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Introduction and Motivation

A variety of physical phenomena can be described within a deterministic approach, where

no randomness is involved in their time-evolution, i.e. the same initial conditions always lead

to the same �nal result. Typical examples of these are ordinary di�erential equations, e.g. the

Newton's laws of motion, the Schrödinger's equationetc. But there are many situations where

the deterministic approach is not applicable. Unlike deterministic situations, in stochastic

processes the future behaviour of the system is not uniquely de�ned by its initial conditions.

Rather the system's variables are described by a time-dependent probability distribution.

The latter does again obey deterministic (normally di�erential) equations which refers to a

suitable stochastic process, i.e. to a collection of random variables (X (t); t 2 T), where T is

the index set. Note that any deterministic process is a special case of some stochastic process

in the sense that the deterministic case events occur with probability one [1].

There is a class of deterministic processes which appear to be stochastic but is not, they

are modeled by deterministic algorithms and can be over-sensitive to small changes of initial

conditions. An important example of such a system is the pseudo-random number generators

(PRNG) [2�4] for generating numbers whose statistical properties are close to the properties

of random numbers. A large number of these systems appear in chaos theory, a classic ex-

ample is the butter�y e�ect exhibited by nonlinear deterministic systems [5]. More generally,

depending on the purpose of modeling, one may choose between deterministic and stochastic

approaches to the same phenomenon [1,6�8].

Stochastic processes have countless applications in numerous areas of science such as

physics, chemistry [9], biology [10, 11], neuroscience [12, 13], information theory [14], image
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recognition [15�17], cryptography [18], ecology [19]etc.

Four main factors de�ne stochastic process: state space, transition probabilities between

states, index set and the relationship between random variables at di�erent times. Depend-

ing on whether the index set is discrete or continuous, processes are called discrete-time or

continuous-time. In this work we will focus on continuous-time, discrete-space stochastic

processes with the Markov (or memory-less) property: the probability distribution of future

states depends on the current distribution and is independent of the history of states. Such

processes are called Markov processes after Andrey Markov [20]. The notion of time can be

somewhat generalized: in statistical inference the sample's size of the data plays the role of

time, i.e. as we acquire more data points, our probabilities change.

The basic example of a physical system with a continuous-time Markovian behaviour is

the Brownian motion, i.e. the random movements of particles in a liquid. Though it was

observed by a number of scientists, e.g. by Jan Ingenhousz (1785) who is also famous for

the discovery of photosynthesis, the phenomenon is named after Robert Brown (1773-1858)

whose discovery was due to systematic studies of pollen grains suspended in water. The

theory was advanced by Einstein, Smoluchowski and Langevin. The research into Brownian

motion greatly contributed into the development of the theory of stochastic processes.

In March 1905 (also known as the miracle year) after explaining the photoelectric e�ect

creating the quantum theory of light, in April, Einstein explained the Brownian motion via

random collisions of the particle by molecules of water. His mathematical description of

Brownian motion was important since it was evidence for the existence of atoms [21]. The

Einstein's theory was con�rmed experimentally by Jean Perrin (1870�1942) [21]. The Ein-

stein's theoretical explanation contains itself the concept of Markov processes and its main

equations, those by Chapman-Kolmogorov and Fokker-Planck [9, 22]. Independently from

Einstein, Smoluchowski studied the Brownian motion via discrete space and discrete time

approach. In his approach the Brownian particle at each discrete time-step jumps to the

left or to the right, with equal probability. These type of stochastic processes, where only

transitions to neighbouring cites are allowed, are called birth-death processes analogous to

random walks. The Smoluchowski's approach to random walks coincides with Einstein's fa-
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mous di�usion equation @P(x;t )
@t = D @2P (x;t )

@x2 , where D is the di�usion constant and P(x; t )

is the probability for Brownian particle to be at point x at time t. Finally, Paul Langevin

(1908) obtained the same result for the mean-squared displacement of the Brownian parti-

cle (as Einstein) by introducing a random force in the Newton's law. The Langevin equation

demonstrates the time-scale separation inherent in the Brownian motion: the particle is much

slower than the correlation time of the random force. Hence the latter can be modeled via a

white noise.

The Markov process is the most commonly used tool for modeling random evolution. Most

systems found in nature satisfy the memory-less property, provided that their state-space is

suitably enlarged [23]. Markov processes have a huge variety of applications in physics,

statistics, chemistry, biology, Internet, geneticsetc; e.g. an Internet application of Markov

chains (discrete-time Markov process) is the PageRank algorithm [24] used by Google to rank

pages after searching websites.

When transition rates between states are known then the time-evolution of probabilities

of states of a Markovian system are governed by the so-called master equation; a system of

�rst-order (in time) di�erential equations [9]

dpi

dt
=

X

j
[� i  j pj (t) � � j  i pi (t)]; (1)

wherepi (t) is the probability of a system to be in statei at time t, and � i  j is the transition

rate from j to i . Note that the transition rates may depend on time and must be positive. The

transition rates are said to satisfy detailed balance condition (DBC) when for the stationary

state ps
i the equality � i  j ps

j = � j  i ps
i holds for every pair (i; j ), i.e. all probability currents

between states vanish in the stationary state.

In physics, Markovian systems are widespread in non-equilibrium thermodynamics and

statistical mechanics, where the macroscopic behaviour of a many-particle system is stud-

ied through probabilistic description of states. A system in contact with a thermal bath

eventually settles into an equilibrium state which is characterized by zero energy �ux be-

tween the bath and the system. The virtue of thermal equilibrium is that the probability of
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�nding a system in any micro-state, has a universal form that depends on its energy via the

Boltzmann's factor, e� En =kT =Z, where the partition function Z =
P

n e� En =kT ensures normal-

ization. Z encodes statistical properties of an equilibrium system: thermodynamic variables,

such as the total energy, free energy, entropy, pressureetc, can be deduced fromZ or its

derivatives. Much of the equilibrium statistical mechanics is developed and understood by

the Boltzmann's distribution, which also forms the groundwork of molecular biology [25,26].

Though thermodynamics provides an e�cient description of equilibrium states, almost all real

systems and processes are far from equilibrium, because they do exchange matter, energy, and

information with their environment. Thus the main aspect of non-equilibrium systems is their

openness. A daily example of this is the Earth, where there is a continuous energy �ux from

the Sun and re-radiation back into the space. In essence, all biological systems are open and

survive via balanced input and output of energy, matter and information [27, 28]. Driven

complex �uids, turbulence, fractures, glasses, foams, colloidal suspensionsetc do demonstrate

non-equilibrium physics [29,30].

A speci�c but important type of non-equilibrium states is realized when a stochastic system

is coupled with external �elds (via time-dependent, periodic transition rates) and a thermal

bath. If the time-dependency is absent, the system settles into the stationary, equilibrium

state ps
i = peq:

i / e� E i =T . The detailed balance property (time-reversibility) implies that all

probability currents between any pairs of states vanish. These features are absent when the

external �elds are time-periodic. The Floquet theory shows that the system settles into a time

periodic state [31,32], i.e. the probabilities of states become time-periodic functions with the

same period as the external �eld. During one time-period the stochastic system jumps back

and forth between its states, and this motivates us to look at features of time-integrated (over

the period) probability �uxes from one state to another.

The physical implication of integrated probability current is seen in experiments on arti-

�cial molecular catenane systems [33], where rotation of smaller ring like molecule along the

larger molecule is induced by external periodic perturbations. These molecules consist of two

or more interlocked rings, the stationary larger ring and the smaller rings which can jump

between binding sites around the larger one. These systems are called molecular rotors since
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they are made up with stator (stationary larger ring) and rotators (smaller rings that can

rotate around the larger ring). However, in order to use catenanes as molecular motors, i.e.

to use it for performing work, unidirectional rotation of smaller rings is needed. The directed

motion emerges solely due to an external �elds, e.g. laser light and temperature changes

result to cyclic conformational changes at binding sites which enables small rings to jump

between discrete binding sites in unidirectional manner. It is obvious that without external

�elds thermally induced transitions will not create any unidirectional motion (clockwise or

counterclockwise) on average.

The molecular motors is an area of intense research and there has been achievements

in synthesizing arti�cial molecular motors. These arti�cial molecular machines are much

smaller than the cell's size, so they can be used to move things at micro level, change the

form, contract muscles, attack cancer cellsetc. Arti�cial machines are not autonomous, they

are controlled by external parameters such as temperature change, laser light, or chemical

gradients. Many examples of these small nano-machines are presented in [34], which include

molecular shuttles, switches, ATP, DNA-based machines, catenanes [33, 34]etc. Because

of the small sizes, molecular systems display strong �uctuation, hence they are studied in

the framework of stochastic processes. Understanding how to control these small motors by

external �elds in thermal environment raises new theoretical challenges. One of the control

techniques is when external parameters are changed periodically which can pump a desired

directed motion. Hence the term stochastic pump is introduced to describe periodically driven

discrete-state Markov systems by examining probability currents in the periodic regime. This

situation is met in the above mentioned catenane system where it was shown that in order to

obtain directed motion one should also vary barriers between binding sites rather than only

binding energies [33, 35]. This is the so-called no-pumping e�ect when probability currents

between di�erent states are zero.

Rahav, Horowitz and Jarzynski [36] �rst derived a no-pumping theorem (no-pumping the-

orem) which shows that the time-averaged probability currents nullify in the steady periodic

(Floquet) state generated by time-periodic external �elds acting on a Markov stochastic sys-

tem when transitions between states have Arrhenius-type time-dependence [37]. This feature
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of nulli�cation makes an analogy between features of steady periodic and equilibrium states,

because in the latter situation all probability currents vanish explicitly. Later works include

those in [32,35,38�44]. However, the assumption on the Arrhenius rates is fairly speci�c, and

it need not be met in applications. In this work a new mechanism is identi�ed for the no-

pumping theorem, which holds for symmetric time-periodic external �elds and the so called

destination rates (see 1.6). These rates are the ones that lead to the locally equilibrium

form of the master equation, where dissipative e�ects are proportional to the di�erence be-

tween the actual probability and the equilibrium (Gibbsian) one. The mechanism also leads

to an approximate no-pumping theorem for the Fokker-Planck (1.5) rates that relate to the

discrete-space Fokker-Planck equation.

A system coupled with two or more thermal baths having di�erent temperatures is another

simple example of non-equilibrium situation, because there is a continuous energy �ux through

the system [45]. Since the system is much smaller than the baths (i.e. the surrounding

environment), the system will settle into non-equilibrium steady state (NESS), where �nal

bath temperatures are equal to the initial temperatures. In a NESS, the probabilities of

states do not change in time, hence the properties of the system like energy, concentrations

remain constant, but there are nonzero �uxes of energy, particlesetc through the system. For

example, proper concentrations of various ionic species inside cells, e.g. sodium, potassium,

are maintained constant through continually moving ions across the cell's membrane [46].

Importantly, homeostatic processes which ensure a constant internal environment in cells

lead to a NESS [47].

For a Markovian dynamics with time-independent transition probabilities, the Perron-

Frobenius theorem ensures that system reaches a NESS [48]. Moreover, it is unique if the

process is ergodic, i.e. there is a nonzero transition probabilities between each pair of states.

In contrast to equilibrium, where the probability distribution over the states is given by the

Boltzmann's distribution, there is no similar explicit formula for NESS. Such NESS prob-

ability distributions are computed numerically from the master equation. A stochastic de-

scription based on master equation provides a framework to non-equilibrium thermodynamics

(stochastic thermodynamics) enabling to extend thermodynamic concepts (such as entropy
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production, work, free energyetc) beyond equilibrium states. The master equation is used to

study systems at NESS, e.g. chemical reaction network at NESS [49�51]etc; see [45,49,52,53]

for general discussions of NESS and its biochemical applications.

One can distinguish non-equilibrium stationary states from equilibrium ones via proba-

bility currents: in NESS there are states characterized by non-zero probability �ows between

them [54]. Thus, a NESS is characterized not only byps
i , stationary probability found from

master equation, but by pair of distributions: (ps
i ; Jij ), where Jij 6= 0 is probability current

from j to i [54]. In fact probability currents play a central role in non-equilibrium systems.

These currents encode physical properties of the system, because energy, matter, information

�uxes can be computed withJij ; in this context see the above-mentioned discussions of the

no-pumping theorem experimentally observed in catenanes.

