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Introduction and Motivation

Thermodynamics grew up as a theory of heat-engines with the raise of the Industrial

Revolution in the XIX’th century [1]. Already in the middle of that century it matured into a

phenomenological theory based on few explicit and many implicit assumptions. Fundamental

contributions to thermodynamics were done by Carnot, Clausius, Thomson, Clayperon and

others.

Since the works by Boltzmann, Maxwell and Gibbs thermodynamics became grounded on

microscopic theories [2,3]: there appeared a general tendency of deriving (and not just postu-

lating) various assumptions of thermodynamics [4]. Importantly, it also became related with a

limited control, e.g. because thermodynamical relations emerge via an incomplete description

of a many-body system [4]. This aspect of the limited control is frequently manifested via

fluctuations [1]; hence the term statistical thermodynamics. However, neither fluctuations nor

incomplete description exhaust deep relations of thermodynamics with ideas of control. One

such relation was formalized as the maximum entropy principle [5]: basic distributions known

in statistical thermodynamics can be recovered via maximizing the ignorance-i.e. maximizing

the information-theoretic entropy-given certain plausible contraints, e.g. energy conserva-

tion. Another idea amounts to relating control and heat-engine physics within the concept of

adaptation. This is one of the main subjects of this thesis.

Connections of thermodynamics with microscopic theories is an essentially two-way road.

On one hand, the microscopic perspective does improve our understanding of thermodynam-

ics and increase its applicability range even in its traditional domain of macroscopic systems.

On the other hand, microscopic theories do benefit-and frequently even emerge-via thermo-
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dynamics. Examples of the latter situation are well-known [1]: thermodynamic ideas played

a crucial role in the inception of quantum mechanics via the Planck’s approach to black-body

radiation. Such ideas were also instrumental in black-hole physics, and hence in modern

theories of quantum gravity [6].

These two aspects-two-way connection with microscopic theories and relations with control-

will be the main themes of the present thesis. Below we provide an introduction to these

themes using general arguments. They are developed in subsequent chapters.

Work and first law

We start our discussion with the first law of thermodynamics [1]. This law is frequently

regarded as a trivial consequence of the energy conservation. While the energy conservation is

indeed the ground of the first law, its relations with this law are far from trivial. Indeed, the

first law introduces the fundamental concept of energy quality, because a change dU
dt

of internal

energy is divided into two parts: high-graded dW
dt

(work) and low-graded dQ
dt

(heat) [1]:

dU

dt
=

dW

dt
+

dQ

dt
, (1)

In terms of the microscopic energy H(x, π, f)-where x and π are (resp.) the sets of canonic co-

ordinates and momenta, and where f = f(t) is a time-dependent external field-U is presented

as the average energy [1]:

U(t) =

∫
dx dπH(x, π, f(t))P (x, π, t), (2)

where t is the time, P (x, π, t) is the probability density by which we describe the system. In

particular, the description can be based a trajectory {x(t), π(t)}, where

P (x, π, t) = δD(x− x(t)) δD(π − π(t)), (3)

and where δD is the Dirac’s function. Thus U involves both kinetic and potential energies of

all particles that constitute the system. It is seen that the first law (1) is based on the energy
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conservation: if no external influences are present (i.e. the system is left to itself) both the

work and heat nullify and also the energy is conserved.

The work done by external field reads in (1) [1, 7, 8]:

dW

dt
=

∫
dx dπ P (x, π, t) ∂tH(x, π, f(t)). (4)

If the system couples only with an external source of work, i.e. when its evolution is governed

by Hamiltonian equations of motion for x and π generated by H(x, π, f(t)), one can employ

these equations to show that in (1) one has dQ
dt

= 0, i.e. the heat is absent as expected [1].

The heat is defined from (1, 2, 4) as

dQ

dt
=

∫
dx dπH(x, π, f(t)) ∂tP (x, π, t). (5)

Hence dQ
dt
6= 0 only if the system is open, i.e. (besides the source of work) it also couples

with its environment. The latter need not be thermal. Hence the heat relates to the energy

of degrees of freedom that are not under direct observation, i.e. they are not included in the

system. Within this thesis we shall not dwell further into the features of heat. It suffices to

say, however, that-in the regime, where the environment is not thermal and/or its coupling

with the system is not weak- the detailed understanding of these features is mostly an open

problem [9].

The source of work is a mechanic degree of freedom that holds certain conditions. First

of all, its back-reaction on the system is neglected, i.e. the dynamics of the system can be

described with given external fields. Note that the full reaction of the system to the source

is not neglected, because the system can exchange energy with the source [1]. It is only the

back-reaction is neglected in the sense that the dynamics of the system can be described as

if the source does not feel the system. There is an important point in requiring that the

back-reaction can be neglected: in thermodynamics the work-source is a mechanic degree of

freedom (e.g. a wheel) that performs a well-controlled motion. If the back-reaction is not

negligible, i.e. if we allow a full-scale coupling between the work-source and the thermalized

system, then the work-source will ceases to perform a mechanical motion, it will thermalize
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as well and become a part of the system. Due to this controlled motion of the work-source,

it is also possible to study slow, quasi-static processes.

Next pertinent feature of the work is that it is a local quantity [9]: let x = (x1, x2) and

π = (π1, π2) be the coordinate and momenta of the full system, while (x1, π1) and (x2, π2) refer

to two sub-systems of the system. We assume that external fields act only on one sub-system,

i.e. we have in (2)

H(x, π, f(t) = H1(x1, π1, f(t)) +H1(x2, π2) +Hint(x, π), (6)

∂tH(x, π, f(t)) = ∂tH1(x1, π1, f(t)), (7)

whereHint(x, π) is the interaction Hamiltonian that does not depend on the external field f(t).

Also, H1(x2, π2) does not depend on f(t). Then the global definition (4) can be re-written

locally with help of (6, 7)

dW

dt
=

∫
dx1 dπ1 P1(x1, π1, t)∂tH1(x1, π1, f(t)), (8)

i.e. involving only the marginal density P1(x1, π1, t) of the first sub-system. Eq. (8) is neces-

sary when defining the work for systems with unknown and/or uncontrolled environment.

Work and second law

An important property of work is that its definition does not rely on any local-equilibrium

assumption. In that sense the work differs from e.g. entropy, whose definition as a state

function is closely tied to quasi-equilibrium states [8]. Hence the work should be involved in

non-equilibrium formulations of thermodynamic laws instead of entropy. Let us illustrate this

point in the context of the second law [8].

Consider a system with n sub-systems, which are (probabilistically) independent from

each other at the initial time:

P (x, π, 0) =
n∏
k=1

Pk(xk, πk, 0). (9)
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Moreover, we shall assume that initially the sub-systems are in Gibbsian equilibrium:

Pk(xk, πk, 0) =
e−βkHk(xk,πk,f(0))

Zk
, Zk =

∫
dxkdπk e

−βkHk(xk,πk,f(0)), k = 1, ..., n. (10)

where Zk is the statistical sum, and where βk = 1/(T ) > 0 is the inverse temperature, which

can differ from one sub-system to another. We take kB = 1, i.e. the temperature is measured

in energy units.

The considered system is thermally isolated for t > 0, i.e. it interact only with the source

of work. Given (9, 10), we construct the relative entropy or the Leibler-Kullback divergence:

SKL[P (t)||P (0)] ≡
∫

dx dπ P (x, p, t) ln
P (x, p, t)

P (x, p, 0)
≥ 0, (11)

where P (x, p, t) is the probability density of the full system at time t. Among many important

features of SKL[P (t)||P (0)] (see [7, 8]) we shall need only its non-negativity.

The above assumption on the thermal isolation leads to the conservation of the (micro-

scopic or fine-grained) entropy

−
∫

dx dπ P (x, p, t) lnP (x, p, t) = −
∫

dx dπ P (x, p, 0) lnP (x, p, 0). (12)

Eq. (12) follows from the Liouville equation for the probability density P (x, p, t).

Our last assumption is that the external field acting on the system is cyclic, in the sense

that its sub-systems are non-interacting both initially (at time t = 0) and finally (at time

t = τ):

H(x, π, f(0)) =
n∑
k=1

Hk(xk, πk, f(0)) =
n∑
k=1

Hk(xk, πk, f(τ)) = H(x, π, f(τ)). (13)

Note however that (13) by no means implies that the final state P (x, p, t) is also factorized

like (9). In fact, P (x, p, t) can be arbitrarily correlated between its sub-systems and arbitrary

far from equilibrium. One scenario by which (13) can be realized is that the initially non-

interacting sub-systems are subject to interaction, which is switched off for t ≥ τ . Using (12,
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13) in (11) and also employing (9, 10) we end with:

n∑
k=1

βk∆Uk = SKL[P (t)||P (0)] ≥ 0, (14)

∆Uk ≡
∫

dx dπkHk(xk, πk, f(0)) [Pk(xk, πk, t)− Pk(xk, πk, 0)], (15)

where ∆Uk is the energy increase of the sub-system k. We shall now explore consequences of

(14). For k = 1 we get noting that β1 > 0 and using (1):

W = ∆U1 ≥ 0. (16)

Since the evolution was thermally isolated (i.e. no environment was present) the whole energy

change amounts to work; cf. (1, 4). Eq. (16) is the statement of the Thomson’s formulation of

the second law [8]: no work can be extracted from an initially equilibrium (Gibbsian) system

via a cyclic change of the external field. In contrast to the Thomson’s formulation within

the phenomenological thermodynamics, (16) was deduced without any assumption on local

equilibrium, i.e. only the initial state was assumed to be in equilibrium.

