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Lecture I 
 

Introduction (main properties of elementary particles) 
 

Fundamental Particles 

 
At the end of the 1940‟s, only p, n, π, e, γ, νe  were known. The Standard Model developed in an 

incredible period from 1955-1975 . 

Up to now, all observed fundamental (not composite) particles in nature carry spin – 0, 1/2 or 1.  
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Higgs      Vector(or „gauge‟)                    „Graviton‟ 

 

   H               8,...,1

0 ,,, 



igZW                      G(?) 

 

(The field quantum related to the gravitational field, the „graviton‟ carries spin=2) 

 

 

In the Standard Model, the fundamental fermionic constitutents of matter are the quarks and the 

leptons. Quarks, but not leptons, engage in the strong interactions as a consequence of their 

color-charge. Each quark and lepton has spin one-half. Collectively, they display conventional 

Fermi-Dirac statistics. No attempt is made in the Standard Model either to explain the variety 

and number of quarks and leptons or to compute any of their properties. That is, these particles 

are taken at this level as truly elementary. This is not unreasonable. There is no experimental 

evidence for quark or lepton compositeness, such as excited states or form factors associated with 

intrinsic structure. 
In table we enumerate the quarks and leptons, and display each particle's mass and electric 

charge. Mass values are in units of GeV/c2 and electric charges are given as multiples of the 

proton charge e. There are three lepton types: electron (νe , e), muon (ν,  ), and tau (ν, )- The 

leptons fall into two classes according to electric charge, the neutral neutrinos νe , ν, ν and the 

negatively charged e, ,    
Like the leptons the quarks fall into two classes according to their electrical charge. The u, c, t quarks 

have charge 2e/3 and the d, s, b quarks have charge -e/3. Unlike the leptons, there are no neutral quarks 

and quark electrical charge is fractional. 
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Free quarks are not observed and are confined in bound states called Hadrons. 

 Baryons (bound state of 3 quarks),     Mesons (quark-antiquark pairs: q¯q). 

 
Gauge groups of Standard Model 
The gauge fields of the Standard Model include matrix valued Maxwell fields. These gauge field 

structure is  written as: SU(3) × SU(2) × U(1) 

 

Group    Lagrangian fields             After EWSB 

SU(3)          gluons                              gluons 

SU(2)            
3,2,1

W                              ZW ,  

U(1)              B                                      A  

 

In the above the labels SU(N) refer to special unitary Lie groups. These are the groups consisting 

of N ×N complex matrices NNCg  with det g = 1. These are the groups describing the force 

carrying bosons for a given fundamental force. It is therefore a necessary prerequisite to 

understand these groups. 

The abelian U(1) group consists of the set of complex numbers ie  lying on the unit circle. 

Quantum electrodynamics is the U(1) gauge theory describing electromagnetism. The gauge 

bosons of QED are photons. 

Will consider QED first, then generalise to SU(N) gauge theory. 

 

Symmetries of Standard Model 

 
The Standard Model has a number of important approximate and exact symmetries. Certain 

symmetries are almost held and these can lead to approximate relations or effective theories 

valid in certain limits. 

 

Exact symmetries 

The exact symmetries include invariance under Lorent transformations (momentum 

conservation, angular momentum conservation, CPT invariance), invariance under gauge 

transformations (charge conservation). Global U(1) invariance leads to charge conservation. 

 

Approximate quark flavour symmetry 

The masses of the up, down and strange quarks are almost identical (10-100 MeV). 

SU(3)flavour matrix operations mixing the up, down and strange fields leave the action almost 

invariant. 

If these quarks had identical masses this would become an exact symmetry. The representation 

theory of SU(3) describes the structure of the meson and baryon spectrum very well. 

The up and down masses differ by only a few MeV and results in the near degeneracy of the 

proton and neutron, and of the three pions. 

The SU(N) gauge group and flavour SU(N) symmetries are unrelated.  
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The Standard Model and our Universe 

 
A long time ago in a Galaxy far far away... something went Bang. 

 

Epoch Time Theory 

Planck Epoch (Bang)  4310
s TOE (Gravi-Strong-Electro-Weak force (Strings???)) 

GUT Epoch 3610
s GUT (Strong-Electro-Weak force (SU(5)??? )) 

Inflation + reheating  3210
s ??  Poorly understood 

Electroweak Epoch  1210
s SM (Electro-Weak force + Strong force) 

Quark Epoch  610
s SM (Electro-Weak force + Strong force) 

Hadron Epoch  1 s SM (Electro-Weak force + Strong force) 

Lepton Epoch  10 s SM (Electro-Weak force + Strong force) 

Nucleosynthesis 20 m QCD (nucleus formation) 

Photon Epoch  380000 yr QED(atoms) 

Gravity Epoch  150000000yr GR+QCD (Galaxy, star formation) 

Now  5 billion yr GR+QED (Homo-sapiens) 

 

 

TOE           hypothetical unified theory of everything: 

                   strong, weak, electromagnetic and gravitational forces 

GUT           hypothetical grand unified theory: 

                   strong+weak+electromagnetic forces) 

SM              Standard Model: unified theory of electroweak forces 

                    separate theory of strong force 

GR               General Relativity 

                    classical theory of relativistic graviation 

QCD            Quantum chromodynamics 

QED            Quantum electrodynamics 
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Lecture II 

Free scalars, fermions, gauge bosons 

 

Free fields 

Minimising action means δS = 0 under arbitrary change δθvanishing at infinity ⇒equations of 

motion: 
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In classical mechanics the particle equations of motion can be obtained from Lagrange‟s 

equations 

  0
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
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Where iq  are the generalized coordinates of the particles, t is the time variables, and 

dtdqq ii / . The Lagrangian is  VTL   where T and V are kinetic and potential energies of 

the system, respectively. It is straightforward to extend the formalism from a discrete system, 

with coordinate )(tqi  , to a continuous system, that is, a system with continuously varying 

coordinates  ),( tx


 . The Lagrangian 
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Where the field   itself is a function of continuous parameters  x , and the Lagrangian density 

L satisfy the Euler-Lagrange equation 
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The Lagrangian 22

2

1
))((

2

1
 

 mL   gives the Klein –Gordon equation 

02   m  

The Dirac equation 0)(  mi  follows from  
 miL  , where   and   is 

regarded as an independent field variable; 

Where )( 
  x ,    )( 0 ,  

  ;   is a  44 matrix satisfying the Clifford 

algebra:   g2},{   . We will use Pauli-Dirac representation for the  : 
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And Pauli matrices are defined as 
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The substitution of the Lagrangian 


 AjFFL 
4

1
   into the Euler-Lagrang equation for  

A gives the Maxwell equations 

    
 jF   

With 
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1.Real scalar field (spin-0 particles: 0 , Higgs boson, …) 

 22

2

1
))((

2

1
 

 mL     02   m  

2.Complex scalar field (   , K ,…, spin-0 charged particles) 

  


*2*

2

1
)()( mL     02   m  

3.Maxwell field (spin-1 particles:  ,…) 
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 
FFL

4

1
    0 

F  

 

4. Dirac field (spin-1/2 particles: e  , , quarks,…) 

  
 miL   0)(  mi  

 

The identification of the Feynman rules proceeds as follows: 

1.We associate with the various terms in the Lagrangian a set of propagators and vertex factors. 

2. The propagators are determined by the terms quadratic in the fields, that is, the terms in the 

Lagrangiancontaining 2 ,  , and so on, such as 222 2/1)(2/1  m and  
 )( mi   .  

3.The other terms in the Lagrangian are associated with interaction vertices. The Feynman vertex 

factor is just given by the coefficient of the corresponding term in iL  containing the interacting 

fields.  

 

 

Noether‟s theorem: Symmetries and conservation laws 

An electron is described by a complex field and the corresponding Lagrangian

 
 miL  is invariant under the phase transformation  

 )()( xex i   , 

where  is a real constant. This can be easely checked by noting 

  


  ie , 

  ie . 

The family of phase transformations   ieU )( , where a single parameter   may run 

continuously over real numbers, forms a unitary Abelian group known as the )1(U group 

 )()()()( 1221  UUUU  . 

The observation of )1(U invariance is not trivial; through Neuther‟s theorem it implies the 

existence of a conserved current. Consider the invariance of L under an infinitesimal )1(U

transformation,  

  )1( i , 
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The proportionality factor is chosen so that  matches up with the electromagnetic charge current 

density of an electron of charge –e. The charge 
03 xjdQ   must be conserved 0/ dtdQ . 

 

)1(U phase invariance of the Lagrangian  


*2* )()( mL   of a complex scalar field 

implies the existence of a conserved current )( **    iej  

  

 

)1(U local invariance and QED 

 

The Lsgrangian  
 miL  is invariant under the global phase transformation 

)()( xex i    , but is not invariant under local phase transformations: 

 )()( )( xex xi    

where )(x  now depends on space and time in a completely arbitrary way. 

The derivative of  )(x  

  )()()( )()( xiexex xixi  





   

and the )(x  term breaks the invariance of L. We must seek a modified derivative D , that 

transforms covariantly under phase transformations, that is, like   itself 

   


 DeD xi )( . 

To form covariant derivative D   we must introduce a vector field A  with transformation 

properties such that the unwanted term is canceled. This can be accomplished by the construction 
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  ieAD  , 

where A  transforms as  
e

AA
1

. 

The Lagrangian  
 mDiL   is invariant under local phase transformation. 

 






  AemimDiL  )( . 

 

The Lagrangian of QED 

 






  FFAemiL

4

1
)(  . 

 

Problems: 

 

1.Verify that the Dirac equation follows from the Lagrangian   
 miL  , where 

each of the four components of   and   is regarded as an independent field variable. 

2.Show that the substitution of the Lagrangian 


 AjFFL 
4

1
    into the Euler-Lagrang 

equation for  A gives the Maxwell equations  
 jF 

 
, where  AAF   . Show 

that the current is conserved  0 
 j  . 

3.With the addition of a term  
AAm22/1 , show that the Lagrangian  


 AjFFL 

4

1
 

leads to an equation of motion  
 JAm  )( 2 .  

4. Show that 0/ dtdQ  , where  03 jxdQ  ,      ej  . 

5.Show that U(1) phase invariance of the Lagrangian  


*2* )()( mL    of a complex 

scalar field implies the existence of a conserved current )( **    iej . 

 

6. Show that the  ieAD   transforms covariantly  


 DeD xi )(  under 

)()( )( xex xi   ,  
e

AA
1

 . 
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Lecture III 

Feynman rules for QED, Lorentz invariant phase space, 

cross-section phase space 

 

i)Fermion propagator 
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ii)Gauge boson propagator 
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 1   Feynman Gauge 

 0   Landau Gauge 

  

 )()(
2

1
))())(()((

4

1
22112221111 qAqqAqAqqAqqAqqAq 










  

   


  gDqqgq  )/11(2  

 













 )1()(

22







iq

qq
g

iq

i
qD  

 

 

iii) eAe -vertex 

  


 AeL   
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 )()()( 321 kAkke 
  

  )(e  

 

 

External particles and external lines 

 

 

 Incoming Outgoing 

Electron 
)]([ kus  )]([ kus  

Positron 
)]([ kvs  )]([ kvs  

photon )(k
  )(* k

  

 

 

Dirac matrix manipulation 

 

  g2},{   

00  
,   




,   55  
,   

00  

 

4
 ,  aa  2

  ,  )(4 baba 


  ,   abccba 2


   

 

0)...( 121  naatr ,  0)( 5 tr ,  0)( 5 batr  ,     
 dcbaidcbaytr 4)( 5   

)(4)( babatr  ,  )])(())(())([(4)( cbdadbcadcbadcbatr   

 

Lorentz invariant phase space 
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The Lorentz invariant phase space for n final state particles is 

 

 



n

ij j

j
n

i

in
E

pd
ppppLIPSd

2)2(
)()2(),...,]([

3

3

1

)4(4

1


  

where 
222

iii mpE 


. 

 

Cross-section phase space 

The general differential cross-section is 

),...,]([
),,(2

1

2

2

2

2

1

nfi kkLIPSdM
mms

d 



  

where 2

1

2

1 mp  , 2

2

2

2 mp  , 2

21 )( pps  and   is the 

symmetry factor. For nidentical particles in the final state it is δ = 1/n!. For two sets(n1, n2) of 

identical particles it is δ = 1/(n1!n2!); 

 2

2

2

1

2

2

2

1

4

2

4

1

22

2

2

1 2)(2),,( mmmmsmmsmms   

When 2

2

2

1 ,mms  we have 

 ),...,]([
2

1

2

nfi kkLIPSdM
s

d 


  

 

 

Decay phase space 

 

d in the rest frame of the decaying particle  

where p = (M, 0) 

 ),...,]([
2

1

2

nfi kkLIPSdM
M

d 


 

 

 

 

 

 

 

 

Problems: 

 

1.Verify that   00  
,   




,   55  
,   

00 . 

 

2.Verify that  4
 ,  aa  2

  ,  )(4 baba 


  ,   abccba 2


  . 
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3.Verify that  )(4)( babatr  ,      )])(())(())([(4)( cbdadbcadcbadcbatr  . 

 

4.Using   g2},{  , 
 dcbaidcbaytr 4)( 5  verify that  

 )]([4)( 21212121 ppgpppppptr 
 

 

 
  21212

5

1

5 8)())1()1(( ppipptrpptr 
 

 
)])(())([(32)()( 324142314321 pppppppppptrpptr  

   

 )])(())([(32)()( 324142314

5

32

5

1 pppppppppptrpptr   


 

 ))((256))1(())1()1(( 423143

5

2

5

1

5 pppppptrpptr  
   

 

5.Particle A, at rest decays into particles B and C ( CBA  ) 

 (a)find the energy of the outgoing particles, in terms of the various masses 

  (answer ACBAB mmmmE 2/)( 222  ) 

 (b)find the magnitude of the outgoing momenta 

 (answer  ACBACB mmmmpp 2/),,( 222


, zxyzxyzyxzyx 222),,( 222  ) 

 

6.Find the CM energy of each decay product in the following reactions 

 (a)     

 (b)  0  

 (c) 0  K  

 (d)  p  

 (e)   K  

 

7.In two-body scattering event DCBA   it is convenient to introduce the Mandelstam 

variables      2)( BA pps  ,  2)( CA ppt  , 2)( DA ppu  . 

 (a)Show that   2222

DCBA mmmmuts   

 (b)Find the CM energy of A, in terms of s, t, u and the masses 

  (answer  smmsE BA

CM

A 2/)( 22  ) 

 (c) Find the Lab (B at rest) energy of A (answer 
BBA

Lab

A mmmsE 2/)( 22  ) 

 

8.For elastic scattering of identical particles,  AAAA  , show that the Mandelstam 

variables become 

)(4 22
mps  ,   )cos1(2

2
 pt


,  )cos1(2

2
 pu


 

Where p


 is the CM momentum of identical particle, and   is the scattering angle. 
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Lecture IV 

Leading order processes 

The process  ee   

 

 

The invariant amplitude:  )()'(
1

)()'()(
2

2 pupu
q

kukueeeA 
   , where 'kkq  . 

To obtain unpolarized cross section, we have to take the square of the modulus of amplitude and 

then carry out the spin sums 

 muon

e AA
q

e
A 



4

4
2
  

 

spinse

e kukukukuA *)]()'()][()'([
2

1    

 

spinse

muon pupupupuA *)]()'()][()'([
2

1
   

note that 

 )]'()([)]'()([)]()'([)]()'([ 0* kukukukukukukuku   
 . 

