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Introduction

The consideration and construction of higher spin gauge field theories has always been

considered an important task during the last forty years (See [1]-[8] and ref. there).

The complications and difficulties which accompany any serious attempt to solve the

essential problems in this area always attracted interest but activity intensified after

discovering the important role Higher Spin Fields plays in AdS/CFT correspondence.

Particular attention caused the holographic duality between the O(N) sigma model in

three dimensional space and HSF gauge theory living in the four dimensional space with

negative constant curvature [9]. This case of holography is singled out by the existence

of two conformal points of the boundary theory and the possibility to describe them by

the same higher spin gauge theory with the help of spontaneously breaking of higher

spin gauge symmetry and mass generation by a corresponding Higgs mechanism. All

these complicated physical tasks necessitate quantum loop calculations for higher spin

field theory [10]-[15] in Anti de Sitter space and therefore information about manifest,

off-shell and Lagrangian formulation of possible interactions for higher spin field in

AdS. Then the successful results on the quantum level can be controlled by compar-

ison with the boundary O(N) model results checking the AdS/CFT correspondence

conjecture on the loop level [10], [11], [13]. This theory is interesting also becouse

here we do nt need supersymmetry to establish and check AdS/CFT correspondence

which means that in this case complicated tasks lead to development of quantum field

theory in AdS space. In this manuscript we try to formulate 16 starting lectures about

geometry of AdS space, construction and investigation of the balk to balk and bulk

to boundary propagators for higher spin gauge theories and construction of the some

trilinear interaction vertices for higher spin gauge fields and scalar fields in AdS space.

The main goal of this lecture course to focus PhD (and graduate) students on the

problem of real one loop calculations in area of higher spin and scalar fields in the

3



space with constant negative curvature.
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1 Geometry of AdSD

In real Minkowski space RD−1,2 with a metric

(x, y) = x0y0 + xDyD −
D−1∑
k=1

xkyk (1.1)

in Cartesian coordinates, we can specify a manifold as an AdSD space by requiring

AdSD = {x ∈ RD−1,2 : (x, x) = x2 = L2} (1.2)

If not specified otherwise, we set L = 1. The coordinates x used in (2.1),(2.2) will be

denoted ”embedding space Cartesian coordinates” (e.s.C.c.).

The orthogonal group SO(D−1, 2) of RD−1,2 and its identity component SO0(D−

1, 2) act transitively on AdSD which is connected. A global coordinate system can be

defined by the diffeomorphism

S1 ×RD−1 3 (t, ~x) −→ (
√

1 + ~x2) sin t, ~x,
√

1 + ~x2 cos t) (1.3)

~x = {x1, x2, ...xD−1} ∈ RD−1 (1.4)

The universal covering space AdS
(c)
D is obtained by extending S1 to R1

S1 = R1/2πZ (1.5)

An often used coordinate system are the Poincare coordinates u and y in the domain

xD−1 + xD > 0

xµ =
yµ

u
, µ ∈ {0, 1, 2, ...D − 2} (1.6)

xD−1 =
1− u2 + y2

2u
, y2 = (y0)2 −

D−2∑
k=1

(yk)2 (1.7)

xD =
1 + u2 − y2

2u
(1.8)

In these coordinates the metric is

ds2
AdS = u−2{(dy0)2 − du2 −

D−2∑
k=1

(dyk)2} (1.9)
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The ”chordal distance” squared measured in the embedding space is

d(x, x′)2 =
1

2
(x− x′)2 = 1− (x, x′) = 1− ζ (1.10)

In later applications to field theory we shall use ”Euclidean AdS spaces”. These

are obtained by complexification of AdSD to AdScomplD

AdScomplD = {w = xre + ixim ∈ CD+1 : Re(w2) = x2
re − x2

im = 1} (1.11)

In this complex space we restrict xre and xim to

AdS
(E)
D = {w = xre + ixim : x0

re = 0, xkim = 0 for all k except k = 0} (1.12)

and call this space the Euclidean space AdSED. This manifold is a two-sheeted hyper-

boloid and we consider only the upper half xD ≥ 1. The Poincare coordinates for this

space are

z = (z0, ~z) = (u, y1, y2, ...yD−2, x0
im) (1.13)

ds2 =
dz2

0 + d~z2

z2
0

(1.14)

This measure is wrapped Euclidean.

Because the metric of AdSE has a particularly simple form in Poincare coordinates,

these are well suited for many calculations. From

ds2 = gµν(z)dzµdzν (1.15)

we obtain

√
g =

LD

(z0)D
(1.16)

[∇µ,∇ν ]V
ρ
λ = R σ

µνλ V
ρ
σ −R ρ

µνσ V
σ
λ (1.17)

R ρ
µνλ = −L−2[gµλ(z)δρν − gνλ(z)δρµ] (1.18)

Rµλ(z) = −D − 1

L2
gµλ(z) (1.19)
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The last property characterizes AdS as an Einsteinian space. Finally its constant

curvature is expressed by

R(z) = −D(D − 1)

L2
(1.20)

From the last equation follows also that the AdS spaces are maximally symmetric.

This has important consequences lateron.

The causal structure of AdSD is crucial for the application of physical concepts,

such as the motion of classical point particles (”observers”) or classical and quantum

fields. Due to the transitive action of the isometry group SO0(D − 1, 2) we can select

the point

eD = {0, 0, ...0, 1} (1.21)

given in e.s.C.c. Two points z1(x1), z2(x2) have the chordal distance squared (2.10)

d(z1, z2) =
1

2
(x1 − x2)2 (1.22)

This distance squared permits us to study the finite causal properties.

The tangent hyperplane at an arbitrary reference point x ∈ AdS is defined by

{x+ y : (x, y) = 0} (1.23)

(this means that all vectors y of the tangential hyperplane are orthogonal to the ”ra-

dius” x). In this hyperplane we distinguish the light cone vectors satsfying

(y, y) = 0 (1.24)

This set of vectors is identical with the intersection of the hyperplane with the manifold

of AdSD. The timelike vectors are defined by

(y, y) > 0 (1.25)

and the spacelike vectors by

(y, y) < 0 (1.26)
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At the reference point eD (1.21) the tangential hyperplane is a D − 1 dimensional

Minkowski space with vectors

{y0, ~y, 0}, yD = 0 (1.27)

The double cone of timelike vectors can be decomposed in a future light cone y0 > 0

(positive timelike) and a past lightcone y0 < 0 (negative timelike).

By means of the chordal distance (1.10),(1.22) we can characterize the relative posi-

tion of pairs of points on AdSD as spacelike if d(z1, z2)2 < 0, as timelike if d(z1, z2)2 > 0,

and lightlike if d(z1, z2)2 = 0. With the reference point z1 = eD (2.21) these three sets

are respectively decribed by

Γa(eD) = {x ∈ RD−1,2 : xD > 1} (1.28)

Γb(eD) = {x ∈ RD−1,2 : xD < 1} (1.29)

Γc(eD) = {x ∈ RD−1,2 : xD = 1} (1.30)

where Γc coincides with the set of lightlike vectors on the tangential hyperplane at eD.

The set Γb can be further decomposed in

Γb(eD) =
⋃

κ∈{+,−,ex}

Γκ(eD) (1.31)

and each subset is defined by

Γ+(eD) = {x ∈ RD−1,2 : −1 < xD < +1, x0 > 0} (1.32)

Γ−(eD) = {x ∈ RD−1,2 : −1 < xD < +1, x0 < 0} (1.33)

Γex(eD) = {x ∈ RD−1,2 : xD < −1} (1.34)

Γ±(eD) are the positive (negative) timelike sets. The last set Γex is denoted ”exotic”

and obtained from Γa(eD) by the inversion

x→ −x. (1.35)
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2 Geodesics, trajectories, and one-parameter sub-

groups

A geodesic is the conical section of AdSD with a two-plane in RD−1,2 containing the

origin. Since such two-planes can be characterized by one-parameter subgroups of

SO0(D − 1, 2) both concepts are closely related. Planar trajectories are obtained by

affine two-planes intersecting AdSD which are translated off the origin by a fixed vector.

This vector can be chosen orthogonal to the two-plane.

Consider two points x1, x2 on a geodesic γ. Then the corresponding one-parameter

subgroup (1P subgroup) mapping x1 onto x2 defines an angle ϕ seen from the origin of

RD−1,2. This angle appears also in the chordal distance d(x1, x2) either as a trigono-

metric or as a hyperbolic angle. A typical example is the two-plane spanned by e0, eD.

Then in e.s.C.c. the matrices of the 1P-subgroup are

Ω =



cosϕ 0 . . . 0 − sinϕ

0 1 . . . 0 0

...
...

...
...

...

0 0 . . . 1 0

sinϕ 0 . . . 0 cosϕ


Moreover the chordal distance is expressed by

d(x1, x2)2 = (x1, x2)− 1 (2.1)

(x1, x2) = cos(ϕ(x1)− ϕ(x2)) (2.2)

In e.s.C.c. ϕ is extended to the whole real axis yielding the covering space AdS
(c)
D and

the vector e0 is mapped on the time axis by application of all Ω.

Another example of interest is the case of a two-plane spanned by e0, e1. The
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corresponding 1P-subgroup is in e.s.C.c. represented by matrices

Υ =



cosh η sinh η . . . 0 0

sinh η cosh η . . . 0 0

...
...

...
...

...

0 0 . . . 1 0

0 0 . . . 0 1


and the chordal distance for two points x1, x2 on such geodesic is

d(x1, x2)2 = (x1, x2)− 1 (2.3)

(x1, x2) = cosh(η(x1)− η(x2)) (2.4)

Any trajectory is denoted timelike respectively spacelike if the tangent vector at

each point is timelike or spacelike. In the case of geodesics it suffices to know the

behaviour at one point, since the corresponding 1P-subgroup translates this property

to all other points. The same is then true for planar trajectories since the orthogonal

vector v is left invariant under the 1P-subgroup.

We consider the case of the two-plane through e0, eD. Then a planar trajectory is

given by

x = v + x̂ (2.5)

x̂ = R{sinϕ, 0 . . . , cosϕ} (2.6)

Since

(v, x̂) = 0 (2.7)

for all ϕ, we have

(v + x̂)2 = v2 + x̂2 = 1 (2.8)

v2 = 1−R2 ≤ 0 (2.9)

as R ≥ 1 necessarily. The whole class of such plane trajectories is elliptic because of

(2.6) and timelike because the tangent vector at ϕ = 0 is timelike.

10



Next we consider the two-plane through e0, e1. From the ansatz

x = v + x̂ (2.10)

x̂ = R{cosh η, sinh η, 0 . . .} R is arbitrary real) (2.11)

follows that

v2 = 1−R2 = (vD)2 −
D−1∑
k=2

(vk)2 < 1 (2.12)

These are spacelike hyperbolic planar trajectories since the tangent vector at η = 0 is

spacelike. However, the choice

x̂ = R{sinh η, cosh η, 0 . . .} (2.13)

implies timelike hyperbolic planar trajectories with

v2 = 1 +R2 > 1 (2.14)

Thus the property of being spacelike or timelike is encoded in the value of v2.

The timelike planar trajectories are of physical interest since they can be looked

upon as trajectories of a pointlike observer. We can identify the angle variable ϕ or η

with the eigentime t of the observer after the normalization

t = Rϕ(Rη) (2.15)

We want to prove now that the pointlike observers are uniformly accelerated (the square

of the acceleration is constant).

As in special relativity we differentiate the trajectory x(t) with respect to the eigen-

time t

u(t) =
d

dt
x(t) (2.16)

w(t) =
d2

dt2
x(t) (2.17)

11



Then the following identities hold

(x(t), u(t)) = 0 (2.18)

(x(t), w(t)) = −1 (2.19)

(u(t), u(t)) = 1 (2.20)

(u(t), w(t)) = 0 (2.21)

By definition x(t) lies in the affine two-plane

x(t) ∈ v + Π (2.22)

and has a component in Π denoted x̂(t)

x(t) = v + x̂(t) (2.23)

u(t) lies in Π and the tangential hyperplane at AdSD through x(t). The acceleration

can be projected on this hyperplane by subtraction of x(t)

w(t) = ŵ(t)− x(t) (2.24)

so that

(x(t), ŵ(t)) = 0 (2.25)

which proves that ŵ(t) lies in the tangential hyperplane, too. It is the physical accel-

eration.

Now u(t) lies in the two-plane Π and

(u(t), x̂(t)) = (u(t), w(t)) = 0 (2.26)

On the other hand x̂(t) and w(t) are neither zero

(x̂(t), w(t)) = −1 (2.27)

It follows that in the two-plane Π they are collinear

w(t) = λ(t)x̂(t) (2.28)
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with

λ(t) =
(x̂(t), w(t))

(x̂(t), x̂(t))
= (v2 − 1)−1 (2.29)

This implies finally that

(ŵ(t), ŵ(t)) = (w(t), w(t))− 1 = λ(t)2(1− v2)− 1 =
v2

1− v2
(2.30)

Thus the acceleration is uniform indeed.

We define the acceleration by

â = {−(ŵ(t), ŵ(t))}
1
2 (2.31)

and obtain for both timelike planar trajectories

â =

√
v2

v2 − 1
in the hyperbolic case (2.32)

â =

√
|v2|
|v2|+ 1

in the elliptic case (2.33)

Following a fixed planar timelike trajectory x(t) in a quantum field ψ(x(t)), the

generator of the trajectory is a certain element of the Lie algebra s(D − 1, 2) of the

isometry. It is a kind of a Hamiltonian which by physical arguments has a spectrum

bounded from below. This implies that ψ(x(t)) after insertion into a Green’s function

can be continued analytically in the group parameter, which is the eigentime of the

observer on the trajectory. The result is a strip of analyticity in the complex t-plane

{t : −∞ < <t < +∞, 0 < =t < β} (2.34)

with cut singularities along both boundaries and a β-periodic repetition. This analyt-

icity is a KMS property implying that the observer perceives a temperature T

T = β−1 =
1

2πR
(2.35)

Here R is the radius of the circle (2.6) or hyperbola (2.13) which can be expressed by

the acceleration â in either case as

T =
1

2π

√
| â2 − 1 | (2.36)

This is the AdS ”Unruh effect”.
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3 The Cauchy problem and the antipodal map

In classical field theory on Minkowski space retarded Green functions permit to de-

termine field configurations at a time t2 from sources at an earlier time t1. A related

problem is to continue a given field configuration at t1 to later times t2 by means of

Green functions. This is made possible by the structure of the field equations which for

integral spin are second order in the time and by the topology of the underlying space-

time. The space-time must allow us to define submanifolds t = const on which a set

of initial values for the fields can be given that are complete. This means that these

initial values are consistent with respect to the field equations and determine future

field configurations uniquely. Necessary and sufficient is that the space is globally hy-

perbolic and this property excludes the possibility that energy, momentum or charges

enter or leave the space at spatial infinity.

In the present context it is of interest that anti-de Sitter space is not globally

hyperbolic in contrast to Minkowski space, rendering it a toy model for studying the

Cauchy initial value problem. In fact we will learn that for classical fields of integer

spin and AdS-dimension the Cauchy problem has a solution and is connected with the

existence of an ”antipodal map”. Of course our discussion is based on the universal

covering space AdS(c) so that closed timelike trajectories are excluded.

The idea behind this solution is to consider AdSD space as a ”box” embedded in

a larger globally hyperbolic space, namely Einstein’s static universe (EsuD). We are

in fact interested only in the even dimension D = 4. In AdS spaces of even dimension

the Green’s functions of massless fields (mass is not uniquely defined on AdS spaces,

sometimes conformal masses are distinguished from straight masses) have support only

on the light cone, we call this ”Huygens phenomenon” (the Huygens phenomenon is

typical for conformally massless fields). For intuitive understanding the AdS and Esu

spaces, we refer to the illustrations.
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The AdS4 space allows a global coordinate frame (if we neglect polar singularities)

which separates the Laplace-Beltrami operator and is given in terms of e.s.C.c. by

x0 =
cos τ

cos ρ
(3.1)

x4 =
sin τ

cos ρ
(3.2)

x1 = tan ρ cos θ (3.3)

x2 = tan ρ sin θ cosφ (3.4)

x3 = tan ρ sin θ sinφ (3.5)

where

0 ≤ ρ < π/2, 0 ≤ θ ≤ π, 0 ≤ φ < 2π (3.6)

The free scalar conformally massless field obeys the equation

(2− 1/6R))ψ = 0 (3.7)

where

R = D(D − 1)|D=4 = 12 (3.8)

The Laplace-Beltrami operator is

2 = cos2 ρ
∂2

∂τ 2
ψ−cot2 ρ[cos2 ρ

∂

∂ρ
(tan2 ρ

∂

∂ρ
ψ)+

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
ψ)+

1

sin2 θ

∂2

∂φ2
ψ] (3.9)

The space Esu4 has the structure R× S3 where the spherical factor comes from

4∑
k=1

(xk)2 = 1 (3.10)

in e.s.C.c., whereas y0 is the time coordinate. Again we introduce polar coordinates on

the sphere in terms of the e.s.C.c.

x0 = τ (3.11)

x4 = cos ρ (3.12)

x1 = sin ρ cos θ (3.13)

x2 = sin ρ sin θ cosφ (3.14)

x3 = sin ρ sin θ sinφ (3.15)
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The metric is then

(dsE)2 = dτ 2 − dρ2 − sin2 ρ(dθ2 + sin2 θdφ2) (3.16)

yielding the Laplace-Beltrami operator for the field ψE

2E =
∂2

∂τ 2
ψE − 1

sin2 ρ
[
∂

∂ρ
(sin2 ρ

∂

∂ρ
ψE) +

+
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
ψE) +

1

sin2 θ

∂2

∂φ2
ψE] (3.17)

The free scalar conformally massless field equation comes out as

(2E − 1/6RE)ψE = (2E + 1)ψE = 0 (3.18)

where we used

RE = −(D − 1)(D − 2)|D=4 = −6 (3.19)

Solutions ψE of the scalar equation (3.89) at a fixed time τ form a Hilbert space

HE with the scalar product

< ψE1 , ψ
E
2 >= i

∫
τ=const

(ψ̄E1 ∂τψ
E
2 − ψE2 ∂τ ψ̄E1 )dΩ (3.20)

where dΩ denotes the uniform measure on S3. This product is independent of τ . A

basis in this space can be easily found as

ψEωlm = Nωl exp(−iωτ)(sin ρ)lC l+1
ω−l−1(cos ρ)Y m

l (θ, φ) (3.21)

where

ω, l,m ∈ Z, ω − 1 ≥ l ≥ |m| (3.22)

and C l+1
ω−l−1 are Gegenbauer polynomials whereas Y m

l are spherical harmonics.

Classical massless particles move along trajectories that are periodic in τ with

period 2π. One can say even more. If such trajectory goes through

x0, x1, x2, x3, x4 ⇒ τ, ρ, θ, φ (3.23)
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it also passes through

x0 + π,−x1,−x2,−x3,−x4 ⇒ τ + π, π − ρ, π − θ, φ+ π (3.24)

Such pairs of points are called ”antipodal”. A time translation

τ → τ + π (3.25)

followed by an inversion in the space components of R3,2 is denoted an ”antipodal

map”.

Next we map AdS4 into Esu4 by identifying the polar coordinates but restricting ρ

to the interval < 0, π/2). Moreover we apply a conformal map relating the metrics by

gEµν = ω2gµν , ω = cos ρ (3.26)

Since both massless equations are conformally massless, they go into each other under

this injection if we set

ψE = ω−1ψ (3.27)

If we give Cauchy data on the manifold

ΣE = Esu4|τ=0 (3.28)

the part Σ1, namely 0 ≤ ρ < π/2, is covered by AdS4 under the injection whereas the

part Σ2, namely π/2 < ρ ≤ π, is left over. The point ρ = π/2 can be neglected if we

apply the Hilbert space norm to the initial values.

On the other hand the Cauchy data on Σ2 reappear after a time shift of π on the

interval ρ ∈< 0, π/2). Denote the time shifted manifold Σ2 by Σ̂2. Complete sets of

initial values can therefore be obtained for AdS4, by taking initial values on Σ1 and Σ̂2.

The support of these initial values is invariant under the antipodal map. It is therefore

suggestive to consider initial values that are even respectively odd under the antipodal

map. This is best done with the help of the basis. We give this basis after application

of the conformal map (3.98).
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The even antipodal parity elements are

ψ
(+)
ωlm = Nωl exp(−iωτ) cos ρ(sin ρ)lC l+1

2n+1(cos ρ)Y m
l (θ, φ) (3.29)

where

1

cos ρ
ψ

(+)
ωlm → 0 as ρ→ π

2
(3.30)

The eigenvalue ω can be expressed by

ω = l + 2n+ 2, n ∈ N (3.31)

The odd antipodal parity elements are analogously

ψ
(−)
ωlm = Nωl exp(−iωτ) cos ρ(sin ρ)lC l+1

2n (cos ρ)Y l
m(θ, φ) (3.32)

where

∂

∂ρ
(

1

cos ρ
ψ

(−)
ωlm)→ 0 as ρ→ π

2
(3.33)

The eigenvalue ω can now be expressed by

ω = l + 2n+ 1, n ∈ N (3.34)

The Hilbert space of initial values decomposes correspondingly into a direct orthogonal

sum

HE = H(+) ⊕H(−) (3.35)

To each antipodal parity class the Cauchy problem is well defined. The initial

values have to be square integrable with respect to the right measure (the AdS4 and

Esu4 measures are related by the conformal injection). An analogous construction can

be carried over to massive scalar equations if the mass belongs to a discrete spectrum

corresponding to integer AdS dimesnions.

We shall return to the antipodal map when we discuss two-point functions in the

next Sections.
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4 Two-point functions, The basic assumptions

As we shall see later, quantum field theory on AdS spaces and conformal field theory

on Minkowski or Euclidean spaces are closely related. Such conformal field theories

on Minkowski spaces are in practice often defined by a series of axioms known as

”Wightman axioms” [18]. So we use them also for AdS field theories. Wightman

functions for all n ∈ N0

Wn(x1, x2, . . . , xn) =< 0|ϕ1(x1), ϕ2(x2), . . . , ϕn(xn))|0 > (4.1)

are tempered distributions acting on test function spaces which are C∞ on the em-

bedding space RD−1,2 and strongly decreasing at the boundary of AdSD. They are

invariant with respect to the isometry group S0(D − 1, 2). The vacuum state |0 >

generates a Hilbert space H that carries a unitary representation Ug, g ∈ SO0(D−1, 2)

which leaves the vacuum invariant

Ug|0 > = |0 > (4.2)

U−1
g ϕk(x)Ug = (T (k)

g ϕk)(x) (4.3)

where the possible action Tg on a field operator ϕk, its covariance, corresponds to a

representation of the isometry group and is discussed below.