Let us now take k = 2 and β2 > β1. Now (1, 4) produce ∆U1 + ∆U2 = W and (14) leads

to

W =
1

β2

SKL[P (t)||P (0)] + (1− β1

β2

)∆U1. (17)

Now the work-extraction, i.e. W < 0, is already possible, because the temperatures are

different. Eq. (17) shows that W < 0 (together with β2 > β1) leads to ∆U1 ≤ 0: the

sub-system, which initially had a higher temperature looses energy. Eq. (17) also implies

|W |
|∆U1|

= 1− β1

β2

− SKL[P (t)||P (0)]

β2|∆U1|
(18)

Now |∆U1| can be related to the incoming energy, and hence |W |
|∆U1| is the efficiency of the work-

extraction defined as the results |W | divided over the effort (input energy |∆U1|). Eqs. (18,

11) show that this efficiency is smaller than the Carnot bound 1 − β1
β2
. This known result of

14



thermodynamics is derived without the local-equilibrium assumption [1, 8].

The role and definition of entropy in (18, 17) is not clear. It is seen from (18) that

SKL[P (t)||P (0)] can play the role of entropy production, because it limits the approach to the

Carnot bound. But this is in a sense "entropy production" without "entropy". Put differently,

in non-equilibrium processes, work has definite advantages over the entropy.

Work done by the electromagnetic field

As we saw, the above definition of work has several advantages, and it does improve our

understanding of thermodynamics. But this definition still contain a serious caveat: (2) does

not specify the Hamiltonian H(x, π, f(t)) that appears in the definition. Indeed, any system

of differential equations can be written in a Hamiltonian form with a suitable (and generally

non-unique) Hamiltonian [10]. This can be done even for systems that are clearly dissipative,

and should not have a conserved energy according to their physical meaning.

Frequently, this problem can be overcome on a phenomenological ground, because it is

a priori clear what is the proper energy function. However, the situation is quite different

for a charged particle driven by an external electromagnetic field (EMF). First of all recall

that the influence of an EMF on a charged particle can be described either via electric and

magnetic fields (E,B) or via potentials φ and A [11]. Within this part of the thesis we shall

use Gaussian units, c = 1 and metrics gik = diag[1,−1,−1,−1] [11]. The potentials are joined

into a four-vector Ai = (φ,A), while instead of (E,B) one can employ the asymmetric tensor

Fik = ∂iAk − ∂kAi, where ∂i ≡ ∂/∂xi = (∂t,∇) [11].

Although the description via potentials is easier, this description is not unique, since

equations of motion for the charged particle-as well as the fields (E,B)-are invariant under

the gauge-transformation [11]

Ai → Ai + ∂iχ : ϕ→ ϕ+ ∂tχ, A→ A−∇χ, (19)

where χ = χ(t,x) is an arbitrary smooth function. The gauge-transformation is regarded as

an additional freedom that can be tuned by convenience, since it does not affect observable
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quantities [11]. They can be of two types: quantities that depend on Ai, but still stay invariant

under the gauge-transformation, e.g. Fik. Another type of observables are those which do

not (directly) depend on Ai, e.g. xi [11]. However, even gauge-non-invariant Ai can become

an observable, if it can be expressed via gauge-invariant or gauge-independent quantities.

Examples of this type are discussed in chapter I of the thesis.

We return to the definition of work for a charged particle in an EMF. Naturally, we suppose

as the first step that the particle with mass m and charge e is thermally-isolated and we then

attempt to define work via a time-dependent Hamiltonian, as (4) suggests. The standard

Hamiltonian formalism is given by the canonic momentum π = p + eA, kinetic momentum

p = mv√
1−v2 , velocity v, and Hamiltonian [11]:

H =
√

(π − eA(x, t))2 +m2 + eφ(x, t). (20)

But here we meet a problem, since H in (20) is not gauge-invariant due to the scalar potential

φ that changes during a gauge-transformation; see (19).

One can naturally wonder whether this problem is not due a bad choice of the Hamiltonian

formalism, i.e. can one look for an explicitly gauge-invariant Hamiltonian formalism for the

considered situation of a single particle in an EMF? Such a formalism is known in literature

[10], but it is useless for our purposes. Let us see why. While Hamiltonian (20) produces the

equations of motion via the standard Poisson bracket, we can modify the definition of this

brackets for two functions A and B, making it explicitly relativistically-invariant [10]:

[A,B] =
∂A

∂πi

∂B

∂xi
− ∂A

∂xi

∂B

∂πi
. (21)

Now can take the simplest relativistically-invariant generalization of (20) [10]:

H̃ = − 1

2m
(πi − eAi)(πi − eAi) +

m

2
, (22)

which also appears to be explicitly gauge-invariant for the same reason as the kinetic part

of (20). Now equations of motion for a particle in an EMF can be written via the Poisson
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brackets (21) as

dxi
dτ

= [xi, H̃],
dπi
dτ

= [πi, H̃], (23)

where τ is the local-time of the particle. Note that (23) cannot be directly generalized to

interacting particles, since generally there is no unique local time for them. Still they are a

legitimate representation of the equations of motion for a single particle.

But here we meet another problem: due to the kinematic relation

pip
i =

[
m√

1− v2

]2

− p2 = m2, (24)

the Hamiltonian (22) is zero along any physical trajectory. Hence it does not change from

one phase-space point to another, and it also cannot change in the course of time. Thus it is

completely useless for the physical purpose of calculating energy changes.

Paradoxically, it appears that we cannot proceed with the straightforward definition of

work (4) even in such a basic set-up as the work done by an external EMF.

This problem is solved in chapter I of the thesis. Moreover, in the above treatment we

completely neglected electromagnetic radiation produced by the particle. Chapter II shows

that the problem of defining work can be solved even if the radiation and its back-reaction

are taken into account. Here we do not re-tell the solution, but only mention that it closely

relates to deep problems in the energetics of the EMF. There is a well-known expression for

the energy current of the EMF given by Poynting [11]:

S =
1

4π
E ×B. (25)

Eq. (25) emerged directly from the Maxwell’s equation, or from the standard Belinfante-

Rosenfeld energy-momentum tensor of the EMF [11].

For a generic configuration of a fixed charge and a permanent magnet (25) predicts a con-

stant flow of electromagnetic energy. This is surprising, since the configuration does not seem

to require any specific energy cost for its maintenance, hence the constant flow appears as a
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kind of a perpetuum mobile. Expectedly, it was never seen experimentally. In his book Feyn-

man discusses this surprising prediction of (25) and offers for it the following resolution [12]:

since the permanent magnetic field is eventually created by moving charges, there is an aspect

of non-equilibriumness hidden in the above configuration. At very least, the "perpetuum mo-

bile" aspect is not anymore surprising, because it is related to permanently moving charges

that create the magnetic field [12]. This argument is not conclusive, because the picture of

permanently moving charges is outdated: a constant magnetic field can be generated by a

system in its ground state (e.g. a spin magnet) without requiring any permanent classical

motion. Of course, this example is generically quantum, while we are discussing classical

electrodynamics. But it is clear that a quantum system can generate a classical magnetic

field, to which the classical electromagnetism should apply. Another resolution was offered by

Mandelshtam [13], who suggests that the energy current (25) becomes observable only after

space-averaging over the wave-length. The latter is infinite for static fields, which amounts to

integrating (25) over the whole space. This produces zero. However, it is not clear why the

space-averaging of (25) is conceptually necessary, moreover that (25) is also the momentum

density of EMF [11].

Hence we are back to explaining the surprising prediction of (25) and in particular to

explaining why it was never seen in experiments. As chapter I shows, this problem intrinsically

relates to the problem of defining the work: both demand a careful reconsideration of the

standard energetics of the EMF and both can be resolved simultaneously.

Controlled versus adaptive heat-engines

Control and information-theoretic ideas show up in many different aspects of thermody-

namics [4]. Frequently, such questions are relegated to foundations of statistical thermody-

namics that mostly produce a better understanding of its general rules [5]. In contrast, below

we remind that already the simplest heat-engines do need an external control that makes

their functioning vulnerable to environmental variations; see also [14] in this context.

