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Part  I 

 

Lecture 1 

1. Introduction  (What is a Soliton) 

Solitons are robust, localized traveling waves of permanent form. They are found everywhere.  They 

exist in the sky as density waves in spiral galaxies, and giant Red Spot in the atmosphere of Jupiter; 

they exist in the ocean as waves bombarding oil wells; they exist in much smaller natural and laboratory 

systems such as plasmas, molecular systems, laser pulses propagating in solids, superfluid
3He , fluid 

flow phase transitions, liquid crystals, polymers, and fluid flows, as well as elementary particles. They 

may even have something to do with high temperature 
CT  superconductors. So, what is soliton? 

Solitons are special nonsingular solutions of some nonlinear partial differential equations (PDEs): 

(i) they  are spatially localized; 

(ii) a single soliton is a travelling wave (i.e. it is a wave of permanent form); 

(iii) they are stable; 

(iv) When a single soliton collides with another one, both of them retain their identities after  

             collision – like the elastic  collision of two particles. 

However in many systems the fourth property cannot hold. It turns out that this nice but stringent elastic 

collision property is intimately related to a specific property of a system, which is called integrability. 

We therefore differentiate two kinds of systems; namely, integrable and nonintegrable systems. 

Note that many mathematicians insist that the name “soliton” should be reserved for those wave 

solutions that possess simultaneously all four properties listed above. This is not true for most 

physicists. All pragmatic physicists have to deal with the real world. There are simply too many real 

physical systems in nature that are nonintegrable. For these systems the concept of soliton even without 

(iv)th property is found to be so useful and fruitful that one cannot afford not to use it. The word 

“soliton” is used so loosely these days that sometimes not even properties (ii) and (iii) are retained. 

Hydrodynamic solitons are dynamical structures. They move with a constant speed and shape, but 

they cannot exist at rest. On both sides of the soliton the state of the medium is the same. They are 

called nontopological solitons in contrast to another class of solitons, which interpolates between 

two different states of a medium, and can exist at rest.  

 Solitons are solutions of the classical field equations, which, in their own right, without 

quantization, are similar to particles. They are lumps of fields (energy) of finite size. More precisely, 

the fields decrease rapidly from the center of a lump. The existence and stability of solitons is due, 

in the first place, to the nonlinearity of the field equations. In quantum theory solitons correspond 

to extended particles, which, roughly speaking, are composed of the elementary particles in each 

specific model.  
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Among various types of solitons, the class of topological solitons  is of particular interest. In particle 

physics the use of the soliton concept is rather limited, although it is sometimes very fruitful. At 

the same time solitons are to be found very frequently in condensed matter physics.    

Brief  history of solitons 

Historically, soliton was first observed by John Scott Russell in 1834 on the Edinburg-Glasgow 

channel. He called it the “Great wave of translation”. J. Russell reported his observations to the British 

Association in his 1944 “Report on waves” in the following words: 

_________________________________________________________________________________ 

“I believe I shall best introduce the phenomenon by describing the circumstances of my own first 

acquaintance with it. I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped – not so the mass of water in the channel 

which it had put in motion, it accumulated round the prow of the vessel in a state of violent agitation, 

the suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary 

elevation, a pounded, smooth and well-defined heap of water, which continued its course along the 

channel apparently without change of form or diminution of speed. I followed it on horseback, and 

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure 

some thirty feet long and a foot to a foot and half in height. Its height gradually diminished, and after a 

chase of one or two miles I lost it in the windings of the channel.    

In other words, J. Russell saw a hump of water created by a boat on the canal and followed it for several 

miles. Certainly, other people had seen such waves before since the circumstances that created it were 

not particularly unusual. But, it may be that nobody before gave it such careful thought. 

The point is that the wave he saw did not do what you might expect. From our experiences with waves 

in a bathtub or at the beach, you might expect a moving hump of water to either:  

 Get wider and shallower and quickly disappear into tiny ripples as we see with a wave that you 

             might generate with your hand in a swimming pool  

 Or “break” like the waves at the beach, with the peak becoming pointy, racing ahead of the rest 

            of the wave until it has nothing left to support it and comes crashing down.  

 

It was therefore of great interest to Russell that the wave he was watching did neither these things, but 

basically kept its shape and speed as it travelled down the canal unchanged for miles.   

J. Russell called it “the Wave of Translation” and later the “Great solitary wave”. Russell was so 

excited by this “singular and beautiful” phenomenon that he tried to explain many things in the inverse 

with it (which turned out to be wrong), but more importantly, being a good engineer, Russell went on 

and did experiments, recreating these “great solitary waves” in his laboratory dropping a weight at one 

of the end of water channel. (Fig.1). By “solitary wave” he was clearly referring to the fact that this 

wave has only a single hump, unlike the more familiar repeating sine wave pattern that one might first 

imagine upon hearing the word “wave”. As for “wave of translation”, it may be that he was referring to 

the question of whether the individual molecules of water were moving along with the hump or merely 

moving up and down, but, that is not how the term is generally used in soliton theory today not how we 

will use it  in practice. To us, “translation” refers to the fact that the profile of the wave –the shape it 
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has when viewed from the side – stays the same as time passes, as if it was a cardboard cutout that was 

merely being pulled along rather than something whose shape could vary moment to moment.    

To study his solitary waves, Russell built a 30 foot long wave tank in his back garden. He found that he 

could reliably produce them in his tank and study them experimentally (Fig.1). Among the most 

interesting things he discovered was that there was a mathematical relationship between the height of 

the wave ( a  ), the depth of the water when at rest  h    and the speed at which the wave travels  c  

(Fig.2). He believed that this phenomenon would be of great importance and so reported on it to the 

British Association for Advancement of Science.  

  

                           

 

Fig.1. Two ways of generating solitons in a tank of shallow water: 

(a) and (b) in experiments of J. Russell (1844) 

 

Russell was able to deduce empirically that the volume of water in the wave is equal to the volume of 

water displaced and further that the speed c of the solitary wave is obtained from  

 2c g h a   

where a  is the amplitude of the wave,  h  -  the undisturbed depth of water and  g  - the acceleration  

of gravity (Fig.2).      

 

 

Fig.2. The parameters and variables in the description of the solitary wave 
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The solitary wave is therefore a gravity wave. We note immediately an important consequence of 

this equation: higher waves travel faster.  

To put Russell’s formula on a firmer footing both Boussinesq (1871) and Lord Rayleigh (1876) 

assumed that a solitary wave has a length much greater than the depth of the water. They deduce 

from the equations of motion for an inviscid incompressible fluid Russell’s formula for c . In fact 

they also showed that the wave profile   ,z x t  is given by 

   2, sechx t a x ct     , 

where  

                             1 24 / 3h h a a     ,     for any    0a    

Although the 2sech  profile is strictly only correct, if / 1a h . 

These authors did not, however, write down a simple equation for  ,x t , which admit 

abovementioned profile as a solution. This final step was completed by Korteweg and de Vries in 

1895.  We’ll give this equation below and show that the Russell’s solitary wave is a solution of the 

Korteweg and de Vries (KdV) equation. Moreover, we’ll see that the “width” of the wave is 

proportional to a . In other words, taller waves travel faster and are narrower.    

 

Fig.3. Lower wave lags behind 

Let us take attention on a property (iv) of two solitons collision. When two solitons collide after 

collision the two solitons separate from each other with original shapes and velocities as before 

collision, but with a phase shift (Fig. 4) 

 

Fig.4. Interaction of two solitary waves 
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 One interpretation of this result is that an arbitrary initial profile  (which, in other words, is not an 

exact solitary wave) will evolve into two (or more) waves which then move apart and progressively 

approach individual solitary waves as t   (our solitary wave is defined on  ,  ). This 

alone is rather surprising, but another remarkable property can also be observed. If we start with an 

initial profile like that given in Fig. 4a, but with the taller wave somewhat to the left of the shorter, 

then the development is as depicted in Fig.4b.  

 In this case   the taller wave catches up, interacts with and then passes the shorter one. The taller 

one therefore appears to overtake the shorter one and continue on its way intact and undistorted.  

This, of course, is what we would expect if the two waves were to satisfy the linear superposition 

principle. But they certainly do not. This suggests that we have a special type of nonlinear process 

at work here (In fact, the only indication that a linear interaction has not occurred is that the two  

waves are phase-shifted, i.e. they are not in the positions after interaction which would be 

anticipated if each were to move at a constant speed throughout the collision). 

Surprising in such collision experiments is that after very long time, the initial profile –or 

something very close to it - reappears, a phenomenon requiring topology of the torus for its 

explanation. At the heart of those observations is the discovery that these (nonlinear) waves can 

interact   strongly and then continue thereafter almost as if there had been no interaction at all. 

These persistence of the wave led Zabusky and Kruskal to coin the name “soliton” (after photon, 

proton, electron etc.) 

We emphasize the particle-like character of these waves which seem to retain their identities in a 

collision. Owing to this particle-like (iv) property, it is expected that solitons may have a broad 

application in particle physics, as particles with finite sizes. In this concern the interest to solitons 

in particle physics was considerable grown after 60-ies of previous century. However, as studies of 

principal properties of solitons took their origin from the travelling wave observation on a water, 

we are not able go by description of solitons in ordinary water surfaces.  

Therefore, first of all, we consider an example of Korteweg and de Vries model and demonstrate 

how the non-linearity and dispersion compensate each other’s and provide stability of solitary 

wave. It is not excluded that something like happens in non-linear field theory models of particles 

while the direct and transparent physical analogy is difficult to obtain  (the fields  are  represented 

as a Fourier series of various frequencies and the wave packets are also expanded according to 

frequencies (dispersion), which must be balanced by non-linearity. We’ll see that in some models 

more profound compensation can be achieved thanks to topological reasons).  
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                      2.  The Korteweg and de Vries (KdV) Equation 

(a) – general characteristic of wave, its dispersion and dissipation 

Waves play a significant role in nature. There are mechanical waves, seismic waves in air, water 

waves. There are electromagnetic waves, and underlying all matter, quantum mechanical waves. 

These deserve wave phenomena are understood on the basis of a few unifying mathematical 

conceptions. In all these areas it is common practice to develop the concept of wave propagation 

from the simplest albeit idealized –model for one-dimensional motion  

                              
2 2

2

2 2
0

u u
c

t x

 
 

 
,                                                                                (1) 

where  ,u x t  is the amplitude of the wave and c  is a positive constant.  This equation has a simple 

and well-known general solution, expressed in terms of characteristic variables  x ct  as 

                                ,u x t f x ct g x ct    ,                                                             (2) 

where f  and  g  are arbitrary functions (comment: t  is a time coordinate and x  - spatial 

coordinate, although here they are interchangeable since they differ only by “scaling” factor c ). 

The functions  f  and g (not necessarily differentiable) can be determined from, for example, 

initial data    ,0 , ,0
u

u x x
t




.  The solution (2), usually referred as d’Alembert solution, describes 

two distinct waves, one moving to the left and one to the right direction correspondingly (both at 

the speed c . The waves do not interact with themselves and not with each other. This is a 

consequence of linearity of Eq. (1) and hence these solutions may be added (or superposed). 

Furthermore, the waves described by (2) do not change their shape as they propagate. This is easily 

verified if we consider one of the components – say f  and choose a new coordinate which is 

moving with this wave, x ct   .  Then  f f   and it does not change as  x  and t  change, 

for fixed . In other words shape given by  f x  at  0t   is exactly the same at later times but 

shifted to the right by an amount ct . 

Let us restrict ourselves to waves which propagate in only one direction. This is allowable choice in 

solution (2) merely set 0g  , for example.    f  and  g  will move apart and no longer overlap, 

since they never interact, one can now follow one of them and ignore the other. To be more 

specific, we may restrict the discussion to the solution of  

                                  0t xu cu                                                                                                  (3) 

The general solution of (3) is  

                                       ,u x t f x ct    
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We may set 1c  . Then if 0t xu u  , we obtain    ,u x t f x t  . 

We may also retain the connection with Eq. (1). The d’Alembert operator can be factorized, and 

either factor may be zero 

                  
2 2

2

2 2
0c c u c u

t x t x t x

        
      

         
  

In general, when wave equations are derived from some underlying physical principles, certain 

simplified assumptions are made: in extreme cases we might derive Eqs. (1) or (3). However, if 

these assumptions are less extreme, we might obtain equations which retain more of the physical 

detail,   for example, wave dispersion or dissipation or nonlinearity.  

Consider first the equation 

                                0t x xxxu u u   ,                                                                                         (4) 

which is simplest dispersive wave equation. To see this let us examine the form of harmonic wave 

solution: 

                             
,

i kx t
u x t e


                                                                                                 (5) 

Now (5) is a solution of (4) if  

                         3k k                                                                                                             (6) 

It is the dispersion relation which determines   k   for a given k . Here  k  is the wave 

number, taken to be real. The solution (5) is certainly oscillatory at 0t  , and so is the frequency. 

From (5) we see for the phase  

                           21kx t k x k t      

and the solution (5) with condition (6) describes a wave propagating at the velocity  

                                      21c k
k


   ,  

which is a function of k . Waves with different wave numbers propagate at different velocities. It is 

characteristic of a dispersive wave, thus a single wave profile (5) which can be (suppose) by the sum 

of just two components, each like (5), will change its shape as time evolves by virtue of the 

different velocities of the two components.   

To extend this idea we need only add as many components as we desire, or, for greater generality, 

integrate over all k  to yield 
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                             , expu x t A k i kx k t dk




                                                      (8) 

 A k  is essentially the Fourier transform of  ,u x t .The overall effect is to produce a wave profile 

which changes its shape as it moves, in fact, since the different components travel at different 

velocities. The profile will necessarily spread out or disperse.  

  

Velocity from Eq. (6) is usually termed the phase velocity. Another velocity is the group velocity   

defined by   

                                 21 3g

d
k

dk


      

It determines the velocity of a wave packet  

 

Fig. 5. The sketch of a wave packet, showing the wave and its envelope. The wave moves at the phase  

velocity, c   and the envelope at the group velocity, 
gc  

 

The group velocity is the velocity of propagation of energy.    

Our assumption that  k  is real for all k  remains true only if add to Eq. (4) odd derivative ofu . 

If we choose to use even derivatives, taking for example  

                0t x xxu u u                                                                                                  (9) 

then the picture is quite different. From Est. (5) and (9) we obtain  

                                2k ik     

and therefore  

    2, expu x t k t ik x t                                                                                        (10) 

is a solution of Eq. (9). 

This describes a wave which propagates at a speed of unity for all k , but which also decays 

exponentially for any real 0k    as t  .  The decay exhibited in Eq. (10) is usually called 

dissipation.  
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Clearly we could have Eqs. like (4) or (9) which incorporate linear combinations of even and odd 

derivatives. In this case the harmonic wave solution may be both dissipative and dispersive.   

 

                (b)                 Nonlinearity 

 Finally, let us briefly look at one rather more involved aspect of wave motion, namely that of 

nonlinearity    in particular, for a nonlinear equation without dispersion and dissipation such as  

            0t xu uu  ,                                                                                                                 (11)  

one has the formal solution  u f x ct   with “velocity”u c . So, different points of a pulse then 

travel with different velocities proportional to their heights (Fig.6), resulting in a squeeze of the 

pulse width as it travels.  

 

Fig.6 Evolution of a nonlinear wave as time increases: at:       1 2 1 3 2;a t t b t t t c t t t      

 The solution obtained by construction exhibits the non-uniqueness as a wave which has a “broken” 

(Fig.6) – the solution must necessarily change its shape as it propagates. This difficulty is usually 

overcome by the insertion of a jump (or discontinuity) which models a shock. Strictly, a 

discontinuous solution is not a proper solution of Eq. (11).  

Another complication arises with nonlinear equations: We have a superposition principle for linear 

equations. Namely, any linear combination of two solutions 
1u  and 

2u  is also a solution. However 

this is not true, in general, for nonlinear equations. The solutions of nonlinear equations cannot 

superpose to form new solutions, although a related principle is available for certain nonlinear 

partial differential equations.   

For some nonlinear equations with dispersion it is then possible that this squeeze of the profile 

width due to nonlinearity is balance exactly by the expansion of the width due to dispersion 

leading to a travelling wave of permanent shape, i.e. soliton.  

Lecture  2 

Beginning with the extremely accurate but unwieldy Navier-Stokes equations, Korteweg and de Vries 

made some simplifying assumptions including a sufficiently narrow body of water so that the wave can 
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be described with only one spatial variable and constant, shallow depth as one would find in a canal. 

Putting all of this together, they settled on the equation  

                              
3 1

2 4
t x xxxu uu u  ,                                                                                     (12)  

 Due to their initials, this famous equation is now known as the “KdV equation”. We will see that in 

general KdV equation incorporates both nonlinearity and dispersion. 

It was by making use of results from the area of “pure mathematics” that they were able to derive a 

large family of solutions to this equation which translate and maintain their shape. Among these 

solutions were the functions  

                       
   

 
3 3

2

2

8
,

sol k
kx k t kx k t

k
u x t

e e  





 ,                                                                     (13) 

Which satisfy the KdV equation for any value of the constant k . This formula gives a translating 

solitary wave, like Russell’s, that travels at speed 
2k  and has a height

22k . 

 

 

Fig.7. Two solitary wave solutions of the form (13) to the KdV Equation (12). The figure on the left shows  

           the solution with k=1 and the right is k=2. In each case, the figure illustrates the solution at times t=-1,  

                    t=0 and t=1. Note that the speed with which the wave translates is k2 and that the height is twice the speed. 

 

Here the solutions 
   1

,
sol

u x t  and 
   2

,
Sol

u x t  are compared side-by-side. Note that in each case the 

height of the wave is twice its speed.   

 The 
xxxu  term as we saw previously, resulted there in separation of the different frequency components 

of a “single-humped” initial profile, resulting in a dispersion. More dramatically, the 
xuu  term induced 

a non-linear distortion, which soon destroyed any “single-humped” initial profile. However, somehow, 

the combination of these two terms seems to avoid both of these problems.  
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Specifically, the fact that the solutions could be written explicitly was a consequence of the coincidence   

that the KdV equation bears some similarity to an equation related to elliptic curves – and, one might 

say that it is a coincidence here that effects of distortion and dispersion are perfectly balanced so that 

they cancel out. However, it would be a long time before anyone realized that these were not mere 

coincidence. Something interesting also happens when one views solutions that just appear to combine 

two different solitary waves.  For these solutions there are two humps each moving to the left with 

speed equal to half their height. As will be seen, it is not the case that this is simply a sum of two of the 

solitary wave solutions found by Korteweg and de Vries. If the taller of two humps is on the left, then 

they simply move apart. The amazing thing, however, it to consider the situation in which a taller hump 

is to the right of a shorter one. Since it is moving to the left at a greater speed it will eventually catch 

up. 

 

(c)     Kruskal and Zabusky numerical experiment 

Intuition about nonlinear differential equations would have suggested to any expert at the time that even 

though the KdV equation has this remarkable property of having solitary wave solutions, when two 

solitary waves come together, the result would be a mess. One would expect that whatever coincidence 

allows them to exist in isolation would be destroyed by the overlap and that the future dynamics of the 

solution would not resemble solitary waves at all. However, the numerical experiments of Kruskal and 

Zabusky showed the humped shapes surviving the “collision” and seemingly separating again into two 

separate solitary waves translating left at speeds equal to the half their heights! Moreover the same 

phenomenon could be seen to occur when three or more separate peaks were combined to form an 

initial profile: the peaks would move at appropriate speeds, briefly “collide: and separate again.    

More specifically, we now refer to the solitary wave solutions as 1-soliton solutions of the KdV 

equation. In general, an n -soliton solution of the KdV equation has n  separate peaks. Fig. 8    

illustrates a 2-soliton solution of the KdV equation, in which a taller soliton traveling at speed 4 catches 

up to a shorter one with speed 1. Briefly, at time 1.0t   we cannot see two separate peaks, but later 

again they separate so that we can clearly see a soliton of height 2 and another of height 8. However, 

you should not mistakenly think that this is the same as two 1-solitons viewed together.     
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Fig.8  A solution to the KdV equation as it would have appeared to Kruskal and Zabulsky in their numerical  

             experiments. Note that two humps, each looking like a solitary wave, come together and then separate. 

It is easily seen in the following figure, which illustrates the combination of two one soliton solutions.  
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Fig.9    This is not a solution to the KdV equation! This is a sum of the one soliton solutions 
   1

,
sol

u x t  and 

   2
,

sol
u x t . Compare to previous figure, which is a KdV solution, to see the subtle differences despite that each shows a 

hump moving to the left at speeds 1 and 4, respectively, at most times and a single hump centered on the x-axis at time 

0t  . 

For now it is enough to think of it as an indication that there is some sort of nonlinear interaction  

going on in the 2-soliton solution. If we think of the solitons as particles, then they have not simply 

passed through each other without any effect, but have actually “collided” and in some sense the KdV 

equation incorporates their “bounce”. 

 

 

Lecture  3 

         (d)   Explicit solution of the KdV equation 

A nonlinear equation will normally determine a restricted class of profiles which often play an 

important role in the solution of the initial value problem. 

It is clear that, by making suitable assumptions in a given physical problem, we might obtain an 

equation which is both nonlinear and contains dispersive or dissipative terms (or both). So, for 

example, we might derive  
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   1 0, 1 0t x xxx t x xxu u u u or u u u u       

  

The first of these is the simplest equation embodying nonlinearity and dispersion; this, or one of its 

variants, is known as the KdV equation, of which we shall say much more lately. The second 

equation, with nonlinearity and dissipation, is the Burgers equation.          

Our main concern will be with the method of solution of the KdV equation. However, before upon 

a more detailed discussion, we mention the various alternative forms of this equation. We can 

transform this one under  

                   1 , ,u u t t x x      ,  

where , ,    are non-zero real constants, to yield  

                       
3

0t x xxxu uu u
 

 
     

This is a general form of the KdV equation, and a convenient choice, which are often used, is   

                                  6 0t x xxxu uu u    

This form is invariant under the continuous group of transformations  

3 2, ,X kx T k t U k u     

After these transformations the above KdV equation becomes 

                                 6 0T X XXXU UU U      

These transformations with 0k   form an infinite group, where k  is a parameter of this 

continuous group.  

                      

          (e)     Solitary waves 

Now turn to the KdV equation in the standard form  

                              6 0t x xxxu uu u                                                                                           (13) 

The travelling wave solutions of this equation are    

        ,u x t f where x ct and c const          

Thus Eq. (13) becomes 

             6 0cf ff f        



20 
 

It may be integrated once to yield  

                23cf f f A    ,  

where A  is an arbitrary constant. If we now use f   as an integrating factor we may integrate once 

more to give 

                       
2 3 21 1

2 2
f f cf Af B     ,                                                                      (14)                                     

where B  is a second arbitrary constant. At this stage let us impose the boundary conditions  

                                         , , 0,f f f as    , 

which describe the solitary  wave. Thus A  and  B  are both zero, and it remains  

                                    
2 2 2f f f c                                                                                   (15) 

Now we can see immediately that a real solution exists only if    
2

0, . . 2 0f i e f c    . 

Eq. (15) can be integrated as follows: first write  

                                    
 

1/2
2

df
d

f f c
 


    

Then use the substitution  

                              21
sech , 0

2
f c c     

we have obtained  

            2

0

1
sech

2 2

c
f x ct c x ct x

  
     

  
                                                                            (16) 

where 
0x  is an arbitrary constant of integration. Note that the choice     is redundant since the 

solution is even function and also the constant  
0x  (a phase shift) plays a minor role. It merely 

denotes the position of the peak at 0t  .  

        Note that the speed with which the wave translates is c  and the height of the wave is twice its 

speed? 

The solitary wave solution (16) forms a one parameter family (ignoring
0x ) and in fact the solution 

exists for all 0c   no matter how large or small the wave may be. 
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In fact that 0f   reflects our choice of KdV equation (13) with negative nonlinearity, we may 

recover the classical wave of elevation by transforming: u u  u u .    

The solution is negative (see, Fig.10), because it is determined by the sign in front of the nonlinear 

term.  

The solution (16) shows that solitary waves propagate to the right with a velocity c , which is 

proportional to the square root from the amplitude.  

 

Fig. 10    Soliton interaction  2 1t t   

 One of the interesting properties of this solution is a “linear” behavior of solitary waves. While 

superposition of solutions of the nonlinear equations do not lead to the new solutions, but the 

calculations of Zabuski and Kruskal have shown that two solitary waves with different amplitudes 

after nonlinear interaction remain immutable. Exactly this property, analogy with particles, gave 

rise the name “soliton”. In particular, let us consider two separated from each other solitons, 

moreover a large one is on the left from a little one. Because taller soliton has larger speed, it 

catches up with smaller soliton and after their nonlinear interaction according to the KdV 

equation, they remain immutable. Nonlinearity of such solutions consists in that the solitons 

become shifted in compare to their locations they were without interaction.  

In the context of the KdV equation, and other similar equations, it is usual to refer to the single-

soliton solution as the solitary wave, but when more than one of them appears in a solution they 

are called solitons. Another way of expressing this is to say that the soliton becomes a solitary wave 

when it is infinitely separated from any other soliton.  

 Also, we must mention the fact that for equations other than the KdV equation the solitary-wave 

solution may not be a sech2  function; for example, we shall meet a such function and also 

arctan(e2x). Furthermore, some nonlinear systems have solitary waves but not solitons, whereas 

others (like KdV equation) have solitary waves which are solitons. 

.  
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Exercise:  more explicit calculation of the integral 

We made a substitution    21
sech

2
f c      

Then     df f d  and      

 sec sec tanhh h d             

Therefore                 
2sech tanhdf c d       

On the other hand       2 2 22 sech 1 sec tanhf c c c c h c           

Thus         
1/2 22 sech tanh

2

c c
f f c        

Finally  

   
2

0 0

2

sech tanh 2 2

2 2
sech tanh

2

c d
d

c c

  
    

 

  
       

 
    

0 0         or       0 0 0

2 2

2 2
              

Therefore, the solution is               2

0

1 2
sech

2 2
f c x ct x

 
    

 
  

 

 

     (e)        General waves of permanent form 

 

 

 The qualitative nature of the solution  f   of Eq. (14) for arbitrary values of constants ,c A and B  

can be determined by corresponding analysis. The quantitative behavior, however, requires the use of 

elliptic functions or numerical computations. For practical applications, we are interested only in real 

bounded solutions  f   of  

              
2 3 21 1

2 2
f f cf Af B F f        

Thus we require  
2

0f    and the form of  F f  shows that  f   vary monotonically until f   

vanishes. In other worlds the zeros of  F f  are important. Now we can integrate this equation 

formally as 
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                  2
i

f

i

f

df

F f
    , 

where  if  is ith  zero of  F f  , i.e. solution of equation   0F f   and correspondingly, i  is the 

point, where this zero appears. In the book of Drazin and Johnson detailed analysis of all 

possibilities is performed.  

           

 

        (g)      Generality of the KdV equation  

 

 There are numerous examples in physics which can be approximately described by the KdV equation. 

Apart from J.Russell’s  observation, there are many other physical examples where the KdV equation 

arises, such as: non-linear electrical lines – linear approximation shows that the electrical chain  

behaves as a weakly dispersive medium for long wavelength signals, blood pressure waves appear also 

as KdV solitons, within suitable approximation, internal waves in oceanography and so on.  These 

examples are however sufficient to show the situations that lead to the KdV equation:  

   It applies to systems, which at the first level of approximation, are described by a hyperbolic 

linear equation such as the wave equation  
2

0 0tt xxu c u    

 Moreover a weak nonlinearity as  f u , with   2 3f u Au Bu   must exist. 

 Finally the system must show a weak dispersion with a dispersion relation for small wave 

vectors q  of the form    2 2

0 01q c q q   , which can arise from terms like 
xxxxu  or 

xxttu  in the 

equation of motion.  

In order to stay within the weakly dispersive range, let us consider signals  ,u x t  with a slow 

variation. This implies that their Fourier spectrum  F q  only includes components at a small wave 

vector q   (such that  0 1, . .q i e q   is below some value  
maxq  ). Therefore they can be written   

as  

                
 

max 2 3
0 0 0

max

, 0

q
i qx c qt c q ti qx t

q

u x t F q e dq F e dq



 

 

     

Introducing dimensionless variables    
0 0 0/ /X x and T c t   ,   we get 

                              
max

3

max

, 0

q

i X T i T

q

u x t F e e dq
 



   

In order to derive the KdV equation, we change to a frame moving at speed 
0c  by defining

X T and T    .  We can see that this last equation leads to a time variation of order 
3  if 

the space variation is of order .  This is what leads to the time variation of order 
3/2   once we assume 

that dispersion and nonlinearity balance each other ( 
1/2   in the cases that we investigated earlier). 
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Thus it appears that a weak nonlinearity and a rather general form of dispersion relation are enough to 

predict that, in some range of excitation, a given physical system may show a behavior approximately 

described by the KdV equation.  

 

Exercises:    

1. For what values of the constants 
1c  and  

2c  is the function   
 

1

2

2

,
c

u x t
x c




  a solution of 

KdV equation? 

2. For what value(s) of the constant c  is the function  ,
cx

u x t
t

   a solution to the 

KdV equation?  Describe the dynamics “The graph of this function at any fixed time looks like 

… and as time passes …”     

3.  Let 0a   be a constant and  ,u x t  a solution of the KdV equation.  

 a  For what number n  will    2ˆ , , nu x t a u ax a t  be a solution of the KdV equation for 

every choice of a  and every KdV solution    ,u x t ?    

4. Verify that if  ,u x t  is any solution to the KdV equation and   is any constant, then  

   , ,w x t u x t t     is also a KdV solution if you choose   correctly. Derive a formula 

for   as a function of    so that this will be true.         

 

 

Lecture 4 

 

3.   Inverse   Scattering    Method  

Given nonlinear partial differential equation (PDE), there is no general way of knowing whether it has 

soliton solution or not, or how the soliton solutions can be found. One of the powerful tool is the 

Inverse Scattering method. Bellow we give briefly main features of this method and apply to the KdV 

equation.  