So, 

   
'

)'()'()()()'( )'()()'(
2

1
)]'()()][()'([

2

1

s s

sssss

spinse

e kuukukukukukukuA 



   

 })()'{(
2

1   mkmkTr e    

})()'{(
2

1   mkmkTrA ee   

and, similarly 
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  })()'{(
2

1
  mpmpTrAmuon   

We have (using trace theorems) 

 })'(''{2}{
2

1
}'{

2

1 22   gmgkkkkkkTrmkkTrA eee   

})'(''{2 2

 gmgppppppAmuon   

The spin-averaged amplitude is 

  2222

4

4
2

2)'()'()')('())('(
8

 mmkkmppmpkpkpkkk
q

e
A ee   

In the massless limit (the extreme relativistic limit) 

  )')('())('(
8

4

4
2

pkpkpkkk
q

e
A   

pkpkpks  '22)( 2 ,  ppkkkkt  '2'2)'( 2 ,  pkpkpku  '2'2)'( 2  

At high energies unpolarized  ee   scattering is given by 

 
2

22
42

2
t

us
eA


  

 

We may obtain amplitude for    ee  by crossing tspk  ,'  

2

22
4

2

2)(
s

ut
eeeA


    

In the center of mass frame 

)cos1(
64

2

2

4







 s

e

d

d
 

 
s

ee em

3

4 2
    
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Problems: 

 

1.Proof that 

  2222

4

4
2

2)'()'()')('())('(
8

 mmkkmppmpkpkpkkk
q

e
A ee 

 

2.Verify that 

 

 
s

ee em

3

4 2
    

 

 

 

Compton scattering  
  ee 

 

Using the Feynman rules we obtain the following amplitudes for the two Feynman diagrams 

 

)()(
)(

)(
)(')'( )(

22

*)'(

1 puie
mkp

mkpi
iepuiA ss












 


   

 

 

 

)(')(
)'(

)'(
)()'( )(*

22

)'(

2 puie
mpk

mkpi
iepuiA ss








  


   

 

 

we neglect the mass of the electron, 

pkpkpks  '22)( 2 ,  ppkkkkt  '2'2)'( 2 , pkpkpku  '2'2)'( 2  , 

and we obtain  

 spukppueA s /)()()'(' )(2*

1


    
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upukppueA s /)()'()'(' )(2*

1


    

2

21 AA   

)})(2)()('2{(
4

})()('{
4 2

4

2

4
2

1 kppkppTr
s

e
kppkppTr

s

e
A  

 
 

 










s

u
ekpkp

s

e
kpkpTr

s

e 4

2

4

2

4

2))('(
8

}'{  

Similarly, 











u

s
eA 42

2 2
,    

0*
2

21 AA  

And, 











u

s

s

u
eAAA 42

21

2

2
 

In the center of mass frame 

 
24ks  ,   )cos1(2 2  kt ,   )cos1(2 2  ku , 

Where   is the center of mass scattering angle, and fi kkk


 . 





cos1

)cos1(4
2

2
42

21

2















u

s

s

u
eAAA

 

 

Problems: 

1.Show that individually the amplitudes A1 and A2 are not gauge invariant but that their sum is. 

 

2.Show that for  
 ee  *
 (where 

*  denotes a virtual photon of mass  
22 Qk   ) 

 









su

tQ

u

s

s

u
eA

2
4

2 2
2  
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Lecture V 

 

Weak interaction; V-A form of weak current. 
 

 

The observed lifetimes of the pion and muon are considerably longer than those of particles 

which decay either through color (i.e. strong) or electromagnetic interactions. It is found that 

        with
8106.2  sec, 

    ee    with
8102.2  sec, 

Whereas particles decay by olor interactions in about 
2310

 sec and through electromagnetic 

interactions in about 
1610

 sec (for example,  0 ). The lifetimes are inversely related  to 

the coupling strength of these interactions, with the longer lifetime of the 
0  reflecting the fact 

that  s  . The pion and muon decays are evidence for another type of interaction with an 

even weaker coupling than electromagnetism. 

 Though all hadrons and leptons experience this weak interaction, and hence can udergo 

weak decays, they are often hidden by much more rapid color or electromagnetic decays. 

However, the 
  and  are special. They can not decay via the latter two interactions. The 

  

is the lightest hadron. Whereas the neutral   can decay into photons, the charged pions cannot. 

As a result, the weak decay     is dominant one. The reason why  ee    is 

dominant decay of the    is interesting. In principle, the   could decay via  e . The fact 

that the decay mode  e  is not seen and that the particular decay modes   ee   

occur are evidence for additive conserved lepton numbers: the electron number ( eL ) and the 

muon number ( L ). For example, the electron number assignments are 

  1eL : 
e and e , 

  1eL : 
e and e , 

  0eL : all other particles. 

Similar assignments are made for L and L  . Clearly, 1L  and 0eL   for both the initial and 

final states of  ee  , so this decay is consistent with the conservation of these quantum 

numbers; but   e is not.  

 The two examples of weak decays    ,  ee    involve neutrinos. 

Neutrinos are unique in that they can only interact by weak interactions. They are colorless and 
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electrically neutral. Neutrinos are frequently found among the products of a weak decay, but not 

always. For example, a K  meson has the following decay modes 

 
















e

e

eK

eK









00 ,

,
 semileptonic decays, 

 000 ,,   K  nonleptonic decays. 

 The weak interaction is also responsible for  -decay of atomic nuclei, which involves 

the transformation of a proton to neutron (or vice versa). Examples involving the emission of an  

lepton pair ee   are  

  eeBC  *1010 , 

  eeNO  *1414 . 

Here, one of the protons in the nucleus transforms into a neutron via  

  eenp    

For free protons, this is energetically impossible, but the crossed reaction, the  -decay process 

  eepn   , 

Is allowed and is the reason for neutron‟s instability (mean life 920 sec). Without the weak 

interaction, the neutron would be as stable as the proton. 

 

 

Parity Violation and V-A Form of the Weak Current 

 

Fermi‟s explanation of  -decay was inspired by the structure of the electromagnetic interaction. 

Recall that the invariant amplitude for electromagnetic electron-proton scattering is  

     eepp uue
q

uueA 
  










2

1
, 

Where we have treated the proton asc a srtuctureless Dirac particle.A is the product of the 

electron and proton electromagnetic currents, together with the propagator of the exchanged 

photon. 
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To facilitate the comparison with weak interactions, we define, for example, an electron 

electromagnetic current of the form 

 
if

fiem uuejej   )0( , 

Thus, the invariant amplitude A becomes 

    
e

em

p

em jj
q

e
A 


,

2

2

  

By analogy with the current-current form, Fermi proposed that the invariant amplitude for  -

decay be given by 

    epn uuuuGA
e 

  , 

Where G is the weak coupling constant with remains to be determined by experiment; G is called 

the Fermi constant. Note the charge-raising or charge-lowering structure of the weak current. We 

speak of these as the “charged weak currents”. (The existence of weak current that is electrically 

neutral, like the electromagnetic current, was not revealed until 1973; also note the absence of a 

propagator). 

 

The diagram for   -decay, enep   showing the weak currents. 

 

Fermi‟s inspired guess of a vector-vector form of the weak amplitude A is a very specific choice 

from among the various Lorentz invariant amplitudes that can in general be constructed using the 

biliniearcovariants. There is a priori no reason to use only vectors. The amplitude A explained 

the properties of some features of  -decay, but not others. Over the following 25 years or so, 

attempts to unravel the true form of the weak interaction led to a whole series of ingenious  -

decay experiments, reaching a climax with the discovery of parity violation in 1956. Amazingly, 
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the only essential change required in Fermi‟s original proposal was the replacement of  by 

)1( 5   . Fermi had not foreseen parity violation and had not reason to include a  5  

contribution; a mixture of   and  5  terms automatically violates parity conservation. 

In 1956, Lee and Yang made a critical survey of all the weak interaction data. A particular 

concern at the time was the observed decay modes of the kaon, 2K and  3 , in which the 

two final states have opposite parities. (people, in fact, believed that two different particles were 

needed to explain the two final states). Lee and Yang argued persuasively that parity was not 

conserved in weak interactions. Experiments to check assertion followed immediately. The first 

of these historic experiments serves as a good illustration of the effects of parity violation. The 

experiment studied  -transitions of polarized cobalt nuclei: 

 eeNiCo  *6060  

The nuclear spins in a sample Co60
 were aligned by an external magnetic field, and an 

asymmetry in the direction of emitted electrons was observed. The asymmetry was found to 

change sign upon reversal of the magnetic field such that electrons prefer to be emitted in a 

direction opposite to that of the nuclear spin. The essence of the argument is sketched in Fig. 

  

The Co60
 experiment: the electron is emitted preferentially opposite the direction of spin of the 

sample Co60
 nucleus. 

The observed correlation between the nuclear spin and the electron momentum is explained if 

the required 1zJ  is formed by right-handed antineutrino, R , and a left-handed electron Le . 

 The cumulative evidence of many experiments is that indeed only R  (and L ) are 

involved in weak interactions. The absence of the “mirror image”staes L and R , is a clear 

violation of parity invariance. Also, charge conjugation, C, invariance is violated, since C 

transforms a ??state into a ?? state. However, the )1( 5    form leaves the weak interaction 

invariant under the combined CP operation. For instance, 
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  0)()(  

RL   P violation 

  0)()(  

RL   C violation 

But 

  0)()(  

RL   CP invariance. 

(we discuss CP invariance in next sections). 

A charge-lowering weak current of the form 
  uue 2/)1( 5  involves only left-handed 

electrons (or right-handed positrons). The factor 2/)1( 5  automatically selects a left-handed 

neutrino (or a right-handed antineutrino). The V-A (vector-axial vector) structure of the weak 

current can be directly exposed by scattering  e „s off electrons just as the  structure of 

electromagnetism was verified by measurements of the angular distribution of 
ee  scattering.  

 It is natural to hope that all weak interaction phenomena are described by a V-A current-

current interaction with a universal  coupling FG . For example 

   epn
F

e uuuu
G

nepA
e

)1()1(
2

)( 55  
  

 

   
e

uuuu
G

eA e
F

e 


 


)1()1(
2

)( 55  
 

  

The 2/1 is  pure convention (to keep original definition of FG  which did not include 5 ).  

 Weak interaction amplitudes are of the form 

   
*

2

4


 JJ
G

A F  

Interpretation  of the coupling FG  

Examination of the electromagnetic an weak amplitudes shoes that in Fermi‟s model the analogy 

between the two interactions has not been fully developed. We see that FG  essentially replaces 

by 
22 / qe .Thus , FG ,in contrast to the dimensionless coupling e, has dimensions GeV

-2
 . It is 

tempting to try and extand the analogy by postulating that the weak interactions are generated by 
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the emission and adsorption of charged vector bosons, which we call weak bosons, 
W  . The 

weak bosons are the analogous of the photon for the electromagnetic force and gluons for the 

color force. 

For example, 
  decay is mediated by a 

W  boson 

 

and the amplitude is of the form 

  




















e
uu

g

qM
uu

g
A e

W





 


)1(
2

1

2

1
)1(

2

1

2

5

22

5
 

Where  2/g is a dimensionless weak coupling and q is the momentum carried by the weak 

boson (the factor 2/1  and 2/1  are inserted so that we have the conventional definition of g). 

In contrast to the photon, the weak boson is massive. We are interested in situations where 
22

WMq  , then the amplitude reverts to  

    
e

uuuu
G

eA e
F

e 


 


)1()1(
2

)( 55  

 

And  
2

2

82 W

F

M

gG
 . 

Problems: 

 

1.Give the   and   decay processes. List the possible decay modes of the   lepton. 

 

2.Show that a weak current of the form 
  uue )1( 5  involves only left-handed electrons (or 

right-handed positrons) 
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Lecture VI 

Pion decay, Muon decay 

 

Pion decay 

)()()( kpq     

   

The amplitude is of the form 

      )()1()(...
2

)()()( 5 kvpu
G

kpqA F  


   

Where  ...  represents the weak quark current. It is tempting to write it as ud vu )1( 5   , but 

this is incorrect since quarks in Fig are not free quark states but are quarks bound into 
 -

meson. We know however, that 

 The amplitude is Lorentz invariant, so  ...  must be a vector or axial-vector, 

 The 
  is spinless, so that q is the only four-vector available to construct  ... . 

We therefore have 

    


fqqfq  )(... 2  

Where f  is a function of 2q  since it is only Lorentz scalar that can be formed from q, but 

22

mq  and  fmf )( 2  is a constant. So, the )()()( kpq     decay amplitude is 

    )()1)()((
2

)()1()(
2

)()()( 55 kvkppu
G

kvpukp
G

kpqA FF  


   

Using Dirac equations for the neutrino and muon ( 0)(  kvk , )()( pumppu  ) one get 

  )()1)((
2

5 kvpum
G

A F      

In its rest frame, the 
  decay rate is 
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   )()2(
2)2(2)2(2

1 4

3

3

3

3
2

kpq
kd

E

pd
A

m
d   






, 

Where the sum over spins of outgoing lepton pair can be performed by familiar „tracelogy‟. 

    )(4)1()1)((
2

222

55

22
2

2
kpmfGkmpTrmf

G
A F

F     

In the 
 rest frame ( pk


 ) 

  )(2   EkEpkEkp


 

Gatherinh these results together, we have 

   )()()(
2)2(

)3(
33

2

222

pkEmE
E

kpdd

m

mfGF 
 

 


 




 

The  integration pd 3  is taken care of by the 
)3(  function and, since there is no angular 

dependence, we are left with only the integration over d  : 

   )()/1(4
2)2(

2

2

222




 




 

 EmEd
m

mfGF
 

Where 2/122 )(   mE . The result of integration is 2

0  , where   

   





m

mm

2

22

2

0


  

This can be seen by rewriting the  –function as 

  )1/()(/)()]([ 0
00

0
E

f
f

















 

Therefore, finally we obtain 

   
2

2

2222

1
8 













 








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

m

m
m

mfGF
 

A quantitative test is possible. If, we repeat the calculation for the decay mode ee    , we 

obtain the same result with m   replaced by  em . Therefore 

  4

2

22
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2

10~
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The charged  -meson prefers to decay into a muon, which has a similar mass, rather than into 

the much lighter electron. This is quite contrary to what one would expect from phase-space 

considerations, so some dynamical mechanism must be at work 

Problem: Predict the ratio of the eeK    and   K  decay rates. Given that the 

lifetime of the K  is 8102.1   sec and the  branching ratio is 64%, estimate the decay 

constant 
Kf .  