Fig. 1 shows the entropy-temperature diagram of the famous Carnot cycle that combines

two thermally isolated (adiabatic or entropy-conserving) and two isothermal processes. These
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Figure 1: Carnot Cycle.

four processes must be slow for the working body (that undergoes these processes) to stay in

equilibrium. We do not need the equation of state of the working body, since it is well-known

that the work and efficiency of the Carnot cycle can be deduced directly from Fig. 1 assuming

that at the end of the four-stage process the working body returns to its initial state [1]. We

shall now follow this analysis in detail so as to underline its hidden points.

We start from the green point in Fig. 1. First the system is subject to an isothermal

process at temperature T1. This means that the working body is attached to a thermal

bath at temperature T1 (hence both the working body and the thermal bath have the same

temperature) and the volume of the working body is increased externally so that it does

work against externally controlled pressure. At the end of this process the working body is

detached from the bath, and now the expansion continues adiabatically again doing work.

The purpose of this second adiabatic process (besides doing work) is that the temperature of

the working body decreases from T1 to a predetermined value T2 (T2 < T1). Next, this body

is attached to a thermal bath at this smaller temperature T2. In the third isothermal process,

the volume of the working body is squeezed so that its entropy gets back to S1 at the end of

this process. During this third process the external pressure does work on the working body.
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The squeezing continues adiabatically (the fourth and last process), where the working body

is back to its original state. Once the evolution of the working body is cyclic and since the

heat entered to the system only during the isothermal processes, we calculate the extracted

work as |W | = |Q1| − |Q2| > 0, where |Q1| = T1(S1 − S2) and |Q2| = T2(S1 − S2). The

efficiency |W |/|Q1| of the Carnot cycle is evidently given by the Carnot value.

While the above analysis is well-known, it is rarely emphasized how much control the above

cycle needs: coupling and decoupling with thermal baths, precise control of temperature at

the end of each process (so as to know where to finish) etc. In addition, the adiabatic

processes have to be slow, but not too slow, otherwise the working body will interact with its

environment. Now we stress that we started from the green point in Fig. 1. If the starting

point is not chosen correctly (e.g. it is given by the red point in Fig. 1), then the Carnot cycle

will consume the work from the external source and not extract it!

Such a strong dependence on external control is not a specific feature of the Carnot cycle.

Many other thermodynamic cycles require it as well. In particular, they can operate only

under specific temperatures of thermal baths; otherwise their performance is poor. There

are certainly autonomous heat-engines that do not need external control. But, as recalled

in chapter III, such engines need a fine-tuning of their parameters, since the same device

can work (for suitable range of parameters) as a heat-engine, refrigerator or heater. The

parameters have to fine-tuned-and this fine-tuning has to depend on bath temperatures|since

these three functions just contradict to each other.

Given the above arguments, it is natural to ask: is it possible to build a truly autonomous-

i.e. adaptive-heat engine that will work for arbitrary bath temperatures by putting itself

into the heat-engine regime? What are thermodynamic limitations on the functioning of

such an engine? Is it possible that this device adapts to the heat-engine functioning and

simultaneously improves its efficiency? These questions are answered in chapter III of the

present thesis.

Here we only mention that such questions can be relevant for biophysics. There are at

least two different aspects here. First, the fundamental biophysical process of photosynthesis

is eventually a heat engine that operates between the hot thermal bath created by Sun and
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a much colder Earth environment [15]. This heat-engine does have adaptive features that

govern its functioning under changing environmental conditions (e.g. shadow); see chapter

III for details. However, the photosynthesis is an extremely complex process that involves

physics (including quantum effects) and biochemistry [16]. Developing physical models for

adaptive engines may clarify aspects of this complex process.

Second, there is a body of knowledge on the origin of life that relates primary (and

relatively primitive) organisms with heat engines (and possibly also with chemical engines

that are anyhow conceptually similar to heat-engines) [17–22]. Such an approach seems to be

plausible, because work-extraction from a non-equilibrium environment-and most importantly

employing this work for improving the very work-extraction ability and hence extracting even

more work-can be taken as one of defining features of life [23]. Then the major question of

this approach is how such engine emerged without an external designer [24–27]? It is natural

to expect that adaptive heat-engines-once their theory is developed and well-understood-can

shed light also to this question.
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Chapter 1

Electromagnetic gauge-freedom and work

1

1.1 Introduction

Equilibrium statistical thermodynamics is based on notions of work, heat, entropy and

temperature [1, 4, 8]. The primary concept of non-equilibrium statistical mechanics is work,

because its definition is relatively straightforward [1,4,8]. This is witnessed by recent activity

in non-equilibrium (classical and quantum) physics that revolves around the work and the

laws of thermodynamics [4, 8, 28–43].

We recall the definition of the thermodynamic work and its feature. Consider a non-

relativistic particle with coordinate x, canonic momentum π and Hamiltonian H(x, π; f(t)),

where f(t) is an external field. The thermodynamic work done on the particle by the field’s

source in the time-interval [t1, t2] is [1, 4, 8]:

W = H(x(t2), π(t2); f(t2))−H(x(t1), π(t1); f(t1)). (1.1)

W equals the energy increase of the particle. No work is done if f is time-independent.
1The results considered in this chapter are published in Ref. [178].
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Definition (1.1) generalizes to statistical situations, where the description goes via probability

densities or via density matrices [1, 4, 8]. It appears in the laws of thermodynamics.

There is an alternative definition of the thermodynamic work [1, 4, 8]

W =

∫ t2

t1

dt
df

dt
∂fH(x(t), π(t); f(t)). (1.2)

It applies to the open-system situation, e.g. particles interacting with baths [1,4,8]. Eq. (1.2)

leads to (1.1) due to the Hamilton equations of motion.

If f is a coordinate of the source, the full time-independent Hamiltonian of the system

and source reads2

H(x, π; f) +H′(f, πf ), (1.3)

where πf is the momentum of the source, and H′(f, πf ) is its Hamiltonian. The time-

dependent Hamiltonian H(x, π; f(t)) of the system in (1.1, 1.2) results from (1.3), if the

reaction of the system to the source is neglected, e.g. because the source is heavy.

Two important features of the thermodynamic work (1.1) are displayed via (1.2, 1.3). First,

since the total energy (1.3) is conserved, the thermodynamic work (1.1) relates to the energy

change H′(f, πf ) of the source [1, 4, 8]. Second, (1.2, 1.3) show that −∂fH(x(t), π(t); f(t)) is

the potential force acting (from the particle) to the source. Then (1.2) relates to the mechanic

concept of work: force times the displacement dt df
dt

[29].

Let now the external field be electromagnetic (EMF). The relativistic Hamiltonian of a

particle reads [11,44]

H =
√
c2 p 2 +m2c4 + eφ(x, t), (1.4)

p = mv/
√

1− v2/c2, π = p+ eA(x, t)/c, (1.5)

where Ai = (φ,A) is the 4-potential of EMF, p (π) is the kinetic (canonic) momentum, x,
2Even if f is not a coordinate, (1.1, 1.2) stay consistent as far as the system and the work-source form a

closed system.
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m and e are the coordinate, mass and charge, respectively. For a non-relativistic particle,√
c2p 2 +m2c4 is replaced by p 2

2m
.

The thermodynamic work cannot be read directly from (1.1, 1.2, 1.4), because neither

H nor its time-difference stay invariant under a gauge-transformation defined via a function

χ(x, t) [45–50]:

Ai → Ai + ∂iχ : φ(x, t)→ φ(x, t) + ∂χ(x, t)/∂(ct), (1.6)

A(x, t)→ A(x, t)− ∂χ(x, t)/∂x. (1.7)

The kinetic momentum p in (1.4) is gauge-invariant. But φ is not [45–47] 3. The same

problem exists for a quantum particle interacting with EMF [45–47].

One response to the EMF gauge-freedom problem is that the gauge in (1.4) is to be selected

as (temporal gauge) [11,44,46,47]:

φ = 0. (1.8)

This definition is indirectly supported by the standard EMF energy-momentum tensor, which

suggests that particles do not have potential energy [11, 44]; see section 1.6. Eq. (1.4) under

φ = 0 implies that the sought thermodynamic work would amount to the particle’s kinetic

energy change, i.e. to the mechanic work done on the particle by the Lorentz force [11].

This cannot be the correct definition of the thermodynamic work. First, because it implies

that time-independent fields do thermodynamic work [51,52] Consider a constant electric field

E = ∂xφ(x). The temporal gauge is achieved by taking χ = −ctφ(x) in (1.6), which brings in

a time-dependent A(x, t) and shows from (1.1, 1.4) that the work done is not zero and equals

to the change of the kinetic energy. The latter is non-zero, since only
√
c2 p 2 +m2c4 + eφ(x)

is conserved in time [11].The proposal can apply only for a particular (and self-obvious) case,

where all fields are absent both initially and finally. Second, because this work (1.2) relates

to the force acting on the source, and not to the force acting on the particle.
3 This differs from a formally similar gauge-freedom issue that appears even for the non-relativistic situation

(1.1) [39–42]. This issue is resolved easily by choosing f(t) as e.g. the coordinate of a physical source of
work [39–43]; see (1.3) and section 1.5.
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Another possibility for resolving the gauge-freedom is to employ in (1.4) the Coulomb

gauge [53,54]:

divA(x, t) = 0. (1.9)

But the scalar potential φC(x, t) in the gauge (1.9) propagates with infinite speed [55–57].