 We want to study the time evolution of a spatially localized initial condition  , 0u x t   which 

evolves according to the KdV equation 

               6 0t x xxxu uu u                                                                              (17) 

The basis of the method is to define an associated linear problem as follows: 

We consider the Schrodinger equation 

                      
2

2
,

d
u x t x x

dx
 

 
  

 
,                                                      (18) 
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which define an eigenvalue problem. The potential is chosen to be the solution of the associated KdV 

equation (17) that we are looking for. Therefore it depends on one parameter, t  , the time variable of 

the KdV equation. As we assume that u  is localized solution  lim , 0
x

u x t


 
  

, the Schrodinger 

equation generally has a spectrum: 

 discrete eigenvalues, 
m ,   associated with spatially localized   solutions, 

 a continuous spectrum,
2 , (k 0)k k    associated with eigenfunctions, which behave like a  

             plane wave   
ikxe 

  at infinity.   

The potential u  can be characterized by the discrete spectrum of the Schrodinger equation (18) and by 

its scattering properties, i.e. the transmission T  and   reflection  R  of an incident wave ikxe .  The three 

quantities ,m T and R  depends on the potential and therefore they are functions of its parameter, t . 

It is known the following important theorem: 

   If  ,u x t  evolves according to the KdV equation, then  

* the discrete eigenvalues do not depend on the parameter t . 

* the coefficients T and R   can be easily calculated at any time as a function of their initial values  

   calculated at 0t  .  

 

The consequence:    

 If we know the initial condition  , 0u x t  , we can compute , ,m T R  for 0t   by solving the linear 

problem.  Then, knowing these quantities at any time 0t   using the results of this theorem, we know 

the scattering properties of the potential, which we wish to determine, because it is the solution of the 

KdV equation.   But there is a linear method to solve the inverse scattering problem, which can be used 

to build up a potential from the scattering properties. So that  ,u x t  can be computed through a 

sequence of linear steps. 

                       (a)       Inversion of the scattering data 

The inversion of the scattering data determines the potential from the behavior of the solutions at large 

distances. For the bound states this behavior can be derived by giving the quantities  

                                      lim mx

m m
x

C x e



  ,                                                               (19) 

where 
m   is the normalized eigenfunction.  The condition  lim 0

x
u x


  guarantees that this limit 

exists.   The eigenfunctions corresponding to continuum states 
2

k k   with positive eigenvalues, 

cannot be normalized, because at infinity they have an oscillatory behavior, proportional to
ikxe . When 

we study the scattering by the potential of a wave, coming from , the solution is of the form  
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                       
 

 

ikx ikx

k ikx

e R k e for x
x

T k e for x






  
 



         

with a condition which expresses energy conservation        
2 2

1R T    

Knowing the behavior of   when x  tends to , i.e.  Knowing    ,m m mor C and R k   is 

sufficient to determine the scattering potential  u x . The mathematical problem of the inversion of the 

scattering data has been extensively studied because it is of great practical importance. 

The final results in the one-dimensional case which is of interest here are completed in the equations of 

Gelfand-Levitan- Marchenko: 

 
 ,

2
dK x x

u x
dx

  ,                                                                                             (20) 

where K  is a solution of the integral equation 

       , , 0
x

K x y B x y dzB z y K x z



     ,                                                (21) 

with  

             2

1

1
,

2
m

N
i t ikx

m

m

B C t e R k t e dk






 

 

                                             (22) 

Eq. (21) is linear for the unknown function  ,K x y    here x   plays the role of a parameter, because 

the integration is not carried out with respect of x . 

Eq. (21) is often hard to solve, but there is however an important case for which we can get an exact 

solution: it is the case of separable kernel  B z y , i.e. a kernel which can be written as a linear 

combination of the products of a function of z  by a function of y . Assuming that  

                                                      
1

N

m m

m

B z y F z G y


                                  (23) 

Eq. (21) becomes 

               
1 1

, , 0
N N

m m m m

m m x

K x y F x G y G y dzF z K x z



 

                       (24) 

We see that the full kernel K  may be represented in the separable form as well 

        
1

,
N

m m

m

K x y L x G y


                                                                                 (25) 
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where the unknown functions can be obtained from the system of equations 

         
1

0
N

m m m

x

L x F x L x dzF z G z 






                                                   (26) 

Hence we get a set of N  coupled algebraic equations for the unknown 
mL  , in which x   plays the role 

of a simple parameter.  

 Such a separable case is obtained for all reflection less potentials, i.e. the potentials such that 

  0R k  , because in this case the expression (22) reduces to  

                      2

1

m

N

m

m

R C e
  



   

This happens when the initial condition is a multisoliton solution. 

The relevant examples are given below.  

 

     (b)    Single soliton initial condition     

As we know the KdV equation has the soliton solution (see, Eq. (16)). 

Consider, for instance, the initial condition  

        2, 0 2sechu x t x     

i.e. we are taking for speed   4c  . This leads to the associated linear eigenvalue problem  

               22sech 0xx x       

Solutions of this Schrodinger equation is well known. For this particular ratio between the depth and 

the width of the potential well, there is only one bound state ( 1N   ). It is  

             1 1

1
sech , 1, . . 1

2
x x with i e        

The asymptotic behavior   2 xx e 
 gives     1 0 2.C    because the potential is reflection less, 

we get altogether 

       4 8

1 11, 2 ; 2t t

m mC t e R e         

Defining two functions  
1F  and

1G , by        8

1 2 t xF x e e     and     1

yG y e , we get

   1, yK x y e L x , where  1L x  is a solution of the equation 
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     8 8

1 12 2 0t x t z y

x

L x e e L x dz e e e



       

It leads to  

               
2

1 8 2

2
;

1

t x

t x

e e
L x

e







                                       

8

8 2
, 2

1

t x y

t x

e
K x y

e

 


 


  

and therefore  

      

 
 

 
 

8 2
2

2
8 2

,
, 2

8 2sec 4
1

t x

t x

dK x x
u x t

dx

d e
h x t

dx e





  

    


                                            (27) 

which is the soliton with c=4, as expected.  

This simple example has shown that the initial condition    2, 0 2secu x t h x    is indeed a 

permanent profile soliton solution and we have determined its speed. 

 

      (c)     Two- soliton solution 

Now we consider problem for which the initial profile is   2, 0 6secu x t h x   . So that we must 

study the associated eigenvalue problem  

                  26sec 0xx h x                                                                       (28) 

or  

                    2

2
1 6 0,

1

d d
T

dT dT T

 


  
     

  
  

 Where tanhT x .  This equation has bounded solutions for  2 0    , if  
1 1    or  

2 2    of 

the form (do exercise) 

                1

3
tanh sech

2
x x x    ,                                   2

2

3
sech

2
x x  ,  

both of which are have been made to satisfy the normalization condition.  The asymptotic 

behaviors of these solutions are 

              2

1 26 , 2 3 ;x xx e x e as x      

so that  
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                  1 20 6, 0 2 3C C    

and then     

                  4 32

1 26 , 2 3t tC t e C t e    

The choice of initial profile ensures that   0b k   for all k   and so  , 0b k t   for all t . The 

function F  then becomes  

                         8 64 2, 6 12t X t XF X t e e     

and the Gelfand-Levitan-Marchenko equation is therefore 

        

     

      

8 64 2

8 64 2

, ; 6 12

, ; 6 12 0

t x z t x z

t x z t x z

x

K x z t e e

K x y t e e dy

   


   

  

  
               (29) 

The solution for K  takes the form 

            2

1 2, ; , ,x xK x z t L x t e L x t e                                                       (30) 

Collecting the coefficients of exponents, we obtain the pair of equations 

    8 8 2 3

1 1 26 6 0t x t y y

x x

L e e L e dy L e dy

 

  
 

    
 
                                         (31) 

             64 2 64 3 4

2 1 212 12 0t x t y y

x x

L e e L e dy L e dy

 

  
 

    
 
   ,                                  (31’) 

where 
1,2L  are the functions of x . After evaluation of definite integrals, these two equations       

become   

  
8 8 2 8 3

1 1 26 3 2 0t x t x t xL e L e L e        

64 2 64 3 64 4

2 112 4 0t x t x t xL e L e e        ,                                                         (32) 

which can be solved to yield  

            72 5 8 64 2 72 4

1 2, 6 / ; , 12 /t x t x t x t xL x t e e D L x t e e D        ,    (33) 

where  

     8 2 64 4 72 6, 1 3 3t x t x t xD x t e e e                                                                 (34)               

The solution of the KdV equation can now be expressed as 
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             2 8 2 72 6 64 4

1 2, 2 12 2 /x x t x t x t xu x t L e L e e e e D
x x

     
     

 
     (35) 

which can be simplified to give  

     
   

    
2

3 4cosh 2 8 cosh 4 64
, 12

3cosh 28 cosh 3 36

x t x t
u x t

x t x t

   
 

  
                                    (36) 

It is the two-soliton solution.  

Let us comment, why it is a “two-soliton” solution? 

Since the solution is valid for all positive and negative t , we may examine the development of the 

profile both before and after the formation of the initial profile, specified at 0t  . The wave profile, 

plotted as a function of x , at 5 different times, is shown in Figure bellow. 

 

Fig. 11. The two soliton solution with      2,0 6sech : see ( ) 0.5; 0.1;u x x c a t b t       

 

 

The same with    0.1; 0.5d e t   
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The solution depicts two waves, where the taller one catches the shorter, coalesces to form a single 

wave – our initial profile at 0t    – and then reappears to the right and moves away from the shorter 

one as  t  increases.  

This interaction might see, at first sight, to be a purely linear process but this is not so. A more careful 

examination of the plots shows that the taller wave has moved forward, and the shorter one backward, 

relative to them positions they would have reached if the interaction was indeed linear. 

The character of this solution is also made evident by examine the asymptotic behavior of  ,u x t , as

t   . For example, if we introduce 16x t   , then   the solution (36) can be expressed as 

              
 

    
2

3 4cosh 2 24 cosh 4
, 12

3cosh 12 cosh 3 12

t
u x t

t t

 

 

  
 

  
                                   (37) 

It can be expanded as t      at   fixed. The asymptotic limit ensures that we follow the 

development of the wave which moves at a speed 16 (if such a one exists).  We thus obtain  

                     2 1
, 8sech 2 log3 , , 16

2
u x t as t x t 

 
     

 
   (38) 

and a similar procedure can be adopted for the wave which moves at the speed 4 let 4x t   , then  

      2 1
, 2sec log3 ,

2
u x t h as t

 
    

 
                                            (39) 

In fact these two asymptotic forms can be combined to produce a uniformly valid solution, since the 

error term are exponentially small, where 

         2 21 1
, 8sech 2 log3 2sech log3

2 2
u x t  

   
     

   
,       as t            (40) 

The solution is therefore compound of two solitary waves at infinity, with phase shifts now explicit. 

From the last solution we see that the taller wave moves forward by an amount
1

log3
2

x  , and the 

shorter one moves back by log3x  .   

Finally, solution here contains no other component (such as, for example, an oscillatory dispersion 

wave) 

 

               (d)      N-soliton   solution 

 

Above method can be generalized by introducing the matrix formulation. The initial profile is now 

taken to be  
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           2,0 1 secu x N N h x                                                                              (41) 

So we have N discrete eigenvalues and no continuous spectrum (i.e.   0b k   for all k ). These 

eigenvalues are 2   , where
n n   , for 1,2,...,n N   and the discrete eigenfunctions take 

the asymptotic form: 

                   nx

n nx c e 
 ,         as   x     

If we use the associated Legendre functions, defined as 

           
/2

2 21
1 1 1

!2

n N
n Nnn

N N Nn N N

d d
P T T P T P T T

dT N dT
       

we have 

                             tanhn

n Nx P x    

and then                 30 exp 4n nc t c n t   

The function F  in the Gelfand-Levitan- Marchenko equation is  

                                       2 3

1

X, 0 exp 8
N

n

n

F t c n t nX


    

and therefore 

             2 3

1

, ; 0 exp 8
N

n

n

K x z t c n t n x z


      

                         +       2 3

1

, ; 0 exp 8 0
N

n
x

n

K x y t c n t n y z dy




                          (32)  

For K  now take the form 

                    
1

, ; ,
N

nz

n

n

K x z t L x t e



                                                                        (33) 

Proceeding now by standard manner, we obtain the final result 

                2 2 2

1

, 2 sech 4 ;
N

n

n

u x t n n x n t x as t


                      (34) 

where 
nx  is a phase, given by   

                                   
 sgn

1,

exp 2

n mN

n

m m n

n m
x

n m



 





   



33 
 

Thus the asymptotic solution represents separate solitons, ordered according to their speeds, as 

t   , the tallest (and therefore fastest) soliton is at the front followed by progressively shorter 

soliton behind.  

All N solitons interact at 0t   to form a single  
2sech  pulse which was specified as the initial profile 

at that instant. Some plots of three-soliton solution (   23; ,0 12sechN u x x   ) are given in Fig.12,   

where the emerging solitons are of amplitudes 18, 8 and 2.  

 

Fig. 12  The three-soliton solution with      2,0 12sech 0.05; 0.2u x x b t c t       

(In the last two figures u  is plotted against t) 

 

Lecture 5 

                            4.     Further properties of the KdV equation 

               (a)     The role of conservation laws 

The dynamics of continuous media can be equivalently described by Lagrange (or Hamilton) 

formalism. For KdV equation, as it involves a third derivative, one must consider Lagrangians 

depending on higher derivatives. It is well known that the Lagrangian density  , , , , ,t x xxq q q q x tL  

leads to the Euler-Lagrange Equation 

              

2

2

t x xx

d d d

dt q dx q dx q q

        
       

        

L L L L
                                           (35) 
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In order to derive the KdV equation one can introduce the corresponding Lagrangian. It has a form 

    
3 21

2
2

x t t xxL dx dx q q q q     L =                                                                 (36) 

Then it follows the following equation for q   

                  6 0xt x xx xxxxq q q q                                                                           (37) 

and defining 
xu q , we obtain the KdV equation  

            6 0t x xxxu uu u                                                                                     (38) 

Now the invariance of L  under some continuous transformation produces the Noether’s conservation 

laws.  

In general, these equations for conservation laws have the following form  

                       0t xI J                                                                                              (39) 

such that J const , when x  . Therefore by this equation one has  

                               dxI const





                                                                               (40) 

a constant of motion. I  and  J  are called conserved density and the flux, respectively.  

The KdV equation can be performed in the form of conservation equation. Indeed, rewrite it as  

                          23 0t xx
x

u u u                                                                     (41) 

which implies that 
1I u  is a conserved density. If, for example,  u   denotes the density of medium 

(gas or fluid), it follows the travelling mass conservation 

                                     .dxu const





                                                               (42) 

     Multiplying    the KdV equation byu , one obtains 

        2 2 31 1
2 0

2 2
xx x

t
x

u uu u u
 

    
 

   

Therefore 
2

2I u  is also a conserved density and    

                                   
2u dx const





                                                              (43) 
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Similarly, multiply KdV equation by 23u  and then apply 
xu

x




  to the same equation, add two derived 

equations, we obtain  

                    
3 2 4 2 2 21 9 1

3 6 0
2 2 2

x xx x x xxx xx

t

u u u u u uu u u u
   

          
   

  

We see immediately that  

                         
3 2

3

1

2
xI u u                                                                        (44) 

is also a conserved density.  

 For the KdV equation these first three conserved densities are relatively easy to obtain (guess). It is not 

so for higher constants. A systematic method of finding them is available using so called Miura- 

Gardner transformation (see, e.g. P.C. Drazin et al., p.94).   

In fact there exists an infinite number of conservation laws. The importance of the existence of an 

infinite number conservation laws is that they are believed to be essential for the elastic collision 

property of solitons to be established. The solitons have to and can maintain their identities after 

collision because of many constraints required by the infinite number of conservation laws.   

 

                     (b)      Lax formulation for KdV and other soliton equations 

 We described above the KdV equation, which has many special properties. It is clear that, indeed, other 

equations with similar properties do exist: The KdV equation does not stand alone in this class of 

evolution equations. Lax in 1968 developed arguments, which introduces far deeper and more 

fundamental ideas than we have met in the inverse scattering method.  

 Suppose that we wish to solve the initial- value problem for u , where  ,u x t  satisfies some nonlinear 

evolution equation of the form  

                                        tu N u ,                                                                                 (*) 

with    ,0u x f x . We assume that u Y  for all t , and that :N Y Y  is some nonlinear 

operator, which is independent of t  but may involve x , or derivatives with respect to  x , and Y  is 

some appropriate function space. 

 Next, we suppose that the evolution equation above can be expressed in the form  

                                         
tL ML LM    

where L  and M  are some operators in x , which operate on elements of a Hilbert space, H, and which 

may depend upon  ,u x t  (By 
tL  we mean the derivative with respect to the parameter t , as it appears 

explicitly in the operator L ;  for example, if  
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                                            
2

2
,L u x t

x


  


, 

then 
t tL u ).   The Hilbert space,   H, is a space, with an inner product,  ,  , which is complete; we 

assume that  L  is self-adjoint, so that    , ,L L     for all , H     

Now we introduce the eigenvalue (or spectral) equation   

                                         L    for 0t and x   , 

where   t  . Differentiating with respect to t , we see that  

                                  
t t t tL L      , 

which becomes 

   

 

   

t t

t

t

L ML LM

L M LM

L M

   

   

  

    

    

  

 

The inner product of   with this equation gives 

     , ,t tL M          

Since  L   is self-adjoint, and so  

     , 0, 0t tL M          

Or             0t   

Thus each value of operator L  is a constant.   With 0t  , we obtain  

   0tL M      

So that 
t M   is an eigenfunction of the operator L  with eigenvalue  . Hence 

                                 
t M    , 

And we can always define M  with the addition of the product of the identity operator and an 

appropriate function of t ; this will not alter equation (*). Thus we have the time-evolution equation for  

 ,  

 , 0t M for t                                                                                     (**) 

In other words we have the following theorem:  
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If the evolution equation  

                          0tu N u     

can be expressed as the Lax equation 

                           , 0tL L M  ,  

and if                 L  ,  

then 0t   and   evolves according to equation (**). 

                   

                                 (b-I)        KdV in Lax form 

         

If   , i

i

i

L c x t   is an ordinary differential operator in the variable x  whose coefficients also 

depend on the time parameter t , then 
ii

t

i

c
L

t


 


  is its time derivative, an indication of how it will 

evolve infinitesimally in time. Lax recognized the significance of the fact that the KdV equation can be 

written in the form  ,tL M L  for an appropriate operator M . 

Theorem: Let  2 ,L u x t     and      3 3 3
, ,

2 4
xM u x t u x t     . The question of whether the 

function  ,u x t  is a solution of the KdV equation,   
3 1

2 4
t x xxxu uu u  , is equivalent to the question 

of whether L  and M  satisfy the Lax equation   ,tL M L . 

Proof:  The left side of the Lax equation is simply  ,tu x t . Thus, for  ,M L  to be equal to it all of 

the terms with positive powers of   must cancel out. In fact, this is the case since  

       5 3 2 25 15 3 9
2

2 4 2 4
x xx x xxxML u u u u uu u             

      5 3 2 25 15 3 3
2 ( )

2 4 2 4
x xx x xxxLM u u u u uu u            

The coefficients on all of the positive powers of   are the same in these two products regardless of the 

choice of function  ,u x t . We have that  

                       
3 1

,
2 4

x xxxM L uu u    

Clearly, this is equal to 
t tL u  if and only if   ,u x t  happens  to be a solution to the KdV equation.  
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This result is more miraculous than it may at first appear. Note that it is not possible to write just any 

differential equation in the form  ,tL M L  for suitable differential operators  L  and M . If we can 

write a given differential equation in this way, then we say it has a Lax Form and that the operators  L  

and M  form its Lax Pair. (For instance, the operators L and M  from above theorem are the Lax Pair 

for the KdV equation).  

To illustrate how rare this is, and to demonstrate why the coefficients in the above equation are a 

natural choice, let us try to find a different equation by starting with a slightly more general form for 

M .  

 Consider a suitable example:  Suppose again that

     2 3, ; , ,L u x t M x t x t         .  What must be true about the commutator 

 ,M L  for the equation   ,tL M L  to be sensible? What is the most general nonlinear evolution 

equation that can have Lax operators of this type and why is it not much of an improvement over the 

previous example? 

 Solution :  Since 
tL  is a zero order operator (there are no positive powers of  ) for the Lax equation to 

be sensible, the commutator must also be a zeroth order operator. Then, in order to see what sorts of 

equations we can generate in this way, we need to find the most general choice of coefficients ,   

that eliminate all positive powers of   in  ,M L . 

 We compute the product of the operators in each order: 

           5 3 22 2x x xx xxLM u u u                        

            5 3 23 3x xx xxx xML u u u u u u u                  

The coefficients of 
5  and 

3  are already equal for any choice of these unknown functions. However, 

for the coefficients of 
2  to be equal we must have that  

1

3

2
u c    for some constant 

1c . Similarly, 

equating the coefficients of the   terms in the two products we conclude that 
2

3

4
xu c   . 

Thus, for  ,tL M L  to make sense as a Lax equation assuming L and M  have these very general 

forms, we are forced into assuming these values for   and    with only choice of the constants 
1c  and 

2c  as freedom. But then, since   1

3 1
,

2 4
x xxxM L u c u u

 
   
 

 the more general equation we can write 

in this way is  

                          
1

3 1

2 4
t x xxx xu uu u c u     

Which is equivalent to our KdV equation (3.1) but with the solution just shifted by a constant, 

    12
, ,

3

c
u x t u x t  .   Note then that the coefficients 3/ 2 1/ 4and  appear seemingly out of 
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nowhere without us making any specific assumptions and in this sense are the natural coefficients for 

the KdV equation.  

                              

 

Lecture 6 

 

       (b-II)    Other soliton equations 

We saw above that if we choose   L  and M  to be ordinary differential operators of orders 2 and 3 

respectively, then essentially the only equation we can write in the Lax form   ,tL M L  is the KdV 

equation itself. However, the KdV equation is not the only differential equation with the Lax form. As 

we will see, we can find many more by assuming other forms for the operators  L  and M . 

 What does it tell us about a differential equation when we learn that  it has a Lax form?  It is a rather 

good clue that the equation shares those amazing properties of the KdV equation: being exactly 

solvable and having particle-like soliton solutions. So, let us proceed and find other KdV-like equations 

in the sense that they share these important and rare properties.  

What if L  is still a Schrodinger operator but M  has order 5?  With  2 ,L u x t    we have that the 

left side of the Lax equation  ,tL M L  is sure to be  just
tu . If we can find  M so that the right side 

has order zero then this will still be an evolution equation. The most natural generalization is to move 

on the higher order differential operators, for instance, of order 5.  

Our aim is to choose values for the coefficients of  

                                5 4 3 2

4 3 2 1 0, , , ,M x t x t x t x t                 

so, that  ,M L   is an operator of order zero. What nonlinear PDE for u  we get from the Lax equation? 

For simplicity, we will ignore the dependence on t  in the following computations. Hence, it should be 

understood that all derivatives are taken with respect to x .   

Proceeding to the same line as before, one can define each 
i -s and write the Lax equation as  

                               21
30 20 10

16
t x x xx xxx xxxxxu u u u u uu u      

Like the KdV equation it is an evolution equation for a function  ,u x t . Like the KdV equation, this 

equation has n-soliton solutions for any positive number n, it has many solution which can be written 

exactly in terms of ordinary exponential and rational functions. In other words it is also a soliton 

equation. 
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One can find a soliton equation by considering only a slight variation of the Lax operators for the KdV 

equation. Let us again consider differential operators of orders 2 and 3, but this time we will let L  have 

of order 3 and  M  have order 2, and we get a different soliton equation.  

Question: If 
3L        and

2M    , how can the coefficients be chosen to be functions of 

x   so that the Lax equation   ,tL M L  make sense?     What nonlinear PDE for  ,x t  does it 

imply? 

The answer is the following equation takes place: 

                      
24 4 1

3 3 3
tt x xx xxxx         

This is a form of the nonlinear Boussinesq Equation, another soliton equation which arguably is more 

interesting than the KdV equation itself.  It can be demonstrate that the n-soliton solutions of this 

equation are a bit more complicated than the corresponding solutions to the KdV equation. Moreover, 

Boussinesq studied and not published this equation before Korteweg and de Vries did their work on 

waves on translation on canals. So, in a sense, it is only historical coincidence that the KdV equation is 

considered to be the canonical example of a soliton equation (Not only does it just happen to be the one 

which was studied by Zabusky and Kruskal, but it is also a coincidence that it is named after Korteweg 

and de Vries since some have argued that it also should be named after Boussinesq who studied it first). 

 

           (c)    Matrix differential operators 

Many other soliton equations can be derived from Lax equations involving differential operators with 

matrix coefficients. Our rules for multiplication differential operators still apply in this case, except that 

the coefficient functions are n n  matrices and no longer commute with each other.  

  We consider here only one example: Suppose  L a U x    and  M V x  are matrix differential 

operators of order 1 and 0, respectively, for some constant a . Compute the commutator ,M L .  

           

           

             

     

,

,

M L V x a U x a U x V x

aV x V x U x a V x U x V x

aV x aV x aV x V x U x U x V x

aV x V x U x

        

       

       

    

 

Let us apply this in the special case where the entries of U andV  depend on an unknown function 

 ,u x t . If 4a i , 

       

cos
4 2 4 4

,
2 4

cosu
4 4

xt
x

x
xt

i i
u u

iu
U and V

iu i i
u

 
  

    
   

 
 
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Then you can check that  

 
 

 

sin cos
,

cos sin

x xt x xxt

t

x xxt x xt

u u u u u u
L M L

u u u u u u

  
   

   

     

If L and M  are Lax operators, then this would be equal to zero. Note that this is zero if either 

0xu   (constant solution) or if  

                           , sin ,xtu x t u x t   

This is a Sine-Gordon equation.  It is nonlinear, but nonlinearity takes the form of a trigonometric 

function applied tou . This is very important equation as it has many applications in science and 

geometry. We will return to this equation in future.  

 A major point of our consideration is to recognize that the Lax form gives us a way to recognize other 

differential equations which like the KdV equation deserve to be called “soliton equations”.  

  

                         (d)   The Nonlinear Schrodinger Equation 

The nonlinear Schrodinger equation is another soliton equation, but it is one which can only be used in 

the context of complex numbers. It is also notable as being the basis for the greatest commercial 

application of solitons: the use of solitons of light for communication. 

The systems with small-amplitude plane wave solutions  

                                        
 

. .,
i qx t

u Ae c c


    

(where we denote by c.c. the complex conjugate of the expression that precedes this symbol)  ‘are 

drastically different from the soliton solutions that we investigated. Therefore one may ask what 

happens to these plane waves when their amplitudes grow enough to allow nonlinearity to enter into 

play. The answer is that the plane waves may spontaneously self-modulate as shown in Figure 18, 

below.                    

. 

 Fig.13 Self-modulation of a plane wave. The dashed line shows the envelope of the wave which is displayed 

      by the solid line. The three figures show three successive stages in the evolution of the initial plane wave 

This modulation arising due to the overtones induced by nonlinearity, can go as far as the splitting  
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of the wave into “wave packets” which behave like solitons. These solitons are made of a carrier wave 

modulated by an envelope signal and this is why they are called envelope solitons.  

Using the simple example of the pendulum chain (see, Fig.below)   we shall derive the equation which 

describes them, which is extremely general in physics, since it appears naturally for most of the 

weakly dispersive and weakly nonlinear systems which are described by a wave equation in the 

small-amplitude. 

           

         (e)    Kadomtsev-Petviashvili equation 

 All of the soliton equations we have considered thus far have depended on only two variables, one for 

space and one for time. The most obvious new feature is that it is a partial differential equation in three 

variables: , ,x y t .An important example of the former was given by Kadomtsev and Petviashvili (KP), 

which appeared first in the stability study of the KdV solitons to transverse perturbations.  

In order to determine the limit of validity of the KdV equation, it is also necessary to study stability of 

its solitary waves with respect to transverse perturbations. Assuming that a characteristic length in the 

transverse direction is large with respect to the spatial extend of the KdV equation, Kadomtsev and 

Petviashvili got their equation for a function  , ,u x y t   

                
24 1

2 2
3 3

yy xt x xx xxxxu u u uu u      

It looks like an entirely new equation, but as a next example shows, it actually is closely related to the 

KdV equation, which we have already studied in detail.  

It is easy to observe that the KdV equation is “hidden” inside the KP equation by rewriting it as  

              
4 3 1

3 2 4
yy t x xxxu u uu u

x

  
   

  
  

Note that the expression in the parentheses on the right-hand side is equal to zero precisely when u  is a 

solution of the KdV equation. If the function  , ,u x y t  also happens to be independent of y, then u  is 

a solution of KP equation (
yyu  is also zero) 

Since the left and right-handed sides of the equation are each equal to zero when  , ,u x y t is a solution 

of KdV equation and is  independent of y , we conclude that such a functions are also solutions of KP 

equation. 

This means that we already know many solutions to the KP equation. However, this is only a small 

subset of the solutions of the KP equation. The KP equation should look familiar in another way. It also 

contains the Boussinesq equation “hidden within it” in the same way.  

A single soliton solution of the KP equation looks like 
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                                  2 2 2 2

0, , 2 sec 3 4u x y t a h a x by b a t x     
 

  

Which travels in an arbitrary direction in the  ,x y  plane, as well as multisoliton. A 2-soliton is shown 

in Fig. 14 

 

Fig.14    A snapshot of a 2-soliton solution of the KP equation 

 

 

 

which resembles some real nonlinear waves observed in the shallow wave water off the Oregon coast.  

When the sign of  
yyu  is reversed, one obtains the so-called KP2 equation, which has the soliton 

solution  

                    
 
 

2 2 2 2

2 2 2 2
, , 4

a y X a
u x y t

a y X a





 


 
 , 

where 
1 23X x a a t   . But such soliton is unstable.   

The KP equation describes water surface waves and ion-acoustic waves in a plasma. Although the 

original motivation for the KP equation was the study of “ion acoustic wave propagation in 

plasmas”, most readers will find it more intuitive to consider ocean waves as an application. Like 

the KdV equation the KP equation is certainly not an entirely realistic hydrodynamic model. For 

instance, it does not treat the z and y-directions equivalently; oscillations in the y-direction tend to 

be smoother. Still, one can see waves on the ocean which look like solutions of the KP equation.  
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Fig.15      a)  A ”snapshot” of an exact solution of the KP equation 

b)  A military photo from 1933 is an actual snapshot of the ocean near Panama, shows a wave pattern very similar to the one 

in fig.    a) 

Some concluding remarks: 

The soliton itself is a dramatic new concept in nonlinear science. Here, at last, on the classical level, is 

the entity that field theorists had been postulating for years, a local travelling wave pulse, a lump-like, 

coherent structure, the solution of a field equation with remarkable stability and particle-like properties. 