Let (Tg)
† be the adjoint equal the inverse representation of Tg and fk(x) a test

function so that ∫
AdS

(fk(x)†, ϕk(x))dx = (fk, ϕk) (4.4)

where on the l.h.s. the sesquilinear form (fk(x)†, ϕk(x)) goes into (fk(g
−1x)†, ϕ(g−1x))

under action respectively of Tg and dx is invariant

dx = d(g−1x) (4.5)

Then

|(f, ϕ)|2 ≥ 0 (4.6)
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implies the positivity of the distribution kernel

W1,1(x1, y2) =< 0|ϕ(x1)†, ϕ(y2)|0 > (4.7)

Correspondingly the vacuum expectation value of

N∑
n=0

∫
dx1dx2 . . . dxnf

(n)(x1, x2 . . . xn)†ϕ1(x1)ϕ2(x2) . . . ϕn(xn) (4.8)

and its adjoint leads to a positivity constraint on the set of Wightman functions

Wn,m(x1, x2 . . . xn; y1, y2 . . . ym) with n+m ≤ N (4.9)

In this formulation we make also use of the hermiticity

< 0|ϕ1(x1), ϕ2(x2) . . . ϕn(xn)|0 > =< 0|ϕn(xn)†, ϕn−1(xn−1)† . . . ϕ1(x1)†|0 > (4.10)

We emphasize that the positivity of W2 restricts the possible use of representations for

the covariance.

Any timelike planar trajectory is generated by a Lie algebra element which can be

viewed upon as a Hamiltonian. Its spectrum must be positive for physical reasons. This

special property implies that Wightman distributions are boundary values of analytic

functions in ”tuboid domains”. This is formulated as a spectral axiom.

We would also like to derive uniqueness of the vacuum state from a cluster prop-

erty. However, the fall off of the Wightman functions at infinity is always powerlike.

Nevertheless a sufficient cluster decomposition theorem can be formulated. If all these

axioms are fulfilled for the Wightman functions Wn, then the Hilbert space and field

operators generating it cyclically from the vacuum can be reconstructed by the Gelfand-

Naimark-Segal theorem.

We have already earlier (Section 3) mentioned the AdS-version of the Unruh the-

orem. It can also be shown that a version of Osterwalder-Schrader theorem exists,

which admits the Wick rotation technique and the transition between a Minkowskian

quantum field theory and an Euclidean stochastic theory.
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Let us now turn to a detailed study of the covariance axiom. We prefer to deal

with covariance in the Euclidean framework. The de Sitter space was introduced by

eqs.(1.11)-(1.20). The isometry is G = SO0(D, 1). We impose an Iwasawa decomposi-

tion on G

G = ÑAK (4.11)

where K is the maximal compact subgroup SO(D). The coset space G/K is the de

Sitter space. Ñ is the group of D−1 Euclidean translations and A is the abelian group

of dilations. In matrix form

ñz =


δij −zi zi

zj 1− 1
2
~z2 1

2
~z2

zj −1
2
~z2 1 + 1

2
~z2

 ∈ Ñ

a =


δij 0 0

0 cosh η sinh η

0 sinh η cosh η

 ∈ A

k =


kij ki,D 0

kDj kDD 0

0 0 1

 ∈ K
where the labels i, j run over 1, 2 . . . D − 1 and z0 = exp η.

Given g ∈ SO0(D, 1) its (D+1)st column fixes the point z ∈ dSD uniquely. Namely

gi,D+1 = xi =
zi
z0

, i ∈ {1, 2, . . . D − 1} (4.12)

gD,D+1 = xD =
z2

0 + ~z2 − 1

2z0

(4.13)

gD+1,D+1 = xD+1 =
z2

0 + ~z2 + 1

2z0

(4.14)

These equations yield the e.s.C.c. x in terms of Poincare’s coordinates z0, ~z known from

eqs. (2.6)- (2.8). Also the quadric of dSD inside RD,1 is easily checked. We concentrate

21



only on the connected hyperboloid shell in the half space xD+1 ≥ 0. In this half space

xD+1 − xD =
1

z0

> 0 (4.15)

so that only this shell is covered by the Poincare coordinates. Spatial infinity is reached

at z0 → 0.

Let σ denote an arbitrary irreducible representation of K acting on a vector space

Uσ. Then the representation space

C̃σ = {φ ∈ C∞(Rd ×R>0, Uσ)} (4.16)

carries the representation induced from K

(T̃ σg φ)(z0, ~z) = D̃σ(k)φ(z′0, ~z
′) (4.17)

The Iwasawa decomposition is used to calculate z′

g−1ñza = ñz′a
′k−1, ñz, ñz′ ∈ Ñ , a, a′ ∈ A, k ∈ K (4.18)

and D̃σ(k) is the representation matrix of k.

The representation T̃ σ is in general reducible, it reduces into elementary represen-

tations. On the other hand not all elementary representations can be obtained from

the reduction of these T̃ σ. In fact massless scalar conformal free fields belong to such

representations. At the end of this chapter we will give a review over all elementary

representations and those which are known not to arise from the induction with respect

to K. V. K. Dobrev [38] has proposed to apply the Casimir operators of SO0(D, 1) to

reduce T̃ σ. This amounts to submit the functions φ to field equations. In section 5 we

shall derive two-point functions where the projection on an irreducible component of

T̃ σ is already included in the construction.
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5 Scalar two-point functions

If all n-point functions Wn can be reduced to sums of products of two-point functions by

the combinatorics applied also in Wick’s theorem, we say that our fields are generalized

free fields. Such two-point functions can be reduced to sums or integrals over free field

two-point functions which we call Kallen-Lehmann representations.

One can derive two-point functions from field equations with boundary conditions

imposed. This is practical if the field equations are simple as in the case of scalar

fields. If this is not so, methods of representation theory can also be applied. In the

case of conformal field theory and field theories on AdS spaces these methods are very

restrictive and lead to explicit results soon. In these cases two-point functions are

intertwining integral operators between elementary representations. This comes about

as follows.

If ϕ(x) transforms as an elementary representation χ = [∆, µ], where ∆ is the

conformal dimension and µ an irreducible representation of SO(d), then any non-

vanishing two-point function

W2(x1, x2) =< 0|ϕ1(x1)ϕ2(x2)|0 > (5.1)

is invariant by the axioms. Let the first factor be covariant as χ1 and the second as χ2.

Consider then a pair of test functions which have the dual covariance χ1,d, χ2,d. Then∫
dx1dx2f1(x1)f2(x2)W2(x1, x2) (5.2)

is invariant. But this means that∫
dx2f2(x2)W2(x1, x2) (5.3)

is covariant as χ1 and W2 is an intertwining kernel from the representation χ2,d to χ1.

For scalar fields the method of field equations is standard and most comfortable.

We start from the Klein-Gordon equation

2ϕ+m2ϕ = 0 (5.4)
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From now on we use the shorthands

µ =
d

2
(5.5)

ν =
√
µ2 +m2 (5.6)

∆± = µ± ν (5.7)

∆+ + ∆− = 2µ (5.8)

Then (5.4) possesses two solutions

W2(z, z′) = w±ν(ζ) (5.9)

wν(ζ) =
exp−iπ(µ− 1/2)

(2π)µ+1/2
(ζ2 − 1)−

µ−1/2
2 Q

µ−1/2
ν−1/2(ζ) (5.10)

where Q is a Legendre function of the second kind ([19], equ, 8.771.2). Another way

of presentation is

wν(ζ) =
Γ(∆)

2∆+1πµΓ(∆− µ+ 1)
ζ−∆F (

∆

2
,
∆ + 1

2
; ∆− µ+ 1; ζ−2) (5.11)

Positivity of the scalar two-point function in conformal field theory (unitarity of

the corresponding elementary representation) necessitates that

∆ ≥ µ− 1. (5.12)

However, from eq. (5.11) we see that the lower limit is excluded, and we have on AdS

the stronger inequality

∆ > µ− 1 (5.13)

Thus here we found the first case that an elementary representation is not realized on

AdS space. It is not necessary that m2 is positive, but the ”Breitenlohner-Freedman”

bound

m2 + µ2 ≥ 0 (5.14)
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is necessary to make the dimension real (and the representation in Minkowski space

unitary). If this bound is fulfilled then (5.13) is automatically fulfilled for ∆+. On the

other hand ∆− satisfies the bound (5.13) if

0 ≤ ν < 1 (5.15)

which amounts to

−µ2 ≤ m2 < −µ2 + 1 (5.16)

The solutions that fulfill the constraints of positivity of the two-point function (3.31)

and the reality of the dimension (5.14), (5.16) finally are all square integrable.

We can then return to the Cauchy initial value problem which as we saw possesses

a solution if ∆ is an integer. Let

∆+ = M, ∆− = d−M (5.17)

and

ν = |M − µ| (5.18)

For the regular solutions based on ∆+ infinitely many integer M are possible

M ∈ [µ] + N0 (5.19)

whereas for the irregular solutions based on ∆− there is one solution possible with

0 ≤ (M − µ)2 < 1 (5.20)

For these M we obtain even respectively odd antipodal parity solutions. The antipodal

mapping can be applied to ζ

ζ(x, x′)→ ζ(x,−x′) = −ζ(x, x′) (5.21)

so that even or odd parity corresponds to even respectively odd ∆.

By (5.9), (5.10) we have obtained analytic functions for the two-point function. The

function wν(ζ) is analytic on the universal covering of the ζ-plane cut along the interval
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< −1,+1 > for irrational ∆. For rational ∆ this infinite covering reduces to a finite one

which is a single sheet if ∆ is integer. On the interval < −1,+1 > wν(ζ) is defined

as the boundary value from above or below. The pair x, x′ is timelike separated.

The difference of the boundary values gives the commutator function (Pauli-Jordan

function).

It is remarkable that this commutator function is the same for the regular as for

the irregular solution. This follows from the formula

w−ν − wν =
sin πν

(2π)µ+1/2
Γ(∆+)Γ(∆−)(ζ2 − 1)−

d−1
4 P

−µ+1/2
−ν−1/2 (ζ) (5.22)

where the Legendre function of the first kind P
−µ+1/2
−ν−1/2 (ζ) is analytic in a circle |ζ| < 1

([19], eq. 8.771)

P µ
ν (ζ) =

exp−iπµ
2

Γ(1− µ)
(
1 + ζ

1− ζ
)µ/2F (−ν, ν + 1; 1− µ;

1− ζ
2

) (5.23)

and can be made uniform by cutting the ζ plane from −∞ to −1 and from +1 to +∞.

At infinity both functions w±ν(ζ) differ by their asymptotic behaviour.
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6 The boundary limit

In the limit z0 → 0 the AdS space tends to its boundary manifold which is a Minkowski

space Rd−1,1 (dS tends correspondingly to Rd). The universal covering space of the

Minkowski space closed by an infinite light cone carries the elementary representations

of the universal covering group of the conformal group G = SO0(d, 2). We want to

derive these representations by induction from appropriate subgroups of G. These ele-

mentary representations supply us with all representations of interest for quantum field

theory, since a theorem of Langlands-Knapp-Zukerman asserts that every irreducible

admissable representation of a real connected semisimple Lie group G with finite cen-

ter is equivalent to a subrepresentation of an elementary representation of G. On the

other hand elementary representations are generically irreducible except in singular

cases that describe e.g. gauge fields and conserved currents which may be reducible

indecomposable.

The elementary representations can be constructed from induction of a certain coset

(Bruhat) decomposition of G, namely

G = ÑMAN (6.1)

where (from now on for the Minkowskian case) M = SO(d) is the maximal compact

subgroup, N is the subgroup of special conformal transformations, and A is the abelian

subgroup of dilations. Ñ are the translations which are identified with Minkowski space

Rd−1,1

Ñ = G/MAN (6.2)

This coset space is globally not defined, but the exceptional set, which amounts to the

infinite light cone, is of measure zero. Since the elements of the C∞ space have a fixed

asymptotic behaviour at infinity, the exceptional set does not carry any additional

degree of freedom.
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Let Vµ be the finite dimensional carrier space of the representation µ of M . Then

Cχ = {f ∈ C∞(Rd, Vµ)} (6.3)

carries the elementary representation T χ of G

(T χg f)(x) = |a|−∆Dµ(m)f(x′) (6.4)

with

g−1ñx = ñx′m
−1a−1n−1, (g ∈ G, ñx, ñx′ ∈ Ñ ,m ∈M,a ∈ A, n ∈ N) (6.5)

This representation is characterized by the label χ = [∆, µ].

The corresponding two-point function of conformal field theory is an intertwining

operator kernel

Gχ(x1, x2) = Ĝχ(x1 − x2) (6.6)

Ĝχ(x) =
γχ

(x2)∆
Dµ(r(x)) (6.7)

with

r(x) =


r̂(x) 0 0

0 1 0

0 0 1


and

r̂(x) =
(

2
xixj
x2
− δij

)
(6.8)

γχ is a normalization constant, r̂(x) is an inversion times a reflection along x.

This intertwiner Gχ maps the representation χ on the dual representation [d−∆, µd]

where µd is the mirror image representation of µ. Then Gχ has the property Gχ : Cχd →

Cχ with

T χg Gχ = GχT
χd
g for all g (6.9)

(Gχf)(x) =

∫
dx′Ĝχ(x− x′)f(x′) (6.10)
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The representations χ, χd are generically irreducible and then inverse to each other, so

that by adjusting γχ, γχd

GχGχd = 1 = GχdGχ (6.11)

It has been Dobrev’s idea [38] to use this concept to construct an intertwiner be-

tween an elementary representation on the boundary of AdS and an elementary sub-

representation on the bulk of AdS. We start from an ansatz Lσχ : C̃σ → Cχ so that

(Lσχϕ)(~z) = lim
z0→0
|z0|−∆Πσ

µϕ(z0, ~z) (6.12)

where Πσ
µ is the standard projection operator from the representation space Uσ of K

to the representation space Vµ of M

Πσ
µD̂

σ(k) = Dµ(m(k))Πσ
µD̂

σ(kx) (6.13)

Here the matrix k appears decomposed

k = m(k)kx (k ∈ SO(d+ 1), m(k) ∈ SO(d), m(k) ∈M) (6.14)

where

m(k) =


m̃(k) 0 0

0 1 0

0 0 1



kx =

 k̃x 0

0 1

 ∈ K

k̃x =

 δij − 2xixj
1+x2

− 2xi
1+x2

+
2xj

1+x2
1−x2
1+x2


where x ∈ Rd and

xi =
kd+1,i

1 + kd+1,d+1

(6.15)

x2 =
1− kd+1,d+1

1 + kd+1,d+1

(6.16)
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and 1 + kd+1,d+1 6= 0 has been presumed.

Reducing the representation σ on the subgroup SO(d) the representation µ should

appear at least once and the projection operator Πσ
µ chooses any one. For practical

reasons σ should be chosen ”minimal”. The case that µ equals symmetric traceless

tensors of rank l is of greatest interest for us. In this case we choose σ also as symmetric

traceless tensors of the same rank. The general case has, however, also a simple solution.

Let µ be the set of labels

µ = [l1, l2 . . . l[d/2]] (6.17)

where l1 may be negative only if d is even, and moreover

|l1| ≤ l2 ≤ . . . ≤ l[d/2] (6.18)

To embed this representation into the representation σ of SO(d+ 1)

σ = [l′1, l
′
2, . . . l

′
[ d+1

2
]
] (6.19)

it is necessary that if d is odd

|l′1| ≤ l1 ≤ . . . ≤ l[d/2] ≤ l′
[ d+1

2
]

(6.20)

and if d is even

−l′1 ≤ l1 ≤ l′1 ≤ l2 ≤ . . . ≤ l[d/2] ≤ l′
[ d+1

2
]

(6.21)

In the latter case [d/2] = [d+1
2

] of course.

Dobrev has proven that Lσχ is an intertwiner indeed

LσχT̃
σ
g = T χg L

σ
χ for all g ∈ G (6.22)

and the operator Πσ
µ acts in a truncated fashion: For x = ~z in the limit z0 → 0 the

factor D̂σ(k~z) is integrated into the function ϕ.

Next we follow Dobrev [38] in constructing an inverse intertwiner L̃σχ : Cχ → C̃σ

T̃ σg L̃
σ
χ = L̃σχT

χ
g (6.23)
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in the form of an integral kernel (now in Euclidean form)

(L̃σχf)(z0, ~z) =

∫
Rd

Kσ
χ(z0, ~z;x)f(x)dx (6.24)

With a normalization constant Nσ
χ the solution is

Kσ
χ(z0, ~z; 0) = Nσ

χ (
z0

z2
0 + ~z2

)d−∆D̃σ(ρ(z0, ~z))Πσ
µ (6.25)

with

ρ(z0, ~z) =

 δij − 2
zizj

(z20+~z2
+2 z0zi

z20+~z2

−2
z0zj
z20+~z2

z20−~z2
z20+~z2

 ∈ SO(d+ 1)

The normalization constant Nσ
χ can be fixed by the requirement that

LσχL̃
σ
χ = 1 on Cχ (6.26)

From Dobrev’s work we obtain for the scalar case

Nσ
χ =

Γ(d−∆)

πµΓ(µ−∆)
(6.27)

which is not defined for ∆ = d + k, k ∈ Z≥0 when d is odd. For even d it vanishes for

∆ ∈ {µ, µ+ 1, . . . d− 1}. For the tensorial case he gets with µ = d/2, µ̂ = d+1
2

Nσ
χ = N0

Γ([µ̂]−∆)

Γ([µ]−∆)

[µ]∏
k=1

(mk + µ−∆) (6.28)

where

mk = |lk + k − 1 + µ− [µ]| (6.29)

In order to construct a two-point function on the bulk of AdS one could think that

the product L̃σχL
σ
χ could be an appropriate operator. However, the right factor is not

defined yet as an integral operator (see (6.12)) and we have to transform it into such

shape. Let us consider tentatively (the maesure is Lebesgue times wrapping factor)∫
z0≥0

z−D0 dDzKσ
χ(z0, ~z)ϕ(z) (6.30)

for any ϕ ∈ C̃σ. It is crucial now how ϕ(z) depends on z0 at z0 → 0. If it is a proper

test function which at the boundary of AdS goes faster to zero than any power, there
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is no problem with the definition of the integral (6.30). If it has a power behaviour

z∆−d
0 in dual correspondence to σ = [∆, . . .] in K, then a logarithmic divergence arises

at z0 = 0. In this case we have to regularize the integral by zD0 → zD−ε0 and extract

the residue of the pole in ε

resε=0

∫
dDzδ(z0)Kσ

χ(z;x)ϕ̂(~z) (6.31)

where

ϕ̂(~z) = lim
z0→0

(z0)d−∆ϕ(z) (6.32)

and we are apparently back to the limit intertwiner (6.12). Therefore we conclude that

bulk-to-bulk two-point functions applicable to test functions falling off rapidly at the

boundary of AdS can be found from the convolution of two intertwiners∫
dxKσ

χ(z;x)Kσd
χd

(z′;x) (6.33)

which we will study in the next sections. Such fall off was postulated for the test

functions applicable to Wightman functions as distributions.
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7 The algebra of two-point functions

A tensor field of rank l at a point z ∈ AdS(dS) corresponds to a representation of

the group SO(d) realized by tensor products of vectors of the tangential hyperplane

at z. The symmetry is labelled by integers l1, l2, . . . l[D/2] as explained in the preceding

section. Two-point functions (or propagators which differ only by the way the boundary

value is taken on the ζ interval < −1,+1 >) are bitensors, i.e. tensors at either point

z, z′. Thanks to the maximal symmetry of AdS(dS) a basis for the bitensors can be

constructed by four basic bitensors, which are all deduced from the derivatives of the

chordal distance variable ζ or the metric tensor.

For an arbitrary tensor we introduce vectors from TAdS, namely {a1, a2, . . . al} at

z and {c1, c2, . . . cl} at z′. We contract these tangential vectors with the tensors in an

invariant fashion and submit them to the symmetrization required for the tensor. Since

we shall discuss symmetric tensors only, it is sufficient for us to use a single vector a

at z and another c at z′. We define the invariants

I1 = (a∂1)(c∂2)ζ (7.1)

Ia1 = (a∂1)ζ (7.2)

Ic2 = (c∂2)ζ (7.3)

I2 = Ia1Ic2 (7.4)

In order to extract traces the following invariants are indispensable

I3 = a2
1I

2
c2 + c2

2I
2
a1 (7.5)

I4 = a2
1c

2
2 (7.6)

where all scalar products are invariant, e.g.

a2
1 =

d∑
i,j=0

gij(z1)aiaj (7.7)
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A symmetric traceless tensor field has a two-point function of the form

Ψ(l)[F ] =
∑
li∈N0

I l11 I
l2
2 I

l3
3 I

l4
4 Fl1l2l3l4(ζ) (7.8)

where the sum extends only over

l1 + l2 + 2(l3 + l4) = l (7.9)

Instead we can also use the form

Ψ(l)[F ] =
l∑

k=0

I l−k1 Ik2Fk(ζ) + trace terms (7.10)

The trace terms containing I3 and I4 can be reconstructed from the functions Fk by

imposing

∂

∂aµ
∂

∂aµ
Ψ(l)[F ] = 2aΨ

(l)[F ] = 0 (7.11)

Tracelessness with respect to c follows then automatically.

The derivatives

∂

∂aµ
Ia1

∂

∂aµ
Ia1 = ζ2 − 1 (7.12)

∂

∂aµ
I1

∂

∂aµ
Ia1 = ζIc2 (7.13)

∂

∂aµ
I1

∂

∂aµ
I1 = c2

2 + I2
c2 (7.14)

and other ones containing I3, I4 e.g

∂

∂aµ
Ia1

∂

∂aµ
I3 = 2Ia1(I2

c2 + (ζ2 − 1)c2
2) (7.15)

∂

∂aµ
Ia1

∂

∂aµ
I4 = 2Ia1c

2
2 (7.16)

∂

∂aµ
I1

∂

∂aµ
I3 = 2(I1I

2
c2 + ζc2

2I2) (7.17)

∂

∂aµ
I1

∂

∂aµ
I4 = 2I1c

2
2 (7.18)

yield

2aΨ
(l)[F ] = I2

c2Ψ
(l−2)
1 (Tr1F ) + c2

2Ψ
(l−2)
2 (Tr2F ) (7.19)
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Both Tr1F and Tr2F are linear combinations of the functions {Fk}, and vanishing of

the trace amounts to

Tr1F = 0 (7.20)

Tr2F = 0 (7.21)

Most often used are the nontrace terms of Tr1F

(Tr1F )k = (l−k)(l−k−1)Fk+2(k+1)(l−k−1)ζFk+1+(k+2)(k+1)(ζ2−1)Fk+2 (7.22)

The general formulae for Tr1F and Tr2F can be found in next sections. Solving the two

constraints (7.20),(7.21) is a linear problem involving an overcomplete but consistent

system of equations. A general formula for the result is not known.