The Maxwell equation divE = 4πρ reads [11]: ∆φ(x, t) + 1
c
∂tdivA(x, t) = −4πρ(x, t). Upon

using (1.9) we get for time-dependent φC(x, t) in the Coulomb gauge the “static” equation

∆φC(x, t) = −4πρ(x, t) implying that φC(x, t) responds instantly to changes in the charge

density ρ(x, t) [55–57].

While this is consistent with electric E(x, t) and magnetic B(x, t) fields propagating with

speed c [55–57], it also means that φC(x, t)-and the Hamiltonian (1.4) defined via it-cannot

be given a direct physical meaning.

For both proposals it is unclear how the work defined via (1.4) relates to the energy of the

source (heavy body).

Noting the difficulties with the temporal and Coulomb gauge, it is natural to look at the

Lorenz gauge,

∂iA
i ≡ 1

c

∂φ

∂t
+ divA = 0, (1.10)

which is relavistic invariant and causal, i.e. φ andA defined from (1.10) propogate with speed

c [58, 59]. Given (1.10) and standard boundary conditions of decaying at spatial infinity,

Ai is uniquely expressed via gauge-invariant electromagnetic field (E,B), and hence it is

observable [58]. If the photon is found to have a small (but finite) mass, (1.10) will hold

automatically [60]. These features are suggestive, but they do not suffice for defining the

thermodynamic work.

Our results validate the usage of (1.4, 1.10), and also show that main features of the

thermodynamic work generalize to the relativistic, electromagnetic situation:

– The definition of the (thermodynamic) work based on (1.4, 1.10) results from a separation

of overall (source + particle(s) + EMF) energy into specific components. This separation is
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not arbitrary, but emerges from a relativistically covariant energy-momentum tensor Tik for

the overall system; see section 1.2. Tik necessarily differs from the standard energy-momentum

tensor (e.g. because Tik has to account for a potential energy), but it leads to the same values

of the overall energy. It consistently relates to an angular momentum (tensor). Certain

aspects of Tik are known from [61,62], but in its entirety it is proposed for the first time 4.

– The approach leads to a formulation of the first law for a relativistic thermally isolated

situation, which we demonstrate for point charges with retarded electromagnetic interactions.

According to this formulation, the thermodynamic work can be defined through the gauge-

invariant kinetic energy of the source, but it is also equal to the change of (1.4) in the Lorenz

gauge. As compared to the non-relativistic first law-which is an automatic consequence of

energy conservation [1,4,8,28,29] [cf. (1.3)]-the formulation is necessarily approximate, since

some energy is stored in the (near) EMF, even if the radiated energy is negligible. Once the

thermodynamic work amounts to the kinetic energy of the source, it directly relates it to

the mechanic work done by the Lorentz force acting on the source. Thus the two important

features (described after (1.3)) generailze to the relativistic, electromagnetic situation.

Several recent studies looked at the work done by EMF in the context of fluctuation

theorems [63–67]. But the problem of the EMF gauge-freedom was not addressed, partially

due to implicitly assumed magnetostatic limit, where the gauge (1.9) is employed by default,

and where (1.10) and (1.9) are approximately equal [68,69].

1.2 Equations of motion and energy-momentum tensor

Consider electromagnetic field (EMF) coupled with a charged continuous matter with

mass denisty µ(x, t), charge density ρ(x, t) and 4-velocity

ui(x, t) =
(1 , v(x, t)/c )√
1− v2(x, t)/c2

, uiu
i = 1. (1.11)

4Energy-momentum tensors are not uniquely defined, and different situations may require different defini-
tions. An example of this is the dielectric media (not considered here), where different experiments demand
different forms of this tensor [49].
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The comoving frame mass density and charge density read, respectively (omitting (x, t)):

µ0 = µ
√

1− v2/c2, ρ0 = ρ
√

1− v2/c2. (1.12)

Dealing with a continuous matter allows us to postpone the treatment of infinities related to

point particles.

The mass and charge conservation read, respectively

∂k(µ0u
k) = ∂kJ

k = 0, Jk ≡ cρ0u
k. (1.13)

where Jk is the charge current. Equations of motion for matter+EMF in the gauge (1.10)

read [11,44] 5:

∂k∂
kAi =

4π

c
J i, (1.14)

µ0c
2 dui

ds
≡ µ0c

2ul∂lu
i =

1

c
F ikJk, (1.15)

where F ik = ∂iAk − ∂kAi, and s/c is the proper time.

The energy-momentum of matter reads [11]

τ k
i = c2µ0 ui u

k, (1.16)

where the pressure has been neglected. Eq. (1.15) implies

∂kτ
k
i =

1

c
JkFik. (1.17)

We now deduce a conserved energy-momentum tensor Tik from (1.13–1.17). Guided by

the analogy with a free scalar, massless field ϕ whose energy-momentum tensor is ∝ ∂iϕ∂kϕ−
5Eqs. (1.14, 1.15) are normally obtained via (1.10). But one can employ (1.14) and (1.13) for deriving the

Lorenz gauge (1.10) [70–72].

27



1
2
gik∂lϕ∂

lϕ [62], we suggest

Tik = T ik + τ ik +
1

c
AiJk, (1.18)

T ik = − 1

4π
∂iAl ∂

kAl +
1

8π
gik ∂nAm ∂

nAm, (1.19)

where (1.19) is the energy-momentum tensor of the free EMF, τ ik is given by (1.16), and

1
c
AiJk in (1.18) is due to the interaction. Eqs. (1.13–1.17) lead to 4 conservation laws

∂kTik = ∂0Ti0 + ∂αTiα = 0. (1.20)

Eqs. (1.20, 1.18) imply that T00 is the energy density

T00 = − 1

4π
∂0Al∂

0Al +
1

8π
∂nAm∂

nAm (1.21)

+
c2µ√

1− v2/c2
+ ρφ. (1.22)

Eq. (1.21) is the energy density of EMF, while (1.22) amounts to the energy of the matter

that consists of kinetic and the interaction term. The latter will be shown to be the particle’s

potential energy in section 1.4. The possibility of this interpretation is confirmed by the form

of energy current:

cT0α = − c

4π
∂0Al∂

αAl (1.23)

+ (
c2µ√

1− v2/c2
+ ρφ)vα, (1.24)

where (1.23) is the energy current of EMF.

Eq. (1.19) for the free EMF was previously derived from the Fermi’s Lagrangian [62,70,73];

see section 1.7. Eqs. (1.21–1.24) were discussed in [61] as alternatives to standard expressions

(i.e. the Poynting vector), but were not derived from a consistent energy-momentum tensor.

Various proposals for the energy flow of (free) EMF are given in [95–100]. Their general

drawback is that they do not start from a consistent energy-momentum tensor.

All above expressions-including Tik-that contain Ai (in the Lorenz gauge (1.10)) are gauge-

28



invariant, because Ai can be expressed via F ik = ∂iAk − ∂kAi [58]:

Ai(x) = ∂k

∫
d4x′ G(x− x′)F ki(x′), (1.25)

∂k∂
kG(x− x′) = δD(x− x′), (1.26)

G(x− x′) =
1

2π
θ(x0 − x′0)δD((xi − x′i)(xi − x′i)), (1.27)

where G(x, x′) is the retarded Green’s function, x ≡ (ct,x), x′ ≡ (ct′,x′), θ(x0 − x′0) =

θ(ct − ct′) is the step function, and δD(x) is the Dirac’s delta-function. Eq. (1.25) relates to

the retarded solution of (1.14). Its derivation from (1.26) is straightforward, e.g. by employing

(1.10) in F ik and integrating by parts.

The main reason for introducing Tik is to verify that the potential energy ρφ can emerge

from a consistent energy-momentum tensor; the standard energy-momentum tensor of EMF

does not allow such an interpretation; see section 1.6. Without a potential energy we cannot

define the thermodynamic work via (1.1, 1.2); cf. the discussion around (1.8).

Both (1.18) and the standard tensor lead to the same expressions for energy (and momen-

tum) of the matter+EMF [see 2.2]:

∫
d3x

[
E2 +B2

8π
+ τ 00

]
=

∫
d3xT00, (1.28)

where the integration over the full 3-space is taken (assuming that all fields nullify at infinity),

E2+B2

8π
is the Larmor’s electromagnetic enegy density expressed via the electromagnetic field

(E,B) (it follows the standard energy-momentum tensor [11]), and τ 00 = c2µ√
1−v2 is the kinetic

energy density for the matter; see (1.16, 1.12). The same τ 00 enters also T00; cf. (1.21, 1.22).

Thus whenever only the total energy matters, T00 agrees with the standard predictions (1.28).