It is intrinsically nonlinear and owes its existence to a balance of two forces; one is linear and acts to 

disperse the pulse, the other is nonlinear and acts to focus it. Before the soliton physicists had often 

talked about wave packets and photons, which are solutions of the linear time-dependent Schrodinger 

equation. But such packets would always disperse on a time scale inversely proportional to the square 

of the spread of the packet in wave number space. Nonlinearity is essential for stopping and balancing 

the dispersion process.  

What is remarkable is that so many of the equations, derived as asymptotic stability conditions under 

very general and widely applicable premises, are also soliton equations. But one of the key properties of 

a soliton equation is that it has an infinite number of conservation laws and associated symmetries.  

 What do we mean by a soliton equation? All we have said so far is that a soliton is a solitary, travelling 

wave pulse of a nonlinear partial differential equation with remarkable stability and particle-like 

properties.  

The soliton story begins with the observation of a particular solitary wave on a canal. Presumably, the 

reason John Scott Rassell found the wave so interesting was not purely academic interest, but the desire 
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to utilize it for improvements to ship designs. When the soliton concept was fully formed in the late of 

20th century, there was similarly interest in the individual solitons and their practical uses.  

 For instance, soliton theory has been applied to the study of tsunamis, rogue waves and internal waves, 

all hydrodynamic solitary waves which are of great interest due to damage they can potentially cause.  

 Because of the soliton’s stability, it has also found application in communication where optical solitons 

(solitons of light traveling in a fiber optic cables) are used to transmit signals reliably over long 

distances.  

Additionally, because of their very stability upon interaction that prompted Zabusky and Kruskal to 

name them “solitons” in the first place, soliton solutions to differential equations have application in 

particle physics. There have even been application of the soliton concept to biology, where the soliton 

dynamics are seen as having a role in DNA transcription or energy transfer.  

 

               

Lecture  7 

 

Part  II.  Topological  solitons in relativistic field theoretical models  

 

At the Introduction we have listed the certain requirements to soliton solutions of nonlinear equations. 

As we have seen there is no unique definition of solitons. In field theoretical models, which are used in 

particle physics,   the names solitary waves and solitons refer to certain special solutions of non-linear 

wave equation.  There is attempt to remain two principal features of linear wave equations: (i) we can 

construct a localized wave packet that will travel with uniform velocity c  without distortion in shape 

(ii) Since for linear wave equation like (1) given two localized wave packet solutions  1f x ct  and 

 2f x ct  their sum        3 1 2,f x t f x ct f x ct      is also a solution. At large negative time 

t   this sum consists of the two packets widely separated and approaching each other essentially 

undistorted. At finite t  they collide. But after collision they will asymptotically (as t  ) separate 

into the same two packets retaining their original shape and velocities.  

These two features – the shape and velocity retention of a single packet and the asymptotic shape and 

velocity retention of several packets even after collision, do not take place for nonlinear systems in 

general. Typical wave equations in many branches of physics are much complicated: They can contain 

nonlinear terms, dispersive terms and several coupled wave fields with space dimensionality equal to 1, 

2 or 3. The question is: can such equations, despite their complexity, nevertheless yield at least some 

solutions which enjoy this attractive features (i) and perhaps (ii)? 

We have seen above that in hydrodynamics may happen that both dispersive and non-linear terms can 

balance each other effects in such a way that some special solutions do essentially enjoy feature (i). 

This can happen in one, two or three space dimensions, and such solutions are called solitary waves. If 

in some cases the feature (ii) is also exhibited, these solutions are called solitons.  
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The definition in particle physics is in terms of the energy density, rather than the wave fields 

themselves, since the former is more significant in this field. This means that we are restricted ourselves 

to those field equations that have an associated energy density  , t x  being functions of fields

 ,i t x . Its space integral is the conserved total energy functional  E  . A large class of equations, 

including field equations in particle physics satisfy this. Since physical systems have energy bounded 

from below we can also, without lost of generality, set the minimal value reached by E  equal to zero. In 

this framework we shall use the adjective ‘”localized” for those solutions to the field equations, whose 

energy density   , t x  at any finite time is localized in space, i.e. it is finite in some finite region of 

space and falls to zero at spatial infinity sufficiently fast as to be integrable. Note that for those systems 

with   0iE    if and only if  , 0i x t   a localized solution as defined above also has the fields 

themselves localized in space.                                                          

For instance, consider the following model  

                        
2 2

4

2

1 1 1

2 42
E dx

t xc

 
 





     
      

      
                                                  (45) 

It is minimized by  , 0x t  . Localized solution of this system, if any, would asymptotically go to 

 , 0x t   as x    for any given t . The derivatives  and
x t

     
   
    

 must also vanish in 

this limit.  

By contrast, the energy functional  

\               
2 2

2
2

2

1 1 1
1

2 42
E dx

t tc

 
 





     
       

      
                                               (46) 

is minimized by  , 1x t    and now a localized solution must approach 1 as x     at 

any instant.  

Given localization in this sense of energy density, we define a solitary wave as localized non-singular 

solution of any nonlinear field equation (or coupled equations, when several fields are involved) whose 

energy density, as well as being localized, has a space-time dependence of the form  

            , t t  x x u                                                                                                        (47) 

where u  is some velocity vector.  

In other words, the energy density should move undistorted with constant velocity. This differs from the 

requirement   that the fields themselves have such a “travelling wave” space-time dependence.  

Note that this equation defines solitary waves in one or more space dimensions. Further, any static 

(time-independent) localized solution is automatically a solitary wave, with the velocity 0u . Many 

of the solitary waves will be obtained as static solutions. However, for systems with relativistic (or 
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Galilean) invariance, moving solutions are trivially obtained by boosting – transformation to a moving 

coordinate frame.  

Let us now turn to solitons:  these are solitary waves with an added requirement that generalizes a 

feature (ii). Consider some nonlinear equations. Let them have a solitary wave solution whose energy 

density is some localized function  0 t x u . Consider any other solution of this system which in the 

far past consists of N  such solitary waves, with arbitrary velocities and positions. Then energy density 

of this solution will have the form  

            0

1

, ,
N

i i

i

t t as t 


    x x a u                                                                    (48a) 

Given this configuration at t   , it will then evolve in time as governed by the nonlinear equations. 

Suppose this evolution is such that  

                            0

1

, ,
N

i

i

t t as t 


      i ix x a u                                       (48b) 

where 
i  are some constant vectors. Then such a solitary wave is called a soliton.  In other words, 

solitons are those solitary waves whose energy density profiles are asymptotically (as t  ) restored 

to their original shapes and velocities. The vectors 
i  represent the possibility that the solitons may 

suffer a bodily displacement compared with their precollision trajectories.  This displacement should be 

the sole residual effect of collisions if they are to be solitons. Obviously this is a remarkable property 

for solutions of a nonlinear field equation to have.  

 While all solitons are solitary waves, the converse is clearly not true. The added requirement (ii) on 

solutions is very stringent.  The bulk of localized solutions discussed in the physics literature seem only 

to be solitary waves.     

      

                       (a)  Some solitary waves in two dimensions (one space +one time) 

 

We shall concentrate on static solutions in the simplest context – scalar field in two (one space +one 

time) dimensions. Consider first a single scalar field  ,x t  whose dynamics is governed by the 

Lorentz-invariant Lagrangian density  

                    
2 21 1

,
2 2

x t U    L                                                                             (49) 

where henceforth  a dot or a prime represents differentiation with respect to time t  or the space variable  

x , respectively, and the velocity of light is set equal to one. The potential  U   is any positive semi-

definite function of  , reaching a minimum value of zero for some value or values of   . 

Corresponding wave equation has the form  
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            ,
U

x t  



   


                                                                                           (50) 

Nonlinear terms depend on the choice of  U  . The equation conserves the total energy functional 

given by  

                              
2 21 1

2 2
E dx U   





 
   

 
                                                           (51) 

Let the absolute minima of  U  , which are also its zeros, occur at M  points, 

                     
0, , 1,2,..., 1

i
U for g i M                                                   (52) 

Then the energy functional is also minimized when the field  ,x t is constant in space-time and takes 

any one of these values. That is,  

            
0, , ; 1,2,...,

i
E if and only if x t g i M                                (53) 

As we are interested in static solutions, the equation of motion reduces to 

                                 
2

2

U
x x

x






 
   


                                                                          (54) 

 A solitary wave must have finite energy and localized energy density. In view of (51) its field must 

approach one of the values
 i

g , as x   .  Subject to these boundary conditions, one solves the 

equation (54). Since this is an ordinary second order differential equation, it can easily be solved by 

quadrature for any  U  .  

Before we write down the solution of equation (54) in explicit form, we note a mechanical analogy 

which is useful also in certain situations. Formally, (54) has the form of Newton’s law for a particle 

with coordinate   moving in “time” x  in the potential  U    . For a static solution its energy E  is 

given by 

                          
2

1

2

d
E dx U

dx








  
   

   
   

Upon multiplying (54) by   and integrating once, we have 

                             
21

2

dU
dx dx or U

d
    


                           (55) 

Since both   and    U   vanish at x , the integration constant is zero. Equation, derived 

above, is just a virial theorem for the “analogue-particle”. 
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 We consider first the case of unique minimum at
1  , where  1 0U   . The analogue- particle sees 

a potential   U     as in Fig.16a, with a maximum at 
1   in the past and far future  x   . 

Once the particle takes off from  
1   in either direction, it will not return. Its kinetic energy will 

never be zero again since its total energy will always be larger than its potential energy  U    . 

Consequently the particle never stop and turn back towards
1 . In terms of the static field solution 

 x  this means that once we fix the boundary condition as  
1   and  0 at x    , the 

same condition at x    will not be satisfied by a non-trivial non-singular solution, without explicitly 

solving  Eq. (54) and independent of the details of  U  , we see that if  U   has a unique absolute 

minimum, there can be no static solitary wave, the trivial solution    1x   for all x , is permitted.    

  

 

Fig.16  (a) The potential  U    of the “analogue-particle” when   U   has a unique minimum at There are no 

non-trivial static solutions here. 

(b) The case where   U  has three discrete degenerate minima. Here 4 non-trivial solutions are possible 

 

 Let  U   have two or more degenerate minima, where it vanishes.  Fig.  (b) Corresponds to an 

example where  U  has three minima at
1 2 3, ,   . The boundary conditions now state that the 

particle must leave any of these points at x  and end up at x    at any one of them. This  is 

now possible. It can take off from the top of the hill 
1  at x    and roll up to the top of the hill 

2  

asymptotically as x  . Or, it can begin at 
2  and end up at

3 . Or, it can undergo the reverse of 

these two motions. There are the only four non-trivial possibilities for this example. It cannot, for 

instance, leave
1 , go up to 

2 and either return back to 
1  or go to

3 . Indeed, note that at 
2 both 

 U   and /dU d  vanish. Consequently, from (54) and virial theorem, both the “velocity”    and 

the “acceleration”     vanish there. Further,  
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 

   
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


 

 

  
 

 
     

 

   

  

Thus, all derivatives   /n nd dx    vanish at
2 . The particle, having left   

1  can barely make it to 
2  as

x  , where all derivatives of its motion vanish. It cannot return or proceed to
3 .  

Therefore, the mechanical analogy helps us conclude that if  U  has a unique absolute minimum, 

there can be no static solitary wave, and when  U  has n  discrete degenerate minima, we can have 

 2 1n   types of solutions, which connect any two neighboring minima, as x  varies from

to  . It is of course understood that trivial space-time independent solutions can exist in 

addition.  

 We can also explicitly solve the Eq. (50), because we have 

                      
1/2

2
d

U
dx


       

Upon integration one obtains explicit solution  

                                

  

 

0

0 1/2

2

x

x

d
x x

U








  

  
                                                        (56) 

where the integration constant, 
0x  is any point in space where the field has value  0x . 

The solution  x  can be obtained in principle explicitly, given at 
0x  and a  0x  by integrating (56) 

and inverting it. In practice, it may be possible to do this analytically only for some  U  . As an 

illustration of this method let us consider the “kink” solution of the special model.  

 

 

Lecture   8 

           (b)    Kink 

The simplest topological object, the kink, arises in the theory of a single scalar field in (1+1) space- 

time. The action for this model is chosen in the form  

                          
2

2 1

2
S d x U 

 
   

 
                                                         (57) 

where  
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                             
2

2 2 , /
4

U and m


                                 (58) 

This action is invariant under discrete transformation  , but this symmetry is spontaneously 

broken, since the classical vacuum (minima of  U  ) is 

                                        /m                                                                          (59) 

 Consequently localized solutions must tend to /m   as x   . In particular, static solutions can 

be of two types, as per earlier arguments. They can begin from     at x    and end up with 

    at x  , or vice versa.   Specifically, the static solution of Eq. (56) is  

                             

  

 

0

0

2 2 /
2

x

x

d
x x

m








 

  



                                                        (60) 

After integration and inversion, we find the solutions  

                                 0/ tanh /x m m x x     
 

                                        (61) 

The solution with the plus sign plotted in Fig.17 (a) will be called the “kink” and one with minus sign 

the “antikink”. These solutions exhibit the translational invariance explicitly, since a change 
0x  merely 

shifts the solution in space. The other symmetry     together with x x  are reflected in the 

relations which take on a particularly simple form when 
0x  is chosen equal to zero 

                            kink antikink antikinkx x x                                                            (62) 

The energy density of the kink solution,  

                          
6

2 4

0

1
2 sec / 2

2 2

m
x U U h m x x   


     
 

                (63) 

is  plotted in Fig.17(b)    and is clearly localized near 
0x .  
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Fig.17    (a) Schematic plot of static kink solution (61), (b) The energy density of the kink (it is localized with a width 

1/ m . The profile function is not localized, but the energy density does. 

The total kink energy or the classical kink mass is given by  

                     
22 2

3
cl

m
M dx x







                                                                                   (64)  

It is finite. The kink is a legitimate solitary wave. So is the antikink.  

Are they solitons or no? One needs information on time dependent solutions involving several such 

waves. But in the present example a two-kink configuration cannot even exist with finite energy. 

Indeed, let consider scattering of two such solutions. The first kink must begin at x    with 

/m    and tend to /m    on the right. If this were to be followed by a second kink, the 

latter would tend to 2 /m   as x  . This would lead to a constant non-zero energy density 

as  x   and hence to infinite total energy. A kink can of course be followed by an antikink, 

bringing the field   back to /m   . Here again numerical calculations indicate that a kink and 

an antikink approaching one another do not retain their shapes after collisions. Therefore, the kink is a 

solitary wave but not a soliton. It resembles a “lump” of matter in the sense that it is static, self-

supporting localized packet of energy. The resemblance to an extended particle goes further, because 

the system is Lorentz invariant, given the static solution (63), one can Lorentz-transform it to obtain a 

moving kink solution. Because   is a scalar field, we need only to transform the coordinate variables in 

(63). This gives  

             
 0

2
, tanh

2 1
u

x x utm m
x t

u




   
    

   

                                                                        (65) 
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where 1 1u    is the velocity of a kink. That this is a solution of the field equation 

                              
3 2m                                                                                               (66)                                                                                      

can be verified by substitution. Corresponding spatial width of the moving kink in (65) is
21 /u m , 

as would happen from Lorentz contraction for a lump of matter. Further, the energy of the time 

dependent solution (65) is  

     

 
4 2 4 4

4 0

2 2 2

3

2 2

1
sec

4 4 41 1 2 1

2 2 1

3 1 1

u

cl

x x utm u m m m
E dx h

u u u

Mm

u u


  







     
              

 
 


                     (67) 

where 
clM  is the static kink energy (64). It is the Einstein mass-energy equation for a particle. So, in 

the quantum version of this model the kink solution leads to a particle state. Another important feature 

of kink solution is that it is singular as the nonlinearity parameter   goes to zero. Thus it cannot be 

obtained by mere perturbation expansion starting from the linear equation, kink (63) is non-

perturbative. 

 

        (c)   Topological indices 

 

We are interested in non-singular finite energy solutions, of which solitary waves and solitons are  

minimum of  U   at every point of spatial infinity, in order the energy E  in (51) be finite. In one 

space dimension spatial infinity consists of two points, x   . Consider x   , for instance. Let at 

some given instant
0t , 

                         0 0 1lim , ,
x

x t t  


     

where 
1  has to be one of the minima of   U  . Then, as the time develops (starting from 

0t ), the 

field  ,x t  will change continuously with t  at every x  as governed by the differential equation. In 

particular,  , t   will be some continuous function of  t . On the other hand, since the energy of that 

solution is conserved and remains finite,  , t   must always be one of the minima of   U  , which 

are a discrete set. It cannot jump from 
1  to another of the discrete minima if it is to vary continuously 

with t   Therefore    , t   must remain stationary at  
1 . The same arguments apply to x   , 

where   2, t   , must also be time-independent and minimum of    U  , but not necessarily the 

same as 
1  in the case of degenerate minima.  
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  We can therefore divide the space of all finite-energy non-singular solutions into sectors, characterized 

by two indices, namely, the time independent values of  x    and   x   . These sectors are 

topologically unconnected, in the sense that fields from one sector cannot be distorted continuously into 

another without violating the requirement of finite energy. In particular, since the evolution is an 

example of continuous distortion, a field configuration from any one sector stays within that sector as 

time evolves. Of course, when  U   has a unique minimum, there is only one permissible value for 

both   x    and   x    therefore only one sector of solutions exists.   

 Consider the kink solution. The potential has two degenerate minima at /m   . Consequently, 

all finite-energy non-singular solutions of this system, whether static or time-dependent, fall into four 

topological sectors . These are characterized by the pairs of indexes 

       / , / , / , / , / , / , / , /m m m m m m m m            

respectively, which represent the values of      ,x x     . Thus the kink, the antikink and 

the trivial constant solutions    /x m   are members of the four sectors, respectively. When a 

kink from the far left and an antikink from the far right approach one another, the field configuration 

belong to the (- /m  , - /m   ) sector. Even though we may not be able to calculate   easily what 

happens after they collide, we can be sure that the resulting field configuration will always stay in the  

 / , /m m    sector. 

A quantity sometimes called the “topological charge” is often used in the literature. It can be defined 

here as  

                                        Q x x
m


 

 
          

 
                                                  (67) 

with an associated conserved current, 

                                 /k m 

                                                                                    (68) 

where covariant summation notation  

                                   
1 0

, 0,1
0 1

g 
 

   
 

                                                  (69) 

has been used  and   is the antisymmetric tenzor. Clearly  

             0k 

                                and                    0Q dxk





                                                 (70) 

This Q is just difference between the two indices    / m    and    / m   . We mention 

it here because it is the analogue of topological indices in more complicated systems, such as gauge 
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theories in higher dimensions. The adjective “topological” is sometimes bestowed on solitary waves 

which  have 0Q  . Waves with 0Q   are “non-topological. Thus the kink and the antikink of the 

considered system are topological solutions, while the trivial solutions     /x m    are “non-

topological” solutions. One of our conclusions here is that for a single scalar field in two dimensions, 

non-trivial static solutions are necessarily topological.  

The topological indices, as boundary conditions, are conserved because of finiteness of energy. In many 

cases these indices are closely related to a certain kind of breaking of some symmetry.  Suppose the 

Lagrangian and  U   are invariant under some symmetry transformation acting on  x . If   U   

had a unique minimum at some
0  , then 

0  itself must remain invariant under that transformation. 

But in order to get non-trivial topological sectors, we need to have two or more degenerate minima. In 

that case while the full set of minima is invariant under the transformation, each individual minimum 

need not be so. For instance, our considered system, which permits four topological sectors, has a  

 U   invariant under   . But its two minima are not separately invariant. Rather, they are 

transformed into one another. This fact has great importance in the quantum theory as well as the 

statistical mechanics of the field system and is called “spontaneous symmetry breaking”.  At this stage 

we merely observe the relation of non-trivial topological sectors to the existence of several degenerate 

minima of the potential, which in turn is connected (often, but not always) to spontaneous symmetry 

breaking.    

exercises    

1. Find the size of the kink  and compare it to the Compton wavelength of an elementary excitation.  

2. For large x , the kink field differs very little from the vacuum. Find this difference for large x  and 

show that it satisfies to the Klein-Gordon equation and decreases exponentially.  

3. Find the spectrum of small perturbations about the kink, i.e. the spectrum of the eigenvalues and 

eigenfunctions of the operator  
2

2

d
V x

dx
   with the potential  

2

2

kink

U
V

 







 
 

, where  U    is 

given by the Eq. (58)    

   

Lecture   9 

        (d)    The sine-Gordon system 

Let us consider the chain of coupled pendula drawn in Fig. 18.  The pendula are moving around a 

common axis, and two neighboring pendula are linked by a torsional spring. Denote by
n  the rotation 

of pendulum n  with respect to its equilibrium position. The Hamiltonian of this system is the sum of 

three terms: 

                             
2

2

1 1 cos
2 2

n

n n n

n

dI C
H mgl

dt


  

 
     

 
                                   (71) 

The first term is the kinetic energy associated with the rotation of the pendula, where I   is the moment 

of inertia of the pendulum with respect to the axis. The second term describes the coupling energy 
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between neighboring pendula, due to the torsional spring having torsion constant C, while the last 

contribution comes from the gravitational potential energy of the pendula, l  being the distance of their 

centers of mass to the axis, m  is the mass of a pendulum, and g  - the acceleration of gravity.  

 

Fig.18    A chain of pendula sharing a common axis, coupled by torsional springs. In the continuum 

                                 limit, the equations of motions of this device lead to the sine-Gordon equation.  

 

    Introducing the momentum
n np I , which is the canonical conjugate to the

n  , the equation of 

motion of the pendulum chain can be derived from Hamiltonian (71) with the Hamilton equations 

             ,n n

n n

d dpH H

dt p dt





 
 
 

    

They lead to the non-linear coupled differential equations 

               1 1 2 sin 0n n n n nC mgl                                                                      (72) 

Their exact solution is not known but an approximate solution can be derived from the continuum limit 

approximation, provided the coupling between adjacent pendula is strong enough to ensure that   

varies only slightly from one pendulum to the next.   

Let us denote by a  the distance between two pendula along the axis. We replace the discrete variables 

 n t  by a function  ,x t , where  ,n x na t   . The Taylor expansion of 
1n 

 leads to  

                

2 4
2 4

1 1 2 4
2n n n a O a

x x

 
   

  
    

  
                                                                 (73) 

If we truncate the expansion to the lowest non-vanishing term, we obtain then the partial differential 

equation 
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2 2

0 0 sin 0c                                                                                             (74) 

where 

2
2 2

0 0,
mgl Ca

c
I I

         (square of frequency and speed)                           (75) 

The equation (4) is known as the sine-Gordon (sG) equation. We’ll see below that it is a completely 

integrable equation, which has exact soliton solution.  

  

Fig.19    Topology of the potential energy landscape of the sine-Gordon model. Solid and dashed lines labeled 1 and 2   

             show the position of an imaginary massive elastic string, which would have the same motion as the pendulum 

chain in the continuum limit approximation 

 

In order to completely figure out the potential energy of the system, one must also consider the 

harmonic coupling energy due to torsional springs connecting pendula. In the continuum limit the 

pendulum chain can be viewed as an elastic string which is massive and subjected to the undulations of 

the potential.  

 One notice, that the system has several energetically degenerate ground states. Indeed the ground state 

can be achieved with 0   or 2 (p p   being any integer). This was not for the KdV model – 

because the water in a canal only has one possible equilibrium level. This feature of the sG model 

suggests the existence of several families of solutions: 

 Solutions in which the whole chain stays within a single potential valley (case 1 of Fig. ) 

 Solutions in which the chain moves from one valley to another one (case 2 of Fig. , which 

             corresponds to a soliton solution) 

More quantitively, solution can be distinguished by their behavior towards the boundaries : 

               

 

 

lim lim 0 1

lim lim 2 , 0; 2

in case

p p in case

 

 

 

  

 

 

 

  
                                 (76) 

These two solution are said topologically different because their differences is a property of the solution 

as a whole. Indeed, if one looks at the solution for x  , a local view does not make any difference 
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between the two: one sees pendula at rest in their minimal energy state. It is only by moving the whole 

pendulum chain that one can notice that there is a full turn from one end to other in case 2.  

 

      (e)    Soliton solutions in sG system 

In order to derive the solutions of the sG equation, one must notice, that the equation is preserved by a 

Lorentz transform relative to speed
0c . Therefore it is sufficient to look for static solutions, from which 

solutions moving in velocity u  can be derived with a Lorentz transform, as well as in kink case. 

However, as in KdV, soliton solutions can also be obtained by looking for permanent profile solutions 

moving at velocityu , i.e. solutions which only depends on a single variable x ut   . For such 

permanent profile solutions the sG equation becomes  

          
2 2 2

0 0 sin 0u c                                                                                                     (77) 

or  

      

2

0

2 2

0

sin
c u




  


                                                                                                               (78) 

Multiplying by   as in kink case and integrating with respect to , we get  

                

2 2

0

12 2

0

1
cos

2

d
C

d c u






 
  

 
                                                                                  (I79) 

The integration constant 
1C  is determined by the boundary condition that we impose on the solution. 

Since we are looking for a soliton, i.e. spatially localized solution, we must have

   0 mod 2 , for     , because at infinity the pendula must be in one of their ground 

states. For the same reason we impose / 0,d d if    , which leads to

 2 2 2

1 0 0/C c u  , and therefore  

          
2

2
0

2 2

0

1
1 cos 0

2 c u



    


                                                                         (80) 

As in the kink case, we can consider this relation as the sum of kinetic energy (in the “pseudo—time”

) and the potential energy (of an “analogue-particle”). Thus the solution     describes the motion of 

this particle, having zero total energy, in the potential  

                                   
2

0

2 2

0

1 coseffV
c u


   


                                                        (81) 



59 
 

 

                                            
2 2

0 0c u                                       
2 2

0 0c u                  

Fig. 20.  Search for the possible solutions of the sG equation by studing a fictious particle mobile 

in the pseudo-potential  effV  . 

Fig. (20) shows that, for 
2 2

0 0c u   there is a possible motion for an analogue- particle leaving 0   

at rest. It can reach  2 2or       with a vanishing “velocity”   after an infinite fictitious 

“time”   . Consequently, for
2 2

0 0c u  , a particle initially at rest in 0   cannot move. This 

analysis shows that solitons can only travel at speeds smaller than
0c . Moreover it indicates that there 

are no permanent profile solutions which start and end in the same potential valley. 

  For   
2 2

0 0c u  , the solution can be obtained from Eq. (80) and we get  

                 0 0

2 2
0 0

4arctan exp ,
1 /

x ut
c u c

  
 

 
    
  

                                     (82) 

The arbitrary integration constant 
0  determines the position of the soliton at time 0t  . The solution 

exhibits the characteristic expression associated with the Lorentz invariance, as well as the validity 

condition
2 2

0u c . The solutions “soliton” (with a + sign) and “ant soliton” (- sign) are plotted in 

Fig.21. 

The soliton interpolates between two different states of the system which have the same energy. Solitons 

and antisolitons differ by their topological charge defined by: 

           
1 1

lim , lim ,
2 2 t t

Q dx x t x t
x


 

 



 


    
 

                                                (83) 

Which is equal +1 for a soliton and -1 for an antisoliton. The conservation of the topological charge 

explains the exceptional stability of topological solitons. They are much more stable than the non-

topological solitons of KdV equation. In an infinite medium, perturbations can modify the speed of a 

soliton, or even bring it to rest, but they cannot kill it because it would imply a change of the 

topological charge.  
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Fig.21    Soliton (a) and antisoliton (b) solutions of the sG equation 

 

             (f)   Energy of soliton 

   In the continuum limit approximation the contribution of a single cell, divided by the cell spacing, 

gives the energy density – the Hamiltonian per unit length  

                            
2

2 21
, 1 cos

2 2

I Ca
x t mgl

a
  

 
    

 
H                               (84)                     

If we are interested in the expression of H  for a soliton, it is again convenient to introduce the variable 

x ut     such that    ,x t   . Then                      

              
2 2

2 21
, 1 cos

2 2

Iu Ca
t mgl

a
    

 
     

 
H                                       (85) 

Using the definition of 
2

0c  and Eq. (80), all the terms can be written as a function of  , and substitution 

the obtained solution (82), leads to  

                  
 

 2 2
2 020 0

2 2 2 2
0 0

4
sec

1 /

x utIc I
h

a a u c c u






 

 
H   

This expression containing 
2sech  does indeed describe an energy density localized around the center 

of the soliton. Because of this property soliton often is called as “quasi-particle” 

  Because                             
2sech 2dx x





    

an integration over space gives the energy of the soliton  

                
0 0

2 2

0

8

1 /

I c
E

a u c





                                                                                (86) 

which has a standard “relativistic” expression, with respect to the speed 
0c  for a particle of mass  

0 08 /M I c a .                                                         (87) 
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It is interesting to note that the energy of the soliton can be calculated even if we do not know the 

analytical expression of the solution. Let us restart from the energy density. The energy is  

                

2

0Ic d d
E d

a d d

 


 





  
   

  
    

and can be calculated by replacing one of the two factors by its analytic expression deduced from the 

solution (82). We get 

      

22 2

0 0 0 0

2 2 2 2
00 0

2 2
1 cos 1 cos

Ic Icd
E d d

a d ac u c u

 
   







 
    

  
    

The integration over   is easily to carry out and we deduce the above expression (86). 

 

Lecture   10 

 

        (g)     Other models, related to soliton equations 

1. FPU problem 

We saw above that the sine-Gordon system has soliton solutions as against the kink model. The SG 

system has been in the study of a wide range of phenomena, including propagation of crystal 

dislocations, of splay waves in membranes, of magnetic flux in Josephson lines, Bloch wall motion in 

magnetic crystals, as well as two-dimensional models of elementary particles. There are specific 

applications in solid state physics, such as the Fermi-Pasta-Ulam (FPU) problem:  how a crystal evolves 

toward thermal equilibrium by simulating a chain of particles of mass unity, linked by a quadratic 

interaction potential, but also by a weak nonlinear interaction.  

