-necklace model (c). 

 

In the bead-spring model, the whole chain is represented by a series of beads connected by 

springs. The equilibrium length of each spring is zero. The bead- spring model conveniently 

describes the motion of different parts of the chain. The segment of this model is a spring and a bead 

on its end. In the pearl-necklace model, the beads (pearls) are always in contact with the two 

adjacent beads. This model is essentially a bead-stick model with the stick length equal to the bead 

diameter. The bead always has a positive dia- meter. As in the bead-stick model, we can restrict the 

bond angle and the dihedral angle. 

Table 1.1 compares two typical variations of the model: a freely jointed chain and a freely 

rotating chain. When the bond angle is fixed to the tetrahedral angle in the sp3 orbitals of a carbon 

atom and the dihedral angle is fixed to the one of the three angles corresponding to trans, gauche  , 

and gauche , the model mimics the backbone of an actual linear vinyl polymer. The latter is given a 

special name, rotational isometric state model (RIMS). A more sophisticated model would allow 

the stick length and the bond 

 

TABLE 1.1 Bead-Stick Models 

 

 

  

 

Model Bond 

Length 

Bond Angle Dihedral 

Angle 

Freely 

jointed chain 

Fixed free Free 

Freely 

rotating 

chain 

Fixed fixed free 



The models described above are in a continuous space. The models on a discrete space are 

widely used in computer simula- tions and theories. The discrete space is called a lattice. In the 

lattice model, a polymer chain con- sists of monomers sitting on the grids and bonds connecting 

them. The grid point is called a site; Figure 1.5 illustrates a linear polymer chain on a square lattice  

 

Fig. 1.5. Linear chains on a square lattice (a) and a triangular lattice (b). 

 

The segment consists of a bond and a point on a site. In three dimensions, a cubic lattice is 

frequently used and also a diamond lattice to a lesser extent. There are other lattice spaces as well.  

In any real polymer chain, two monomers cannot occupy the same space. Even a part of a 

monomer cannot overlap with a part of the other monomer. This effect is called an excluded 

volume and plays a far more important role in polymer solu- tions than it does in solutions of small 

molecules. We often idealize the chain to allow overlap of monomers. In the lattice model, two or 

more monomers of this ideal chain can occupy the same site. To distinguish a regular chain with an 

excluded volume from the ideal chain, we call the regular chain with an excluded volume a real 

chain or an excluded- volume chain. We can treat the effect of the excluded effect as a small 

difference from the ideal chains. More importantly, though, the real chain behaves like an ideal 

chain in some situations. One situation is concentrated solutions, melts, and glasses. The other 

situation is a dilute solution in a special solvent called a theta solvent. 



Theme 2. Random walks in two and three dimensions: 

end-to-end distance and radius of gyration 

 Here, we learn how to assess the dimension or the size of a polymer molecule. We consider a linear 

chain consisting of N  bonds of length b . The positions of the joints are denoted by ir  ( Ni 1..= ). 

The two ends of the i -th bond are at 1ir  and ir . It is convenient to define the end-to-end vector R  

by  

 0= rrR N   (2.1) 

 

R  is different for each configuration of the chain. Although the chain ends are not necessarily faced 

outward and therefore R does not always span the largest dimension of the chain, its average length 

is a good measure for the overall chain dimension. The root-mean-square end-to-end distance RF (or 

simply end-to-end distance) of the chain is the root mean square of R: 

 

  2
0

2 )(= rrR NF  (2.2) 

 

We can regard the whole chain as roughly being contained in a sphere of diameter RF. Another often 

used measure of the chain dimension is the root-mean-square radius of gyration Rg (or simply 

radius of gyration). Its square, R2
g, is the second moment around the center of mass of the chain. 

The latter is defined as the mean square of the distance between the beads and the center of mass. 

Roughly, the chain occupies a space of a sphere of radius Rg. The center of mass rG of the chain is 

given as 
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Then, Rg is given by 

                                        (2.4) 

where the summation and averaging can be interchanged. As the name suggests, mR2
g is the moment 

of inertia (m represents mass of the molecule) for rotational motion of this molecule around its 

center of mass. 

Now we obtain RF and Rg for ideal chains whose conformations are given as trajectories of 

random walkers. They include a random walk on a lattice, a freely jointed chain, a bead-spring 

model etc. It is easy to show that in that case 



NbR F
22                                                                   (2.5) 

and for any subchain between the ith and jth segments  

                                               (2.6) 

 

We can calculate the radius of gyration of the chain as 

                                    (2.7) 

Thus, we find for large N ideal chains with no correlations between bonds have the dimensions of 

                                                   (2.8) 

 



Theme 3. Basic models of macromolecules: 

Freely - jointed chain, chain of free rotations, worm – like chain; rotational isomers; Kuhn segment 

length and end-to-end distance. 

 A polymer chain in the solution is changing its shape incessantly. An instantaneous shape 

of a polymer chain in solution is called a conformation. To represent the overall chain confor-

mation, we strip all of the atoms except for those on the backbone. Then, we remove the atoms and 

represent the chain by connected bonds. In linear polyethylene, for instance, the chain is now 

represented by a link of carbon – carbon bonds only. We can further convert the conformation to a 

smoothed line of thread. In the last model, a polymer chain is a geometrical object of a thin flexible 

thread. 

We now pull the two ends of the skeletal linear chain to its full extension (Fig. 3.1). In a vinyl 

polymer, the chain is in all-trans conformation. The distance between the ends is called the contour 

length. The contour length (Lc) is proportional to DP or the molecular weight of the polymer. In 

solution, this fully stretched conformation is highly unlikely. The chain is rather crumpled and takes 

a conformation of a random coil. 

 

 

Fig. 3.1. A random-coil conformation is pulled to its full length Lc 

  

Several coarse-grained geometrical models other than the skeletal chain model are being used to 

predict how various physical quantities depend on the chain length, the polymer concentration, and 

so forth, and to perform computer simulations. Let us considet a bead-stick model, where the chain 

consists of beads and sticks that connect adjacent beads. If the angle between two adjacent sticks is 

free we have a freely jointed chain. If we restrict the angle between two adjacent sticks we have a 

freely rotating chain (see Table 3.1). When the bond angle is fixed to the tetrahedral angle in the sp3 

orbitals of a carbon atom and the dihedral angle is fixed to the one of the three angles 

corresponding to trans, gauche +, and gauche—, the model mimics the backbone of an actual linear 

vinyl polymer. The latter is given a special name, rotational isometric state model (RIMS).  



 

As it was shown in the Section 2, the mean – square end – to – end distance for the freely – 

jointed chain is equal to 

NbR F
22                                                                  (3.1)  

As it’ll be shown below, any ideal chain could be approximated by freely – jointed chain with 

certain effective segment of the length b and the effective number of segments N. This segment is 

called Kuhn segment. More precise definition of the Kuhn segment will be introduced in the 

Section 5. 

TABLE 3.1 Bead-Stick Models 

Model Bond Length Bond Angle Dihedral 

Freely jointed Fixed Free free 
Freely rotating Fixed Fixed free 



Theme 4. Gaussian chain: 

central limit theorem and Gaussian distribution for the ideal linear macromolecule; monomers' 

density fluctuations and the length of correlations; entropic elasticity 

For the freely jointed chain, the vector R, joining the ends of the chain equals the sum of N 

independent, randomly oriented contributions. According to the central limit theorem of 

probability theory, such a quantity has the Gaussian distribution 

 ,     (4.1) 

where   is the length of the stick. The Gaussian function (4.1) decays at the distance of order 

R~Nl/2l, which agrees with the size of the freely jointed chain. Evidently, an accurate calculation of 

the mean square using the general formula  would yield precisely the result 

R~Nl/2l.  Other ideal chain models with different flexibility mechanisms and without free joints are 

more complicated, because their consecutive elementary segments are not oriented independently. 