The e�ectiveness of thermodynamics is that its concepts can be applied to non-equilibrium

states. The response of the equilibrium system to a small external �eld is expressed by the

�uctuation-dissipation (F-D) relations [55,56] which relates thermal �uctuations of the system

from its average state with the energy dissipation, e.g. Einstein�Smoluchowski relation [57] for

the Brownian motion. The F-D theorem is typically formulated by means of linear response

function [56]. Various approaches have been proposed for extensions of F-D theorems for

systems slightly perturbed from NESS where the notion of e�ective temperature (ET) is

used [58,59].

The concept of ET is reviewed in [60] with applications to ideal and real gases, electro-

magnetic radiation, nuclear collisions, granular systems, glasses, sheared �uids, amorphous

semiconductors and turbulent �uids. Ref. [60] also presents di�erent de�nitions of ET includ-

ing those based on F-D relations. Various biological systems in NESS are understood via the

notion of ET, e.g. red-blood cells [61], self-propelled particles in an autonomous regime [62],

where their collective behaviour can adapt to changing environmentetc. This adaptivity

property plays a central role in designing arti�cial systems [63]. Another intriguing example

of a system in NESS described by ET is the "hot Brownian motion" [64�69], i.e. the motion of

a laser-heated nano-particle. Here the NESS is established due to a di�erent temperatures of

the laser-driven particle versus the environment. Due to a time-scale separation hot Brown-
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ian particles carry with them a hot halo, this provides several nanotechnological applications,

among them one can mention �Photothermal Correlation Spectroscopy" (PhoCS) [70].

Time-scale separation means that a part of a system operates very fast compared to

the rest. Hence the dynamics of the system is described in terms of slow variables due

to eliminating the fast ones (adiabatic elimination) [71]. The adiabatic elimination works

because the fast variables have reached their steady state for �xed slow variables. Physical

examples of time-scale separations include the elimination of fast variables for atomic motion

in laser light [72], the separation of slow and fast time scales associated with temperatures

in the climate model [73], the derivation of the hydrodynamic equations from the Boltzmann

approachetc.

The idea of time scale separation is also widely used in di�erent areas of biology, including

gene regulation, ligand-gated ion channels, enzyme kinetics, G-protein coupled receptors,

etc [74]. It was �rst introduced in biochemical systems to describe enzyme kinetics [74,75] in

which free enzyme and the enzyme-substrate complex are fast variables, while the substrate

and product were regarded as slow variables.

The time-scale separation has important thermodynamic consequences, e.g. the Helmholtz

free energy can involve only slow variables [76], i.e. it does not depend on fast variables. Recall

that free-energy di�erence4 F de�ne the quasi-static (isothermal) work: 4 F = W (the line

over W denotes an average over an ensemble of measurements ofW), i.e. the free energy is a

measure of the amount of usable energy that can do work at �nite temperature. In contrast,

if the system is driven from one equilibrium state to another by non-quasi-static external

parameters, thenW � 4 F . Jarzynski derived his famous equality [77, 78] directly relating

non-equilibrium work and free energy di�erence. Another non-equilibrium relationship be-

tween work and free energy di�erence was put forward by Crooks [79]. The Jarzynski and

Crooks relations are important for �ndng free-energy pro�les of reaction coordinates [80�82].

An open problem is how to extend the notion of free energy to NESS. This extension is

to be sought in terms of Markov processes through the master equation [45,76,83�85].

Here we aim at characterizing the NESS of a discrete-state, continuous-time Markov sys-

tem with time-scale separation when put in contact with two reservoirs [85]. In our model the
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driving protocol is such that external �elds act only on the slow variable. This assumption

is quite realistic because it is normally di�cult to have a precise control on variables that

move fast. In our model the transition probabilities between states of slow variable have

the so-called Activation rate form or slow variables live in three-like structure. These three

conditions

- time-scale separation between variables of the system

- partial controllability (external �elds couple only with the slow variable)

- speci�c transition rates with an e�ective detailed balance

are needed for the existence of free energy in this non-equilibrium system. Here we have

shown a number of interesting features, e.g. in contrast to its equilibrium counterpart, the

non-equilibrium free energy can increase with temperature.

When the environment is divided into three parts: hot, cold and work reservoirs, then a

system can operate as heat engine: at one stage the system is heated absorbing energy from

hot reservoir, at another it is cooled delivering energy to the cold reservoir, and some amount

of heat energy input is used to perform work. Reverse operation transforms the system into

a refrigerator or heat pump. Heat engines ushered in the Industrial Revolution, examples of

them in daily life include Internal combustion (e.g. steam engine, steam turbines at power

stations) and External combustion (e.g. diesel and petrol engines in cars and airplanes)

engines.

Nowadays nanotechnological techniques makes possible to design these engines at the

nano-scale, which are strongly in�uenced by thermal �uctuations. Hence they are modeled

within the framework of quantum and stochastic thermodynamics [58, 86�100]. Stochastic

heat engines (SHE) are conventional analogs of heat engines where random behaviour of energy

currents play important role in the work-extraction. Non-zero energy currents are associated

with non-zero probability �uxes which de�ne average energy lost or gained by thermal bath

because for statesj and i with energiesE j ; E i the probability �ux (� i  j pj � � j  i pi ) indeed

de�ne energy lost(gained) through(E i � E j )( � i  j pj � � j  i pi ). With discrete number of states

these energy �ows is resulted from population inversion between the states of the system.

Note that SHEs are also studied in NESS regime.
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The creation of small engines is very appealing due to the need of energy harvesting [101,

102] i.e. extracting energies from ambient sources (e.g. solar power, wind energy, temperature

gradients, tidal power etc). Capturing small amount of energies from ambient sources has

also economical and ecological importance, e.g. it leads to burning less fossil fuel (hence

produce less �ue-gas such as CO2) for generating electricity. Temperature di�erences are

everywhere in both natural and human-made environment. Hence it can be used to do work,

e.g. thermoelectric generators (TEG) convert heat (temperature gradient) into electrical

current using Seebeck e�ect [103]; see the recent work [104] of present and future applications

of TEGs. Note that the e�ciency of TEGs like for any heat engine is limited by the Carnot's

theorem.

Like TEGs SHEs can operate whenever there is temperature gradient. The origins of

SHEs can be traced back to thought experiments of thermal (Brownian) ratchets, system

consisting of a ratchet connected to a paddle wheel by an axle. The system is imagined to

be small enough that the wheel can rotate bombarded by randomly moving molecules. The

idea of a hypothetical ratchet mechanism was introduced around 1900s by French physicist

Lipmann as perpetual motion machine of the second kind since since he believed that the

ratchet will rotate in one direction only. In 1912, Smoluckowski �rst showed that there is no

violation of the Second Law of thermodynamics [105]. The problem was later discussed and

extended by Feynman [106,107], in 1963, who showed that such a mechanism can work as a

heat engine when di�erent parts are at di�erent temperatures. The Feynman's ratchet model

fostered the development of Brownian motors [87,108�112], nano-scale systems that do work

in the presence of thermal noise and external �elds. Fields can be in the form of time-periodic

driving, ratchet-like (spatially asymmetric periodic) potentials, temperature, concentration or

chemical gradientsetc. Note that Brownian motors with asymmetric environment can result

to a net pumping of particles into the some direction [108], e.g. motor proteins exhibit this

phenomenon for intracellular transport. In this context, ratchet-based periodically driven

molecular pumps [108] are very similar to the system discussed in section �rst chapter. Ref.

[110] discussed a system driven by time-periodic changes of temperature, where the system is

in the Floquet regime.
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Experimentally, SHEs including the Brownian heat engines have been realized recently

[87,113�117], their realization is mainly due to the development of optical trapping techniques

[118,119].

However, a major limitations for heat engines is that their functioning demands external

control to perform thermodynamic cycle, e.g. the Carnot cycle is implemented by the speci�c

sequence of adiabatic and isothermal processes. The realization of Carnot cycle at the micro-

scale with optically trapped Brownian particle is discussed in [113,114].

Smaller engines may be autonomous [96,97], but they are not adaptive to environmental

changes, e.g. for �xed environment (thermal baths) there are internal parameters, under

which the machine may act as a heat-pump or refrigerator. Hence they do demand �tting

between internal and environmental parameters [89�95].

We study a model for an adaptive heat engine [120], where due to feedback from the

functional part the engine's structure adapts to given thermal baths. Hence no on-line control

and no external �tting are needed. Our approach is motivated by photosynthesis: the major

heat engine of life that operates between the hot Sun temperature and the low-temperature

Earth environment. It does have adaptive features that allow its functioning under decreased

hot temperature (shadowing) or increased cold temperature (hot whether) [121, 122]. Such

engines can be useful for fuelling devices employing unknown and/or scarce resources; e.g.

they can adapt to results of they own functioning that makes the bath temperatures closer.

Both in equilibrium and non-equilibrium stationary states one needs to compute averages

of observables by summing or integrating over high-dimensional state space. In equilibrium

situation the state space is determined by Boltzmann weights, hence averages of observables

are computed by Boltzmann distribution. However, apart from a few models [123], it is not

usually possible to compute analytically such averages or partition functions in statistical

physics. At the same time the state space of physical systems is very large, e.g. in 3-

dimensional Ising model the number of spin con�gurations with particles at10N lattice sites

is 210N
, or for a system consisting ofN classical particles one needs to compute6N dimensional

phase space integrals. In the absence of exact solutions numerical approaches are used. In any

numerical approach the goal is to compute integrals with small number of function evaluations.
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Hence the results are obtained at the the price of a statistical errors. Classical numerical

integration techniques include Newton-Cotes type formulae, Gaussian quadratures, Romberg

integration [124, 125]etc. However, classical numerical integration methods are well applied

to one-dimensional cases [126].

The Monte Carlo(MC) method is one of the most important numerical techniques in sta-

tistical physics and not only [127,128] which is mainly used for high-dimensional integration,

random sampling and optimization [129]. The idea behind MC method is simple: to obtain

numerical results by random sampling. Hence a central question is how to draw random

samples according to a speci�ed distribution without so much numerical e�orts. In [130]

Metropolis et. al. introduced an algorithm (Metropolis also known as Metropolis-Hastings

algorithm) to generate random samples with desired distribution. The idea behind is to gen-

erate Markov chain over state space whose limiting distribution is of interest [1, 130�134].

In equilibrium situation this means to generate random states with Boltzmann weights. In

order to ensure relaxation to equilibrium state transition probabilities can not be arbitrary.

A su�cient (but not necessary) condition for transition rates that de�ne stationary state is

detailed balance constraint (1.8,3.2), which de�ne stationary state:dpn=dt = 0 (1.7,3.1). One

of the choices of rates are Metroplis rates [130] (see the �rst section), the �rst choice used in

statistical physics [135].

The central component of any MC method including Metropolis algorithm are random

numbers, and it was their use that promoted the development of pseudo-random number gen-

erators(PRNG) [129], mathematical algorithms by which computers produce random num-

bers. By contrast, true random number generators (TRNG) produce random numbers from

physical phenomena. However to use TRNGs in MC simulations is not practical since they

are not fast in the sense of generating numbers. They are also non-deterministic(numbers can

not be reproduced) and have no period. Most PRNGs produce random numbers which are

uniformly distributed in the interval of [0,1]. Hence PRNGs should pass statistical tests of

uniformity. While satisfying the criterions of "good" PRNG such as long period, portability,

repeatability, e�ciency, uniformity, however statistical properties and time characteristics of

PRNGs are crucial to consider a generator as "good".
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To address these challenges the renewed version of MIXMAX PRNG [136, 137] based on

Anosov C-systems and Kolmogorov K-systems has been introduced in [2,138,139]. The MIX-

MAX is matrix-recursive PRNG and it has been shown that the properties of the MIXMAX

generator is improved with increasing the sizeN of MIXMAX matrix [2].