The question of interest was: why do solid have finite heat conductivity? The solid is modeled by a one-

dimensional lattice. In 1914 Debye had suggested that  the finiteness of the thermal conductivity of a 

lattice is due to the anharmonicity of the nonlinear forces in the strings. If the force is linear (Hook’s 

law), energy is carried unhindered by the independent fundamental normal modes of propagation. The 

effective thermal conductivity is infinite. no thermal gradient is required to push the heat through the 

lattice from one end to another and no diffusion equation obtains. Debye thought  that if the lattice were 

weakly nonlinear, the normal modes (calculated from the linearized spring) would interact due to the 

nonlinearity and thereby hinder the propagation of energy. The net effect of many such nonlinear 

interactions (phonon collisions) would manifest itself in a diffusion equation with a finite transport 

coefficient.  

This suggestion motivated Fermi, Pasta and Ulam to undertake a numerical study of the one-

dimensional anharmonic lattice . They argued that a smooth initial state in which all the energy was in 

the lowest mode or the first few lowest modes would eventually relax to a state of statistical equilibrium 

due to nonlinear couplings. In that state, energy would be equidistributed among all modes on the 

average.  
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The model used by FPU to describe their one-dimensional lattice of length L consists of a row of 1N   

identical masses each connected to the next and the end ones to fixed boundaries by  N  nonlinear 

springs of length L. Those springs when compressed or extended by an amount   exert a force  

                                        2F k       

where  k  is the linear spring constant  and  , taken positive, measures the strength of nonlinearity. 

The equations governing the dynamics of this lattice are   

                   
    1 1 1 1

0

2 1 , 1,2,..., 1

0

i

tt i i i i i
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mu k u u u u u i N

u u

         

 
  

  

         

 This one-dimensional system is described by the Hamiltonian 

   
21 1 1

2 3

1 1

0 0 02 3

N N N
i

i i i i

i i i

p K
H K u u u u

  

 

  

                                                                (88) 

where 
iu  is the displacement along a chain of atom i  with respect to its equilibrium position and 

ip is 

its momentum. The coefficient   is the measure of nonlinearity. The two ends of chain were assumed 

to be fixed, i.e. .   Introducing new displacements and their frequencies by  

                
1

2 2

0

2
sin / 4 sin / 2

N

k i k

i

A u ik N and K k N
N

  




  ,  

respectively, the Hamiltonian (88) reduces to the form  

     2 2 2

, ,

1

2
k k k klm k l m

k k l m

H A A c A A A                                                                 (89) 

The last term, due to nonlinearity, leads to a coupling between the “normal” modes. FPU studied 

numerically influence of this non-linear term on the normal modes. They noticed that the system, after 

remaining in as steady state for a while, had then departed from it. To their great surprise, after 157 

periods of the mode 1k  , almost all energy was back in the lowest frequency mode. This mystery, that 

nonlinearity was seemingly nicer than expected, was known as the Fermi-Pasta-Ulam Problem.  This 

highly remarkable result, known also as FPU paradox, shows that nonlinearity is not enough to 

guarantee the equipartition of energy. To understand it, it is necessary to stop thinking in terms of linear 

normal modes, and to consider the nonlinearity intrinsically. It also means that one should stop thinking 

in Fourier space and come back to real space. A “mode” is a localized excitation in Fourier space, but it 

is fully delocalized in real space. Conversely a soliton is localized in real space, but extended in Fourier 

space.  

The solution of the FPU paradox was found ten years later by Zabusky and Kruskal in terms of solitons. 

They studied the equations of motion    derived from the Hamiltonian (88) 

0 0Nu u 
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             
2 2

1 1 1 12i i i i i i i iu K u u u K u u u u   
       
 

                                     (90) 

Zabusky and Kruskal considered continuous limit and get the KdV equation. 

 

2. Frenkel-Kontorova (FK) model 

A model containing the essentials of the physics of a dislocation was proposed in 1939 by Frenkel and 

Kontorova. It describes the dynamics of a line of atoms above the slip plane 

 

Fig.22    The Frenkel-Kontorova model of an edge dislocation 

 

The position of the atom of index n  is measured with respect to a fixed origin, chosen to be at the 

equilibrium position of one of particular atom in a perfect crystal (Fig.21 ). It can also be given by 

its displacement with respect to its equilibrium position,
n nu x na  , where a  is the lattice 

spacing along the line of atoms. As atom is subjected to the potential  nV u  created by the atoms 

which are below the slip plane. This “substrate potential” has the periodicity of the lattice and the 

FK model chooses the simplest periodic function 

                                    0

2
1 cos n
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u
V u V

a

 
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 
                                                                (91) 

The model must also take into account the interaction of the atoms along the line. The substrate 

potential  nV u  cannot ignore non-linearity because we want to describe motion which may be as 

large as the period of the potential. However, harmonic approximation is possible for the 

interaction potential between atoms 1n  and n  because it depends on the relative displacement 

of two neighboring atom, which is small with respect to the lattice spacing, even in the core of a 

lattice displacement. It is written as  

                            
2

1, 1
2

n n n n

C
W u u u u                                                                          (92) 

So that the Hamiltonian of the model is  
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           
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This model contains the basic ingredients for soliton solutions, the nonlinearity of the substrate 

potential and the cooperativity coming from the interatomic interactions. It can be shown that 

indeed solitons exist in this system. Analogy with the sG model (71) is evident.  

The equations of motion of the atoms, which derive from this Hamiltonian, are  

  0

1 1

2 2
2 sin n

n n n n

V u
mu C u u u

a a

 
                                                                          (94) 

As in FPU problem, we get a set of coupled nonlinear differential equations. This is a common 

situation in solid state physics. The system, although it has a simple form does not have any known 

analytic solution. As in the FPU case, approximations are required to solve it. As in the FPU case, 

we can use a continuum limit approximation by replacing the set of discrete variables  nu t  by the 

continuous function  ,u x t , so that    ,nu t u x na t  . Then expanding  1nu t  around  nu t  

we get 
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2 2

1 2
1 , , , , ...

2
n

u a u
u t u n a t u na t a na t na t

x x


 
     

 
                            (95) 

If we truncate the expansion at order 2, the set of equations (94) becomes 

            
2

02 2
sin 0

VCa u
u u

m ma a

 
                                                                                         (96) 

We are faced to the sG equation 

                                 2 2

0 0 sin 0c                                                                                     (97) 

where we have used the definitions 

     2 2 2 2 2

0 0 0, 2 , / , / , 4 /x t u x t a c Ca m V ma                 (98) 

This result suggests therefore that the solutions of the sG equation (97) could describe the 

dislocations in solid state.   

 

        (h)    A particle physics approach to the sG system 

The starting point is a Lagrangian density for the single scalar field in (1+1) dimensions: 

                           
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L                                   (99) 
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The field equation arising from (99) is the sine-Gordon equation: 
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 



 
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 
                                                                                  (100) 

Let us change the variables as follows 

             , /x mx t mt and m       

 The equation of motion becomes 

               
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                                                                     (101) 

and the conserved energy is  

                   
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This Lagrangian and the field equation are unchanged under the discrete symmetries 

        , ,x t x t     

and  

         , , 2 , ... 2, 1,0,1,2,...x t x t N N                               (103) 

Consistent with these  symmetries, the energy vanishes at the absolute minima of  

       1 cosU    ,                                                                                                 (104) 

which are  

              , 2x t N                                                                                                 (105) 

All finite energy configurations can be divided into an infinite number of topological sectors, each 

characterized by a conserved pair of integer indices  1 2,N N , corresponding to the asymptotic values 

1 22 2N and N   that the field must approach as x  tends to and  , respectively.  

The topological charge is 
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Let us begin with static localized solutions. In one space dimension, static solutions must connect only 

neighboring minima of  .U   That is, they must carry 1Q   . Explicit solutions are easily obtained 

using  Eq. (56); 
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2sin / 22
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                                                             (107) 

This integral can be easily performed  by substitution  tan / 4t   and equals to  2 ln tan / 4  

therefore  we get 

               1

0 04 tan exp solx x x x x                                                                 (108a) 

and  

               1

0 04 tan exp antisol solx x x x x                                                  (108b) 

The solution with the plus sign here goes from 0   to   2   (Fig.22) or equivalently from 2  

to 4  etc.  It corresponds to 1Q  , and is often called the soliton of the system. The other solution has 
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1Q    and called the antisoliton. Each has energy 
28 /SM m   (calculate it). Moving soliton 

solution can be obtained on Lorentz-transforming (108a), i.e. replacing  0x x  by

  2

0 / 1x x ut u   .  The solution (108a) is roughly similar in shape to the “kink”, although the 

function, in detail, is different.      

 

 
 

Fig.23.  A sketch of the sG soliton, (108a); (b) Three profiles of the soliton – antisoliton scattering solution  

                         ,SA x t  at  t    large negative, 0t   and  t    large positive; at  0t   
SA  vanishes;  

(c) A sketch  of the soliton – soliton solution at 0t  . 

 

However, unlike the kink, we assert that the solution (108a) is a genuine soliton as per the stringent 

requirement, given earlier. Similarly the 1Q    solution (108b) is also a genuine soliton. It is called 

an antisoliton here partly to distinguish it from the 1Q   solution and partly because it is related to the 

latter by the symmetry   .  

 

In fact this system permits a third type of soliton called the doublet or breather. Altogether then, the 

field equation (101) yields not just one but three different types of solitons.  

It is easy to verify by substitution that the following function  
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                                                                  (109) 

satisfies to the Eq. (101).  Its asymptotic behavior in time can be extracted quite easily, by using the 

relation    1 1tan 1 / / 2 tanz z   ,  to yield  
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(110a)  

The solution therefore corresponds to a soliton and antisoliton far apart and approaching one another 

with relative velocity 2u , in the distant past. 

          Similarly one can check  that  

        
   

2 2

/ 2 / 2
,

1 1
SA sol antisol

t

x u t x u t
x t

u u
  



       
       

    
                                (110b)  

We see that in distant future the solution 
SA  corresponds to the same soliton-antisoliton pair, with the 

same shapes and velocities! The only change from the initial configuration (109) is the time delay , 

which remains as the sole residual effect of the collision between the soliton and the antisoliton. As 

they approach one another, they tend to annihilate each other until at 0t  , the field vanishes 

everywhere (Fig.22(b)). But it re-emerges for positive t , and asymptotically grows and separates into 

the same pair as if the collision had never taken place, except for the time delay. 

 

There is a similar two soliton exact solution,  

              
 
 

2

1

2

sinh / 1
, 4 tan

cosh / 1
SS

u x u
x t

ut u
 

 
 

  
 

 

                                                                   (111) 

which is depicted in Fig.22(c).  At any instant t  it goes from 2 2to     as x  goes from

to  , and consequently belongs to the sector 2Q  .  

 

Finally, by the     symmetry, 
AA SS    is the antisoliton-antisoliton solution. These exact 

solutions (109) and (111) indicate that what we have termed the soliton and the antisoliton of this 

system may both be genuine solitons. But (109) and (111) correspond to cases where only two of these 

objects collide. It may be verified that  

                 
 

2
1

2

sin( t/ 1 )
, 4 tan

cosh / 1
x t

x


 


 



 
 


 

  

                                                        (112) 

is also a solution of the field equations. Considering that u i  represented the asymptotic velocities 

of the soliton and the antisoliton in
SA , one can interpret the doublet in (112) as a “bound” solution of a 

soliton-antisoliton pair. The doublet is clearly a periodic solution with period  

                  22 1 /       

The soliton and antisoliton oscillate with respect to one another with this period.  
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        (i)    Backlund transformations 

 

Another important feature of this system is the presence of Becklund transformations. As applied to the 

sG system, these transformations provide a way of generating N-soliton solutions, starting from 

solutions with fewer solitons.  Furthermore, only first order differential equations need to be solved.    

The essence of Becklund transformation is the following: Suppose that we have two uncoupled 

partial differential equations  in two independent variables x  and t , for the two functions u  and 

 , the two equations are expressed as  

                                   0 0P u and Q                                           (113) 

where P and Q  are two operators, which are in general nonlinear. Let 0iR   be a pair of 

relations  

                                 , , , , , ,...; x, t 0, 1,2i x x t tR u u u i                                   (114) 

between the two functionsu and  .   Then 0iR   is a Backlund transformation if it is integrable 

for   when   0P u   and if the resulting   is a solution of   0Q u   and vice versa. If P Q , so 

that u and   satisfy the same equation, then 0iR   is called an auto-Becklund transformation. Of 

course, this approach to the solution of the equations   0P u   and    0Q u   is normally only useful 

if the relations  0iR   are, in some sense, simpler than the original equations (113).   

   

For the sG system corresponding Becklund transformation is formulated as follows: Let us write the sG 

equation in Light-cone variables  
1

2
x x t   , corresponding derivatives are / x     , in terms 

of which the sG equation becomes 

                          sinu u       or       sinu u                                                    (115)                                                    

Consider now the following pair of equations 

      
1 1 1

sin sin
2 2 2 2

u u
u a u

a

 
 

 

    
      

   
    (116) 

where a  is a non-zero arbitrary real constant called the Backlund parameter. 

 

 Relations (116) are known as a Becklund transformation and may be thought of as determining the 

fieldu , given the field . Now let us construct the cross-derivatives 

            

 

 

1
sin cos

2 2 2

1
sin cos

2 2 2

u u
u

u u
u

 


 






    
     

   

    
     

   

                                                           (117) 

The compatibility condition means, that the order of derivatives is not essential, f f        . 

Then, by adding and subtracting equations  in (117) and using  simple trigonometric relations one can 

derive  the following equations 

                      sin , sinu u and                                                                 (118) 

So, both u and    satisfy the sine-Gordon equations (115). Therefore equations (116) are an auto-

Becklund transformation for equation (115). 
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Thus, the Becklund transformation is a mapping between solutions of the sine-Gordon equation and can 

be used to generate new solutions from known solutions. When applied repeatedly, the Becklund 

transformation can give the breather and the multisoliton solutions of sine-Gordon equation. It can also 

be applied to the KdV and other equations. The main difficulty is in finding functions P   andQ . 

 

 As an example, remember that the sG equation has a trivial solution,  , 0u x t   for all x and t and 

use this trivial solution to generate a non-trivial one. Let us choose  0  , then the Becklund 

transformation, (116) becomes 

                       
1 2 1

2 sin sin
2 2

u a u u u
a

 

   
    

   
  

 

These two equations may be integrating to give 

          
2

2 2log tan , 2 log tan
4 4

sin
2

u
xdu u u

ax f x g x
u a



      
 
 
 

   

respectively, where f  and  g  are arbitrary functions. Thus, for consistency, we must have  

                         tan exp /
4

u
C ax x a 

 
  

 
  

or     

                           4arctan exp /u C ax x a                                                                 (119) 

 

In terms of  original coordinates  ,x t , this gives  

                    1

2
, 4 tan exp

1

x ut
x t

u
 

  
    

   

,                                                                  (120) 

with         

2

2

1

1

a
u

a





. 

 

 This is just the one-soliton solution (108a), described in a frame where it moves with velocityu . 

Thus, starting from the no-soliton solution, the Becklund transformation generates the one-soliton 

solution The real power of the Becklund transformation is that it leads to a purely algebraic method of 

constructing multisoliton solutions, evading the task of having to explicitly integrate Eqs. (116), which 

may be tricky for a complicated seed solution . 

 

 

Lecture  11 

 

Scaling arguments  and  theorems on the absence of solitons 

 

Till now we considered field theories only in 1+1 dimensions. Naturally, it is interesting to see what 

happens in more dimensions. We are interested only in time independent field configurations with finite 

energy.  
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The vacuum, which is spatially constant and has the minimal energy of all fields, belongs to trivial case. 

More generally, we may ask if there are any non-trivial stationary points of the energy.  

 

By applying scale arguments it is possible to show that there are no non-trivial static solutions of the 

field equations in a number of models in  1d  -dimensional space-time with 1d  . These arguments 

apply not only to a stable solutions of the soliton type but also to unstable static solutions.  

 

A simple and important non-existence theorem is due to Derrick (1964). He noted that in many models 

the variation of the energy functional for static fields with respect to a spatial rescaling is never zero for 

any non-vacuum field configuration. But a field configuration which is a stationary point of the energy 

should be stationary against all variations including spatial rescaling. Therefore, in such theories there 

can be no static finite energy solutions of the field equation, except the vacuum. In particular, there are 

no topological solitons.  

 More precisely: in 
dR  a spatial rescaling is a map , 0.with  x x  Let   x  be a field 

configuration, with any kind of field or multiplet of fields, and let  
    , 0


  x , be the 1-

parameter family of field configurations, obtained from   x  by applying the map x x . We 

shall clarify how 
   

 x  is related to   x below.  In any case of the field configuration, 
   

 x  

let’s denote by 
    E E


   the corresponding energy, as a function of scaling parameter . Then 

the Derick theorem reads: Suppose that for arbitrary, finite energy configuration   x , which is not 

the vacuum, the function  E   has no stationary point. Then the theory has no static solutions of the 

field equation with finite energy, other than the vacuum.   

 

The usefulness of this non-existence theorem depends on defining 
   in an appropriate way so that it 

is easy to determine  E  .  

 

For better understanding of this theorem let us consider some appropriate examples.   

    

Let us consider first the theory of n scalar fields , 1,2,..., ,a a n       in  1d  -dimensional space-

time. We shall write the Lagrangian in a quite general form 

                              
1

2

a b

abL F V

                                                          (121) 

where  abF   and  V   are certain functions of the scalar fields
a . Let us assume that  

 a

c x  is a static solution of the classical field equations with finite energy. It is an extremum of the 

energy functional  

                  
1

2

d a b

ab i iE d x F V    
 

    
 

 ,                                            (122)        

we shall assume that for all   the matrix  abF   defines a positive-definite quadratic form, i.e. all the 

eigenvalues of this matrix are positive for all . When  

                                           0a b

ab i iF     ,                                                        (123) 
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where equality holds only for the fields which are not depend on x (classical vacuum). In addition, we 

shall suppose that  V   is bounded from below and choose the zero- point energy level such that the 

value of   V   at the its absolute minimum  (classical vacuum) is equal to zero 

                             
   0V


  .  

 Then  

                                 0V                                                                                  (124)                         

and equality holds only for the classical vacuum. Then any other configuration of fields will have 

positive energy. 

 

If  a

c x  is a static solution of the field equations with a finite energy, then the energy functional must 

be extremal for 
a a

c    with respect to any variations of the field which vanish at spatial infinity. Let 

us consider a field configuration of the form 

                                  c  x x                                                                      (125)  

 For small  , the difference   

                                      c c c      x x x x                                               

is a small variation of the field. It vanishes at spatial infinity, since  c x  tends to a constant as 

x  (otherwise the gradient contribution to the energy would diverge). Consequently, the energy 

functional calculated on  the configuration (125)  

                                                  E E     x   

must have a extremum at 1    

                                               
1

0
dE

d  

                                                                        (126) 

We shall see that in a number of cases this cannot hold.  

 

Let us calculate the energy for this configuration, (125) 

                               
1

2

d a b

ab c c c ci i
E d x F V

x x
        

    
    

    
 x x x x   

We make the change of variables in the integral  

                                 y x   

So that ,d d d

i i
d x d y

x y
   

 
 

 .          

 We obtain 

                  21

2

d d a b

ab c c c ci i
E d y F V

y y
      

    
    

    
 y y y y   

or    

                             2

2 0

d dE E E     ,                                                                                (127) 

where  
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                2

1

2

d a b

ab c i c i cE d x F                                                                                       (128) 

and  

                0

d

cE d xV                                                                                                          (129) 

 

The last two factors are expressed solely in terms of the original solution  a

c x . They are the gradient 

and potential terms, respectively, in the energy of this configuration. by virtue of conditions (123) and 

(124), we have 

                             
2 00, 0E E    

and they do not depend on . The extremity condition of energy  (126) gives 

                                     2 02 0d E dE                                                                                   (130) 

together with the positivity, this condition leads to serious constraints on the existence of classical 

solutions in scalar theories, as follows 

 

1. d>2.  From (130) we have  

                                             2 0 0E E    

This means that 0a

i c    and   
a

c  is the absolute minimum of the potential  V  , i.e. the only 

solution is the classical vacuum.  

 

2. d=2 , condition (130) gives  

                                 0 0E  .  

 

If the potential is non-trivial, then this condition also means that the only static solution is the classical 

vacuum. The only class of  2 1 -dimensional scalar models where the existence of non-trivial 

classical solutions is possible is that of models with 

                                       0V for all   . 

i.e. there is no potential term in the Lagrangian (in this case the kinetic energy term must have a 

complicated structure).  

            

3. for d=1, condition (130) gives the virial theorem  

                                            
2 0E E   

and does not impose constraints on the choice of model.   

 

The physical reason of the absence of static solitons in  1d  -dimensional scalar theories with 

  1 2 0d and d for V     is the following:  If  a

c x  is some configuration of scalar 

fields, then, the energy of an adjacent configuration  a  x  is less than the energy of the original 

field, at  1   .The configuration   a  x differs  in size from  a x by a factor 
1 
. In other 

words it is energetically favorable that a particle-like configuration becomes unboundedly shrunken.  

Thus finite energy topological solitons in purely scalar theories with an energy of type (127) are 

possible only in one dimension, but not in higher dimensions. Appropriate examples were kink and 

sine-Gordon solutions. 
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Note that the vacuum solution evades Derick’s theorem in all dimensions, because, by definition, the 

vacuum is a field that is constant in space and where the potential takes its minimal value, so

2 0 0E E  .  

 

There is a possibility to evade the theorem in two dimensions, if the potential term is absent
0 0E  . In 

this case   2E E   is independent of . We can do it at the cost of adding terms with higher 

derivatives to the Lagrangian. For example, if we add a terms with fourth order in derivatives (and, 

hence to the static energy). In this case the above scale arguments  give the relation 

                            4 2 04 2 0d E d E dE                                                                                 (131) 

where 
4E  is the contribution to the energy of the field  c x  from terms with four derivatives (of the 

type    
4d

id x   ).   For d=3 condition (131) can be satisfied for positive
0 2 4, ,E E E , i.e. a soliton 

may exist. Such a situation is realized in the Skyrme model.  

           

Application of the Derick theorem is not constrained only by scalar field theories. Much more rich 

results follows after inclusion of the gauge fields. Consider some well-known cases.  

 

 Let begin by the gauge field A  interacting with the scalar field multiplet , transforming according to 

a unitary representation T (generally speaking, reducible) of the gauge groupG . The Lagrangian in this 

theory has the form  

                  
2

2

1

2
L Tr F D D V

g



   


   ,                                                        (132) 

where  

                    

 

,F A A A A

D T A

      

   

      

   
 

                                                                       (133) 

We shall use the matrix form of the gauge fields.  

 

These quantities  in the gauge 
0 0A   have the form  

                       
0

0

0

0

iF

D 




                                                                                                           (134) 

The energy functional for the considered fields has the form  

                        2

1
,

2

d

i ij ij i iE A d x TrF F D D V
g

   
 

    
 

  .                                (135) 

Here all three terms are positive (as before, we assume that  V   is non-negative and equal to zero 

only for the classical vacuum).Suppose  cA x  and   c x  are classical solutions. We apply again a 

scale transformation and we chose it so that ijF  and  
iD   transform homogeneously. It leads us to the 

following family of fields  
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   

   

c

cA A





  

 





x x

x x
   .                                                                                         (136) 

Then the covariant derivative with respect to x  for the new configuration is equal to  

           
          cT A


     
 

    
x yD x x x D y

x
  

where xy , and  

                  c c cT 
 

  
 

yD y A y y
y

  

is the covariant derivative with respect to y  for the original configuration. 

 

The strength tensor for a new field is equal to  

      
               2,

cj i i j

ij iji j
F A A A A F

x x



    
 

      
x x x x x y   

where  

       
         ,
c i i i j

ij c c c ci j
F A A A A

y y

 
      

y y y y   

is the strength tensor of the original configuration with coordinates y . Then the  energy functional for  

the configuration (136) is 

           4 2

4 2 0

d d dE E E E          

where  

          
       4 2

1

2

c cd

ij ijE d y TrF F
g

 
  

 
 y y   

              2

d

y c y cE d y D D 


    

are contributions of gauge field and the covariant derivative, respectively. The extremity condition on 

  1E at    gives 

                               4 2 04 2 0d E d E dE     .                                                        (137) 

 

This condition is far weaker than (130) – it does not prohibit the existence of non-trivial classical 

solutions for 2 3d and d  . The case d=4 is also interesting, as it is required that scalar fields be 

completely absent from the theory or the value of scalar fields would be the vacuum value everywhere 

in space. Condition (137) prohibits the existence of non-trivial static classical solutions - in theories 

with scalar fields for 4d   and in purely gauge theories for 4d  - in particular, there are no solitons 

in physically interesting  3 1 - dimensional space-time.     

 

Lecture  12   

 

     (a)   Application of the Derick theorem: (2+1)-dimensional scalar model  

 

According to the Derick theorem the only class of  2 1 -dimensional scalar models where the 

existence of non-trivial classical solutions is possible, is that of models with 
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                                       0V for all   . 

i.e. there is no potential term in the Lagrangian (in this case the kinetic energy term must have a 

complicated structure). However this makes the model too simple. The equation obeyed by static 

solution, as derived from the Lagrangian (121), would be  

                      
2 0    

whose only non-singular solutions are constants.  A non-trivial situation appears if we consider several 

fields and constrain them by some non-linear condition. For example, the  O N  model consists of N  

real scalar fields    , , , 1,2,3at t a   x x , where  ,x yx  is a two-dimensional vector in 

ordinary space. These fields obey the constraint equation at all  , tx   

                      a ax x                                                                                                    (138) 

Thus these fields belong to the sphere 
2S  of unit radius in the internal space.  

 

We chose the Lagrangian of the model in the form 

                                   
1 1

2 2

a aL  

                                                                       (139) 

Note that both Lagrangian (139) and constraint (138) are invariant under global  3O  rotations in 

internal space.  

 

Although the Lagrangian (139) is quadratic in the fields, the field equations are nonlinear, since the 

non-linear constraint (138) is imposed upon the fields. To obtain these equations we use the standard 

Lagrange multiplier method, i.e. we write  

                           21
, 1

2
S d xdt t

        
  x                                              (140) 

Resulting field equation is  

                       0

          .                                                                                   (141 

Multiplying this equation from the left by  , we obtain the Lagrange multiplier 

                                                                                                                              (142) 

Upon inserting this relation into the  Eq. (141), we derive the final equation for static field  

                                            2 2 0                                                                                 (143) 

We see that the equation is highly non-linear, therefore the non-trivial static solutions are expected. Let 

us study this problem in more detail. The energy functional for these configurations has the form  

                                      21

2

a a

i iE d x                                                                              (144) 

 

Since the static energy is quadratic in spatial derivatives, and since space is two-dimensional, a spatial 

rescaling does not change the energy. The model in fact is conformally invariant. This does not rule out 

static solutions, but it means that each solution lies in a 1-parameter family of solutions related by 

rescallings. 

  

Consider first the ground state – the field configuration with least energy. It is clear that the least value 

of the energy is zero, which is realized for constant (non-dependent on x ) in space field, because 
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i    and 
 0

  , which is any unit vector in internal space.   While 
 0

  must be x  - 

independent in an 0E   solution, it could be point in any direction in internal space, as long as it is a 

unit vector, Thus we have a degenerate continuous family of  0E  solutions, corresponding to the 

different directions in which  
 0

 could point. As usual, owing to global  3O  symmetry, we can 

choose as ground state any constant vector, and the global  3O symmetry is broken. The usual choice 

is  

                             
3a a     

which corresponds to the south pole of the sphere
2S .  

 

Next, we proceed to solutions with non-zero but finite energy. It is clear from (144) that they must 

satisfy the condition (in polar coordinates) in x-space 

                           0,r grad as r                                                                          (145) 

or  

                                0
lim

r

x


                                                                                                 (146) 

where 
 0

 is again some unit vector in internal space.  Note that as we tend to infinity in coordinate 

space in different directions,  x  must approach the same limit   
 0

 . Otherwise  x  will depend 

on the coordinate angle   even at r    and the polar component of the gradient  
1

r








 will not 

satisfy to (145). We conclude that  x  approaches the same value 
 0

  at all points at infinity. As far 

as all spatially equivalent infinite “points” can be identified, and the space becomes topologically 

equivalent to the two dimensional sphere, the physical coordinate plane 
2R  is essentially compacted 

into a spherical surface
 
2

phys
S . That is, the plane 

2R may be folded into a spherical surface, with the 

circle at infinity reduced to the north pole of the sphere. Meanwhile, the internal space is also a 

spherical surface of unit radius, because of (138) .Then any finite-energy state configuration   x  is 

just a mapping of 
 
2

phys
S  into

 int

2S .    This mapping is characterized by a topological number

0, 1, 2,...n    , called the degree of the mapping. The set of configurations of fields  
a  divides into 

disjoint subsets (sectors): The sector with 0n   contains the vacuum, while in the sector with 1n   

the topological soliton can be sought. 

 

It is useful to derive an explicit formula for this mapping as a function of  a x . For this, consider a 

mapping of a region near the point x  to the region near the point   a x   (see, Fig.24). 
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Fig.24  The area of the region obtained by this mapping is equal to     
1 2

d d d     

 

The vector d  may be either parallel or antiparallel to the vector    (because d is a region on 

the sphere  int

2S  and    is orthogonal to that sphere). If the mapping has degree (“winding 

number”) n , then the sphere  int

2S  is covered n  times, i.e.  

                  
1

,
4

Q surface area swept by mapping n


    

  Hence the area of an element of the surface should be taken with the plus sign if the orientation of 

 
1

d   and    
2

d  is the same as that of  
1

dx  and    
2

dx , and the minus sign otherwise. The 

sign is derived correctly if we write 

                     
1

4
Q d


     

which gives  

         2 2

1 2

1 1

4 8

abc a b c

ij i jQ d x d x
x x

    
 

  
        

 
 

                                             (147) 

The topological number does not change under smooth variations of the fields a , which do not 

affect spatial infinity. It is associated not with the properties of the field at spatial infinity, but with 

the fields in the whole space.  