However, the orientational correlations decay with distance very rapidly, in fact, exponentially. 

One can expect, and this can be proved, that the central limit theorem also is valid for the 

exponential decay of correlations. Then, treating any ideal polymer as an effective freely jointed 

chain of Kuhn segments, we can obtain the correct result for the statistical distribution of the end-

to-end vector 

    (4.2) 

where  is the mean – square end - to – end distance of the chain. 

 The mean value of the monomers’ density is equal to  

NR

N
n

1
3
       (4.3) 

Thus, the volume fraction of polymer inside the ideal polymer chain is very small and the most part 

of it is occupied by solvent. To calculate the local density of monomers, we need to assign the 

elementary volume V  inside the coil and estimate the mean number of monomers N  in it. 

Because of low mean density of monomers, the local density should be highly fluctuating quantity. 

The correlation length of fluctuations is comparable with the size of the coil, as it will be proved 

later.   

 The chain elasticity is the inherent feature of any polymer chain. The number of 

conformations, corresponding to the stretched conformation of an ideal (Gaussian) polymer chain 

is substantially less than in the absence of constraints. Thus, the stretched chain will work to 



increase its entropy and to return into ideal state with the mean – square size R~Nl/2l.  



Theme 5. Chain rigidity: 

worm -- like chain and persistence length; persistence length and Kuhn segment. 

The flexibility of the freely jointed chain is caused by freely rotating connections between 

rigid segments. It can be said that flexibility is concentrated at the connection points. This so-called 

freely jointed flexibility mechanism is easy to describe but very difficult to realize in practice; it is 

observed in very few real substances. All sufficiently long polymer chains are quite flexible, 

however, the main reason being their great length.  

Let us suppose that the straight-chain conformation corresponds to the absolute minimum of 

energy and that all links and bonds are so stiff that the thermal excitation energy ~T produces only 

small deformations of their stereochemical structure. For small deformations, the atomic framework 

of a molecule can be regarded as a classical elastic construction, which in the case of the polymer is 

approximated by a thin, elastic, homogeneous filament obeying Hooke’s law under deformation. 

Such a model of a polymer chain is called persistent or worm-like.  

The conformation of a chain of the arc – length L  is described by a continuous space curve  sr


, 

where the arc – length s is satisfied by Ls 0 . To understand correlations in the worm – like 

chain let us introduce the unit tangent vector  

 
ds

srd
su




)(        (5.1) 

Then, we introduce the correlation function    susu 


, the mean cosine of the angle between the 

chain segments separated by the length ss  . This function of ss  for many polymer chain 

models possesses the property of so-called multiplicativity: if the chain has two neighboring 

sections with lengths 1s  and 2s , then 

     2121 coscoscos ssss       (5.2) 

The function having this property is exponential 
   /expcos ss 

, where the   is a 

constant for each given polymer. This constant is the basic characteristic of polymer flexibility 

and is called the persistent length of the polymer. The persistent length can roughly be 

considered as a maximum chain section that remains straight; at greater lengths, bending 

fluctuations destroy the memory of the chain direction. Because of the chain remain straight in 

two directions, Kuhn segment a  is estimated as 2a . 

 



Theme 6. Real macromolecules: 

effect the short -- range interactions; excluded volume; self -- avoiding walks; Flory formula and 

Flory exponent; good and bad solvent regimes . 

In any real polymer chain, two monomers cannot occupy the same space. Even a part of a 

monomer cannot overlap with a part of the other monomer. This effect is called an excluded volume 

and plays a far more important role in polymer solutions than it does in solutions of small 

molecules. The excluded volume makes the real chains nonideal. The dimension of the real chain is 

different from that of the ideal chain of the same contour length, for instance. 

 In the polymer solution, the excluded volume does not disappear even in the low 

concentration limit. Suppose a polymer chain consisting of N spheres of diameter b (pearl-necklace 

model; see Fig. 6.1). We consider the dilute solution limit in which each chain is isolated from the 

other chains in the solution. When the chain dimension is R, these N spheres are contained in a cube 

of volume close to R3, but no other spheres 

 

 

 

 

 

 

 

 

Fig. 6.1. Excluded volume in a chain molecule. The two white beads cannot overlap each other. 
 

will be found there. The free-energy change per chain due to the excluded volume is then, 
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  (6.1) 

where the numerical coefficient is dropped. The interactions we are considering here are between 

monomers that may be widely apart along the chain contour. To distinguish these interactions from 

the short-range interactions such as the restriction on the bond angle and the dihedral angle we 

considered in Section 1.2.3, we call them long-range interactions. The “long” and “short” do not 

refer to the distance between the monomers in space. They refer to the distance along the backbone 

of the polymer chain. 

The excluded volume is not limited to a pair of monomers on the same chain (intrachain 



interaction). It exists equally for a pair of monomers on different chains (interchain interaction). At 

higher concentrations, the interchain interaction is the dominant part of the excluded volume effect. 

It is easy to expect that the excluded volume effect “swells” the chain compared with the dimension 

it would take were it not for the excluded volume effect. When we write the size of the real chain 

consisting of N monomers as 
bNRF  , the exponent   is greater than 0.5, the exponent for the 

ideal chain. In fact, v was found to be about 5/3 . The exponent   is called the Flory exponent.  

Flory expressed the free energy of the real chain as a function of the overall dimension of R. 

Here, R is not the average dimension but is allowed to change as the shape of the chain changes. 

The free energy consists of three terms, one is the entropy due to the freedom for different chain 

conformations and two others are the interactions due both the excluded volume and attraction 

2

2

6

3

3

2

Nb

R

R

N
C

R

N
B

Tk

F

B
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where B  and C  are the second and third virial coefficients correspondingly. The free energy 

minima corresponds to the 
5/3bNRF   if 03  bB . Given scenario corresponds to solvents that 

dissolve the polymer well, which are commonly called “good solvents”. If 0B  and 0C , the 

free energy (6.2) minimization yields 3/1bNRF  , where solvent do not dissolve polymer (“bad 

solvent”). 

A polymer chain with an excluded volume can be modeled by a self-avoiding walk (SAW) 

on the lattice. Unlike the random walker for the ideal chain, this walker is not allowed to visit the 

sites it has already visited. Its trajectory is close to the conformation of a real chain with excluded 

volume on the lattice. 

 

Fig. 6.2. Polymer chain on a square lattice. a: Random walk for an ideal chain. b: Self- avoiding 



walk for a real chain. 

 

 

 

 

 



Theme 7. Ideal chain under external field: 

self - consistent field approximation; analogy with Schrödinger stationary and non - stationary 

equations; ``wave'' function and monomers' density; Schrödinger equation spectrum, free energy, 

correlation length and monomers'  density fluctuations effect. 

For the simplest standard Gaussian model of a polymer chain, the microscopic state   (i.e., 

the chain conformation) is specified by the set of coordinates of “bead” links:  Nxxx


,...,, 10  

(the total number of links in the chain equals 1N ). The probability of a given microscopic state 

  is given by equation 

(7.1) 

where       22
2/3exp, axxxxg


  describe the bonds between neighboring links (i.e., the 

linear memory); the structure of the formula conforms to the one-dimensional linear connectivity of 

the ideal polymer chain. 