Symmetric not necessarily traceless bitensors Ψ(l)[F ] form an algebra if summation

is introduced in the trivial way by

Ψ[F ] =
N∑
l=0

αlΨ
(l)[F ] (7.23)

In this algebra we have the operations of multiplication, bigradient

(aµ∇1,µ)(cν∇2,ν)Ψ[F ] (7.24)

and bidivergence

(
∂

∂aµ
∇1,µ)(

∂

∂cν
∇2,ν)Ψ[F ] (7.25)

We can understand the tensor rank l as the ”grade” in this algebra so that the bigradient

raises the grade and the bidivergence lowers the grade by one.
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8 Tensor field propagators

As explained in previous sections we want to study the kernel

A
(l)
∆,µ =

∫
dx < al⊗, K

(l)
λ (z; ~x) >i1i2...il< cl⊗, K

(l)
∆ (z′; ~x) >i1i2...il (λ = d−∆) (8.1)

For a symmetric traceless tensor representation we have

< al⊗, K
(l)
∆ (z;x)~bl⊗ >= Nσ

χ

z∆−l
0

(z2
0 + (~z − ~x)2)∆

[< a, ρ(z − ~x)~b >l −trace terms] (8.2)

We make use of the fact that in Poincare coordinates the metric is wrapped Euclidean

with wrapping factor z−2
0 (see (1.14)). We discard the last column in ρ (after (6.25))

as commanded by the projection operator Πµ
σ and using the Euclidean scalar product

<,> we get ((z − ~x)2 = z2
0 + (~z − ~x)2)

Aj = aj − 2 < a, z − ~x > (~z − ~x)j
(z − ~x)2

(8.3)

Cj = cj − 2 < c, z − ~x > (~z − ~x)j
(z − ~x)2

(8.4)

Making (8.2) traceless in ~b we have

l!

2l(µ− 1)l
(| ~A||~b|)lCµ−1

l (
~A~b

| ~A||~b|
) (8.5)

But this expression is traceless in ~A as well. Therefore after the contraction of the two

kernels we must obtain tracelessness in ~A and ~C or

l!

2l(µ− 1)l
(| ~A||~C|)lCµ−1

l (
~A~C

| ~A||~C|
) (8.6)

and this has to be integrated over∫
dx

zλ−l0

(z2
0 + (~z − ~x)2)λ

(z′0)∆−l

((z′0)2 + (~z′ − ~x)2)∆
. . . (8.7)

To do this integral we go to a special coordinate system where ~z = ~z′ = 0:

ξ = z − ~x = {z0,−~x} (8.8)

η = z′ − ~x = {z′0,−~x} (8.9)
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We integrate first over the angle Ω of ~x. To achieve this we expand

~A2 = α2(~a~x)2 + α1(~a~x) + α0 (8.10)

~C2 = β2(~c~x)2 + β1(~c~x) + β0 (8.11)

~A~C = γ11(~a~x)(~c~x) + γ10(~a~x) + γ01(~c~x) + γ00 (8.12)

introduce the shorthands

~x2 = r2 (8.13)

ξ2 = z2
0 + r2 (8.14)

η2 = z′20 + r2 (8.15)

and get

α0 = 4(a0z0)2 r
2

ξ4
+ ~a2 (8.16)

α1 = 4(a0z0)(1− 2
r2

ξ2
) (8.17)

α2 =
4

ξ2
(
r2

ξ2
− 1) (8.18)

The coefficients βn are analogous with ξ replaced by η and a by c. The coefficients γnm

are

γ00 = 4a0c0z0z
′
0

r2

ξ2η2
+ ~a~c (8.19)

γ01 = 2
a0z0

ξ2
(1− 2

r2

η2
) (8.20)

γ10 = 2
c0z
′
0

η2
(1− 2

r2

ξ2
) (8.21)

γ11 = −2
z2

0z
′2
0

ξ2 + η2
(8.22)

We introduce (8.10) - (8.12) into the Gegenbauer polynomial

[l/2]∑
k=0

(− l
2
)k(

1−l
2

)k

k!(2− µ− l)k
( ~A~C)l−2k( ~A2 ~C2)k =

∑
m,n

σmn(r2)(~a~x)n(~c~x)m (8.23)

Integration over Ω gives zero whenever m+ n is odd∫
dΩ(~a~x)n(~c~x)m = J(µ)

(1/2)ν
(µ)ν

rn+mfnm (8.24)
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where n+m is equal to 2ν and J(µ) is the area of the unit sphere Sd−1

J(µ) =
2πµ

Γ(µ)
(8.25)

and the coefficients fnm depend only on ~a,~c

fnm = (
n+m

n
)−1
∑
k

(
ν

n−k
2
, m−k

2
, k

)(~a2)
n−k
2 (~c2)

m−k
2 (2~a~c)k (8.26)

There remains the integral over r

zλ−l0 z′∆−l0

∑
nm

∫ ∞
0

drrd+n+m−1σnm(r2)(ξ2)−λ(η2)−∆ (8.27)

It has been found by computer (for all l ≤ 8) that

∑
nm

rn+mfnmσnm(r2) =
l∑

s=0

B(l)
s (z0, z

′
0)(

r2

ξ2η2
)s (8.28)

The remaining integral∫ ∞
0

drrd+2s−1(ξ2)−λ−s(η2)−∆−s = 1/2(z2
0)−λ−s(z′20 )−∆+µ

∫ ∞
0

dttµ+s−1(1+t)−∆−s(1+ρt)−λ−s

(8.29)

is Gaussian hypergeometric (B is the beta function)

1/2(z2
0)−µ−sB(µ+ s, λ− µ)F (∆ + s, µ+ s; ∆− µ+ 1; ρ) + {∆↔ λ} (8.30)

where ρ is

ρ = (
z′0
z0

)2 (8.31)

By a quadratic transformation we can introduce ζ

ζ =
z2

0 + z′20
2z0z′0

=
1 + ρ

2
√
ρ

(8.32)

and obtain (up to a normalization)

(z0z
′
0)−l

l∑
s=0

Bl
s(z0, z

′
0)[

(µ)s
(λ)s

Λ∆,s(ζ) +
(µ)s
(∆)s

Λλ,s(ζ)] (8.33)

where we made use of a type of Legendre function of the second kind

Λ∆,s(ζ) = (2ζ)−∆−sF (
∆ + s

2
,
∆ + s+ 1

2
; ∆− µ+ 1; ζ−2) (8.34)
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The coefficients B
(l)
s are in fact polynomials in ζ of degree s. We were able to show

that only the combinations

Qk(ζ) = (µ)k

l−k∑
s=0

(−l + k)s(k + 1)s
(λ)s+ks!

(2ζ)sΛ∆,s+k(ζ), k ∈ {0, 1, . . . l} (8.35)

Then the regular part of (8.33) can be brought into the final form

A
(l)
∆,µ = κl(µ,∆)

l∑
k=0

Qk(ζ)
∑

r1r2r3r4

R(l,k)
r1r2r3r4

(µ)Lr11 L
r2
2 L

r3
3 L

r4
4 (8.36)

The irregular part containing Λλ,s(ζ) is discarded. We used a tensor basis {Li} which

is related with the {Ii} by

L1 = −I1 − ζ(1− ζ2)−1I2 (8.37)

L2 = (1− ζ2)−1I2 (8.38)

L3 = −(1− ζ2)−1I3 (8.39)

L4 = I4 (8.40)

It remains to determine the coefficients R
(l,k)
r1r2r3r4(µ). These are rational functions

of µ with integer coefficients. They satisfy

Rl,0,0,0 = 1 (8.41)

Rr1r2r3r4 = 0 (8.42)

if r1 + r2 + 2(r3 + r4) 6= l or l − k − r1 /∈ 2N0, moreover

(−1)1/2(l−k−r1)+r3R(l,k)
r1r2r3r4

≥ 0 (8.43)

R
(l,0)
l−2k,0,0,k =

l!

22kk!(l − 2k)!(2− µ− l)k
(8.44)

Closed explicit expressions other than (8.44) are unknown.

We close this section with the remark that irreducibility of these propagators is

guaranteed by the projection on one elementary representation. Then the result is also

unique. However, in the singular cases where the elementary representation is itself
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not irreducible, that is for conserved currents or gauge fields, usually one exploits the

singular structure of analytic normalization factors to analyze these cases. This has

not been done yet. In any case we mention the normalization here

lim
z0,z′0→0

(z0z
′
0)−∆+lA

(l)
∆,µ|a0=c0=0 = 1/2Nσ

χN
σd
χd
J(µ)

λ− 1

λ+ l − 1

B(µ, µ−∆){(~a~c− 2
(~a(~z − ~z′))(~c(~z − ~z′))

(~z − ~z′)2
)l − trace terms} (8.45)

In section 12 we consider direct way of construction of the bulk-to-bulk propagator for

Higher Spin Gauge field using singular solution of the equation of mouton in different

gauges.
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9 Currents coupled to (conformal)

higher spin fields in AdS

In any known model the AdS/CFT correspondence is an unproven hypothesis still.

If such model is derived from string theory as the standard case of AdS5 supergravity

and SYM4(N=4), supersymmetry permits geometric arguments based on representa-

tion theory that support AdS/CFT correspondence and these arguments look quite

convincing indeed.

But in models of the type of higher spin gauge fields (HS(d+1)) there is no super-

symmetry a priori and the correspondence can be proved only by dynamical calculations

both in AdSd+1 and CFTd cases. Since in these models perturbative expansions with

small coupling constants are mapped on each other, such calculations are technically

feasible and the holographic mapping is order by order.We shall start such calculation

for HS(4) and the 3-dimensional conformal O(N) sigma model now.

We concentrate on three-point function of two scalar and one higher spin field

AdS4 CFT3

Scalar σ(z) α(x)

HSF h(`)(z) J (`)(x)

where α(x) is the “auxiliary” or “Lagrange multiplier” field and J (`)(x) an almost

conserved current, which is a traceless symmetric tensor. In the sigma model case the

coupling constant is O( 1√
N

). In the higher spin field theory the coupling constant for

σσh(`) interaction is g`, so that we expect

g` = C(`) 1√
N
. (9.1)
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We determine C(`) first in an ad hoc wave function normalization such that

〈α(x)α(0)〉CFT =
(
x2
)−β

(9.2)

〈σ(z1)σ(z2)〉AdS = (2ζ)−β F

[
1
2
β, 1

2
(β + 1)

β − µ+ 1
; ζ−2

]
(9.3)

ζ =
(z0

1)2 + z0
2)2 + (~z1 − ~z2)2

2z0
1z

0
2

, µ =
1

2
d , (9.4)

so that (9.2) is obtained from (9.3) by a “simple” boundary limit

lim
z01→0

lim
z02→0

(
z0

1z
0
2

)−β 〈σ(z1)σ(z2)〉AdS = 〈α(~z1)α(~z2)〉CFT . (9.5)

The higher spin fields are assumed to be normalized in the same fashion. At the end

we renormalize the higher spin field such that C(`) is replaced by one.

We shall treat two versions of the minimal O(N) sigma model. In the “free” case

we have as a scalar field

αf (x) =
1√
2N

φi(x) φi(x) , (9.6)

where φi(x), i = 1, 2, . . . N is the O(N) vector and space-time scalar field normalized

so that

〈φi(x)φj(x)〉CFT =
(
x2
)−δ

δij , δ = µ− 1 (9.7)

and (9.2) follows from (9.7) and (9.6) with

βf = 2(µ− 1) = d− 2 . (9.8)

In the “interacting” sigma model we have an interaction

z1/2

∫
dx φi(x) φi(x)α(x) (9.9)

and the interaction constant z is expanded

z =
∞∑
k=1

zk
Nk

. (9.10)

The “free” theory is unstable and by renormalization flow approaches the stable “in-

teracting” theory. The conformal scalar field σ(z) on AdSd+1 is massive (tachyonic due
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to conformal coupling with the AdS metric) and has two boundary values from the two

roots of the dimension formula

∆ = µ±
(
µ2 +m2

) 1
2 , (9.11)

where for d = 3

m2 =

{
−2 in the free case

−2 +O( 1
N

) in the interacting case
(9.12)

so that

∆(d = 3) =

{
βf = 1 from (9.8)

β = 2 +O( 1
N

) from (9.9) .
(9.13)

We assume that the interaction of a spin ` gauge field h(`) and two scalar fields σ(z)

is local and mediated by a current Ψ(`)

∫
dz

(z0)d+1
Tr
{

Ψ(`)(z)h(`)(z)
}
. (9.14)

Ψ(`) and h(`) are symmetric tensors of rank `. If we postulate that the covariant

divergence of Ψ(`) is a trace term, the interaction is gauge invariant. Namely a gauge

transformation of h(`), being of the form (classical)

h(`) → h(`) +∇Λ(`−1) , (9.15)

where Λ(`−1) is a symmetric traceless tensor and ∇Λ(`−1) is symmetrized, leads to the

zero gauge variation of (9.14)

Tr
{
∇Ψ(`)Λ(`−1)

}
= 0 . (9.16)

This consideration is in agreement with the so called ”Fronsdal” theory [24] of

higher spin with double-traceless gauge fields and currents. Truncation of this higher

spin theory to the conformal higher spin theory can be observed if we consider the

corresponding double-traceless current and gauge field as a sum of two traceless objects,

namely

Ψ(`) = J (`) + g(2)ψ(`−2) , (9.17)
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where J (`) and ψ(`−2) are now the traceless tensors, g(2) is theD = d+1 dimensional AdS

metric and symmetrization is assumed. Following [27] we call ψ(`−2) the compensator

field. It is easy to see that ψ(`−2) plays the role of the traceless trace of the double-

traceless current Ψ(`) and has to decouple in the conformal limit of higher spin theory.

In other words we will assume that at the d dimensional boundary Md = ∂AdSD ,

Ψ` behaves as a conformal tensor field. Now we will consider the general structure of

conformal higher spin currents in the AdSD space constructed from the conformally

coupled scalar field σ(z) with the corresponding on-shell condition

2σ(z) = ∇ · ∇σ(z) =
D(D − 2)

4L2
σ(z) . (9.18)

The tachyonic mass here (we use in this section the mainly minus signature of the

AdS metric 1) arises as a result of conformal coupling of the conformal scalar σ(z) with

the AdS curvature S =
∫
dDz
√
−g 1

2

(
gµν∂µσ∂νσ − D−2

4(D−1)
Rσ2

)
. For the investigation

of the conservation and tracelessness conditions for general spin ` symmetric conformal

current J
(`)
µ1µ2...µ` we contract it with the `-fold tensor product of a vector aµ and make

1We will use AdS conformal flat metric, curvature and covariant derivatives comutation rules of

the type (similar to Euclidian Ads matric (1.15)-(1.20) )

ds2 = gµνdz
µdzν =

L2

(z0)2
ηµνdz

µdzν , ηz0z0 = −1,
√
−g =

1

(z0)d+1
,

[∇µ, ∇ν ]V ρλ = R ρ
µνσ V

σ
λ −R σ

µνλ V
ρ
σ , (9.19)

R ρ
µνλ = − 1

(z0)2
(
ηµλδ

ρ
ν − ηνλδρµ

)
= − 1

L2

(
gµλδ

ρ
ν − gνλδρµ

)
,

Rµν = −D − 1

(z0)2
ηµν = −D − 1

L2
gµν , R = −D(D − 1)

L2
.
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the ansatz including a first curvature correction in contrast to the free flat case [26]

J (`)(z; a) =
1

2

∑̀
p=0

Ap (a∇)`−p σ(z) (a∇)p σ(z)

+
a2

2

`−1∑
p=1

Bp (a∇)`−p−1∇µσ(z) (a∇)p−1∇µσ(z) (9.20)

+
a2

2L2

`−1∑
p=1

Cp (a∇)`−p−1 σ(z) (a∇)p−1 σ(z) +O(a4) +O(
1

L4
) ,

where Ap = A`−p, Bp = B`−p, Cp = C`−p and A0 = 1. Now we try to define the set of

unknown constants Ap, Bp and Cp using the current conservation condition

∇ · ∂aJ (`)(z; a) = ∇µ ∂

∂aµ
J (`)(z; a) = 0 (9.21)

and the tracelessness condition connected with the conformal nature of our scalar field

σ(z)

2aJ
(`)(z; a) =

∂2

∂aµ∂aµ
J (`)(z; a) = 0 . (9.22)

Using the following basic relations

[∇µ, (a∇)p]σ =
p(p− 1)

2L2

(
aµ (a∇)p−1 σ − a2 (a∇)p−2∇µσ

)
, (9.23)

[∇µ, (a∇)p]∇νσ =
p(p− 1)

2L2

(
aµ (a∇)p−1∇νσ − a2 (a∇)p−2∇µ∇νσ

)
+
p

L2

(
gµν (a∇)p σ − aν

(
a∇p−1∇µσ

))
, (9.24)

∂

∂aµ
(a∇)p σ = p (a∇)p−1∇µσ

+
p(p− 1)(p− 2)

6L2

(
aµ (a∇)p−2 σ − a2 (a∇)p−3∇µσ

)
, (9.25)

∇ · ∂
∂a

(a∇)p σ =
1

L2

[
1

4
pD(D − 2)

+p(p− 1)

(
D +

2

3
p− 7

3

)]
(a∇)p−1 σ +O(

1

L4
) , (9.26)

2a (a∇)p σ =
1

L2

[
1

4
p(p− 1)D(D − 2)

+
1

3
p(p− 1)(p− 2)(p+ 2D − 5)

]
(a∇)p−2 σ +O(

1

L4
) (9.27)

we can derive recursion relations for Ap, Bp and Cp coming from conservation condition
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(9.21)

pAp + (`− p+ 1)Ap−1 + 2Bp + 2Bp−1 = 0, (9.28)

s3(p)Ap+1 + s2(p, `,D)Ap + s2(`− p+ 1, `,D)Ap−1

+s3(`− p+ 1)Ap−2 + 2Cp + 2Cp−1 = 0, (9.29)

s2(p, `,D) =
1

4
pD(D − 2) + p(p− 1)(D +

1

2
`+

1

6
p− 7

3
), (9.30)

s3(p) =
1

6
(p+ 1)p(p− 1) . (9.31)

The relation (9.28) relates Ap and Bp recursively as in the flat case [26]. The next rela-

tion (9.29) arises from the 1
L2 correction and relates recursively Cp and Ap coefficients

from our ansatz (9.20). From the other side the tracelessness condition (9.22) gives us

two further relations between these coefficients

Bp = − p(`− p)
(D + 2`− 4)

Ap, (9.32)

Cp =
−1

2(D + 2`− 4)
[st(p+ 1, `,D)Ap+1 + st(`− p+ 1, `,D)Ap−1] , (9.33)

st(p, `,D) =
1

4
p(p− 1)D(D − 2) +

1

3
p(p− 1)(p− 2)(`+ 2D − 5) . (9.34)

Again the relation (9.32) is the same as in the flat case and leads the Eq. (9.28) to the

recursion

Ap = −s1(p, `,D)Ap−1, (9.35)

s1(p, `,D) =
(`− p+ 1)(2`− 2p+D − 2)

p(D + 2p− 4)
. (9.36)

From this we can obtain the same solution for the Ap coefficients [26] as in the flat case

Ap = (−1)p

(
`
p

)(
`+D−4
p+D

2
−2

)(
`+D−4
D
2
−2

) . (9.37)

For the important case D = 4 this formula simplifies to

Ap = (−1)p
(
`

p

)2

. (9.38)

It means that if our ansatz (9.20) and our consideration for the 1
L2 correction are right,

the recursion relation for the Ap coefficients obtained by substituting the Cp coefficients
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in (9.29) by those of the 1
L2 tracelessness condition (9.33) must be consistent with (9.35).

Indeed using (9.33) and (9.35) we can rewrite the relation (9.29) in the form

(9.29) = Apsf (p, `,D) + Ap−1sf (`− p+ 1, `,D) = 0 (9.39)

sf (p, `,D) =

[
s2(p, `,D)− st(p, `,D)

D + 2`− 4

−s1(p+ 1, `,D)

(
s3(p)− st(p+ 1, `,D)

D + 2`− 4

)]
(9.40)

=
(`+D − 3)(2`+D − 2)p(D + 2p− 4)

4(D + 2`− 4)
.

It is easy to see that the relation (9.39) coincides with (9.35) because

sf (p, `,D)

sf (`− p+ 1, `,D)
= s1(p, `, d) . (9.41)

So we obtain a result that the structure of the conformal higher spin currents con-

structed from the conformal coupled scalar field in the fixed AdS background remains

the same as in the free flat space case. We prove that our ansatz with 1
L2 correc-

tion connected with the difference between the traces in flat and AdS case does not

violate the conservation condition (recursion relation (9.35)) for the coefficients Ap if

they obey the tracelessness condition (9.33) for the currents. It means that the trace-

less conserved higher spin current constructed from conformal scalar field in AdS can

be obtained from the flat space expression replacing usual derivatives with covariant

ones and adding corresponding curvature corrections to the expression for the traces.

For completeness we present in the Appendix an explicit derivation of the conformal

conserved current in the case ` = 4, D = 4 in all orders of 1
L2 .

This phenomenon we can explain now in the following way: The conformal group for

D- dimensional flat(with SO(D − 1, 1) isometry) and AdS space (with SO(D − 1, 2)

isometry) is the same -SO(D, 2) 2. So we can say that the conformal primaries or

the traceless conserved currents are the same due to the 1
L2k corrections. But these

originate from the curvature corrections to the flat space equation of motion and non-

2Note that this is about conformal group of AdS space-not boundary
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commutativeness of the covariant derivatives. Then because all currents are traceless

we get the cancellation of all 1
L2k accompanying terms coming from these two sources

of deformation of the flat case relations in the conservation condition (9.21).