More recently, the MIXMAX has been included in ROOT and Class Library for High

Energy Physics (CLHEP) software packages [140] and claims to be a state ofart generator due

to its long period, high performance and good statistical properties. In this paper the various

statistical tests for MIXMAX are performed. The results compared with those obtained from

other PRNGs, e.g. Mersenne Twister [3], Ranlux [4], Linear congruential generator (LCG)

reveal better qualities for MIXMAX in generating random numbers. The Mersenne Twister

is by far the most widely used PRNG in many software packages including packages inHigh

Energy Physics (HEP), however the results show that MIXMAX is not inferior to Mersenne

Twister [141].
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Chapter 1

No-pumping theorem for non-Arrhenius

rates 1

1.1 Introduction

A wide range of systems appearing in physics, chemistry and biology can be modeled

by Markov processes. Physically, Markov dynamics is the main tool for describing open

systems (both quantum and classical) that interact with energy and/or particle reservoirs

[143]. Hence it is at the core of non-equilibrium thermodynamics [142]. It is also the main

tool for describing chemical reactions [9]. Among its biological applications one can mention

conformational dynamics of biological molecules [144,145], ion channel gating processes [146],

dynamics of predation, epidemic processes, genetics of inbreeding [147]etc. Such applications

are frequently developed within random walk models, e.g. chemotaxis, biological motions [148]

etc.

Generically, a Markov dynamics with time-independent transition rates relaxes to a sta-

tionary state. For a single-temperature reservoir (equilibrium thermal bath) this stationary

state amounts to the Gibbs distribution at the bath's temperature [9, 143]. The equilibrium

nature of the bath is re�ected in the detailed balance condition that ensures nulli�cation of
1The results considered in this chapter are published in Ref. [32].
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all probability currents in equilibrium [9,143].

The concept of the stationary state is generalized, if the stochastic system is subject to

an external time-periodic �eld [31, 143, 149]. The system still forgets its initial conditions

and appears in a non-equilibrium, time-dependent state, whose probabilities oscillate with

the same period as the external �eld. This is the content of the Floquet theorem (outlined

below), and this motivates us to look at features of time-integrated (over the period of the

�eld) probability currents from one state to another. Now the no-pumping theorem [32, 35,

36,38�41,43,44] states that probability currents nullify for an arbitrary time-periodic external

�eld provided that the (time-dependent) transition rate � i  j (t) > 0 from state j to i holds

the Arrhenius form [37]

� i  j (t) = eB ij + �E j (t ) ; (1.1)

where B ij = B ji refers to the time-independent transition state,� = 1=(kBT) is the inverse

temperature, andE j (t) is the oscillating energy of the statej . Transitions from one state to

another are induced by a thermal bath at temperatureT, because if the bath is absent then

due to energy conservation transitions between di�erent states are also absent. Transition

rates � i  j (t) can be time-dependent solely due to an external �eld that acts on the system

making its energiesE j (t) time-dependent.

Thus the no-pumping theorem shows that the non-equilibrium, time-dependent state still

holds an e�ectively equilibrium feature of nullifying (time-average) currents. (Whenever also

B ij in (1.1) are time-dependent, non-zero time-averaged currents are not excluded.) Hence

the theorem �ts naturally to the continuing e�ort of understanding the statistical mechanics

of periodically driven systems using analogies with the equilibrium (i.e. time-independent)

situation [149�152]. Recent works established several interesting relations between a driven

system that hold the detailed balance condition and a similar system that is kept unnder

constant (time-independent) non-equilibrium conditions [153]; in this context see also [154,

155].

Note that the same proof of the no-pumping theorem applies to rates more general than
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(1.1), but this generalization (though useful for its own sake) is achieved at the cost of violating

the detailed balance condition [39]. I.e. formally the results of [39] refer to non-equilibrium

baths.

The virtue of the no-pumping theorem is that it applies to all oscillating external �elds.

Its major drawback is that the Arrhenius form (1.1) does not hold in many important appli-

cations, where simultaneously the detailed balance is required. For example, the Metropolis

rates (the main tool of the Monte-Carlo dynamics), hold (1.1) with

B ij = � � max[E j (t); E i (t)] (1.2)

hence

� i  j (t) = min[1 ; e� [E j (t )� E i (t )] ]) (1.3)

We see thatB ij cannot stay time-independent, ifE i (t) and E j (t) are time-dependent. Further

important examples of non-Arrhenius rates include Kramers rates that emerge out of di�usion

in energy landscape [9] and corresponds in (1.1) to

� i  j (t) = e� �� ij + � ( E j (t )� max[E i (t );E j (t )] ) ; (1.4)

where � ij = � ji is energy barrier or activation energy that separatesE i and E j . Another

important example is the Fokker-Planck rates

� i  j (t) = e� [ E j (t )� E i (t ) ]=2; (1.5)

which allow to match the discrete-space master equation for the Markov dynamics with the

continuous-space Fokker-Planck equation [156]. For all these cases, the standard formulation

of the no-pumping theorem would just allow non-zero time-averaged currents for a suitably

chosen external �eld, i.e. the theorem is not very informative.

Here the aim is to extend the no-pumping theorem to rates di�erent from (1.1) (the

detailed balance is always assumed to hold).
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First, it will be shown that the no-pumping theorem|time-integrated probability currents

nullify|holds for the destination rates

� i  j (t) = e� �E i (t ) ; (1.6)

under an additional su�cient condition that the external �elds are (e�ectively) time-symmetric.

The mechanism is more general since it nulli�es the currents for certain non-symmetric ex-

ternal �elds as well.

The destination rates (1.6) lead to the locally-equilibrium form of the master equation,

which is driven by the di�erence between the actual probability and the equilibrium one; see

the discussion after Eq. (1.23). There is a long and successful tradition of applying locally-

equilibrium master equations in non-equilibrium physics. It was initiated via the model

proposed in 1954 by Bhatnager, Gross and Krook [157�161], and since that time proved to

be very useful [162]. In particular, the rates (1.6) were employed in [163] for describing the

dynamics of a paradigmatic disordered statistical systems (the Random Energy Model), and

found to be in agreement with experiments. Below I show that|in contrast to the Arrhenius

rates (1.1)|the destination rates provide a reasonable approximation for other rates (e.g. the

Fokker-Planck rate). Hence their experimental success is not accidental.

Second, it will be demonstrated numerically that the same mechanism that leads to the

exact no-pumping theorem for the destination rates ensures an approximate validity of this

theorem for the Fokker-Planck rate.

1.2 Master-equation and the Floquet theorem

Let a system can be in discrete states [i = 1; :::; n;]. A master equation describes the time

evolution of the probability of a system to occupy the statei

_pi � dpi =dt =
X

j
[� i  j (t)pj � � j  i (t)pi ]; (1.7)
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where pi (t) is the probability of a system to be in statei at time t, and � i  j (t) > 0 is the

transition rate from j to i . It is assumed that for any �xed time t, there is the global detailed

balance at inverse (time-independent) temperature� :

� i  j (t) e� �E j (t ) = � j  i (t) e� �E i (t ) : (1.8)

Note that � i  j (t) are rates, not probabilities, hence they have units of[time]� 1, and they

are not restricted to the interval [0; 1]. The master equation conserves the total probability

d
dt

P
i pi = 0 so that the normalization is preserved with a normalized initialization. Moreover,

master equation with positive rates ensures positive probabilitiespi � 0. Eq. (1.7) can be

written in the matrix form

_pi =
X n

j =1
wij pj ; (1.9)

wherewij matrix elements are de�ned as follows

wij = � i  j i 6= j ;

wii = �
X

j 6= i
� j  i (1.10)

Due to external �eld(s) acting on the system, the energiesE i (t) are time-periodic functions

with period � :

E i (t) = E i (t + � ): (1.11)

The instantaneous probability �ux from state j to state i is

Jij (t) = � i  j (t)pj (t) � � j  i (t)pi (t); Jij = � Jji (1.12)

Before specifying the external �eld, let me remind the Floquet theorem, which is necessary

for de�ning the no-pumping theorem. Using the normalization of probabilities
P n

i =1 pi = 1,

we obtain from (1.9)

_pi =
X n� 1

j =1
wij pj + win (1 � p1 � : : : � pn� 1) =

X n� 1

j =1
(wij � win )pj + win ; (1.13)
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Thus we get from (1.7, 1.9, 1.13)

_P = W(t)P(t) + b(t) (1.14)

whereP(t) = [ p1(t); :::; pn� 1(t)] and b(t) are (n � 1) � 1 vectors andW(t) is (n � 1) � (n � 1)

matrix:

bi = Win ; Wij = wij � win ; i; j = 1; : : : ; n � 1; (1.15)

wij = � i  j � � ij

X

j 6= i
� j  i ; i; j = 1; : : : ; n: (1.16)

The solution of (1.14) with initial condition P(t0) is

P(t) = A(t; t 0)P(t0)

+
Z t

t0

ds A(t; s)b(s); A(t; s) �  � e
Rt

s duW (u) ; (1.17)

where � e is time-ordered or chronological exponent. Fort � t0, the state P(t0) is forgotten,

which is equivalent toA(t; t 0)P(t0) ! 0. Taking t0 = �1 in (1.17) we get from (1.17)

P(t) =
Z t

�1
ds A(t; s)b(s): (1.18)

Recalling that W(t) and b(t) are time-periodic with the same period, by making the substi-

tution s � � = x in (1.18) we see thatP(t) is also time-periodic with the same period.

P(t + � ) = P(t) (1.19)

This is the content of the Floquet theorem: for su�ciently long times, the stochastic system

subject to time-periodic driving appears in a steady periodic state. This motivates us to

characterize this state via time-averaged probability currents [cf. (1.12)]

� ij =
1
�

Z a+ �

a
Jij (t)dt; (1.20)
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where once the system is in its steady periodic (Floquet) state due toa � t0, � ij does not

anymore depend ona. Below I shall employa = 0 in the averaging. This implies that initial

conditions are posed at much earlier time:t0 ! �1 . From antisymmetry of Jij s (1.12) it

follows that the integrated currents are also antisymmetric:

� ij = � � ji (1.21)

Note that we do not consider cases, where the transition matrix describes an reducible chain.

There the system does not generally forget its initial state.

1.3 No-pumping theorem for a single �eld and destination

rates

Using the normalization condition for probabilities

X

j

pj (t) = 1 (1.22)

we obtain from (1.7) for the destination rates (1.6)

_pi = e� �E i (t ) � pi (t)Z (t); Z (t) �
X

j
e� �E j (t ) : (1.23)

This is the main advantage of rates (1.6): the equations for the probabilities decouple from

each other, making it convenient for studying systems with irregular distribution of energies

[163]. Note that (1.23) can be written as

_pi = � Z (t)[ pi (t) �
e� �E i (t )

Z(t)
] (1.24)

showing that the change_pi of the probability is proportional to the di�erence between

this probability and its equilibrium value e� �E i ( t )

Z (t) . This makes connection between the studied

destination rates and the Bhatnager, Gross and Krook kinetic equation [157�162].
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Now (1.6, 1.12) imply

Jij = _pi pj � _pj pi = pj e� �E i � pi e� �E j : (1.25)

The no-pumping statement I propose is that for �eld (1.11) [plus additional symmetry

conditions to be speci�ed below], and for rates (1.6), it holds

h_pi pj i �
Z �

0
dt _pi (t)pj (t) = 0 ; (1.26)

thereby nullifying also the time-averaged current� ij = 0; see (1.25, 1.20). Note (1.26, 1.23)

can be written as

he� �E i pj i = hpi pj Z i : (1.27)

Hence the validity of (1.26) is obvious in the limiting case of very slow time-dependence, where

the probabilities freeze to their Gibbsian (quasi-equilibrium) values:pi (t) = e� �E i (t )=Z(t).

To prove (1.26), we start from (1.23) and introduce there a new time-variables

ds
dt

= Z(t); s =
Z t

0
du Z(u): (1.28)

Due to Z(t) > 0, the s-time relates to thet-time by a one-to-one mapping. SinceZ(t + � ) =

Z (t) [see (1.23, 1.11)], we get from (1.28):

s(t + � ) = s(t) + �; � =
Z �

0
du Z(u): (1.29)

Thus if pi (t) (in the Floquet regime) is� -periodic, pi (t) = pi (t + � ), then pi (s) is � -periodic:

pi (s) = pi (s + � ): (1.30)

Note that the integral in (1.26) stays invariant under changing the time:

Z �

0
dt _pi (t)pj (t) =

Z �

0
ds

dpi (s)
ds

pj (s): (1.31)
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We get from (1.23)

dpi (s)
ds

= � pi (s) + e� �E i (s)=Z(s): (1.32)

We now introduce the Fourier-expansion for� -periodic functionsg(s + � ) = g(s)

g(s) =
1X

n= �1

ĝne
2� i sn

� ; (1.33)

ĝn =
Z �

0

ds
�

g(s) e� 2� i sn
� =

Z �

� �

ds
2�

g(s) e� 2� i sn
� : (1.34)

and apply it to pi (s) ! p̂i; n and e� �E i (s)=Z(s) !  ̂ i; n . Note that ĝ�
n = ĝ� n , sinceg(s) is real.