The partition function is obtained by integrating the distribution   . It is often convenient 

to consider a macromolecule whose both terminal links are fixed in space, that is, with the links 

indexed 0 and N fixed at the given points 0x


 and Nx


, respectively. The partition function of such a 

macromolecule depends on 0x


 and Nx


 and is called the Green function of the polymer chain, or the 

chain propagator. According to (7.1) it yields 

(7.2) 

and satisfied by reccurence equation  

  (7.3) 

where       TxxxgxxQ /exp,,


 . Under the cyclic boundary conditions Nxx


0 , the partition 

function of the  1N  links macromolecule in the limit 1N  is written as  

 N
N QTrG ˆ     (7.4) 

The transfer – operator Q̂  spectrum can be discrete or continuous. We consider both cases in turn. If 

a set of possible states for each link is limited, the transfer operator has a discrete spectrum and the 

correlations diminish exponentially along the chain; this proves in particular the law of exponential 

decay of orientational correlations along the chain. In the upper section of the spectrum of operator 

Q̂ is discrete, the free energy is written 



1ln TNkF BN ,    (7.5) 

where 1 is the maximal eigen value of the operator Q̂ . Generally speaking, the spectrum can be 

continouse.   

 The operator ĝ with Gaussian kernel       22
2/3exp, axxxxg


  is  








 


6
expˆ 2ag     (7.6) 

where  is conventional Laplace operator. Expanding the transfer – operator Q̂  as 
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     (7.7) 

This equation coincides with the Schrodinger equation in imaginary time for a particle in the 

external field  x


 .  

At the same time, the transfer – operator Q̂ spectrum is defined by equation  

 Q̂      (7.8) 

According to (7.6) it can be rewritten as  
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Tk
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,   (7.9) 

where  ln . This equation coincides with the stationary Schrodinger equation for a particle in 

the external field  x


 .  

 If  x


  and  x
  are the right and lef – side eigengunctions of the transfer – operator Q̂  

correspondingly, the partition function (7.2) is written 
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   (7.10) 

Thus,  x


  and  x
  are the probability density functions of the chain ends. The monomers’ 

density is satisfied by expression      xxxn


  . The correlation length of the density 

fluctuations is written 
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Thus, correlation length is finite in case of discrete spectrum, but has a macrospic value if the 

spectrum is continuous.    



Theme 8. Semiflexible chains: 

worm-like chain, end -- to -- end distance, radius of gyration and persistence length. 

Let us consider a freely rotating chain with a fixed bond angle, but an unrestricted dihedral angle. 

When the bond angle    is close to   and the bond length b is short, this model can 

represent a semirigid chain, as shown below. The orientation correlation of the ith stick and the jth 

stick was obtained (see Theme 5) as 




 


 ||exp jiuu ji , where iu


, is the unit vector parallel 

to the ith stick. We now decrease  . When 1 , the correlation between u


 and u 


 at two points 

separated by S = b | i - j | along the contour is   b
S

uu 2/1 2


. We take the limit of 0b  

while holding 2
2


b  unchanged. Then, 

   
 SS

b
S

ebuu


 /1     (8.1) 

 

where 2
2


b . 

In the limit, the conformation of the chain is not zigzag but rather a smooth curve in a three-

dimensional space. This model is called a wormlike chain or a Kratky-Porod model (see Theme 5). 

We now calculate the end-to-end distance FR . The end-to-end vector R


 is written 

     
L

sudsrLrR
0

0


,     (8.2) 

where the conformation of a chain of the arc – length L  is described by a continuous space curve 

 sr


, ( Ls 0 ) and 
 

ds

srd
su




)( .  Therefore,  
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     (8.3) 

With (V.5.3), we obtain 
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The radius of gyration of the wormlike chain is written 

    
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L
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With taking into account    
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Theme 9. Semiflexible chains under constraints: 

worm-like chain and energy density; worm - like chain puling; Marko and Siggia equation; worm - 

like chain in confined geometries. 

Theoretical understanding of a polymer under constraints, such as confined between parallel plates 

or inside a cylindrical or spherical pore or stretched by external force, is a topic that has generated 

much interest because of its relevance in practical systems. The configuration of a polymer is 

described by a continuous space curve  tr


, for which the statistical weight depends on energy 

densitiy expressed in terms of the local curvature variation and an external potential 

      
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 
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tutrV
dt

tud
dtP
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2

,
2

exp





 ,   (9.1) 

where 
dt

trdtu )()(


 is the unit tangent vector, 
TkB

1
  ,  urV


, is the external potential energy 

acting on a unit segment and  is the persistent length.  

 Perhaps the most elementary notion in polymer statistical mechanics is that to  extend the 

ends of a long, linear flexible polymer, a force must be applied. The  work done by this stretching 

goes into reduction of the conformational entropy of the chain. Thanks to huge technical advances in 

manipulation of the structure of  double-helix DNA, it has become feasible to measure  the force vs 

extension of single 10-100 pm long DNAs. In recent experiments by Smith et al. (1992) one end of a 

DNA  was attached to a surface, while the other end was  attached to a 3-pm-diameter magnetic 

bead which was  then used to put the polymer under uniform tension. Rather different experiments 

of Schurr et  a1. (1990) and Perkins et al.(1995) anchored one end of a DNA and  then stretched the 

polymer using either an electric field or the drag force exerted by hydrodynamic flow past the coil.  

 The effective energy of a stretched WLC is 

 
fz

dt

tud
dtE

L

 
2

0
2




 ,     (9.2) 

where the force f appears as a Lagrange multiplier to fix the end-to-end extension     0ˆ rLrzz


 .  

When large forces are applied to a WLC, the extension approaches the total length L, and  the 

tangent vector fluctuates only slightly around ẑ . From the constraint 1u


, we see that if xu , and 

yu  are taken as independent components, the zu  fluctuations are quadratic in the two-dimensional 

vector  yx uuu ,


 as 
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In the Gaussian approximation we have 
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Fourier transforms of the vector u


decouple the energy into normal modes and its average is written  
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The extension is 
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and we see that for large forces, z approaches L with a distinctive 
f

1  behavior. 

 In case of the small forces (or extensions) separation of the ends of a WLC by an amount 

Lz   like any flexible polymer costs free energy 
2
02

3

R

Tk
F B  and therefore requires a force  

L

Tzk

z

F
f B

2

3





 .      (9.6) 

Below the characteristic force of TAkB , the extension z is small compared to L  and this linear force 

law is valid. 

 The large –  and  low – force limits are summarized in an approximate interpolation formula 

for the WLC force versus extension 

  4

1

1

1
2





L
zL

z

Tk

f

B


     (9.7) 

This is asymptotically exact in the large- and small-force limits and has the scaling property that 

Tk
f

B

  is a function only of 
L

z .  

 To address the WLC in confined geometries let us consider the conditional probability, 

 tur ;,


 , that a polymer portion of length t  has an end located at r


 and whose tangent vector 

points in the direction u


. One can show that  tur ;,


  satisfies the partial differential equation 

        tururVutur
t

u ;,,,2;, 2 








    (9.8) 

with the “initial” condition   10;,  ur


. Then, we need to obtain the groundstate solution to the 

eigenproblem 



        ururVuur u





,,,2, 2      (9.10) 

After obtaining the gound – state eigenfunction  ur


,0  and eigenvalue  , we have 

asymptotically for large t  

     turtur  exp,;, 0


    (9.11) 

To be specific let us consider the WLC inside the confinement gap of the width W . The solution to 

this eigenproblem leads to   22

6 W
a  . One of the most important features of the above 

formalism for 
 ur


,0  is that for a “wide” confinement gap, aW  , it recovers the well-known 

formalism for a flexible-chain confined in a slit.  