 

 

  Muon decay 

    

    

The invariant amplitude for muon decay )()'()'()( kkpep     is 

 

   )'()1()'()()1()(
2

))()'()'()(( 55
2

kvpupuku
G

kkpepA F  
  

 

The muon decay rate can now be obtained 

 
 dA

E
d

2

2

1
 

Where the invariant phase space is 

 )''()2(
'2)2(

'

2)2('2)2(

' )4(4

3

3

3

3

3

3

kkpp
kdkd

E

pd
d  


 

Using familiar „tracelogy‟ we find the spin-averaged probability  
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 )')('(64
2

1 222
pkpkGAA F

spins

   

(since emm 200  , we can safely neglect the mass of the electron). Neutrinos being not 

observed, let us integrate over their momenta. This means that we must calculate the integral 

  )'(
'

'
' )4(

33

kkq
kdkd

kkI   


  

Where 'ppq   is total momentum of two neutrinos. The anticipated result can be written as a 

sum of two mutually orthogonal terms: 

  )2()2( 22

 qqgqbqqgqaI   

By multiplying both sides of the equality by  qqgq 22    we obtain 

  0)]...')((2)'([...)2('4 224 qkqkkkqqqgqkkqb   

since  '2)'( 22 kkkkq  ,  '),'( kkkkkqk  , ')','(' kkkkkqk  , 0'22  kk . 

By multiplying both sides of tensor equality by  qqgq 22   , we obtain 

2

1
4)2(

'
)'(

'

'
12 4

1

3
4)4(

33
44 





q

kd
qkkq

kdkd
qqa    

So,  6/a , 0b . Finally, 

  )2(
6

2




qqgqI   

Substitution of this result into the expression for the decay width yields  
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Integration over the electron direction yields 4 , and we obtained  
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Integration over the electron energy yields the total decay width 

3
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Problems: 

1.Verify that  )')('(64
2

1 222
pkpkGAA F

spins

  . 

 

2.‟Predict‟ the rate for the decay   ee  . The observed branching ratio of this decay mode 

is approximately 20%. Calculate the lifetime of the  -lepton 
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Lecture VII 

Review of Lie Groups 

 

In order to generalize abelian U(1) gauge theory to non-abelian gauge groups, we need to 

understand the properties of the SU(N) class of Lie groups and the corresponding su(N) Lie 

algebras. 

Lie groups are a set of continuous groups that are also a differentiable manifold (surface). And in 

which the group multiplication and inverse are smooth functions. 

The concept of generators and matrix exponentiation can be introduced in the simpler context of 

x-y plane rotation group SO(2) which is isomorphic to U(1). 

 

Generator of translations 

The derivative is the generator of translations. When exponentiated a finite translation is induced 

as follows: 

)(...
!2

)(

!1

)(
1)(

2
2  





 xf
xfxf

xfei  

 

Matrix exponentiation in SO(2) 

Consider rotation of  ),( r   to ),(  r   . 
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General rotation matrix is 
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    






 







cossin

sincos
)(R  

Infinitesimal rotation through angle   is 

     






 


01

10
1   

Direction one can take away from the unit matrix 1 while staying in the rotation group is  

     






 


01

10
  

This is the “tangent” matrix at 1 i.e. 



0

/ ddR . 

Define the exponential of a matrix via usual power series for exp 
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This builds up a finite rotation as the composition of a large number of infinitesimal rotations. 

The infinitesimal rotations are built out of  , and   is called the generator of rotations. 

 

Exponential of general Hermitian matrix 

Consider a matrix ),...,( 1 ndiagD  . Then ),...,( 1

N

n

NN diagD  . 

  

N

NnN

N

N

N
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N
i

N
idiagLim
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     = ),...,( 1 nii
eediag
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Recall that any Hermitian (symmetric) matrix H is diagonalizable. That is  

    P  such that ),...,( 1

1

ndiagDHPP  . 

Then 
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N

H
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
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          = 1),...,( 1 PeePdiag nii 
 



 

33 

 

And similarly 

    1),...,( 1  PeePdiage nH   

Generators of SU(N) 

SU(N) is the space of complex matrices NNCG   for which 1det G  and NNGG 

 1 . 

For SU(N) we relate the group element G to a generator as 

       ieG . 

In the vicinity of 1 the derivations of a matrix 1 are in some tangent space; we take the 

generators as a complete basis, lying in and spanning this sub-space. 

 

 

Hermitian 

Consider a matrix in the vicinity of 1, iG 1 ; this must be unitarity 

   )1()1(  ii    = )1)(1(  ii   

            = ...)(1  i  

             = 1 

Thus  and is   Hermitian. 

 

Traceless 

The determinant of a matrix in the vicinity of 1 must remain one. The determinant through )(O  

is     1)...(1)1det( 2   Otrii  

Thus the generators  must be traceless. 

 

 

Normalisation 

Conventionally the generators satisfy a trace orthnormality condition 

      abbaTr 
2

1
 . 
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Dimension. The number of linearly independent generators must equal the dimension of space. 

For SU(N), hermiticity requires  that  diagonal element be real and tracelessness implies there 

are N-1 free parameters on the diagonal. The off-diagonal elements are constrained by 

Hermiticity: there are 2/)( 2 NN   off-diagonal elements, each of which has two parameters. 

The dimension of the traceless hermitian space of generators is thus  

    )1(
2

21
2

2 


 N
NN

N  

 

 

 

 

The idea that the group also be a differentiable manifold, or surface is connected to the concept 

of connecting the logarithm of the group element (define by its Taylor series) to a coordinate in 

the linear space spanned by the Lie algebra.  

We might therefore ask what the action of group product looks like in terms of corresponding 

Lie algebra coordinate. That is, consider solving in the neighbourhood of the identity (small 

A,B,C) the following  CBA eee  . 

 If the group is abelian and we Taylor expand, one find  BAAB   and our generators must 

commute. For non-abelian group A and B may be non-commutative (  ...,
2

1
BABAC  ) 

A group is closed under product. As a Lie group should have a smooth product the product BAee

should therefore also correspond to an element of Lie algebra C lying in the space spanned by 

the generators. Thus, order by order, the commutators involved in the Campbell-Baker Hausdorff 

formula should lie in Lie algebra. The commutator is often called the Lie product. 

 

 

Structure Constants 

If the group is non-abelian it will support non-zero structure constants abcf  

      cabcba if  ,  

The factor of i is related to our choice of  ieG . 

The structure constants are totally anti-symmetric: they are clearly anti-symmetric in the first two 

indices due to the commutator. For total anti-symmetry the trace orthonormality, and the cyclic 
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property of the trace, gives cyclic symmetry for ],[2 bacabc itrf  , and this leads to total anti-

symmetry. 

For SU(N) to be a Lie group, this must be true. But it is not a given that SU(N) is a Lie group, 

so; why is this the case for SU(N)? 

The generators are traceless and Hermitian, and span the traceless Hermitian subspace of NNC  . 

The commutator is necessarily traceless because the cyclic property gives 0)(  BAABtr  

],[]),[(]),[( baabba iii     

So ],[ bai   is traceless and Hermitian and can be written as a linear combination of the 

generators. 

Thus for SU(N) we must be able to write 

      cabcba if  ,  

 

 

 

SU(2) 

SU(2) has 3 generators which are normalized versions of the Pauli matrices 2/jj    

  









01

10
1 ;  







 


0

0
2

i

i
 ;  












10

01
3  

Since                  
22

,
2

c
abc

ba

i













 

The SU(2) structure constants are abc . 

 

SU(3) 

SU(3) has 8 generators which are normalised Gell-Mann matrices: 2/aa    

  


















000

001

010

1 ;   














 



000

00

00

2 i

i

 ;   


















000

010

001

3  
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

















0010

000

100

4 ;   














 



00

00

00

5

i

i

 ;    

  


















010

100

000

6 ;   


















00

00

000

7

i

i ;   




















200

010

001

3

1
8  

The algebra is: 
22

,
2

c
abc

ba

if










 with structure constants: 

1123 f  

2

1516376345257246123  ffffff  

2

3678458  ff  

0otherf  

 

 

Representations 

A d-dimensional representation R of a group is a Homonorphism RD  mapping a group G to a 

space of matrices ddC   (or ddR  ) 

   )( dd

R CGgD   

Such that the matrix product respects the group product: 

   )()()( 2121 gDgDggD RRR   

This is sufficient to ensure that the subspace of matrices consisting of the image of G are a well 

defined group (identity/inverse/closed under multiplication). 

The representation R contains generators dd

R C  , and these are specific to each 

representation. The R  are easily defined as 

   
0

)1(




a

aa

R iD
dR

d



  

i.e. via       dd

R

addaNN iiD   )(1)1(   
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Equivalence and reality 

Two representations are equivalent if they are related by a unitary basis change 

    UTU R

a

R

a

'1  

Remembering the factor of I in 
aaie  , we categorise the reality of a representation R, if it is 

equivalent to one in which reality of the exponent is: 

Real if R is the same as its complex conjugate R : 

     
R

a

R

a

R

a iii   *)(  

Pseudoreal  if R is equivalent to its complex conjugate R  under basis change: 

    ViVViVi R

a

R

a

R

a

*1*1 )()(     

Complex  if R is inequivalent to its complex conjecture R : 

     
R

a

R

a

R

a iii   *)(  

 

 

 

Singlet Representation 

There is always a very trivial and boring representation of any group. This is called a singlet 

representation. 

    ddgD 1)(     Gg  

Here, if d=1 the representation is a mapping to real or complex numbers. If d>1 the 

representation is to matrices, but the singlet image of G consists of only the identity 1 in all 

cases. 

States (i.e. wavefunctions) transformed by this representation not really transformed at all – they 

are unaltered by the symmetry transformation as it simply multiplies by one. For example, spin-0 

states are unaltered by rotations as they have no spin direction that needs to be rotated as the axes 

change. 
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Fundamental representation 

)()( NSUgD lfundamenta   is the defining, or fundamental, representation. 

States transformed by the fundamental )(gD  have an index j with N components which are 

acted upon by multiplication by this matrix, in the same way that a matrix multiplies a vector. 

These states may, of course, have other components α in tensor product with j. The 

multiplication by D(g) is then of course done for each value of α as one expects of tensors. 

For example, we might consider a flavor triplet f ∈ (u, d, s) of Dirac fields with spin index α. A 

SU(3) flavor basis rotation   ffff g '''     is performed for each spin component α. The field ψ 

is a vector describing each of the up, down and strange quark spinors. 

 

 

 

Adjoint representation 

)1()1(

int
22)(



NN

adjo CgD    

We introduced covariant derivative  ieAD   , transforming as 
 ggDD '  . If the group 

for g is promoted to a Lie group such as SU(N), then 
aaAA    lies in the Lie Algebra and 

becomes a (heavily constrained) complex NN   matrix. 

For now we take be a global transformation so that not terms involving derivatives appear, we 

see that    

 ggAA '  

The field transforming like this is said to be in the Adjoint representation. 

Viewed from the perspective of the 12 N  real valued coefficents of the generators A , we can 

ask how these components transform. 

We may write for an infinitesimal transformation 

  )1()1()'( accabb iAiA     

   
ccabb AiA   ],[  

bb

acb

bb AifA    bb

abc

bb AifA     

In terms of the adjoint field components 
aA  the field has been multiplied by the matrix 

bc

a

NN
Ti )(1

)1()1( 22 
  where  

    
abc

bc

a

adjo ifT )( int  
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Gluon fields are in the adjoint representation of SU(3), and their transformation can equivalently 

be viewed in terms of complex 3x3 or real 8x8 operations on the Lie Algebra. 

 

 

Complex conjugated representation 

Antiparticles transform as 

   ljljjjj UUU  ** )()('  

 

Here   
*

** )( aaaa ii
eeU

 
 and  1)( ** UU . 

This conjugated fundamental representation has generators  *

a

conj    satisfying 

 conj

c

abccabccabc

baba

conj

b

conj

a ififif   ****** )(],[],[],[  

For N>2 this is a new inequivalent representation of the Lie group. For SU(2), however, the 

fundamental representation is pseudoreal, 

  2

01

10
 i










 , with  2

2 1 ,   
1   

And,  *1 )( jj   . 

So that 

  11*
1*







UeeeU aaaaaa TiTiTi

 

   111* ''   UUU  

But, e.g. 

  




























 


u

d

d

u

01

10
'1  

Is just a basis change and hence the two representations are equivalent for N=2. 

This fact implies tgat in SU(2) one can form two bilinear invariants: 

(i)   UUU  

(ii)  UUUU TTTUT  )(  

      UUT *)(   

      TT UU    

Tis is important for the Higgs couplings and hence Fermion mass terms in the standard model. 
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This subsection bellow may be insultingly simple and obvious. It will likely be not included or 

only skimmed in the lectures. On the other hand, if it is not obvious to you it may be very useful 

background reading. 

Representations of SU(2) and spin 

Recall systems of two or more spin 1/2 particles have state that is a tensor product. 

 

   









 

 

Recall the spins can be coupled to form    

00

1,0,11 

ZSSpin

 

We will consider this coupling in a more group-theoretic fashion to (hopefully) make connection 

with the language of the Standard Model lectures in a familiar context. 

For absolute clarity, please note the tensor product is important. The resulting four states is the 

product  2 × 2, not sum 2 + 2. For example, combining three particles yields 2
3
 = 8 states (not 

6!). 

  

















 

These can be comined by pairing the first two as above 





































































2

1
0

2

1
,

2

1
;

2

1

2

1
1

2

1
,

2

1
;

2

1
2

3
,

2

1
,

2

1
,

2

3
;

2

3

2

1
,

2

1
;

2

1

0;0

1,0,1;1

z

z

z

z

z

z

ss

ss

ss

ss
ss

ss
 

 

Matrix notation for spin 
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In matrix form, and unit vector notation the single particle states are: 

  0
0

1
e








          1

1

0
e








  

We can enumerate the tensor product of two states as a four component vector 

 

The states of the two particle system are then defined by four amplitudes 

  kjCc jk 2;    

As                    kjjk eec   

Equivalently 

  



















































3

2

1

0

C

C

C

C

EC   

Single particle operators 

Define   1
2

1
xS  2

2

1
yS  3

2

1
zS  

Then  1)1(11
2

1

2

1
1

4

32222 







 ssSSSS zyx  

and eigenvalues of zS  for eigenvectors je  are   jjz eeS
2

1
  

The raising and lowering operators for zS  are yx iSSS  . Explicitly, 

  









00

10
S   










01

00
S  

Note, however, that the eigenvalues of xS , and yS  are also ±1/2 , and that the commutation 

relations 

   kijkji i  2],[   

are symmetrical among x ↔ y ↔ z. The basis we have chosen has zS  diagonal, but a good 

change of basis would equally leave xS  or yS  diagonal. Physics doesn‟t care which axes are 

used. Rotation must be a good symmetry of the equations provided we know how to transform 

the states under rotation. 

 

kjeeE kj 2;  
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Problems: 

 

1.Show that  1222  zyx  , (“1” here really means the 2x2 unit matrix; if no matrix is 

specified, the unit matrix is understood.) 

 

2.Show that zyx i  , xzy i  , yxz i  ,  

kijkijji i   ,  

where  ij  is the Kronecker delta and  ijk  is the Levi-Civita symbol. 

3. Use the results of previous problems to show that 

 3.1.The commutator  BAABBA ],[ of two Pauli matrices is kijkji i  2],[   . 

 3.2.The anticommutator,
 

BAABBA },{   is ijji i 2},{  . 

 3.3.For any two vectors  a


 and b


 ,  )())(( baibaba


 
 

4.Show that  z

i
ie z 


2/ . 
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Lecture VIII 

 

Quark model 

 

 
The action of the QCD sector of the Standard Model becomes symmetric under SU(3) mixing of 

the up, down, strange quark fields in the mass degenerate limit. As this limit is (only) 

approximately the case in the real world, the composite states of the real world can be organised 

in the representations of this SU(3) mixing symmetry in multiplets that are almost mass 

degenerate and predicted by the irreducible representations of this SU(3) approximate symmetry. 