However, generally the density E2+B2

8π
is not equal to T 00 given by (1.19). Differences and

similarities between (1.18) and the standard energy-momentum tensor of EMF are discussed

in sections 1.6 and 2.2; e.g. for spherical waves (1.19) produces the same expression as the

standard tensor.

Note that the free EMF tensor (1.19) is symmetric, T ik = T ki, as it should, because
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this ensures the known relation between the energy current cT 0α and the momentum density

Tα0 = T 0α; cf. (1.23). But the full tensor (1.18) is not symmetric, Tik 6= Tki, due to the

EMF-matter coupling. Section 1.8 discusses the meaning of this asymmetry and relates Tik to

the angular momentum and spin tensor. These relations are necessary to establish, because

the angular momentum is employed for explaining the energy of EMF [12,74,95–100].

1.3 Two point-particles without self-interactions

For two point particles P and P′ we take in (1.12–1.15):

µ(r, t) = mδD (r − x(t)) +m′δD (r − x′(t)) , ρ(r, t) = eδD (r − x(t)) + e′δD (r − x′(t)) ,

(1.29)

where x(t), e and m are the trajectory, charge and mass of P (resp. for P′), and where

δD is the delta-function. It is known that for point particles equations of motion (1.15) and

energy-momentum tensor are not well-defined, since they contain diverging terms [11,44]. One

needs to renormalize the masses by infinitely large counter-terms [44]. The next-order (finite)

terms refer to the self-force that includes the back-reaction of the emitted radiation [11,44].

For clarity, we first focus on the point-particle case, where the self-force is neglected, but

the situation is still relativistic, i.e. retardation effects are essential [75–83]. In this situa-

tion particles influence each other via the Lorentz forces generated by the Lienard-Wichert

potentials; see section 1.9.

A sufficient condition for neglecting the self-force is that the characteristic lengths are

larger than the “classical radius” [11,75–79]

max[
e2

mc2
√

1− v2/c2
,

e′2

m′c2
√

1− v′2/c2
]. (1.30)

Section 1.9 recalls how to get equations of motion for point particles from (1.15) by selecting

in (1.14) retarded solutions, and relates them to the tensor (1.18).

We focus on the 1D situation, where the particles P and P′ move on a line, since their
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initial velocities were collinear. We checked that physical results obtained in sections 1.4 hold

as well for the full 3D situation, but the 1D case is chosen for its relative simplicity. For all

times t1 and t2, we set for the coordinates of P and P′ (respectively)

x(t1) ≤ x′(t2). (1.31)

We denote for the delays δ(t) and δ′(t) that emerge due to retarded interactions:

cδ(t) ≡ x′ − x(t− δ(t)), (1.32)

cδ′(t) ≡ x′(t− δ′(t))− x, (1.33)

and introduce dimensionless velocities: ω ≡ ẋ/c, ω′ ≡ ẋ′/c. The equations of motion read

[see 1.9]

ω̇(t) = [1− ω2(t)]3/2
(
−ee′

mc3

)
1

δ′2(t)

1− ω′(t− δ′(t))
1 + ω′(t− δ′(t))

, (1.34)

ω̇′(t) = [1− ω′2(t)]3/2
(
ee′

m′c3

)
1

δ2(t)

1 + ω(t− δ(t))
1− ω(t− δ(t))

, (1.35)

δ̇′(t) =
ω′(t− δ′(t))− ω(t)

1 + ω′(t− δ′(t))
, (1.36)

δ̇(t) =
ω′(t)− ω(t− δ(t))

1− ω(t− δ(t))
. (1.37)

The factor δ′−2(t) in (1.35) is the retarded Coulomb interaction; cf. (1.32). Eqs. (1.34–1.37)

were considered in [75,80,84,85], and from a mathematical viewpoint in [82,86–89]. But the

energy exchange was not studied.

Eqs. (1.34–1.37) are delay-differential equations due to the retardation of the inter-particle

interaction. Their initial conditions are not trivial [81, 87–91]. We focus on the simplest

scenario, where the two-particle system is prepared via strong external fields for t < 0 [86,90].

These fields do not enter into (1.34–1.37) and they are suddenly switched off at the initial

time t = 0. They define (prescribed) trajectories of the particles for t < 0. For simplicity we
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shall take them as

x(t) = ω0 c t, x′(t) = ω′0 c t+ l0, l0 > 0, t ≤ 0, (1.38)

where ω0, ω′0 and l0 are constants. Eqs. (1.32, 1.33, 1.38) imply

δ(0) =
l0/c

1− ω0

, δ′(0) =
l0/c

1 + ω′0
. (1.39)

Conditions (1.38, 1.39) do determine uniquely the solution of (1.34–1.37) for t > 0 [82,83,86,

90]. An iterative method of solving (1.34–1.37) is described in section 1.10.

1.4 Work and the first law

1.4.1 Formulation of the first law

The standard (non-relativistic) work has two aspects: the kinetic energy change of the

work-source (a heavy body whose motion is only weakly perturbed by the interaction) 6,

and the energy change of the lighter particle; cf. the discussion around (1.3). The equality

between them is the message of the first law (in the thermally isolated situation, when no

heat is involved) [1, 4, 8]. The task of identifying two aspects of work will be carried out for

the relativistic dynamics (1.34–1.37). To make P′ a source of EMF whose motion is perturbed

weakly, we assume that it is much heavier than P:

m′ � m. (1.40)

In practice, m′/m ' 5− 10 already suffices; see below.
6If the work-source in subject to an external potential, the latter will add to the kinetic energy.
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The energy E of P is defined via (1.4) in the Lorenz gauge, or with help of (1.22):

E(t) =
mc2√

1− ω2(t)
+ eφ′(x(t), t)

=
mc2√

1− ω2(t)
+

ee′

cδ′(t)[1 + ω′(t− δ′(t))]
, (1.41)

where φ′(x(t), t) is the Lorenz-gauge scalar potential generated by P′; see (1.32, 1.33) and

section 1.9.

The change of E reads:

∆t2|t1E ≡ E(t2)− E(t1). (1.42)

The kinetic energy change of P′ is

∆t2|t1K
′ ≡ K ′(t2)−K ′(t1), (1.43)

K ′(t) ≡ m′c2/
√

1− v′2/c2. (1.44)

We validate below that under reasonable conditions |∆t2|t1E + ∆t2|t1K
′| can be negligible,

and hence the thermodynamic work can be defined via ∆t2|t1E, or via the gauge-invariant

−∆t2|t1K
′:

W = −∆t2|t1K
′, if (1.45)

|∆t2|t1E + ∆t2|t1K
′| � |∆t2|t1E|, |∆t2|t1K

′|. (1.46)

Eq. (1.46) can be interpreted as an approximate conservation law ensuring the energy transfer

between P and P′. The validity of (1.46) confirms that eφ′(x, t) is the time-dependent potential

energy for P. Defining the work via the kinetic energy of P′ is consistent the fact that this

energy can be fully transferred to heat [28], e.g. by stopping the particle by a static target.

Eqs. (1.45, 1.46) amount to the first law. Importantly, (1.45, 1.46) are written in finite

differences: in the relativistic situation the energy transfer does take a finite time, since the

energy has to pass through the EMF. Hence (1.46) cannot hold for a small |t2 − t1|.
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Note that, as implied by (1.35), there is only the Lorentz force acting on P′. Hence the

kinetic energy differece (1.43) can be also recovered as the (time-integrated) mechanic work

done by the Lorentz force acting on P′.

Recall the non-relativistic situation, where two particles interact directly via the Coulomb

potential. There we have an exact relation (conservation of energy)

mv2(t)

2
+

ee′

|x′(t)− x(t)|
= −m

′v′2(t)

2
+ const. (1.47)

If (1.40) holds, the left-hand-side of (1.47) is identified with the time-dependent Hamiltonian

of P, and we get an exact correspondence between the two aspects of work; cf. the discussion

around (1.3). But since (1.47) is a non-relativistic relation, it implies an instantaneous transfer

of energy, hence it is written as a conservation relation that holds at any time.

The quantities in (1.42, 1.43) are calculated-in the considered lab-frame-at the same times

(t2 and t1, respectively), but at different coordinates. Though events that are simultaneous

in one reference frame will not be simultaneous in another, the relativity theory does employ

such reference frame-specific quantities, the length being the main example [92, 93].

Since the correct expression of the first law is open, we tried to use instead of E and K ′

in (1.45, 1.46) other quantities, e.g. (resp.) K(t) = mc2/
√

1− v2/c2 and E ′(t), where E ′(t)

is the analogue of (1.41) for P′

E ′(t) =
m′c2√

1− ω′2(t)
+ e′φ(x′(t), t)

=
m′c2√

1− ω′2(t)
+

ee′

cδ(t)[1− ω(t− δ(t))]
. (1.48)

In contrast to (1.46), this choice (as well as several other choices) did not lead to a sufficiently

precise conservation law, i.e. |∆t2|t1E
′ + ∆t2|t1K| is not negligible; see below.