Substituting Eq. (1.33) into Eq. (1.32) we obtain

1X

n= �1

2� in
�

p̂i; n e
2� i sn

� = �
1X

n= �1

p̂i; n e
2� i sn

� +
1X

n= �1

 ̂ i; n e
2� i sn

� ; (1.35)

which implies the following relationship between̂pi; n and  ̂ i; n

p̂i; n =  ̂ i; n

�
1 +

2� in
�

� � 1

: (1.36)

Using (1.36) we obtain for the integral in (1.31)

Z �

0
ds

dpi (s)
ds

pj (s) =
1X

n= �1

1X

m= �1

2� i n
�

p̂i; n p̂j; m

Z �

0
ds e

2� i s( n + m )
� ; (1.37)

where we employed the Fourier expansion of (1.32). Now keeping the termsm = � n

Z �

0
ds

dpi (s)
ds

pj (s) =
1X

n= �1

2� i n
�

p̂i; n p̂j; � n

Z �

0
ds

=
1X

n= �1

2� i n  ̂ i; n  ̂ j; � n

1 + ( 2�n
� )2

= �
1X

n=1

4� n Im[ ̂ i; n  ̂ j; � n ]
1 + ( 2�n

� )2
; (1.38)

where we used relation (1.36). If noŵ i; n  ̂ j; � n =  ̂ i; n  ̂ �
j; n is real, the sum in (1.38) is zero.

Thus the integrals in (1.38, 1.31, 1.26) nullify.

30



Let now E i (t) in (1.11) are even:

E i (t) = E i (� t): (1.39)

Then s(t) is an odd function of t [see (1.28,1.29)], and henceE i (s) = E i (� s). Then  ̂ i; n

and  ̂ �
j; n are real [see (1.34)], and the integral in (1.38, 1.31, 1.26) nulli�es thereby proving

the no-pumping theorem. A more general situation, when the same reasoning applies, and

 ̂ i; n  ̂ j; � n is real, takes place whenE i (t) in (1.11) can be made even after a suitable time-shift

 which does not depend oni :

E i (t �  ) = E i (� t �  ): (1.40)

This is because in the Floquet regime the origin of time can be chosen arbitrary. In particular,

(1.40) includes (1.46), where' j does not depend onj .

To prove that (1.40) makes ̂ i; n  ̂ j; � n =  ̂ i; n  ̂ �
j; n real, note that the new Fourier coe�cient

of shifted function is equal to the Fourier coe�cient of unshifted function multiplied by the

phase factor

 ̂ new
i; n =

1
�

Z �

0
ds

e� �E i (s�  )

Z(s �  )
e� 2� i sn

� =  ̂ i; n e� i 2�n
�

Since ̂ new
i; n is real due to (1.40) it follows

 ̂ i; n  ̂ j; � n =  ̂ new
i; n  ̂ new

j; n = Real (1.41)

I stress that (1.40) gives only a su�cient condition for the validity of (1.26). The following

example illustrates this fact. Let me takei = 1; 2; 3 = n (three-level system),� = 1 and de�ne

energiesE i (s) so that the following relations hold

e� �E i (s)=Z(s) = ci + di s + f i s2 for 0 � s � 1; (1.42)

while for s > 1 and s < 0, e� �E i (s)=Z(s) is continued from (1.42) periodically with the period

� = 1. These functions are not continuous, but they can be considered as limits of continuous
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functions. This su�ces for the sake of the present example.

In (1.42), ci , di and f i are constants, which should ensure the normalization and positivity

of the probabilitiese� �E i (s)=Z(s). In particular, I choose
P 3

i =1 ci = 1 and
P 3

i =1 di =
P 3

i =1 f i =

0 for normalization. Now generically (1.42) do not de�ne any symmetric functions ofs.

However, we get

 ̂ k; n =
f k + i ( dk + f k)n�

2n2� 2
; (1.43)

Im[ ̂ i; n  ̂ j; � n ] =
f j di � f i dj

4� 3n3
: (1.44)

The nulli�cation of all currents amounts to Im[ ̂ i; n  ̂ j; � n ] = 0 for all i and j . Generally,

this requires three conditionsf j di = f i dj to be imposed onf i and di . But due to
P 3

i =1 di =
P 3

i =1 f i = 0, it su�ces to take a single condition f 1d2 = f 2d1. This ensuresf j di = f i dj and

thus nulli�es all currents.

1.4 Approximate no-pumping

The above no-pumping theorem concerns the destination rates (1.6). It is not valid exactly

for other interesting rates, e.g. Kramers (1.4) or Fokker-Planck (1.5); see Figs. 1.1�1.3.

Now Figs. 1.1�1.3 show numerical results, where the time-averaged current for a three-level

system is compared for three di�erent rates: destination (1.6), Kramers (1.4) and Fokker-

Planck (1.5).

Note that for a tree-level system(with connected states:� j  i � 0; 8i; j ) from Eqs. (1.21,1.7,1.19)

in the periodic steady state we have [40]

� = � 12 = � 23 = � 31: (1.45)

Numerics was carried out for the following concrete form ofE i (t):

E i (t) = " i + ai cos
�

2�t
�

+ ' i

�
; i = 1; 2; 3; (1.46)
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where" i , ai and ' i are constants.

Figure 1.1: Time-averaged current� = � 12 = � 23 = � 31 given by (1.20) for a three-level
system (n = 3) and � = 1 versus the parameter' 1 for Kramers, Fokker-Planck (F�P) and
destination rates; see (1.46).E i (t) are given by (1.46), where� = 3. Other parameters in
(1.46): ' 2 = ' 3 = 0, and "1 = 1

3 ; a1 = 1; "2 = 2
3 ; a2 = 2; "3 = 1; a3 = 3. For Kramers rates

� ij = 1 in (1.4).
Hence for ' 1 = 0 or ' 1 = 2� , the external �eld satis�es (1.40) and holds the no-pumping
theorem � = 0 for the destination rates, as seen on the �gure. If (1.40) holds,� � 0 for the
Kramers rates (1.1, 1.4) and the Fokker-Planck rates (1.1, 1.5).

For (1.46) conditions (1.40) are satis�ed e.g. for' i = ' for all i = 1; 2; 3. This situation

includes, e.g. the dipole coupling with an external, periodic electric �eld [143].

Figure 1.2: The same as in Fig. 1.1, but with� = 1, i.e. the external �elds change faster
than in Fig. 1.1, where� = 3. For this range of parameters the Fokker-Planck rates hold an
approximate no-pumping theorem, while the Kramers rates do not.

Figures 1.1�1.3 refer to di�erent values of the time-period� in (1.46). Figs. 1.1�1.3

demonstrate that under condition (1.40), the value of the time-averaged probability current
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Figure 1.3: The same as in Fig. 1.1, but with� = 0:1; cf. Fig. 1.2. The external �elds change
faster than in Fig. 1.1 and in Fig. 1.3. The no-pumping theorem approximately holds for the
Fokker-Planck (FP) rates.

nulli�es exactly for the destination rates and it is approximately zero (with a good precision)

for the Fokker-Planck rates (denoted as F�P in Figs. 1.1�1.3). For the Kramers rates the

situation is di�erent: it also predicts an approximately zero time-averaged probability current,

but only for a su�ciently large � ; see Fig. 1.1.

Fig. 1.4 gives an example of a situation, where (for all studied rates) the time-averaged

currents are sizable, since conditions (1.40) do not hold.

Figure 1.4: The same as in Fig. 1.1, but' 2 = �; ' 3 = 3�
2 . In this example conditions (1.40)

do not hold and the probability currents are sizable for all studied rates.

Note that all above numerical examples did not refer to high temperatures. Clearly,

probability currents generally nullify for large temperatures, but one can identify a regime,
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where theinstantaneoustime-dependent currents are still sizable, though their time-averages

are practically zero. This is shown in Fig. 1.5, where the ratio between instantaneous and

averaged currents amounts to� 10� 3. This high-temperature version of the no-pumping

theorem holds for all studied rates and it does not need conditions (1.40).

Figure 1.5: Instantaneous probability currentsJij (t) given by (1.12) for� = 0:01and Kramers
rates (1.1, 1.4). In (1.46) I took:E i (t) = � i

2 + i
2 cos

�
2�t
3 + �i

2

�
, and for barriers: � ij = 1.

It is seen that Jij are much larger than their time-average� = � 12 = � 23 = � 31.

1.5 Work

To keep the system in the non-equilibrium state, the external �eld dissipates work into

the thermal bath. Now the work relates to energy (and not probability) currents through the

system. Hence it is important to study it in the context of the no-pumping theorem.

The rate of work can be calculated via the standard formula

dW
dt

=
X

i

pi (t) _E i : (1.47)

The positivity of the time-averaged workW is deduced from the positivity of the entropy

production (see e.g. [58] for this concept, its physical meaning is clari�ed below)

Se(t) =
1
2

X

ik

(wki pi � wik pk) ln
wki pi

wik pk
� 0; (1.48)

wherewik is de�ned in (1.16). Now writing asln wki pi
wik pk

= ln wki
wik

+ln pi
pk

, we note that the second
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term amounts in (1.48) to � d
dt

P
i pi ln pi

1
2

X

ik

(wki pi � wik pk) ln
pi

pk
= �

1
2

X

i

ln pi

X

k

(wik pk � wki pi )

�
1
2

X

k

ln pk

X

i

(wki pi � wik pk) = �
1
2

X

i

_pi ln pi � �
1
2

X

k

_pk ln pk

= �
X

i

_pi ln pi = �
d
dt

X

i

pi ln pi ; (1.49)

where we used Eq. (1.7). Due to Floquet theorem this term disappears after the time-averaging

Eq. (1.48).

Z �

0
dt Se(t) =

1
2

Z �

0
dt

X

ik

(wki pi � wik pk) ln
wki

wik
: (1.50)

From detailed balance condition (1.8) we have

ln
wki

wik
= �E i � �E k : (1.51)

Substituting (1.51) into (1.50) and following the same procedure as in (1.49) we get

Z �

0
dt Se(t) = � �

Z �

0
dt

X

i

_pi E i : (1.52)

Thus we obtain from the �rst term the positivity of the time-averaged work:

W =
Z �

0
dt

X

i

pi (t) _E i = �
Z �

0
dt

X

i

_pi (t)E i

= T
Z �

0
dt Se(t) � 0: (1.53)

Applying the Clausius inequality to the bath|recall that W turns to the heat Q received by

the equilibrium thermal bath at temperature T, and then Q=T is smaller or equal to the bath

entropy increase|it is seen that
R�

0 dt Se(t) gives a lower bound for the bath entropy increase

per cycle.

Note from Fig. 1.6 that the average work decays to zero both for high and low tempera-
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tures. There is no no-pumping (i.e. no-work-dissipation) theorem for it.

Figure 1.6: Time-averaged current� = � 12 = � 23 = � 31 (dashed curves) given by (1.20) and
W given by (1.53) (full curves) versus the inverse temperature� and for various rates. In
(1.46) I took: E i (t) = i

3 + i cos
�

2�t
3 + i�

2

�
.
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Chapter 2

Free energy for non-equilibrium

quasi-stationary states 1

2.1 Introduction

One reason for e�ectiveness of thermodynamics is that its concepts and ideas apply be-

yond the domain of equilibrium states, e.g. in real life thermodynamics is applied to systems

having di�erent temperatures, even though such states do not belong to equilibrium. There

are speci�c mechanisms for this applicability, e.g. thermodynamics applies to systems that

are perturbatively close to equilibrium [142, 165�167]. Another general mechanisms is the

time-scale separation. In fact, this mechanism is inherent in the structure of thermodynam-

ics, which is built up via the notion of a quasi-static process [166]. It is also important in

statistical physics of open systems, where even low-dimensional systems can play the role of

a thermal bath, provided that they are fast [168, 169]. A related point is seen in stochastic

thermodynamics, where the notion of white (i.e. fast) noise is relevant [170].

There is already a body of work concerning thermodynamic aspects of systems with time-

scale separation [171�189]. In particular, much attention was devoted to the e�ective tem-

perature of glassy systems, where the time-scale separation emerges from the many-body

1The results considered in this chapter are published in Ref. [85].
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physics [171, 173�175]. Recent works studied time-scale separation in stochastic thermody-

namics focusing on dissipative features such as entropy production [176�181].

