Introduction to physics of quarks with flavour and colour

Alexander Khodjamirian

Regional Training Network in Theoretical Physics

Lectures at the Physics Faculty, Yerevan State University, March 30- April 1 2015

Lecture 2:

Calculating the colour-charge interaction in quantum chromodynamics

i = 1, 2, 3,

a = 1, 2, ..., 8

Colour charge

- "Colour", a dynamical charge carried by quarks (in addition to electric charge)
- The colour charge has three components:
 - $\begin{array}{ll} u^i = \{u^1, u^2, u^3\} & c^i = \{c^1, c^2, c^3\} & t^i = \{t^1, t^2, t^3\} \\ d^i = \{d^1, d^2, d^3\} & s^i = \{s^1, s^2, s^3\} & b^i = \{b^1, b^2, b^3\} \end{array}$
- three states of the quark with the same flavour, Q, mass
- leptons are colour-neutral

Gluon

- massless particle emitted/absorbed by colour charges (photon - massless particle emitted/absorbed by electrical charges)
- Feynman graphs:

electromagnetic interaction

quark-gluon interactions

 g^a

 u^{j}

 d^{i}

gluon carries colour, 8 coloured states:
 (*i* = 1, 2, 3) × (*j* = 1, 2, 3) → *a* = 1, ...8

dJ

 u^i

Gluons are self-interacting

quark-gluon vertex

3-gluon vertex

4-gluon vertex

- photons are not self-interacting, light does not emit light !
- gluon self-interactions → confinement of colour charges: free quarks and gluons not observable
- only colour-neutral hadrons (e.g., protons and neutrons) are observable, quarks and gluons are confined inside hadrons
- quark-gluon interaction is flavour neutral: the same coupling g_s for q=u,d,s,..

Quantum Chromodynamics (QCD)

- Quantum field theory of quarks (spin 1/2, Dirac fields), and gluons (spin 1, Maxwell fields)
- QCD Lagrangian

$$\mathcal{L}_{QCD} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \sum_{q=u,d,s,c,b,t} \sum_{k} \bar{\psi^{k}}_{q} (iD_{\mu}\gamma^{\mu} - m_{q})\psi^{k}_{q},$$
$$= \mathcal{L}_{glue} + \mathcal{L}_{quark} + \mathcal{L}_{int}$$

 $G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu \,, \quad D_\mu = \partial_\mu - ig_s \tfrac{\lambda^a}{2} A^a_\mu.$

Iocal gauge transformation

$$\psi_q^i(x) = \begin{pmatrix} \psi_q^1(x) \\ \psi_q^2(x) \\ \psi_q^3(x) \end{pmatrix}, \qquad \qquad \psi_q^i(x) \to \psi_q^{ii}(x) = U_k^i(x)\psi_q^k(x) \\ \bar{\psi}_{qi}(x) \to \bar{\psi}_{qi}(x) = \bar{\psi}_k U_i^{\dagger k}(x), \\ \frac{\lambda^a}{2}A_\mu^a(x) \to U(x)\frac{\lambda^a}{2}A_\mu^a(x)U^{\dagger}(x) - \frac{i}{g_s}\partial_\mu U(x)U^{\dagger}(x), \end{cases}$$

Rotations of "colour coordinates"

•
$$3 \times 3$$
 matrix $U_k^i(x)$, $U^{\dagger}U = 1$.

$$U_k^i(x) = \exp\left[-i\sum_{a=1}^8 \chi^a(x) \frac{(\lambda^a)_k^i}{2}\right]$$

.

- eight independent and arbitrary functions $\chi^a(x)$
- Gell-Mann matrices

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\\lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\\lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$
(1)

QCD Feynman graphs

• quark-gluon interactions in terms of Feynman graphs:

• $\alpha_s = g_s^2/4\pi$ - dimensionless quark-gluon coupling, analog of $\alpha_{em} = e^2/4\pi$ in QED

Asymptotic freedom of QCD

• Quark-quark scattering, energy/momentum transfer Q

- the quantum loop corrections play a crucial role:

 α_s → *α_s(Q)*, effective, scale-dependent coupling
- α_s(Q) small for processes with Q ≥ 1 GeV
 ⇒ expansion in powers of α_s applicable
- Perturbative QCD: physics of quark and gluon jets
- large momentum transfers ⇒ short distances (Heisenberg: ΔxΔp ~ 1, Δx ~ 1/Q)

QCD at long distances

• an intrinsic scale emerges: $\Lambda_{QCD}\sim 200-300~MeV$

• at $Q \sim \Lambda_{\text{QCD}}$ quarks/gluons strongly interact, hadronization, confinement