Now we will fix the coefficients Ap from the CFT consideration. We assume that on

the boundary ∂AdSd+1, Ψ(`) behaves as a conformal tensor field (the trace is decoupled).

Moreover this conformal tensor must be local bilinear in α(x) of rank ` and of dimension

2β + `+O(
1

N
) . (9.42)

For this purpose we evaluate the 3-point function

〈α(x1)α(x2)
1

2

∑̀
p=0

Ap〈a · ∂〉pα(x3) 〈a · ∂〉`−pα(x3)〉CFT3 , (9.43)

where 〈a · ∂〉 = ai∂i, i = 1, 2, 3.

From the propagator (9.2) for α(x) we obtain for (9.43)

2`
∑̀
p=0

Ap(β)p(β)`−p
(x2

13x
2
23)
−β

x2p
13x

2(`−p)
23

〈a · x13〉p〈a · x23〉(`−p) (9.44)

+ trace terms ,

where we define the Pochhammer symbols (z)n = Γ(z+n)
Γ(z)

.

As a 3-point function of a conformal tensor is unique up to normalization

C
(
x2

13x
2
23

)−β {〈a · ξ〉` + trace terms
}
, (9.45)

ξi =
xi13

x2
13

− xi23

x2
23

, (9.46)

it follows

Ap =
C(−1)p

(
`
p

)
2`(β)p(β)`−p

. (9.47)

This expression, for β = 1, is in agreement with the previous one (9.38) obtained from

AdS4 consideration, if we will normalize in (9.45) C = 2``!.

For β = 2 we have to change the constraints imposed on our currents. For that we

turn from conformal higher spins to Fronsdal’s [24] formulation where gauge fields and

48



currents are double traceless only

S
(`)
int =

1

`

∫
d4x
√
gh(`)µ1...µ`Ψ(`)

µ1...µ`
, (9.48)

h
(`)αβ
αβµ5...µ`

= 0 , Ψ
(`)αβ
αβµ5...µ`

= 0, (9.49)

δ0h
(`)
µ1...µ`

= ∂(µ1εµ2...µ`), εααµ4...µ` = 0,
[
∇µ1Ψ(`)

µ1µ2...µ`

]traceless
= 0 (9.50)

and the conservation condition looks a little bit different from the usual one due to the

double-tracelessness of the gauge field and current. Then we can realize the double-

traceless current Ψ(`) using two traceless (but not conserved) currents J (`), Θ(`−2) with

the same dimension `+ 2β+O( 1
N

) on the boundary [27]. It means that the expansions

for these fields start from the following series

J (`)(z; a) =
1

2

∑̀
p=0

A`p (a∇)`−p φ(z) (a∇)p φ(z) + . . . , (9.51)

Θ(`−2)(z; a) =
1

2

`−1∑
p=1

B`−2
p (a∇)`−1−p∇µφ(z) (a∇)p−1∇µφ(z) + . . . . (9.52)

The Fronsdal field Ψ(`) we can present then as

Ψ(`)(z; a) = J (`)(z; a) +
a2

2(D + 2`− 4)
Θ(`−2)(z; a), (9.53)

TrΨ(`)(z; a) = 2aΨ
(`)(z; a) = Θ(`−2)(z; a) (9.54)

The conservation condition (9.50) in this representation is

∇µ ∂

∂aµ
Ψ(`)(z; a) =

a2

2(D + 2`− 6)
Tr∇µ ∂

∂aµ
Ψ(`)(z; a) (9.55)

or

∇µ ∂

∂aµ
J (`)(z; a) +

(a∇)Θ(`−2)(z; a)

(D + 2`− 4)
=

a2∇µ ∂
∂aµ

Θ(`−2)(z; a)

(D + 2`− 6)(D + 2`− 4)
. (9.56)

From this we can read off a restriction on the coefficients in (9.51) and (9.52)

p(D + 2p− 4)A`p + (`− p+ 1)(D + 2`− 2p− 2)A`p−1 +B`−2
p +B`−2

p−1 = 0. (9.57)

For D = 4 we get

2p2A`p + 2(`− p+ 1)2A`p−1 +B`−2
p +B`−2

p−1 = 0. (9.58)
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Then after using (9.47) for β = 2 we obtain

B`−2
p +B`−2

p−1 =
C``!
2`−1

(−1)p(`− 2p+ 1)

(p− 1)!(p+ 1)!(`− p)!(`− p+ 2)!
. (9.59)

The solution of this equation fulfilling the boundary conditions

B`−2
0 = B`−2

` = 0 (9.60)

is

B`−2
p =

C``!
2`−1

(−1)p
p∑

k=1

(`− 2k + 1)

(k − 1)!(k + 1)!(`− k)!(`− k + 2)!
. (9.61)

The latter sum can be proceeded using Pascal’s formula for binomials. The result is

very elegant

B`−2
p =

C`(−1)p

2`−1(`+ 1)!

(
`

p− 1

)(
`

p+ 1

)
. (9.62)

So we show that in contrast to the β = 1 case where the interaction includes the

traceless conformal higher spin currents, the β = 2 boundary condition necessitates

the interaction with the double trace higher spin currents. The connection between

these two types of interaction can be described adding local Weyl (in the spin two case)

and generalized ”Weyl” invariants realizing the conformal coupling of the scalar with

the higher spin fields.

Now as Exercise We will construct directly the traceless fourth rank tensor con-

structed from four dimensional on-shell scalar field σ(zµ) in the following way

T traceless
µνλρ = Tµνλρ −

3

8

(
gµ(νTλρ) + Tµ(νgλρ)

)
+

1

16
gµ(νgλρ)T , (9.63)

Tµν = Tααµν , T = T µνµν .

The conservation law which we will check below is

∇µT traceless
µνλρ = ∇µTµνλρ −

3

8

(
∇(νTλρ) +∇µTµ(νgλρ)

)
+

1

16
g(νλ∇ρ)T = 0 . (9.64)

Finally we list here the most important on-shell relations (some of them are due to
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2σ(z) = 2
L2σ(z)) we will use

[2,∇µ]σ(z) =
3

L2
∇µσ(z) , (9.65)[

∇µ,∇3
(νλρ)

]
σ(z) =

3

L2
gµ(ν∇2

λρ)σ(z)− 3

L2
g(νλ∇ρ)∇µσ(z) , (9.66)

∇3
(µλρ)σ(z) = ∇2

(λρ)∇µσ +
1

3L2
gµ(ρ∇λ)σ(z)− 1

L2
gλρ∇µσ(z) , (9.67)

∇µ∇2
(µλρ)σ(z) =

28

3L2
∇2

(λρ)σ(z)− 8

3l4
gλρσ(z) , (9.68)[

∇µ,∇3
(νλρ)

]
∇µσ(z) =

12

L2
∇3

(νλρ)σ(z)− 9

L4
g(νλ∇ρ)σ(z) , (9.69)

gλρ∇3
(µλρ)σ(z) =

4

L2
∇ρσ(z) , (9.70)

gλρ∇4
(µνλρ)σ(z) =

20

3L2
∇2

(µν)σ(z)− 4

3L4
σ(z) . (9.71)

Now we can construct directly the conserved spin 4 traceless current. First of all

we note that from four derivatives we can construct only three bilinear combinations

T 0,4
µνλρ = σ∇(µ∇ν∇λ∇ρ)σ , (9.72)

T 1,3
µνλρ = ∇(µσ∇ν∇λ∇ρ)σ , (9.73)

T 2,2
µνλρ = ∇(µ∇νσ∇λ∇ρ)σ . (9.74)

For constructing the conserved (on-shell) combination of the traceless parts of these

tensors we need first of all the on-shell value of their first and second traces

T 0,4
λρ =

20

3l2
σ(z)∇2

(µν)σ(z)− 4

3L4
σ2(z) , T 0,4 =

8

L4
σ2(z) , (9.75)

T 1,3
λρ =

1

2
∇µσ∇2

(λρ)∇µσ +
13

6L2
∇λσ∇ρσ −

1

6L2
gλρσ∇µσ, T 1,3 =

4

L2
∇µσ∇µσ , (9.76)

T 2,2
λρ =

2

3
∇λ∇µσ∇ρ∇µσ +

2

3L2
σ∇2

(λρ)σ, T 2,2 =
2

3
∇2(µν)σ∇2

(µν)σ +
4

3L4
σ2 . (9.77)

Then introducing the following third rank symmetric tensor bilinear terms

A = ∇(ν∇µσ∇2
λρ)∇µσ, a = ∇(νσ∇2

λρ)σ , (9.78)

B = g(νλ∇ρ)

(
∇2(µν)σ∇2

(µν)σ
)
, b = g(νλ∇ρ) (∇µσ∇µσ) , (9.79)

C = ∇µσ∇3
(νλρ)∇µσ, c = σ∇3

(νλρ)σ, d = g(νλ∇ρ)

(
σ2
)

(9.80)
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and using (9.63)-(9.71), we obtain the following on-shell relations

∇µT 2,2traceless
µνλρ =

1

2
A− 1

12
B +

23

4L2
a− 9

8L2
b− 1

4L2
c− 19

24L4
d , (9.81)

∇µT 1,3traceless
µνλρ =

9

16
A− 3

32
B +

1

16
C +

51

8L2
a− 11

8L2
b +

1

2L2
c− 13

8L4
d , (9.82)

∇µT 0,4traceless
µνλρ = C− 3

2L2
a− 7

4L2
b +

25

2L2
c− 47

4L4
d . (9.83)

Now we can see that the following unique combination of (9.72)-(9.74) is conserved

T s=4,traceless
µνλρ = T 2,2traceless

µνλρ − 8

9
T 1,3traceless
µνλρ +

1

18
T 0,4traceless
µνλρ , (9.84)

∇µT s=4,traceless
µνλρ = 0 . (9.85)

The expression (9.84) for the current is again in agreement with the flat space case

general formula after a replacement of ordinary derivatives by covariant ones (compare

the coefficients in (9.84) with the solution (9.38) and overall factor 1
36

).
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10 Spin two and four currents interaction with gauge

field

The action for the conformally coupled scalar field in D dimensions in external

gravity is

S =
1

2

∫
dDz
√
−G

[
Gµν∇µφ∇νφ−

(D − 2)

4(D − 1)
R(G)φ2

]
. (10.1)

In this section we restore the linearized form of this action in fixed AdS background

using a gauging procedure both for the gauge and Weyl symmetry on the linearized

level. We do this derivation just for methodical reasons because the final nonlinear

answer is known (10.1). But we would like to extend this consideration to the higher

spin case and try to elaborate a linearized construction which works in the case ` = 4

where the final answer is unknown.

We start from the massive free scalar action in the fixed AdS external metric

S0(φ) =
1

2

∫
dDz
√
−g
[
∇µφ∇µφ+ λφ2

]
. (10.2)

For getting an interaction with linearized gravity using the gauging procedure we have

to variate S0 with respect to δ1
εφ = εµ(z)∇µφ

δ1
εS0 =

∫
dDz
√
−g∇(µεν)

[
∇µφ∇νφ−

gµν
2

(
∇αφ∇αφ+ λφ2

)]
(10.3)

and solving (we assume that εµ and hµν have the same infinitesimal order) the equation

δ1
εS0(φ) + δ0

εS1(φ, h(2)) = 0, δ0
εh

(2)
µν = 2∇(µεν), (10.4)

we immediately find the following cubic interaction linear in the gauge field

S1(φ, h(2)) =
1

2

∫
dDz
√
−gh(2)µν

[
−∇µφ∇νφ+

gµν
2

(
∇µφ∇µφ+ λφ2

)]
. (10.5)

Note that here we used many times partial integration which means that we admit

that all fields or at least parameters of symmetry are zero on the boundary, otherwise

we would have to check all symmetries taking into account some boundary terms and
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their variations also. It is clear that for constructing the local interaction on the bulk

we can use partial integrations without watching the boundary effects.

So we see that gauge invariance

δ1
εφ(z) = εµ(z)∇µφ(z), δ0

εh
(2)
µν (z) = 2∇(µεν)(z) (10.6)

in this linear approach does not fix the free parameter λ and the corresponding spin

two Noether current (energy-momentum tensor)

Ψ(2)
µν (φ, λ) = −∇µφ∇νφ+

gµν
2

(
∇µφ∇µφ+ λφ2

)
(10.7)

is conserved but not traceless. But we can fix this problem having noted that there is

one more gauge invariant combination of two derivatives and one hµν field

r(2)(h(2)(z)) = ∇µ∇νh
(2)µν −∇2h(2)µ

µ − D − 1

L2
h(2)µ
µ , δ1

εr
(2)(h(2)) = 0. (10.8)

It is of course the linearized Ricci scalar-but at this moment it is important for us that

there is only one gauge invariant combination of h
(2)
µν (z) , two scalars φ(z) and two

derivatives ∫
dDz
√
gr(2)(h(2))φ2, (10.9)

which we can add to our linearized action with one more free parameter. So finally

we can write the most general gauge invariant action in this approximation of the first

order in the gauge field

SGI(λ, ξ, φ, h(2)) =
1

2

∫
dDz
√
−g
[
∇µφ∇µφ+ λφ2

]
+

1

2

∫
dDz
√
−gh(2)µν

[
−∇µφ∇νφ+

gµν
2

(
∇µφ∇µφ+ λφ2

)]
+ ξ

∫
dDz
√
−g
[
∇µ∇νh

(2)µν −∇2h(2)µ
µ − D − 1

L2
h(2)µ
µ

]
φ2.(10.10)

Then we search for the additional local symmetry permitting to remove the trace of

the gauge field hµν and therefore leading to the traceless conformal spin two current.
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The natural choice here is of course Weyl invariance and we will define local Weyl

transformation in linear approximation in the following way

δ1
σφ(z) = ∆σ(z)φ(z), δ0

σh
(2)
µν (z) = 2σ(z)gµν , (10.11)

where ∆ is the conformal weight (one more additional free parameter to fit) of the

scalar field. The important point here is that when we impose on the gauge invariant

action (10.10) conformal (Weyl) invariance (10.11) we obtain the condition

δ

δσ(z)
SGI(λ, ξ, φ, h(2)) =

[
∆λ+

λD

2
− 2ξD(D − 1)

L2

]
σφ2 (10.12)

+

[
∆− 1 +

D

2

]
σ∇µφ∇µφ+

[
2ξ(1−D)− ∆

2

]
∇2σφ2 = 0 (10.13)

with the unique solution for all free constants

∆ = 1− D

2
, ξ =

1

8

D − 2

D − 1
, λ =

D(D − 2)

4L2
. (10.14)

So finally we come to the gauge and conformal invariant action

SWI(φ, hµν) = S0(φ) + SΨ(2)

1 (φ, h(2)) + Sr
(2)

1 (φ, h(2)) (10.15)

where

S0(φ) =
1

2

∫
dDz
√
−g
[
∇µφ∇µφ+

D(D − 2)

4L2
φ2

]
, (10.16)

SΨ(2)

1 (φ, h(2)) =
1

2

∫
dDz
√
−gh(2)µν

[
−∇µφ∇νφ+

gµν
2

(
∇µφ∇µφ+

D(D − 2)

4L2
φ2

)]
,(10.17)

Sr
(2)

1 (φ, h(2)) =
1

8

D − 2

D − 1

∫
dDz
√
−g
[
∇µ∇νh

(2)µν −∇2h(2)µ
µ − D − 1

L2
h(2)µ
µ

]
φ2, (10.18)

which is of course the linearized action (10.1) and can be obtained from that after

expansion near to the AdSD background Gµν(z) = gµν + h
(2)
µν (z) in the first order on

h
(`)
µν .

Now we turn to the spin four case.

We start from action (10.16) to apply Noether’s method for the following trans-

formation of the scalar field with a traceless third rank symmetric tensor parameter

δ1
εφ = εµνλ∇µ∇ν∇λφ , εααµ = 0 (10.19)
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First of all we have to calculate δ1S0. For brevity we introduce the notation (and in a

similar way for any other tensor)

ε̃µν = ∇λε
λµν , ˜̃εµ = ∇ν∇λε

νλµ (10.20)

Then after variation of (10.16) we obtain

δ1
εS0(φ) =

∫
dx4
√
−g
{
−∇(αεµνλ)∇µ∇αφ∇ν∇λφ+

3

2
ε̃νλ∇ν∇αφ∇λ∇αφ

−1

2
ε̃νλ∇2 (∇νφ∇λφ) +

1

8L2
[3D(D + 2)− 8] ε̃νλ∇νφ∇λφ (10.21)

−∇(α˜̃ελ)

[
−∇µφ∇νφ+

gµν
2

(
∇µφ∇µφ+

D(D − 2)

4L2
φ2

)]}
We see that we can introduce an interaction with the spin four gauge field h

(4)
µναβ in

the minimal way if we will deform the transformation law for the spin two field. The

solution for the equation

δ1
εS0(φ) + δ0

ε

[
SΨ(2)

1 (φ, h(2)) + SΨ(4)

1 (φ, h(4))
]

= 0 (10.22)

is

SΨ(4)

1 (φ, h(4)) =
1

4

∫
dx4
√
−g
[
h(4)µναβ∇µ∇νφ∇α∇βφ− 3h(4)αµν

α ∇µ∇βφ∇ν∇βφ

+ h(4)αµν
α ∇2 (∇µφ∇νφ)− 3D(D + 2)− 8

4L2
h(4)αµν
α ∇µφ∇νφ

]
, (10.23)

δ0
εh

(4)µναβ = 4∇(µεναβ), δ1
εφ = εµνα∇µ∇ν∇αφ, (10.24)

δ0
εh

(4)αµν
α = 2ε̃µν , δ0

εh
(2)µν = 2∇(µ˜̃εν). (10.25)

So we obtain the following gauged action with linearized interaction with both spin

two and spin four gauge fields and linearized usual Weyl invariance

SGI(φ, h(2), h(4)) = SWI(φ, h(2)) + SΨ(4)

1 (φ, h(4)) (10.26)

δ0h(4)µνλα = 4∇(µενλα), δ0h(2)µν = 2∇(µεν) + 2∇(µ˜̃εν) + 2σgµν (10.27)

δ1φ = εµ∇µφ+ εµνλ∇µ∇ν∇λφ+ (1− D

2
)σφ (10.28)

where SWI(φ, h(2)) can be read from (10.15)-(10.18) and we note that on this linearized

level usual Weyl transformation does not affect the spin four part of the action but the
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spin four gauge transformation deforms the gauge transformation for spin two gauge

field.

Now we turn to the construction of the conformal invariant coupling of the scalar

field with the spin four gauge field in a similar way as in the case of spin two. For this

we note first that here we can construct also the gauge invariant combination of two

derivatives and h(4)µναβ. This is the following traceless symmetric second rank tensor

r(4)αβ = ∇µ∇νh
(4)µναβ −∇2h(4)µαβ

µ −∇(α∇νh
(4)β)µν
µ − 3(D + 1)

L2
h(4)αβµ
µ ,(10.29)

δ1
ε r

(4)αβ = 0, r(4)α
α = 0 (10.30)

This is the analogue of the Ricci scalar in the spin four case and we can construct using

this tensor two additional gauge invariant combinations of the same order.

Sr
(4)

1 (ξ1, ξ2, φ, h
(4)) = ξ1

∫
dDz
√
−gr(4)µν∇µφ∇νφ+ ξ2

∫
dDz
√
−g∇µ∇νr

(4)µνφ2.

(10.31)

Then we can define the generalized ”Weyl” transformation for the scalar and spin four

gauge field with the second rank symmetric traceless parameter χµν(z)

δ0
χh

(4)µναβ(z) = 12χ(µν(z)gαβ), δ1
χφ(z) = ∆̃χαβ(z)∇α∇βφ(z), (10.32)

where we introduced the ”conformal” weight ∆̃ for the scalar field. Computing the

57



following χ variations

δ1
χS0(φ) + δ0

χS
Ψ(4)

1 (φ, h(4)) =

∫ {
(∆̃− 1)∇(αχ̃β)Ψ

(2)
αβ(φ,

D(D − 2)

4L2
)

−(∆̃ +
3D

2
+ 3)χαβ∇α∇µφ∇β∇µφ+

∆̃ +D + 3

2
∇2χαβ∇αφ∇βφ

− 1

L2
C(∆̃, D)χαβ∇αφ∇βφ+

D(D − 2)

8L2
˜̃χφ2

}√
−gdDz, (10.33)

C(∆̃, D) = (∆̃− 1)(D − 1) +
∆̃

4
D(D − 2) + (D + 4)(

3D(D + 2)

8
− 1), (10.34)

δ0
χS

r(4)

1 (φ, h(4)) = ξ1

∫ [
2D∇(αχ̃β)Ψ

(2)
αβ(φ,

D(D − 2)

4L2
)− (D − 2) ˜̃χ∇αφ∇αφ

−2(D + 3)∇2χαβ∇αφ∇βφ −
2

L2
(D + 3)(3D + 4)χαβ∇αφ∇βφ

]√
−gdDz

−
[
ξ1
D2(D − 2)

4L2
+ ξ2

12(D + 1)(D + 2)

L2

] ∫
dDz
√
−g ˜̃χφ2

−ξ24(D + 1)

∫
dDz
√
−g∇2 ˜̃χφ2 (10.35)

we see again that for obtaining a ”Weyl” invariant interaction we have to deform the

gauge and usual Weyl transformation of the spin two gauge field h
(2)
µν

δ0
χh

(2)
µν = 2(1− ∆̃− 2Dξ1)∇(µχ̃ν) + 2ξ1

˜̃χgµν (10.36)

Then solving the symmetry condition

δ1
χS0(φ) + δ0

χ

(
SΨ(2)

1 (φ, h(2)) + Sr
(2)

1 (φ, h(2)) + SΨ(4)

1 (φ, h(4)) + Sr
(4)

1 (φ, h(4))
)

= 0

(10.37)

we obtain again a unique solution for all three free parameters

∆̃ = −3− 3

2
D, (10.38)

ξ1 = −1

8

D

D + 3
, (10.39)

ξ2 =
1

64

D(D − 2)

(D + 1)(D + 3)
. (10.40)

Thus we constructed the linearized action for a scalar field interacting with the spin
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two and four field in a conformally invariant way

SWI(φ, h(2), h(4)) = SWI(φ, h(2)) + SΨ(4)

1 (φ, h(4)) + Sr
(4)

1 (φ, h(4)), (10.41)

δ1φ = εµ∇µφ+ εµνλ∇µ∇ν∇λφ+ ∆σφ+ ∆̃χµν∇µ∇νφ, (10.42)

δ0h(2)µν = 2∇(µεν) + 2∇(µ˜̃εν) + 2(1− ∆̃− 2Dξ1)∇(µχ̃ν) + 2σgµν + 2ξ1
˜̃χgµν ,(10.43)

δ0h(4)µναβ = 4∇(µενλα) + 12χ(µνgαβ). (10.44)

This interaction has an additional local symmetry permitting to gauge away the

trace of spin two and four gauge fields. So we can say that this is a linearized interaction

for conformal higher spin theory of the type discussed in [27],[28].
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11 De Donder gauge and Goldstone mode

We will use Euclidian AdSd+1 (the same as in (1.15)-(1.20)) with conformal flat metric,

curvature and covariant derivatives satisfying

ds2 = gµν(z)dzµdzν =
L2

(z0)2
δµνdz

µdzν ,
√
g =

Ld+1

(z0)d+1
,

[∇µ, ∇ν ]V
ρ
λ = R σ

µνλ V
ρ
σ −R ρ

µνσ V
σ
λ ,

R ρ
µνλ = − 1

(z0)2

(
δµλδ

ρ
ν − δνλδρµ

)
= − 1

L2

(
gµλ(z)δρν − gνλ(z)δρµ

)
,

Rµν = − d

(z0)2
δµν = − d

L2
gµν(z) , R = −d(d+ 1)

L2
.