Time-scale separation is a much wider notion, and it is frequent also in biology and society,

where it allows to reduce the complexity of emergent structures [190,191]. Indeed, components

of such systems enjoy a certain autonomy (though in di�erent ways): fast variables �live� under

�xed values of the slow ones, while the slow variables �see� stationary distributions of the fast

ones.

We aim to look at a class of stationary, non-equilibrium states for a Markov stochastic

system that is out of equilibrium due to interaction with two di�erent thermal baths; see [45]

for an introduction to such systems. We impose three conditions.

� Time-scale separation: the system under consideration consists of two variables, fast

and slow.

� Partial controllability: external �elds act on the slow variable only. This assumption

can be validated from operational reasons: it is normally di�cult to have a precise control on

variables that move fast.

Both conditions need not hold for the equilibrium situation (equal temperatures of the

thermal baths), where thermodynamics applies under any type of controllability and the ratio

of characteristic times.

� Transition rates of the slow variable hold certain constraints|they are given by activation

rates, or the slow variable lives in a tree-like structure|that amount to an e�ective detailed

balance that holds after averaging (tracing out) over the fast variable.

Under these conditions the slow (isothermal) work done on this system admits a potential,

i.e. there exists the free energy. This de�nition is unambiguous, because the work is de�ned

for an arbitrary non-equilibrium state [167]; see the discussion after (2.15) for details of this

point. Hence the free energy need not have further equilibrium features. Indeed, we show

that its behavior with respect to temperature changes can be di�erent from the features of

the equilibrium free energy.
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2.2 Two-temperature Markov dynamics

Consider the following master equation for two discrete variablesi = 1; :::; n and � =

1; :::; N (see e.g. [142,170]):

_pi� =
X

j
[� ij j � pj� � � ji j � pi� ]

+ �
X


[! � j i pi � ! � j i pi� ]; (2.1)

wherepi� is the joint probability of i and � , � ij j � and ! � j i are the transition probabilities for

i  j (for a �xed � ) and �   (for a �xed i ), respectively. In (2.1), � is a small parameter

that makes f � g slower than f ig. We assume that all sums over Latin (Greek) indices run

from 1 to n (from 1 to N ).

The transitions are controlled by di�erent thermal baths at temperaturesT = 1=� > 0

and Ts = 1=� s > 0 respectively. Hence the transition probabilities� ij j � and ! � j i hold the

detailed balance conditions (see e.g. [142,170]):

� ij j � e� �E j� = � ji j � e� �E i� ; (2.2)

! � j i e� � s E i = ! � j i e� � s E i� : (2.3)

Without loss of generality we parametrize (2.3) as

! �  j i = eB �  j i +
� s
2 (E i  � E i � ) ; B �  j i = B  � j i ; (2.4)

whereB �  j i accounts for the symmetric part of� $  .

2.3 Time-scale separation

Time-scale separation holds when� in (2.1) is su�ciently small; see Figs. (2.1,2.2). This

is a reliable approximation, since its predictions are close to the exact stationary probability

even for moderately small� ; see Fig. (2.1).
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We now work out the stationary state (_pi� = 0) of (2.1) for a small � following the

standard perturbation theory approach; [192] for a rigorous presentation and [71] for a physical

discussion. One puts into (2.1)

pi� = B [0]
i� +

X

a� 1
� aB [a]

i� ; (2.5)

and obtains for successive terms which are of orderO(1) and O(� a), respectively:

X

j
[� ij j � B [0]

j� � � ji j � B [0]
i� ] = 0; (2.6)

X

j
[� ij j � B [a]

j� � � ji j � B [a]
i� ]

+
X


[! � j i B [a� 1]

i� � ! � j i B [a� 1]
i� ] = 0; a � 1: (2.7)

Note that there are solvability conditions found from summing (2.7) overi :

X

i
[! � j i B [a� 1]

j� � ! � j i B [a� 1]
j� ] = 0; a � 1: (2.8)

Now (2.6) and (2.8) with a = 1 are solved as

B [0]
i� = �pi j � �p� ; (2.9)

where we used (2.2), the stationary conditional probability�pi j � of the fast variable has the

equilibrium form

�pi j � = e� �E i� / Z � [� ] ; Z � [� ] =
X

k
e� �E k� ; (2.10)

and where the probability �p� of the slow variable is found from (2.8) witha = 1

X


[ �
 � p � �
 � p� ] = 0; �
 � �

X

i
! � j i �pi j  : (2.11)

The meaning of (2.9) is that the fast variable relaxes to the conditional equilibrium, which

determines via (2.11) and the e�ective rates�
 � the probability of the slow variable.
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Figure 2.1: max(pi� � epi� ) vs. � , where pi� are the exact stationary probabilities, while
epi� are calculated via the time-scale separation approach. We found thatmax(pi� � epi� ) =
maxjpi� � epi� j

Figure 2.2: jhE i � h eEij vs. � , where hEi =
P

i� pi� E i� is the exact average energy in the
stationary state, heEi is the average energy calculated via the time-scale separation approach,
and � controls the slow-fast limit in (2.1). The value ofhEi (not shown on �gure) is some
100�150 times larger thanjhEi � h eEij .

Due to
P

i� pi� =
P

i� �pi j � �p� = 1, (2.9) implies normalization condition:
P

i� B [a]
i� = 0

for a � 1. Thus B [1]
i� is found from this condition, (2.7) with a = 1, and (2.8) with a = 2.

Expectedly, for a small� we getB [1]
i� = O(� ). Now the Fig. (2.1) con�rms this fact with numeric

results, but it also shows that the di�erence between (2.9) and the true joint probability is

sublinear function of � for a larger values of� . Hence time-scale separation can be applied
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beyond the small� situation which is favorable for the approximation

pi� = �pi j � �p� ; (2.12)

that we adopt from now on for the stationary probability pi� of (2.1).

In Figs. (2.1,2.2) time-scale separation approach versus numerically exact features of the

stationary distribution given by (2.1) is presented. In Eqs. (2.2, 2.3) we took� = 1, � s = 10,

E i� = �i 2=N and n = 2, where N (n) is the number of di�erent states for the slow (fast)

variable. For transition rates in (2.2, 2.3) we choose the Kawasaki rates:� ij j � = e
�
2 (E j� � E i� )

and ! � j i = e
� s
2 (E i � E i� ) .

2.4 External �elds, work and free energies

External �elds are introduced via time-dependent parametersa(t) = ( a1(t); :::; aA (t)) in

the energyE i� (a) of the system. We assume that

E i� (a) = E � (a) + Ê i� ; (2.13)

whereÊ i� does not depend ona. Eq. (2.13) means that external �elds couple only with the

slow variable, e.g. because it is di�cult to control fast objects. The stationary probabilities

(2.12) depend on parametersa through (2.13).

Now a(t) is slow as compared to the relaxation of both fast and slow variables. The

temperaturesT and Ts are constant. Hence the (quasi-stationary) probabilities of the system

are found from (2.12), wherea is replaced bya(t). The di�erential thermodynamic work w

is [142] [see (2.13)]

w =
X

i�
�pi� @a E i� =

X

�
�p� @a E � ; (2.14)

where @a is the gradient in the a-space. Note that relations between thermodynamic and

mechanic work have to be speci�ed in the context of concrete applications [193]. This has to
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do with the following freedom in the de�nition (2.14): @a E � (and hencew) will change upon

adding to E � a factor ' (a) that does not depend on� , but depends ona (this is akin to

the gauge-freedom of the potential energy in mechanics). Hence the energiesE � need to be

speci�ed, before de�ning the workw [193].

Each component ofw = ( w1; :::; wA ) can have a separate physical meaning, since compo-

nents ofa may be driven by di�erent sources.

The integral work is a line integral in thea-space:

W =
Z t f

t in

dt
da
dt

w (t) =
Z a f

a in

da w ; (2.15)

wherea in = a(t in ) and a f = a(t f ) are the initial and �nal values of a(t) reached at timest in

and t f , respectively. We stress that (2.15) refers to slow changes of parametersa(t), but if we

change�pi� in (2.14) to the time-dependent probability pi� found from (2.1), then the same

expression for work applies for arbitrary processes [167].

The work admits a potential (i.e. free energyF) if

w = @a F; W = F(a f ) � F(a in ): (2.16)

If (2.16) does not hold, the work extraction (i.e.W < 0) by means of a slow, cyclic (a in = a f )

variation of a is possible. Indeed, ifW 6= 0, then W changes its sign when the cycle is passed

in the opposite direction. The extracted work is determined by the closed-contour integral.

Below we give pertinent examples ofW 6= 0 for cyclic processes; see (2.41). Now we turn

to studying cases, where (2.16) does hold despite of the fact thatTs 6= T.

2.5 Non-equilibrium free energy for the activation rate.

An example of slow dynamics is given by the activation energy rate in (2.4) [170]

! �  j i = e� s E i ; B �  j i = � s(E i + E i � )=2: (2.17)
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One interpretation of (2.17) is that there is a barrier with energyE � that is larger than all

other energies. ChoosingE � = 0, we see that! �  j i in (2.17) assumes the standard Arrhenius

form. The rates (2.17) appears in no-pumping theorem when one considers barrier energies

equal to zero [32,35,36,38�41,43]

Now �
 � in (2.11) depends only on : �
 � = �
  . The probability �p� in (2.11) is found

via the detailed balance condition

�
 � �p = �
 � �p� : (2.18)

This leads to

�p / 1=�
  : (2.19)

Thus we get from (2.10, 2.11, 2.13, 2.17)

�p� = � � e� � s E �

. X


�  e� � s E  ; (2.20)

where� � corresponds to the weight of the energyE � and expresses via the statistical sum of

the fast variable:

� � = Ẑ � [� ] =Ẑ � [� � � s]; (2.21)

Ẑ � [� ] �
X

k
e� � Êk� : (2.22)

Note that � � does not depend ona due to (2.22) and (2.13). Eqs. (2.13, 2.16, 2.20) imply

the existence of a free energy:

F = � Ts ln
hX

�
� � e� � s E �

i
: (2.23)

Recall that F is de�ned up to a constant,

F ! F + C; (2.24)
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that can depend on anything besidesa [193]. Eq. (2.23) is obtained under a speci�c choice

of C that proves useful below when calculating derivatives of (2.23).

2.6 Cooling by means of entropy reduction

The free energyFeq(a) = � T ln
P

k e� �E k of an equilibrium system is a decreasing function

of the temperature:

@T F eq(a) = � Seq(a) � 0; (2.25)

where Seq(a) is the entropy. SinceFeq(a) is de�ned under a speci�c choice of an additive

and temperature-dependent constant [cf. (2.24)], (2.25) changes for a di�erent choice of the

constant. Hence (2.25) cannot be interpreted directly. But it can be related to the work-cost

of a cooling process via externally-driven parametersa(t) [194].

Normally, cooling means temperature reduction of a macroscopic system that has a single

and well-de�ned temperatures both initially and �nally (i.e. an equilibrium system), and then

cooling also means that the �nal entropy (together with the �nal temperature) is smaller than

the initial one. But the needs of NMR-physics [195], atomic and molecular physics [196,197],

quantum computation [198]etc led to generalizing this de�nition [194,199,200]. In these �elds

one needs to reduce the entropy of a system that is coupled to a �xed-temperature thermal

bath. Reducing the bath temperature is not feasible. But it is feasible to reduce the entropy

via external �elds. For instance, in NMR spin systems, entropy decrease for a spin means its

polarization increase, which is necessary for the NNR spectroscopy [195].

Thus, cooling amounts to an isothermal process, wherea(t) slowly changes froma in to a f

and achieves a lower �nal entropy. For the equilibrium situation this meansSeq(a f ) < S eq(a in )

(dynamic aspects of this problem are analyzed in [194]). Now

@T [Feq(a f ) � Feq(a in )] = Seq(a in ) � Seq(a f ) � 0; (2.26)

compares two setups at di�erent temperatures, but the same valuesa in ! a f of the external
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�elds. Eq. (2.26) means that the work costFeq(a f ) � Feq(a in ) of cooling increases with the

temperature T, i.e. cooling from a higher temperature is harder, as expected.