 

One can reconsider this result from another, but equivalent, point of view: 

Since the Jacobian of the change of variables from  1 2,x x  to  1 2,  , where   1 2,   are the 

polar angles in the internal sphere  int

2S , which we introduce instead of three Cartesian variables 

a , subject to 
3

2

1

1a

a




 , can be extracted with the help of relation between surface area elements  

                      int 2 1

2

b c

a ij abc

i j

dS d
 

  
 

  
  

   

                                                                    (148) 

Now, according to (147) 

       21

8

b c
a

ij abc i j
Q d x

x x

 
  



 


    
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           = 2 21 1

8 8

b c b c
a asr

ij abc rs abci j

r s r s

d x d
x x

   
      

     

   


                            (149) 

Using  the Jacobian  

      2 2sr
rs ij i j

d d x
x x


  




 
  

in (149) together with (148), we obtain  

               int int1 1

4 4

a

aQ dS dS n
 

                                                                                      (150) 

It clearly follows that n  gives the number of times the internal sphere is traversed as we span the 

coordinate space 
2R  as compacted into  

2

phys
S .  

  

After this topological consideration let us return to solution in the sector with topological number 

equal to n. In order to find an explicit solution, we use a very useful technique, which has an 

analogy in certain more complicated models.  

 

Let us consider the quantity 

                 a a abc b c

i i ij jF                                                                                             (151) 

In the explicit vector form it looks like 

          
i ij j   F                                                                                                   (151a)  

 

It is clear, that                           

                             2 0i id x F F                                                                                       (152) 

where equality holds only if  

                        0a abc b c

i ij j                                                                                    (153) 

 

Fields, satisfying such equations are called a self-dual. 

 

Upon expanding (152) we derive  

       
       

 

2

22

i i ij j ik k

ij i j

d x

d x

 



       
 

    
 





     

  
                                                             (154) 

The two terms on the left side are actually equal to each other since  because of (138),  

                           0j                                                                                                               (155) 

and it follows that  

     
  

        

ij ik i k

jk j k j k j j

 



  

          
 

   

         
  

where we have used Eqs.(155) and (138) and also the well-known relation from vector algebra  
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                                det
  

     
  

a c b c
a b c d

a d b d
  

therefore we obtain 

                      

     2 22 2i i ij i jd x d x              

or 

                          4E n                                                                         (156) 

 

This inequality sets a lower bound for the energy of any static configuration in a given n-sector.  

But we know that the static field equations are derived from the extremum condition of static 

energy functional together with constraint. Since  any configuration cannot transfer from one 

sector to another by continuous variation,     one can find extremums in each separate sectors for 

the given n, for a given sector the energy becomes minimum for the equality in (152). It means that 

the equality (153) takes place 

                      
i ij j                                                                                                         (157) 

 Any field configuration, satisfying this condition together with constraint (138), automatically will 

minimize E  in some n-sector and therefore satisfy the energy extremum condition in a given 

sector in form of field equations (143). Indeed 

              

   

     

 

2

2

( )i i i ij j ij i j

ij ik k j jk k j j k

 

  

            

          
 

 

     

        

  

  

which is just the field equation. in the last step we have used  

                         2 20, 0,i i i i i                        

which follows directly from differentiating the constraint (155). 

 

Therefore, we have derived the equation of motion for any field configuration, i.e. any solution of 

the relation (153) will satisfy to the equation of motion also. But the opposite does not happen, it is  

in principle possible to have a solution of equation of motion, which does not obey to (153).One 

could in principle have solutions of Eq. (143) which do not satisfy (157). These would not represent 

absolute minima of E  in the corresponding n-sector, but some higher valued extrema of  E , such 

as local minima. In practice, one tried solving the Eq. (157), because it is a first-order differential 

equation while (143) is a second-order equation.  

     

     

       (b)  Explicit solution for soliton fields 

 

It is important to note that, unlike the original field equation (143), Eq. (153), is a first order and is 

easier to solve.  Let us use an ansatz which is invariant under (2)SO  spatial rotations, 

complimented by  (2)SO  rotations around the third axis in the space of the field  
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   

   3

sin

cos

n f r

f r

 







x

x
                                                                                        (158) 

where , 1,2
x

n
r


   . The condition    

2
3 1a a          is automatically satisfied. 

 

The derivatives of the fields are equal to  

                           
 

3

1
sin cos

sin

i i i

i

i

i

n n f n n f f
r

n f f

    



   

  

  

Moreover     

 3

2 2

1
sin sin cos

1 1
sin sin

i i i

ij j ij

j

ij i

n f n n f n n f f
r

n f n f
r r

     

 



 

      

  

 
      

 

  

  

Eq. (153) with 3   takes the form 

                        
21

sin sin 0i in f f n f
r

  
  

or                  
1

sinf f
r

                                                                                                             (159) 

Eq. (153) with 1,2   reduces to this equation. The solution of this equation with boundary 

condition which ensures that  3 as r     ,  

                                      f     

has the form  

                                   
0

2arctan
r

f
r

   

so that  

                                      

0

2 2

0

2 2
3 0

2 2

0

2
x r

r r

r r

r r

 











  

where 
0r  is an arbitrary constant (soliton size). The fact that the soliton size may be arbitrary, 

actually follows from the scale (Derick) considerations.   

      

We could connect the above   found solution to the method of stereographic projection. Indeed, let 

us   take in accordance by stereographic projection the points of internal sphere  int

2S  and points of 

surface  with Cartesian coordinates 
1  and 

2  on this plane by following manner 

                               
3

2 , 1,2
1






 


 


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and consider the complex variables 
1 2i       and   

1 2i    .  Then 

         

   

 
 

2

1 3 1 1 3 3

1

1 1 32

3

2 1 / 1

2

1

x


     

  



          

   


  

 

 where we have used the traditional notation for antisymmetric derivative                                            

                                  ( ) ( )a b a b a b      

We have from Eq. (151), that  

                         1 2 3i ij j                            2 3 1i ij j         

Therefore 

                    1 2 3 2 1 3i i              

Thus         

                    
1 2i      

which means that 

                     1 2 1 2

1 2 2 1x x x x

      
  

   
.                                                         (160) 

 

Let us remember that 
1,2x  are the Cartesian coordinates of our initial physical space, and 

1,2  

belong to the plane in an “internal” space, on which the internal  int

2S  sphere has been projected 

stereographically.   Eq. (160) is all too familiar as the Cauchy-Riemann condition for   being 

analytic function of z  (for upper sign) or z  (for lower sign), where
1 2z x ix  . Thus, any analytic 

function  z  or   z   automatically solves  (153)  and therefore also the field equation when 

written in terms of original variables .a and x  Furthermore, while   must be analytic in either 

z   or  *z , it need not be an entire function – isolated poles in  z  is permitted.   

 

Let us write down the expressions for energy and topological number in terms of  z  . It is 

evident that  

                         

 

2

2

2
1 / 4

d

dz
E d x







       and              

4

E
Q


   .                                    (161) 

 

A prototype solution for arbitrary positive  n  is given by  

                              0 /
n

z z z                                                                                 (162) 

where n is any positive integer, and   is any real number, while 
0z  is any complex number. Above 

  represents a point in field space, while z stands for a point in coordinate space. Clearly (162) 
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allows n roots z for a given  z . Therefore it must corresponds to the n-sector. This may be 

verified by substitution (162) into (161). We have 

                            Q=

2 22 2

02

2
22

0

1

4 1

4

n n

nn

n z z
d x

z z









 
  

 

   

Using  

               2

0

iz z e and d x d d        

the integration yields  Q n . Hence 4 4E Q n     is finite. Clearly, then, these are explicit 

solitary-wave solutions for any positive integer n. 

 

The constants    and  
0z  refer  to the size and location of the soliton solution. The fact that the 

solution exists for arbitrary    and  
0z  and the fact that neither Q  nor E  depend on these 

constants is a reflection of scale and translational invariance: ,x x x x a    does not 

change the energy functional   E   in (144).  

 

 

Lecture  13 

 

Skyrme   model   and  skyrmion 

 

In what follows we consider a soliton, which in topological sense is similar to the soliton 

considered in previous section,  but appearing in nonlinear model with chiral symmetry, so-called 

the sigma model in physically interesting (3+1)-dimensional space-time.  This model was found by 

Skyrme in 1961 and the corresponding soliton was named as skyrmion. During the long time this 

model was forgotten, but in 80-ies a revival interest has inspired to this model, thanks to 

fundamental papers of Witten  (1983). Using 1

cN   expansion (where 
cN  is the number of colors) it 

was shown that low energy limit of QCD can be described by an effective meson Lagrangian and 

baryons in the large 
cN world evidently are the soliton solutions of this Lagrangian. The Skyrme 

model is interesting and is a rather realistic model of nucleon, and the characteristic qualities of this 

soliton - spin, isospin etc., correspond to nucleon, and many quantitive features of nucleon, such as 

a charge radius and so on,  are reproduced by this model with a rather satisfactory accuracy. 

 

Because the Skyrme model is based on the chiral symmetry of strong interactions, below we at first 

consider fundamentals of the chiral symmetry and then construct the Skyrme model Lagrangian 

and consider its principal properties.  
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Elements of the Chiral symmetry 

 

It is well known that the strong interactions of ordinary hadrons (nucleons, their resonances, pions, 

kaons, hyperons etc.) exhibit a symmetry under the rotations in the internal (isospin) space, which 

is generated by 3 isotopic charges ( 1,2,3)AQ A  and obey to the commutation relations of (2)SU  

algebra 

                                    ,A B ABC CQ Q i Q                                                                                   (161a) 

According to general strategy of quantum field theory these charges are space integrals from the 

zeroth components of corresponding Noether’s vector current 

                                  3 0( ) ,A AQ t d xV t  x .  

If we have also the axial current,  5A x  (Weak interactions of hadrons), one can define its charge 

with full analogy 3-dimensional integral from its zeroth component,  

                                      5 3 5

0 ,Q t d xA t  x   

It is a pseudo scalar in ordinary space and the vector in isotopic space. Therefore we have  

                                 5 5,A B C

ABCQ Q i Q                                                                                     (161b) 

One can enlarge of isospin algebra if we close axial charge commutator on the vector charges (In 

suitable models this statement may be confirmed (for example, if currents have the Noether’s form 

of spinor theory, i.e.      5

A AJ x i x x      , and we use the equal time anticommuting 

relations   for quantized Dirac fields). In particular, one can assert that  

                           5 5,A B C

ABCQ Q i Q                                                                        (161c) 

 

Exercise:  Derive  relations (161,a,b,c) from the Noether’s currents      5

A AJ x i x x      , 

proceed from  definitions.  

Hint:  Use the identities 

                     , , , , ,AB CD AC D B A C B D C D A B C A DB       

and 

                   
1 1

, , , , ,
2 2

a a b b a b a b a b a b               

where 
,a b  are the Dirac matrices. 

   Relations (161a, b, and c) form a closed algebra with 6 generators. To study the structure of this 

algebra, let us introduce new generators  

                                    5

1

2

A A AQ Q Q                                                                                       (162) 

Then above commutators decay as follows 

                         

,

,

, 0

A B C

ABC

A B C

ABC

A B

Q Q i Q

Q Q i Q

Q Q





  

  

 

   

   

   

                                                                                           (163) 
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It is a famous (2) (2)SU SU  algebra of Gell-Mann (1963). Though this algebra is a direct product 

of two algebras, the effective Lagrangians, generated from it are nontrivial because the parity 

operation connects both of them  

                                        1A APQ P Q

                                                                                         (164) 

 

Historically chiral symmetry was directed to special role of pions in strong interaction physics, 

particularly to the realization of Goldstone theorem and the hypothesis of PCAC (partial 

conservation of axial current). Therefore construction of effective Lagrangians for strong 

interaction also be turn to  -mesons.  

   

 

Representations of  (2) (2)SU SU  algebra 

 

 Let us assume that the generators AQ
 transform the irreducible tensor representation with isospin 

t  as 

                                1 i

A B
BA

U U e   

 
   

T                                                                            (165a)           

where  

                                 iU e  

 
Q                                                                                                (165b) 

and T  composes    2 1 2 1t t    matrix representation of 
Q  charges.  

 

As we want establish field transformation properties under the group (2) (2)SU SU , consider 

one more operator of transformation   

                                  iU e  

 
Q                                                                                                 (166) 

Because we have the direct product of two algebras, we must use the additional index (doted) for 

the fields transforming by U
  

                    

1

1

i

AB CB CA

i

AB AD DB

U U e

U U e

 

 

  

 

  

 

   

   

T

T




                                                                                   (167) 

where T  correspond to    2 1 2 1t t     matrix representation for 
-Q  charges.  

 

We say that 
AB
  forms  ,t t  representation of the group (2) (2)SU SU .  

 

Because in the (2)SU  space there is a such matrix C  that 

                                   1C C   T T ,  

the second  transform law  is equivalent to  

                        1 i

AB ADBD
U U e 

 

 
   

T                                                                                    (167a) 
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As we have mentioned above the chiral symmetry was intended for  -mesons. But the careful 

examination shows that in case of linear representation (167) it is impossible to construct the 

theory only for  -fields. Therefore we must include the other fields as well. The minimal 

possibility is to use the representation   1/ 2,1/ 2 , which has the following law of transformation  

                      2
i

i i

AB CB

AC

e M e e M 


  
 

  
 

Q Q




                                                                            (168) 

also    

                       2
i

i i

AB AC

CB

e M e M e 
 

  
 

  
 

Q Q




                                                                           (169) 

 

Now if we use the combined transformation, i.e. transform these relations once again, and take 

    and      , one gets  

                     2 2
i i

i ie Me e Me
  

   Q Q

 
 

                                                                                       (170a)                                                                                            

and  

                      5 5 2 2
i i

i i
e Me e Me

 
  


Q Q

 
 

                                                                                        (170b) 

 

 It is seen that the axial transformation (by
5Q )     differs from vector one (Q ) by the sign in 

exponent. Because M  is 2 2  matrix, it can be written in the following (quaternionic) form  

                                      M I i                                                                                         (171) 

Then it follows for infinitesimal transformations that  

                                
 

 

I i i

I i i I

 

  

     

      

    

     
  

Here      denotes the infinitesimal vector (axial) transformation, respectively. We have from 

here  the transformation rules under both transformations  

             
 

 

0  

  

   

   

 

    
                                                                  (172) 

 

Moreover the parity transformation gives      1PMP M   , and  

                 5 5 2 2
i i

i i
e M e e M e

   
   

Q Q

 
 

    

Therefore   

            5 5 2
i i

i i
e MM e e MM e

  
   

Q Q


 

 
τ

2   

and      

              Tr MM    

is chiral invariant. The explicit calculation gives  

                                            2 2MM M M I                                                  (173) 
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Linear   (2) (2)SU SU  sigma  model 

 

The well-known sigma model of Gell-Mann and Levy is based on  1/ 2,1/ 2  linear representation. 

According the previous consideration The chiral invariant (renormalizable) Lagrangian may be 

written as  

                 
22 2

2 2 2 2 2

0

1 1 1

2 2 2 4!
L  


                                           (174) 

Evidently one could add any degree of chiral invariant combination  2 2  , but Eq. (174) is 

renormalizable. One can clear up the role of   field: The potential  

                            
2

2 2 2 2 21 1
,

2 4!
V                                                      (175) 

may have non-trivial minimum at 
0 0    and the possibility of spontaneous breaking of 

symmetry. In result there appear 3 massless Goldstone bosons. For giving  a nonzero mass it is 

traditional way to add a term, which explicitly breaks an underline symmetry, and is linear in the 

sigma field  

                        
SBL c                                                                                                     (176) 

 

For derivation of currents and their divergences usually the Gell-Mann and Levy method is used.  

 

 

                               Gell-Mann and Levy equations 

 

Let us propose that the internal symmetry permits the following infinitesimal transformations  

                                 
         

       

A A A A ABC B C

A A ABC B C

x x x x iC x

x x iC x x  

     

   

   

      

                        (177) 

Then , using the equation of motion one gets  

 

 
 

  
  

  
 

  
 

A A

A A

B ABC C

A A

L L
L x x

x x

L L
i x C x

x x





 

 

  
 

 
 

 
   
  

    
      
      
   

                           (178) 

If transformation could be global (non x-dependent), then from invariance of L  the existence of 

conserved Noether’s current follows 

                   
  

 B

ABC C

A

L
J x i C x

x








 

 
,                                                        (179) 

consequently the integral from the zeroth component of this current  
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                       3

0

B BQ d xJ x                                                                                         (180) 

is a symmetry generator. After such definition of current the variation of  Lagrangian can be 

rewritten as  

                          B B

B BL x J x J x x 

                                                         (181) 

Thus we have  

                     

 
 

  

 
 

 

B

B

B

B

L
J x

x

L
J x

x

 














 

 


  



                                                                            (182) 

They are Gell-Mann and Levy(GML) equations,  very useful in many applications. For example, 

after inclusion of the 
SBL  term, the sigma model Lagrangian is no longer chiral invariant, but this 

term changed under axial transformation (172). Indeed 

                                  L c 

                                                             (184) 

Then, according to GML equations, we have 

                     
5 5 c

         J J  
                                            (185) 

The last equation is known as PCAC relation – the divergence of axial current is proportional to the 

pion field . According to PCAC one can fix the value of c,  

                  2

0c                                                                                                               (186) 

 

 

           Study of symmetry breaking 

 

One can find the minimum of potential  

                  
2

2 2 2 2 21
,

2 4!
V c


                                                              (187) 

 

The extremum with respect of   (with respect of   minimum is trivial, 
0 0 , otherwise we 

destroy many non-trivial laws) gives the equation  

                         
 ,

0
V  







  

Explicitly, this means  

                     2 3

0 0 0
6

c


                                                                                             (188) 

 

We see, that there is a solution 
0 0  , but this solution survives or not in the limit of restored  

symmetry 0c , when we find two solutions  
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2

0 0

6
0 or


 




                                                (189) 

I.e. we have two solutions in the limit of vanishing symmetry breaking term. The case 
0 0   

correspond to the exact (or Weyl) symmetry - Lagrangian is symmetric and the ground state is also 

symmetric. In this case Lagrangian describes degenerate and   particles. If   is a pion, 

then it must have the scalar partner with same mass       .  

 

The second case is more interesting. It is clear that we must have 0  , otherwise potential energy 

will not have a minimum. Then it follows  from the second solution that non-trivial ground state 

appears in case, when 2 0   (i.e. if we have tachyon in this model). If so then the chiral 

symmetry will restore, but the ground state remains asymmetric – we have spontaneous breaking. 

In this case there appear massless pions. Indeed, the mass matrices as the second derivatives of 

potential energy in ground state have the forms  

          

2
2 2 2

02

0

2
2 2 2 2

02

0

0
6

2 0
2

V
m

V
m






 




  



 
    

 

 
      

 

                                                                     (190) 

Therefore, when the chiral symmetry is broken spontaneously a pion is massless (the Goldstone 

theorem). If the symmetry is broken explicitly, the pion acquires the mass, proportional to 0c    

                     2

0

c
m


                                                                                                             (191) 

The linear sigma model had many applications as effective low energy theory of pions. There was 

various generalizations to other flavor symmetry, for example, (3)SU  and others. The weak point 

of linear sigma model is the absence of scalar particle in experiments,  ’s prototype. While in 

studying mechanisms of chiral symmetry breaking the linear model played good laboratory, 

particularly pion-pion scattering lengths were calculated with rather good accuracy.  

 

 

                     

Lecture  14 

 

                        Non-linear realization of pion fields    

 

A non-linear realization contains only pion field,  which under the vector transformation 

transforms in usual manner, as linear transformation (172).  

 

As regards of axial transformations, the general form is  

                                 2 2

1 2f f                                                             (192) 

or in infinitesimal form  
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                       2 2

5 1 2,k

l kl k lQ i f i f                                                                 (192a) 

We must require satisfaction of the Jacobi identity     

        5 5 5 5 5 5, , , , , ,A B B A A B

C C CQ Q Q Q Q Q                       
  

After explicit calculation it is possible to find the relation 

                            1 1 2 1 1 21 2 2 0f x f x xf x f x f x f x     ,                      2x    

From here we find the ratio 

                   
 

 

 

 
 

2

1

2

2

121

1

1
df x

f x dx

df xf x
f x x

dx







                                                                     (193) 

This relation, which is derived from the Jacobi identity, says that if we will know one of function

1 2f or f , then the second one may be determined from the algebra. Therefore, suppose that

 2 0f x  . Then we have  

 
  

   

2

1 2

1

2 2

1 1

1 0, 0

, 0

df x d
x f x

dx dx

So x f x C C f

    

  

  

Therefore, the solution in this case is  

                                        
1/2

2

1 1 0f x f x                                                                          (194) 

It is possible to show that this solution is most general, i.e. one can always introduce a new field so 

that its transformation law contains only one function.  

 

Indeed, if we introduce a new field  , connected to the old one by relation 

                                        2g                                                                                         (195) 

and at the same time assume, that the Jacobi identity is satisfied by a simple law 

                                        2

3f     ,                                                                                (196) 

then substituting it into (192), one finds  

                                      
       2 2

1 2 ,f x g y f x y         
                  (197) 

Now combine (195) and (196) 

                   
    

         

2

3 3

2

2

g g y

f y g y f y g y

        

  

    

   
 = taking into account (196) = 

 Comparing last two relations, we get 

                                            2

3 1 3 2, 2f y g y f x f y g y g y f x          (198) 

Then   

                             
 

   
2

3

1

1
2

f x dg

f x dy g y
   
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Remembering (195), from which we have    2x yg y , after a simple  calculations one can derive   

                     
 

 

2

1 2

g ydg dg

dgdy dx
yg y

dx





  

using it in previous relation, we obtain 

                    
 

 

 

2

1

2

1

1
2

d
f x

dg dx

g y dx x f x






                                                                                         (199) 

Separating variables, one finds  

                        
1/2

2

1g y C x f x                                                                                             (200) 

Using (198), 

                      
 

 

1

3 1/2
2

1

f x
f y

C f x x


  

                                                                                        (201) 

Now one can choose a condition      0 1g  , then from (200) we find 

                                 
 1

1

0
C

f
   

and  

                      
 

2
2 2

1 2 2 2

1

0f
f







 
                                                                                         (202) 

      

 

                  Non-linear sigma model 

 

Without restriction of generality one can suppose that the pion field transforms by only one 

arbitrary function,  

                            2

1f                                                                                                          (203) 

As we know from previous section, the justification of the Jacobi identities permits to find explicit 

expression of this function (194) 

                 
1/2

2 2 2

1 1 0f f       

Let compare this law to the one for linear sigma model 

                                        x x      

We see that in order to construct the non-linear theory it is sufficient consider the   field as  

                                           2

1x f     

or, remembering  Eq. (194), one sees that we must take these two fields connected each other by 

relation  

                                           2 2 2

1 0f                                                                                  (204) 
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Therefore the general form of the non-linear sigma model Lagrangian, which do not contain field 

derivatives not more than two degrees is   

                      
2 21 1

2 2
L                                                                                             (205) 

where  

                       2 2

1 0x f                                                                                                    (204a) 

 If we add a term which breaks a chiral symmetry (176), one can write 

      
 
 

  
2

1/22
2 2 2 2

12 2

1

1 1
0

2 2 0
NLNL m f f

f



  


    



 
 


                                                     (205) 

 

It contains only one upward parameter  2

1 0f . One can fix it requiring that Lagrangian correctly 

reproduces the mass term of pion. Let us consider expansion till to fourth order 

 

 
 

 
 

   

 
 

     
 

2
2 2

2
2

12 2 2

1 1 1

2
2 2

22
2 2

2 3

1 1 1

1 1
0 1 ...

2 2 0 2 0 8 0

1
...

2 2 0 2 0 8 0

L m f f
f f f

m f m

f f f



  

   


   
          

   


     

   


 
  

  

It follows that we must take  

                                                          1 0f f                                                                           (206)                                                                                                          

Finally we obtain the Lagrangian of non-linear sigma model 

           
 

2

1/22
2 2 2

2 2

1 1

2 2
L m f f

f



   




      

 
 


                                                            (207) 

 

This Lagrangian consists only known parameters, m  and f .  It had a wide application in low 

energy pion physics. This Lagrangian exhibits all relevant ideas about the breaking of global 

symmetries.   

 

 

Physical meaning of symmetry breaking in considered models 

 

Let we have the local conserved current 

                             0j x

    

The strong definition of charge is  

                              3

0 ,R

R

Q t d xj t


 
x

x                                                                               (208) 

i.e. as the integral in bounded space.  
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Let there exists a time independent operator  A A t . It follows from the current conservation 

equation that  

                           30 ,
x R

d x j x A





      

or  

            
 

0 , , 0R

R

Q t A d A


 
      

  
 j   

If we consider the second term to be  zero for very large R , it remains  

                            0lim , 0R
R L

Q t A


      

or 

                       , , , 0R

dB
Q t A B R L where

dt
        

i.e. B  does not depend on time. If above surface integral is zero only in the limit R  , then we 

would have  

                               lim , ,R
R

Q t A B B B t


                                                     (208) 

This is a result of local current conservation.  

If there exist a limit    lim R
R

Q t Q t


 , then instead of  we would have  

                                     ,Q t A B                                                                                     (209) 

However as will be clear below, the existence of this commutator will be more important for our 

purpose.  

 

Spontaneous symmetry breaking is introduced as follows 

                                               0 0 0B                                                                            (210) 

I.e. for us the existence of such operator A  is sufficient, commutator of which with  Q t  is time 

independent. It follows from (209) that  

                                  0 , 0 0 0 0Q t A B                                                              (211) 

Therefore, if symmetry is spontaneously broken, then the vacuum state is not annihilated by action 

of  Q t .  This means that if we consider  Q t as a generator of some transformation, then its action 

does not give a vacuum 

                                 0 0i Qe     

This means that  exp i Q  is not a unitary operator.  

Consider now action on vacuum of an operator  

                       3

0 ,Q t d xj t  x                                                                                            (212)                                                                             

                                 0Q Q                                                                                                (213) 

 We now show that a state is not normalizable. Indeed the norm is  
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            3

00 0 , 0Q Q Q Q t d x j t Q   x   

It is evident that if Q  does not annihilate the vacuum, this expression diverges. Let perform space 

translations  

                                         
ˆ ˆ

0 0, 0,i ij t e j t e   P x P x
x   

As usual vacuum is translational invariant, and moreover ˆ, 0Q  
 

P . Therefore  we reduce the 

expression of the norm to  

                         3

00 0 0Q Q d x j Q      

I.e. there exists no suchQ  which does not annihilate the vacuum.  

There is a Theorem of Fabri and Picasso, according to which if there exist an operator, like (212) 

even in the sense of weak limit, it must annihilate vacuum.  

 

This means that if the symmetry is broken, then Q  does not exist, but it may exist as a commutator 

with other operators, as in (209).  

 

Let us assume that there happens so, i.e. there exist a commutator such that the result is time 

independent [see, (208)]. Evidently, this requirement is safer. Let study what follows from (210): 

         lim 0 0 0 0 0 0 0R R
R

n

Q t n n A A n n Q t B


       

Let perform the translations  

          3

0 0lim 0 0 0 0 0 0n nip x ip x

R
n R

d x j n n A e A n n j e
  


     

and integrate in space and tend R  . It follows 

                
0 0

0 0
3 3

0 02 0 0 0 0 0 0n nip x ip x

n

n

p j n n A e A n n j e    
   = 

       = 0 0 0B                                                                                                                                 (214) 

B  is time independent, but  there remains time dependent exponents on the left-hand side. This 

relation must be valid at any time. So exponents must disappear on the left hand side also. It means 

that in intermediate states   n  , between them necessarily exists the state, energy of which 

vanishes when 3-momentum vanishes.   In other words, there must be zero mass states in the 

spectrum of  0 0j or Q . It is a maintenance of the Goldstone theorem (1961)    

 

         

 

Symmetry realization in considered models 

 

We considered above two realizations of chiral symmetry. It is important that these two models 

manifest diverse ways for realization of chiral symmetry. There is interesting theorem – the 

Coleman theorem, which orders ways of symmetry realization.  
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Theorem:  This theorem figuratively expresses as:  ”Invariance of the vacuum is invariance of the 

world”   

 i.e. If the vacuum is invariant under some symmetry, then Hamiltonian (Lagrangian) is also 

invariant        

Proof is very easy:  

Done  0 0Q   and we must show that it follows   0Q    

Because  ,Q i H Q , then   0 0 0 0Q iHQ QH iHQ   , (vacuum is translationary 

invariant). Now we write: 

                       3 0 3 0, 0 0 0d xJ t d x J    x J   

Here the additional divergent term J  disappears owing to the Gauss theorem. So we have  

                       3 0 0d x J x

    

It follows that the local operator      x J x

    annihilates vacuum    

   3 30 0 0 0d x x d x     . Then it follows  

                                    0 0 0       

Therefore, according to the Federbush-Johnson theorem we would have      0x  , i.e. 

  0J x

  . 

So, from invariance of the vacuum under some transformation, we prove that the corresponding 

local current is conserved. 

 

In the linear sigma model we have for transformed creation operator of the pion field  

                                   5 ,,i

p a ai pQ i  
   

 
                                                                             

i.e. neutral particle arises as partner of pion (degeneracy with  ) 

 

In the non-linear sigma model  x  means following series  

        
2

2 2

4

1 1
...

2 8
x f x x

f f


 

        

      Therefore  

      5 , 0i

ai pQ a i  p                                                                                                    (215) 

gives on the right hand side states, consisting pairs of pions, with total energy –momentum  ,p p

. Evidently it is possible only if pions are massless. Indeed the model Lagrangian 

   
2 21 1

2 2
L        

does not contain mass term. Mass term appears after expansion of symmetry breaking term
1/2

2 2f    . When symmetry is broken, both models give   00
0x    or equivalently  

                                       5 , 00 , 0 0i

p a aiQ i                                                           (216) 
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This means that 
5

iQ  does not annihilate vacuum. It is not surprising, because now axial current is 

not conserving and  
5

iQ  is no more integral of motion (Coleman theorem).  

 

In case of non-linear model it follows from the expression of  x , that even in the absence of 

explicit symmetry breaking term  

                               5 0 0iQ    

I.e. symmetry is broken spontaneously and masslessness of pion is a result of the Goldstone 

theorem.  

 

In the linear model spontaneous breaking is connected to the specific behavior of the potential – 

the chosen of spontaneous breaking way takes place by artificial choice of model parameters. 

 

Therefore in this respect the non-linear realization is more economic, as it consists a minimal 

number of parameters, which are known from experiments! ( 93f MeV  )--------- ?              

 

In considered above models the (2) (2)SU SU  chiral symmetry is broken spontaneously till 

(2)VSU  symmetry. 