1.4.2 Numerical validation

We studied (1.34–1.37) numerically. Figs. 1.1–1.4 show four representative examples.

Figs. 1.1 refer to repelling P and P′ that start to move from a fixed distance, with zero
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Figure 1.1: Repulsive motion with initially zero velocities. The curves are obtained via self-
consistent solution of (1.34–1.39) for m = 5, m′ = 50, ee′ = c = 1, l0 = 5, ω0 = ω′0 = 0.
(a) The energy difference ∆t|0E of the light particle (red) and the sum ∆t|0(E + K ′) of this
energy and the kinetic energy K ′ of the heavy particle (green); cf. (1.45, 1.46).
(b) ∆t|0(E+K ′) (green) and ∆t|0(K +E ′) (brown). The former quantity is conserved better.
(c) The velocity ω(t) (ω′(t)) of the light (heavy) particle is shown by red (black) curve.
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velocities for t ≤ 0, i.e. ω0 = ω′0 = 0 in (1.38). (Here the full 3d case reduces to the considered

1d situation.)
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Figure 1.2: Attractive motion with initially zero velocities and ee′ = −1, c = 1, l0 = 10,
m = 10, m′ = 50, ω0 = ω′0 = 0; cf. (1.34–1.39). The inter-particle distance at the final time
x′(100)− x(100) = 1.2219.
(a) ∆t|0E (red) and ∆t|0(E +K ′) (green).
(b) ω(t) (red) and ω′(t) (black); cf. Figs. 1.1(a)–1.1(c).

Figs. 1.2 describe a classical analogue of the annihilation process: two attractive particles

P and P′ fall into each in a finite time; their evolution again starts from a fixed distance and

with zero velocities.
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Figure 1.3: Repulsive motion: one particle (P′) falls into another (P) that is at rest initially:
ee′ = 1, c = 1, l0 = 100, m = 10, m′ = 50, ω0 = 0, ω′0 = −0.4; cf. (1.34–1.39). The minimal
inter-particle distance x′(t)− x(t) = 1.2287 is reached at t = 255.87.
(a) ∆t|0E (red) and ∆t|0(E +K ′) (green).
(b) ω(t) (red) and ω′(t) (black).

Figs. 1.3 show a scattering process of repelling particles: P′ runs on P which is at rest

initially. For scattering processes-where particles are free both initially and finally-(1.34–1.37)

predict elastic collision, if conditions discussed around (1.30) hold, i.e. the radiation reaction

can be neglected.

Figs. 1.4 show a specific elastic collision, where no energy transfers takes place between

initial and final (asymptotically-free) states, but there is a non-trivial work-exchange at in-

termediate times.
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Figure 1.4: Scattering of particles with ee′ = 1, c = 1, l0 = 200, m = 5, m′ = 50, ω0 = 0.1,
ω′0 = −0.0100499; cf. (1.34–1.39). The parameter are chosen such that the initial (and the
final) kinetic momentum is zero: mω0/

√
1− ω2

0 + m′ω′0/
√

1− ω′20 = 0. The minimal inter-
particle distance x′(t)− x(t) = 30.57 is reached at t = 1944.13.
(a) Red (upper) curve ∆t|0E. Green (lower) curve: ∆t|0(E +K ′); cf. Fig. 1.1(a).
(b) Green (lower) curve: ∆t|0(E +K ′). Brown (upper) curve: ∆t|0(K + E ′).

Figs. 1.1(a), 1.1(b), 1.2(a), 1.3(a), 1.4(a) and 1.4(b) show that (1.46) holds with a good

precision provided that t2− t1 is sufficienly large. Everywhere we assume (1.40): Figs. 1.1(c),

1.2(b) and 1.3(b) demonstrate that even for modestly large values of m′

m
the motion of P′ is

weakly perturbed by P.

The definition of work is clarified via Figs. 1.1(b) and 1.4(b): they show that E +K ′ is a

better conserved quantity than K ′ + E; cf. (1.42, 1.43). Hence the definition (1.45, 1.46) is

selected by the approximate conservation law argument.

Figs. 1.1(a), 1.1(b) and 1.2(a) show that for a range of initial times E is strictly conserved.

Hence (1.46) does not hold and no work can be defined via (1.45). This relates to the fact
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that for parameters of Figs. 1.1 and 1.2 the particles P and P′ have zero velocities for t < 0;

cf. (1.38). Due to retardation each particle sees a fixed neighbor for some initial time. This

leads to conservation of E for those times. Thus, this example illustrates the causal behavior

of work, a desirable feature ensured by the Lorenz gauge. It is absent for the Coulomb gauge

(1.9), where φC propagates instantaneously. This example also shows that the work cannot

be defined only via (1.45).

Another scenario for violating (1.46) is seen for attracting particles that approach each

other closely; see Fig. 1.2(a). Now the inter-particle distance becomes comparable with (1.30).

Hence the self-force cannot be neglected, and the considered dynamics is not applicable.

For the elastic collision displayed in Figs. 1.4 the initial overall kinetic momentum is zero

p(0) + p′(0) = 0. Hence it is zero also finally and there is no overall energy transfer. But

Fig. 1.4(a) shows that the work is non-trivial at intermediate times: first the work flows from

P′ to P, and then goes back by the same amount.
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1.5 Gauge-freedom of non-relativistic time-dependent Hamil-

tonian

The Hamiltonian (1.1) can be deduced from a Lagrangian L(x, ẋ; t) via [11,44]

H(x, π; t) = πẋ− L, π ≡ ∂ẋL. (1.49)

The Lagrange equations stay intact if instead of L one uses another Lagrangian L̂:

L̂ = L+
dχ(x, t)

dt
,

dχ(x, t)

dt
= ẋ∂xχ+ ∂tχ, (1.50)

The corresponding Hamiltonian

Ĥ(x, π̂; t) = H(x, π; t)− ∂tχ(x, t), (1.51)

differs from (1.49) by a factor that is formally similar to the scalar potential φ(x, t) in (1.4).

Hence formally the time-dependent Hamiltonian is not defined uniquely.

For the considered non-relativistic situation this non-uniqueness is straightforward to re-

solve: one finds the time-independent (non-relativistic!) Hamiltonian for the particle and the

work-source together, e.g.

Htot(x, π; f, πf ) = H(x, π; f) +Hsource(f, πf ), (1.52)

where πf and f are the canonical momentum and coordinate of the work-source. No issue

similar to (1.51) arises in (1.52), because (1.52) is time-independent (one can still add to

(1.52) a constant). Then the physical time-dependent Hamiltonian for the particle is found

by neglecting its backreaction onto the source: H(x, π; t) = H(x, π; f(t)).
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1.6 Standard forms of the energy-momentum tensor

Two versions of the energy-momentum tensor of electromagnetic field (EMF) are known

in literature [11,44]

T ik =
1

4π
(−F ilF k

l +
gik

4
FlmF

lm), (1.53)

T̃ ik =
1

4π
(−∂iAl F k

l +
gik

4
FlmF

lm), (1.54)

Fik ≡ ∂iAk − ∂kAi. (1.55)

T̃ ik is deduced from the standard Lagrangian of EMF [11]; see (1.66, 1.69) in section 1.7.

T ik is obtained from T̃ ik via the so called Belinfante method that renders a symmetric and

explicitly gauge-invariant expression [11].

1. First we focus on comparing (1.53) with (1.18, 1.19), because (1.53) is widely accepted

as the correct energy-momentum tensor. Then we turn to discussing (1.54).

1.1 Eq. (1.53) does not allow to introduce potential energy for particles [cf. (1.22, 1.24)],

because the full conserved energy-momentum tensor of the EMF+matter is defined as [cf.

(1.16)] [11]

T ik + τ ik, ∂k(T ik + τ ik) = 0. (1.56)

Hence according to (1.53, 1.56) the matter has only kinetic energy, as can be verified in detail

by working out (1.53) analogously to (1.21–1.24). This is why (1.53) indirectly supports the

choice of the temporal gauge φ = 0.

1.2 Recall that according to (1.53), T 00 ∝ E2 +B2 is energy density, and

cT 0α = − c

4π
(∂0Aβ − ∂βA0)(∂αAβ − ∂βAα)

=
c

4π
E ×B (1.57)

is the energy current (Poynting vector), and T α0 is the momentum density.

The Poynting vector is non-zero also for time-independent fields. This is a known con-
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troversy in the standard definition of the EMF energy current: stationary fields-e.g. created

by a constant change and permanent magnet, which do not require any energy cost for their

maintenance|would lead to permanent flow of energy and constant field momentum [12,74,94].

In contrast, (1.23) is zero for time-independent fields [61]. This is an advantage.

We are not aware of direct experimental results which would single out a unique expres-

sion for EMF energy current [12, 94–100]. Some experiments point against the universal

applicability of the Poynting vector for the EMF energy flow [102].