Alexander Khodjamirian

Introduction to physics of quarks with flavour and colour

QCD Vacuum

- the lowest energy state, no hadrons contains fluctuating quark-antiquark and gluon fields: vacuum condensates
- e.g., (0|qq|0) ≠ 0, q = u, d, s
 -spontaneous breaking of chiral symmetry

The hadron spectroscopy

Hadrons = colour-neutral bound states

 $|Meson\rangle = \frac{1}{\sqrt{3}} \sum_{i=1,2,3} |\bar{q}_i q^i\rangle |Baryon\rangle = \frac{1}{\sqrt{6}} \sum_{i,j,k=1,2,3} \epsilon_{ijk} |q^i q^j q^k\rangle$ lowest states: L = 0, J = S

- various flavour content, $q \rightarrow u, d, s, c, b$
- proton and neutron:

$$|\textit{proton}\rangle = \frac{1}{\sqrt{6}} \sum_{i,j,k=1,2,3} \epsilon_{ijk} |u^{i}u^{j}d^{k}\rangle, \quad |\textit{neutron}\rangle = \frac{1}{\sqrt{6}} \sum_{i,j,k=1,2,3} \epsilon_{ijk} |u^{i}d^{j}d^{k}\rangle$$

antisymmetry, Pauli-principle

excited states observed for each spin/flavour combination

• Pseudoscalar mesons $(J = 0^{-})$, some examples, decay weakly

Meson	π ⁺ (140)	<i>K</i> ⁺ (494)	D ⁺ (1869)	<i>B</i> ⁺ (5279)	<i>B</i> ⁰ (5279)
Flavour content	$ u\bar{d} angle$	$\ket{uar{s}}$	$ car{d} angle$	$ bar{u} angle$	$ bar{d} angle$
(the mass in MeV)					eV)

 vector mesons (J^P = 1⁻) etc. are heavier see data in [Particle Data Group], www.pdg.gov

- mesons are generally simpler than baryons
- our main task: determination of SM parameters from data on hadrons ⊕ QCD
- meson masses \oplus QCD \rightarrow quark masses
- $J^P = O^-$ meson flavour-changing weak decays \oplus QCD $\rightarrow V_{CKM}$

Flavour-changing *B*-meson decays

• leptonic mode: decay amplitude $\sim V_{ub} \langle 0 | j_W^{\mu} | B \rangle$, $j_W^{\mu} = \bar{u} \gamma^{\mu} (1 - \gamma_5) b$

• semileptonic mode: decay amplitude $\sim V_{ub} \langle \pi | j_W^{\mu} | B \rangle$

• the knowledge of hadronic matrix elements: $\langle 0|j^{\mu}_{W}|B\rangle$ (decay constant) and $\langle \pi|j^{\mu}_{W}|B\rangle$ (form factor) allows to extract V_{ub} from exp.data

Alexander Khodjamirian

Introduction to physics of quarks with flavour and colour

Hadrons in QCD

- no perturbation theory can be used: $\alpha_s \to \infty$
- quantum fluctuations in hadrons (influence of QCD vacuum): quark-antiquark pairs and gluons in addition to "valence" quarks
 - \Rightarrow no interaction potential can be derived
 - \Rightarrow no "wave function" of quark constituents in hadron
 - ⇒ direct calculation of hadron characteristics (masses, decay constants, form factors) in QCD is currently impossible
- nonperturbative QCD and formation of hadrons vs other "strong coupling" effects in physics (turbulence, high T_c)
- approximate approaches to nonperturbative QCD developed, with improvable accuracy, based on correlation functions of quark currents

Vacuum correlation function

• amplitude of emission and absorbtion of a $\overline{u}b$ pair in vacuum by $j_W = \overline{u}\gamma_5 b$ operators:

 $\Pi(q^2) = \int d^4x \ e^{iqx} \langle 0|T\{j_W(x)j_W^{\dagger}(0)\}|0\rangle \begin{array}{c} j_W \\ q_{\wedge \wedge} \checkmark \end{array}$

- rigorously defined ("inverted S-matrix")
- related to the hadronic matrix elements (see lecture 3)
- lattice QCD: relating Π(q²) to the functional integral over QCD action and quark-gluon fields; space-time → Euclidean space → 4-dim. lattice; functional integral → multidimensional integral on the lattice; calculated with MC simulation of random ensembles of gauge fields
- we will use a "non-lattice" method: approximate analytical calculation of the correlation function (QCD sum rules)

ĴW

 \overline{n}