 

 

Lecture  15 

 

        Chiral symmetry in the framework of Quantum Chromodynamics  (QCD)  

 

In QCD the structure of baryons and mesons are determined by the Color (3)CSU  Lagrangian 

                        
1

4

i i

a aL F F q iD m q                                                                     (217) 

where ( 1, 2,...,8)iF i   is the stress tensor of gluon fields from the adjoint representation of  

 (3)CSU  group (octet), and the quark’s fields  1, 2,3aq    are triplets of the same group 

(fundamental representation). Index a  takes as much values as much quark flavors have we:

1,2,..., fa N .  D  is the usual covariant derivative  (  D D

    

                                      i iD I igA x        

i  are the Gell-Mann matrices,  
ab a abm m   is a quark’s mass matrix (for current quarks) 

 

The main characteristic features of QCD are:  

At short distances the color antiscreaning  (asymptotic freedom) takes place, and at large distances 

we have infrared slavery – the gauge constant g increases and only neutral colorless states  are 

observable (color confinement). Characteristic range is determined by cutting parameter

200QCD MeV , which fixes the scale of confinement mechanism.  
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Now, what is the quark mass matrix? The source of mass appearance lies outside the QCD. 

According to the standard model quark masses arise by Higgs mechanism, which breaks 

electroweak (2) (1)LSU U  symmetry spontaneously till U (1).  Therefore if one ignores the Higgs 

fields, quarks remains massless. 

 

According to modern point of view current masses of 
1 2u q and d q   are very small in 

compare to
QCD , the mass of 

3s q  quark is comparable with   
QCD , i.e. is also very small. Hence 

the approximation when these masses are neglected, is not very rough. As regards of heavy quarks 

 , ,c b t  such an approximation is questionable.  

 

Therefore, QCD gives a fresh point of view about global symmetries. If early the approximate 

equality of proton and neutron masses was the reason of isotopic symmetry, or equivalently u and d 

quarks masses must be equal, now we know that the isotopic symmetry arises because the masses of 

u and d quarks are very small, as compared to other quark masses. Moreover, if we neglect quark 

masses all in all, the chiral symmetry appears.  

 

We are interested in the chiral symmetry in the QCD framework, therefore we neglect quark mass 

matrix, while this will not be a good approximation except the light quarks. 

 

In this approximation the Lagrangian has the form  

                        0 1

4

i i

QCD a aL iq D q F F

                                                                              (218) 

 

Let us define the left and right quarks 

                    5 51 1
,

2 2
L Rq q q q

  
                                                                  (219) 

Then the quark sector of Lagrangian looks like 

                    q

QCD La La Ra RaL iq D q iq D q 

                                                                         (220) 

This part of Lagrangian and therefore (218) is invariant under unitary transformation on the index 

a  for left and for right quarks separately. hence there appears a symmetry  

                                        ( ) ( ) ( ) ( ) ,f f f L f R L RU N U N U N U N U U                            (221) 

under which quarks transform as  

                           ,L L L L R R R Rq q U q q q U q                                                   (222) 

For calculating the Noether’s current, as we know already, transformation law must be made 

temporarily local. Then the divergence with respect to difference of infinitesimal parameter arises 

only from terms like i iq q

   and the Gell-Mann-Levy equations give for currents  

                        251
, 0,1,2,..., 1

2 2 2

a a
a

L L L fJ q q q q a N 



 
 


                 (223) 



97 
 

                         251
, 0,1,2,..., 1

2 2 2

a a
a

R R R fJ q q q q a N 



 
 


                  (224) 

other terms in Lagrangian do not change, so we have conservation of 22 fN  currents on the classical 

level,  

                   20 0, 0,1,2,..., 1a a

L R fJ J a N 

                             (225) 

Generators are defined as usual  

                       3 3

0 0, ,a a a a

L L R RQ d xJ t Q d xJ t  x x                                             (226) 

Therefore  

                           ,L RiQ iQ

L RU e U e                                                                        (227) 

These quantities correspond to our earlier (2) (2)SU SU chiral charges as follows 

                              
   5

,

1 1
,

2 2

L R

R L R L

Q Q Q Q

Q Q Q Q Q Q

  

   
                                             (228) 

  

Let us now consider various subgroups: 

 ( ) 1
V

i U   

      The generator is 
VQ Q , i.e. it is an Abelian subgroup of transformation, which appears 

because among 2

fN  matrices a , there is unit matrix also. There corresponds to this subgroup a 

multiplication on common phase factor  

                    , ,i i i

L L R Rq e q q e q or q e q                                        (229) 

     Corresponding conserved charge in QCD is a baryon number. This symmetry is exact. It means, 

that this symmetry does not break neither spontaneously, not by anomaly after quantization.  

(ii)      1
A

U    

    The generator is 
5 AQ Q . It is so called “chiral” (1)U  subgroup 

                             5i
q e q


                                                                                                            (230) 

in this case left and right quarks acquire opposite sign phases 

                             ,i i

L L R Rq e q q e q                                                                (231) 

 

This symmetry is not exact – it is broken after quantization of QCD, by so-called axial anomaly. 

Corresponding current  5 5J q q    is not conserving   

                              5 216

f i i
iN

J x F F

   


                                                                           (232) 

 

 

(iii)   ( ) ( )f L f RG SU N SU N    
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It is a   ,L R subgroup, where L and R   are matrices with determinant equal to 1. In quantum 

theory it is desirable that this group could be broken spontaneously till vector subgroup

  ,H V V , which transforms 
L Rq and q  in the same manner. This is a subgroup ( )fSU N : 

for 2 quarks it is  (2)H SU  for isospin, for 3 quarks – it is the eightfold way, (3)SU .  

As G  is spontaneously broken till H , according to Goldstone theorem we’ll have 2 1fN   massless 

bosons – pions in (2)SU  , pseudo scalar octet in (3)SU .  

 

Now our aim will be to construct the effective Lagrangian for this symmetry, i.e. the Lagrangian 

which describes the dynamics of Goldstone particles. We must require such properties which 

follow from the massless quark’s QCD. they are: 

 

(a) 
effL  must be invariant under the group ( ) ( )f L f RG SU N SU N  . Therefore it has to be 

              constructed by multicomponent    field.  

(b) This  field should be transformed by action of ( ) ( )f L f RG SU N SU N   and offers 

             exactly  2 1fN   degrees of freedom at any space-time point. It is the requirement of 

             minimality – we want describe only Goldstone modes.  Evidently, the model can be 

              enlarged by inclusion of other fields, e.g. vector or axial bosons.  

(c) We have to require that the subgroup ofG , which remains invariant the arbitrary values 

              of Goldstone field must be exactly H , and nothing more. 

 

The last two  requirements determine that the space of field values must be a factor-space /G H   

 

In our case   ,G L R  and   ,H V V , therefore G/ H  manifold coincides with ( )fSU N  

manifold. It follows that the field   can be identified with the U  field, where  ,U tx  is an 

element of the ( )fSU N  group.  

G group acts  on U in the following way 

                          U LUR                                                                                                        (233) 

Because the dimension of (N )fSU  is 2 1fN  , the requirement (b) is satisfied, Now we can take as 

typical value for   ,U tx  the identity matrix I.  a little group that remains invariant the unit 

matrix  is   ,V V : 

                                           VIV I   

it is evident that I   is not peculiar value  somehow for  ,U tx , because its little group is  

                    , , ,U x t VU x t V   

It leaves unchanged any value of  ,U tx , becauseUVU U V U   .  

It is also isomorphic to H .  
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Therefore the requirement (c) is also valid.  

 

          

                               Construction of chiral invariant Lagrangian 

 

Now we are going to construct the corresponding chiral invariant Lagrangian. As a rule the strategy 

is the following: One introduces the covariant vector called a  Mauri-Cartan  form  

                                             L U U 

                                                                       (234) 

Because the  group acts as 

                      ,U LUR U RU L       

it follows    

     L RU L L UR RU UR  

          

or 

             L RL R 

                                                                                                     (235) 

i.e. L  is invariant under ( )f LSU N  . It is called a Mauro-Cartan “left-invariant form” 

We can define by analogy the “Right-invariant form” (co-vector)   

                                                 R UU 

                                                                  (236) 

It is clear that  

                        R LR L 

   

So, it is ( )f RSU N  invariant. 

 

Sometimes the “right-invariant” form is defined as   R U U 

  . Obviously it is also ( )f RSU N  

invariant. 

 

Now let us mention that arbitrary chiral invariant polynomial    f L  , constructed from L , 

coincides with  f R  and vice versa. This happens because L and R   are connected by the 

relation   

                                       R UL U 

                                                                        (237) 

Therefore  

                             f R f UL U f L  

                                                            (238) 

 

Thus, we can construct the chiral invariant Lagrangian both as with the help of  L  or R . By 

historical reasons L  is used for this aim. The example of simplest Lagrangian is  

                                           Tr L L

                                                                        (239) 
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                  Topology of the non-linear sigma model 

 

Let us now return to (2) (2)SU SU  model. Above described geometrical picture fully corresponds 

to sigma model, in the form suggested by Sugawara. The above considered representation M  plays 

a role of  U x : 

               
1

U x x i x
f

                                                                                    (240) 

where fields are constraint by the relation (because 1)DetU    

                              2 2 2f                                                                                       (241) 

Let us construct a left-invariant form  

                               L U U 

                                                                                      (242) 

and a Lagrangian  

                        
2

4

f
L Tr L L


                                                                                       (243) 

which may be rewritten as   (using 1)U U    

                      
2

4

f
L Tr U U



                                                                                  (244) 

Sometimes Eq. (243) is named as Sugawara form. 

If we take the pion field to be  weak, then  

                         
i

L R
f

  



                                                                                   (245) 

 

There is also other very useful parametrization, which was first introduce by Gursey 

                           
 ,i t

U e



x 

                                                                                       (246) 

Evidently  

            ˆ ˆ, cos sin ; , /U t i       x                                   (246a) 

In this notation only one, isovector field  , tx  remains, which is connected to  ,   fields by 

relations  

                        ˆcos , sinf f                                               (247) 

As we know, the chiral group transforms U  as follows 

                      1U U LUR LUR                                                                          (248) 

and the Lagrangian (243) is invariant. At the same time the matrix 1U   corresponds to 0  (or

0 ), which is the vacuum value and it is not invariant under these transformation, accepts the 

case, when R L . It is exactly the spontaneous symmetry breaking till to subgroup (2)VSU .  

If we expand U  around unit matrix, and limit ourselves to the first order term  

                              ˆ1U i      

the Lagrangian takes form  



101 
 

                           
2

0

1

2 2

f
L  

            

which coincide to massless pion Lagrangian. Therefore we have to recognize a pion as a fluctuation 

of U  field near the unity matrix, I .  

 

 

 

Lecture 16 

 

 

Topological properties of the non-linear sigma model 

  

 

Parametrization, given above (246), considers the fundamental field  x  as an angular variable 

(phase), which takes his values on 3-dimensional unit sphere inserted into the 4-dimensional space 

of internal symmetry (2) (2) (4)SU SU SO . When x  runs space-time points,   x  moves 

on this 3S  sphere. It seems that  x is periodic as all angular variable. Therefore it is not 

determined uniquely by the physical state.  

 

Let us consider a configuration with finite energy, which is derived when U  is static,  U U x   

                                   
2

3

4

f
E d xTr U U                                                                    (249) 

 

It is clear that to guarantee the finiteness we need that when x in arbitrary direction 

 U U x necessarily tends to the constant matrix.  Such  U x  determines the mapping of 3-

dimensional configuration space 3R  onto to internal sphere, 3S . Therefore one can perform a 

topological classification of  U x  configurations, i.e. all such mappings must be divided into 

various topological sectors, with accordance of that how much times    3S  sphere will be covered 

when x  takes all its values from 3R . This number is called as topological index and is used for 

characterization of various topological sectors. 

 

In our example of non-linear model, the solutions with finite energy are the results of space-

topology of   U x  fields. This topology from its point of view is sensitive on the boundary 

conditions imposing at the infinity.  As we say above the sufficient condition for finite energy 

configurations is a requirement  

                            0, ,U t U as x x                                                                            (250) 



102 
 

where 
0U  is a constant matrix. Moreover the tending 

0U U  must be sufficient for providing 

finiteness of energy [for example,  1 2

0 ,U U I O r when r    ] 

 

From the invariance of Lagrangian under the chiral transformation follows that 
0U  can be reduced 

to a unit matrix, for this it is sufficient perform a global rotation: 1

0U U U . (See, above discussion 

about a little group). In case of such chiral rotation we do not loss any physical information. 

Therefore, one chooses the following boundary condition 

                                           ,U I as r                                                                (251) 

i.e. U  field tends to I , but not to some angular dependent limit. Therefore, we can think that all 

points of space infinity are identified to one point. Such an identification converts the 3-

dimensional Euclidean space with coordinates x  in the fixed moment of time into the 3-

dimensional sphere. According to boundary condition, therefore,  U  field is now defined on this 
3S sphere.  

 

This mapping in mathematics is realized by the stereographic projection –stereographic coordinates 

are introduced on  3S in the way: 

      
2

0 2 2

1 2
,

1 1

r

r r



 

 

x
                                                                                         (252) 

where    2 2

0 1   . The inverse transformation has a form  

                                
01 




x


  

Coordinates  0 ,    draw 3S  sphere. But this last is a compact manifold, on the contrary of 3R . 

This change of topology comes about because the infinite points of 3R are mapped into one point – 

the south pole of 3S    1,0   . This is permitted by means of the boundary condition for U

(251). x   transformation generates on 3S well-defined functions (counterexample,  f x x  

is continuous in 3R , but after transformation it no more is continuous on 3S , because the 

singularity arises in the South Pole). 

 

Now our aim is to study the topology of the configuration space.  

 

An arbitrary (2)SU  matrix has a form  

                2 2

0 0 1n i where n   n, n   

Thus  U  fields are defined on 3S .  

 If 
0U  and 

1U  are two such fields, then we say that they are homotopic,  0 1U U  if we can 

continuous deformation of  
0U  into

1U .   In other words: 
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 We say that  0 1U U , if there is set of mappings 3 3S S , denoted by  U


 such that 
   U


x  is 

continuous with respect of both x  and   and      0 10 1
U U and U U   . In this case the 

problem is in enumeration of homotopic ally inequivalent mappings.  

 

 

               Non-trivial homotopic sector – homotopically inequivalent mappings 

 

Let first consider the trivial field
 0

U , which transforms all x  into one and the same point of

(2)SU , which is the unit matrix, I . We can connect   to 
 0

U  all mappingsU , which are 

homotopic to
 0

U . All such mappings form a trivial sector,
0Q . The usual pion physics was studied 

in this sector.  

 

Let us now construct a non-trivial sector, say  1

1U Q . In order to guess how the corresponding 

field  looks like, note that the correspondence between a 3-dimensional space with identified 

infinity and 3-dimensional sphere may be established by relations  

                                0 cos , sini iN r N n r                                                        (253) 

where ( 0,1,2,3)N    is a unit radius-vector in 4-dimensional space, which parametrizes points 

of 3S .  1, 2,3in i   is an unit radius-vector in our 3-dimensional space, and  r  is arbitrary 

monotonic function of r  with boundary conditions  

               
 

 0 0, 0
d r

r
dr


                                              (254) 

This last requirement guarantees that  r  decreases monotonically from   to zero, when r  

grows from 0 to   and at the same time receives all the values between  and zero exactly once. 

Therefore the polar coordinates of the points  on  3S are 

                                  ˆcos , sinr r x                                                                                 (255) 

 

When x  run all its values, this point reaches on 3S to all values once and only once. In other 

words: by this 
 1

U map (2)SU  will cover exactly once. This is an example of such map, for which 

the so-called “winding number” equals to one.  Like this mapping’s homotopic mappings compose 

the class of equivalent mappings or the 
1Q  sector with winding number 1.  

 

In case of charge conjugation resulting map has a winding number  1 , so the total sector,
1Q
. 

 

A typical mapping with winding number n   0, 1, 2,...n     should be the nth degree of  
1Q , 

  1
n

U .  
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Physical meaning of homotopic classification 

 

 

Let us consider the initial conditions for equation of motion at 0t   moment 

                   
0 : , ,

n n n

nt U U U Q    

After some time T  these values will change: 

                          
,

n n n n
U U U U    

 

If  ,U tx  is a solution of equation of motion with a given initial conditions, it means that  

                                         ,0 , ,
n n

U U U T U x x x x                            (256) 

 

Because the time evolution is a continuous operation, it follows that 
 n

U  and 
 n

U  are homotopic 

to each other’s. The homotopy may be realized with the aid of function 

                                  , , 0,1U T  x ,                                                                 (257) 

therefore   n

nU Q  and, so,  the connected to U  field the integer number, n, is a constant of 

motion, i.e. the characteristic index of homotopic classes is a constant of motion.  

 

 

 

Lecture  17 

      

                           The topological charge of non-linear sigma model 

 

 

We have mentioned that in non-linear sigma model there is mapping 

                         3 3:U x S S                                                                                       (258) 

This mapping is non-trivial. Homotopic sectors 
nQ  are characterized by integer number – called a 

winding number, which is conserved topologically. There corresponds a topological current, which 

has a form  

              2

1

24
J Tr L L L    


                                                                                 (259) 

 

Let us calculate the divergence  

                          2

1

24
J Tr L L L L L L L L L   

          


         

It follows from the definition that L  satisfies the Mauro-Cartan identity 

                                        , 0L L L L     
                                                                 (260) 

Using this identity a typical term in divergence equation may be rewritten as  
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 

1

2

1 1
,

2 2

L L L

L L L L

  

     

 

     

  

 

     

       

  

Therefore in divergence equation the typical term looks like  

        0TrL L L L TrL L L L TrL L L L                                                 (261) 

Thus it is proved that the vanishing divergence equation takes place geometrically, i.e. independent 

of equation of motion.  It follows that the connected with this current charge is integral of motion,  

                 3

2

1

24
ijk i j kB d xTr L L L


                                                                              (262) 

It is clear that this expression may be written in covariant form as well:  

         0 3

2

1

24
B d xTr L L L

  


                                                                              (262a) 

Starting from the definition of L  one can show that  i j kTr L L L  is a chiral invariant. Therefore 

its calculation is possible for arbitrary values of pion field. In particular, when this field is small,

L i     . Then 

          

   0 02

02

1

24

1

24

mnk m n k

J Tr i i i   

   




    


    

   

     

  

After 3d x  integration, we obtain  

        3

02

1

24

mnkB d x        


                                                                               (263) 

 

We see that there appear the Jacobian of 3 3R S  transformation. Therefore   B  is a winding 

number. The normalization factor is chosen so, that  

               
2 2

1 1

24 3!2 
   

Where 22  is the area of 3S  surface in 4R .   

 

 

                            The size of soliton and the Skyrme term   

 

In the previous considerations we made certain that the non-linear sigma model has a non-trivial 

topological structure. The field configurations are divided into the homotopically non-trivial 

sectors, each of them characterized by definite winding numbers (winding number often is named 

as the Pontryagin or Chern-Simons indice). 

 

Configurations with finite energy have a localized energy densities in the finite area of 3R  space. 

Therefore, when we find a stable configurations with non-zero winding number satisfying above 
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given boundary condition, then they correspond objects having extending particle properties – they 

are localized in space and their conserved current satisfied to continuous equation.  

 

Unfortunately there are not stable configuration, which ensure minimization of the potential part 

of sigma model Lagrangian. Indeed, above we had a scale arguments about it, and now we can 

repeat it for this model .The energy is 

                                 
2

3

4

i if
E d xTr U U                                                                               (264) 

Introduce a new field,  

                                          , 0U U   x x   

and calculate the energy for it 

                   
2

3 1

4

i if
E d xTr U U E
  



                                                                             (265) 

It follows 

                      
2

1dE
E

d



 
                                                                                                          (266) 

 

It is evident that the minimum energy corresponds to  , i.e. energetically preferable state for 

finite size object is zero energy state. Or for finiteness of energy, particle size must be tend to zero. 

This means that in the non-linear sigma model solutions  corresponding to a finite energy are not 

stable under the scale transformation (as we know from the Derick theorem) 

 

The physical reason of this result is clear. The only parameter with the dimension of energy is a 

pion decay constant, f . If soliton solution has a characteristic size, say R , then its energy will be 

have order of 2f R .Therefore   the ground state corresponds the limit 0R . In other words only 

the sigma model Lagrangian is unable to ensure a stability of soliton with finite size and finite 

energy: any such configuration suffers dissipation of energy because of pion radiation and are 

shrink to the point particle with zero energy – it is a particle with zero mass.  

 

These consideration dictates the further strategy, if we want to have a soliton. It is necessary 

inclusion new terms to the Lagrangian. As the chiral invariants must be constructed by L  vectors, 

the even numbers of them is needed, i.e. the nearest additional term must contain a product of four 

space derivatives.   

 

It must been noted that the effective Lagrangians are not defined uniquely. They are not bounded 

by the requirement for renormalizability, therefore they can contain U  fields and their derivatives 

in arbitrary degrees. When we are interested by low energy phenomena, we can imagine that the 

Lagrangian is expanded in degrees of these derivatives and one can single out the leading terms. 

Exactly such leading term will be of the fourth order in our case.  If one repeat consideration after 

inclusion of such terms, one obtains  



107 
 

                               2 41
E E E 


                                                                                        (267) 

where    2 , 4
E  are corresponding energies of quadratic and fourth order terms.  Then, the 

extremum condition looks like  

                          2 4

2

1 1

1
0

dE
E E

d    

 
    
 

  

which has a solution  

                             
 

 
   

2
4 22

4
,

E
or E E

E
                                                      (268) 

It is expected that in this case we can have a finite size soliton.  

                     

     

 

                                     The  Skyrme  Lagrangian 

 

 

If Lagrangian must contain only by first derivative terms there remain only possible two fourth 

order terms, which at the same time satisfy the requirement of chiral symmetry, namely  

               

 

 
 

  

4

4

2

1

1

L

L





 

 

  

    

 

   
                                                                                  (269) 

 

There is no argument to prefer the first or second forms. But it is easy to convince  that their 

difference  

                               
 4

4

1 2L L   

contains the time derivative only two times, exactly so, as the sigma Lagrangian. It is suitable for 

quantization procedure.  

 

This is exactly the combination which was suggested by Skyrme (1961), for stabilization his 

Hedgehog like solution.  

 

This tern has the following form by the means of L  fields  

                          
2

24
,

4

e
L Tr L L 

                                                                                    (270) 

The operatorial dimension of  L  is 
1

m , therefore e  is dimensionless parameter.  

 

Thus the Skyrme model Lagrangian has the form  

                      
2 2

2

, , 0
4 4

Sk

f e
L Tr L L Tr L L e

  
                                 (271) 
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The stabilization of the soliton may be understand physically as follows: If R  is a soliton size, then 

the Skyrme term (270) gives following contribution 
2e

R
, therefore the total energy will be  

                                      
2

2

1 2 1,2, 0
e

c f R c c
R

                                                          (272) 

This expression has a minimum for nonzero   R .  

  

 

Limitation of Energy by topological charge 

 

 Let us show that the energy of soliton is bounded from below by topological charge. Indeed, the 

energy of static configuration is equal to  

            
2 2

2
3 2 ,

4 4
i i j

f e
E d xTr L L L

 
     

 
                                                                   (273) 

Let transform the second term in this way  

                      
22

, 2i j ijk j kL L L L      

Then  

              
2 2 2

3 2

2
2

4
i ijk j k

f e
E d xTr L L L

f






 

   
 

                                                          (274) 

It is known from algebra that the arbitrary antihermitian  matrix    A   obeys to inequality  

                            2 0TrA                                                                                                       (275) 

Our matrices  ,i ijk j kL L L   both are antihermitian. Let compose the antihermitian combination  

                              2
2

i i ijk j k

f e
A L L L

f






 

  
 

                                                                   (276) 

Then  

            
2 2 2

2 2

2
2 2 2 0

4
i i ijk i j k ijk j k

f e e
TrA Tr L L L L L L

f f



 

 
 

    
 

  

Therefore Eq.(274) transforms like  

   
2

3 2 2

4
ijk i j k

f e
E d x Tr L L L

f






 

   
 

   

        = 3 22
12 2

2
ijk i j k

f e
d x L L L ef B

                                                                         

Therefore we have derived the bound on energy 

                       212 2E ef B                                                                                          (277) 

where B  is the topological charge (262a) 
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This inequality is known as Bogomolny bound, sometimes as Bogomolny-Prasad-Sommerfeld (BPS) 

bound. According to this inequality the lowest value must correspond to equality sign in (277). if 

this happens, the solution should be a  self-dual: 

                     
2 2

i ijk j kL L L
f

                                                                                             (278) 

 

But it is easily seen, that the self-duality contradicts to the Mauro-Cartan equation (260). Therefore 

the energy exceeds  Bogomolny bound (Bogomolny bound is not saturated) 

                 212 2E ef B                                                                                               (279) 

 

Here it is important that the soliton energy (mass) is bounded from below by the topological 

charge. 

 

 

Lecture 18 

 

                                    Skyrmion 

 

 

Skyrme’s initial idea was to connect above defined topological current to the baryonic current and 

the conserved topological charge to the baryon number. This idea means the following:  ,U tx  

field configurations, which in the vicinity of U I  describes interacting pions, acquires new 

features when the topological charge differs from zero.  

 

We have seen already that the Skyrme model consists spontaneously broken (2) (2)L RSU SU  

chiral non-linear sigma model in the leading order, which satisfies requirements of algebra.  But the 

stability of corresponding non-trivial configurations provides the Skyrme term. These 

configurations are called Skyrme solitons, or skyrmions. In general, as we know, soliton is classical, 

static, stable configurations with finite energy in weakly interacting non-linear field theories of 

bosons only, which are characterized by degenerate vacuum state. Solitons are heavy objects with 

exactly conserved topological charges. Soliton-soliton interaction is strong, but soliton-boson 

interaction is weak. After quantization solitons manifest a rich spectra. We’ll see, that the 

skyrmions has many of features, listed here.   

 

In his original papers Skyrme was convince that the field configurations with unit winding number 

 1B   must be fermions in this model. According to him abovementioned topological current 

must be identified with baryonic current, which means, that skyrmions – are classical baryons. This 

suggestion was confirmed only 20-30 years after, in the frame of QCD, which will be elucidated in 

the forthcoming sections.  
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Classical equations of motion can be deduced from the Skyrme Lagrangian, constraining matrices 

by unitarity condition,  1U U   or from the action functional in the first order with respect of 

fluctuations. We obtain the following equation:  

              
2

2
2 , , 0

e
L L L L

f

 

   



       
                                                                   (280) 

    The equation for R  looks analogously.  

 

Usually Bogomolny constraint or the self-duality is used for simplification of similar equations. We 

have underlined above that in the Skyrme model self-duality contradicts to the Mauro-Cartan 

identity. Therefore we are not able in using this method here and as a result we are deal with very 

complicated equation, which can be studied only by numerical analysis.  

 

Investigation of this equation is possible by symmetry considerations. As we know using the 

angular parametrization U  matrix can be written as  

                 ˆcos sinU i   x     

 

If in course of variation of x  the matrix  U x  covers the 3S  sphere in x  space completely then 

the unit vector ̂  must cover unit sphere 2S  in the isotopic space for arbitrary values of .  In 

other words, the unit isovector  ̂  as a function of  x  must cover total solid angle 4  in isospace, 

when x  runs all such values in 3-space, for which   has a constant value. The simplest way to 

reach this is a choice 

                                                 

 

This result can be understand also as follows: When  the matrix   cannot be 

translationary invariant, because in this case the field should be constant, but only  

corresponds to constant field.  

 

At the same time, when , the matrix   cannot be invariant under rotations, because 

such field would depended on distance  only, and in this case  

                                    

and it follows for current density that  

             

 

There is one extra possibility – construct fields, which are invariant under generalized rotations  

                   

where  denotes rotations in isotopic and ordinary spaces, respectively: The effect of a 

spatial rotation can be compensated by an isospin transformation.   


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Such a field is invariant under combine rotations in both spaces: 

                               

It is easy to verify that the general solution of this equation is 

                                                            (281) 

 

The generator of this combined rotation is  

                  

 

One can easily verify that  

                                                                                                                          (282) 

 

Resulting solution forms a Skyrme ansatz, which has a figurative name – “hedgehog”, according its 

geometric picture: In all space points     corresponding isovector  ˆ x   is directed radially with 

respect to the origin , where the center of considered object is located.  

 

 
 

Fig.* The Hedgehog configuration: Arrows indicate the directions 

of the isovector field  at different points in coordinate space 
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                                Boundary conditions for the hedgehog solution    

 

    

As we know, one of the fundamental requirement is tending to unit matrix at infinity

. Therefore, we must have 

                          integer number, 

which can be chosen as zero. Otherwise, one can change the definition 
.
 

Therefore, we take     

                                                                                                                    (283) 

 

We must also require that  is well-defined at origin. If we take , then  will 

tend to  depending limit, which is not well-defined at : the space origin  has to 

reflected on  sphere in one point, therefore we must require that    . Hence  

                                                                            (284) 

 

One can calculate the winding number: 

            

Therefore 

                                       (285) 

 

 In conclusion, we have shown that the fields with generalized spherical symmetry give for 

winding number arbitrary integer values.       

 

Because the Skyrme ansatz commutes with the generator  of diagonal group ,  

the configuration “hedgehog” is a scalar in the K-space . 

 

Remember that the parity on  field is defined as 

                                         

therefore  

                                                                                              (286) 

This means that the Skyrme ansatz is invariant under parity, therefore the quantum numbers of 

skyrmion are  and it may be considered as a mixed state of positive parity of  states.    
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Radial equation for the Skyrme profile function 

 

If we substitute the Skyrme ansatz into the equation of motion   (280) after some manipulations we 

obtain the following radial equation  

                       (287) 

with boundary conditions   

                                                                                                 (288) 

There are numerical solutions of this radial equation. We can investigate here analytically some 

general properties of it.  

Character of asymptotic:  At the small distances  manifests a linear dependence on   

                                                                           (289) 

 

Exercise:  Show this.  

 

At the large distances because of boundary condition (288 ) terms in parenthesis decay more rapidly 

and if we restrict ourselves by the expansion of sine up to the first order, there remains the 

equation  

                     

  

Decreasing solution of this equation is,  

                    

 

Such a behavior is expected for the source of massless particles. 