As before in spin ` case, for shortening the notation and calculation, we contract all

rank ` symmetric tensors with the `-fold tensor product of a vector aµ. In this notation

Fronsdal’s equation of motion [24] for the double traceless spin ` field is (from now on

we put L = 1)

F(h(`)(z; a)) = 2h(`)(z; a)− (a∇)∇µ ∂

∂aµ
h(`) +

1

2
(a∇)22ah

(`)(z; a)

−
(
`2 + `(d− 5)− 2(d− 2)

)
h(`) − a22ah

(`−2)(z; a) = 0, (11.1)

2a2ah
(`) = 0, (11.2)

2 = ∇µ∇µ ,2a = gµν
∂2

∂aµ∂aν
, (a∇) = aµ∇µ, a2 = gµν(z)aµaν . (11.3)

The basic property of this equation is higher spin gauge invariance with the traceless

parameter ε(`−1)(z; a),

δh(`)(z; a) = (a∇)ε(`−1)(z; a), 2aε
(`−1)(z; a) = 0, δF(h(`)(z; a)) = 0. (11.4)

The equation (11.1) can be simplified by gauge fixing. It is easy to see that in the so

called de Donder gauge

D(`−1)(h(`)) = ∇µ ∂

∂aµ
h(`) − 1

2
(a∇)2ah

(`) = 0, (11.5)

Fronsdal’s equation simplifies to

FdD(h(`)) = 2h(`) −
(
`2 + `(d− 5)− 2(d− 2)

)
h(`) − a22ah

(`−2) = 0. (11.6)
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It was shown (see for example [34]) that in the de Donder gauge the residual gauge

symmetry leads to the tracelessness of the on-shell fields. So we can define our massless

physical spin ` modes as traceless and transverse symmetric tensor fields satisfying the

equation (11.6)

[2 + `]h(`) = ∆`(∆` − d)h(`), (11.7)

2ah
(`) = ∇µ ∂

∂aµ
h(`) = 0, (11.8)

∆` = `+ d− 2. (11.9)

Note that equation (11.7) for ` = 0 coincides with the equation for the massless con-

formal coupled scalar only for d = 3.

In a similar way we can describe the massive higher spin modes using the same set of

constraints on the general symmetric tensor field φ(`)(z, a) [35] but with the independent

conformal weight ∆ (dimension) of the corresponding massive (in means of AdS field)

representation of the SO(d + 1, 1) isometry group. This general representation with

two independent quantum numbers [∆, `] under the maximal compact subgroup goes,

after imposing a shortening condition ∆ = ∆` = `+ d− 2, to the massless higher spin

case (11.7)-(11.9) with the following decomposition [11, 29, 30]

lim
∆→`+d−2

[∆, `] = [`+ d− 2, `]⊕ [`+ d− 1, `− 1]. (11.10)

The additional massive representation [`+ d− 1, `− 1] is the Goldstone field. Reading

this decomposition from the opposite side, we can interpret it as swallowing of the

massive spin `−1 Goldstone field by the massless spin ` field with generation of a mass

for the latter one [13]. For better understanding of this phenomenon we need a more

careful investigation of the gauge invariant equation (11.1) in more general gauges.

First of all note that the gauge parameter ε(`−1) is a traceless rank ` − 1 tensor

and therefore in any off-shell consideration (quantization, propagator and perturbation

theory) we can use only gauge conditions with the same number of degrees of freedom.
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The de-Donder gauge (11.5) is just such a type of the gauge due to the tracelessness of

the D(`−1)(h(`)). Nevertheless for on-shell states we can impose more restrictive gauges.

Here we consider a one-parameter family of gauge fixing conditions

G(`−1)
α (h(`)) = ∇µ ∂

∂aµ
h(`) − 1

α
(a∇)2ah

(`) = 0 (11.11)

This gauge condition coincides with the traceless de Donder gauge if α = 2 (2aG(`−1)
2 =

2aD(`−1) = 0). Then we can write our double traceless field h(`)(z; a) as a sum of the

two traceless spin ` and `− 2 fields ψ(`)(z; a) and θ(`−2)(z; a)

h(`)(z; a) = ψ(`) +
a2

2α0

θ(`−2)(z; a) , (11.12)

2ah
(`) = θ(`−2) , 2aψ

(`) = 2aθ
(`−2) = 0, (11.13)

α0 = d+ 2`− 3. (11.14)

In this parametrization Fronsdal’s equation of motion with the gauge condition (11.11)

can be written in the form of the following system of equations for the two independent

traceless fields ψ(`) and θ(`−2)

∇µ ∂

∂aµ
ψ(`) +

a2

2α0

∇µ ∂

∂aµ
θ(`−2) =

α0 − α
αα0

(a∇)θ(`−2), (11.15)

(2 + `)ψ(`) +
α− 2

2α

[
(a∇)2θ(`−2) − a2α(α0 − 1)

α0(α− 1)
θ(`−2)

]
= ∆`(∆` − d)ψ(`),(11.16)

(2 + `− 2) θ(`−2) =

[
∆θ(∆θ − d) +

α0 − α
α− 1

]
θ(`−2), (11.17)

∆` = d+ `− 2 , ∆θ = d+ `− 1. (11.18)

Now we are ready to discuss different gauge conditions. First of all we see that the

de Donder gauge (α = 2) leads to the complete separation of the equations of motion

for ψ(`) and θ(`−2) fields. On the other hand the gauge condition (11.15) becomes just

traceless for α = 2 and keeps on to connect the divergence of ψ(`) and the traceless

part of the gradient of θ(`−2)

∇µ ∂

∂aµ
ψ(`)(z; a) =

α0 − 2

2α0

G(`−1)(z; a), (11.19)

G(`−1)(z; a) = (a∇)θ(`−2)(z; a)− a2

α0 − 2
∇µ ∂

∂aµ
θ(`−2)(z; a). (11.20)
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Here G(`−1) corresponds to the Goldstone representation. Indeed using the equations

of motion (11.16) and (11.17) with α = 2 one can derive that the G(`−1) field obeys the

following on-shell equation

(2 + `− 1)G(`−1)(z; a) = ∆θ(∆θ − d)G(`−1)(z; a) (11.21)

corresponding to the Goldstone representation [∆θ = `+d−1, `−1] arising in (11.10).

This mode can be gauged away on the classical level together with the trace θ(`−2) but

only on-shell. Therefore on the quantum level this mode can arise in loop diagrams

and will play the crucial role in the mechanism of mass generation for the higher spin

gauge fields [13].

Now we return to (11.15)-(11.18) and consider the next interesting gauge α =

d+ 2`− 3. This is a generalization for the higher spin case of the so-called ”Landau”

gauge considered in [44] for the case of the graviton in AdSd+1. But the difference

between the higher spin and graviton (` = 2) cases is essential. For the graviton we

can apply this ”Landau” gauge

∇µhµν =
1

d+ 1
∂νh

µ
µ (11.22)

off-shell also because the trace is scalar here and this gauge fixes the same number of

degrees of freedom as the de Donder gauge. For ` > 2, α 6= 2 it is easy to see that

condition (11.15) after taking the trace forces the trace components θ(`−2) of our double

traceless field h(`) to be transverse

∇µ ∂

∂aµ
θ(`−2) = 0, (11.23)

∇µ ∂

∂aµ
ψ(`) =

α0 − α
αα0

(a∇)θ(`−2). (11.24)

Moreover in the ”Landau” gauge (α = α0) the ψ(`) component is also transverse but

it’s equation of motion is not diagonal like in the de Donder gauge. On the other hand

the equation of motion for the field θ(`−2) is simplified and we have for this field the
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realization of the representation [∆θ = `+ d− 1, `− 2]

(2 + `− 2) θ(`−2) = ∆θ(∆θ − d)θ(`−2). (11.25)

So we see that only in the de Donder gauge we have a diagonal equation of motion for

the physical ψ(`) components but this component is not transversal due to the presence

of the [` + d − 1, ` − 1] Goldstone mode G(`−1). This gauge is most suitable for the

quantization and construction of the bulk-to-bulk propagator and for the investigation

of the AdS4/CFT3 correspondence in the case of the critical conformal O(N) boundary

sigma model.
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12 Bulk to Bulk Propagators

Propagators in de Donder’s gauge

On AdS space which is a constant curvature space the geodesic distance η enters all

invariant expressions of the relative distance of two points. The standard variable

ζ = cosh η can be expressed by Poincaré coordinates as

ζ(z1, z2) =
(z0

1)2 + (z0
2)2 + (~z1 − ~z2)2

2z0
1z

0
2

= 1 +
(z1 − z2)µ(z1 − z2)νδµν

2z0
1z

0
2

. (12.1)

The propagators are bitensorial quantities which are presented in the algebraic basis

of homogeneous functions of I1, I2, I3, I4

I1(a, c) := (a∂1)(c∂2)ζ(z1, z2), (12.2)

I2(a, c) := (a∂1)ζ(z1, z2)(c∂2)ζ(z1, z2), (12.3)

I3(a, c) := a2
1I

2
2c + c2

2I
2
1a, (12.4)

I4 := a2
1c

2
2, (12.5)

I1a := (a∂1)ζ(z1, z2) , I2c := (c∂2)ζ(z1, z2), (12.6)

(a∂1) = aµ
∂

∂zµ1
, (c∂2) = cµ

∂

∂zµ2
, (12.7)

a2
1 = gµν(z1)aµaν , c2

2 = gµν(z2)cµcν . (12.8)

of degree `, the spin of the field. All important formulas for this ”advanced technology”

of working with higher spin field theory in AdS space one can find in Appendix A. We

are interested only in that part of the propagator expansion which neglects traces. So it

is a map from a space of `+1 functions {Fk(ζ)}`k=0 to a space of bitensors parameterized

by I1 and I2 only, namely

Ψ(`)[Fk] =
∑̀
k=0

Fk(ζ)I`−k1 Ik2 , (12.9)

(2 + `) Ψ(`)[Fk] = ∆`(∆` − d)Ψ(`)[Fk] +O(a2
1; c2

2). (12.10)

In the variable ζ the analytic properties of QFT n-point functions are conveniently

described. In particular the two-point functions or propagators are analytic in the ζ
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plane with singularities at ζ = ±1 and at ζ =∞, which in most cases are logarithmic

branch points. Analyticity is therefore meant in general on infinite covering planes.

All AdS field theories are symmetric under the exchange ζ against −ζ.

Another variable used often is u = ζ−1, the “chordal distance”, more precisely one

half the square of the chordal distance. The series expansions for two-point functions

in u converge in a radius 2, whereas the series expansions in powers of ζ−1 converge

for | ζ |> 1. These analytic properties remind us of Legendre functions. Indeed if

propagator functions can be identified as Gaussian hypergeometric functions, these

are Legendre functions and the ”quadratic transformations” can be applied. Using

formulas from Appendix A we can show that in de Donder’s gauge the propagator

satisfy the following set of differential equations for the functions Fk(ζ) following from

equation (12.10)

(ζ2 − 1)F ′′k + (d+ 1 + 4k)ζF ′k +XkFk + 2ζ(k + 1)2Fk+1 + 2(`− k + 1)F ′k−1 = 0,(12.11)

Xk = k(d+ 2`− k) + 2l − (`− 2)(`+ d− 2). (12.12)

The ”dimension” of the higher spin field ∆` = ` + d − 2 has been inserted. Moreover

we use F−1 = F`+1 = 0. The dimension of the AdS space is d + 1, we interpolate

analytically in d if this is technically required. Our issue is to solve these equations

by expansion in powers of ζ−1 or u. This leads to matrix recursion equations which

necessitate some linear algebra operations.

As an ansatz for the series expansion of Fk(ζ) at ζ =∞ we use

Fk(ζ) = ζ−α−k
∞∑
n=0

cknζ
−2n. (12.13)

Denote ξ = α + 2n. Then a two term recursion of the form

Dn



c0n

c1n

...

c`,n


= Cn−1



c0,n−1

c1,n−1

...

c`,n−1


, (12.14)
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results with the two matrices

Cn−1 = diag{(ξ − 1)(ξ − 2), ξ(ξ − 1), . . . (ξ + `− 1)(ξ + `− 2)}, (12.15)

and the entries of the matrix Dn

(Dn)k,k−1 = −2(`− k + 1)(ξ + k − 1), (12.16)

(Dn)k,k = ξ2 − ξ(d+ 2k)− 4k2 + 2`(k + 1)− (l − 2)(`+ d− 2), (12.17)

(Dn)k,k+1 = 2(k + 1)2. (12.18)

The determinant of D0 is a polynomial of degree 2(`+ 1) of the variable α with roots

which we identify with the ”roots” of the differential equation system. For arbitrary `

we have

detD0 = [(α + `− 2)(α + 2− `− d)][(α + `− 2)(α− `− d)]

×
`−2∏
n=0

[α2 − (d+ 4 + 2n)α− ((`− 2)d+ (`+ n)2 − (n+ 2)(3n+ 4))]. (12.19)

Each square bracket represents one eigenvalue of D0 and contributes two roots. The

quadratic factors lead in almost all cases to two irrational roots that are neither degen-

erate among themselves nor with the other roots, but there are exceptions which have

two integer roots e.g. for d = 3 : (`, n) ∈ {(4, 1), (6, 4), (9, 2), (9, 5), (11, 8), (15, 8)...}.

Two roots are said to be degenerate, if their difference is an integer. For the case of

expansions in powers of ζ2 as in (12.13), this integer must be even. In such case the

solution with the bigger root enters the other one with a logζ factor.

The following roots are of particular (physical) importance

αp = `+ d− 2, (12.20)

αc = `+ d. (12.21)

We call the first root αp ”principal” because it has the value of the dimension ∆ of

the field which enters the field equation in the form ∆(∆ − d). The second root is a
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”companion” of it, since they appear for all ` as such pair (see (12.19)). It is degenerate

with the principal root and the solution of it enters the principal solution with a logζ

factor on the next to leading power in the expansion. The bigger ones of the two roots

in the exceptional cases quoted above are also bigger than the principal root `+ 1 (for

the same `) but their distance to it are odd numbers except for the case (`, n) = (15, 8),

where the distance to `+ 1 is sixteen and the logζ term appears at a very high power.

For the principal root the equation for the eigenvector of D0

D0(αp)



c
(αp)
00

c
(αp)
10

...

c
(αp)
l0


= 0, (12.22)

can be solved for each `. We find

c
(αp)
k,0 = (−1)k

(
`

k

)
, (12.23)

which is easy to prove by using the general expression for the rows of the matrix Dn

as given in (12.16) - (12.18). The consequence of this result is that the leading term of

Ψ(`)[Fk(αp)] at ζ =∞ is the well known expression ζ−∆(I1 − ζ−1I2)`. Already at next

order in ζ−2 log-terms appear.

For the companion root αc the eigenvector for D0 can be derived by a little bit more

algebra for any `

c
(αc)
k,0 = (−1)k

((
`

k

)
+ (d+ 2`− 2)

(
`− 1

k − 1

))
. (12.24)

The actual construction of a solution for the pair of roots starts with the bigger one,

αc. Its solution takes the form

Fk(ζ;αc) = ζ−∆−2

∞∑
n=0

ζ−2n
∑̀
s=0

Πn(αc)k,sc
(αc)
s,0 , (12.25)
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where we used

Hn(αc) = Dn(αc)
−1Cn−1(αc)

= H1(αc + 2(n− 1)), (12.26)

Πn(αc) = Πn−1,←
r=0 H1(αc + 2r). (12.27)

and the left arrow denotes ordering of the product with increasing r from right to left.

In this context we note that if a nonsingular matrix S(α) would exist, so that H1 could

be diagonalized by

H1(α) = S−1(α + 2)∆(α)S(α), (12.28)

then Fk(ζ;α) would be a generalized hypergeometric function.

Having constructed the solution for the companion root we turn to the principal

root. We recognize that Dn(αp) can be spectrally decomposed in the following fashion

Dnχi = λiχi, (12.29)

DT
nψi = λiψi, (12.30)

Dn =
l∑

i=0

λiχi ⊗ ψTi , (12.31)

ψTi χj = δij (12.32)

Denote further

ρT = ψTCn−1. (12.33)

All these quantities can be determined as functions of ξ, and it is easily verified that

(12.28) is not fulfilled.

One of the eigenvalues of D1(αp) vanishes, we denote it λ0, so that D1(αp) cannot

be inverted. We perform a deformation of our differential equation system replacing

αp only in λ0 and in the prefactor ζ−αp by αp + ε. All other eigenvalues and the

eigenvectors remain unchanged. Then we continue the whole procedure known from

the companion root, all Hn will remain singularity free. At the end we subtract a
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certain multiple γ of (ε−1 + µ)Ψ(`)[Fk(αc)] so that the limit ε → 0 can be performed

and the log-terms appearing are −γlogζΨ(l)[Fk(αc)]. The additional parameter µ is

in principle arbitrary showing that the principal solution containing a log factor is a

coset with respect to adding the companion solution. This parameter can, however,

be normalized in a standard fashion by requiring that the (l + 1)-tupel of coefficients

c
(αp)
k,n where at level n the log term appears first, is orthogonal to the eigenvector ψ0

belonging to the deformed eigenvalue. We close this discussion with the remark that

on the boundary of AdS space i.e. ζ =∞ any linear combination

Ψ(`)[Fk(αp)] + AΨ(`)[Fk(αc)] (12.34)

is indistinguishable from the pure principal solution. Thus the boundary constraint

fixes only the whole coset and not any representative of it.

In order to render the expansions of Fk around ζ = 1(u = 0) a visually different

expression, we shall denote them Φk. The expansions are

Φk(u) = uα
∞∑
n=0

ak,nu
n. (12.35)

Again we obtain matrix recursion relations

An



a0,n

a1,n

...

a`,n


+Bn−1



a0,n−1

a1,n−1

...

a`,n−1


+ E



a0,n−2

a1,n−2

...

a`,n−2


= 0. (12.36)

We define

ξ = α + n, (12.37)
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and obtain the matrices

(An)k,k = ξ(2ξ + d+ 4k − 1), (12.38)

(An)k,k−1 = 2ξ(`− k + 1), (12.39)

(Bn−1)k,k = (ξ − 1)(ξ + d+ 4k − 1) +Xk, label3.6 (12.40)

(Bn−1)k,k+1 = 2(k + 1)2 = (E)k,k+1. (12.41)

Here we used the shorthand (see (12.12))

Xk(λ) = k(2λ+ 2`− k + 1) + 2`− (`− 2)(2λ+ `− 1), (12.42)

and d = 2λ + 1 has been introduced. Therefore An is of lower triangular shape with

eigenvalues ξ(2ξ + d+ 4k − 1). The root system is therefore

• `+ 1 times the root zero;

• the `+ 1 roots αm = −λ− 2m, 0 ≤ m ≤ `.

Both sets are degenerate among themselves, and if d is odd, the second set is

degenerate with respect to the first one. The first set produces regular solutions,

the second set produces poles if d is odd, which it is in the case of present interest.

Nevertheless we will regard d as a free real parameter in order to handle the degeneracy

with the regular cases. The solution for α0 in combination with any regular solution has

the appropriate singular behaviour at u = 0 needed for a propagator, namely applying

Fronsdal’s differential operator the correct delta function is created.

Any solution is obtained by requiring

A0



a0,0

a1,0

...

a`,0


= 0. (12.43)
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This requirement is solved for the regular solutions Φ
(r)
k (u) (for which A0 = 0 and the

solution is trivial) by

a
(r)
k,0 = δk,r. (12.44)

For any such solution r we obtain next

a
(r)
k,1 = −(A−1

1 B0)k,r

= −(A−1
1 )k,r(B0)rr − (A−1

1 )k,r−1(B0)r−1,r, (12.45)

where we insert

(A1)r,r = d+ 4r + 1, (12.46)

(A1)r,r−1 = 2(`− r + 1), (12.47)

(B0)r,r = Xr, (12.48)

(B0)r−1,r = 2r2, (12.49)

and obtain

(A−1
1 )k,r = (−2)k−r

k∏
s=r+1

(`− s+ 1) [
k∏
s=r

(d+ 4s+ 1)]−1 (for k > r),(12.50)

(A−1
1 )r,r = (d+ 4r + 1)−1, (12.51)

(A−1
1 )k,r = 0 for k < r. (12.52)

There is no sign of any singularity caused by the degeneracy. Finally we get

a
(r)
k,1 = −Xr(A

−1
1 )k,r − 2r2(A−1

1 )k,r−1, (12.53)

which vanishes for r > k + 1.

We turn now to the nonanalytic solutions Φk(u, αm) with roots αm = −λ− 2m and

concentrate on the case m = 0 because this is the perturbative Green function for the

Fronsdal differential operator. At the beginning we assume λ /∈ Z in order to avoid the

degeneracy with the regular solutions. In this case we have

(A0)k,k = −4λk, (12.54)

(A0)k,k−1 = −2λ(`− k + 1), (12.55)
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and the equation ∑
r

(A0)k,rc
(α0)
r,0 = 0 (12.56)

is solved by

c
(α0)
k,0 =

(
−1

2

)k (
`

k

)
. (12.57)

Next we treat the A1 matrix

(A1)k,k = 2(1− λ)Nk, Nk = 2k + 1, (12.58)

(A1)k,k−1 = 2(1− λ)(`− k + 1), (12.59)

(A−1
1 )k,r = [2(1− λ)]−1βk,r, for k ≥ r and zero else, (12.60)

βk,r = (−`)k−r[
k∏
s=r

Ns]
−1. (12.61)

The B0 matrix is

(B0)k,k = −λ(λ+ 4k + 1) +Xk := Zk(λ), (12.62)

(B0)k,k+1 = 2(k + 1)2. (12.63)

The matrix E is still not needed for n = 1.