Hadrons are particles that feel the strong force; they are classified as: 

• spin   -    1/2 , 3/2 , . . . baryons: ∼ qqq 

• spin   -      0,   1,    . . .  mesons: ∼ qq  

Consider the up, down, strange quark fields as a vector of Dirac fields f  : f ∈ {u, d, s}. The 

action is 

  ff

f

fquark mDiL  )(   

Ignoring the gauge group for now, we can see that transforming the field as 

  ''' fffff U    

'' )(' fffff U    

leaves the action invariant if (and only if)  sdu mmm  , and )3(SUU  . 

f is in the fundamental 3 representation of SU(3) 

f is in the adjoint 3  representation of SU(3) 

Bound states form SU(3) tensor product representations according to the number of quarks and 

anti-quarks States in the same multiplet will have similar masses. 

 

 

 

Representations of SU(3) 
The SU(3) generators {λi} can be put in a more useful basis. 

 



































83383333

725222

614111

2

3

2

1

2

1
;

2

3

2

1

2

1
;

2

1

2

1
;

2

1
;

2

1
2

1
;

2

1
;

2

1







VUI

VUI

VUI
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This basis has commutation relations: 

ebrassubaSU

spinVViVV

spinUUiUU

spinIIiII

kijkji

kijkji

kijkji

lg)2(

,[

,[

,[





















 

The topology of SU(2) is simple. Pick a given three dimensional unit vector; this defines a linear 

combination of Pauli matrices. Traveling in any such direction through the group move simply 

along a line combining ident with this matrix with period 2π (and 4π in terms of a rotation 

angle). 

Considering the su(2) sub-algebras of su(3) is more entertaining. 212121 ,,,,, VVUUII  look like 

three pairs of x − y planes, and are “toroidal”. However, the corresponding z-torii are lie at 60 

degrees to each other as 333 ,, VUI are not linearly independent. 

The two diagonal generators 3  and 8  correspond to the space spanned by 333 ,, VUI . These 

may be simultaneously diagonalised. We can define raising and lowering operators as before and 

investigate the states using our knowledge of SU(2). 

 21 iIII  ,  21 iUUU  , 21 iVVV   

The ladder operator commutation relations 

   III ],[ 3 ,    UUU ],[ 3 ,   VVV ],[ 3  

allow to raise and lower eigenvalues of ( 2/3  , 2/8  ) by amounts 

   

)
2

3
,

2

1
(

2
,

2

)
2

3
,

2

1
(

2
,

2

)0,1(
2

,
2

83

83

83























































V

U

I

 

These are conceptually just like raising and lower operators for Sz, but now for SU(3) we have 

two simulta-neously diagonalisable “spin” directions. 

    
 

Construction of representations 

Define a state of greatest weight m  s.t. (analogous to  ) 

   0 mmmmm VUI   

Find new states by acting on m with  UI ,  until you get 0, obtaining 
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m

q

Um

n

m

p

Im

n

UqnU

IpnI













;,...,0;

;,...,0;
 

    
Note using additional easily derived commutation relations that we did not write down gives 

   0)()(   m

n

m

n IVIU   

And 

   0)()(   m

n

m

n UVUI   

so that all these states also lie on the upper boundary of the allowed quantum numbers of the 

representation. Generate new sequences  

   
From these end points apply V  and I  and we have mapped out a boundary, constrained by I ↔ 

U ↔ V  symmetry to have three faces of length p + 1 and three faces of length q + 1. 
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Thus we find irregular hexagonal shapes satisfying 120 degree rotation symmetry (p  q   0). 

Special cases of a triangular representation occur when p  0, q = 0 (particles ▽) or p = 0, q   0 

(anti-particles △). The case p = q = 0 is the singlet case. 

States in the interior may be found by applying raising/lowering operators to states on the 

boundaries. When both p and q are non-zero, the interior can be shown to have degeneracy 

raised by one each time we step inwards until a triangular interior is attained. For example, an 

octet has two states in the central point (π
0
, ε). 

The general expression for the number of states in the multiplet is 

   
2

)2(
)1)(1(




qp
qpN  

 

 

Meson flavour states 
As discussed we consider the up, down, strange quark fields as a vector of Dirac fields f  : f ∈ 

{u, d, s}. In the limit mmmm sdu   the Lagrangian density possesses a continuous SU(

3fN ) flavor symmetry, rotating the quark fields into each other. 

  ff

f

fquark mDiL  )(   

   susduduuu mDimDimDi  )()()(   

    )1( mDiT   

Where 

   


















s

d

u

  

transforms in the fundamental representation (3) and 

   



















s

d

u

  

transforms in the conjugate fundamental 3  representation. 
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We are firstly interested in the action of I , U  , and V  on these representations, and secondly 

forming their action on tensor product representation 33  relevant for the transformation of 

meson ( qq ) bound states under this symmetry. 

 

 

Fundamental 

We can form the fundamental ladder operators taking their explicit representation in terms of 

Gell Mann matrices. 

 
















































































































010

000

000

;

000

100

000

001

000

000

;

000

000

100

000

001

000

;

000

000

010

VV

UI

II

 

 

We identify the quark flavour wavefunctions with basis column vectors as one of 

   Tu )0,0,1( ; Td )0,1,0( ; Ts )1,0,0(  

The action of the raising and lowering operators is then 

   

 

Operator Action Operator Action 

I  ud   
I  du   

U  us  
U  su   

V  ds   
V  sd   

 

 

 

Conjugate Fundamental 

We can form the conjugate fundamental ladder operators taking their explicit representation in 

terms of the conjugate representation generators, For example, 

  





















































000

001

000

000

00

00

000

001

010
*

2

*

121 i

i

iiIIiIII ccc  

Similarly we can collect the image of all the raising and lowering operators in this representation. 

   



















000

001

000
cI   















 



000

000

010
cI  

We identify the quark flavour wavefunctions with basis column vectors as one of 

   Tu )0,0,1( ; Td )0,1,0( ; Ts )1,0,0(  

The action of the raising and lowering operators is then to left multiply these column vectors and 

my be summarised as: 
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Operator Action Operator Action 
cI   du   I  ud   

cU   su   
U  us   

cV  sd   V  ds   

    

 

Note that as anticipated these operators are indempotent. Applying them multiple times will 

eventually lead to a zero state. In the fundamental rep + moves towards u and − moves towards s. 

In the conjugate rep + moves towards s  and − moves towards u . 

 

 

 

Meson states 

We label the meson representation M = (conj) ⊗ (fund). We identify the ladder operators in the 

tensor product using the tensor product generator rule: 

     III cM 11  

We first seek the state of greatest weight |W> such that 

 

   0  WVWUWI  

This identifies the state as 

    usW   

We can also find representations for the diagonalised quantum numbers 

   3

*

33 11  M  

This expression tells us we simply add the flavour quantum numbers of the constituent particles 

to find the quantum number of the composite. We may note that 

   13 u ; 13 d ; 03 s  

          1*

3  u ;    1*

3  d ;   0*

3  s  

while, similarly, 

   
3

1
8 u ; 

3

1
8 d ; 

3

2
8 s  

         
3

1*

8  u ;  
3

1*

8  d ;  
3

2*

8  s  

We can also identify strangeness as 13 8  S , and (yes!) for historical reasons the 

strangeness of a strange quark is strangely negative. 8  is also historically related to a quantity 

called hypercharge (Y), although this quantity is not particularly useful in modern physics. 

Using this and the raising and lowering operators we may now map out the entire set of flavour 

wavefunctions in the multiplet, plotting in the ( 2/3  , 2/8  ) plane as follows. 
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This hexagonal multiplet has right hand vertex at 12/33  I , and the state of greatest 

weight K+ lies at ( 2/3  , 2/8  ) = ( 1 /2 ,√3/2). The interior states at (0, 0) may be determined 

by applying 

   ddssdsV   

   ssuuusU   

   uuddudI   

The linear dependence of the SU(3) generator basis results in these three states being linearly 

dependent: and there are only two independent states accessible with ladder operators at ( 2/3 ,

2/8 ) = (0, 0). 

The degeneracy du mm ~  10MeV is almost exact in nature, but m sm ∼ 100 MeV. As a result 

the 03 I , 2/8  = 0 eigenstates are identified as two normalised and orthogonal flavour states 

   )(
2

10 dduu  ; )2(
6

1
dduuss   

The 
0  is a triplet I = 1 state, with the triplet consisting of   ,, 0 . Note that due to the 

conjugate representation the sign is reversed compared to the 0zS wavefunction for the S = 1, 

0zS state when combining SU(2) ⊗ SU(2). 
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This completes the derivation of the wavefunctions for meson octet – and the Nobel prize 

winning the famous eightfold way (near) degeneracy in the meson spectrum. 

There must of course be nine states in total and final remaining state lives in a different  

representation multiplet of )3( fNSU . The irreducible representation decomposition is 

    1833   

The remaining orthogonal state is the flavour singlet )(
3

1
' dduuss  . It is much heavier 

because of the coupling of flavour singlet states to topological structures in the gluon field such 

as instantons. 

 

For clarity, note that if seeking a concrete vector notation, one can always enumerate the tensor 

product states as a single, nine component vector. For example 

  ),,,,,,,,( susdssdudddsuuudus  

The orthonormality of the ( 3 , 8 ) = (0, 0) states is then clear: 

    )0,0,1,0,1,0,1,0,0(
3

1
'  

)0,0,2,0,1,0,1,0,0(
6

1
  

)0,0,0,0,1,0,1,0,0(
2

10   

 

 

Baryon decuplet/octet 3 ⊗ 3 ⊗ 3 

 

A similar analysis predicts both the baryon decuplet and the octet. See tutorial questions. 

 

 
           Baryon Decuplet (spin-3/2)                                          Baryon Octet (spin-1/2) 

 

 

 

Historical context 

Prior to 1950‟s these consisted of  np,  (spin – ½), 0,  (spin – 0) where pm ≃ nm ≃1GeV and 


m ≃ 0

m ≃ 140 MeV. 
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We consider p (udu) and n (udd) in SU(2) an “isospin” doublet (fundamental representation 2) 



















2/1

2/1

z

z

In

Ip
 

The three pions are an isospin triplet ( 3 representation from 2  ⊗ 2 = 1 ⊕ 3) ): 



























1

0

1
0

z

z

z

I

I

I







 

Around 1950 new particles were observed  ,K , . . . , typically produced in pairs These were 

“strangely” long lived but heavy particles, and acquired their lifetime because the strange quark 

could only decay via weak interactions. 
Rationalising the previously “bizarre” spectrum in terms of consituent quarks was a major 
triumph of group theory, and a triumph for which Murray Gell-Mann won the Nobel Prize in 
Physics. 
   

Spin 0 Spin 1/2 

 

 

Spin 3/2 

dsK ~0  uudp ~  uuu~  

dsK ~0  uddn ~  dss~  

 uds~0  sssdsK ~~0   

 dss~   

 
 

 

Observations in the strong interaction 

Baryon number (B), Lepton number (L), charge are conserved: they are related to symmetry 

under global U(1) transformations: 

   
QiLiBi QLB eee


 '  

We also note 

• Q is always measured in terms of electron charge 

• anti-particles have opposite B, L, Q quantum numbers 

 

  

 B L Q 

e
- 

0 1 -1 

 0 0 0 

e 0 1 0 

n 1 0 0 

p 1 0 1 
0  0 0 0 

  0 0  1 

 

For example: quantum numbers for β-decay 

 

 n   p + e  + e 

B 1 = 1 + 0 + 0 

L 0 = 0 + 1 + -1 

Q 0 = 1 + 1 + 0 
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These patterns were naturally explained by introducing 3 underlying objects: 

„up‟ quark ∼ u , „down‟ quark ∼ d , „strange‟ quark ∼ s ; quarks come in different 

„flavours‟ 

 

 B I I3 S Q 

u 1/3 ½ ½ 0 2/3 

d 1/3 ½ -1/2 0 -1/3 

s 1/3 0 0 -1 -1/3 
uudp ~  1 ½ ½ 0 1 

uddn ~  1 1/2 -1/2 0 0 

 

Note: )(
2

1
3 SBIQ  , where B+S=Y is called „Hypercharge‟/ 

 

   
 

 

Third generation 

 
MeVfewmm ud ~~   and MeVms 100~ / 

Three more (heavier) quarks were discovered along with the η -lepton in 1976 and ν in 2000. 

 

 „charm‟  c 1974, with    mc ~ 1.2 GeV 

 „botton/beaity‟ b 1977,  mb ~ 5 GeV 

„top/truth‟  t 1995,  mt ~ 175 GeV 

 

 

Color charge 

The state of greatest weight in the baryon sector is the uuu 
. There is a curious thing about 

the uuu 
: 

• spin – 3/2 = | ↑↑↑> – symmetric spin state 

• charge ++ = |uuu> – symmetric flavor state 

 

Pauli anti-symmetry? ⇒ SU(3) color degree of freedom 

• Totally anti-symmetric color charge wavefunction 
  kjiijk uuu  

• This is a color single because for g ∈ SU(3), then u → gu implies 
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'''''''''''' det kjikjikkkjjjiiiijkkjiijk uuuuguguguuu    
We discover QCD is a SU(3) non-abelian gauge theory involving six quark flavors (three 

generations) and the bound states are color singlet mesons and baryons. 

 

 

 

Problems: 

 

1.Show that    2)( Tr  (notice that all the  are traceless). 

 

2.Use isospin invariance to show that the reaction cross sections  must satisfy  

 2
)(

)(




 

dnp

dpp
o


 

Given that the deuteron d has isospin I=0 and the   has isospin 
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Lecture IX 

 

SU(N) Yang-Mills theory, Quantum Chromodynamics 

 
 

Non-abelian gauge theories Yang, Mills (1954) 

Renormalizibility                   Fadeev, Popov (1969) 

SU(N) gauge theory involves a non-abelian gauge transformation group. Non-abelian gauge 

fields support self interactions  of the gauge bosons.  Important realisations of such theories are: 

 

QCDSU C )3(  

 )1()2( USU L  Weinberg-Salam Model 

The Dirac field transforms as a Fermion in the fundamental representation of SU(N). Consider 

the free Dirac Lagrangian density 

   
 miLD 0

 

again with (in a condensed notation) 

   U '  

  
 U '  

In the fundamental representation the field, ψ, must be a N-vector, with each component being a 

spinor field: 

  































N

.

.
~

1

   where  j has j as SU(N) index,  as the spinor index 

Examples 

  

















g

b

r

C

q

q

q

SU )3(  

with q ∈ {u, d, s, c, b, t} (the six quark „flavours‟) and „r‟ = red, „b‟ = blue, „g‟ = green (three 

„colours‟).  

  
LL

e

L
d

u

e
SU 
















 ,)2(


  

 

SU(N) Lagrangian 

Construct Lagrangian density to be invariant under local group transformations g(_(x)) ∈ 

SU(N). 

   ))(exp())((' aa

N Txigxg  , 

where 



 

55 

 

• g((x)) ∈ SU(N) is an N × N matrix in the Lie group 

• 
aa Tx)( is in the Lie algebra su(N) and is a linear combination of generators with a = 1, . . . ,N

2
 

− 1 

• Ng  a coupling constant 

 

Construct gauge covariant derivative Dμ introducing N
2
 − 1 gauge bosons A


 via “minimal 

coupling” 

  
aa

N ATigD 
  1  

Sometimes write 
aa AT  as a  A , and D is matrix-valued in color indices. 