1.3 Eq. (1.53) does not allow a clear-cut separation between the orbital momentum and

spin of EMF. Indeed, due to T ik = T ki, we get for a free EMF [11]

∂kMk
lm = 0, Mk

lm ≡ xmT k
l − xlT k

m . (1.58)

NowMk
lm is conserved, but it has the form of orbital momentum; sometimes it is also inter-

preted as the full angular momentum leaving unspecified the separate contributions of orbital

momentum and spin [11] 7. In contrast, (1.18, 1.19) lead to well-defined expressions for the

angular momentum and spin that are conserved separately for a free EMF; see section 1.8.

This section also explains that when EMF couples to matter only the sum of the full orbital

momentum (including that of matter) and the EMF spin is conserved.

1.4 Eq. (1.53) and (1.18, 1.19) lead to the same predictions for the (space-integrated)

conserved quantities. Indeed, using the Lorenz gauge (1.10) and the equation of motion

(1.14) for Ai we get from (1.53, 1.18):

T ik + τ ik − Tik =
1

4π
∂lB

ikl, (1.59)

Bikl ≡ Ak∂iAl + Ai∂kAl − Ai∂lAk − gik

2
Am∂

mAl.

(1.60)

Note that (1.59) is not the usual freedom associated with the choice of the energy-momentum

tensor [11]. That freedom amounts to Bikl = −Bilk, which clearly does not hold with (1.60).
7Such quantities can be introduced at the level ofMk

lm; see e.g. [50]. But this introduction is ad hoc; cf.
(1.78, 1.77, 1.73, 1.75).
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Relations ∂k[T ik + τ ik] = ∂kTik = 0 amount to conservation of
∫

d3x [T i0 + τ i0] and∫
d3xTi0 in time. More generally, such a conservation law may be absent, e.g. when some

non-electromagnetic forces act on the matter.

At any rate, we want to show that T ik+τ ik and Tik do predict the same values for the full

(space-integrated) energy-momentum of the matter+EMF. To this end, consider from (1.59,

1.60) the difference of the two predictions:

∫
d3x [T i0 + τ i0]−

∫
d3xTi0

=
1

4π
∂0

∫
d3xBi00 +

1

4π

∫
d3x ∂αB

i0α. (1.61)

The second term in (1.61) contains full space-derivatives and amounts to zero under standard

boundary conditions. Also, Bi00 amounts to full space-derivatives,

Bα00 =
1

2
∂α[A0A0], B000 = −1

2
∂α[AαA0], (1.62)

where we used the Lorenz gauge condition (1.10). Hence (1.62) implies that
∫

d3xBi00 = 0.

Thus, we get from (1.61)

∫
d3x [T i0 + τ i0] =

∫
d3xTi0. (1.63)

1.5 Eq. (1.53) predicts a non-negative expression

T 00 =
1

8π
(E2 +B2) (1.64)

for the energy density of EMF [11]. In contrast, according to (1.18) the energy density of EMF

is generally not positive. It is positive for stationary fields, and it is positive for a radiation

emitted by a point particle, where (1.18) and (1.53) agree with each other; see section 2.2. The

non-positivity should not be regarded as a drawback, e.g. because once for point particles the

diverging terms for (1.53) are renormalized away, the energy density of EMF is not anymore

strictly positive.
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1.6 Another difference between (1.53) and (1.18) for a free EMF is that the zero-trace

relation T ii = 0 is always true, while T ii is generally not zero; cf. (1.19)]. Now T ii = 0 is

generally related to the zero mass of photon. For photons we also get that T ii = 0; see section

2.2. However, it is not generally true that a superposition of two or more photons (e.g. bi-

photon) has a zero-mass; see e.g. [103]. Physically, this means that we should not expect the

zero-trace relation for an arbitrary EMF.

2. We now turn to discussing the features of (1.54).

2.1 Eq. (1.54) is non-symmetric even for the free EMF. Hence the desired relation between

the energy current and momentum density is generally violated: T̃ 0α 6= T̃ α0. This is not

physical.

2.2 The symmetry of (1.54) for a free EMF also means that if one introduces the orbital

momentum as M̃k
lm ≡ xmT̃ k

l − xlT̃ k
m , it is generally not conserved: ∂kM̃k

lm 6= 0. This is not

physical.

2.3 Eq. (1.54) is neither explicitly gauge-invariant, nor it allows to single out any specific

gauge 8.

2.4 Eq. (1.54) relates to the following energy-momentum tensor for EMF+matter:

∂k(T̃ ik + τ ik +
1

c
AiJk) = 0. (1.65)

This follows from T̃ ik = T ik− 1
4π
∂lAi F k

l [see (1.53, 1.54)] and from (1.56). Comparing (1.65)

with (1.18), we see that (1.65) predicts analogues of (1.22, 1.24), but without singling out the

Lorenz gauge (1.10).
8This point can be reformulated as follows [50]. It is based on separating the full potential Ai into a physical

(i.e. gauge-invariant) part and the pure gauge: Ai = Aphys
i + Apure

i , where Apure
i = ∂iχ [50]. Expectedly, the

modified (i.e. gauge-invariant) analogue of (1.54) is given by the same expression, where Al → Al phys. The
modified expression is now gauge-invariant, but is still not unique, because now there is a freedom in choosing
Aphys

i .
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1.7 Fermi’s Lagrangian for free EMF

The purpose of this section is to derive (1.19) from the Fermi’s Lagrangian for a free

classical electro-magnetic field (EMF) [62,70,73]. The standard Lagrangian reads

L = − 1

16π
FikF

ik, Fik ≡ ∂iAk − ∂kAi. (1.66)

where Ai = (φ,A) is the 4-potential.

For the Lorenz gauge (1.10), an alternative Lagrangian was proposed by Fermi [62,70,73].

It is obtained from (1.66) upon using (1.10) and neglecting full derivatives

L = − 1

8π
∂iAk∂

iAk. (1.67)

The equations of motion ∂k ∂L
∂[∂kAi]

= ∂L
∂Ai

are

∂k∂
kAi = 0, (1.68)

which are consistent with the Lorenz gauge (1.10). The latter is to be considered as a condition

imposed on (1.67).

Given (1.67) and recalling the standard expression for the the energy-momentum tensor

[11,62]

T k
i = ∂iAl

∂L

∂[∂kAl]
− Lδki , (1.69)

we obtain from (1.67):

T k
i = − 1

4π
∂iAl ∂

kAl +
1

8π
δki ∂nAm ∂

nAm, (1.70)

where δki is the Kroenecker delta. Eqs. (1.70, 1.68) show that the tensor is symmetric and
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holds energy-momentum conservation

Tik = Tki, (1.71)

∂kT
k
i = 0. (1.72)

The invariance of a Lagrangian under rotations implies the following general relation

between the energy-momentum tensor and angular momentum tensor [62]:

Mk
lm = xmT

k
l − xlT k

m + Sklm, (1.73)

Sklm =
∂L

∂[ ∂kAm ]
Al −

∂L

∂[ ∂kAl ]
Am, (1.74)

where T k
l is given by (1.69), Sklm is the internal angular momentum (spin), while xmT k

l −xlT k
m

is the orbital momentum. Using (1.67) we obtain for the spin tensor [62, 70]

Sklm = − 1

4π

(
Al ∂

kAm − Am ∂kAl
)
. (1.75)

Employing (1.68, 1.71, 1.72) we get that the angular momentum and spin tensor are conserved

separately [62,70]:

∂kM
k
lm = ∂kS

k
lm = 0, (1.76)

as should be for a free field. The symmetry (1.71) is crucial for the existence of two separate

conservation laws (1.76).

The standard approaches to the energy-momentum tensor of EMF are recalled in section

1.6. The spin and orbital momentum of EMF is reviewed in [50,104]

1.8 Angular momentum

Here we shall connect the energy-momentum tensor Tik to the angular momentum tensor.

It is seen from (1.18) that Tik is not symmetric: Tik 6= Tki. This asymmetry has a physical
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meaning and it relates to the spin of EMF 9. Recall the following general relation between

the orbital momentum tensor Ok
lm and energy-momentum tensor Tik [11, 62]

Ok
lm = xmT k

l − xlT k
m . (1.77)

The orbital momentum of matter is already included into Ok
lm. Due to Tik 6= Tki, the orbital

momentum is not conserved: ∂kOk
lm 6= 0. This is natural, since it is the full angular momentum

Mk
lm = Ok

lm + Sklm (orbital+spin of EMF) that should be conserved. We can thus deduce the

spin tensor Sklm from the conservation law

∂kMk
lm = ∂k

(
Ok
lm + Sklm

)
= 0. (1.78)

Eqs. (1.13–1.78) and the fact that Sklm should be a quadratic function of Ai imply

Sklm = − 1

4π

(
Al ∂

kAm − Am ∂kAl
)
. (1.79)

This expression has formally the same shape as the spin tensor derived in [62, 70] for a free

EMF via the Fermi’s Lagrangian; see section 1.7.