 

Let us now bring an expression for skyrmion energy, which can be easily derived by substitution of 

the Skyrme ansatz  

                             (290) 

If we minimize this expression with respect to chiral angle  evidently we obtain the equation 

of motion. Therefore for calculation of minimum of mass, we can use here the equation of motion, 

which after using the virial theorem means: 

                    

Therefore  

                                                                                    (291) 

2 2 2 2

2 2 4 2 2

2 sin 2 sin 2 sin sin 2 2 sin
8 0

F e F F F F F F
F F

r r f r r r

  
       

 

   0 , 0F F  

 F r r

  , 0F r n r r  

2

2 2
0

F
F F

r r
   

21/F r

2 2 2 2
2 2 2 2

2 2 2

0

2sin sin sin
4 4 2

2
Sk

f F F F
M r dr F e F

r r r


      

        
     



 F r

   4 2
E E

2
2 2 2

2

0

2sin
4Sk

F
M f r dr F

r



 

  
 





114 
 

introducing dimensionless variable as follows 

                                                                                                                            (292) 

the mass can be rewritten in the form  

                                                                      (293) 

It is interesting to note that after using this new dimensionless variable the equation of motion becomes  

                          (294) 

This is a one dimensional ordinary, but non-linear equation. It does not contain any free parameters, so 

it can be solved by numerical methods. Numerical solution of this equation is shown in Fig. (25) ,    and 

is adopted from the article of G.S.Adkins et al. Nucl. Physics B228 (1983)552-556. 

 

 
 

 

Fig. 25 The numerical solution for F, Eq. (294 ). The radial distance is measured in fm 

in dimensionless variable  

 

 

 

 

Some Phenomenology  of the Skyrme  model 

 

 

The first phenomenological calculations was performed by S.Adkins, C. Nappi and E. Witten (Nucl. 

Physics B228 (1983) 552-566.  They found the soliton’s profile function, depicted above and by its 

using they calculated many static properties of nucleon and delta, such as isoscalar charge and magnetic 

radii of nucleon, magnetic moments of proton and neutron and  transition, axial constant , also 

 and checked that the Goldberger-Traiman relation is valid theoretically. In calculations they used 

nucleon and delta masses as inputs, while  and the Skyrme constant  as drive parameters.  
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Below we reproduce their calculations briefly.     

 

So, if  is the soliton solution, then , where  is an arbitrary 

constant  matrix, is a finite energy solution as well. A solution with any given A is not an 

eigenstate of spin and isospin. We need to treat A as a quantum mechanical variable, as a collective 

coordinate. The simplest way to do this is to write the Lagrangian and all physical variables in terms of 

a time dependent   matrix  A. We substitute  in the Lagrangian. This 

procedure will allow us to write a Hamiltonian which we diagonalize. The Eigenstates with the proper 

spin and isospin will correspond to the nucleon and delta. 

       

 

Substituting , after a lengthy calculation, we get for the Lagrangian 

                                                                                                       (295) 

where  was defined above  as skyrmion  mass and   with 

                          

 

Numerically, . The  matrix  A can be written as    

In terms of these matrices  

                                                                                                            (296) 

Substituting the conjugate momenta , we can now write the Hamiltonian  

                                                                         (297) 

Performing the usual canonical quantization procedure   , we get 

                                                                                                       (298) 

with the constraint , because of which the operator  is to be interpreted as the 

Laplacian  on the 3-sphere. The wave functions are traceless symmetric polynomials in the . A 

typical example is , with . Such a wave function has 

spin and isospin equal to , as one may see by considering the spin and isospin operators  
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                                                                           (299) 

 

An important physical point must be addressed here. Since the non-linear sigma model field is 

 both  and   correspond to the same . Naively, one might expect to insist that for 

wave function there are two consistent ways to quantize the soliton as a boson or as a fermion 

depending on the sign of    A A    . The choice of minus sign corresponds to quantizing it as 

fermion. In this case our wave function will be polynomials of odd degree in the . So the nucleons of 

 corresponds to wave function linear in . While the deltas of  correspond to 

cubic functions. Wave functions of fifth and higher orders correspond to highly excited states. the 

properly normalized wave functions for proton and neutron states of spin up or spin down along the z-

axis, and same of the  wave functions are:  

                                                               (30) 

 

Returning to the  Hamiltonian, eigenvalues are .So  

                                                            (301) 

where     is evaluating numerically, moreover , as already 

was said. It was found that the best procedure in dealing with this model is to adjust  and  to fit the 

nucleon and delta masses. The results are  .  

 

 

 

 

               Currents, charge radii and magnetic moments      

                         

In order to compute weak and electromagnetic couplings of baryons, it is needed first to evaluate 

the currents in terms of collective coordinates. The Noether current associated with the V-A 
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             (302) 

Anomalous baryon current is  

                                                                    (303) 

 

If one substitutes   we get rather complicated expressions for the vector and 

axial currents. The following angular integrals are adequate for these purposes: 

                                                                               (304) 

where  

                                                                             (305) 

   

 

In the computation of the above formulas terms quadratic in time derivatives are neglected, 

because they are of higher order in the semiclassical approximation.  

 

It follows for the baryon current and charge density that  

                                                                                 (306) 

The baryon charge per unit  is therefore  

                                                                                       (307) 

The isoscalar mean square radius is given by 

                                                          (308) 

And we get         , while the corresponding experimental value is 0.72fm. 

Moreover, for the isovector charge density per unit r we obtain 
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                                                      (309) 

Now one can derive the proton and neutron charge distributions. They are plotted in Figure below   

 

             Fig.26    Charge densities are given as functions of the radial distance  r and include a factor   

                            

 

By analogy other static characteristics may be calculated. Results of calculations are summarized in 

the Table below  

 

Table.   Static quantities of nucleons in the Skyrme model 

          

       Quantity      Prediction Experiment 

           MN         input       939 MeV 

                       input       1232 MeV 

                       129MeV         186 MeV 

             
           0.59fm          0.72fm 

              
          0.92fm          0.81 fm 

                          1.87            2.79 

                          -1.31           -1.91 

                             1.43            1.46 

                             0.61            1.23 

                              8.9             13.5  

                             13.2             20.3 

                              2.3              3.3 

   

 

 Agreement is satisfactory within the 30%.  
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In these calculation the pion mass was zero. In the following attempts were undertook to include 

into account the pion mass term as well, which breaks the chiral invariance. This term has a form  

                                                                                               (310) 

Where  is a quark condensate, and  - quarks’ mass matrix. In this case pions acquire masses 

and the profile function asymptotic is changed . In addition to quantities from 

the Table above nucleon isotriplet charge radius was calculated, which 

diverges logarithmically in the chiral limit. Moreover the so-called -term was obtained,  

                                                                     (311) 

 

The results look like  

                                  1.04 fm                  0.80 fm 

                                    49 MeV   36  20 MeV 

 

Comparison shows that the numerical values of various quantities do not change essentially in 

result of accounting the pion mass term. 

 

The significance of these results is in demonstration that the simplest quantitative realization of the 

idea “baryon as soliton” gives reasonable numbers.  

 

  

 

Lecture 19 

 

X.  The Wess-Zumino term 

 

 

The chiral anomaly of QCD and effective chiral model 

 

 

We have already mention that in massless quarks limit QCD is characterized by extra  

symmetry, which is explicitly broken by Adler-Bell-Jackiw anomaly. In the  model this 

anomaly does not appear. Therefore consider the case of three massless quarks,  

when the global symmetry is . We mentioned that this symmetry is broken 

spontaneously by the following way 

                     (312) 

And therefore we have an octet of massless pseudo scalar particles. For non-linear realization of 

which we must take  matrix, defined on the  manifold: 
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                                                                  (313) 

Here  are Gell-Mann   matrices, normalized as         . The explicit form 

of pseudo scalar octet is well known: 

                                                                     (314) 

 

Under Parity operation these fields transform as usual  

                                                                                                       (315) 

E. Witten mentioned that the sigma model Lagrangian, which is invariant under  

global transformations and Parity transformation – as in QCD 

                                                                                                            (316) 

manifests additional symmetry with respect of QCD, the symmetry under separate transformations  

                                                                                                              (317) 

 

These invariances forbid the following processes  

              ,                                                                                                            (318) 

In other words –processes, in which the even number of pseudo scalar particles transform into to 

odd numbers and vice versa, are forbidden, the like processes are acceptable in QCD because we do 

not have  here separate symmetries 1. and 2., but only their combined symmetry – parity. It is 

remarkable that in QCD these processes are allowed by anomaly and in the sigma model they are 

suppressed by kinematics, as we do not have an anomalous Ward identities.  

 

E.Witten changed classical sigma model Lagrangian adding  invariant term, which 

brakes the additional symmetry, but maintains their combination.  This program was realized as 

follows: 

 

In order to break the (317-1) symmetry without explicit breaking of Lorentz-invariance we must 

introduce in the equation of motion totally antisymmetric tensor  

                                                                                            (319) 
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This additional term contains the time derivative only linearly. Under , Levy-Chivita 

tensor changes sign , and  we derive 

                                                                                              (320) 

When we perform the second transformation,     

                                                       (321) 

the equation becomes  

                                                                                          (322) 

 

Hence, the new term breaks both symmetries, but combined symmetry leaves inviolable. 

Now we need the action functional for deriving equation of motion. This is far non-trivial task, 

because the explicit candidate  

                  

is identically zero in (3+1)-dimension owing to cyclic property of trace.  

 

Fortunately, this problem has a well-known solution. The analogical problem arises in monopole 

case. Consider a particle of mass  constrained to move on an ordinary two-dimensional sphere of 

radius one. The Lagrangian is   

                                                                                                                                (323) 

and the equation of motion is  

                                                                                                                   (324) 

with the  constraint             

 

This system respects the symmetries  and separately .  If we want an equation that 

is only invariant under the combined operation  , ,  the simplest choice is  

                           ,                                                                           (325) 

where  is a constant. To derive this equation from a Lagrangian is again troublesome. There is no 

obvious term whose variation equals the right-hand side (since . it seems that the 

situation is analogous to our problem.   
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center of sphere. Introducing a vector potential  such that  , the action of 

our problem will be 

                                                                                                        (326) 

where in case of monopole , i.e. the product of electric and monopole charges. When  

or when monopole is absent, the action is invariant under separate transformations:   and

. But when monopole is included, only combined transformation conserves. 

 

However, this Lagrangian is problematical because  contains a Dirac string and certainly does not 

respect the symmetries of our problem. Indeed, at the one hand ,therefore , but at 

the same time  and   0 B .       So,  must be singular in   Moreover, this part of 

action is not gauge invariant: 

Under gauge transformations  

                               

the action changes as 

                                                                                           (327) 

We are not able to restrict  at the endpoints, because  is arbitrary. 

 

Noninvariance of the action has no importance in classical physics, because here the invariance of 

equation of motion is interesting for us, which is satisfied really. But in quantum mechanics the 

action takes place in transition matrix elements. It is obvious from the Feynman form of generating 

functional 

                 Z                                                           (328) 

In quantum mechanics one can maintain the gauge invariance, If would change be multiple of . 

 

In  the troublesome term is  
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object .  By Gauss’s law we can eliminate the vector potential from above integrand in favor 

of the magnetic field.  In fact, the closed orbit  in 2S  of Fig.27 (a) is the boundary of a disc , 

and by Gauss’s law we can write exponent in terms of the magnetic flux through , if the 

integrand is not singular. But the monopole field  is necessarily singular owing to a Dirac string, 

the position of which depends on gauge choice. If we integrate in  surface    , string becomes 

safe, if it threads the second surface . Therefore 
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                                                                       (329) 

The circle  in  is the boundary of a disc  (or more exactly, a mapping  of a circle into  

can be extended to a mapping of a disc into ). 

                            
(a)                     (b)                     (c) 

 

Fig. 27  A particle orbit  on the two-sphere: (part (a));  bounds the disc (part (b))  and  (part (c)) 

                         

The right-hand side of previous equality is manifestly well defined, unlike the left-hand side, 

which suffers from a Dirac string. We could try to use the right-hand side in a Feynman path 

integral. There is only one problem:  is not unique. The curve  also bounds the disc . 

(Fig.27c). There is no consistent way to decide whether to choose  or   (the curve   could 

continuously be looped around the sphere or turned inside out).   Working with   we would get 

                          ,                                          (330) 

where a crucial minus sign on the right-hand side appears because  bounds   in a right-hand 

sense, but bounds  in a left-hand sense. If we are to introduce the right-hand side of previous 

forms in a Feynman integral we must require that they be equal. This is equivalent to  

                                                                                                         (331) 

 

Since  is the whole two sphere , and  the previous relation is 

obeyed if and only if   is an integer or half-integer. 

                                                            (332) 

Evidently, we could derive uniqueness also in case when  would be integer number. This is 

Dirac’s quantization condition for the product of electric and magnetic charges.  If we choose even 

n, we obtain the Schwinger monopole. 

 

Interesting enough that this quantization has a topological meaning. Indeed, We saw that by gauge 

transformation the action changes as  
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                                                                                                                                  (333) 

 

For closed contours  is a U (1) winding number, which is topological charge. So  

                         ,  

and the Feynman amplitude changes on value 

                                                                                                                           (334) 

And if it equals to 1, it means the requirement of uniqueness.   is quantized topologically                               

                                  

 The uniqueness of transition amplitude gives again the Dirac quantization rule.  

 

Therefore, the uniqueness is provided by quantization of topological charge. 

                    

      Now let us return to our original problem. We imagine space-time to be a very large four-

dimensional sphere .  A given field  is a mapping of   into the  manifold (Fig.28a) 

Since  the four-sphere in  defined by  is the boundary of a five-

dimensional disc Q. 

     By analogy with the previous problem, let us try to find some object that can be integrated over 

Q to define an action functional. On the  manifold there is a unique fifth rank 

antisymmetric tensor  that is invariant under . Analogously of above 

consideration, we define  

                    

    As before, we hope to include  in a Feynman path integral. Again, the problem is that 

 is not unique. Our four-sphere M is also boundary of another five-disc (Fig.28 a,b,c) 

 

 
(a)                                    (b)                                 (c) 

 

Fig.28      Space-time, a four sphere, is mapped into the  manifold. In part (a), space-time is symbolically 
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                  denoted as a two sphere. In parts (b) and (c), space-time is reduced to a circle that bounds the discs  

     and . the SU(3) manifold is symbolized in these sketches by the interior of the oblong 

  

If we let 

                                           

(with again a minus sign because  bounds  with opposite orientation)  then we must require 

 or equivalently  Since  is closed five-

dimensional sphere, our requirement is 

                    integer                                                                                   (335) 

for any five-sphere  in the manifold.  

 

We thus need the topological classification of mappings of the five-sphere into . If we have such 

topology, there is a theorem that    every sphere in   is topologically a multiple of the basic five 

sphere . The normalization may be chosen so that  

 

                 

and then we may work with the action  

                                                                                            (336) 

where  is an arbitrary integer and  is, in fact, the Wess-Zumino Lagrangian. This Lagrangian 

was derived by Wess and Zumino restricting  anomalies in the chiral SU(3)L  SU(3)R model.  

As regards of , it may be written in 5-dimensional sphere as follows: Let us introduce variables

, being coordinates for the disc . Then on  

       

 

Therefore, with the aid of this the modified action of sigma model is to be written as  
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              Variation of Wess-Zumino Lagrangian  

  

Let us calculate the variation of , which as was mentioned above, coincides with the Wess-

Zumino Lagrangian. Consider first the right-handed transformations 

                                                                              (337) 

As usual,  is thought as Hermitian matrix.   From the definition of  it follows that 

                 

The typical term derived by this variation is  

                                                                            (338) 

which inside of trace is zero after some rearrangements. Therefore the variation of the Wess-

Zumino Lagrangian takes the final form as follows  

            

                      =                                       (339) 

Therefore transition of  from  to other terms vanishes all getting terms. It means that 

       

which is a total divergence. therefore one can use the Stake’s theorem and carry integration to 

boundary of  disk, which is a physical space-time, i.e. 
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This leads us to the Witten’s equation of motion.  

 

Interesting enough that that this equality may be rewritten as 
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In other words, the right currents of Noether corresponding to this part of variation, according to 

Gell-Mann-Levy equations take the form  

                                                                                     (341) 

Analogously one can consider the left-hand transformations and get the left-hand currents 

                                                                                   (342) 

Therefore, we have shown that if we take the action in the form of Eq. (336), it follows the Witten 

equation of motion. But it remains to make clear, what is here the parameter . It is easy exercise 

to show from uniqueness that   

                            

 

So, all ingredients are known in Witten’s term.  

 

 

 

Lecture 20 

  

The physical consequences of this can be made more transparent as follows.  

Using   

                                                          (343) 

we derive  

                    

So is (to order  and in fact also in higher orders) the integral of a total divergence 

which can be expressed by Stokes’ theorem as an integral over the boundary of  . By 

construction, this boundary is precisely space-time. We have then,  

         + higher order terms                   (344) 

In a hypothetical world of massless kaons and pions, this effective Lagrangian rigorously describes 

the low-energy limit of . We reach the remarkable conclusion that in any theory 

with   broken to diagonal , the low –energy limit of the amplitude for this 

reaction must be an integer (in units, used above).      
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         The  magnitude of integer n   in QCD.      

 

Witten considered the coupling of Goldstone bosons with fermions, in order to get their dynamics at 

low energies. Let us take  the Quarks’ electric charge  matrix  

                   

and consider it as a generator of  group. Wess-Zumino  action   is invariant under the global 

rotations by charge operator       

                                                                                                       (345) 

where  is a constant. We wish to promote this to a local symmetry,  

                                .                                                                    (346) 

with  an arbitrary function of .It is necessary to introduce the photon field  which 

transforms as ;      is the charge of proton.  

 

Usually a global symmetry can straightforwardly be gauged by replacing derivatives by covariant ones,

.  In the case at hand,  is not given as the integral of a manifestly 

 invariant expression, so the standard road to gauging global symmetry is not 

available. One can still resort to the trial and error Noether’s  method, widely used in supergravity. 

Under a local charge rotation one finds  

                     .                                                                                       (347) 

where  

        

(348) 

is the extra term in the electromagnetic current required due to addition of to the Lagrangian. The 

first step in the construction is to add the Noether coupling,   . This 

expression is still not gauge invariant, because is not, but by trial and error one finds that by adding 

an extra term one can form a gauge invariant functional 

         

                            

 

 

The gauge invariant Lagrangian will then be  

                                                                                 (349) 

What value of the integer  will reproduce QCD results? 
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Here we find a surprise. The last term in (348) has a piece that describes . Expanding   and 

integrating by parts, (348) has a piece 

                                                                                               ((350) 

This agrees with the result from QCD triangle diagrams if , the number of colors.  The Noether 

coupling   describes, among other things, a  vertex 

                                                                           (351) 

again agrees with calculations based on the VAAA anomaly of QCD if . The effective action 

 (Wess-Zumino action) precisely describes all effects of QCD anomalies in low-energy processes 

with photons and Goldstone bosons.  

 

 

 

           Calculation of the Wess-Zumino term for  group 

 

One of the important property of the Wess-Zumino term has a linear dependence from the time 

derivative through    and contains integration by time, without loss of generality we may 

assume that  varies from  to .     One has to single out time explicitly. For that consider an 

-skyrmion in 3-th dimensional space-time with topology . To leading order in  the 

vacuum  to vacuum amplitude of a skyrmion at rest is given by  

                                                                                     (352) 

where   is the skyrmion mass.  Now, rotate the skyrmion over   along , infinitely slowly.  

 

According to quantum mechanics the skyrmion wave function acquires a phase factor , 

where  is the skyrmion spin. In other words,  

                                                                          (353) 

which determines  up to an integer. The phase factors here are given by the classical action of an 

adiabatically rotated skyrmion. To determine the latter, consider a   hedgehog  

embedded in , i.e.             

 

                                  

Because of the hedgehog character of , rotations are equivalent to isorotations 
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                    =  

Multiplying  both sides on unity  , we get  

                 = 

Multiplying again on unit matrix   

                                

and using commutativity of appearing here matrix with , owing to its structure, we obtain                 

         

                             

 

Therefore the obtained matrix  has the form  

                              (354) 

 

A new  matrix is periodic and may be extended from a circle  

                     

to a disk    

                           

 

 

For example, very often the following extension is used 

                                                                                      (355) 

 

One may substitute thus well-defined extension     

                      

into the definition of Wess-Zumino action  
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First of all calculate the variation under the following transformation  

                              

and make use the steps, applying above, one easily derives   

                              (356) 

 

Remember now, that  is a unitary matrix from , rotating spherically symmetric chiral 

soliton. From previous consideration we know that the corresponding currents have the form (341-342). 

Therefore the piece, following from Wess-Zumino term , could be  

            

             

Substituting a “rotated” ansatz and remembering the definition of baryonic charge, after simple 

manipulations we get  

                          (357) 

It follows that the contribution  to the axial charge  from the Wess-Zumino term equal 

zero, but to the vector charge is   

            

                                                       (358) 

 

Now it is an easy task to find the Wess-Zumino term itself  in case of considered rotated ansatz. Indeed, 

the vector charge according to the Noether theorem (or Gell-Mann-Levy equation)  is a coefficient in 

front of  in the variation of the sought-for functional  in case of vector 

transformation, depended only on time 

  

 

The functional, possessing this property, has the form  

                                                                                                      (359) 
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and if we substitute the explicit form of  into this general form, we find the needed result  

                                                                                                                                  (360) 

                                                  

 

     

            Discussion: Soliton  and  QCD 

 

Before going in advance let us summarize the principal results obtained earlier and look for left 

problems in the framework of QCD.    

 

Till now we have suggested  to develop an idea that baryons are nonlinear waves (solitons) as a phase 

of chiral condensate, which appears in QCD. Now we want transfer attention to the most principal 

problems, which are related to the quantum numbers of the chiral soliton. First of all let us remember 

some of the considered results.  

 

Because pseudo scalar mesons are fluctuations (or chiral condensate phases)  of unit matrices of 

, the most suitable parameterization  for them  was exponential 

one, introduced by unitary matrix  

                                  ,            - Gell-Mann matrices 

It is well-known that in the chiral limit (massless quarks) QCD is invariant under chiral transformations 

of the quark fields 

                                                                                           (361) 

where  are arbitrary   unitary matrices, . At the same time  

transforms as a composed meson field   or under the above chiral transformations 

                             

 

Comment   it is easy to guess that  are above considered matrices . Invariance of 

QCD with respect of these transformations requires that the action written in terms of  fields 

must be invariant under these global transformations. 

 

The first term of effective chiral action  (the non-linear sigma model)  has the form  

                        

                             =   

Here  are the structure constants of  group. 

 

The second row is derived after expansion of  matrix: 
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The following important step was the introduction of the Skyrme term, in order the topological soliton 

becomes dynamically stable.    

 

As regards of skyrmion’s quantum numbers, here very important is the Wess-Zumino-Witten term, 

considered above. Its presence follows in  taking into account the Axial anomaly:    Accounting a 

local  gauge (x-depended) chiral transformations and corresponding gauge transformations for external 

compensating fields  and  , which interact with the left and right currents of quarks, then the  

 symmetry  breaks and the Adler anomalies appear. If we agree that the chiral soliton theory 

must be compatible with , then exactly the same anomaly must appear in its effective Lagrangian. 

In this way we have recovered the Wess-Zumino term above.  

 

We wrote the WZ term as an integral over 5-dimensional space  

                   

 

To achieve the dynamical stability the consideration of   higher order derivative terms is needed. There 

are many possibilities and unfortunately, there is no way to pick out from them. But if we confine 

ourselves to quadratic term in time derivative (note, that the WZ term is linear in time derivatives), we 

must confined ourselves  by Skyrme term  

  

Here a const is a dimensionless number.  

 

There were models, in which the chiral soliton stability is provided by inclusion of vector fields, but 

these models are not well-interpret theoretically. 

 

Let us consider results following from this action. 

 

 

 

 

                    Currents and charges  

 

The expressions of currents and charges in terms of   we have derived earlier. Let us now connect 

them to .  

 

On the quark language  left and right currents are expressed as a half-sum or half- difference of vector 

and axial currents 

                                                             (362) 

 

These currents may be derived by the Noether’s theorem. For this aim we consider the transformation 

of quark fields  
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and make the parameters infinitesimal. Currents are derived as coefficients of derivatives of parameters 

(Gell-Mann-Levy) in action variation 

                                                                                         (363) 

 

Application of this method in chiral Lagrangian requires performing of infinitesimal transformation of 

 field. We derive: 

                 (364) 

                   (365) 

 

Here the first term follows from kinetic term, while the second one from , ellipsis denote 

contributions from the other possible terms. Note that if we expand the first term in small  fields we 

derive . This current interacting with a weak  boson causes the decay   . 

Really, the normalization of numerical value of is derived from this decay.  

 

Now the vector and axial vector currents are  

                          

 

          

 

                        Baryon charge 

     

In Chromodynamics with  numbers of quarks the baryon is composed by   quarks and baryonic 

current in the quark language will be  

                

Therefore, quarks baryonic charge is   

 

Left and right baryonic currents can be formally derived according to the Noether’s theorem, if we 

consider transformations; 

               

and we may derive the left- and right- handed baryonic currents in chiral theory from (364-365). 

Herewith the first term does not contribute, which means that baryonic current follows only from .  

            

and the baryonic charge is  
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   This is, as we remember, normalizable expression of the topological mapping of homotopic group

. 

 

Let us underline once again how the baryon charge appears by pseudo scalar mesons. This last 

expression is expected to be zero. Indeed, if we take the meson field to be small and expand   

we derive  

             

                =   

 

It is integral from total divergence (this could be shown even without expansion). If  fields do not 

have singularities and decrease rather quickly at infinity, integral is zero – it is in accordance with 

intuition – meson fields do not carry baryonic charges.  

 

But this exercise   says, in what cases can be derived non-zero baryonic charge - fields must have 

singularity at some point. In this case it is not available to take   field small and we have to use the 

exact expression. Hence, appearing of baryonic charge must be a topological effect.  

 

To be convince in that one can consider the spherical ansatz  

                                                                     (366) 

Consequently,   

                                                                                (367) 

 

 

and the baryonic charge for such matrix will be 

         

                  (368) 

Therefore, the baryonic charge is determined by the boundary conditions for profile function . 

 

Let take vanishing condition at infinity, . As regards of origin,  it cannot be arbitrary, 

but , where  is an integer, which follows from the finiteness of soliton energy. Therefore, 

according to (368) the baryonic charge on “hedgehog” ansatz is an integer and is determined by 

boundary behavior at  (!).  

     In particular, the value B=1 is achieved when , antibaryon corresponds to . 
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                                     Why is a chiral soliton fermion? 

 

The most astonishing is that the characteristics of the chiral soliton rather easily can be established in 

case of three quarks, when the matrix of pseudo scalar meson octet is a  unitary matrix of the 

 group. 

 

Let us follow to Witten’s point of view. Consider  evolution operator’s matrix element 

between soliton states. It may be written in form of Feynman’s functional integral 

                                                     (369) 

When  only lowest mass state remains on the left-hand side – baryon with mass . Therefore 

in this limit the left-hand side is, 

          

Now let us consider the similar matrix element between  soliton and rotated  

soliton, which during the  time is rotated on  by  matrix around some axis. 

According to previous calculation we can write: 

                                       (370) 

Witten’s argument is:  is quadratic in time derivative, therefore in case of adiabatic rotation   

practically does not differ from the initial result, but  consists time derivative linearly, therefore 

this term makes difference between solitons in rest and rotated one.  

 

In summary, we have obtained, that rotated soliton acquires the phase 

                                                                                                                   (371)                                                                                      

 

This means that when  is odd number, the chiral soliton is fermion, because its wave function 

changed the sign after rotation on   .  

 

This result    means also that for odd  every soliton is a fermion, while for even  - they are 

bosons.     

 

 

Lecture 21 

Justification of the Skyrme model in QCD 

 

                       expansion in quantum mechanics 

 

Above we saw that the solitons of the non-linear sigma model have precisely the quantum numbers of 

QCD baryons provided one includes the effects of the Wess-Zumino-Witten coupling. The basic fact 
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that makes QCD a difficult theory to understand is that in QCD, as in atomic physics, the coupling 

constant can be scaled out of the problem. This fact is probably one of the most subtle discoveries in 

particle physics. It was properly appreciated only after the discovery of “asymptotic freedom” (the 

weakness of the QCD interaction at very high energies) and it played a great role in pinpointing 

quantum chromodynamics as the correct theory.  In a QCD the probability amplitude for a quark to 

emit a gluon is proportional to the “color charge”  of the quark. This quantity is known as the QCD 

coupling constant. The renormalization group can be used to show that this constant does not have a 

characteristic value, rather, its value depends on the energy scale of processes one considers – or on the 

units in which one measures energy.  

 

But the variable nature of the QCD coupling constant its numerical value can be absorbed by properly 

defining the overall scale of energies – Nothing depends on the coupling constant except this overall 

scale and therefore perturbation theory cannot answer such problems as explaining confinement or 

predicting the mass spectrum.    

 

To solve these problems, we must somehow circumvent the apparent absence in QCD of a relevant 

expansion parameter.  The  expansion of QCD, originally suggested by t’Hooft , is an attempt to 

do this.  

 

Because the reasoning behind the   expansion is a little bit abstract, let us describe the   

expansion in some simple situation in atomic physics.  

           Let us consider the familiar Hamiltonian of the hydrogen atom: 

                     

2 2

2

p e
H

m r
 

 
                                                                                                   (372) 

 

One might think that for small  one could understand the hydrogen atom by treating the potential 

energy as a perturbation. This does not work because is not dimensionless and it does not make 

sense to say that is “large” or “small” – the value of just depends on the choice of units. After a 

rescaling   
2, / , 1/r rt p p t with t me   , the Hamiltonian becomes  

 

                                                                                                            (373) 

and one sees that the “coupling constant” appears only in an overall factor   multiplying the 

whole Hamiltonian, which merely helps set the overall scale of energies.  Therefore, the hydrogen atom 

is a simple example of a problem without a free parameter, because it can be described by the reduced 

Hamiltonian 
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                                                                                                        (374) 

in which there is no free parameter. Likewise, other atoms and molecules can be described by the 

reduced   Hamiltonian with  scaled out.  