  0],[ Ag   !!! 

For invariance under local transformations we have to require 

  )()(' xgDxgDD  
 

As in the Abelian case local group transformations are placed in one-to-one correspondence to 

gauge trans-formations of gauge fields, and we define the gauge transformation property of A  

via 

  
  gg

g

i
ggTAATA

N

aaaa

 ''  

This results in the required property 

   

  
aa

NN ATigAig  '''   

       
  ggTAiggggg aa

N 
)(  

        
 gAigg N )(   

Using this derivative the Dirac Lagrangian is invariant under local group transformation and is 

now given by: 

  IntD

aa

ND LLmATigiL  0)(  
    

Where 

   
aaaa

NInt AJATgL 



    

where the N
2
 − 1 Noether currents 

    
a

N

a TgJ   

couple to the gauge bosons. 

For the gauge field action we choose our ansatz 

  ],[ 
 DD

g

i
F

N

    where   aaFTF   

Evaluating this commutator (where a, b, c = 1, . . . ,N
2
 − 1) we have 

  ],[],[ 
bbNaaN ATigATigDD   

      ],[],[],[],[ 
bbNaaNaaNbbN ATigATigATigATig   

       
bbNbbN ATigATig )(  
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                 ],[)( 2

babaNaaNaaN TTAAgATigATig    

      cbaabcNaaaN TAAfgAATig  2)(   

   )( 
cbabcNaaaN AAfgAATig   

Hence we read off that 

   

cbabcNaaa AAfgAAF   

 

This new term,  

cbabcN AAfg , leads to non-trivial interactions in the Yang-Mills theory and to 

a qualita-tively different behaviour of the corresponding quantum field theory compared to the 

Abelian case. Gauge invariance of tr ( 
FF ) follows from the transformation property of the 

covariant derivative: 

    
 ggDD '  

which we can readily see 

 

 )(
1

],[
1

]','[
1

'   ggDggDggDggD
g

ggDggD
g

DD
g

F
NNN


 

  
  ggFgDDg

g
gDgDgDgD

g NN

 ],[
1

)(
1

 

AS a result 

  )()''( 



 FFtrFFtr   

This is the gauge invariant expression for the kinetic term. 

The Yang-Mills Lagrangian is: 

   )(
2

1


FFtrLYM     where    aa TFF    

   ))(
2

1 baba FFTTtr 
  

   aabaab FFFF 





4

1
))

2

1
(

2

1
  

Where    

cbabcNaaa AAfgAAF   

Note that the gauge boson acquires self-interaction due to the extra term in the Yang-Mills 

theory. Since Fμν acquires a term quadratic in the gauge fields, the action acquires additional 

terms involving three and four gluon fields. The full Yang-Mills theory including interactions 

with Dirac Fermions has the Lagrangian: 

   DYMD LLL   

Remarks 

• Gauge bosons are charged → only true in the Non-Abelian case! 

→ self-interactions of the gauge fields and LYM is already an interacting theory 
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→ field eqns are nonlinear and difficult to solve (e.g. classical “monopole” and “instanton” 

solutions). 

• No gauge boson mass is allowed because mass terms ∼ 


aa AAM 2
 are not gauge invariant. 

• Classical Yang-Mills theory is qualitatively different to the quantum field theory. 

For instance, 0)(
0

22
2 
QN Qg where Q is some scale; this is known as asymptotic freedom 

• Problem with long-range Yang-Mills interactions: 

→ in principle, the massless boson has 1/R interaction 

→ no long range gauge fields are observed apart from the photon (and graviton) 

→ in nature, Yang-Mills gauge bosons are confined or massive 

• gN is the coupling between the fermions and gauge bosons and for self interactions of the 

gauge bosons 

→ this property is known as universality of the gauge coupling and can be checked 

experimentally. 

 

 

 

 

 

 

Quantum Chromodynamics 

 
We can now define the QCD sector of the Standard Model as this is an SU(3) gauge theory 

coupled to six massive Dirac Fermions known as quarks. 
 

Quark model and non-abelian g.t.   Fritzsch, Gell-Mann, Leutwyler 

(1972/73) Asymptotic freedom                        Gross, Politzer, Wilczek 

(1973) 

 

 
a.) The quark model has state: 

  ,  → bound states of 3 identical fermions,   uuu  

, which is not compatible with the exclusion principle. 

Motivates a distinguishing, extra label organised in an anti-symmetric way called colour: 

   ijk

kji

kji uuu 



}3,2,1{,,

~  

b) )( 0    

    

If NC = 1 (1 colour), the theoretical prediction for decay rate is a factor of 10 too small (see 

tutorial). 

c.) Quark dynamics must explain why no free quarks (confinement): 

→ all hadrons are colour singlets (white) 

→ non point-like substructure of hadrons observed in collider experiments ⇒ parton model 
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→ hadrons made from partons (Feynman, Bjorken 1972 – later indentified as quarks & gluons) 

 

Following success of QED, it was attempted to describe quark dynamics with non-Abelian gauge 

theory. 

 

QCD was formulated as an SU(3)C gauge theory with quarks (fermions) in the fundamental 

representation. 

   ghostfixinggaugequarksgluon LLLLL    

    

 







1

1

2

4

1 N

a

aa

gauge FFL 

      where  

cbabcNaaa AAfgAAF 

 

      
)(

4

1 
FFtr

         where  aa TFF  
 

 

 

 



flavours

N

ji

j

fijf

i

fquarks qmDiqL
1,

)(
 

 

Where 
a

jk

a

jkjk TigAD   )(
.  

The gluon-quark interaction is induced by the covariant 

derivative. We need a gauge fixing term to arrive at an invertible gluon propagator. 

))((
2

1 cc

fixinggauge AAL 








  

Note that is is not unique, there are many possible choices. 

The ghost sector, Lghost, is needed for the perturbative expansion of non-abelian gauge theories. 

  a

babc

caaghost AfgL  



 )(

 

• ε “Fadeev-Popov ghost” = complex scalar with “wrong” (i.e. fermionic) statistics. (i.e. closed 

loops get a minus sign). 

• Ghost contribution compensates longitudinal degree of freedom in gluon loops in a covariant 

way. 

Ghosts never appear as “external” particles in scattering amplitudes. 

Ghost sector decouples in QED as fabc = 0. 

• For a proper derivation path integral methods (original) or BRS methods necessary (→ MQFT 

). 
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Asymptotic Freedom in QCD 

QCD is qualitatively different than classical field theory. 

 

QCD (classical)                                                        Electrodynamics: 

 

 

 

 

 

 

 

       s/Q
2
  ↔αs/r  potential                                              α/Q

2
  ↔α/r  potential 

 

 

However, the quantum effects change qualitatively the low energy behaviour. Let‟s consider the 

loop correc- tions to the gluon propagator. These corrections are given to order  4/2

ss g
by 

 

 

These diagrams correspond to divergent integrals. We must apply a regularisation and 

renormalisation pro- 

cedure to deal with the divergencies. Observables will not depend on the chosen regulator. One 

approach is dimensional regularisation where we evaluate these integrals in dimension = 4 − 2ε. 

For the Feynman rule this would amount to (MS-scheme): 
   

 

   


n

n
SM

ss

kdkd

)2()1(

1

)4()2( 2

2

4

4













 

As ε → 0, divergences occur as 1 /ε poles. 

The physics is unchanged under a reparameterisation of the coupling constant and fields 

 

  physicstchangedoesnrescaling
gZg

AZA

sgs

'3









 

 

where the constants Z3 , Zg  are defined perturbatively 

 

  ...1 )2(

3

)1(

33  ZZZ  
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  )
1

( )0,1

3

)1,1

3

)1(

3 ZZZ s 


  

  )
11

( )0,2(

3

)1,2(

32

)2,2(

3

2)2(

3 ZZZZ s 



, … 

 
)(

3

kZ   are constants which can be chosen freely. 

These renormalisation constants lead to additional Feynman graphs like 

                   

Evaluating the divergent part of 41 ... GG  gives (beyond the scope of this course) 

  ))(
6

13

3

4
(

4
)( 23 

 



ppgpCNT

r
p AfR

abs

div

ab 
 

As it is a constant, we choose 
)1(

3Z to cancel this (unphysical) contribution at a certain scale 

022  p . For the coupling at one loop we find, schematically, 

 

 

 

The latter are divergences which come from the renormalisation constants. The are adjusted so to 

cancel the divergences and with an experimental value at a certain scale. 

 

  ))()log(1()()()( 2

2

2
22222 





  O

Q
bQ

b
Q ssssss  

 

Quantum corrections in this way lead to a scale-dependent coupling 

   )log(
)(

1

)(

1
2

2

22 

Q
b

Q ss


;   12

411 fRA NTC
b


  

This is the renormalised coupling and it depends logarithmically on the scale of the process. The 

same is true for QED but b has a different sign. 

 

 

The logarithmic scale dependence of the strong coupling 

The so-called β-function measures the scale dependence of the coupling: 

  bQ
Q

Q sss )(
)log(

))(( 22

2

2  



  
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to the 4-loop level 
 

   

 ...)''''''( 322  bbbb ssss   

      

 

 

 

 

At one loop    
12

411 fRA NTC
b


  

The sign of the β-function depends on the particle content of the respective theory. If the number 

of flavours in the loop is Nf < 33/2 ⇒ b > 0. Thus, in the Standard Model, β < 0 (or b > 0). The 

sign is crucial for the high energy (ultraviolet) and low energy (infrared) behaviour of the theory. 

    
   The running of αs is experimentally confirmed. 

 

Ultraviolet behaviour in QCD For b > 0 (β < 0) ⇒ 0
2

  Q

s . Hence, the quarks feel no 

gluon exchange and can be considered as quasi-free particles. This is known as asymptotic 

freedom (2004 Nobel prize: Gross, Politzer, Wilczek). 

Infrared behaviour in QCD For b > 0 implies that there exists a scale,    such that 

022  
Qs . The point where the coupling goes to infinity is called the Landau pole, it 

indicates the strong coupling regime. Of course, perturbation theory itself breaks down long 

before the Landau pole is reached.  

 

As s  is large at hadronic scale, ∼ 1 GeV , perturbation theory is not applicable. QCD is a 

strongly interacting theory at low energy and most of our calculational tools fail in this regime. 
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This is unfortunate, but also a necessary condition for the theory to have a chance of explaining 

confinement. 

In QED, we have no photon self interaction, and the running is reversed: 

0
3

1

1

1

0 








f

R

A

N

T

C
QCDQED bb  

 
We see that QCD and QED are qualitatively different from one another with opposite asymptotic 

behaviour. Quantitative solutions in low-energy QCD are intrinsically difficult. The dynamics is 

non-perturbative. 

Our lack of knowledge of the internal dynamics of the low energy bound states of QCD can be 

parametrised using general functions with the correct allowable Lorentz structure. 

These can in some cases be measured in one process and reapplied in another. We shall see an 

example of this with the pion decay constant. 

Better yet we can calculated such quantities using non-perturbative numerical methods → 

Lattice gauge theory. 

 

 

 

Problems: 

 

1.Find the amplitude for the diagram 

 
What is the color factor. 

 

2. Color factors always involve expressions of the form  
 klij  (summed over ). There is a 

formula for this quantity, which shortens the arithmetic: 

 klijjkilklij  

3

2
2   

Chek this theorem for  

(a)i=j=k=l=1 

(b)i=j=1,  k=l=2 

(c)i=l=1,  j=k=2. 
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3.There is a simple test for the gauge invariance of an amplitude in QCD (or QED): Replace any 

gluon (or photon) polarization vector by its momentum and you must get zero. Show that form  

321 AAAA   is gauge invariant, but  
21 AAA  alone is not. 
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Lecture X 

Goldstone’s theorem, Higgs Mechanism 

 

We now study gauge invariant models with a nontrivial vaccuum structure. Such models display 

Spontaneous Symmetry Breaking: this means the action is gauge invariant under some symmetry 

but the ground state (or vaccuum) is not and this breaks the symmetry. 

  ],,[],,[  UUFUUSFS    

We use <…> to denote the vacuum expectation value (or vev). 

A vev for fields with angular momentum would be incompatible with the observed isotropy of 

space. For example, a vev for fermions (→ spin) or gauge fields (→ E


, B


) 

    0,   F  

However a vev for a scalar is allowed   0 . 

We will see below that the Goldstone Theorem implies that there exists a massless mode for 

each generator aT  which does not leave the vacuum invariant,  aT . These massless fields 

are called Nambu-Goldstone bosons. 

Recall that an explicit gauge boson mass term in the Lagrangian is not invariant. In combination 

with a gauge theory, the massless Nambu-Goldstone boson will lead to a massive vector boson 

(→Higgs mechanism). A massless gauge boson together with a Nambu-Goldstone boson 

combines to a massive gauge field. One may say that the gauge field acquires a longitudinal 

component through interaction with the nontrivial vacuum. 

Spontaneous Symmetry Breaking (SSB) is not specific to particle physics. Ferromagnets and 

Superconduc-tors are two other examples. 

 

 

SSB in an U(1) scalar field theory 
We will see: If the vacuum breaks the symmetry of the theory then a massless mode is created. 

Note: As U(1) is isomorphic to SO(2) one can view the model as a so-called SO(2) symmetric ζ-

model. 

 

 )(
2

1
21        (or   










2

1

2

1~




    for  SO(2)) 

 

 22 )(  


 L                                  with 0  

      22

2

2

1

2

2

2

1

2

2211 )(
4

)(
22

1

2

1






 




   

 

L is invariant under a global transformation 

   ie     (or   





~

cossin

sincos~










   ) 

 

The ground state is defined by minimising the energy: 

 

 L
LL

L 








 2

2

1

1







 






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  ),()(
2

1
)(

2

1
212211

2

2

2

1  V  

Hence, we see that to find the minimum of H we need to find the minimum of the potential 

  22

2

2

1

2

2

2

1

2

21 )(
4

)(
2

),( 





 V  

The minimum condition reads 

  (*)
0))((

0))((
0

2

2

2

1

2

2

2

2

2

1

2

1

21 























VV
 

 

case 1.  02  : 021   is the ground state or vaccuum solution. 

 

 

 

 

21, are real scalar fields with mass μ  

 

 

 

 

 

 

The vaccuum state 021   is trivially invariant under rotations in the 21, -plane. 

 

 

 

case 2. 02  : (∗) has a nontrivial solution 

 

 

 

02 2
2

2

2

2

1

*  v



  

 

 

 

 

 

 

The minimum of the potential is along a circle → infinite degeneracy. This is called the 

“champagne bottle” or “Mexican hat” potential. The ground state has to pick one point of this 

circle, i.e. it breaks the symmetry of the system. 

As the theory is U(1) (or SO(2)) invariant we may choose 

   01  ,   v2          (or   









v

0

2

1~
 )      

 

Applying a phase transform to the vaccuum we find 

  ie        )1(U   symmetry “broken” 

 

The physical spectrum is obtained after expanding around the vev of the theory 
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   1 , vHH  22   

 

where the new fields have 

  0 , 0H  

 

 22222
2

])([
4

])([
22

1

2

1
HvHvHHL  





 




  

    2222222
2

]2[
4

]2[
22

1

2

1
HvHvHvHvHH  





 




  

 

Collect the terms with different powers of π, H: 

 

~  00 ,H :     42
2

42
vv


   irrelevant constant;  

 ~  11,H : 032  vv    linear terms give rise to tadpoles, 

                                                        nonexistent in the theory 

 ~  02 ,H : 0
22

2
2

 v


  π‟s are massless  

~  20 ,H :  2       Gives mass: 
22

2

1

2

1
HmHH H 

  

         where  02 22  Hm   

 

 

The other terms define the interactions between π,H. 