We define the matrix

(H1)k,r = −(A−1
1 B0)k,r = [2(λ− 1)]−1{βk,r(B0)r,r + βk,r−1(B0)r−1,r}, (12.64)

and obtain for the coefficients c
(α0)
k,1

c
(α0)
k,1 =

k+1∑
r=0

(H1)k,r

(
−1

2

)r (
`

r

)
. (12.65)

All these coefficients inherit a pole in λ at the value 1.

This pole does not appear in one eigenvalue only as in the ζ =∞ case. This is due

to the fact that for λ = 1 there exist `+1 degenerate regular solutions and therefore the

pole appears in all ` + 1 eigenvalues simultaneously. It is straightforward to calculate

the residues of all matrix elements of H1 and to derive the expressions

ρk =
k+1∑
r=0

res(H1)k,r

(
−1

2

)r (
`

r

)
. (12.66)
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Then we subtract from this solution at n = 1 the regular solution

(λ− 1)−1[
∑̀
r=0

ρrΦ
(r)(u)], (12.67)

obtaining in the limit the log term of Ψ(`)[Φk(u, α0)]

− log u [
∑̀
r=0

ρrΦ
(r)(u)]. (12.68)

We mention that the leading term of Ψ(`)[Φk(u, α0)] is

u−1(I1 −
1

2
I2)`. (12.69)

The situation with the Green function type solution is the same as with the solution

which is constrained by the AdS boundary condition: The UV constraint is satisfied

by a coset, namely any linear combination of regular solutions can be added to the

solution Ψ(`)[Φ(α0)]. In turn this may also be used to normalize the solutions Φk(α0).

We can namely require that on the level n = 1 on which log u appears first, all the

coefficients c
(α0)
k,1 are made to vanish by appropriate subtraction of regular solutions.

Propagators in Feynman’s gauge

In this section we consider the higher spin gauge propagators analyzed in the previous

section and in [12], [36], [37] in an approach developed originally for the spin ` =

0, 1, 2 in [43], [39], [44] only, but now generalized for all ` with a slight modification

of arguments. Namely we consider our propagator working directly in the space of

conserved currents

h(`)(z1; a) =

∫
√
gd4z2K

(`)(z1, a; z2, c) ∗c J (`)(z2, c), (12.70)

where

K(`)(z1, a; z2, c) = Ψ(`)[Fk(u(z1; z2))] + traces. (12.71)
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Taking into account the conservation properties of the current J (`)(z2, c) we can for-

mulate the ansatz following from (12.10)

[21 + `−∆`(∆` − d)]Ψ(`)[Fk(u(z1; z2))] = −I`1δd+1(z1; z2) + traces

+ (c∇2)
(
I1aΨ

(`−1)[Λk(u(z1; z2))]
)
. (12.72)

This means that applying the gauge fixed equation of motion at the first argument of

the bilocal propagator we get zero (or more precisely a delta function in the coincident

points) due to a gauge transformation at the second argument.

Here we should make some comments on the delta function in curved AdS space.

Our notation in (12.72) means

δ(d+1)(z1; z2) =
δ(d+1)(z1 − z2)√

g(z)
,

∫
δ(d+1)(z1 − z2)dd+1z1 = 1. (12.73)

In the polar coordinate system defined in Appendix A the invariant measure (for d = 3)

is

√
gd4z = u(u+ 2)dudΩ3. (12.74)

Therefore we can define

δ(4)(z − zpole)√
g(z)

=
δ(u)

u(u+ 2)Ω3

= − δ(1)(u)

(u+ 2)Ω3

, (12.75)

uδ(1)(u) = −δ(u).

This u- dependence of the measure leads to the idea that short distance singularities

in D = d+ 1 = 4 dimensional AdS space should start from 1
u2

not from 1
u
.

Then using the gradient map (A.34), (A.35) we can derive

(c∇2)
(
I1aΨ

(`−1)[Λk(u)]
)

= Ψ(`)[Λ′k−1(u) + (k + 1)Λk(u)], Λ` = 0 (12.76)

Combining this with the Laplacian map (A.31)-(A.33) and (12.70) we obtain the fol-

lowing set of ` + 1 equations for z1 6= z2 (unlike the case (12.11) we do not insert the

value of ∆` here)

u(u+ 2)F ′′k + (d+ 1 + 4k)(u+ 1)F ′k + 2(`− k + 1)F ′k−1 + 2(u+ 1)(k + 1)2Fk+1

+[2`+ k(d+ 2`− k)]Fk −∆`(∆` − d)Fk = Λ′k−1 + (k + 1)Λk. (12.77)
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To analyze this system we write the k = 0, 1 and `− 1, ` cases explicitly

u(u+ 2)F ′′0 + (d+ 1)(u+ 1)F ′0 −∆`(∆` − d)F0 + 2(u+ 1)F1 + 2`F0 = Λ0,(12.78)

O(F ′′1 , F
′
1, F1, F2) + 2`F ′0 = Λ′0 + 2Λ1, (12.79)

...

O(F ′′`−1, F
′
`−1, F`−1, F`, F

′
`−2) = Λ′`−2 + `Λ`−1,(12.80)

u(u+ 2)F ′′` + (d+ 1 + 4`)(u+ 1)F ′` + [`2 + `(d+ 2)−∆`(∆` − d)]F`

+2F ′`−1 = Λ′`−1,(12.81)

and we see that this system for 2`+ 1 functions is separable. One solution is obtained

if we put

Fk = 0, k = 1, 2, . . . `, (12.82)

Λk = 0, k = 1, 2, . . . `− 1, (12.83)

and submit F0(u) to the Gaussian hypergeometric equation

u(u+ 2)F ′′0 (u) + (d+ 1)(u+ 1)F ′0(u)−∆`(∆` − d)F0(u) = 0, (12.84)

supplemented with a noncontradictory solution for the remaining gauge parameter

Λ0(u)

Λ0(u) = 2`F0(u). (12.85)

So we prove that with an appropriate choice of the gauge freedom we can obtain

the propagator in Feynman’s gauge in the form

K(`)(z1, a; z2, c) = I`1F0(u) + traces, (12.86)

where F0(u) is the solution of the equation for the scalar field with dimension ∆` (12.84)

[43]. The solution of this equation is well known and can be written in two different

forms [44, 45]. The first form is (ζ = u+ 1)

F0(ζ) = C(`, d)2∆`ζ−∆`
2F1

(
∆`

2
,
∆` + 1

2
,∆` −

d

2
+ 1;

1

ζ2

)
. (12.87)
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This form is suitable for an investigation of the infrared behaviour. We see immediately

that near the boundary limit we have

F0(ζ) ∼ ζ−∆` |d=3 = ζ−(`+1), if ζ →∞, (12.88)

which is just wanted for AdS/CFT correspondence. Indeed comparing ∆` and ∆θ in

(11.16)-(11.18) we see that the propagator of the nonphysical mode θ falls off in the

boundary limit faster than the propagator for the physical mode ψ, as it should be.

But for us the second form of this expression obtained after a quadratic transforma-

tion of the hypergeometric function listed in the Appendix B (B.18) is more interesting

F0(u) = C(`, d)

(
2

u

)∆`

2F1

(
∆`,∆` −

d

2
+

1

2
, 2∆` − d+ 1;−2

u

)
. (12.89)

The normalization constant C(`, d) is chosen to obtain the δ function on the right hand

side of (12.72)

C(`, d) =
Γ(∆`)Γ(∆` − d

2
+ 1

2
)

(4π)
(d+1)

2 Γ(2∆` − d+ 1)
|d=3 =

`!(`− 1)!

16π2(2`− 1)!
. (12.90)

To investigate the ultraviolet limit of (12.89) we have to use the second formula

(B.19) of Appendix B and take carefully the limit d→ 3 to obtain(
2

u

)∆`

2F1

(
∆`,∆` −

d

2
+

1

2
, 2∆` − d+ 1;−2

u

)
|d→3 =

(2`− 1)!

(`− 1)!

{
2

`!u

+
1

(`− 2)!

`−2∑
n=0

(`+ 1)n(2− `)n
n!(n+ 1)!

[
Υ`,n + log

u

2

] (
−u

2

)n}
, (12.91)

where the rational number Υ`,n is expressed by the ψ functions

Υ`,n = ψ(`+ n+ 1) + ψ(`− n− 1)− ψ(n+ 1)− ψ(n+ 2). (12.92)

So we see now that in the ultraviolet limit we get

F0(u)|d=3
∼=

1

8π2

1

u
+O(1, u, log u, u log u, . . . ). (12.93)

This main singular term in the propagator of the scalar field with dimension ∆` does

not depend on the field dimension and behaves always like 1
8π2u

. For example we have
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the same singularity in the propagator of the conformally coupled scalar in AdS4 (see

[14])

Σ[u(z1, z2)] =
1

8π2

(
1

u
± 1

u+ 2

)
, (12.94)

(2 + 2)Σ[u(z1, z2)] = −δ(4)(z1; z2). (12.95)

So we observe some universality in the UV behaviour of higher spin propagators in

Feynman’s gauge:

For any spin ` the propagator starts from I`1
1

8π2u
.

Comparing with (12.69) we deduce that in de Donder gauge we have the same

picture because

• I1(a, c;u)→ aµcν if u→ 0 .

• I2(a, c;u) = I3(a, c;u)→ 0 if u→ 0 .

• I4(a, c;u)→ a2c2 if u→ 0 .

So finally we can formulate the following statement:

The higher spin propagator in Feynman’s gauge is simplest and most convenient

for the calculation of any Feynman diagram. Just we have to couple it with conserved

currents to make sure that we preserve gauge invariance. The UV-behaviour of the

propagator is universal and described by (12.93).
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13 Bulk-to-boundary limit

Now we can take the boundary limit and obtain the spin ` bulk-to-boundary propaga-

tor from the bulk-to-bulk propagator directly. For this purpose we mention that the

boundary of AdS space is approached in the limit

z0 → 0, (13.1)

which is connected with the limit ζ →∞ due to

lim
z02→0

2z0
1z

0
2ζ(z1, z2) = (z0

1)2 + (~z1 − ~z2)2. (13.2)

Then following the explanation of the previous section we see that at the boundary

only the main term (12.69) survives and we get

lim
z02→0
cµ=(0,~c)

(z0
2)`−∆

(
I1 −

1

ζ
I2

)`
F0(ζ) = 2∆C

(z0
1)d−2

[(z0
1)2 + (~z1 − ~z2)2]

∆
[R(a,~c; z1 − ~z2)]` ,(13.3)

R(a,~c; z1 − ~z2) =< ~a,~c > −2
(a, z1) < ~z1 − ~z2,~c >

(z0
1)2 + (~z1 − ~z2)2

. (13.4)

Here we introduced the d+ 1 and d dimensional Euclidian scalar products

(a, z) =
d∑

µ=0

aµzµ, < ~c, ~z >=
d∑
i=1

cizi (13.5)

and the Jacobian tensor

Rµν(z) = δµν − 2
zµzν
(z, z)

. (13.6)

We see that the limit (13.3) really produces Dobrev’s [38] boundary-to-bulk propagator

without trace terms.

Actually we need only this leading term because all other trace terms depend on

the gauge condition (11.5) applied to the bulk dependent side of the right hand side of

(13.3). On the other hand we can fix the trace terms by requiring the tensor fields to

approach a certain tensor type on the boundary. In the case of irreducible d dimensional

CFT currents we have to claim tracelessness with respect to the indices contracted with
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~c

2~cG
(`)
AdS/CFT (a,~c; z) =

∂2

∂~c∂~c

(
G(`)
m (a,~c; z) + trace terms

)
= 0, (13.7)

G(`)
m (a,~c; z) =

(z0)d−2

(z, z)∆
[R(a,~c; z)]` . (13.8)

Here we omit the normalization factor 2∆C and put for simplicity ~z2 = 0 and zµ1 = zµ

(we can always restore the right dependence on the boundary coordinate ~z2 using

translation invariance in the flat boundary space).

Then considering the boundary limit of the I3 and I4 dependent terms we can easily

render the propagator (13.7) traceless on the boundary by the projection3

G
(`)
AdS/CFT (a,~c; z) = G(`)

m (a,~c; z)− (a, a)− [R0(a; z)]2

2(α0 − 1)(z0)2
2aG

(`)
m (a,~c; z)

+O(a4) +O(c4). (13.9)

The complete polynomial expression for G
(`)
AdS/CFT (a,~c; z) is presented in the Appendix

B, Eqn. (B.10). But here we consider only the first order trace term

2aG
(`)
m (a,~c; z) = `(`− 1)

(z0)d

(z, z)∆
< ~c,~c > [R(a,~c; z)]`−2 , (13.10)

R0(a; z) = aµR0
µ(z) = a0 − 2

z0(a, z)

(z, z)
, α0 = d+ 2`− 3. (13.11)

The important point of this consideration is the following: The expression (13.9) is

automatically traceless on the AdS side.

2aG
(`)
AdS/CFT (a,~c; z) = 0, (13.12)

due to the relations

δµνR0
µ(z)R0

ν(z) = 1 , δµνR0
µ(z)Rν(~c; z) = 0 (13.13)

This is natural because the original bulk-to-bulk basis {Ii(a, c; ζ)}4
i=1 was symmetric

with respect to the a ↔ c exchange . Then we see that this projection in agreement

3In this section we used the exact expression for Christoffel symbols

Γλµν = 1
z0

(
δλ0 δµν − 2δ0(µδ

λ
ν)

)
and the AdS trace rule 2a = (z0)2δµν ∂2

∂aµ∂aν
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with de Donder gauge condition (11.5) (for traceless case) leads to the transverse-

traceless bulk-to-boundary propagator (13.9) for all higher spin fields on AdS side. For

proving this we have to calculate several relations in first order of (a, a) and < ~c,~c >

(see details in Appendix B)

∇µ ∂

∂aµ
G(`)
m (a,~c; z) = `(`− 1)

(z0)d−1

(z, z)∆
< ~c,~c > [R(a,~c; z)]`−2R0(a; z), (13.14)

aµ∇µ2aG
(`)
m (a,~c; z) = `(`− 1)

(z0)d−1

(z, z)∆
< ~c,~c > [R(a,~c; z)]`−2R0(a; z)(α0 − 1),(13.15)

∇µ ∂

∂aµ
[R0(a; z)]2

(z0)2
2aG

(`)
m (a,~c; z) = 0. (13.16)

Putting all together we obtain

∇µ ∂

∂aµ
G

(`)
AdS/CFT (a,~c; z) = 0. (13.17)

So we see that the Goldstone mode (non transverseness of the propagator) can not be

visible after trace projection on the boundary side corresponding to the case of the

traceless currents in the large N limit of the O(N) sigma model.

The next interesting question which we can ask is the transversal property of the

bulk-to-boundary propagator on the boundary side. The answer is negative. The

divergence on the boundary side of the traceless bulk-to-boundary propagator is not

zero and equals a gauge term (gradient) with respect to the bulk gauge invariance.

Using the formulas from Appendix B one can check that

∂

∂~z
· ∂
∂~c
G

(`)
AdS/CFT (a,~c; z) = aµ∇µΛ(`−1)(a,~c; z), (13.18)

Λ(`−1)(a,~c; z) = 2`
(α0 − 1)(`+ d− 1)− 2(`− 1)

α2
0 − 1

(z0)d

(z, z)∆`+1
[R(a,~c; z)]`−1. (13.19)

We see that the boundary trace projection generates the bulk gauge term on the bound-

ary side and is equivalent to the residual on-shell gauge fixing preserving the bulk side

de Donder off-shell gauge (this property of the bulk-to-boundary propagator was men-

tioned in fr[34] and in [44] for the vector field case).
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Finalizing our consideration we can define now the CFT propagator from (13.9) by

a0 = 0 and the limit z0 → 0. Due to the vanishing of R0(a; z) in this limit we get

G
(`)
CFT (~a,~c; ~z) = lim

z0→0
(z0)2−dG

(`)
AdS/CFT (~a,~c; z)

= G(`)
m (~a,~c; ~z)− < ~a,~a >

2(α0 − 1)
2~aG

(`)
m (~a,~c; ~z) +O(< ~a,~a >2) (13.20)

(13.21)

Thus the limit (13.20) defines the correct CFT two point function for traceless con-

served4 currents.

So we prove that the boundary limit of our bulk-to-bulk propagator in the de Donder

gauge is in agreement with the bulk-to-boundary propagator obtained from the AdS

isometry group representation theory.

4Note that the gradient of the gauge term also vanishes on the boundary because

aµ∇µΛ(`−1)(a,~c; z) ∼ R0(a; z).
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14 Exercises on spin one field couplings with the

higher spin gauge fields

We start this section constructing the well known interaction of the electromagnetic

field Aµ in flat D dimensional space-time with the linearized spin two field. Hereby we

illustrate how Noether’s procedure regulates the relation between gauge symmetries of

different spin fields. The standard free Lagrangian of the electromagnetic field is

L0 = −1

4
FµνF

µν = −1

2
∂µAν∂

µAν +
1

2
(∂A)2, (14.1)

Fµν = ∂µAν − ∂νAµ, ∂A = ∂µA
µ. (14.2)

To construct the interaction we propose a possible form for the action of the spin two

linearized gauge symmetry

δ0
εh

(2)µν(x) = 2∂(µεν)(x) = ∂µεν(x) + ∂νεµ(x), (14.3)

on the spin one gauge field Aµ(x). Then Noether’s procedure fixes this coupling (1-

1-2 interaction) of the electromagnetic field with linearized gravity correcting when

necessary the proposed transformation.

We start from the following general ansatz for a gauge variation of Aµ with respect

to a spin 2 gauge transformation with vector parameter ερ

δ1
εAµ = −ερ∂ρAµ + Cερ∂µAρ. (14.4)

Then we apply this variation (14.4) to (14.1) and after some algebra neglecting total
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derivatives we obtain 5

δ1
εL0 = ∂(µεν)∂µAρ∂νA

ρ − 1

2
ε(1)∂µAν∂

µAν +
1

2
ε(1)(∂A)2 + C∂(µεν)∂ρAµ∂

ρAν

− 2C∂(µεν)∂ρA(µ∂ν)A
ρ +

C

2
ε(1)∂µAν∂

νAµ − C

2
ε(1)(∂A)2

+ (C − 1)(∂A)∂µεν∂νAµ. (14.6)

Then we have to compensate (or integrate) this variation using the gauge variation of

the spin 2 field (14.3) and its trace δ0
εh

(2)µ
µ = 2ε(1) . We see immediately that the last

line in (14.6) is irrelevant but can be dropped by choice of the free constant C = 1.

With this choice we have instead of (14.4)

δ1
εAµ = −ερ∂ρAµ + ερ∂µAρ = ερFµρ, (14.7)

so that our spin two transformation now is manifestly gauge invariant with respect to

the spin one gauge invariance

δ0
σAµ = ∂µσ, (14.8)

and our spin one gauge invariant free action (14.1) keeps this property also after spin

two gauge variation. Namely (14.6) now can be written as

δ1
εL0 = ∂(µεν)FµρF

ρ
ν −

1

4
ε(1)FµνF

µν . (14.9)

This variation can be compensated introducing the following 2-1-1 interaction

L1(Aµ, h
(2)
µν ) =

1

2
h(2)µνΨ(2)

µν , (14.10)

5From now on we will never make a difference between a variation of the Lagrangians or the actions

discarding all total derivative terms and admitting partial integration if necessary. For compactness

we introduce also shortened notations for divergences of the tensorial symmetry parameters

εµν...(1) = ∇λελµν..., εµ...(2) = ∇ν∇λενλµ..., . . . (14.5)
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where

Ψ(2)
µν = −FµρF ρ

ν +
1

4
gµνFρσF

ρσ, (14.11)

is the well known energy-momentum tensor for the electromagnetic field.

Thus we solved Noether’s equation

δ1
εL0(Aµ) + δ0

εL1(Aµ, h
(2)
µν ) = 0 (14.12)

in this approximation completely, defining a first order transformation and interaction

term at the same time. Finally note that the corrected Noether’s procedure spin two

transformation of the spin one field (14.7) can be written as a combination of the usual

reparametrization for the contravariant vector Aµ(x) (non invariant with respect to

(14.8)) and spin one gauge transformation with the special field dependent choice of

the parameter σ(x) = ερ(x)Aρ(x)

δ1
εAµ = ερFµρ = −ερ∂ρAµ − ∂µερAρ + ∂µ (ερ(x)Aρ(x)) , (14.13)

A symmetry algebra of these transformations can be understood from the commutator

[δ1
η, δ

1
ε ]Aµ(x) = δ1

[η,ε]Aµ(x) + ∂µ
(
ερηλFρλ(x)

)
(14.14)

[η, ε]λ = ηρ∂ρε
λ − ερ∂ρηλ (14.15)

So we see that the algebra of transformations (14.13) close on the field dependent gauge

transformation (14.8) with parameter σ(x) = ερηλFρλ(x).