 



Theme 10. Directed polymers: 

models; generating function formalism and exact results; rod – to – coil transition. 

Linear polymers are probably the simplest physical systems that can be studied in the 

framework of random walk models. They are long, chain-like molecules formed by repetitions 

of a basic unit or segment. More importantly, a long polymer chain is flexible, i.e., it can 

assume different geometric configurations. In order to study the average geometrical features of 

polymers (their sizes, shapes, etc.), a chain of N monomers is represented by a broken line 

consisting of N segments. For mathematical convenience, the configurations of such a line or 

walk are considered on a regular d-dimensional lattice. Thus, in its simplest form, this approach 

models polymer configurations by ordinary random walks, i.e., a succession of N steps, starting 

from some origin and reaching an arbitrary end-point. Depending on the physical situation, one 

may impose additional restrictions such as self-avoidance, directedness, etc.  

During the past several decades a number of methods, both numerical and analytical, have 

been developed for the solution of the random walk problems. Among the numerical methods, we 

already mentioned the direct counting and Monte Carlo simulations. The analytical techniques 

include field theoretical methods, the transfer matrix approach, and various versions of the 

generating function method. The generating function technique is frequently used for the solution of 

random walk problems and lattice statistics problems in general. The approach is based on the 

following observation: Instead of calculating the quantities of interest, e.g., 2R , directly, it is 

often easier to calculate the function, which generates these quantities. Once the generating function 

is known, various characteristic quantities are easily obtained by, e.g., taking the appropriate 

derivatives. In order to illustrate the technique, let us consider the fully directed SAW on the two-

dimensional square lattice (Fig. 10.1). The fully directed SAW (FDSAW) on the square lattice 

consists of steps which start at the origin and are allowed to proceed only in the +X or +Y 

directions, see Fig. 10.1. Here we take the X and Y axes to coincide with principal directions on the 

square lattice. We will carry out the calculation in the fixed fugacity, z, grand-canonical type 

ensemble. For each N-step SAW we assign statistical weight zN. To make the model slightly more 

general we also introduce statistical weight w for  

 

 



 

Fig. 10-1. Fully directed SAW (+X, +Y steps only). 

 

every turn (of 90°) in the walk. These turn-weighted models are used to describe single-chain rod-

to-coil transition, which will be considered below. Note also that ordinary FDSAW is obtained by 

setting w = 1. The partition function for the N-step T-turn walk is then  

  
walks

TN wzwzZ ;      (10.1) 

To calculate the appropriate generating function we assign statistical weights: x per each +aX step 

and y per each + aY step. Let nx and ny denote the number of +X and +Y steps in a given walk, so 

that N — nx + ny. It is convenient to introduce three generating functions, 

   
walks

yx
Tnn GGwyxwyxG yx;,     (10.2) 

 


x Tnn
x wyxG yx      (10.3) 

 


y Tnn
y wyxG yx ,     (10.4) 

The sum in (10.2) is over all possible walks. The sum in (10.3) is over all walks that start with the 

+aX step, while the sum in (10.4) is over walks that start with the +aY step. We are actually 

interested in the total generating function G(x,y;w) since  the partition function of the FDSAW is 

equal to Z(z;w) = G(z,z;w). The restricted generating functions satisfy the recursion relations  

yxx wxGxGxG       (10.5) 

xyy wyGyGyG      (10.6) 

With taking into account eqs. (10.2, 10.5, 10.6) obtaining the required partition function as  
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Below we will address the rod-to- coil transition of polymer chains. Rod-to-coil transitions in 

general exhibit an interesting property of scaling function nonuniversality which, in the case of 

directed models, can be demonstrated explicitly. In the fixed fugacity ensemble, the average number 

of steps, N(z;w) is written as 

   wzZ
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z
wz
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;ln;



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


   (10.8) 

The summation in (10.6) is over “all walks”. For fixed w, the quantity N(z; w) has a simple pole 

singularity at  wzc . Since Z(z; w) has a power law singularity with the critical exponent  , one 

can further conclude that in the limit  wzz c ,  with w fixed, 

   
  zwz

wz
wzN

c

c





;

     (10.9) 

1 for DSAW. Let us now consider scaling in the rod-to-coil transition regime. This regime is 

defined by 0w , N , with the scaling combination  

  NwzwN  0;     (10.10) 

where N is defined by (10.9), which takes a particularly simple form for w = 0 since zc(0) = 1 

   
z

zNzN



1

1
0;  

 

In the scaling limit   takes values  1O . Physically, this means that for fixed w, long chains will be 

coiled provided 
w

N 1 . For fixed length N, stiff chains (
N

w 1 ) will be rodlike. Thus, the 

transition occurs when w  and 
N

1  are comparable.  



Theme 11. Relationships between macromolecules and critical phenomena: 

phase transition of the second order, magnetic susceptibility and correlation function; the n-vector 

model; =0 limit and single chain problem.. 

There is a strong analogy between the statistics of linear, flexible polymers and various 

features of critical phenomena. To make it clear, we first describe some essential aspects of 

ferromagnetic transition points – ferromagnets are the best example for our purpose. From a 

macroscopic point of view, ferromagnets are characterized by a magnetization M. This is a 

vector with a number n of independent comcomponents. 

The plot of free energy F as a function of M has two equivalent minima (Fig. 11.1), and 

the system will reach one of them. Then we measure a finite average magnetization Mo(T). A 

critical temperature Tc  separates the two  

 

 

Fig. 11-1. Free energy vs. magnetization. 

 

regimes. The following discussion is concerned with the immediate vicinity of Tc for the 

following reason. Consider a temperature   1cTT  with   small and positive. Since we are 

above Tc, the average M is zero. However, if we look at the local distribution of M(r), (as is 

possible by neutron scattering techniques) we find that for small  , there are regions where M 

does not average to zero. The characteristic size of these regions is called the correlation length 

 , and it obeys a scaling law of the form 





 a    (11.1) 

if 0 , where a  is the distance between neighboring atoms, and   is a certain "critical 

exponent." The essential feature is that when   is small, a . In solids we can typically 

achieve values of   of a few hundred Angstroms. The correlated regions are much larger than a 

lattice unit, and all details of the lattice structure, of the couplings, and so forth, become 



irrelevant. We reach a very universal regime, where only two essential parameters remain; one is 

the dimensionality (d), the other is the number of equivalent components (n). It turns out that all 

critical exponents such as   depend only on d and n. 

 Let us address the so called “n-vector” model. We assume that the magnetic atoms are 

located on a periodic lattice. Each magnetic atom (i) carries a spin iS


; this is a vector, with n 

components inii SSS ,...,, 21 . In our considerations, we ignore all quantum effects; the 

components Sia are just numbers. There is one constraint—i.e., the total length of each spin is 

fixed 
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The Hamiltonian is written  
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where 0 KK ij  for the nearest neighbour pairs (ij) and 0ijK otherwise. The partition 

function of the spin system is 
Z=∏

i
∫d Ωi e

−H
T

, where integration is performed over the solid 

angles of the spins. In case of the zero field 0h , we can rewrite the partition function as 

0
ji

2

ijij

T

K

2

1

T

K
1  

 

























 
 jiji SSSS=Z , (11.3) 

where 
0

...  means the average over all equally weighted orientations and   is the total volume 

of the phase space for the spins.  

Successive terms of 


Z  may be represented by graphs on the lattice. To each nearest 

neighbor link Kij is associated a continuous line. To each site i must be associated two spin 

components  ii SS  (to obtain a nonzero average). These rules mean that the only allowed graphs are 

closed loops. The loop can never intersect itself. If it did, at one site i, this would imply the 

vanishing average 
0

4
iS . At this point we begin to see the connection between magnetism and self-

avoiding chains. 