We conclude that 

• π is a massless spin-zero boson, the Nambu-Goldstone boson 

• H is a massive spin-zero boson, the Higgs boson 

 

 

 

Generalisation to SO(N) 

 
N

N

R



































1

1

.

.


 

This is in the fundamental representation of SO(N) where the generators U ∈ SO(N) are such 

that 11 UU and detU = 1. There are N(N − 1)/2 generators, all of which are antisymmetric 

matrices. 

  )()exp( )( NSOTiU
N

ji

ij

ij  


 

Where 

  )()( )(

jkiljlikkl

ij iT    

The Lagrangian 
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  2
2

)(
4

)(
22

1






 




TTTL   

is invariant under global SO(N) transformations. For 02  , )(


V   is minimal if 

02
2




 vii



 , and hence we choose 

  

























v

0

.

.

0




 




  is invariant under SO(N − 1) transformations (generators )(ijT with i < j <k which are 

defined by the 


)(ijT ). The remaining N − 1 generators )(ikT break the vacuum as 




)(ikT . There are (1/2) (N(N − 1)) – (1/2) (N − 1)(N − 2) = N − 1 broken generators. 

We see that the vev breaks SO(N) spontaneously to SO(N − 1). 

 

Looking at the spectrum, we find 

• 1,...,1  Nj massless Goldstone bosons 

• ζ = H + v → H is a massive state with mass 22 2 vM H   known as the Higgs boson mass 

 

 

 

Classical Goldstone Theorem 

To each generator which breaks the vacuum, i.e. 0


aT , corresponds a massless field 

(Nambu-Goldstone boson). 

Proof: We need the definition of the mass matrix in the following: 

  


 







ji

ij

V
M

2

 

The symmetry of the action implies 

  )()()()( 2


 OTi
V

VTiVV aa

j

aa 






 

   0



 l

a

jl

j

T
V




 

Applying another derivative on the last line gives 

  





 
















































 a

jk

j

l

a

jl

jk

a

jl

jk

T
V

T
V

T
V 2

0  

and finally one obtaines 

  00  l

a

jlkjTM   

If aT  is a “broken” generator one has kj

a MT  0


   has a null eigenvector ⇒ null 

eigenvalues ⇒ massless particle for each such generator. (Note that the eigenvalues of the mass 

matrix are the particle masses, as the particle are defined as their mass eigenstates.) 

This completes the proof. 
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We now combine the concept of a spontaneously broken symmetry with a gauge theory. 

 

 

 

Higgs mechanism 

 
The Higgs Mechanism for U(1) gauge theory 

Consider 

  



  FFDDL

4

1
)()())(( 2**2*   

With  iQAD    and 
 AAF    . Gauge symmetry here means invariance under 

  AA . 

 

case a) 02   : 2**2 )()()(  V  unbroken case,  with a minimum at θ = 0. 

The ground state or vaccuum is U(1) symmetric. The corresponding theory is known as Scalar 

Electrody-namics of a massive spin-0 boson with mass μ and charge Q. 

 

case b) 02     nontrivial vaccuum case  

V (θ) has a minimum for  22* /)(2 v  which gives  ie
v

2
 . 

We may choose α = 0 as α is arbitrary but fixed.  

    Qie      SSB 

We may parameterise the field in polar coordinates 

  )(
2

1
Re

2

1
  iHvi   

The kinetic term is 

 

  


iiQAD Re
2

1
)(   

  
  ieRiQAiRR )(

2

1
  


  ieRiQAiRRD  )(

2

1*  

The potential term is 

  
422*

42

1
)( RRV


   
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 

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


  FFRVAQRAARQRRRL

4

1
)(

2

1

2

1
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  2222 )
1
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1
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1
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2

1





 
Q

ARQFFRVRR  

Now we note that the term  
Q

A
1

  looks like a gauge field transformation. In fact, it can be 

gauged away1:  
Q

AA
1

' . Now, we see that vR   as R=v+H. 
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1 222 AAHvQFFHvVHHL   
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





 '')2(

2

1
''
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1
''

4
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))(()
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1 22222 AAHvHQAAvQFFHvVHH   

In the unbroken case the particle content contained A , a massless gauge boson (2 d.o.f‟s) and 

two massive scalar fields 21,  (2 d.o.f‟s) all in all 4 d.o.f‟s. 

 

SSB: After mapping H, π ↔ R, ζ it is manifest that ζ is a massless Nambu-Goldstone boson that 

can be gauged away; and A  is massive with 3 d.o.f‟s: 2 transverse + 1 longitudinal. We say that 

“ζ is eaten” by the gauge field. H is massive: 1 degree of freedom. The number of d.o.f‟s (=4) is 

unchanged. 

We see, that the Goldstone boson is absorbed by the gauge boson leading to a longitudinal 

degree of freedom for the gauge field. This is called the Higgs mechanism after P. W. Higgs 

(1964). Ideas along the same line were developed by Brout, Englert, Hagen and Kibble around 

the same time. 

 

 

 

Problem: 

 

The Lagrangian for three real fields is 

  
22222 )(

4

1

2

1
)(

2

1
iiiL    

Show that ( 02  , 0 ; a summation over is is implied) it describes a massive field of mass 

22  and two massless Goldstone bosons. 
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Lecture XI 

 

Electroweak unification 

 

The Standard Model is a gauge theory with the gauge group: 

 

SU(3)C ⊗ SU(2)L ⊗ U(1)Y 

 

It defines the fundamental interaction of Fermions (leptons and quarks), gauge bosons and the 

Higgs boson. 

The electroweak sector SU(2)L ⊗ U(1)Y is spontaneously broken via the Higgs mechanism. It 

displays other odd features. 

 

 

Weirdness in the Weak sector 

 
Up to around 1956 it was expected that charge-conjugation (C), parity (P), and time reversal (T) 

were eachsymmetries of nature. 

Why? 

• A breakage of joint CPT would break Lorentz invariance 

• Dirac equation: suggests C should be a good symmetry 

• US drives on left, UK drives on right: suggests P should be a good symmetry 

• Classical mechanics is reversible: suggests T should be a good symmetry 

In 1956 T. D. Lee and C. N. Yang observed while C and P invariance had been rigorously 

checked experimentally for the strong interactions, no such test had been made for weak decays. 

 

Parity and CP violation history 

1956 T. D. Lee & C. N. Yang suggest Parity, Charge and CP violation experiments 

1957 C.S. Wu et al discover Co60 beta decay has strong parity asymmetry 

1957 T.D. Lee & C. N. Yang : two component neutrino theory 

1958 Marshak & Sudarshan,Feynman & Gell-Mann : V-A four fermi coupling 

1957 Lee and Yang Nobel Prize 

1964 Cronin and Fitch discover CP violation in neutral kaon system 

1963 Cabbibo quark flavour mixing 

c1970 Glashow-Salam-Weinberg Theory unifies electro-weak sector 

1972 Kobayashi Maskawa 

1980 Cronin and Fitch Nobel Prize 

2008 Kobayashi-Maskawa-Nambu Nobel Prize 

 

Wu experiment 

The Wu experiment placed Co
60

 in a magnetic field aligning nuclear spin 

Electrons preferentially emitted in direction opposite to magnetic field 

→ Parity breaking angular distribution of beta (e−) particles 

T. D. Lee and C. N. Yang concluded that the reclusive neutrino always spin aligns with the 

direction of propagation. Breaks parity (defines the sense of a left-handed screw). 

The anti-neutrino always spin anti-aligns with the direction of propagation. 

Helicity and chirality coincide for massless neutrinos ⇒ V-A current 



 

71 

 

  e)1( 5    

enters the four fermi interaction (Marshak & Sudarshan, Feynman & Gell-Mann). 

Model does not violate joint CP: 

neutrino↔ anti-neutrino and left handed spin ↔ right handed spin 

 

 

Parity breaking 

We have mentioned the V − A weak coupling vertex several times. 

Consider an   We e  transition, where the electron momentum is large and in the ẑ  

direction. The W-boson couples to the V-A current 

 )()1()1)('(
2

1
)()1()'( 555 pupupupuJ ee   

 

We take the case of )ˆ,( zppp and 
)ˆ','(' zppp   

The we take 


























1

0
,

0

1
    as up/down two spinors and our external four spinors are 

 

  








ez

e

eu




,     
),( zu  

 
 

We then have  

  













ez

ez

eu





)1(

)1(
)1( 5        

))1(),1(()1( 5 zzu      

Observe that 









00

01
)1(

2

1
z  projects out only left handed components. The corresponding 

W-boson processes for the parity flipped right handed spins do not exist and this mechanism lead 

to the Wu experiment asymmetry. 

 

 

Glashow-Salam-Weinberg Theory SU(2)L ⊗ U(1)Y 

 

Both Parity violation and CP violation are explained by the unified electro-weak sector, also 

referred to as Glashow-Salam-Weinberg Theory (c. 1970), Electro-Weak Theory, or Quantum 

Flavour Dynamics. 

 

Electroweak theory describes electromagnetic and weak interactions. The gauge group is 

spontaneously broken via the Higgs mechanism  EMnSSBreakdowYL UUSU )1()1()2(  
 

 

Theory is chirally coupled gauge theory:   

left handed fields L
, L   trandform as LSU )2(  doublets 

right handed fields R , R transforms as LSU )2( singlets 

  )1(
2

1
5,  RL  such that  LRRLP ,,    

Left-handed doublets are in the fundamental representation of LSU )2(  (weak isospin): 
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'
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  RRR eee  '
                (singlet) 

 
L

Ti

LL
d

u
e

d

u

d

u aa


























 

'

'

 

  RRR uuu  '
 

  RRR ddd  '
 

Theory does not distinguish between quarks, colour blind. 

 

 

Lagrangian 
 

We can write the theory as the sum of Lagrangian densities: 

 ][ ghostYukawafermionHiggsgauge LLLLLL 
 

Note that the Yukawa sector, YukawaL , allows for boson and fermion interactions; the “ghost” 

sector is needed to maintain covariance whilst quantising a non-Abelian gauge theory. 

 

 

The gauge sector: gaugeL  

 

Electromagnetic interactions are related to an unbroken gauge theory as it contains a massless 

boson; electric charge is conserved leaving the photon massless. 

Weak interactions are short range hence we need SSB to create exchange particle mass 

  
r

e
massive

r
massles

mr

 ~
1

~  

Glashow, Salam, and Weinberg constructed a Lagrangian which explained all existing data so 

far. 

  

':

,,:

)1()2(:
321

ggcouplingsgauge

YTTTgenerators

USUgroupgauge

isospinweak

YL





 

The Lagrangian may be written as 
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  



 BBWWL jj

gauge
4

1

4

1
  

Where 

  mljlmjjj WWgWWW   ,     ]3,2,1[j  

   BBB   

This theory describes four massless vector bosons but we need to break this to only one using the 

Higg‟s mechanism. 

 

 

The Higgs sector: HiggsL
 

 

 

We generate gauge boson masses by spontaneous symmetry breakdown: 

need 1 massless gauge boson (photon) and 3 massive gauge bosons (weak interactions) 

Minimal choice: introduce a scalar field as an SU(2) doublet 

    



















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0
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21

2

1










i

i

 

Where 2

1
)( 


T
transforms under fundamental representation of SU(2)L .

. 

Assign hypercharge: 
2

1
)( 


Y . 

To make the theory invariant under local transformations, we need 

          




couplingU
couplingSU

TBigWigD

)1(
)2(

'
2

1
    

The Lagrangian is then 

  )()()(  



  VDDLHiggs  

 

 

.where   
22 )()( 


 V

. 

 

Note that 02  and 0 leads to SSBreakdown.
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 0
022

10

01

10

22

11























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






v

v
T   

 

Hence, 1T  is a broken generator. The same is true for 2T  and YT 3  meaning that we have 

three Goldstone bosons which we may gauge away. The SU(2)L doublet can be written as 
 

 

  



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




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


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vH
U

vH
T

v
i jj

0

2
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2

1
)

1
exp( 


 

The term )
1

exp( jjT
v

iU 
 looks like a SU(2)L local group element. The Goldstone bosons, 

j  , play here the role of the space-time dependent parameters. 

 

Applying the gauge transformation U leads to the so-called unitary gauge: 
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We obtain 
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We can write 
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Thus in this gauge: 
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And similarly 
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This Lagrangian defines interaction and mass terms 

The charged vector boson masses can be read off directly from 
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leading to 
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2
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gv
MM

WW
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The interactions of 2,1W arise through the combinations 21

 iWWW  , and these linear 

combinations are the W  and W  gauge bosons. For the quadratic term in the 3

W , B  bosons 

we find
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The eigenvalues of the mass matrix are:  0
,  

22 'gg 
 

The mass term is a diagonal quadratic form of the field  3' gWBg  , and we find the 

normalised eigenvectors are parallel and orthogonal to this 
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Making the field redefinition, 
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We get 
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We see that A  is massless and that ZA  is a massive vector boson with mass 4/)'( 2222 vggM Z 

, and the other massive state in Higgs sector is the Higgs boson with mass 222 22 vM H  
.
 

 

 

The fermion sector: Lfermion 

 

Massive Dirac-fermions can be split into left and right-handed chiral components by using 

projectors  RLP , : 

   RLRL PP 
,      2

1 5
,


RLP

 

 
In the original formulation of the Standard Model the massless left handed neutrinos had no 

right-handed partners. Recently observed neutrino oscillations suggest right-handed neutrinos 

but we shall stick to the original formulation in the following. 

 

The SU(2)L ⊗ U(1)Y quantum numbers for the fermions are 

 

Leptons T (isospin) Y (hypercharge) 
3T  YTQ  3  



 

76 

 










e

e

,











 

,











   
2

1
 

2

1
  

2/1
 
2/1  

0 

-1 

Re , R  ,
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Quarks T (isospin) Y (hypercharge) 
3T  YTQ  3  
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2

1
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2/1  
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0 

-1 

Ru , Rc  ,
 

Rt  0 2/3 0 2/3 

Rd ' , Rs'  ,
 

Rb'
 

0 -1/3 0 -1/3 

 

 

To give an example for the notation: 

   

Lred

redfredc

L
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c
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
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The reason for introducing the primed quark fields q′ in the list will become clear below. 

We can now construct the fermion Lagrangian 

 

   

flavors
colors

cf

L

cf

R

cf

L

cf

Lfermion DiDiL }{   

where we have to distinguish the covariant derivative acting on the left fields 

   

  


YBigWigD '

2




 
from the one acting on the right fields, as the latter do not couple to SU(2)L  gauge bosons. 

 

   YBigD '
~

  

Lfermion is not sufficient to provide mass terms; we need to couple the fermions to the Higgs 

sector to achieve that. 

There are no mass terms because gauge invariance does not allow them as L/R fields cannot be 

adequately combined. For example: 

 conjugateHermitianeemeeeemePeePemeem RLLRRLLR  )()(  

 

But this is not a gauge invariant term under SU(2)L and hence it is forbidden. 