Now we turn to the first nontrivial case of the vector field interaction with a spin

four gauge field with the following zero order spin four gauge variation

δ0
εh

µρλσ = 4∂(µερλσ), δ0
εh

ρλσ
ρ = 2ελσ(1). (14.16)

where we have a symmetric and traceless gauge parameter εµνλ to construct a gauge

variation for Aµ. In this case we first present final result and then explain details of

the derivation.
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The solution of the corresponding Noether’s equation

δ1
εL0(Aµ) + δ0

εL1(Aµ, h
(2)
µν , h

(4)
µνλρ) = 0, (14.17)

after field redefinitions is the linearized Lagrangian for the coupling of the electromag-

netic field to the spin four and spin two fields

L1(Aµ, h
(2)µν , h(4)µναβ) =

1

4
h(4)µναβΨ

(4)
µναβ +

1

2
h(2)µνΨ(2)

µν , (14.18)

where the current Ψ
(2)
µν is the same energy-momentum tensor (14.10) and

Ψ
(4)
µναβ = ∂(αF

ρ
µ ∂βFν)ρ −

1

2
g(µν∂

λFασ∂
σFβ)λ −

1

2
g(µν∂αF

σρ∂β)Fσρ. (14.19)

The whole action

L0(Aµ) + L1(Aµ, h
(2)µν , h(4)µναβ), (14.20)

is invariant with respect to the spin one gauge transformations and the following higher

spin transformations

δ1Aµ = ερλσ∂ρ∂λFµσ +
1

2
∂ρεµλσ∂

λF σρ, (14.21)

δ0h(4)µναβ = 4∂(µεναβ), δ0
εh

µαβ
µ = 2εαβ(1), (14.22)

δ0h(2)µν = 2∂(µε
ν)
(2), δ

0h(2)µ
µ = 2ε(3). (14.23)

Therefore we have to prove that like the previously investigated scalar–higher spin

coupling case [33], the interaction with the spin four gauge field leads to the additional

interaction with the lower even spin two field. To do that according to the previous

lesson we start from a spin one gauge invariant ansatz for the spin four transformation

of Aµ field

δ1
εAµ = ερλσ∂ρ∂λFµσ. (14.24)

Thus we have now the following variation of L0

δ1
εL0 = δ1

ε (−
1

4
FµνF

µν) = (δ1
εAν)∂µF

µν = −∂µ(ερλσ∂ρ∂λFνσ)F µν . (14.25)
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After some algebra, again neglecting total derivatives and using the Bianchi identity

for Fµν

∂µFνλ + ∂νFλµ + ∂λFµν = 0, (14.26)

and taking into account the important relation

−∂µερλσ∂ρF ν
µ ∂λFσν = −∂(µερλσ)∂(ρF

ν
µ ∂λFσ)ν +

1

4
ελσ(1)∂

νFµλ∂
µFνσ

−1

2
∂νερλσ∂λFσν∂

µFµρ −
1

4
ελσ(1)∂

µFµρ∂
νFνσ, (14.27)

we arrive at the following form of the variation convenient for our analysis

δ1
εL0 = −∂(µερλσ)∂(ρF

ν
µ ∂λFσ)ν +

1

4
ελσ(1)∂

νFµλ∂
µFνσ +

1

4
ελσ(1)∂λFµν∂σF

µν

− ∂λ(ε
λσ
(1)Fµσ)∂νF

νµ − 1

4
ελσ(1)∂

µFµλ∂
νFνσ −

1

2
∂ρενλσ∂λFσρ∂

µFµν

+ ∂(µε
ν)
(2)FµσF

σ
ν −

1

4
ε(3)FµνF

µν . (14.28)

Returning to the gauge variation of the spin four field (14.16) we notice that all terms

in the first line of (14.28) and the first two terms in the second line can be integrated

to the interaction terms. The last term in the second line is proportional to the free

field equations but is not integrable, so we can cancel this term only by changing the

initial variation of Aµ (14.24). The modified form of (14.24) is

δ1
εAµ = ερλσ∂ρ∂λFµσ +

1

2
∂ρεµλσ∂

λF σρ. (14.29)

Therefore

L1 =
1

4
h(4)µρλσ∂(ρF

ν
µ ∂λFσ)ν −

1

8
h(4)ρλσ
ρ ∂νFµλ∂

µFνσ −
1

8
h(4)ρλσ
ρ ∂λFµν∂σF

µν

+ ∂λ(
1

2
h(4)ρλσ
ρ Fµσ)∂νF

νµ +
1

8
h(4)ρλσ
ρ ∂µFµλ∂

νFνσ

− 1

2
h(2)µνFµσF

σ
ν +

1

8
h(2)ρ
ρ FµνF

µν . (14.30)

But the two terms in the second line are proportional to the equation of motion for

the initial Lagrangian (14.1), hence they are not physical and can be removed by the
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following field redefinition

Aµ → Aµ − ∂λ(
1

2
h αλσ
α Fµσ)− 1

8
hααµσ∂βF

βσ. (14.31)

So we can drop the second line of (14.30).

Another novelty in (14.30) in comparison with the previous case is the third line

of (14.28). Comparing with (14.9) we see that we can integrate these two terms intro-

ducing an additional spin two field coupling and compensate the first and third line

introducing the linearized Lagrangian (14.18) for the coupling of the electromagnetic

field to the spin four and spin two fields with the set of higher spin field transformations

(14.21)-(14.23).

Therefore we proved that the interaction with the spin four gauge field leads to the

additional interaction with the lower even spin two field.
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15 Generalization to the 2-2-4 and 2-2-6 interac-

tions

In this section we turn to the spin two field as a lower spin field in the construction of

the higher spin gauge invariant interactions with spin 4 and spin 6 gauge potentials.

And again we want to keep manifest the lower spin two gauge invariance.

So proceeding similarly as in the previous section we start from the free spin two

Pauli-Fierz Lagrangian [17]

L0(h(2)
µν ) =

1

2
∂µh

(2)
αβ∂

µh(2)αβ−∂αh(2)αβ∂µh
(2)µ
β +∂µh

(2)α
α ∂βh

(2)βµ−1

2
∂µh

(2)α
α ∂µh

(2)β
β , (15.1)

and try to solve the following Noether’s equations, either

δ1
εL0(h(2)

µν ) + δ0
εL1(h(2)

µν , h
(4)αβλρ) = 0, (15.2)

or

δ1
εL0(h(2)

µν ) + δ0
εL1(h(2)

µν , h
(4)αβλρ, h(6)µναβλρ) = 0. (15.3)

Again we present first the final result for the 2-2-4 gauge invariant interaction

L1(h(2)
µν , h

(4)
αβµν) =

1

4
h(4)αβµνΨ

(4)
(Γ)αβµν(h

(2)
µν )

=
1

4
h(4)αβµνΓαβ,ρσΓ ρσ

µν, −
1

6
h(4)αµν
α Γ ρ,σλ

µ Γνρ,σλ, (15.4)

with the following gauge transformations

δεh
(2)
µν = ερλσ∂ρΓλσ,µν − ∂ρελσ(µΓ ρ,λσ

ν) , (15.5)

δ0
εh

(4)µρλσ = 4∂(µερλσ), δ0
εh

(4)ρλσ
ρ = 2ελσ(1). (15.6)

The final result for the 2-2-6 case correspondingly looks like

L1(h(2), h(4), h(6)) = −1

6
h(6)αβµνλρΨ

(6)
(Γ)αβµνλρ +

1

4
h(4)αβµνΨ

(4)
(Γ)αβµν

= −1

6
h(6)αβµνλρ∂αΓ σδ

βµ, ∂νΓλρ,σδ +
1

6
h(6)αµνλρ
α ∂µΓ κ,σδ

ν ∂λΓρκ,σδ

+
1

12
h(6)αµνλρ
α ∂κΓ σδ

µν, ∂σΓλρ),κδ +
1

4
h(4)αβµνΓαβ,ρσΓ ρσ

µν, −
1

6
h(4)αµν
α Γ ρ,σλ

µ Γνρ,σλ.(15.7)
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This formula together with the corrected gauge transformation

δ1
εh

(2)
αβ = εµνρλσ∂µ∂ν∂ρΓλσ,αβ −

4

3
∂ρε µνλσ

α ∂λ∂σΓβρ,µν +
1

3
∂ρ∂λε µνσ

αβ ∂σΓρλ,µν , (15.8)

δ0
εh

(6)µναβσρ = 6∂(µεναβσρ)(x), δ0
εh

(6)µαβσρ
µ = 2εαβσρ(1) . (15.9)

δ0
εh

(4)µρλσ = 4∂(µε
ρλσ)
(2) , δ0

εh
(4)ρλσ
ρ = 2ελσ(3) (15.10)

solves completely Noether’s equation (15.3).

Γλσ,µν here is the spin two gauge invariant symmetrized linearized Riemann curva-

ture

Γαβ,µν =
1

2
(Rαµ,βν +Rβµ,αν), (15.11)

Γ(αβ,µ)ν = 0, (15.12)

introduced by de Witt and Freedman for higher spin gauge fields together with the

higher spin generalization of the Christoffel symbols [16]. This symmetrized curvature

is more convenient for the construction of an interaction with symmetric tensors. The

corresponding Ricci tensor (Fronsdal operator for higher spin generalization) and scalar

can be defined in the usual manner using traces

Fµν = Γλµν,λ = 2h(2)
µν − 2∂(µ∂

αh
(2)
ν)α + ∂µ∂νh

(2)α
α , (15.13)

F = Fµµ = 2(2h(2)µ
µ − ∂µ∂νh(2)µν). (15.14)

In terms of these objects the Bianchi identities can be written as

∂λΓµν,αβ = ∂(µΓν)λ,αβ + ∂(αΓβ)λ,µν , (15.15)

∂λFαβ = ∂µΓµλ,αβ + ∂(αFβ)λ, (15.16)

∂λFλµ =
1

2
∂µFαα . (15.17)

So to prove (15.4)-(15.6) we introduce the following starting ansatz for the spin four

transformation of the spin two field

δ1
εh

(2)
µν = ερλσ∂ρΓλσ,µν , (15.18)
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Then a variation of (15.1) with respect to (15.4) is

δ1
εL0(h(2)

µν ) =
δL0

δh
(2)
µν

δ1
εh

(2)
µν = −(Fµν − 1

2
gµνF)ερλσ∂ρΓλσ,µν . (15.19)

To integrate it and solve the equation (15.2) we submit to the following strategy:

1) First we perform a partial integration and use the Bianchi identity (15.16) to lift

the variation to a curvature square term.

2) Then we make a partial integration again and rearrange indices using (15.12)

and (15.15) to extract an integrable part.

3) Symmetrizing expressions in this way we classify terms as

• integrable

• integrable and subjected to field redefinition (proportional to the free field equa-

tion of motion)

• non integrable but reducible by deformation of the initial ansatz for the gauge

transformation (again proportional to the free field equation of motion)

Then if no other terms remain we can construct our interaction together with the

corrected first order transformation. Following this strategy after some fight with

formulas we win the battle obtaining the following expression

δ1
εL0(h(2)

µν ) = −∂(αεβµν)(Ψ
(4)
(Γ)αβµν −Ψ

(4)
(F)αβµν)

− εµν(1)Γµν,αβ
δL0

δh
(2)
αβ

+ ∂ρε µν
α Γβρ,µν

δL0

δh
(2)
αβ

, (15.20)

where

Ψ
(4)
(Γ)αβµν = Γ ρσ

(αβ, Γµν),ρσ −
2

3
g(αβΓ ρ,σλ

µ Γν)ρ,σλ, (15.21)

Ψ
(4)
(F)αβµν = F(αβFµν) − g(αβFσµFν)σ = − δL0

δh(2)(αβ
Fµν) + g(αβ

δL0

δh
(2)µ
σ

Fν)σ, (15.22)

δL0

δh(2)αβ
= −Fαβ +

1

2
gαβF . (15.23)
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So we see immediately that in (15.20) only the last term of the second line is not

integrable but proportional to the equation of motion and can be dropped by the

correction (15.5) to the initial gauge transformation (15.18). Other terms of (15.20)

can be integrated to

L1(h(2)
µν , h

(4)
αβµν) =

1

4
h(4)αβµν

(
Ψ

(4)
(Γ)αβµν(h

(2)
µν )−Ψ

(4)
(F)αβµν

)
+

1

2
h(4)αµν
α Γµν,αβ

δL0

δh
(2)
αβ

.

(15.24)

On the other hand taking into account (15.22) and (15.23) we can compensate Ψ
(4)
(F)

and the last term in (15.24) by the following field redefinition

h(2)
µν → h(2)

µν −
1

2
h(4)αλσ
α Γλσ,µν −

1

4
h(4)αλ
µν Fαλ +

1

4
h

(4)αλ
α(µFν)λ. (15.25)

Thus after field redefinition we arrive at the 2-2-4 gauge invariant interaction (15.4)

with the gauge transformations (15.5), (15.6).

Now in possession of knowledge about the 2-2-4 interaction we start to construct

the most nontrivial interaction in this article between spin 2 and spin 6 gauge fields

(15.7)-(15.10). We would like to check the appearance of the 2-2-4 coupling during the

construction of 2-2-6 which we expect from the analogy with the scalar case considered

in [47, 33] and the 1-1-4 case considered in the previous section.

To proceed we have to solve the following initial Noether’s equation

δ1
εL0(h(2)

µν ) + δ0
εL1(h(2)

µν , h
(6)
αβλρσδ) = 0, (15.26)

with a starting ansatz for the spin 6 first order gauge transformation for the spin 2

field:

δ1
εh

(2)
µν (x) = εαβρλσ(x)∂α∂β∂ρΓλσ,µν(x), (15.27)

and the standard zero order gauge transformation for the spin 6 gauge field

δ0
εh

(6)µναβσρ = 6∂(µεναβσρ)(x), (15.28)

δ0
εh

(6)µαβσρ
µ = 2εαβσρ(1) . (15.29)
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First of all we have to transform the variation

δ1
εL0(h(2)

µν ) = −(Fµν − 1

2
gµνF)εαβρλσ∂α∂β∂ρΓλσ,µν , (15.30)

into a form convenient for integration. Following the same strategy as before in the

2-2-4 case, using many times partial integration and Bianchi identities (15.12), (15.15)-

(15.17), we obtain after tedious but straightforward calculations

δ1
εL0(h(2)

µν ) = ∂(αεβµνλρ)Ψ
(6)
(Γ)αβµνλρ − ∂

(αε
βµν)
(2) Ψ

(4)
(Γ)αβµν

+
4

3
∂ρε µνλσ

α ∂λ∂σΓβρ,µν
δL0

δh
(2)
αβ

− 1

3
∂ρ∂λε µνσ

αβ ∂σΓρλ,µν
δL0

δh
(2)
αβ

−Rµν
int(Γ,F , ε)

δL0

δh
(2)
µν

, (15.31)

where

Ψ
(6)
(Γ)αβµνλρ = ∂(αΓ σδ

βµ, ∂νΓλρ),σδ − g(αβ∂µΓ κ,σδ
ν ∂λΓρ)κ,σδ

−1

2
g(αβ∂

κΓ σδ
µν, ∂σΓλρ),κδ, (15.32)

Ψ
(4)
(Γ)αβµν = Γ ρσ

(αβ, Γµν),ρσ −
2

3
g(αβΓ ρ,σλ

µ Γν)ρ,σλ, (15.33)

and Rµν
int(Γ,F , ε) δL0

δh
(2)
µν

are remaining integrable terms proportional to the equation of

motion. Indeed the symmetric tensor Rµν
int(Γ,F) is expressed through the only inte-

grable combinations of derivatives of the gauge parameter

Rµν
int(Γ,F , ε) = εαβλδ(1) ∂α∂βΓ µν

λδ, −
1

3
∂λε

αβδ(µ
(1) ∂αΓ

ν)
λ,βδ + ∂λ

[
∂(λεαβδµν)∂αFβδ

]
− 2

3
∂λ

[
ελαµν(1) ∂αF

]
+

1

6
εαβµν(1) ∂α∂βF + ∂(αε

βµν)
(2) Fαβ +

5

3
∂αεβλµν(1) ∂λFαβ

− 5

3
∂λ

[
ε
λαβ(µ
(1) ∂αFνβ

]
+

1

6
2εαβµν(1) Fαβ −

1

6
∂λεαβµν(1) ∂λFαβ −

1

2
ε
α(µ
(3) F

ν)
α .

(15.34)

The second line in (15.31) is not integrable and therefore can be cancelled by the

following deformation of the initial ansatz for the transformation (15.27)

δ1
εh

(2)
αβ = εµνρλσ∂µ∂ν∂ρΓλσ,αβ −

4

3
∂ρε µνλσ

α ∂λ∂σΓβρ,µν +
1

3
∂ρ∂λε µνσ

αβ ∂σΓρλ,µν . (15.35)
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Then substituting into (15.34) ∂(λεαβδµν) with 1
6
h(6)λαβδµν , ∂(αε

βµν)
(2) with 1

4
h(4)αβµν ,

and correspondingly 2εαβµν(1) and 2εαβ(3) with their traces, we can integrate the first and

third line of (15.31) to

L1(h(2), h(4), h(6)) = −1

6
h(6)αβµνλρΨ

(6)
(Γ)αβµνλρ +

1

4
h(4)αβµνΨ

(4)
(Γ)αβµν

+Rµν
int(Γ,F , h(6), h(4))

δL0

δh
(2)
µν

(15.36)

where

Rµν
int(Γ,F , h(6), h(4)) =

1

2
h(6)ραβλδ
ρ ∂α∂βΓ µν

λδ, −
1

6
∂λh(6)ραβδ(µ

ρ ∂αΓ
ν)
λ,βδ + ∂λ

[
1

6
h(6)λαβδµν∂αFβδ

]
−2

6
∂λ
[
h(6)ρλαµν
ρ ∂αF

]
+

1

12
h(6)ραβµν
ρ ∂α∂βF +

1

4
h(4)αβµνFαβ +

5

6
∂αh(6)ρβλµν

ρ ∂λFαβ

−5

6
∂λ

[
h(6)ρλαβ(µ
ρ ∂αFν)

β

]
+

1

12
2h(6)ραβµν

ρ Fαβ −
1

12
∂λh(6)ραβµν

ρ ∂λFαβ −
1

4
h(4)ρα(µ
ρ Fν)

α .

(15.37)

Now we define a field redefinition for h(2)µν

h(2)µν → h(2)µν −Rµν
int(Γ,F , h(6), h(4)), (15.38)

using which we can drop the last term in (15.36).

Thus we arrive at the promised result that the 2-2-6 interaction automatically

includes also the 2-2-4 interaction constructed above, and the corresponding trilin-

ear interaction Lagrangian is (15.7). This formula together with the corrected gauge

transformations (15.8)-(15.10) solves completely Noether’s equation (15.3).

Finally note that these interactions should reproduce the flat space limit of the

Fradkin-Vasiliev type nonlinear interactions [2] constructed in an AdS background.

For some other vertices i.e. 2-s-s and 1-s-s with additional nonabelian symmetry such

construction and connection with Fradkin-Vasiliev formalism can be found in [7], where

authors used BRST-cohomological approach.

94



16 2s-s-s interaction Lagrangian

The most elegant and convenient way of handling symmetric tensors such as h
(s)
µ1µ2...µs(z)

is by contracting it with the s’th tensorial power of a vector aµ of the tangential space

at the base point z [12]-[15]

h(s)(z; a) =
∑
µi

(
s∏
i=1

aµi)h(s)
µ1µ2...µs

(z). (16.1)

In this way we obtain a homogeneous polynomial in the vector aµ of degree s. In this

formalism the symmetrized gradient, trace and divergence are6

Grad : h(s)(z; a)⇒ Gradh(s+1)(z; a) = (a∇)h(s)(z; a), (16.2)

Tr : h(s)(z; a)⇒ Trh(s−2)(z; a) =
1

s(s− 1)
2ah

(s)(z; a), (16.3)

Div : h(s)(z; a)⇒ Divh(s−1)(z; a) =
1

s
(∇∂a)h(s)(z; a). (16.4)

The gauge variation of a spin s field is

δh(s)(z; a) = s(a∇)ε(s−1)(z; a), (16.5)

with traceless gauge parameter

2aε
(s−1)(z; a) = 0, (16.6)

for the double traceless gauge field

22
ah

(s)(z; a) = 0. (16.7)

We will use the deWit-Freedman curvature and Cristoffel symbols [16]. We contract

them with the degree s tensorial power of one tangential vector aµ in the first set of s

6To distinguish easily between ”a” and ”z” spaces we introduce for space-time derivatives ∂
∂zµ the

notation ∇µ and as before we will admit integration everywhere where it is necessary (we work with

a Lagrangian as with an action) and therefore we will neglect all space-time total derivatives when

making a partial integration
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indices and with a similar tensorial power of another tangential vector bν in its second

set. The deWit-Freedman curvature and n-th Cristoffel symbol are then written as

Γ(s)(z; b, a) : Γ(s)(z; b, λa) = Γ(s)(z;λb, a) = λsΓ(s)(z; b, a), (16.8)

Γ
(s)
(n)(z; b, a) : Γ

(s)
(n)(z; b, λa) = λsΓ

(s)
(n)(z; b, a), (16.9)

Γ
(s)
(n)(z;λb, a) = λnΓ

(s)
(n)(z; b, a), (16.10)

Γ(s)(z; b, a) = Γ
(s)
(n)(z; b, a)|n=s. (16.11)

Next we introduce the notation ∗a, ∗b for a contraction in the symmetric spaces of

indices a or b

∗a =
1

(s!)2

s∏
i=1

←−
∂ µi
a

−→
∂ a
µi
. (16.12)

All required manipulations in the framework of this formalism are discussed in the

Appendix of this paper. Here we will only present Fronsdal’s Lagrangian in terms of

these conventions:

L0(h(s)(a)) = −1

2
h(s)(a) ∗a F (s)(a) +

1

8s(s− 1)
2ah

(s)(a) ∗a 2aF (s)(a). (16.13)

where F (s)(z; a) is so called Fronsdal tensor

F (s)(z; a) = 2h(s)(z; a)− (a∇)(∇∂a)h(s)(z; a) +
1

2
(a∇)22ah

(s)(z; a) (16.14)

To obtain the equation of motion we vary (16.13) and obtain

δL0(h(s)(a)) = −(F (s)(a)− a2

4
2aF (s)(a)) ∗a δh(s)(a). (16.15)

Zero order gauge invariance can be checked easily by substitution of (16.5) into this

variation and use of the duality relation (C.5) and identity (C.29) taking into account

tracelessness of the gauge parameter (16.6). Now we turn to the generalization of

Noether’s procedure of the 2-2-4 case to the general s-s-2s interaction construction.

Noether’s equation in this case looks like

δ(1)L0(h(s)(a)) + δ0L1(h(s)(a), h(2s)(b)) = 0. (16.16)
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And we would like to show that the solution of the latter is (with generalized Bell-

Robinson current [1])

L1(h(s)(a), h(2s)(b)) =
1

2s
h(2s)(z; b) ∗b Ψ

(2s)
(Γ) (z; b), (16.17)

Ψ
(2s)
(Γ) (z; b) = Γ(s)(b, a) ∗a Γ(s)(b, a)− b2

2(s+ 1)
∂bµΓ(s)(b, a) ∗a ∂µb Γ(s)(b, a). (16.18)

To prove this we must propose a first order variation of the spin s field with respect

to a spin 2s gauge transformation. Remembering that Fronsdal’s higher spin gauge

potential is double traceless, we must make sure that the same holds for the variation.