First let us settle some technical points concerning the partition function. The quadratic 

terms 
2









T

Kij  in the expansion simply correspond to the smallest loop, and could be drawn as 



 

Note that each loop has a single value of the component index   occurring at all its sites, because 

of the two factors iS


 at one point involve the same component. When we sum over the component 

index   for one loop, we get 

  n
T

K
N

, 

where N is the number of bonds in the loop, and n is the component index. Because 0n  in our 

case, the contribution of all loops ultimately vanishes, and we can write 

Z     0n  

Consider now the one-component ( ) spin-spin correlation function in zero field: 
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   (11.4) 

Again, for n = 0, the only graphs which contribute are self-avoiding paths, but here they are not 

closed loops because eq. (11.4) contains two extra spin factors ji SS


. In fact what we have is a sum 

over all self-avoiding walks linking sites i and j (Fig. 11.2).  

 

 

Fig. 11-2. Free energy vs. magnetization. 

 



If the walk involves N steps,  

  
 N

N

N
n

ii T
KjiSS ,

0



    (11.5) 

where  jiN ,  is the number of self-avoiding walks of N steps linking points 

(i) and (j) on the lattice. Eq. (11.5) is the basic link between chains and magnets. If we consider 

temperatures T slightly above Tc, we can write 
  1cTT , where   is small parameter. The total 

number of SAWs of N steps, starting from point (i) is: 

  
j

N
NN Nzji 1~,   ( 1N ),   (11.6) 

where z~  is the effective coordination number of the lattice. Using the Eq. (11.6) it can be shown 

that the critical temperature is defined by condition  

zKTc
~     (11.7) 

With taking into account Eqs. (11.5-7) we rewrite correlation as 

    
 N

N
n

ii NjiSS  exp,
0



 

Thus the relationship between number of paths  jiN ,  and magnetic correlations is of the Laplace 

transform type. We can say that   and N are conjugate variables and  a small   corresponds to a 

large N. The correlation (11.5) decays on the scale of the correlation length  which is a single scale 

describing behavior of the spin system in the vicinity of the critical point ( 0 ). Thus, the analog 

of   is the range of the self-avoiding walk, or the Flory radius 
aNRF  .  

To summarize, all properties of one self-avoiding walk on a lattice can be related to the spin 

correlation of a fenomagnet with an n-component magnetization when we formally set n = 0. This 

introduces a link between the exponents for self-avoiding walks and critical exponents. The 

temperature of the polymer system is not related to the temperature T of the magnetic system, but 

 
c

c

T
TT 

  is the conjugate variable of the degree of polymerization, N. 



Theme 12. Polymer solutions of linear chains: 

concentration regimes, self -- consistent field approximation; fluctuation theory of polymer 

solutions: osmotic pressure, blob concept, correlation length, single chain dimensions. 

A fundamental distinction exists between dilute polymer solutions where the coils are 

separate (Fig. 12.1a) and more concentrated solutions where the coils overlap (Fig. 12.1b). At the 

overlap threshold (c = c*) the coils begin to be densely packed. Clearly this threshold is not sharp; 

it is more properly defined as a region of crossover between regimes (a) and (c), but the scaling 

properties of c* are essential.  

 

Fig. 12.1. Crossover between dilute and semi-dilute solutions: (a) dilute, (b) onset of 

overlap, and (c) semi-dilute. 

 

 

 

We expect c* to be comparable with the local concentration inside a single coil. In a very 

good (athermal) solvent this implies: 

5
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3
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*  Na
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   (12.1) 

In terms of the polymer fraction   we may define the corresponding threshold 5

4
*



 N . 

When c < c*, we have a dilute system of coils. In the zeroth approximation, we can treat these as a 

perfect gas, with a number of coils per unit volume equal to c/N and an osmotic pressure of 

T
N

c


    (12.2) 



We now consider solutions where the coils do overlap but where the polymer fraction   is still 

low 

1*      (12.3) 

The two inequalities are compatible at N>>1  because 1*  . How do we predict the 

thermodynamic properties of semi-dilute solutions? The basic notion is a scaling law for the 

osmotic pressure, written as 

 *c
cf

N

c

T



 ,    (12.4) 

where the function  xf  is dimensionless and satisfied by conditions 

(i)  xOf  1  at 1x  and 

(ii) At large x (semi-dilute solutions) all thermodynamic properties must reach a limit which 

depends on c but which becomes independent of the degree of polymerization N. Physically this 

means that local energies, entropies, etc. are controlled entirely by the concentration c; the local 

properties are not different for a solution of chains of N monomers each or a single chain that fills 

the whole vessel. In terms of  , this gives 
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, 

where the power m is defined by condition (ii) and gives 

4
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T

a
 (semi – dilute)    (12.5) 

Let us address now spatial properties of the semi – dilute polymer solution. When photographed at 

a certain time, this looks very much like a network with a certain average mesh size  .Let us now 

construct the scaling form of   in the semi-dilute regime for a good solvent. This is based on two 

requirements: 

(i) For *  the network structure on the scale   will depend only on concentration and not 

on the degree of polymerization N (the chains being much longer than the mesh size). 

(ii) For *~    where we have coils in contact (but not yet interpenetrating) the mesh size must 

be comparable with the size of one coil FR . 

These two requirements lead to the form 



    mFR *
   (12.6) 

if * . Here the exponent m must be such that the length   will be independent on  N . This 

means that m = ¾ and 

  4
3

 a     (12.7) 

Thus, the mesh size decreases rapidly with concentration. Note an important scaling reationship 

between the osmotic pressure and the correlation length 

3


T
 ,    (12.8) 

if 1*  .  

Let us consider one particular chain in the semi-dilute solution. We may visualize it as a succession 

of units or “blobs” of size   (Fig. 12.2). Inside one blob, (from the definition of the mesh size) the 

chain does not interact with other chains. Thus, inside one blob we must still have correlations of 

the excluded volume type. This implies that the number of monomers per blob (g) is related to   by 

the law of swollen coils 5
3

~ g . Thus, 4
5

g . With taking into account equation (12.7) , 

3cg   that  says that the solution is essentially a closely packed system of blobs. If we take the 

blobs as the basic units, we are led back to the molten chain, which is ideal on the large scales 

because of screening effect. Their mean square end-to-end size can be estimated from the ideal 

chain formula for N/g blobs of size   ( 1*  ) 

  4
1

222 
 Na

g

N
R      (12.9) 



 

Fig. 12.2. Single chain as a blobs sequence. 

 

 

 

 

 



Theme 13. Thermodynamics of dilute polymer solutions: 

Flory - Huggins mean - field theory; free energy, chemical potentials and osmotic pressure; 

spinodal line; phase separation. 

It is convenient to represent the polymer chains as random walks on a lattice, each lattice site being 

either occupied by one (and only one) chain monomer or by a "solvent molecule". We denote the 

fraction of sites occupied by monomers as  . This term is  related to the concentration c (number 

of monomers per cm3) by 3ca . A fundamental distinction exists between dilute polymer 

solutions where the where 
3a  is the volume of the unit cell in the cubic lattice. 