Turning to the non-equilibrium free energyF, we characterize its temperature dependence

via @Ts FjT and @T FjTs , since T and Ts are independent parameters. We deduce for the

activation energy rate (2.17, 2.21):

@Ts FjT = � Ss �
X

�
�p�

h
� sÊ � (� � � s) + ln � �

i
(2.27)

= � Ss �
X

�
�p�

Z � s

0
dy [ Ê � (� � � s) � Ê � (� � y) ];

@T FjTs =
� 2

� s

X

�
�p�

h
Ê � (� � � s) � Ê � (� )

i
; (2.28)

where

Ss = �
X

�

�p� ln �p� (2.29)

is the entropy of the slow variable [cf. (2.25)], and

Ê � =
1

Ẑ (� )

X

k

Êk� e� � Êk� (2.30)

is the conditionally averaged energy of the fast variable; cf. (2.10).̂E � (� ) monotonously

decays frommaxk [Ek� ] to mink [Ek� ] when � goes from�1 to 1 . Hence we get in (2.27,

2.28):

@Ts FjT � 0; @T FjTs � 0: (2.31)

Now we explore implications of@T FjTs � 0 for a cooling process. Denote by

Ŝ� (� ) = �
X

i
�pi j � ln �pi j � = � Ê � + ln Ẑ � ; (2.32)

the entropy of the fast variable conditioned by a �xed value� of the slow variable; cf. (2.10).

Recall that Ss +
P

� �p� Ŝ� (� ) amounts to the full entropy �
P

i� �pi� ln �pi� .

We denote: Ŝ1 = min � [Ŝ� ]. Then we can de�ne a cooling process, where all energiesE � 6=1
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in (2.13) slowly increase leading to�p1 ! 1; see (2.20). Though the process is realized by

external �elds holding the partial controllability restriction (2.13), we still get a cooling of the

whole(slow plus fast) system. Indeed, not only the entropySs of the slow variable decreases

to zero, but also the conditional entropy of the fast variable decreases from its initial value
P

� �p� Ŝ� (� ) to a smaller valueŜ1(� ).

We note that the considered cooling process can also decrease the internal energy of the

system. Recall that the internal energy is de�ned as [cf. (2.12), (2.13)]

X

i�
E i� �pi j � �p� =

X

�
E � �p� +

X

�
Ê � �p� ; (2.33)

whereÊ � is de�ned after (2.28). SinceŜ� and Ê � are equilibrium quantities, Ŝ� is an increas-

ing function of Ê � . Hence it is possible to choosêE1 = min � [Ê � ] in addition to Ŝ1 = min � [Ŝ� ].

We can also chooseE1 = min � [Ê � ]. Then �p1 ! 1 means that the internal energy (2.33) de-

creases during the cooling.

The cooling process incurs a work cost [cf. (2.23)]

� F = � Ts ln[� 1e� �E 1 ] � F � 0; (2.34)

whereF is the initial free energy. Now� F > 0 means that the work is taken from the external

source, hence this is indeed a work cost.

The change of� F with the temperature T of the fast variable reads from (2.28):

@T � FjTs = �
� 2

� s

X

�
�p�

h
Ê � (� � � s) � Ê � (� )

� Ê1(� � � s) + Ê1(� )
i

: (2.35)

Let us now indicate several scenarios for@T � FjTs � 0 in (2.35), and show that they are

consistent with condition Ŝ1 = min � [Ŝ� ] that de�nes the cooling process. For example, in

(2.35) one can takeÊ1(� � � s) ' Ê1(� ), but Ê � 6=1 (� � � s) 6' Ê � 6=1 (� ). Another example is

to make � s small. Then E � (� � � s) � Ê � (� ) / Ĉ� amounts to the heat-capacityĈ� � 0, and

then @T � FjTs < 0 can be implied byĈ� 6=1 > Ĉ1, which is consistent withŜ1 = min � [Ŝ� ].
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We conclude from@T � FjTs � 0 that it can be easier (in terms of the work-cost) to cool

from higher temperatures than from the lower ones. Note that the result survives also in

the near-equilibrium limit � ' � s. With the same logics, one shows from (2.27) that when

increasing the temperatureTs of the slow variable, one normally has@Ts � FjT � 0 [cf. (2.26)],

and we revert to equilibrium with [@Ts � FjT + @T � FjTs ]T = Ts � 0.

It is interesting to compare the result of work-cost for entropy reduction with the Mpemba

e�ect [201�203]. The phenomenon was observed independently under various circumstances;

apparently, its existence was known already to Aristotle [204]. It can have relatively straight-

forward physical explanations, e.g. some part of the hotter water can evaporate thus decreas-

ing its amount and making its cooling easier. Another explanation is that a fast cooling can

force the water out of local equilibrium [205]. Once such straightforward scenarios are ruled

out experimentally, the Mpemba phenomenon disappears [204] (nobody was so far able to

replicate the original data by Mpemba and Osborne). It is still possible that the phenomenon

survives due to a di�erent chemical composition of a heated water (which may lead to a dif-

ferent concentration of dissolved gases) [206]. At any rate, the phenomenon is not observed

once one ensures the identical chemical composition of both samples, e.g. by boiling them

�rst and only then setting them to di�erent initial temperatures [204].

Let us now discuss how our result di�ers from the above Mpemba phenomenon (without

predetermining its causes).

First of all, our cooling is not spontaneous. We focus on an (isothermal) entropy reduction

of the system by means of external �elds. (Still our cooling process is slow and it leaves the

system in its locally stationary state.) Hence we study not the speed of cooling, but its

work-cost, as determined by the free-energy. We �nd that this cost is smaller, if one starts

to cool at a higher temperature. Such an e�ect is impossible in equilibrium, because the

equilibrium free energy is a decreasing function of the temperature. However, we show that

this e�ect survives close to equilibrium. Hence the second major di�erence with the Mpemba

phenomenon is that our e�ect is explicitly out of equilibrium, as it relates to two di�erent

temperatures.

49



2.7 Tree-like topology of the slow variable.

Free energy (2.23) exists for general rates (2.4), if the topology of connections between the

states�; ; ::: in (2.11) is that of a tree (a network without loops or closed cycles): for a �xed

i , ! � j i 6= 0 (and hence�
 � 6= 0) only along branches of a tree; see Fig. (2.3) for examples. Let

node� 0 be the root of the tree. This root can be chosen arbitrarily, the freedom of choosing

Figure 2.3: Four examples of tree-like structures. Bold points denote states, and lines between
them indicate on inter-state transitions.

it will connect to an arbitrary constant (2.24) in the free energy. Each node� of the tree

is related to � 0 via a unique path �� 0:::� 00� 0. The stationary probability �p� of � is deduced

from (2.11), it is made of the transition probabilities along this unique path:

�p� =
�
 �� 0 �
 � 0:::

�
 :::� 00�
 � 00� 0

�
 � 0�
�
 :::� 0 �
 � 00:::

�
 � 0 � 00
�p1; (2.36)

where �p1 is gotten from normalization. We add to (2.13):

B �  j i = B �  (a) + B̂ �  j i ; (2.37)

whereB̂ �  j i does not depend ona. Now B �  (a) cancels out in (2.36), and (2.36) reduces to

(2.20), where [cf. (2.22)]

� �> 1 =

̂ �� 0
̂ � 0::: 
̂ :::� 00
̂ � 00� 0


̂ � 0� 
̂ :::� 0
̂ � 00::: 
̂ � 0 � 00

; � 1 = 1; (2.38)


̂ � =
1

Ẑ  [� ]

X

i
eB̂ � j i +

� s
2 (Ê i � Ê i� )� � Ê i : (2.39)

Hence the free energy (2.23) applies with� � given by (2.38). For (2.17), this free energy
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di�ers from (2.23) due to a choice of the constantC in (2.24).

Note that the tree topology supports the detailed balance:�
 � �p� = �
 � �p . This relates

with the Kolmogorov's criterion for the detailed balance: for all loops of the connection

network the product of the transition probabilities �
 � calculated in the clock-wise direction

should be equal to the product in the anti-clock-wise direction [54]. For a tree-like network

there are no loops, hence the criterion holds.

For general rates already one loop (i.e. a three-level system) may su�ce for invalidating

the existence free energy. But we expect that loops will be less relevant for multi-dimensional

models. Indeed, let us return to�p� / � � e� �E � , �pi� / e� � Ê i� , but instead of (2.13) we assume

that only one externally-driven parameter (out of two) pertains to the slow variable:

E i� (a) = E � (a1) + Ê i� (a2): (2.40)

Eq. (2.40) is the minimal situation, where the work-extraction via a slow, cyclic process is

possible.

We get for the rotor of the workw [cf. (2.14) and (2.22)]:

@a2 wa1 � @a1 wa2 = h(@a1 E ) @a2 [ ln � � T � s ln Ẑ ] i

�h @a1 Ei h @a2 [ ln � � T � s ln Ẑ ] i ; (2.41)

wherehX i �
P

� �p� X � . Eq. (2.41) shows how far is the work from having a gradient when the

partial controllability (2.13) does not hold. It also determines the amount of work extracted

from a cycle in the(a1; a2)-space. Now since (2.41) is a correlation, the existence of a gradient

for wa can be recovered if �uctuations are negligible.

2.8 Quasi-continuous limit for the slow variable.

Recall that the index  = 1; :::; N numbers the states of the slow variable. We now

consider the case, where these states are arranged over a segment of a line (1D situation), so

that only transition from one neighbour state to another are allowed. This is an example of
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birth-death processes that have many applications [9]. If the segment is �nite and the states

are homogeneously and densely located in it, then one can pass to the continuous limit, where

instead of a discrete index we shall have a continuous variablex [22,156]. The continuous

limit is achieved by

E i  ! E i (x); E i  +1 ! E i (x) + �̂E 0
i (x); (2.42)

wherex is a continuous parameter,̂� is a small parameter (the distance between the states

and  + 1 on the segment), and whereA0(x) � dA(x)=dx. We also denote

B  +1  ji ! B i (x): (2.43)

SinceE i  +1 � E i  we expand in (2.4) over a small̂�

!  +1  ji = exp
�
B  +1  ji

�
(1 + � s(E i  � E i  +1 )=2); (2.44)

and get in (2.1) (see [22,156] for similar derivations):

X


[! � j i pi � ! � j i pi� ]

= � s

�
eB � � +1 j i (E i � +1 � E i � )

pi � +1 + pi �

2
� eB � � 1 � j i (E i � � E i � � 1)

pi � � 1 + pi �

2

�

+ eB � +1 � j i (pi � +1 � pi � ) � eB � � � 1j i (pi � � pi � � 1)

= � s[� i � +1 � � i � ] + � i � +1 � � i � ; (2.45)

where we denoted

� i � +1 � eB � +1 � j i (pi � +1 � pi � );

� i � +1 � eB � � +1 j i (E i � +1 � E i � ) (pi � + pi � +1 )=2: (2.46)
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Hence (2.45) can be written [see(2.42,2.43)]

� s[� i � +1 � � i � ] + � i � +1 � � i � = �̂ [� s@x � i (x) + @x � i (x)] (2.47)

Note that � i (x) and � i (x) are proportional to �̂

� i (x) = �̂eB i (x)pi (x)@xE i (x);

� i (x) = �̂eB i (x)@xpi (x) (2.48)

Eqs.(2.1, 2.45, 2.47, 2.48) lead to:

_pi (x; t ) =
X

j
[� ij jx pj (x) � � ji jx pi (x; t )] + � �̂ 2@xJi (x; t ); (2.49)

Ji (x; t ) � � s eB i (x) pi (x; t ) E 0
i (x) + eB i (x) p0

i (x; t ); (2.50)

where pi (x) is the joint probability of i and x:
P

i

R
dx pi (x; t ) = 1 , and Ji (x; t ) is the

probability current related to the slow variable.

Eq. (2.49) shows that as compared to (2.1) the slow-fast limit is facilitated due to the

additional small factor �̂ 2. This is con�rmed by Fig. 1 which shows that the slow-fast limit

improves when the numberN of states of the slow variable is large. Thus the above continuous

limit is a way to get the time-scale separation naturally.

We treat (2.49) wih the same time-scale separation argument (2.5�2.11) with minor modi-

�cations for the continuous case. The stationary conditional probability is still�pi jx / e� �E i (x) .