Expanding the general variation in powers of a2

δh(s)(a) = δh
(s)
(1)(a) + a2δh(s−2)(a) + (a2)2δh(s−4)(a) + . . . , (16.19)

we see that the double tracelessness condition 22
aδh

(s)(a) = 0 expresses the third and

higher terms of the expansion (16.19) through the first two free parameters δh
(s)
(1)(a)

and δh(s−2)(a)7. From the other hand Fronsdal’s tensor is double traceless by definition

and therefore all these O(a4) terms are unimportant because they do not contribute

to (16.15). This leaves us freedom in the choice of δh(s−2)(a). Substituting (16.19) in

(16.15) we discover that the following choice of δh(s−2)(a)

δh(s−2)(a) =
1

2(D + 2s− 2)
2aδh

(s)
(1)(a), (16.20)

reduces our variation (16.15) to

δ(1)L0(h(s)(a)) = −F (s)(a) ∗a δh(s)
(1)(a). (16.21)

7For completeness we present here the solution for δh(s−4)(a) following from the double tracelessness

condition

δh(s−4)(a) = − 1

8α1α2

[
22
aδh

(s)
(1)(a) + 4α12aδh

(s−2)(a)
]
,

αk = D + 2s− (4 + 2k), k ∈ {1, 2}.
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Then we propose the following spin 2s transformation of the spin s potential

δh
(s)
(1)(a) = Ũ(b, a, 2, s)ε2s−1(z; b) ∗b Γ(s)(z; b, a), (16.22)

where

Ũ(b, a, 2, s) =
(−1)s

(s− 1)!

s∏
k=2

[
(∇∂b)−

1

k
Ab(∇∂a)

]
, (16.23)

is operator dual to

[(b∇)− 1

2
(a∇)Ba]U(b, a, 3, s) =

s∏
k=2

[(b∇)− 1

k
(a∇)Ba], (16.24)

with respect to the ∗a,b contraction product. Taking into account (C.22) and Bianchi

identities (C.28) we get

δ(1)L0(h(s)(a)) = ε2s−1(z; b) ∗b Γ(s)(z; b, a) ∗a [(b∇)− 1

2
(a∇)Ba]U(b, a, 3, s)F (s)(z; a)

= ε2s−1(z; b) ∗b Γ(s)(z; b, a) ∗a
1

s(s− 1)
[(b∇)− 1

2
(a∇)Ba]2bΓ

(s)(z; b, a)

= ε2s−1(z; b) ∗b Γ(s)(z; b, a) ∗a
1

s
(∇∂b)Γ(s)(z; b, a)

= −(b∇)ε2s−1(b) ∗b Γ(s)(b, a) ∗a Γ(s)(b, a)− ε2s−1(b) ∗b ∇µΓ(s)(b, a) ∗a
1

s
∂µb Γ(s)(b, a). (16.25)

Then using a secondary Bianchi identity (C.27) and a primary one (C.6) one can show

that

−ε2s−1(b) ∗b ∇µΓ(s)(b, a) ∗a
1

s
∂µb Γ(s)(b, a)

=
1

2s(s+ 1)(2s− 1)
(∇∂b)ε2s−1(b) ∗b ∂bµΓ(s)(b, a) ∗a ∂µb Γ(s)(b, a). (16.26)

Putting all together we see that the integrated first order interaction Lagrangian (16.17)

supplemented with transformation (16.22) for h(s)(a) and the standard zero order trans-

formations for h(2s)(a)

δ0h
(2s)(z; b) = 2s(b∇)ε(2s−1)(z; b), (16.27)

δ02bh
(2s)(z; b) = 4s(∇∂b)ε(2s−1)(z; b), (16.28)

completely solves Noether’s equation (16.16). Note that here just as in the 2-2-4 case

we did not obtain an interaction with lower spins because all derivatives included in

the ansatz were used for the lifting to the second curvature.

98



Appendix A

The Euclidian AdSd+1 metric

ds2 = gµν(z)dzµdzν =
1

(z0)2
δµνdz

µdzν (A.1)

can be realized as an induced metric for the hypersphere defined by the following

embedding procedure in d+ 2 dimensional Minkowski space

XAXBηAB = −X2
−1 +X2

0 +
d∑
i=1

X2
i = −1, (A.2)

X−1(z) =
1

2

(
1

z0

+
z2

0 +
∑d

i=1 z
2
i

z0

)
, (A.3)

X0(z) =
1

2

(
1

z0

− z2
0 +

∑d
i=1 z

2
i

z0

)
, (A.4)

Xi(z) =
zi
z0

. (A.5)

Using these embedding rules we can identify the variable ζ(z, w) as an SO(1, d + 1)

invariant scalar product

−XA(z)Y B(w)ηAB =
1

2z0w0

(
2z0w0 +

d∑
µ=0

(z − w)2
µ

)
= ζ = u+ 1, (A.6)

and therefore can be realized by cosh of a hyperbolic angle. Indeed we can introduce

another embedding

X−1(η, ωµ) = cosh η, (A.7)

Xµ(η, ωµ) = sinh η ωµ ,

d∑
µ=0

ω2
µ = 1, (A.8)

ds2 = dη2 + sinh2 η dΩd. (A.9)

In these coordinates the chordal distance u between an arbitrary point XA(η,Ωµ) and

the pole of the hypersphere Y A(η = 0, ωµ) is simply

ζ = −XAY BηAB = cosh η. (A.10)

Therefore the invariant measure is expressed as

√
gdηdΩd = (sinh η)ddηdΩd = [u(u+ 2)]

d−1
2 dudΩd. (A.11)
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So we see that the integration measure for d = 3 (D = d+ 1 = 4) will cancel one order

of u−n in short distance singularities and we have to count the singularities starting

from u−2 which is ”logarithmically divergent” in standard QFT terminology.

In this manuscript we use the following rules and relations for u(z, z′), I1a, I2c and

the bitensorial basis {Ii}4
i=1

2u = (d+ 1)(u+ 1), ∇µ∂νu = gµν(u+ 1), gµν∂µu∂νu = u(u+ 2), (A.12)

∂µ∂ν′u∇µu = (u+ 1)∂ν′u, ∂µ∂ν′u∇µ∂µ′u = gµ′ν′ + ∂µ′u∂ν′u, (A.13)

∇µ∂ν∂ν′u∇µu = ∂νu∂ν′u, ∇µ∂ν∂ν′u = gµν∂ν′u, (A.14)

∂

∂aµ
I1a

∂

∂aµ
I1a = u(u+ 2),

∂

∂aµ
I1

∂

∂aµ
I1a = (u+ 1)I2c, (A.15)

∂

∂aµ
I1

∂

∂aµ
I1 = c2

2 + I2
2c,

∂

∂aµ
I1

∂

∂aµ
I2 = (u+ 1)I2

2c, 2aI4 = 2(d+ 1)c2
2, (A.16)

∂

∂aµ
I2

∂

∂aµ
I2 = u(u+ 2)I2

2c, 2aI3 = 2(d+ 1)I2
2c + 2c2

2u(u+ 2), (A.17)

∇µ ∂

∂aµ
I1 = (d+ 1)I2c, ∇µ ∂

∂aµ
I2 = (d+ 2)(u+ 1)I2c, ∇µI1∂µu = I2, (A.18)

∇µ ∂

∂aµ
I3 = 4I1I2c + 2(d+ 2)(u+ 1)c2

2I1a, ∇µI2∂µu = 2(u+ 1)I2, (A.19)

∂

∂aµ
I1∂µu = (u+ 1)I2c,

∂

∂aµ
I2∂µu = u(u+ 2)I2c,

∂

∂aµ
I1∇µI1 = I1I2c, (A.20)

∂

∂aµ
I1∇µI2 = I2c ((u+ 1)I1 + I2) + c2

2I1a,
∂

∂aµ
I2∇µI1 = I2cI2, (A.21)

∂

∂aµ
I2∇µI2 = 2(u+ 1)I2cI2, ∇µI1∇µI1 = a2

1I
2
2c, 2I1 = I1, (A.22)

∇µI1∇µI2 = I2I1 + a2
1(u+ 1)I2

2c, 2I2 = (d+ 2)I2 + 2(u+ 1)I1, (A.23)

∇µI2∇µI2 = I2
2 + 2(u+ 1)I1I2 + a2

1I
2
2c(u+ 1)2 + c2

2I
2
1a, (A.24)

aµ∇µI1a = a2(u+ 1), aµ∇µI2c = I1, aµ∇µI1 = a2I2c, (A.25)

aµ∇µI2 = a2(u+ 1)I2c + I1aI1, . (A.26)

Using these relations we can derive (F ′k := ∂
∂u
Fk(u))

100



• Divergence map

∇µ
1

∂

∂aµ
Ψ`[F ] = I2cΨ

`−1[Div`F ] +O(c2
2), (A.27)

(Div`F )k = (`− k)(u+ 1)F ′k + (k + 1)u(u+ 2)F ′k+1

+(`− k)(`+ d+ k)Fk + (k + 1)(`+ d+ k + 1)(u+ 1)Fk+1. (A.28)

• Trace map

2aΨ
`[F ] = I2

2cΨ
`−2[Tr`F ] +O(c2

2), (A.29)

(Tr`F )k = (`− k)(`− k − 1)Fk + 2(k + 1)(`− k − 1)(u+ 1)Fk+1

+(k + 2)(k + 1)u(u+ 2)Fk+2. (A.30)

• Laplacian map

21Ψ`[F ] = Ψ`[Lap`F ] +O(a2
1, c

2
2), (A.31)

(Lap`F )k = u(u+ 2)F ′′k + (d+ 1 + 4k)(u+ 1)F ′k + [`+ k(d+ 2`− k)]Fk

+2(u+ 1)(k + 1)2Fk+1 + 2(`− k + 1)F ′k−1, (A.32)

2Fk(u) = u(u+ 2)F ′′k + (d+ 1)(u+ 1)F ′k. (A.33)

• Gradient map

(a · ∇)1Ψ`[F ] = I1aΨ
`[Grad`F ] +O(a2

1), (A.34)

(Grad`F )k = F ′k + (k + 1)Fk+1. (A.35)

At the end we present all important commutation relations working in the space of

symmetric rank n tensors

[(∇∂a),2]f (n)(z, a) = [2(a∇)2a − (d+ 2n− 2)(∇∂a)] f (n)(z, a); (A.36)

[(∇∂a), (a∇)]f (n)(z, a) = 2f (n)(z, a) + [∇µ, (a∇)]∂µa f
(n)(z, a); (A.37)

[∇µ, (a∇)]∂µa f
(n)(z, a) =

[
a22a − n(d+ n− 1)

]
f (n)(z, a); (A.38)

[2, (a∇)]f (n)(z, a) =
[
2a2(∇∂a)− (d+ 2n)(a∇)

]
f (n)(z, a); (A.39)

2a

[
a2f (n)(z, a)

]
= 2(d+ 2n+ 1)f (n)(z, a) + a22af

(n)(z, a). (A.40)
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Appendix B

Here we prove the relations (13.14)-(13.17). The more transparent way of working with

the boundary-to-bulk propagator for higher spins is to introduce two additional objects

φ0(z) =
z0

(z, z)
, (B.1)

ψ(~c, z) =
< ~c, ~z >

(z, z)
, (B.2)

satisfying the following relations

aµ∂µφ
0(z) =

R0(a; z)

(z, z)
, aµ∂µψ(~c, z) =

R(a,~c; z)

(z, z)
, (B.3)

2φ0(z) = −(d− 1)φ0(z), 2ψ(~c, z) = 0, (B.4)

aµaν∇µ∂νψ(~c, z) = 2[φ0(z)]−1aµ∂µφ
0(z)aν∂νψ(~c, z), (B.5)

∇µφ0(z)∂µφ
0(z) = (φ0)2, ∇µφ0(z)∂µψ(~c, z) = 0 (B.6)

∇µψ(~c, z)∂µψ(~c, z) = (φ0)2 < ~c,~c >, (B.7)

2 = ∇µ∂µ, ∇µ
{
φ0(z)
ψ(~c,z)

}
= gµν∂ν

{
φ0(z)
ψ(~c,z)

}
, (B.8)

∇µ∂ν = gµν
(
∂µδ

λ
ν − Γλµν

)
∂λ, Γλµν =

1

z0

(
δλ0 δµν − δλµδν0 − δλν δµ0

)
. (B.9)

Then using (B.1)-(B.3) we can rewrite the AdS/CFT bulk-to-boundary propagator

(13.9) in the following complete form

G
(`)
AdS/CFT (a,~c; z) = (φ0(z))d−2

[`/2]∑
k=0

(−`)2k

22kk!(1−α0

2
)k

[aµ∂µψ(~c, z)]`−2k

×
[
< ~c,~c >

(
aµaµ(φ0(z))2 − [aµ∂µφ

0(z)]2
)]k

. (B.10)

After that the proof of the condition

∇µ ∂

∂aµ
G

(`)
AdS/CFT (a,~c; z) = 0 (B.11)

reduces to the differentiation of the right hand side of with the covariant Leibniz rules

and use of the relations (B.4)-(B.6).
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For taking the divergence on the boundary side of (13.9) or (B.10) we need the

following identities for ψ(~c, z) and φ0(z)

~ψ(z) =
∂

∂~c
ψ(~c, z) =

~z

(z, z)
, ~ψ(z) · ~ψ(z) =

1

(z, z)
− [φ0(z)]2, (B.12)

∂

∂~z
φ0(z) = −2φ0(z)~ψ(z), aµ∂µ

∂

∂~z
· ~ψ(z) = aµ∂µ

d− 2

(z, z)
+ 4φ0(z)aµ∂µφ

0(z), (B.13)

∂

∂~z
φ0(z) · aµ∂µ ~ψ(z) = 2[φ0(z)]2aµ∂µφ

0(z)− φ0(z)aµ∂µ
1

(z, z)
, (B.14)

aµ∂µ
∂

∂~z
ψ(~c, z) · aν∂ν ~ψ(z) = 2φ0(z)aµ∂µφ

0(z)aµ∂µψ(~c, z)

−2ψ(~c, z)
(
[φ0(z)]2aµaµ − [aµ∂µφ

0(z)]2
)

(B.15)

Then performing boundary differentiation of (B.10) and using (B.12)-(B.15) we obtain

∂

∂~z
· ∂
∂~c
G

(`)
AdS/CFT (a,~c; z) = aµ∇µΛ(`−1)(a,~c; z) +O(< ~c,~c >), (B.16)

Λ(`−1)(a,~c; z) = 2`
(α0 − 1)(`+ d− 1)− 2(`− 1)

α2
0 − 1

[φ0(z)]d[aµ∂µψ(~c, z)]`−1. (B.17)

At the end of this Appendix we present two useful hypergeometric identities we

learned from the book of H. Bateman and A. Erdelyi “Higher transcendental functions”

V.1, McGraw-Hill Book company Inc. 1953.

2F1(a, b, 2b; z) =
(

1− z

2

)−a
2F1

(
a

2
,
a+ 1

2
, b+

1

2
;

(
z

2− z

)2
)
, (B.18)

2F1(a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1(a, 1− c+ a, 1− b+ a; z−1)

+
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−b2F1(a, 1− c+ b, 1− a+ b; z−1). (B.19)

Appendix C

To manipulate reshuffling of different sets of indices we employ two differentials with

respect to a and b, e.g.

Ab = (a∂b), (C.1)

Ba = (b∂a). (C.2)
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Then we see that operators Ab, a
2, b2 are dual (or adjoint) to Ba,2a,2b with respect

to the ”star” product of tensors with two sets of symmetrized indices (16.12)

1

n
Abf

(m−1,n)(a, b) ∗a,b g(m,n−1)(a, b) = f (m−1,n)(a, b) ∗a,b
1

m
Bag

(m,n−1)(a, b), (C.3)

a2f (m−2,n)(a, b) ∗a,b g(m,n)(a, b) = f (m−2,n)(a, b) ∗a,b
1

m(m− 1)
2ag

(m,n)(a, b).

(C.4)

In the same fashion gradients and divergences are dual with respect to the full scalar

product in the space (z, a, b)

(a∇)f (m−1,n)(z; a, b) ∗a,b g(m,n)(z; a, b) = −f (m−1,n)(z; a, b) ∗a,b
1

m
(∇∂a)g(m,n)(z; a, b).

(C.5)

Analogous equations can be formulated for the operators b2 or b∇.

Now one can prove that [16, 15]:

AbΓ
(s)(z; a, b) = BaΓ

(s)(z; a, b) = 0. (C.6)

These ”primary Bianchi identities” are manifestations of the hidden antisymmetry.

The n-th deWit-Freedman-Cristoffel symbol is

Γ
(s)
(n)(z; b, a) ≡ Γ

(s)
(n)ρ1...ρn,µ1...µ`

bρ1 ...bρnaµ1 ...aµ`

= [(b∇)− 1

n
(a∇)Ba]Γ

(s)
(n−1)(z; b, a), (C.7)

or in another way

Γ
(s)
(n)(z; b, a) = (

s∏
k=1

[(b∇)− 1

k
(a∇)Ba])h

(s)(z; a). (C.8)
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Using the following commutation relations

[Ba, (a∇)] = (b∇), (C.9)

[Bk
a , (a∇)] = kBk−1

a (b∇), (C.10)

[Ba, (a∇)k] = k(b∇)(a∇)k−1, (C.11)

2b(b∇)i = i(i− 1)(b∇)i−22, (C.12)

∂bµ(b∇)i∂µbB
j
a = ij(b∇)i−1Bj−1

a (∇∂a), (C.13)

2bB
j
a = j(j − 1)Bj−2

a 2a, (C.14)

and mathematical induction we can prove that

Γ
(s)
(n)(z; b, a) =

n∑
k=0

(−1)k

k!
(b∇)n−k(a∇)kBk

ah
(s)(z; a). (C.15)

The gauge variation of the n-th Cristoffel symbol is

δΓ
(s)
(n)(z; b, a) =

(−1)n

n!
(a∇)n+1Bn

a ε
(s−1)(z; a), (C.16)

putting here n = s we obtain gauge invariance for the curvature

δΓ
(s)
(s)(z; b, a) = 0. (C.17)

Tracelessness of the gauge parameter (16.6) implies that b-traces of all Cristoffel sym-

bols are gauge invariant

2bδΓ
(s)
(n)(z; b, a) =

(−1)n

(n− 2)!
(a∇)n+1Bn−2

a 2aε
(s−1)(z; a) = 0. (C.18)

Thus for the second order gauge invariant field equation we can use the trace of the

second Cristoffel symbol, the so called Fronsdal tensor:

F (s)(z; a) =
1

2
2bΓ

(s)
(2)(z; b, a)

= 2h(s)(z; a)− (a∇)(∇∂a)h(s)(z; a) +
1

2
(a∇)22ah

(s)(z; a). (C.19)
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Using equation (C.15) for Cristoffel symbols and after long calculations we obtain the

following expression

2bΓ
(s)
(n)(z; b, a)

=
n−2∑
k=0

(−1)k

k!
(n− k)(n− k − 1)(b∇)n−k−2(a∇)kBk

aF (s)(z; a). (C.20)

We have expressed the b-trace of any Γ
(s)
(n) through the Fronsdal tensor or the b-trace

of the second Cristoffel symbol, but this is not the whole story. Using mathematical

induction and (C.9)-(C.14) again we can show that

n−2∑
k=0

(−1)k

k!
(n− k)(n− k − 1)(b∇)n−k−2(a∇)kBk

aF (s)(z; a)

= n(n− 1)(
n∏
k=3

[(b∇)− 1

k
(a∇)Ba])F (s)(z; a). (C.21)

In particular for the trace of the curvature we can write

2bΓ
(s)(z; b, a) = s(s− 1)U(a, b, 3, s)F (s)(z; a), (C.22)

where we introduced an operator mapping the Fronsdal tensor on the trace of the

curvature

U(a, b, 3, s) =
s∏

k=3

[(b∇)− 1

k
(a∇)Ba]. (C.23)

Now let us consider this curvature in more detail. First we have the symmetry under

exchange of a and b

Γ(s)(z; a, b) = Γ(s)(z; b, a). (C.24)

Therefore the operation ”a-trace” can be defined by (C.22) with exchange of a and b at

the end. The mixed trace of the curvature can be expressed through the a or b traces

using ”primary Bianchi identities” (C.6)

(∂a∂b)Γ
(s)(z; b, a) = −1

2
Ba2bΓ

(s)(z; b, a) = −1

2
Ab2aΓ

(s)(z; b, a). (C.25)

The next interesting properties of the higher spin curvature and corresponding

Ricci tensors are so called generalized secondary or differential Bianchi identities. We
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can formulate these identities in our notation in the following compressed form ([. . . ]

denotes antisymmetrization )

∂

∂a[µ

∂

∂bν
∇λ]Γ

(s)(z; a, b) = 0. (C.26)

This relation can be checked directly from representation (C.15). Then contracting

with aµ and bν we get a symmetrized form of (C.26)

s∇µΓ(s)(z; a, b) = (a∇)∂aµΓ(s)(z; a, b) + (b∇)∂bµΓ(s)(z; a, b). (C.27)

Now we can contract (C.27) with a ∂µb and using (C.25) obtain a connection between

the divergence and the trace of the curvature

(s− 1)(∇∂b)Γ(s)(z; a, b) = [(b∇)− 1

2
(a∇)Ba]2bΓ

(s)(z; a, b). (C.28)

These two identities with a similar identity for the Fronsdal tensor

(∇∂a)F (s)(z; a) =
1

2
(a∇)2aF (s)(z; a), (C.29)

play an important role for the construction of the interaction Lagrangian.
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[11]. W. Rühl, “The masses of gauge fields in higher spin field theory on AdS(4),”

Phys.Lett. B 605 (2005) 413; [arXiv:hep-th/0409252]; the results presented here

are based on extensive calculations performed by K. Lang and W. Rühl, Nucl.
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[12]. R. Manvelyan and W. Rühl, “The off-shell behaviour of propagators and the

Goldstone field in higher spin gauge theory on AdS(d+1) space,” Nucl. Phys. B

717 (2005) 3; [arXiv:hep-th/0502123].
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[31]. W. Rühl, “Lifting a conformal field theory frpm d-dimensional flat space to (d+1)-

dimensional AdS space” Nucl. Phys. B 705 (2005) 437, [arXiv:hep-th/0403114].

[32]. A. C. Petkou, ”Evaluating the AdS dual of the critical O(N) sigma model”, JHEP

0303 (2003) 049, [arXiv:hep-th/0302063].
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