The free energy F for this model has two components: an entropy term  describing how 

many arrangements of chains can exist on the lattice for a given  , and an energy term describing 

the interactions between adjacent molecules. In the mean field approximation the entropy S is 

written: 

  (13.1) 

The first term is related to the translational entropy of the chain. The second term may be similarly 

conceived as the translational entropy of the solvent molecules. Instead of considering the full 

entropy S, let us consider the entropy of mixing Smix: 

             


 1ln1ln011
N

SSSSmix   (13.2) 

The energy term E contains, in general, three terms that describe: monomer-monomer interactions 

; monomer-solvent interactions ; solvent-solvent interaction 

. However, we do not need three constants because all terms in the free energy per 

site which are independent of  , or linear in  , drop out when  

we consider Emix 

   (13.3) 

where  is the Flory interaction parameter. Finally, we have 

   (13.4) 

Let us consider first the osmotic pressure   of the macromolecules in the solution. This is defined 



by an operation where we change the solution volume (by adding more solvent: VVV tottot  ) 

while keeping fixed the number of monomers present 


















 sitetot F

V

F 2     (13.5) 

where .  Thus,  
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a    (13.6) 

 

In case of polymer – poymer blend segregation effects become important. We start with 

segregation problems involving two polymers (rather than with the one solvent-one polymer 

problem) because polymer-polymer systems can be rather correctly described in terms of Flory-

Huggins theory; no similar simplification exists for polymer-solvent systems. Our starting point is 

the Flory-Huggins free energy for a mixture of two polymer species (with degrees of polymerization 

NA, NB): 

 

  (13.7) 

where A , B  are the volume fractions, related by 1 BA . Let us denote  A  and 

 1B .  

Phase separation can be described in terms of the free energy  F . The essential property 

is the curvature  F , as explained in Fig. 13.1. Assume first that the sample is homogeneous 

(single phase), with a certain concentration   (point J). Try then to decompose it into two phases, 

of concentrations 1 , and 2 . The relative weights of the two phases in the mixtures are f1 and f2. 

We then have 2211  ff  and we reach a free energy  

  (13.8) 

This corresponds to point J in Fig. 13.1. The energy change is positive in case (a) and negative in 

case (b). Thus, case (b) imposes phase separation. 



 

Fig. 13.1. Free energy of the polymer blend. 

 

For 0  (or   non-zero but very small), the plot  F  is convex everywhere; entropy effects are 

dominant, and they favor mixing. However, when   becomes larger than a some critical value c , 

a region of negative curvature exists resticted by certain concentrations ' , '' . In that case single 

phase exists only outside the interval ( ' , '' ), while inside the interval the system breaks up into 

two phases, of concentrations '  and '' . 

 

Fig. 13.2. Free energy of the polymer blend in case of NA=NB=N. 

 

 Let us define the so called exchange chemical potential 


 F . The two coexisting 

phases at '  and ''  have equal   values. For the sake of simplicity let us consider the 

symmetrical case NA=NB=N. Then the entire free energy diagram is symmetrical around 



2/1 (see Fig. 13.2) and the coexisting phases at '  and ''  are defined by condition 0  that 

gives the coexistence curve 

   (13.9) 

presented in the Fig. 13.3. Phase separation occurs only when   is larger than a threshold value 

Nc
2 . 

  

 

Fig. 13.3. Ceoxistence curve in case of NA=NB=N. 

 

Equilibrium is reached slowly in polymer melts of high molecular weight. If we enter the two-phase 

region only slightly, demixing can take place only by nucleation of a droplet of one phase inside the 

other. This is a thermally activated process, implying the interfacial energy at the droplet surface, 

and is slow. However, if we go more deeply into the two-phase region, we reach a state where the 

interfacial energy vanishes (and changes sign). It is then favorable for the system to break up 

spontaneously into many small domains. This threshold defines what we call the spinodal curve in 

the  ,   plane. From the point of view of Fig. 13.1 the instability occurs whenever the  F  plot 

is concave. The spinodal thus corresponds to the inflection points in Fig. 13.3, and is ruled by the 

equation  

  (13.10) 



The plot of Eq. (13. 10) for the symmetrical case is given in Fig. 13.3.  

 



Theme 14. Theory of polymeric globula: 

macromolecule in external field; Lifshits formula, free energy and volume approximation; surface 

effects; coil - globule transition. 

For the simplest standard Gaussian model of a polymer chain, the microscopic state  (i.e., the chain 

conformation) is specified by the set of coordinates of “bead” links:  Nxxx ,...,, 21 . The 

probability of a given microscopic state is written 

       .,...,, 12110 NN xxgxxgxxg


    (14.1) 

where the factors 
 1, ii xxg


 describe the bonds between neighboring links. If the beads are 

interacting, each bead in the field created by another beads. Thus, we can describe the effects of 

intra – molecular interactions  in terms of the effective external field acting on the beads of the 

chain. Speaking of an effective external field, we do not necessarily mean a real physical (electric, 

magnetic, and so on) field. We mean only a way to describe a spatial inhomogeneity or anisotropy 

of the external conditions or to express the dependence of the energy  x


  of a link on generalized 

coordinates. The partition function is obtained by integrating the distribution    over beads’ 

coordinates. The partition function of the macromolecule whose both terminal links are fixed in 

space, that is, with the links indexed 0 and N fixed at the given points 0x


 and Nx


 respectively is 

written 

 (14.2) 

From the latter expression directly follows the next recursive relation 

  (14.3) 

where      










T

x
xxgxxQ


exp,, .  The equation (14.3) can be shortly rewritten as  

   (14.4) 

If the integral operator Q̂  has a discrete spectrum, the partition function is written 



   (14.5) 

where m  and 


m are “left” and “right” eigenfunctions and m   are eigenvalues of the operator 

Q̂ . If the maximal eigenvalue, say 1  exists, the free energy is estimated as  

1
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ln 
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


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



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x
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N     (14.6) 

in the thermodynamics limit N .  

 Let us address the conformational entropy of the idel polymer chain in terms of the chain in 

the effecrive external field. The conformational entropy of a polymer system is independent of the 

nature of the forces that determine the state of the system; therefore, entropy can be found by 

considering an ideal chain placed in a fictitious external field that ensures equilibrium for a given 

macroscopic state. If  n  is the density of beads in the state  , the free energy functional of the 

polymer chain with the given  n  is written 

 ,  (14.7) 

where  is the maximal eigenvalue of the transfer operator Q̂ . With taking into account 

     


nnE  , entropy is rewritten as  

 

Any eigenvalue of the operator Q̂  is satisfied by equation  Q̂ . Thus, the conformational 

entropy can be presented by Lifshitz formula 

   (14.8) 

where the following expression established connection between the density  n  and 

eigenfunctions    and     

    (14.9) 

By physical meaning,     and    are the distribution functions of the beginning and the end 

of the chain.  

 To find the free energy of the polymeric globula we need to minimize the free energy 

functional (14.7) over the beads density. The iternal energy functional can be presented as  



, 

where the free energy density is presented as a virial expansion over beads density 

 

To estimate the conformatilonal entropy we need to rewrite Eq.(14.8) for the standard model of 

polymer chain. If  xn  varies smoothly, then the substitution 2
2

6
1ˆ 

a
g  is valid and  

(14.10) 

The most thermodynamically favorable  xn  corresponds to the homogeneous globula with the 

narrow surface layer of the length FR , where RF is the Flory radius. Thus, the entoropy loss in 

the globula state is equal to 

 (14.11) 

where n0 is the density inside the globula. The energy  nE  is additive quantitiy. At the same time 

entropy is estimated as 





 3

2

NO
. In this so-called volume approximation, we totally disregard the 

conformational entropy as 

(14.12) 

Then, we just need to minimize free energy (14.2) over the densitiy n0 and obtain in the volume 

approximation the free energy  

    (14.13) 

To address the transition into the globular state we need to take into account the surface term surfF  

in the free energy 

surfvol FFF   

It is easy to show that  

   (14.14) 



Near the  point virial coefficients are estimating as 

 

Thus,  

 (14.15) 

where  

 

Thus, we have the phase transition of the second order between the coil and globular phases at the 

temperature Ttr. 