For the stationary probability density �p(x)|which holds the zero-current condition
P

i Ji (x) =

0|we obtain from (2.49, 2.50):

�p(x) / e� � s E (x) � (x); � (x) = eh(x)
X

i
e� � Ê i (x) ;

h0(x) = ( � � � s)
P

i Ê 0
i (x)eB̂ i (x)� � Ê i (x)

P
i eB̂ i (x)� � Ê i (x)

; (2.51)

where by analogy to (2.13, 2.37):E i (x; a) = E(x; a) + Ê i (x), B i (x; a) = B(x; a) + B̂ i (x).

The free energy is given as in (2.23) byF = � Ts ln
R

dx � (x) e� � s E (x) . Note that it goes to
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the equilibrium expression forTs = T.

A particular case of (2.51) is whenB i (x) does not depend oni , i.e. B̂ i (x) = 0 . Now the

non-equilibrium free energy reads [183]:

F � = � Ts ln
� Z

dx (
X

i
e� �E i (x) )� s =�

�
: (2.52)

The following features ofF � are deduced directly from (2.52) [183]. They all are very similar

to those of the equilibrium free energy.

� F � is the potential for the work without restriction (2.13), i.e. now a can also enter

Ê i (x):

E i (x; a) = E(x; a) + Ê i (x; a): (2.53)

� For the temperature-derivatives of we get

@T F � jTs = � S; @Ts F
� jT = � Ss; (2.54)

where S � �
R

dx
P

k �pk(x) ln �pkjx and Ss � �
R

dx �p(x) ln �p(x) are, respectively, the condi-

tional entropy of the fast variable, and the marginal entropy of the slow variable. Hence the

anti-thermodynamic cooling e�ect noted in (2.35) is impossible here.

Note the analogy between (2.54) and the equilibrium formula@T Feq = � Seq. It leads

us to F � = U � TsSs � TS, where U =
R

dx
P

k �pk(x)Ek(x) is the average (overall) energy.

This expression forF � already appeared in the physics of Brownian motion [182, 183] and

glasses [175].

Eq. (2.52) has an intuitively appealing meaning [182�189], since it implies that the free

energy � T
P

i e� �E i (x) of the fast variable (evaluated at a �xed value of the slow variable)

serves as an e�ective potentialUe� (x) for the (Gibbs) distribution of the slow variable: �p(x) /

e� � s Ue� (x) . And then F � is the free energy related to that e�ective Gibbs distribution:F � =

� Ts ln
R

dx e� � s Ue� (x) . While this heuristic explanation is frequently applied in statistical

physics, we should keep in mind from the above derivation thatF � existsdueto the continuous
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limit, e.g. assumingB̂ � = 0 in the discrete case does not recover the above equilibrium

features (forT 6= Ts).
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Chapter 3

Adaptive heat engine 1

3.1 Introduction

Heat-engines drove the Industrial Revolution and their foundation,viz. thermodynam-

ics, became one of the most successful physical theories [207]. Extensions of thermody-

namics to stochastic [58, 170] and quantum domain [86] led to new generations of heat en-

gines [58,86,88�100]. As everyone could observe, the work-extraction function of macroscopic

heat-engines requires external on-line control, e.g. the Carnot cycle performing the optimal-

e�ciency cycle do demand a careful external control of its functioning, one should provide

the speci�c sequence of adiabatic and isothermal processes [207,208]. Smaller engines studied

within stochastic or quantum thermodynamics may not demand on-line control, i.e. they are

autonomous [96,97], but they do demand �tting between internal and environmental param-

eters [89,90,92�95,197], e.g. because for �xed environment (thermal baths) there are internal

parameters, under which the machine acts as a heat-pump or refrigerator performing tasks

just opposite to that of heat-engine. Such �tted engines are susceptible to environmental

changes, e.g. when the bath temperatures get closer due to the very engine functioning. Car

engines treat this problem by abandoning the partially depleted fuel (i.e. the hot bath), and

using fresh fuel.

1The results considered in this chapter are published in Ref. [120].
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Here we study a rudimentary model of autonomous, adaptive heat engine. Adaptive means

that the engine can work for a su�ciently general class of environments, i.e. it needs neither

on-line control, nor an externally imposed �tting between its internal parameters and the bath

temperatures. In particular, the engine can adapt to the results of its own functioning. Hence

adaptive engines can be useful for fueling devices via unknown or scarce resources [209].

The major biophysical heat engine,viz photosynthesis|which operates between the hot Sun

temperature and the low-temperature Earth environment [210]|does have adaptive features

that allow its functioning under decreased hot temperature (shadowing) or increased cold

temperature (hot whether) [121,122].

Recently, several physical models concentrated on adaptive sensors, adaptive transport

models etc [122, 176, 211�216]. These studies clari�ed thermodynamic costs of adaptation

scenarios [122,176,213�216]. Other research lines related adaptation with (poly)homeostasis

[217] and models of arti�cial life [208,218].

For analyzing the adaptation and its resources for heat engines, we need a tractable and

realistic model that is much simpler than e.g. its prototypes in photosynthesis. The model

ought to consist of the proper heat-engine and a controller that ensures the adaptation; see

Fig. 3.1. Together they form an authonomous system.

3.2 The functional degree of freedom

We choose one of the most known models of quantum/stochastic thermodynamics that

was introduced and studied as a model for maser [89, 90, 92, 93, 197]. Related models were

studied in the context of photovoltaics [98]. The model has three states:i = 1; 2; 3. Each

state i has energyE i . Transitions between di�erent states are caused by thermal baths that

can provide or accept necessary energies. We assume that the resulting dynamics is described

by a Markov master equation [9]:

_pi � dpi =dt =
X

j
[� i  j pj � � j  i pi ]; i; j = 1; 2; 3; (3.1)
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wherepi (t) is the probability of the state i at time t, and � i  j > 0 is the transition rate from

j to i . We assume for simplicity that each transitioni $ j couples with one equilibrium bath

at temperature Tij = Tji = 1=� ji ; see Fig. 3.1. The equilibrium nature of each bath imposes

the detailed balance constraint for transitions [9]:

� i  j e� � ij E j = � j  i e� � ij E i ; � ij = � ji : (3.2)

We take one temperature in�nite: � 21 = 0. This bath is then a work-source, because due to

dS21 = � 21dQ21 = 0 it exchanges energydQ21 6= 0 at zero entropy changedS21 = 0. The

other two thermal baths are the ones necessary for any heat-egine; see Fig. 3.1. Below we

ensure its function for a large range of� 31 6= � 32.

Figure 3.1: A schematic representation of the model. There are three thermal baths at
temperatures T32; T31 < T 21 = 1 ; each one drives a single transition among three engine
levels1, 2, and 3. The bath with temperature T21 = 1 is the source of work. A controllerx
interacts with energies, but does not couple directly with the baths.

Since each bath causes only one transitioni $ j ,

K ij = K ji = ( E i � E j )( � i  j pj � � j  i pi ); (3.3)

is the average energy lost (ifK ij > 0) or gained (if K ij < 0) by the bath per time-unit; see
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(3.1). In the stationary state these energy currentsK ij hold K 31+ K 32+ K 21 =
P 3

i =1 _pi E i = 0,

as necessary for the average energy conservation. Eq. (3.1) implies for stationary probabilities

p1 =
1
Z

[� 1 2� 1 3 + � 3 2� 1 3 + � 2 3� 1 2];

p2 =
1
Z

[� 2 1� 2 3 + � 3 1� 2 3 + � 2 1� 1 3];

p3 =
1
Z

[� 3 1� 3 2 + � 2 1� 3 2 + � 1 2� 3 1] (3.4)

whereZ ensures
P 3

i =1 pi = 1. Using (3.2�3.2) and � 1 2 = � 2 1 due to � 21 = 0 we get

K 21 =
Ê2

Z
� 2 1 � 1 3 � 3 2

h
1 � e(� 32 � � 31 )Ê3 � � 32 Ê2

i
; (3.5)

K 31 = � Ê3K 21=Ê2; K 32 = ( Ê3 � Ê2)K 21=Ê2; (3.6)

Ê2 � E2 � E1; Ê3 � E3 � E1: (3.7)

The heat-engine functioning is de�ned as [cf. (3.3)]

0 > K 21 = � (E2 � E1)(p2 � p1)� 1 2; (3.8)

i.e. the energy goes to the work-source with thepower jK 21j. Inequality (3.8) shows that

the heat-engine functions via population inversion between energy levelsE1 and E2: when

driving the transition 1 $ 2, the work-source gains energy in average. Using (3.5, 3.7) we

write (3.8) as

Ê2[(1 � � )Ê3 � Ê2] > 0; � � � 31=� 32: (3.9)

Eq. (3.9) demands di�erent temperatures:� 32 6= � 31. It also demands tuning between the

energiesÊ2, Ê3 and � : it is impossible to hold (3.9) for a wide range of� by means of constant

Ê2 and Ê3; e.g. if (3.9) holds for1 > � due to Ê3 > Ê2 > 0, then it is violated for 1� � < Ê2

Ê3
.

Tuning is necessary, since for suitable values of̂E2 and Ê3, the machine can function also as

a refrigerator or as a heat-pump.

The e�ciency (power divided over the incoming current) � of the engine is given as (see
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(3.5, 3.6, 3.9))

� �
� K 21

max[K 31; K 32]
� � C � 1 � min[�;

1
�

]; (3.10)

� = max

"
Ê2

Ê3

;
Ê2

Ê2 � Ê3

#

(3.11)

where � depends only on energy di�erenceŝE2 and Ê3 [see (3.6)], and the Carnot value� C

bounds� from above, as deduced from (3.9). For� ! � C inequality (3.9) saturates, and (3.5,

3.6) show that all K ij nullify (power-e�ciency trade-o�) [58,86,95]; see [219] for most recent

discussion of this trade-o�.

3.3 The structural degree of freedom

The controller x should ensure adaptation to continuous environmental variations; hence

it is continuous. x and i interact via energiesE i (x). The joint probability pi (x; t ) of x and i ,
R

dx
P

i pi (x; t ) = 1 , evolves via the Fokker-Planck plus master equations [cf. (3.1)] [9]:

_pi (x; t ) =
X 3

j =1
[� i  j (x)pj (x; t ) � � j  i (x)pi (x; t )]

+
1


@x [pi (x; t )E 0
i (x)] + D@2

x pi (x; t ); i = 1; 2; 3; (3.12)

where E 0
i (x) � dE i (x)

dx ,  > 0 is the friction constant, and D > 0 is the di�usion constant.

� i  j (x) is speci�ed in (3.22); it holds (3.2) with E i ! E i (x) and E j ! E j (x).

Eq. (3.12) has a wide range of chemical and biological applications [156,220�222,222�229].

It accounts for enzyme dynamics, where a reaction (to be accelerated) is described by a

discrete variablei that interacts with a coarse-grained conformational coordinatex of the

enzyme [222�228]. The existence ofx was inquired from experiments [156,220�222,222�226],

and also deduced from microscopic models [227, 228]. Reactions of photosynthesis are also

known to interact with conformational degrees of freedom [230]: the main mechanism of the

photosynthesis adaptation was located in conformational changes of the thylakoid membrane

that bounds light-dependent reactions [121].
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Eq. (3.12) has similarities with recent models for quantum heat engines; but there the

continuous variable is employed for storing the extracted work [99,100].

The harmonic choice of interaction energiesE i (x) veri�ed itself well in various applications

[222,223,226,227,229]

E i (x) = a(x � bi )2 + ci ; i = 1; 2; 3; (3.13)

wherea > 0, bi and ci are constants;a is i -independent, sinceE i (x) have the same shape for

x ! �1 . Eq. (3.13) was explained in [228] via quantum chemistry.