Note that we have used LLLLRR eePPePePePe  

0000 )(   

 

 

 

 

The Yukawa sector: LYukawa 
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LYukawa is defined by SU(2)L⊗U(1)Y invariants composed out of the Higgs doublet and the 

fermion multiplets where 
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Y: 1-1/2-1/2=0 as it must be for an U(1)Y singlet. 

 

 

Up quark mass: 
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Y: -2/3+1/2+1/6=0 

 

Down quark mass: 
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Flavour mixing: seen in experiments, e.g.    )(~ suK
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Flavour changing neutral currents do not arise in the Feynman rules. 

(complex loop processes can have this effect and are involved in searches for new physics) 

 

   
 

 

The most general Yukawa interaction for 3 generation is 

 

 

 

 

































































































































L

L

L

qRRR

L

L

L

e

lRRRYukawa

b

t

s

c

d

u

Cbsd

e

CeL

'

'

'

)',','(),,(






































 

   

























































L

T

L

T

L

T

qRRR

b

t

s

c

d

u

Ctcu

'

'

'

'),,(













  +Herm. Conj.  

 

 

Where  33',, CCCC qql

. 

SU(2)L⊗U(1)Y invariantce seems to allow for generation mixing. 

We now have to ask the question how many entries in the matrices are actually physical, means 

cannot be absorbed by a redefinition of fields and complex phases. 

Consider making a basis change (this does not affect the physics): 
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We can now use this transformation to reduce the degrees of freedom in qql CCC ',, . 
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
,   

2131 VCUC qq

  

 

 

 

 

Simplifications 

 

Recall Hermitian ⇒ diagonalisable: CC   is automaticall Hermitian positive semi-definite with 

eigenvalues λ
2
 . 

Our matrices C are merely complex and not diagonalisable. However, complex matrix has a 

singular value decomposition 

    UDVC  

 

 

where U, V are unitary, D is diagonal with elements λ ≥ 0 and λ
2
 are the eigenvalues of CC  . 

Thus we can write 

   llll VDUC
 

 qqqq VDUC
 

 '''' qqqq VDUC  

 

 

 

Lepton sector 

 

 Choose  lUU 1   ,   ),,(1  elll diagDCVV 
 

No lepton flavour mixing 

Lepton-gauge couplings diagonal in same basis as that with a diagonal mass matrix. 

 

 

 
The quark sector 
 

Choose  '2 qUU    ,   ),,(''2 tcuqlq diagCVV   

But           23 VVDUUC qqqq

  
is not diagonalisable. We have already chosen V2 . 

Greatest simplification obtained by taking 

  

  VVDCUVVU qqqq23  

 

where qVVV 2 is the unitary Cabibbo-Kobyashi-Maskawa matrix (1973). 

 

By using our free choice for 2U  and 2V  to diagonalise qC ' we see that qC  can in general not be 

diagonalised at the same time. We are left with a unitary rotation which acts on the d, s, b quarks. 
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There is still some freedom that allows us to restrict V ∈ U(3) further. We are free to apply a 

phase transformation on RL,
 
since the wave functions are defined up to a global phase. 
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Consider first the case of two generations: 
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The three phase differences can be chosen such that: V11 ≥ 0, V12 ≥ 0, V21 ≤ 0. 

The 4th phase is fixed as )()()( 11211222   . This gives 
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To fulfill these three conditions we need ρ = 0, an imaginary phase is not allowed. Hence 
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This defines the original Cabibbo matrix for two generations. It describes the mixing between the 

electroweak eigenstates d′, s′ and the mass eigenstates d and s. 
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It describes the mixing between the electroweak eigenstates d′, s′ and the mass eigenstates d and 

s. 

    
 

 

W couples to the electroweak doublet 
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“strangeness” quantum number is not conserved in electroweak interaction. Mesons and baryons 
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containing strange quarks decay through charged currents, i.e. the exchange of charged vector 

bosons. For example it allows K
+
 to decay dominantly to leptons via a vector boson    (∼ 

64%),  0  (∼ 3%), ee  0  (∼ 5%). 

In the 3-generation case we start with 
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which can be written as a matrix defined by 3 angles and 1 phase if we follow the same 

reasoning as in the 2-generation case. We employ a reduced notation to express this more 

compactly: iC ccos , iC ssin . The mixing matrix is then 
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Where ]2/,0[  i  , ]2,0[   . 

 

 

Remark: Of all parameters in the Standard Model, ie  is the only complex one. Such terms are 

not invari-ant under CP transformations. This has two important applications: 

i.) mixing in kaon and anti-kaon → first experimental indication of CP violation in nature. 

ii.) for baryon asymmetry → need CP violation. 

 

Theoretical prediction of CP violation: Nobel-Prize for Kobayashi and Maskawa 2008. 

 

 

 

Summary 

Collecting things together, the Yukawa sector of the Standard Model leads to mass terms for 

fermions, 2/vm f   , and Higgs-fermion interactions 
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Recall that dsb is a linear combination of electroweak eigenstates: 
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We see that the Yukawa sector contains 9 masses + 3 angles + 1 phase = 13 parameters. The 
parametersof the flavour sector have to be fixed by experiment. 
 

 

 

 

The Standard Model – Final Lagrangian 
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Problems: 

 

1.The Lagrangian for the scalar field contains trilinear  
WhW  , and quadrilineaer 

WhhW  

Higgs boson couplings. Use 
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xhv
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(1)show that the vertex factor for 
WhW   and  WigM  are   24/ gi  respectively. 

(2)determine the hZZ and hhZZ vertex factors. 

 

 

2.Show that 
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3.Show that   22 2vmh  .
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Lecture XII 

 

Neutrino oscillation 

 

Oscilations 
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Consider two generations 

 

  sincos1 e ,     cossin2 e  
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all back to electron neutrinos. 

 

 

The Super-Kamiokande detector 

 

The pp chain: 

Two protons make a deuteron 

  eedpp   ,   edepp    

Deuteron and proton make He3  

   Hepd 3  

Helim-3 makes alpha particle or Be7  

 eepHe   3  

 ppHeHe  33  

  BeHe 73  

Beryllium makes alpha particle 

 eLieBe   77   

   pLi7  

 BpBe 87  
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eeBeB  *88  

 *8Be  

 

Problems: 

1.An important reaction producing electron neutrinos in the Sun is LiBee e

77   . In the 

vast majority of the cases (90%) th Li nucleus is produced in its ground state. Consequently, the 

„Be neutrinos‟ energy spectrum is monoenergetic with 862.0E  MeV. The corresponding 

total neutrino flux at the Earth is 213106.4  m . The BOREXINO experiment at LNGS 

detects neutrinos via the reaction   ee ee  . Its fiducial volume contains 100 t of liquid 

scintilliator. The liquid is pseudocumene 129HC . The light produced by the final electron is 

detected by an array of photomultipliers covering the surface surrounding the volume. Assume 
248106.0)( mee

 , )(6/1)( , ee e   , 0

12 34 , 22 80meVm  . 

(1)If electron neutrinos did not change flavor, how many events would be expected per day in 

the 100 t target mass? 

(2)Which is the principal mechanism of flavor conversion for Be neutrinos from the Sun? 

(3)Under these conditions, calculate the expected number of events per day in BOREXIMO of 

Be neutrinos. 

 

2.Consider the muon neutrinos generated by the decays of the mesons produced by the collisions 

of cosmic rays in the atmosphere („atmospheric neutrinos‟). Their energy spectrum at the surface 

of the Earth extends over several orders of magnitudes, decreasing with energy roughly as 3

E  

and with important dependence on the angle to the zenith. At GeVE 1  their flux around the 

zenith is approximately 1112130  GeVsrsm


. 

The Super-Kamiokande detector is a 22.5 kt fiducial Cherenkov detector in the Kamioka 

underground  observatory. Muon neutrinos (and antineutrinos, but we will not consider them) are 

mainly detected via their CC interactions on O16  nuclei XO   
16

. Assume 

24216 10)( mO  , 0

23 45 , 0

13 0  , 22 2500meVm . 

(1)How many interactions per year will happen induced by muon neutrinos arriving with 

directions within 1 sr around the zenith in 1 GeV energy interval? (for the purpose of 

thisproblem, assume, unrealistically, all quantities to be constant in these intervals). 

(2)What is the fraction of surviving neutrinos coming vertically upwards? 
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Lecture XIII 

Discovery of the Hggs Boson 

 

Let us consider charged current neutrino-electron scattering 

(on purely dimensional grounds one can conclude that the cross section (for a point interaction) 

must behave sGF

2~  at high energies) 

 

  

The invariant amplitude has the form  
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(the electron mass was neglected; so ''22)( 2 pkpkpks  ) 
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Integration over angular distribution gives 

 



sGF

2

  

It becomes infinite as s . The introduction of finite-mass W boson removes the divergence, 

and for large s it can be shown that 

 



22

)( WF
e

W

e

MG
ee   
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The introduction of W boson causes its own problems; consider neutrino W boson scattering. 

 

The corresponding cross section  3/2 sGF  similarly behaves (diverges) at large s. We may 

tempted to conclude that we are required to introduce the neutral current. 

 

The process    WWee  is another example where the self-coupling of gauge bosons 

ensures a finite answer. 

 

Direct computation reveals that the individual diagrams at high energies behaves as 42 / wMs  , but 

the sum is more gentle 2/~ wMs . Even after introducing similar diagrams with Z exchange the 

sum of all diagrams behaves as 2/~ wMs . Heavy leptons cannot help us, so the only solution is to 

introduce a scalar particle which cancels these residual divergences through diagrams of the tipe 

  

If we had not previously introduced it to generate the heavy boson masses, we would have been 

forced to invent it now to guarantee renormalizibility. A detailed investigation of this point 

would reveal that the higgs couplings are proportional to masses, a result we are also familiar 

with. 
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Discovery of the H boson 

 

The LHC was designed to be able to reach 1000HM GeV. Sensitive searches for the H boson 

were carried out in the LEP experiments. The final limit on the mass at 95% confidence level 

was (hep-ex/0612034) 

  4.114HM  GeV 

          

 

The mass of observed boson was calculated with a best-fit procedure in the four-lepton and two-

photon channels  ( arXiv:1408.5191   arXiv:1412.8662) 

 4.07.125 HM  GeV 

 The Standard Model of particle physics codifies the properties and interactions of the 

fundamental constituents of all the visible matter in the Universe. It describes successfully the 

results of myriads of accelerator experiments, some of them to a very high degree of precision. 

However, for quite some time the Standard Model resembled a jigsaw puzzle with one piece 

missing: the Higgs boson. It, or something capable of replacing it, was essential for the 

calculability of the Standard Model and its consistency with experimental data. The last piece of 

the puzzle, at times (somewhat dubiously) termed the “Holy Grail” of particle physics, or even 

the “God Particle”, was finally put into place with the July 4, 2012, announcement of the 

discovery [1] at the CERN Large Hadron Collider (LHC) of a “Higgs-like” particle at a mass of 

approximately 125 GeV. Subsequently, measurements of its properties by the ATLAS and CMS 

collaborations have shown more detailed consistency with predictions for the Higgs boson of the 

Standard Model, but searches for possible discrepancies indicative of new physics beyond the 

Standard Model are continuing. 

The existence of the Higgs boson was first postulated in 1964 [2: P. W. Higgs, Broken 

symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508], following earlier 

theoretical work that introduced spontaneous symmetry breaking into condensed-matter [3: P. 

W. Anderson, Plasmons, gauge invariance, and mass, Phys. Rev. 130 (1963) 439; see also Y. 

Nambu, Quasi-particles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 

(1960) 648.] and particle physics [4–6: Y. Nambu, Axial vector current conservation in weak 

https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1408.5191
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1412.8662


 

90 

 

interactions, Phys. Rev. Lett. 4 (1960) 380; F. Englert and R. Brout, Broken symmetry and the 

mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321; P. W. Higgs, Broken symmetries, 

massless particles and gauge fields, Phys. Lett. 12 (1964) 132; G. S. Guralnik; C. R. Hagen; T. W. B. 

Kibble (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters. 13 (20): 585–

587. ]. It was incorporated into the Standard Model in 1967 [7, 8: S. Weinberg, A model of 

leptons, Phys. Rev. Lett. 19, 1264 (1967). This seems to be the first paper in which it is shown 

that matter particles can also acquire their masses from „spontaneous‟ symmetry breaking.; A. 

Salam, Weak and electromagnetic interactions, in the Proceedings of 8th Nobel Symposium, 

Lerum, Sweden, 19-25 May 1968, pp 367-377.], and shown in 1971 [9: G. ‟t Hooft, 

Renormalizable lagrangians for massive Yang-Mills fields, Nucl. Phys. B 35, 167 (1971); G. ‟t 

Hooft and M. J. G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 

44 (1972) 189.] to lead to a calculable and predictive unified theory of the weak and 

electromagnetic interactions. With the discovery of neutral currents in 1973 [10: F. J. Hasert et 

al. [Gargamelle Neutrino Collaboration], Search for elastic muon neutrino electron scattering, 

Phys. Lett. B 46 (1973) 121 and Observation of neutrinolike interactions without muon or 

electron in the Gargamelle neutrino experiment, Phys. Lett. B 46 (1973) 138.], the discovery of 

charmonium in 1974 [11: J. J. Aubert et al. [E598 Collaboration], Experimental Observation Of 

A Heavy Particle J, Phys. Rev. Lett. 33 (1974) 1404; J. E. Augustin et al. [SLAC-SP-017 

Collaboration], Discovery of a narrow resonance in e +e − annihilation, Phys. Rev. Lett. 33 

(1974) 1406.], the discoveries of the W± and Z 0 particles in 1983 [12: G. Arnison et al. [UA1 

Collaboration], Experimental observation of isolated large transverse energy electrons with 

associated missing energy at s 1/2 = 540 GeV, Phys. Lett. B 122 (1983) 103 and Experimental 

observation of lepton pairs of invariant mass around 95-GeV/c2 at the CERN SPS collider, Phys. 

Lett. B 126 (1983) 398] and subsequent detailed measurements, the predictions of the Standard 

Model have been crowned with a series of successes 
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The status of the Higgs search in March 2012 [LEP Electroweak Working Group, 
http://lepewwg.web.cern.ch/LEPEWWG/ ]. The left-hand yellow-shaded region is the LEP exclusion, 

and the right-hand yellow-shaded region is the Tevatron exclusion at that time [Tevatron New Phenomena and 

Higgs Working Group, http://tevnphwg.fnal.gov/  ]. 
 
 

Problems: 

 

1.Proof that charged current neutrino-electron scattering evaraged amplitude 

 

222
16 sGA F

 
 

2.Proof that the neutrino W boson scattering cross section at large s 

 

  3/2 sGF  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://lepewwg.web.cern.ch/LEPEWWG/
http://tevnphwg.fnal.gov/
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Lecture 14 

 

Beyond the standard model 

 

Grand unification 

 

With the success of electroweak unification (in the 1960s) the logical next step was to include 

the strong interaction in a „Grand Unified Theory‟ (GUT) that would identify all three forces as 

different manifestation of a single underlying interaction. 

 

GUT [PRL, 32, 438 (1974)] 

It led to a spectacular prediction: the proton is unstable, decaying (for example) into a positron 

and a pion 

   0 ep  

The lifetime is reassuringly long – at least 3010 years. In 30 years of increasingly precise 

experiments, however, proton decay has never been observed ( 343310)( proton years). More 

elaborate GUTs have been proposed, but almost all of them require proton decay at some level. 