Theme 15. Heteropolymers: 

block - copolymers and random heteropolymers (RHP); microphase separation; disordered systems, 

replica and constrained annealing methods; freezing transition in RHP. 

A heteropolymer or copolymer is a polymer derived from two (or more) monomeric species. 

While block copolymers comprise two or more homopolymer subunits linked by covalent bonds, 

random heteropolymer consist on two or more kinds of monomers, randomly distributed along the 

chain.  

The particular chemical structure of block copolymer materials is reflected in the most 

fundamental and interesting way by incompatibility effects. The most characteristic feature of a 

block copolymer is the strong repulsion between unlike sequences even when the repulsion between 

unlike monomers is relatively weak (see section 13). As a result sequences tend to segregate, but as 

they are chemically bonded even the complete segregation cannot lead to a macroscopic phase 

separation transition as in mixtures of two homopolymers. However, in the case of a sufficiently 

strong incompatibility, microphase separation (MPS) occurs: microdomains rich in A (in B) are 

formed. 

 Let us consider a molten diblock copolymer where all chains have the same index of polym-

erization N and the same composition 
N

N
f A  (NA>>1 and NB>>1 denote the number of 

monomers of type A and B, respectively; N = NA + NB); i.e., we neglect the polydispersity of the 

chains. For the sake of simplicity we will assume that both blocks have the same Kuhn statistical 

segment length a. Below is assume the incompressibility of the polymer melt:     1 rr BA  , 

where  rA  and  rB  denote the reduced density of monomers A and B, respectively.  rA  is 

defined as the ratio of the local density of monomers A at the point r to the overall monomer density 

averaged over the sample. Although the overall density of monomers is constant,  rA  and  rB  

themselves may exhibit local fluctuations and it is these fluctuations which will be at the very root 

of the microphase separation. The energy of interaction of different chemical species (per 

monomer) may be written as 

BABA kT        (15.1) 

For 0  or   finite but sufficiently small, the entropy effects are dominant, and they favor 

mixing: the system exhibits an isotropic phase with sequences A and B of the chains 

interpenetrating each other so that for all points 

  frA      frB  1  



where <...> denotes the thermal average. In order to characterize the different phases of a liquid 

copolymer as well as the transitions between them, we will introduce an order parameter  r , 

defined as 

       rfrfr BA   1
    (15.2) 

The simplest way to analyze qualitatively the microphase separation is to examine the 

expansion of the free-energy density F of an ordered phase in powers of the order parameter  r . 

The quadratic term of the free energy expansion is written  

 




q
qqqS

V
F 12

~1
,    (15.3) 

where q
 denotes the Fourier transform of  r  and V the volume of the system. near the phase 

transition 1~
qS  has a deep minimum for the wave vectors q with |q| = q*, but the higher order terms 

F3, F4, ... have no singular behavior for q*. As a consequence the only Fourier components of q
 

which are important (near the transition) are those with |q| = q*. For  tNN    the free energy is 

lowered by the presence of a finite q
 (|q| = q*) - a periodic ordered mesophase appears. The 

periodicity of the ordered phase is equal to *
2

q
  and is of the order of the radius of gyration of 

copolymer molecules. The detailed structure and magnitude of the coefficients q
 (|q| = q*) for 

various orientations of q will depend crucially on the higher order terms F3, F4, ... Near the 

spinodal the important fluctuations should be those with wave vectors |q| = q* and that  r  may be 

approximated by 

 
 




iQq

iqr
qer  ,     (15.4) 

where 
)..1(* niqQi 
 and qq 

.  

Radiation scattering experiments provide a very attractive method for studying the various aspects 

of the microphase separation. In case of MPS, the scattering by the periodic microdomain structure 

gives the characteristic diffraction spectrum. The scattering intensity for the disordered phase of the 

block copolymer is proportional to the correlation function  qS
~

. There is a certain critical value of 

N ,  SN  , for which the correlation function  qS
~

 diverges with |q| = q*; this is the spinodal 

point. Thus, from the definition of the spinodal point 



 

 
 








ii Qq
qS

Qq
qqq

NSF
21

2 2
~

*     (15.5) 

If S   the microphase separation transition (MST) occurs.  Subsequent analysis of the free 

energy shows that there are two microdomain structures that may appear after the MST: the 

hexagonal and bcc mesophases. In order to decide which mesophase will actually appear, it is 

necessary to analyze the free energy of these phases in more detail. 

Biological macromolecules (proteins, RNA, DNA) are heteropolymers, where the sequence of 

monomers are evolutionary selected. These non-random (evolution selected) macromolecules can 

be modelled by disordered polymers of various sorts. In these models, the relevant interactions 

(monomer-monomer or monomer-solvent) are disordered, and the disorder is quenched, to account 

for the fixed character of the chemical sequence. The approach to macromolecules with quenched 

sequence disorder is based on the spin glass theory. We will restrict ourselves with the minimum 

amount needed for the heteropolymer folding problem. The spin glass problem originally arose in 

the study of disordered magnetic alloys, where magnetic impurities (e.g. Mn), quenched at random 

positions in the host lattice (e.g. Cu) interact with one another through competing interactions. The 

essence of the spin glass problem (i.e. frustration + quenched disorder) is captured by the Edwards-

Anderson model: 





ji

jiij SSJH ,    (15.6) 

where 1iS  and ijJ  are the random coupling between impurities i and j, distributed with a law P 

({Jij}). for a given set of {Jij}, the free energy F ({Jij}) at temperature T is obtained as: 

F ({Jij}) = −T log Z ({Jij})    (15.7) 

with 

Z ({Jij}) = Tr{Si}exp (−βH({Jij}))   (15.8) 

with β =1/T (throughout this article, we set Boltzmann’s constant kB= 1). Note that 

F ({Jij}) is also a random variable; for short range interactions, we now show that, when the number 

N of spins becomes very large, F({Jij}) is sharply peaked around its (disorder) averaged value F , 

where 

         ijijij JFJPJdF    (15.9) 

This property is called self-averageness of the free energy.  

Two main lines have been pursued in the (static) study of mean field spin glasses: 

1) the replica method where one averages a priori over all disorder configurations, through the 

identity: 
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limln 0


     (15.10) 

2) the TAP equations, which give, for each disorder configuration the free energy local minima. 

These equations are difficult to study either analytically or numerically, except in certain limits. 

Disordered systems like spin glasses or random heteropolymers are characterized by two 

types of degrees of freedom: annealed, which arrange themselves to minimize the free energy, and 

quenched, which can be considered as constant in time. In case of macromolecules, annealed 

degrees of freedom are spatial coordinates of monomers. The monomers sequence can be addressed 

as a set of quenched degrees of freedom. The free energy of the macromolecule with random 

quenched sequence can be estimated as   

  AfTgf  ,     (15.11) 

where f and fA are the quenched and annealed free energy per monomer, correspondingly and 

     seqNeseqZ
N

T
Tg   ln, ,   (15.12) 

where Z(seq) is the parition function of macromolecule with given sequence realization seq and 

 seq  is the appropriate self-averaging quenched quantity. O  means the average over sequence 

distribution function. We will refer to this approach as a "constraint annealing approach". 