The exact stationary solution pi (x) of (3.12) is not found. We need an explicit form of

pi (x), since from within pi (x) we should search for adaptation-friendly shapes ofE i (x). This

issue is solved, if we assume in (3.12) thatx is slow: 1
 ; D � � i  j (x). This is realistic for

enzymes, wherex includes large molecular groups whose motion is slow [225, 226]. A virtue

of the slow limit is that it decreases energy costs related to control, akin to the standard

reversibility limit of thermodynamics; see below. The slow limit can be justi�ed introducing

in (3.12) the conditional probability pi jx (t) [235],

pi (x; t ) = pi jx (t)p(x; t );
Z

dx p(x; t ) = 1 ;
3X

i =1

pi jx (t) = 1 ;

and collecting fast terms:

_pi jx =
X 3

j =1
[� i  j (x)pj jx � � j  i (x)pi jx ]: (3.14)

Slow terms are found from (3.12, 3.14) by summing overi :

_p(x; t ) =
1


@x [p(x; t )
3X

i =1

pi jxE 0
i (x)] + D@2

x p(x; t ): (3.15)

Sincei is fast, pi jx in (3.15) can be taken as time-independent, i.e.pi jx is found from (3.2)

upon replacing there� ij ! � ij (x) [235]. The stationary probability of x is found from (3.15)
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via the zero-current conditionp(x)
P 3

i =1 pi jxE 0
i (x) + D@xp(x) = 0 :

p(x) / e� 	( x)=(D ) ; 	 0(x) �
X 3

i =1
pi jxE 0

i (x); (3.16)

where	 0(x) = d	
dx . Using

P 3
i =1 pi jx = 1 we de�ne [cf. (3.7)]

� 0(x) �
X 3

i =2
pi jx Ê 0

i (x) = 	 0(x) � E 0
1(x); (3.17)

Ê i (x) � E i (x) � E1(x): (3.18)

3.4 Adaptation

The energiesE i (x) do not depend on� 31 and � 32. We chooseE i (x) as follows. First, there

is a unique maximally probable valuêx of x, which is the minimum of the e�ective potential

	( x), i.e. [from (3.16, 3.17)]:

� 0(x̂) = � E 0
1(x̂); � 00(x̂) > � E 00

1 (x̂); (3.19)

where the latter condition means stability.

Second, the heat-engine conditionK 21(x) < 0 holds in a vicinity of the maximally probable

value x̂ [cf. (3.9, 3.18)]:

Ê2(x)[(1 � � )Ê3(x) � Ê2(x)] > 0; x ' x̂; (3.20)

Work-extraction should also hold in average [cf. (3.2, 3.3)]:

hK 21i = � 1 2

Z
dx Ê2(x)p(x)(p1jx � p2jx ) < 0: (3.21)

Eq. (3.20) implies (3.21), if D is small enough, because in this limit the probability ofx

concentrates around̂x; see (3.16). More generally (e.g. out of the slow limit), the adaptation

criterion can be based directly on (3.21).
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The adaptation scenario implied by (3.17, 3.20) is as follows. Assume that the machine in

its stationary state is already working as a heat-engine for certain bath temperatures� 31 and

� 32. If one of them (or both) change,pi jx goes out of the stationary state. As shown by (3.17),

this movesx̂ to a new value, where according to (3.20) the heat-engine function is recovered.

We stress that in this feedback scheme,x does not interact directly with the baths: the change

of x̂ comes frompi jx ; see (3.17). Using a feed-forward scheme, wherex directly couples with

the baths, does not lead to advantages with respect to adaptation, because it changes only

friction and di�usion in (3.12). It is possible to study scenarios, where in addition to the

heat-engine function (3.20) the adaptation optimizes the heat-engine e�ciency� or its power

jK 21j.

To search for adaptation, we focus on the following class of transition rates [cf. (3.1, 3.2)]:

� i  j (x) = f ij [ E j (x) � E i (x) ]; (3.22)

wheref ij [y] holds (3.2). Eq. (3.22) includes the Kramers' ratef ij [y] = e� ij [� ij +min( y;0)] , where

� ij = � ji is the barrier height [9], andf ij [y] = e� ij y=2 that relates to the discrete-space Fokker-

Planck equation [156]. The constraint (3.22) relates to one of conditions of the no-pumping

theorem [32,35,36,38�41,43].

Eqs. (3.22, 3.18, 3.2) imply that� ij (x), the stationary pi jx , and � 0(x) in (3.17) depend on

E1(x) only via Ê3(x) and Ê2(x). Hence we study� 0(x) for given Ê3(x) and Ê2(x), look for

a domain where (3.20) holds, and then de�nêx via (3.19) by choosing a suitableE1(x) that

does not depend on� 31 and on � 32. This is achieved by plotting � 0(x) as a function ofx

under di�erent values of � 31 and � 32.

Note that (3.20) con�nes the shape ofÊ2(x): since (3.20) should hold for� ! 1, there

exists x0 such that x̂ ! x0 for � ! 1, and Ê2(x0) = 0 . In the vicinity of x0, Ê3(x) is either

�nite or goes to zero slower thanÊ2(x), so that (3.20) still holds for � ! 1 and x̂ ! x0.
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3.5 Restricted adaptation

Let us �rst assume that one temperature (say� 31) takes arbitrary positive values, while

another one (� 32) is �xed. Adaptation is necessary here, since� = � 31=� 32 is an arbtrary

positive number, hence (3.20) cannot be valid forx-independent E i . Applying the above

method, we deduce that (3.17, 3.20) for adaptation can be satis�ed for the experimentally

motivated choice (3.13) forE i (x); see Fig. 3.2.

Figure 3.2: Restricted adaptation scenario.� 0(x) given by (3.17, 3.22) withf ij [y] = e� ij y=2.
(Similar results hold for all other physical choices off ij [y]; see (3.22).) We assumêE3(x) = � x,
Ê2(x) = x � 2; see (3.18, 3.13). Now heat-engine conditions (3.20) hold forx > 2 if � > 2,
and for x 2 ( 2

2� � ; 2) if � < 2. Normal (resp. dashed) curves:� 0(x) for x that support (3.20)
under � 32 = 1 (resp. � 32 = 0:7) and various � = � 31=� 32. They are indicated from the top
to the bottom in the right (resp. left). The magenta (bold) curve shows� E 0

1(x), where
E 0

1(x) = 1 :8(x � 2) + 0:680289; cf. (3.13). Intersections of� E 0
1(x) with � 0(x) determine x̂.

Conditions (3.19) hold for all normal curves, and none of dashed curves.

Since the validity domain (3.20) of the heat-engine shrinks to a point for� ! 1, we need

progressively smaller values ofD in (3.16) for ensuring the average work-extraction (3.21)

under � ! 1. If the di�usion of x is caused by an equilibrium bath, we getD = T in

(3.12) [9], and the temperatureT of this bath should be su�ciently low for (3.21) to hold.

If this is the lowest temperature, there is a heat currentK A towards it tending to increase

it. Hence this low temperature is a resource; see [176, 213�216] for related results. In the

slow limit, K A = O( 1
 ) can be much smaller than the energy currentsK ij of the heat-egine.

Eqs. (3.6, 3.9 3.10) imply thatK ij ! 0 for high e�ciencies � ! � C. In that case K A stays
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�nite and is the dominant energy current.

3.6 Full adaptation

Let now both � 31 and � 32 vary. Fig. 3.2 shows that the set-up which worked for a �xed� 32

does not apply: adaptation conditions (3.19) break down in a vicinity of� = 1. Topologically,

changing both� 32 and � 31 destroys �ne-tuned equality in (3.19); see Fig. 3.2.

We argue that adaptation conditions (3.19) cannot hold together, if both� 31 and � 32 vary,

and if d
dy f ij [y] � 0; see (3.22). The latter holds for all physical examples we are aware of,

and means that the transition from one energy to another is facilitated, if the lower energy

increases or the higher energy decreases.

The only way we found for recovering adaptation is to assume thatx is subject to a

negative friction:  < 0. Note that the  < 0 and D > 0 situation is stable, since (3.15) does

predict relaxation to (3.16).

One way to achieve < 0 is to subjectx to a negative-temperature (population-inverted)

thermal bath: � < 0. Eqs. (3.12) with  / � < 0 is then an e�ective description of quasi-

continuous, but discrete degrees of freedom. Negative temperatures are known for various

systems whose energies are bounded from above [236�240]. Now� < 0 is a resource, since

when coupled to positive temperatures,� tends to increase [236]. Physically,� < 0 means a

reservoir of stored energy, and the fact that� decreases means that this energy is spent for

adaptation.

Other examples of negative friction include negative resistance of electric circuits [232],

negative viscosity of driven �uids [233], and the negative absolute mobility for Brownian

systems [234].

Now D < 0 in (3.16), and the most probablex̂ means that inequalities in (3.19) are

reversed. New adaptation conditions are (3.20) and [instead of (3.19)]

� 0(x̂) = � E 0
1(x̂); � 00(x̂) < � E 00

1 (x̂): (3.23)

These conditions can be satis�ed, as seen in Fig. 3.3. In contrast to the previous scenario,
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Figure 3.3: Full adaptation scenario ( < 0). � 0(x) with f ij [y] = e� ij y=2 for varying � 31

and �xed � 32; cf. Fig. 1.1. We assumeÊ3(x) = x=2, Ê2(x) = x � 2, and (3.20) holds for
x 2 ( 4

1+ � ; 2). Normal (resp. dashed) curves:� 0(x) for x that support (3.20) under � 32 = 1
(resp. � 32 = 3) and various � = � 31=� 32, as indicated from the top to the bottom in the left
(resp. right). The magenta (bold) curve shows� E 0

1(x), where for the considered range ofx,
E 0

1(x) = � 0:1(x � 2) � 0:5. Adaptation conditions (3.23) hold for all curves, and for all� 31,
� 32.

now � 0(x) is very robust with respect to changing� 31 and � 32, i.e. the adaptation is achieved

for all � 31 and � 32 (excluding a jD j-dependent vicinity of � 31 = � 32). Though the choice of

E1(x) is more �exible than for the previous restricted adaptation scenario, it cannot belong

to the set (3.13) of harmonic functions. ForD < 0, x should change in a bounded domain;

otherwise for the natural shape of energies (E i (x) ! 1 for x ! �1 ) one gets a non-

normalizablep(x) in (3.16).
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Chapter 4

Statistical tests for MIXMAX

pseudorandom number generator 1

4.1 Introduction

In recent years, there is a growing interest on PRNGs in di�erent branches of physics

and not only. A good PRNG is important to have guaranteed results of Monte Carlo(MC)

methods. There are many software packages for MC simulations where PRNGs are the central

components. Among these packages one can mention the Geant4/CLHEP [140], a widely used

simulation toolkit in HEP for modeling the passage of elementary particles through matter,

also used for medical and space science simulations.

PRNGs are also crucial in Markov Chain Monte Carlo (MCMC) methods which are used

for sampling from desired probability distribution by constructing Markov chain on state

space whose stationary distribution is of interest [1, 131, 132]. Uniform PRNGs play a cen-

tral role in constructing such Markov Chains. Most of MCMC algorithms are developed

within random walk models. A widely used example of random walk Monte Carlo method is

Metropolis�Hastings algorithm [131�134] which is also included in the list of the top 10 al-

gorithms [241]. MCMC methods are mainly used for sampling from large dimensional spaces

1The results considered in this chapter are published in Ref. [141].
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and computing multidimensional integrals. For example, in statistical mechanics, one needs

to compute thermal averages of quantities, such as the total energy, magnetization, etc. by

performing multidimensional integration or summation over con�guration space. However,

the total number of con�gurations can be very large, e.g. in 3-dimensional Ising model the

number of spin con�gurations with particles at n3 lattice sites is 2n3
. In thermodynamic

equilibrium the probabilities of occurring each con�guration is represented by Boltzmann

distribution. Thereby having samples drawn from Boltzmann distribution one can compute

expectation values of thermodynamic quantities.

The necessity to have large amounts of simulated data imposes a strict requirements on

PRNGs, such as statistical properties of generated numbers, swiftness in number generation,

replicability, lengthiness of generated random cycle and independence of produced random

numbers. To address these challenges the renewed version of MIXMAX PRNG [136, 137]

based on Anosov C-systems and Kolmogorov K-systems has been introduced in [2,138,139].

The MIXMAX is matrix-recursive PRNG and it has been shown that the properties of the

MIXMAX generator is improved with increasing the sizeN of MIXMAX matrix [2]. The

period of MIXMAX is also increased with increasingN and it can be reach up to1057824, note

that the period of commonly used version of Mersenne Twister based on Mersenne prime has

the period of219937 � 1.

While having a long period, however statistical properties and time characteristics of

PRNGs are crucial to consider a generator "good" or "bad". In this paper we will present the

results of the statistical tests performed with the matrix size ofN = 256 which is considered

to be a default dimension of MIXMAX matrix with �exibility to be further increased.

4.2 Visual demonstration

We can reveal the defect of uniform PRNGs simply plotting random points in high-

dimensional Euclidean space, if these points form lattice structure then to a �rst approxi-

mation we can say that PRNG has defects in generating random points since the space is not

�lled uniformly. The Fig.1 shows the comparison of MIXMAX with the Linear Congruential
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