 

Grand unification contemplates an overarching symmetry group (SU(5)) that contains as 

subgroups the (color) SU(3) and )1()2( USU   symmetry of the Standard Model. The 

fundamental fermions (quarks and leptons) are assigned to representations of this group. The 

first generation comprises 15 particle states. There are 24 mediators: the 8 gluons, the photon, 
W , W ,  and Z  ,  and 12 new ones – the X  (charge 3/4   , 3 colors, hence 6 in all), and the 

Y  (charge 3/1   , 3 colors, for another 6 ). The couple leptons to (anti)quarks, and hence are 

known as leptoquarks ( Xed  , Yeu  ). The also couple quarks to antiquarks (

Xuu  , Ydd  ) 
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Proton decay in the SU(54) GUT 

 

 

 Charge Mass 

8 gluons 0 0 

1 photon 0 0 

3 W , Z  1, -1, 0 22 /10~ cGeV  

6 X 4/3, -4/3 216 /10~ cGeV  

6 Y 1/3, -1/3 216 /10~ cGeV  

 

Grand unification purports to „explain‟ the relation between quark and lepton charges. The sum 

of the charges in a multiplet must be zero, and putting quarks and leptons into the same multiplet 

forces (in case of SU(5))  03  de qq . 
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Supersymmetry, Strings, Extra Dimensions, …  

 

 

Supersymmetry 

Over the past 40 years an enormous amount of work has been done on supersymmetry. 

Supersymmetry carries the stupendous implication that every fermion has a bosonic partner 

(identified by putting an „s‟ in front of the name – thus „squark‟, selectron‟ sneutrino‟, etc) and 

every boson has a fermionic partner (identified by putting „ino‟ after the name – thus „photino‟, 

„gluino‟, „wino‟, higgsino‟, etc). If supersymmetry were unbroken, the particles  would share the 

masses of their twins – the photino would be massless particle of spin ½, and the selectron a 

spin-0 particle with a mass of 0.5 MeV; no such particle exist. So the symmetry must be badly 

broken. Presumably the supersymmetric particles are much heavier – too heavy to be produced 

by any existing machine ,though there are strong indications that at least some of them should be 

accessible to the LHC. 

Supersymmetry has  the potential to solve several theory problems: 

1.By introducing a number of new particles, it modifies the energy dependence of the three 

running coupling constant, making possible their perfect convergence at the GUT scale. 

2.It offers a „natural‟ solution to the so-called hierarchy problem. The higgs mass is renormalized 

by various loop diagrams, which drive it way out acceptable range unless there are magical 

cancellations („fine tunning‟). But loop corrections are opposite sign for bosons and fermions, so 

supersymmetry, by pairing particles with „sparticles‟ makes the cancellation exact and automatic. 

3.In most models, the lightest supersymmetric particle is colorless, neutral and stable, making it 

an attractive candidate for Dark Matter. 

 

 

 

Strings 

In string theory the basic units of matter are not (zero-dimensional)particles, but rather one-

dimensional „strings‟ (or higher dimensional „branes‟), of which „particles‟are various 

vibrational modes. The theory underwent an extraordinary evolution between the 1970s, when a 

few lonely visionaries took up the cause, and 2000, by which time it was wellestablished as the 

dominant paradigm.Early versions contained only bosons; fermions were later incorporated via 

supersymmetry (hence „superstrings‟) and the number of space dimensions dropped to 9 or 10. 

Meanwhile, it was realized that the theory automatically includes the gravitation, making it a 

natural candidate for quantum gravity. 
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Dark Matter/Dark Energy 

Persuasive astronomical evidence now indicates that the matter we know about – described by 

the Standard Model – represents a measly 5% of the mass/energy content of the universe. The 

rest is Dark Matter (about 20%) and Dark Energy (75%). The implications for particle physics 

are humbling: we see only the tip of the iceberg. What is all this other stuff, and how it managed 

to elude us? 

In 1933 Fritz Zwicky measured the velocities of galaxies in the Coma cluster (from the Doppler 

shift of their atomic spectra), and used this information to determine the mass of the cluster. The 

result was surprising: 400 times larger than the visible stars in the cluster. Evidently the galaxies 

contain a lot of matter that does not radiate (and is called therefore dark matter). More recently 

rotation curves have been measured for a number of galaxies (including our own). These plot the 

(tangential) velocity v as a function of distance r from the galactic center. Newton‟s law of 

universal gravitation says that for stars well away from the core v should decrease as r/1  ; 

instead, it typically increases. This suggests that the dark matter permeates a spherical „halo‟ 

extending well outside the galactic nucleus.  

So far, though, our only evidence for dark matter comes from its large-scale gravitational effects, 

and it is natural to wonder whether perhaps Newton‟s laws (and also general relativity) are 

incorrect on some scale, and there is actually no dark matter out there. Short of such a radical 

alternative, the question remains: what is this stuff? Could it be ordinary could matter – sand and 

gravel, perhaps, the remnants of extinct stars or dead planets. Almost certainly not. Cosmological 

models that are convincingly corroborated by the observed abundances of light elements do not 

allow for anywhere near enough baryons to account for dark matter. What about neutrinos? 

Probably not – even though there are enormous numbers of them, they are much too light to 

contribute more than a small fraction of the observed dark matter. Evidently we are looking for 

something much more massive than neutrinos, but (like neutrinos) weakly interacting; WIMPs 

(Weakly Interacting Massive Particles). Their mass is tentatively estimated to lie in the range 

100 – 200 GeV; they are certainly neutral (otherwise they would radiate) and stable (left over 

from the Big Bang). No such particle is known in the Standard Model. But supersymmetry does 

suggest a candidate: the lightest supersymmetric particle (probably a mixture of the photino and 

higgsino – or possibly the Zino – called the „neutralino‟). Large numbers might be left over from 

the Big Bang. Another possibility is the axion – the hypothetical particle introduced to account 

for the absence of strong CP violation. Since the late 1980s a number of WIMP searches have 

been under way and convincing evidence may well come in the next few years. 

 

 

Before 1998 it was taken for granted that the expansion of the universe is slowing down, due to 

the gravitational attraction of all matter; the only question was whether the energy density of the 

universe is great enough to reverse the expansion completely, leading to a „big crunch‟. Visible 

matter and dark matter together amount to about a third of „critical density‟, so for those who 

believed the expansion „should‟ reverse there was a second „missing mass‟ paradox, unrelated to 

the dark matter problem: where is all that „extra‟ energy? 
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The problem was turned inside out by the astonishing discovery that the expansion of the 

universe is not slowing down at all, but rather accelerating. Evidently Newtonian gravity 

(universal attraction) is not right on the largest scale – either that or there is some new force that 

is repulsive in nature and overwhelms gravity in this case. In general relativity, there is a (sort of) 

natural place for an extra term that could account for the phenomenon: the cosmological; 

constant . Einstein‟s original theory (with no cosmological constant) implied that the universe 

expands – something he regarded as absurd. He was able to rescue the theory by introducing an 

ad hoc source term, whose strength () could be adjusted to stabilize the universe. 

(Mathematically, the cosmological constant introduces a kind of primordial repulsion, or 

negative pressure, that balances the universe attraction on a cosmic scale.) Later, when Hubble 

discovered that the universe in fact expanding, a chagrined Einstein disowned the cosmological 

constant, calling it „my greatest blunder‟. But, when the accelerated expansion was discovered, 

the obvious remedy was to resurrect the cosmological constant. There is however a subtle 

distinction between the original notation of a cosmological constant and its contemporary 

reincarnation. Einstein conceived  as an unexplained fundamental constant of nature – 

analogous to Planck‟s constant or Boltzmann‟s constant; there were two distinct sources of 

gravitation: matter (actually the stress tensor, incorporating energy, momentum, and stress of all 

forms) and . In the modern version  is taken to have a dynamical origin, in the form of dark 

energy associated with the vacuum expectation value of some quantum field. 

 

 

(Large) Extra Dimensions 

The modern models with extra space-time dimensions could be built in several ways. Among 

them the following major approaches are most remarkable: 1) ADD model of Arcani-Hammed, 

Dimopoulos and Dvali (1998) [N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys.Lett. B429 

(1998) 263; hep-ph/9803315. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. 

Lett. B436 (1998) 257; hepph/9804398]. In this approach all elementary particles except 

graviton are localized on the Brane, while the graviton propagates in the whole Bulk. There are 

at least two extra space dimensions in the above model. 2) RS model of Randal and Sundrum 

with warped 5-dimensional space-time and nonfactorized geometry [L. Randall, R. Sundrum, 

Phys. Rev. Lett. 83 (1999) 3370; hep-ph/9905221. L. Randall, R. Sundrum, Phys. Rev. Lett. 83 

(1999) 46090; hep-th/9906064]. There are two such models with compactifized and 

noncompactifized dimensions (RS1 and RS2 models). 3) ACD models of Appelquist, Cheng and 

Dobrecu (so called Universal Extra Dimensional Model), where all the particles move in the 

whole Bulk [T. Appelquist, H.C. Cheng, B.A. Dobrescu, Phys. Rev. D64 (2001) 035002; hep-

ph/0012100]. The idea of extra dimensions is as old as almost century age. It was G. Nordstrom, 

who in 1912-1914 has formulated relativistic theory in 5 dimensions, which simultaneously 

described gravity and electromagnetism [Nordstrom G, Phys. Ztsch., 1914, Bd. 15, S.504]. Of 

course Nordstrom unification looked rather formal. Nevertheless the possibility of this 

5dimensional unification hinted on deep relation between these two fundamental interactions, 

known in that time. In 1915 Einstein created the General Theory of Relativity [A. Einstein, 

Published in Sitzungsber. Preuss.Akad.Wiss.Berlin (Math.Phys.) 1915:778- 786,1915, 
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Addendum-ibid.1915:799-801,1915], where gravity was considered as geometrical deformation 

of the space-time. In 1919 mathematician Th. Kaluza has shown that five dimensional relativistic 

gravity (with Einstein-Hilbert action) manifests itself in the four dimensional space-time as both 

electromagnetism and gravity [Th. Kaluza. Sitzungsber. Preuss.Akad.Wiss.Berlin(Math.Phys) 

1921 (1921) 966]. In other words, Nordstrom formulated first five dimensional electrodynamics, 

while Kaluza created first 5D gravity. These two were just first nave attempts towards first 

unification of interactions (gravity and electromagnetism) established that time. In 1926 O. Klein 

rediscovered Kaluza‟s theory [O. Klein. Z.Phys.37 (1926) 895]. Moreover, there were also 

numerous efforts to unify electromagnetism, gravity and quantum mechanics in 5D by several 

authors. Later, the discovery of new types of interactions (strong and weak ones) complicated 

above efforts. The use of one additional dimension seemed to be unnatural and insufficient for 

these goals. One of the difficulties of multidimensional theories is the mechanism, due to which 

extra dimensions are hidden. Thus during study of ordinary physical phenomena the space-time 

looks like effectively four-dimensional. Until recently mostly Kaluza-Klein type theories were 

considered. In these types of theories extra dimensions are assumed as essentially compact and in 

essence homogenous. Just compactness of extra dimensions provides effective 4D character of 

the space-time dimension at the distances above the compactification scale (size of extra 

dimensions). At that the extra dimensions must be of microscopic size. Following to widespread 

opinion, the compactification scale should be of the Planck scale size (though electroweak scale 

have been discussed in this role). On the other hand, direct observation of extra dimensions at the 

Planck scale ( cmlPl

3310~ 

, GeVM Pl

1910~  ) seems to be hopeless. However ”Brane World” 

conception permitted to change situation on this direction: we mean just the localization of 

ordinary matter (with the exception maybe gravitons and other hypothetical particles which 

interact very weakly with the matter) on the three dimensional manifold which is cold the Brane 

[V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B125 (1983) 136. K.Akama, in Gauge Theory 

and Gravitation: Proc. of the Intern. Symp., Nara, Japan, 1982 (Lecture Notes in Physics, Vol. 

176, Eds. K. Kikkawa, N. Nakanishi, H. Hariai)(Berlin: SpringerVerlag, 1983), p.267. I. 

Antoniadis, Phys. Lett. B246 (1990) 377]. The Brane is embedded into ambient higher 

dimensional manifold (Bulk). Extra dimensions in the Brane World approach may have large 

and even infinitely large size, leading to experimentally observable effects. Recent development 

of multidimensional models is encouraged mainly due to superstring theories and their 

generalization M-theory, which is only consistent quantum theory containing (at least in 

principle) all interactions including gravity for today. Both superstring and M-theory most 

naturally are formulated in the d=10 and d=11 dimensions correspondingly. Just this latter 

circumstances indicate the possibility of the existence of extra dimensions. There are no 

experimental evidences in favor extra dimensions yet. From the phenomenological point of view 

the driving forces for modern extra dimensional approaches are connected with the existence of 

hierarchy problem ( PlZ MM  ) and with that of non vanishing cosmological Λ term (Λ ∼ 4810

1GeV  ). It is very hard to explain such a small but nonzero Λ value in the framework of 4D 

theory. However, it would be mentioned that none of above phenomenological motivations could 

be considered as a direct indication of the ultimate prove in favor of extra spatial dimensions. For 

example: hierarchy ( PlZ MM  ) has beautiful explanation in frame of 4D GUTs, and 

convincing solution of Λ-problem is not found in multidimensional theories yet, though there are 

very interesting new approaches in this direction. Let us discuss the model, which illustrates the 
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new understanding of hierarchy problem [N. Arkani-Hamed, S. Dimopoulos, G. Dvali, 

Phys.Lett. B429 (1998) 263; hep-ph/9803315. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, 

G. Dvali, Phys. Lett. B436 (1998) 257; hepph/9804398]. Let us consider the question, how 

gravity for the particles on the Brane becomes four dimensional. There are some answers on this 

question. Simple possibility to answer the question is that extra dimensions are compact and are 

characterized by size R. Gravity in this model is four dimensional at r ≫ R, but stops to be such 

at r ∼ R. One has N-dimensional Newton law at r ≪ R: n

N rmmGrV  1

21 /)(  ( NG  being 

fundamental gravitational constant in N+1 dimensional space-time, n=N-3 being the number of 

extra dimensions). For r ≫ R the four dimensional Newton law works: 1

21 /)( rmmGrV  . 

Lacing potentials at r ∼ R leads to the conditions N

n GGR  . Introducing some fundamental 

mass parameter M, which is connected with NG  as n

N MG  2/1 , we have 2/)( n

Pl RMMM  . 

So, 4D gravity coupling G and PlM are effective values and PlM  could be different from the new 

mass parameter M. This allows us to solve the hierarchy problem in the new unexpected way. 

One can assume that fundamental scale M coincides with electroweak scale by order of 

magnitude. In this case lacing condition will define the size R of extra dimensions. So, putting M 

∼ 1T eV , we have cmr n 17/3010  .  

Remarkable feature of this new insight to the hierarchy problem is that gravitational interactions 

become sizable not at the Planck scale, but on the new scale of M ∼ O(T eV ), which in fact 

must be considered as only fundamental scale of the nature. Such alternative permits us to 

explore the TeV scale region at the forthcoming accelerators, including from the point of 

viability of extra dimension approaches. 

  

 

 