Let us consider the Hamiltonian: 

 (15.13) 

where the couplings {wij} are random independent couplings, and v0 represents the overall effect of 

the solvent, as well as the direct non random pair interactions. For the sake of simplicity, we use a 

Gaussian probability distribution for the couplings: 

    (15.14) 

The partition function is: 

   (15.15) 

where the function ),( 1ii rrg


 enforces the chain constraint. Replicating and averaging the latter 

equation yields: 

(15.16) 



where  
2

~
2

00
wvv  .  

The proposed model is possessed by two main features: 

 (i) a possible θ point if 0
~v . 

(ii) a possible freezing transition due to the a ba   term of (15.16). 

Since we wish to emphasize here the freezing transition, we will assume that 0
~v  

Is indeed negative, so that the system is in the collapsed phase. The Eq.(15.16) can be easily 

generalized for the continuous case as  

 (15.17) 

where 

 (15.18) 

Introducing density – like parameters 

   (15.19) 

obtaining  

(15.20) 

with  

 

and  

 

Then, we need to get the limit 0n  to estimate the free energy (15.10). The subsequent analysis 



of the obtained free energy shows the close similarity between the model with Hamiltonian (15.13) 

and Random Energy Model (REM). This model can then be solved by a one-step replica symmetry  

breaking scheme.The chain undergoes a freezing transition at a temperature Tc. Above Tc , the 

system has a finite entropy, whereas below Tc , it vanishes. The system is then frozen in a small 

number of dominant states. 



Theme 16. Liquid crystalline ordering: 

Onsager approximation for the semiflexible macromolecules;order parameter and nematic 

ordering.  

Let us start with the case of semiflexible macromolecules with dL   , where L is the 

contour length,   is the persistence length and d is the diameter of chain. The free energy of a 

solution of these macromolecules in the Onsager approximation must consist of the contribution 

Fconf describing the entropy losses upon orientational ordering and the free energy Fster of steric 

interaction of the macromolecules in the second virial approximation (the translational free energy 

for long polymer chains is generally inessential. 

 To write the expression for Fster we note that, since d  for semiflexible macromolecules, 

one can always divide the polymer chains into regions of length  so that  d , and call 

these regions elementary links. In essence, the elementary links thus defined are long rigid rods. 

Therefore the second virial coefficient of interaction of two links having the orientations n1, and n2 

is    sin2 2dB  . Upon allowing for this, we can write the expression for Fster in the form as: 
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,  (16.1) 

where N is the total number of macromolecules in the solution, 4/2cLd  , c=N/V and f(n) is the 

orientation distribution of the unit vectors n tangential to the chain. For the semiflexible persistent 

macromolecules we have 
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    (16.2) 

The next step in the Onsager method is to find the equilibrium distribution function f(n) by 

minimizing F=Fster+Fconf. Direct minimization yields an integral equation that can be solved only 

numerically. Therefore, an approximate variational method can be used with the trial function 

    coscoshnf ,    (16.3) 

where   is the angle between the vector n and the direction of the anisotropy axis, while   is the 

variational parameter. One must substitute the trial function of (16.3) into Eqs. (6.1, 6.2) and 

minimize it with respect to  . The found minima correspond to possible phases (isotropic and 

liquid-crystalline). One can study the transition between these phases by the usual method by 



equating the pressures 
 

c
FNc


 /2
 and chemical potentials 

 
c

FcF
N 
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1


 of the two 

phases. As a result it turned out that the orientational ordering of the athermal solution has the 

character of a first-order phase transition and occurs at low concentrations of the polymer in 

solution. More exactly, when i  , the solution is homogeneous and isotropic, when a   it is 

homogeneous and anisotropic, while when ai    it separates into isotropic and nematic 

phases, with 1/  dai  . 

The following characteristics of nematic ordering were obtained for an athermal solution of 

persistent semiflexible chains 

,
48.10



d
i   ,

39.11



d
a  and order parameter 49.01cos3

2

1 2  s . 



Theme 17. Branched polymers: 

dimensions of branched chains; chains with quenched and annealed branching; Flory theory and 

radius of gyration.  

Branched polymers are of significant interest both for synthetic polymer chemists and for 

biophysicists. Most of the synthetic polymers are somewhat branched. Also, RNA molecules form 

clover leaf structures that can be viewed as branched polymers, with elements of secondary 

structure forming branches. An even better example of a branched polymer is super-coiled DNA. 

To begin with, let us disregard volume interactions and ask what is the size of an ideal 

randomly branched polymer, Rid? This was answered by B Zimm and W Stockmayer as early as in 

1949. Their result reads 4
1

NRid  . There are several ways to derive it; one of the simplest is based 

on the estimate of the ‘chemical diameter’ of the branched structure, that is, the chemical interval, 

or contour distance, between two arbitrary ends of the structure, and it is done by mapping the 

branched structure on a Cayley tree graph (see Fig. 17.1). By choosing an arbitrary origin point 0 on 

the Cayley tree, the branched structure can be viewed as a one dimensional random walk with 

possible steps to and from 0. This yields an estimate that the chemical diameter, L, scales as the 

square root of the number of monomers in the macromolecule, N, or more accurately, 

 

Fig. 17.1. The branched structure without cycles (a) can be mapped onto the Cayley 

tree graph (b). On the graph, the image can be encircled with the ‘ring polymer’ 

(dashed line), its characteristic distance from the origin O scales as the chemical 

diameter of the structure, L. 

 

,    (17.1) 



where g is the characteristic number of monomers in the linear part of the structure, between two 

neighboring branch points. As each diameter in the ideal polymer represents a Gaussian linear 

chain, we arrive at 

,    (17.2) 

where a is the monomer length. Thus, the density of monomers can be estimated as 

4
1

3
N

R

N

id

     (17.3) 

The density  is deiverged in the thermodynamic limit N . Thus, in three dimensions, 

branched polymers are very compact and dense, and it is necessary to take into account the effects 

of excluded volume. For the branched polymers we need to distinguish between two extremes. To 

explain it, let us say that the branched polymer corresponds to the tree-like graph embedded in real 

space. In one extreme, the branched polymer is far from equilibrium such that the structure of the 

graph is fixed. The opposite extreme is the situation where the positions ofthe branches fluctuate 

and are in thermal equilibrium. These two extremes are called quenched and annealed, 

respectively. The physical reason for the difference between quenched and annealed branches is 

simple. The excluded volume leads only to the stretching of subchains in the case of quenched 

branches, but it is accompanied by the rearrangement of branches in the annealed case. 

Let us construct the Flory type theory for the quenched branched polymer. The free energy 

in dependence on the size of the polymer is written 

     RFRFRF el int ,   (17.4) 

where  
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is the interaction part of the free energy and v~ad is the excluded volume of monomer. The entropic 

part of the free energy Fel(R) is written 

 
2









id
el R

RTRF     (17.6) 

Minimization of the free energy (17.4) yields the characteristic size of the branched polymer 

QQ gaNR
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where  
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In case of the the annealed branched polymer the entropic contributions to the Flory type 

free energy (17.4) is written 
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 ,   (17.9) 

where the first term has the same meaning as (17.6), but the second one is responsible for the 

rearrangement of the branching pattern. How many configurations are there for the diameter L? As 

was already mentioned, these configurations can be mapped onto a one dimensional random walk 

(to or from the origin 0 on the Cayley tree), and thus the answer is given by the entropy of a linear 

polymer stretched out to the end-to- end distance L, because, on the Cayley tree, L plays the role of 

spatial size. Thus, we get 
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Minimizing by L yields 
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and free energy (17.4) is transformed as 
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Minimizing the latter expression in respect to R obtaining  

AA gaNR  ,    (17.12) 

where  
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