 

Without a free parameter there is no perturbation expansion. What can one do?  
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To make progress, we must make an expansion of some kind. We must find a quantity one usually 

regards as given and  fixed that we may treat as a free, variable parameter.  

 

Instead of studding atomic physics in three dimensions, where it possesses a  rotation 

symmetry, let us consider atomic physics in  dimensions, so that the symmetry is . We will 

see that atomic physics simplifies as  and that it can be solved for large    by expansion in 

. For simplicity let us consider the s-states only. For these states wave function  is a function of 

 only, and the Schrodinger equation can be written as  

                                                                         (375) 

To eliminate terms with first derivative from the Hamiltonian , we make the transformation     

                                   

and then defining  (rescaling)   , then in terms of  the Hamiltonian becomes       

                                              (376) 

Apart from the overall factor , which only determines the overall scale of energy or time, 

the only  in this Hamiltonian is the 2N  that appears with the  mass in the kinetic energy term. 

This is a Hamiltonian for a particle with an effective mass , moving in an effective 

potential  

                                                                        (377) 

 

 

For large  the effective mass is very large, so that the particle simply sits in the bottom of the 

effective potential well – the quantum fluctuations are negligible. The ground state   energy is simply 

the absolute minimum of , when . In this case we find 

                                                                                                          (378) 

Which in case  gives , i.e. exact value.  

 

To calculate the excitation spectrum, one may, for large   simply make a quadratic approximation to 

the effective potential near its minimum, because large effective mass ensures that the particle stays 

very close to the minimum of  . The inharmonic terms in the expansion of around its minimum 

can be included as perturbations; this leads to an expansion in powers of . 

 

It was demonstrated in many papers  that the quantitative  accuracy can be obtained  from     

expansion at . 
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                             method in QCD 

 

  To describe the expansion, it is necessary to describe QCD in somewhat more detail. In QCD 

there is actually not just one type of quark, but three types or “colors” of quarks. Here we will label the 

quark colors by number:  is the quark of type (color) , where  may be equal 1, 2, or 3. 

Apart from color, quarks can be distinguished by another property known as “flavor” (up, down, 

strange, charm, etc.).  The quark flavor is very important in weak and electromagnetic interactions, but 

unimportant for strong interactions, so we will simply think of quarks as coming in three quark colors.  

 
 

Fig.29    qqg-vertex 

 

 

Each color of quarks participates equally in strong interactions. This is expressed mathematically by 

saying that there is a symmetry group, denoted by , relating the three kinds (color) of quark; 

mathematically, the group has properties similar to the rotation group.  

 

One of the basic processes in QCD is the process in which a quark emits a gluon  (see Fig.29) 

quark  quark +gluon). 

 

The initial and final quarks have three color states each; the gluon field is a  matrix    in color 

space. Thus, the most general allowed process is that a quark of type  emits a gluon of type   and 

becomes a quark of type . Because the   matrix for the gluon field is required to be a traceless 

matrix, it has not 9 but 8 independent components. This fact plays no role in the large -  expansion, 

and we may simply think of gluon field as a matrix.   

 

t’Hooft in 1974 suggested that one generalize from three quark colors to  colors. We still label 

quarks as , but now  runs from 1 to . The symmetry group becomes  rather than

. The gluon field is now a  rather than   matrix.  

 

The step is similar to the method in atomic physics, of generalizing from 3 to   dimensions and from 

 to  rotation symmetry.  

 t’Hooft showed that QCD also simplifies for large . The basic reason that QCD simplifies for large 

number of colors is very simple. For large the gluon field   has  (actually , but the 

difference is unimportant) components.  For large the Feynman diagrams contain large combinatory 

factors, arising from the large number of possible intermediate states. Only the diagrams with the 

largest possible combinatory factors need to be included when   is large. So only a subclass of 

diagrams is relevant, and the theory simplifies.  
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To see how this works in more detail, let us consider the lowest order contribution to the gluon vacuum 

polarization  (Fig. 30). This is the lowest order quantum correction to the gluon propagator.  

 

 
 

                                                        Fig. 30. Gluon propagator at one loop 

 

It is not hard to see that for any choice of initial and final states, there are  possibilities for the 

intermediate state in the diagram. If the initial state gluon is of type  it can split into a pair of gluons, 

one of type  and one of type , where  is arbitrary, and runs  possible values. Therefore, 

there are possibilities for the intermediate state. We then must sum over all possible intermediate 

states. Therefore, the contribution of this diagram is proportional to a combinatorial factor of from a 

sum over different intermediate states. If QCD is to have a smooth limit for large , this factor of 

must somehow be cancelled. If the correction to the propagator of the gluon were to diverge for 

large in proportion to , all the other calculations would also give divergent results, and we could 

not construct a useful QCD for large numbers of colors.  

 

There is only one way to cancel the combinatorial factor of . We must remember that in our 

calculations for each of two vertices there is a factor of coupling constant. If we choose the coupling 

constant to be , where  is to be held fixed as , then the factors of cancel out in 

this diagram, because , independent of . So the choice of the coupling as 

gives a smooth limit to the one-loop diagram (Fig. 27).  

 

Moreover, this is the only choice of coupling constant that gives a smooth limit to this one-loop 

diagram. With any other choice the coupling constant factor will not cancel the combinatorial factor, 

and the large -  limit of QCD will not exist. But choosing the coupling constant as is a 

fateful choice. Complicated diagrams will have factors of  at each vertex and so will vanish for 

large  unless, like the simple one-loop diagram, they have combinatory factors large enough to 

cancel the factors at the vertex.  

 

It turns out that a certain class of diagrams, the so-called “planar” diagrams, have combinatorial factors 

large enough to just cancel the vertex factors. All other diagrams have smaller combinatorial factors 

and vanish for large . The large limit is therefore given by the sum of the planar diagrams. 
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Fig. 31.  Planar and nonplanar diagrams at three loops 

 

For example, the three-loop diagrams in Fig.31   have factors of  from six vertices. The first 

turns out to have a combinatorial factor of   from summing over the various intermediate states. 

Since , which is independent of , the first diagram survives and has a smooth 

limit for large . However, the second diagram in this figure has only a combinatorial factor of , 

and vanishes for large , as .  

 

The general class of diagrams that survives for large  was originally determined by t’Hooft. The 

diagrams that survive are the “planar” diagrams – i.e. which can be drown in the plane with no two 

lines crossing.  The second diagram in figure is not a planar diagram, since two gluon lines cross at the 

center of the diagram, and it vanishes for large .  

 

The planar diagrams are a vast class of diagrams.  Summing the planar diagrams is clearly very 

ambitious task. Since 1974, when t’Hooft first proposed the  expansion, this problem has been the 

subject of some fairly intensive study.  As we were convinced above  on the basis of detail analysis of 

symmetry in QCD Witten and others concluded that the effective action of the sigma model necessarily 

consists the kinetic term and the Wess-Zumino term, caused  by axial anomaly, as we have saw above  

                                  (379) 

The main difficulty in deriving terms of higher orders is in calculation of general path integral 

according to quark degrees of freedom. Using the special transformations for quark fields Adrianov and 

others succeeded to calculate the forth order terms in . They have a form  

                                                                        (380) 

 

We see that together with the Skyrme term (the first term here) there are also other forth order   terms.  
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As we mentioned above, only anti-symmetric Skyrme term is of second order by time derivatives, 

which is important for quantization.  

        

 

                                

Lecture 22 

 

      Stabilization problem of classical soliton solutions in generalized Skyrme-like  models  

 

Very often for improving of phenomenological needs various generalizations of the original Skyrme 

model are  considered. The main modifications consist in inclusion of   unforeseen terms of forth or 

higher orders. In some papers such terms are derived from the model Lagrangians of Nambu-Johna-

Lasinio or QCD-like in low energy region. But Hamiltonians obtained in this way are not always 

positive-definite ones, there arise the question of stability of soliton solutions of corresponding 

equations of motion. For completeness of exposition below we bring some confirmations from the 

theory of variational  calculus. 

 

Let us consider the functional  

                                      (381) 

Then the following theorem takes place.  Theorem:    

      Suppose, that    and the functional  reaches its weak local minimum on 

functions    . Then   the function  satisfies to the Legendre condition  

                                  (382) 

Here  is a class of functions, having continuous second order derivatives in region , points 

of which are , and  is a class of functions having  derivatives from the spline (or 

piecewise  functions). It can be shown that the inverse is not valid always, so this theorem 

establishes only necessary, but not sufficient condition of weak local minimum.               

 

There is also theorem about the sufficient condition: 

       Suppose, that the function  y x  fulfils the following conditions: a) ;    b) 

 is a stationary function of the functional ;    c) d)

. Then the functional  reaches a weak local minimum on functions

. Here  denotes a solution of Jacobi differential equation 

                                                   (383) 
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Above exhibited statements are generalized to cases, when the functional   depends on higher 

derivatives. For example, the Legendre condition says:  

        If  and the function   causes a weak local minimum to functional  

                          ,                                         (384) 

then the following inequality is valid  

                                       (385) 

 

It is important in this statement that the inequality takes place for the second derivative of integral- 

ground expression with respect to the senior derivative. 

 

Arming by these theorems let us return to our problem.   

 

 

 

         Structure of extra terms in modified Skyrme models                      

                                                               

In traditional Skyrme model the Lagrangian of nonlinear sigma model 

                                                                                           (386) 

is supplemented   by the forth order term – square of antisymmetrized expression  

                                                                            (387) 

When  the Skyrme term  stabilizes static soliton, which has a form  

                                       ˆexpU U i F r  r r
                                                  (388)

  

 

The profile function satisfies to the Euler-Lagrange equation 

                     (389) 

Here  and  is a dimensionless variable. In the vicinity of origin the Chiral angle 

 behaves as 

                                 .                                                                       (390) 

Moreover, it decreases at infinity as          

                                 .                                                                                (390’) 

These boundary conditions lead to integer values for topological charge, which is defined as 

integral from zero component of conserved topological current 
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                                                                    (391) 

 

Usually modification of the Skyrme model is made in two directions: By adding of 6th order term 

like  

                                                                                                                     (392) 

and reflecting the sign of , or including the symmetric forth order term  

                                                                                                 (393) 

Sometimes term with second derivative is also  included 

                                                                                                          (394) 

 

It is easy to check that the inclusion of these terms do not have an influence on leading asymptotes    

(390-390’ ) and hence, on boundary conditions in case of Skyrme ansatz (388 ). 

 

The explicit forms of these terms look like: 

  (395) 

 

 

 

In these expressions   .  

 

 

 

             Application of variational principles 

                

(i) Let us consider first the model with symmetric term    . Taking into account the 

explicit expressions, given above, mass functional can be written as 
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2
2

2 2

2

0

2sin
4

f F
r dr F

e r





  

   
   

                    -                                              (396) 

           

The solution of Euler-Lagrange equation  must provide a local minimum to this expression, 

because the symmetric term gives a negative contribution. Moreover, local minimum must arise for

 below some critical value, .    

 

It is evident from this expression (396)  that  

                                              (397) 

 

Because the function   is monotonically decreasing (soliton solution), then the principal 

contribution from  term is expected at , i.e. the sign of the last expression is determined 

by the behavior at the origin. Therefore considering this expression at  and using boundary 

condition, we derive  

                                                         (398) 

 

Requiring the Legendre condition, we obtain a restriction     .  Minimum of

C      is reached in case of equality.   

We see that the value of depends on the slope of at  , and is monotonically 

decreasing function of  (see Fig. 32). 

                  

 
Fig.32  Allowed region for parameters 

 

The range above the curve is forbidden. The lowest value of  is .  Let us now 

investigate the Jacobi equation near . After calculating of derivatives  in 

the limit  and  taking into account the strong Legendre condition 0F Ff     
, the Jacobi  

equation reduces to  

                                                                                               (399) 
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The general solution of which is   .    In order to fulfill Jacobi conditions, we 

must take , in such case . Therefore, if , then the 

mass functional should have a local minimum on soliton solutions. Interesting     enough that 

phenomenological calculations performed in diversity of papers  do not contradict to soliton 

stabilization in a such model with parameter , which is lower than   

(ii) As regards of another model with the Lagrangian , mass functional takes the form  

                ,    (400) 

       where   .  

        Now                                        (401) 

       which for  reduces to the expression .  According to Legendre 

condition    

                                    

  

      The critical value   is a function of , approximate course of which is 

exhibited on the picture below  

 
Fig. 33  Forbidden range for shown parameters 

 

The range below the curve is forbidden. When , the Legendre condition is 

satisfied for arbitrary . Then it follows the restriction   .  

 

In case of strict inequality above the Jacobi equation takes the same form, and consequently has a 

needed solution to guarantee a weak local minimum. 

     

(iii) In case of inclusion the second derivative terms, we must be careful not to break the needed 

inequality for derivatives of functional under second derivative. When the sign of  is chosen 
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correctly, then the corresponding model with all forth order terms is renormalizable at one loop 

level and the term with the second derivatives play the role of  Pauli-Villars regulators. 

 

                             

            Concluding remarks on the Skyrme model 

 

As we have seen  above the Skyrme model, as a non-linear chiral  theory of pions, provides an 

approximate description of hadron  physics in the low-energy limit. In this theory the nucleon emerges 

as a non-perturbative solution of the field equations, or more precisely as a topological soliton. This 

model is also seen as a prototype which might be applicable in various physical contexts where one could 

expect soliton solutions to occur (e.g. condensed matter physics (baby skyrmions), wrapped branes, ...). 

more recently, this model was applied for explanation for the newly discovered hadronic states.  

 

We know that the original Skyrme Lagrangian is a naive extension of the non-linear sigma model 

consisting of a fourth-order field derivative term. This is nonetheless sufficient to stabilize the soliton 

against scale transformations and to reach at least  a 30% accuracy with respect to physical observables. 

In order to incorporate effects due to higher-spin mesons and improve the fit on most observables a 

number of alternate Skyrme-like models which preserved the form of original Lagrangian while 

extending it to higher orders has been proposed and analyzed.  

 

In the absence of exact analytical solutions, the only alternative to numerical treatment is the use of apply 

chosen analytical forms which provide sometimes a reasonable approximation but which may not 

reproduce the correct behavior in the limits 0,r   . For example, one can analyze the quantum 

behavior of the Skyrme model soliton based on a family of trial functions, taking into account breathing 

motion and spin-isospin rotations.  

 

Conceptually different attempts of stabilizing the nonlinear soliton are those avoiding the Derick theorem 

by dropping the condition of stationarity (which is necessary condition of the theorem) and taking into 

account the quantum fluctuations of rotational and vibrational degrees of freedom. 

 

We saw that the most attractive features in the Skyrme model are provided mainly by topological structure 

on the non-linear chiral sigma model, which unfortunately don’t gives stability of classical solitonic 

solutions. Besides, introducing new terms in this model brings more free parameters into the theory which 

is also undesirable.  

 Let us remember some ingredients of the nonlinear sigma model. Let write the  Lagrangian in the form  

                  

2

4

f
L Tr U U



                                                                                   (402) 

where 93f MeV   is the pion decay constant. We can look for static solutions using Skyrme’s 

“hedgehog” ansatz 

                         0 exp /U U i F r r      n n r                                              (403) 

 

The topological charge equals to  

                      
3

0 0 0 0 0 02

0
24

ijk

i j k

i
Q d xTr U U U U U U





                   
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                                                                          0 /F F                                   (404) 

So, if the profile function  F r  satisfies the boundary condition  0F n  ( n  being integer) and 

  0F   , then Q n . Mass of hedgehog configuration is given by  

                 
2

2 2 2

2

0

2
2 sincl

dF
M F drr F r

dr r


   
   

   
                                                    (405) 

Corresponding Euler-Lagrange equation is the following:  

                            
2

2

2
2 sin 2

d F dF
r r F r

dr dr
                                                               (406) 

 

The Euler-Lagrange equation results from the extremum condition for mass functional (405). Usually, 

when the equation can not be solved analytically one tries numerical methods or look for minimum of 

mass functional using trial profile functions (and paying no attention to equation of motion). Obviously 

satisfactory description of static properties of baryons is always possible by choosing appropriate trial 

function. But as long as these trial profile functions have nothing to do with the solutions of Euler-

Lagrange equation with relevant boundary conditions, the result can not be reliable.  

 

Therefore, we’ll say that given profile function describes soliton solution if it minimizes the mass and at 

the same time satisfies the Euler-Lagrange equation with relevant boundary conditions.  

 

After these general remarks let us get back to our problem. Substituting scaled profile function  /F r R  

instead of   F r  in the mass functional one finds  

                            /cl clM F r R RM F r                                                               (407) 

 

Clearly while reducing the characteristic scale of soliton, ( )R  the mass is reduced too – the soliton is 

collapsing. This is a consequence od the Derick theorem. To prevent the soliton from shrinking one may 

add to Lagrangian new terms with different behavior under scalling transformations.  

 

It is interesting to find out how the instability of soliton manifests itself in the equation of motion. The 

Euler-Lagrange equation (406) is invariant under the change    /F r F r R  and  /F r R  will be 

solution of (406) provided   F r  is. It means that  R  can be identified as one of the two constants of 

integration and the general solution of (406) must have the form  

                                     1 2 2 1 1; , / ; / ;F F r C C F r C C F r R C                            (408) 

 

Exploiting the boundary condition  0F   in Eq.(406) one finds the asymptotic behavior near origin  

                            0 /F r r R     

and  the equation can not determine the value of R  (it could be fixed had we imposed the boundary 

condition upon the first derivative of   F r . Choosing  0F   we fix only one of the constants of 
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integration, namely 
1C , because the change of the other one,  2C or R  does not affect the initial value 

 0F r  : 

                              
0

0 ( / )
r

F r F r R


    

 

But this change can not affect the asymptotic value of   F r  at the spatial infinity either: 

                 /
r r

F r F r R
 

   

 

Therefore the whole single-parameter family of solutions of Eq. (406) with the boundary condition  

 0F   have the same asymptotic value at the spatial infinity. As long as Eq.(406) is invariant under 

shifting by     F r F r    the same may by said about solutions starting from the points 

 0F n .  

 

The actual value of    0F F   was proved to be equal to / 2  . So the numerical solutions 

exhibiting in Figure below starting from the point  0F   reach the same asymptotic value / 2  for 

different values of negative slope  
0

/
r

dF dr


 or R .  

           

 

 
 

                      Fig.34. Solutions of Eq.(406)  with  0F   for different  slopes  
0

/
r

dF dr


 

        

Thus instability of soliton in NLM shows up in absence with proper boundary conditions. 

 

Consider now the chiral symmetry breaking via standard pion mass term  

                          2 2 / 4 2mL m F Tr U U
  

                                                            (409) 

Corresponding expressions for soliton mass and equation of motion for profile function have the 

following form: 



150 
 

              
2

2 2 2 2 2 2 2

2

0 0

2
2 sin 8 sin / 2

dF
M F drr F r F m drr F

dr r
   

   
    

   
             (410) 

and 

              
2

2 2 2

2
2 sin 2 sin

d F dF
r r F m r F

dr dr
                                                               (411) 

 

First of all notice that the Eq.(411) excludes solutions with   / 2F r   . Again the Derick 

theorem forbids the existence of stable soliton solutions because under scaling transformation the first 

and the second terms are multiplied by 
3R and R , respectively and hence soliton collapses.  

 

If we impose   0F   then  

                          
0

/
r

F r r R


    

and  

                       
     

   

1 2

3

mod 2 sin cos /

0 mod 2 exp /r

C m r C m r r
F r

C m r r

 



 



  
 

 

             (412) 

Now let us multiply Eq. (411) by /dF dr  and integrate from 0  to some 
0r r  and perform partial 

integrations in the first and the last integrals. Using  0F  , we get 

     
0 0

0

2 22
2 20

0 0

4 sin / 2
2

r r

r r

r dF dF
rdr m drr F

dr dr




   
     

   
    

                                            =      2 2 2 2

0 0 02 sin / 2 sinm r F r F r                       (413) 

The question we want to answer is whether the function  F r  starting from   0F   can approach 

zero at spatial infinity. If we make use of the second line of (411) then it can be easily shown that when 

0r   the right-hand side of (413) tends to zero while the left-hand side is always positive. The only 

chance to make it zero too is to set / 0dF dr   for all 0r  . So  F r  has to have the form: 

                                    
, 0

0, 0

n r
F r

r


 

  
                                                      (414) 

 

But for any continuous function with non-zero difference of boundary conditions the left-hand side of 

(413) is non-zero and positive.  

 

Therefore no continuous solution of (411) with  0F   can approach 0 (or 2 ). The same is valid 

for any finite value of 
0r  - it is impossible to satisfy (413) at the same requirements. Therefore, the only 

allowed asymptotic behavior of any continuous solution of (413) starting from  0F   is  

             1 2sin / cos /
r

F r C m r r C m r r 


         

Topological charge of this configuration will equal to zero and it will have an infinite mass because of 

oscillations at infinity.  
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In the same manner one can prove that solutions with  0 0F   behave at large distances like  

            1 2sin / cos /
r

F r C m r r C m r r 


         

Again the solution is oscillating (resulting an infinite mass) but it has integer topological charge 1Q  

.  

 

So while smooth solutions of NLM equation of motion without chiral symmetry breaking have an infinite 

mass (caused by incorrect asymptotic value   / 2F    and half-integer topological charge, those 

solutions with standard pion mass term have, again, infinite mass (caused by large-distance oscillations) 

but integer topological charge 0, 1Q   . The numerical solutions are displayed in Figs.(31a,b) 

 
  

Fig.35a.   Solution with  0F   

    

 

Fig. 35b. Solution with  0 0F   

 

Notice that the mass functional is positive and its minimal value 0M   is produced by profile function 

(414). But this function can not be obtained by solving the equation of motion. The reason is that solutions 
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must possess smooth derivatives up to the second order while the extremal function of variational 

problem may not belong to that class of functions.  

One can consider another mass terms for breaking the chiral symmetry. The analogous study shows that 

there is no mass terms producing solutions with finite energy and unit topological charge.  

 

Therefore, if smooth solutions of non-linear sigma model lead to infinite masses (because of incorrect 

asymptotics) and to the half-integer topological charges, moreover inclusion of pion mass terms made 

the charge  integer, but the mass is nevertheless divergent (because of oscillations at infinity).  

 

 

                           Quantization of various modes 

 

1. Take into account the rotational degrees of freedom. After performing the standard semiclassical 

quantization one derives  for  mass the following expression 

                  0 1 / 2TM F r M F r T T I F r                                                  (415) 

     Here  T  is the isospin and  I F r    is the moment of inertia: 

                              2 2 2

0

8
sin

3
I F r F drr F




                                                     (416) 

The Derick theorem is no longer valid because new ansatz is not static. The two terms in the right-hand 

side of (415) behave under transformation    /F r F r R  like R  and 
1R
 respectively. At the first 

sight the scaling behavior of mass functional ensures the existence of soliton sector with mass spectrum 

bounded from below. The Euler-Lagrange equation is  

               2 2 2 2/ 2 / 1 Pr sin 2r d F dr rdF dr F                                                 (417) 

where       

                   21 / 3P P F r T T I F r                                                             (418) 

 

These equations are no longer invariant under the change    /F r F r R . A lot of work has been 

done in order to derive the masses and other static properties of baryons using (415) and some trial profile 

functions. It has been stressed that the criterion for choosing profile function shall not be that of 

satisfactory description of experimental data but first of all the stability of  soliton solutions satisfying 

the equation of motion. 

 

Let us look for the solutions with asymptotic value    0 mod 2F   , We obtain immediately (for 

constant  P F )  

                   1 2cos 2P sin 2P
r

C C
F r r r

r r
                                              (419) 

and in so far as 0P   the solution is oscillating. The oscillations are damped only by a factor 1/ r  and 

so it is impossible to find self-consistent solutions  -  it is clear that the moment of inertia diverges and 

consequently  P F  goes to zero. But for   P F =0 Eq.(417) reduces to that of non-linear sigma model 

with solutions asymptotically approaching / 2 . They have an infinite mass, half-integer topological 

charge, infinite moment of inertia and it is meaningless to speak about their stability.  
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Addition of the pion mass term transforms the equation of motion into: 

           2 2 2 2 2 2/ 2 / 1 sin 2 sinr d F dr rdF dr Pr F m r F                       (420) 

The possible large-distance behavior for self-consistent solutions all are oscillating except followings  

                        
 

2

1

2

2

. solutions

0 mod 2 exp 2 /

0 mod 2 /

r

osc

F r C r m P r

C r











   




                   (421) 

Arguments using in the previous case give us that there are no solutions with 0P   and finite  F  .  

 

It can be shown that in spite of absence of relevant solutions of  Eq. (420) the functional of mass has non-

trivial minimum only after including the pion mass term. In particular, it is obtained that in this case there 

appears the inequality 

                        3 1 / 2TM m T T                                                              (422) 

If we take the profile function like  

                     2r

C
F r

Cr r



  

then by choosing sufficiently large C  and small R  to get as near to  

                    min 3 1 / 2M M m T T     

as we like. 

 

Therefore, incorporating the pion mass term stabilizes rotating soliton in the sense of ensuring the nonzero 

value of mass functional but the configuration minimizing mass is pathological in the sense that it does 

not obey the equation of motion and doesn’t suit for description baryons (for instance, the average square 

radius of nucleon is zero) 

 

 

                 Quantization of vibrational (breather) mode 

 

 Semiclassical quantization of vibrational mode is carried out in the same manner as that of rotational 

one. But in this case there is no symmetry associated with radial scaling transformations – there is no 

zero mode.  

 

The idea  comes from  analogy with the particle in potential well with the minimum  0 0V x   . While 

the classical particle will have zero energy and zero coordinate 0x  , the quantization will give rise to 

nonzero expectation value 
2 0x   and nonzero ground state energy. Hence if we consider the size of 

the soliton as the dynamic variable (i.e. introduce time-dependence of R in  and substitute 

 into non-linear lagrangian then the standard quantization enables us to derive the 

Schrodinger equation for the energy spectrum of soliton.  

 

 /F r R

  /F F r R t
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As a result of variety of investigations one can underline that the quantization of breathing mode in chiral 

invariant model can not lead to stable soliton solutions. 

 

Various modifications were also considered. One of  the attractive idea was to cut off the short distances 

(in nonrenormalizable theory like considered one it doesn’t seem very unnatural). The mass functional 

now depends on the cutoff parameter : 

                                                (423) 

and  is subject to boundary conditions: . It was shown that now the model 

has stable soliton solutions. We can remember previous analysis – any solution starting from  

approaches asymptotically  (see, Fig. 36). But if we start from the other end – try to find 

where the solution with  leads to – we’ll find that it goes to infinity. In Fig. (36) we have 

shown the one parameter family of solutions with  .  

 
 

Fig. 36  Characteristic behavior of solutions of Eq. (411) with  

 

All of these solutions are connected by familiar transformation  . Note that this 

transformation changes the boundary value at nonzero and finite . 

So choosing  we can satisfy both the equation and boundary conditions simultaneously. The 

corresponding soliton solution will have minimal but nonzero energy. Thus introducing a cutoff 

parameter stabilizes soliton but brings in undesirable arbitrariness which can be avoided by quantization 

of . however now the soliton becomes not stable again. 

  

Look now how can standard pion mass term affect the spectrum of Schrodinger equation. In this case we 

are faced to the following equation  

           (424) 
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Here  - dimensionless variable,  ,  and the wave function .  

 

We have a one-dimensional problem with effective potential  

                                                                            (424) 

Here     

                       

It is evident that the effective potential (424) will have nontrivial minimum if at least one of the two 

parameters,  or   is nonzero. The scaling property of c can be deduced from the definition. It follows 

                                      

and recalling the scaling property of , we can conclude that the new  term is invariant too. Now the 

profile function with large distance behavior which produced the vanishing of -term can do no harm, 

c like  turns out to behave like   and  is independent of . So there is a hope that the 

new term ensures stability.  

 

In order to convince in that let us suppose that for some profile function coefficient  becomes zero. 

Then remaining Schrodinger equation is solved explicitly and gives  

              (425) 

 

 

 

When  the coefficient  is zero and we have an analytic solution  

              

When  , then   and  

                                                            (426) 
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The ground state energy for  equals to  

                  

 

 

 

 

           Conclusions. 

 

The quantization of only rotational modes with pion mass term leads to soliton solutions with ground 

state energy bounded from below. But the profile functions in that case turn out to be pathological. 

Stability of the soliton can be achieved by quantizing vibrational mode with massive pions. Quantization 

of both modes together doesn’t affect this statement. The only question that remains is whether the profile 

functions minimizing energy are smooth or pathological. Having no explicit expression for energy one 

can not obtain an equation for profile function and look for its self-consistent solutions. 

 

The other side of the problem is that the numerical value of soliton mass (426) is much less then the 

nucleon mass. So it will not suit for description of static properties of baryons. But, the fact of existence 

of energy spectrum bounded from below is important. Besides the profile functions usually used give an 

estimate for nucleon mass exceeding the actual value. So as long as the model with chiral symmetry 

breaking produces much lower values of soliton mass it gives better opportunities to find profile functions 

corresponding to experimental value of nucleon mass.  

Vanishing energy follows from (425) not only in case when , but also if . But looking on 

explicit expressions we can see that . Indeed,  

                

Therefore, in this case 

                                                                                            (426) 

 

We see that the minimal energy is provided owing to the rotating mode.  

 

It is evident, however that for description of static properties of baryons, profile function, that minimizes 

of mass, is not suitable. On the other hand, we are able to choose the profile function in such  a way that 

to get the better agreement with experimental data. Let us remember that the Skyrme model gives higher 

values for baryon masses and lower values of average square radii (if for input parameter pion decay 

constant is taken) In considered model these inconsistencies can be improved. Below the calculated 

values for baryonic masses are given by using the following decaying profile functions at spatial infinity 
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Obtained results are summarized in the Table below  

                 

Mass (in GeV)                                            

    experiment 
0.94     1.44     1.71     1.23       1.60 

       

input     1.34    1.70     1.22       1.58 

        

input      1.32    1.66     1.24      1.58 

      

      It seems that the different and simplest profile functions – short-range and long-range – describe spectra 

rather well. It is expected that by using of more intricate profile functions one may achieve good 

description of other parameters as well. 

    

The analysis presented above shows that the essential role in soliton stabilization by quantum fluctuations 

plays the breaking of chiral symmetry, i.e. turning on the pion mass term.  However, the positive results 

follow only by such profile functions, which are not solutions of Euler-Lagrange equation of motion.  
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