Hence the matter-field coupling leads (as expected) to exchange (1.78) between the orbital

momentum and the spin. If this coupling is absent, then Tik is symmetric; hence Ok
lm and

Sklm are conserved separately. These two points-conservation of Ok
lm +Sklm under matter-EMF

coupling and separate conservation of Ok
lm and Sklm for free EMF|are specific features of (1.78–

1.79) that distinguish it from other proposals for angular momentum of EMF; see [50, 104]

for a review of those proposals.

1.9 Derivation of (1.34–1.37)

Consider two interacting point particles P and P′; we denote their parameters by primed

and unprimed letters. In (1.13, 1.15), the current Jk divides into two contributions, each of
9A non-symmetric energy-momentum tensor implies a generalized gravity; see, e.g. [105–107] for examples

of such theories.
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them is conserved separately

Jk = jk + j′k, ∂kj
k = ∂kj

′k = 0. (1.80)

The EMF field Ak in (1.14, 1.15) also divides into two parts:

Ak = ak + a′k, ∂ka
k = ∂ka

′k = 0, (1.81)

∂i∂
iak =

4π

c
jk, ∂i∂

ia′k =
4π

c
j′k. (1.82)

Hence ak (a′k) is created by jk (j′k).

Equations of motion for P and P′ are deduced from (1.15) noting that the self-interaction

is neglected and the point-particle limit is taken; cf. (1.29)These equations read [75–83]:

mc2 duk

ds
= eulf

′kl, m′c2 du′k

ds′
= e′u′lf

kl, (1.83)

where

fkl = ∂kal − ∂lak, f ′kl = ∂ka′l − ∂la′k, (1.84)

ds = cdt
√

1− v2/c2, ds′ = cdt
√

1− v′2/c2. (1.85)

Thus the following (self-interaction-excluded) energy-momentum tensor is conserved [cf. (1.18)]

∂kT̃ik = 0, (1.86)

T̃ik = − 1

4π
[ ∂ial ∂

ka′l + ∂ia′l ∂
kal − gik∂nam∂na′m]

+τ ik + τ ′ ik +
1

c
aij′k +

1

c
a′ijk, (1.87)

where τ ik and τ ′ ik are the energy-momentum tensors of P and P′; see (1.16).

As usual, we shall select the retarded (Liénard-Wiechert) solutions of (1.82); see [11, 44]

and section 2.2. In contrast to Tik that diverges in the point-particle limit, T̃ik is already a

convergent tensor, i.e. the energy of EMF and particles can be calculated via
∫

d3x T̃00(t,x).
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We focus on the 1D situation, where the particles P and P′ move on a line; see (1.31).

The retarded solutions for ai = (φ,A) and a′i = (φ′, A′) in (1.82) read [11]:

φ(x′, t) =
e

[x′ − x(t− δ)][1− ω(t− δ)]
, (1.88)

A(x′, t) =
eω(t− δ)

[x′ − x(t− δ)][1− ω(t− δ)]
, (1.89)

φ′(x, t) =
e′

[x′(t− δ′)− x][1 + ω′(t− δ′)]
, (1.90)

A′(x, t) =
e′ω′(t− δ′)

[x′(t− δ′)− x][1 + ω′(t− δ′)]
, (1.91)

where the delays δ(t) and δ′(t) hold

cδ(t) = x′ − x(t− δ(t)), (1.92)

cδ′(t) = x′(t− δ′(t))− x. (1.93)

To derive the equations of motion from (1.83, 1.88–1.93) recall that fkl [f ′kl] in (1.83) is

taken at x′ = x′(t) [x = x(t)]:

ṗ(t) = −ee′ 1− v
′(t− δ′)/c

1 + v′(t− δ′)/c
1

[x(t)− x′(t− δ′)]2
, (1.94)

ṗ′(t) = ee′
1 + v(t− δ)/c
1− v(t− δ)/c

1

[x′(t)− x(t− δ)]2
, (1.95)

where

p = mv/
√

1− v2/c2, p′ = mv′/
√

1− v′2/c2, (1.96)

v(t) = ẋ(t) ≡ c ω(t), v′(t) = ẋ′(t) ≡ c ω′(t). (1.97)

We get (1.34–1.37) from (1.92–1.97).

1.10 Solving self-consistently delay-differential equations

1. Let us explain how to solve (1.34–1.38). The method described below was first suggested
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in [75]; see also [80] for a recent discussion.

We start with an initial function ω′0(t) that holds ω′0(t ≤ 0) = ω′0; cf. (1.38). Then (1.34,

1.36) become ordinary differential equations for ω(t) and δ′(t). They are solved for t > 0

with initial conditions ω(0) = ω0 and δ′(0) from (1.39); cf. (1.38). The solution is denoted by

ω0(t). This function is extended to t < 0 via (1.38): ω0(t < 0) = ω0.

Next, ω0(t) is put into (1.35, 1.37), and these equations are solved for t > 0, ω′(0) = ω′0

and δ(0) from (1.39). The solution ω′1(t) is again extended to t < 0 via (1.38): ω′1(t < 0) = ω′0.

Iterations are continued till convergence.

2. We turn to solving (1.36, 1.37).

Now the initial function x′(t) = x′0(t) is defined for t < tf). For solving (1.36) we need to

know δ′(tf). It is found from (1.33), i.e. from

cδ′0(tf) = x′0(tf − δ′(tf))− x(tf). (1.98)

Hence this initial condition will change from iteration to another. Now (1.36) can be solved

as ordinary differential equations backward in t from tf to some Ti � tf . Then the solution

is continued to t < Ti by assuming that ω(t) = ω(Ti) for t < Ti. This assumption is needed,

because it is impossible to integrate numerically from tf till −∞. Effectively, this means that

the particles did not interact in the remote past; or (alternatively) that they interacted so

strongly that ω(t) = v(t)/c ' 1 for t < Ti.

Overall, the solution defines x0(t) with which we repeat the above step for (1.37), e.g.

x0(t) is put into (1.37), and now we have instead of (1.98): cδ0(tf) = x′(tf) − x0(tf − δ0(tf)).

The backward solution of ordinary-differential (1.37) is continued as ω′(t) = ω′(Ti) for t < Ti.

Once iterations converged, we assure by direct replacement that (1.36, 1.37) do hold for

Ti � t < τ .
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Chapter 2

Work in the presence of self-interaction 1

2.1 Two-particle retarded interaction in the presence of

self-interaction

Consider two points particles P and P′-with charges e, e′ and masses m, m′-interacting via

EMF. Let us denote their trajectories and velocities as, respectively, x(t), x′(t) and v = ẋ(t),

v′ = ẋ′(t), where dotes mean time-derivatives. We employ xi(t) = (t,x), x′i(t) = (t,x′) and

metric gik = diag[1,−1,−1,−1]. The equations of motion read [11,44]

m
duk

ds
= eul F

′kl +
2e2

3
[
d2uk

ds2
+

dul

ds

dul
ds

uk], m′
du′i

ds′
= e′u′l F

kl +
2e′2

3
[
d2u′k

ds′2
+

du′l

ds′
du′l
ds′

u′k],(2.1)

where ds =
√

1− v2dt, ds′ =
√

1− v′2dt, uk = dxk/ds, u′k = dx′k/ds′, F ′kl = ∂kA′l − ∂lA′k,

F kl = ∂kAl−∂lAk. Now Ai is the potential generated by P, ∂i∂iAk(t,x) = 4πe ẋk δD(x−x(t))

(δD is the Dirac’s delta function), in the Lorenz gauge: ∂iAi = 0. The retarded solutions

reads,see next section.

Ak(t,x) = e ẋk /(|R| −Rv), (2.2)
1The results considered in this chapter are published in Ref. [179].
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In (2.2) all quantities are taken at the time t̂ that is determined from the retardation condition

|R| ≡ |x − x(t̂)| = t − t̂. A′i is obtained from (2.2) by changing the non-primed quantities

to the primed ones. The term ∝ 2e2

3
in (2.1) is the self-force that includes the radiation

reaction. This is the exact expression of the self-force in the point-particle limit, i.e after

the renormalization of masses [11, 44, 108]. The term ∝ dul

ds
dul
ds

in the self-force is the Larmor

rate [11,44,108].

Let two particles P and P′ move on a line. This situation is realized if their initial velocities

are collinear. We set for the coordinates of P and P′: x(t1) ≤ x′(t2) for all t1 and t2. Equations

of motion read from (2.1, 2.2)

v̇(t)

[1− v2]3/2
= −ee

′

m

1

δ′2
1− v′(t− δ′)
1 + v′(t− δ′)

+
2e2

3m

v̈(1− v2) + 3vv̇2

[1− v2(t)]3
, (2.3)

v̇′(t)

[1− v′2]3/2
=

ee′

m′
1

δ2

1 + v(t− δ)
1− v(t− δ)

+
2e′2

3m

v̈′(1− v′2) + 3v′v̇′2

[1− v′2]3
, (2.4)

where v = v(t), v′ = v′(t), and where the delays δ(t) and δ′(t) arise due to retardation:

δ(t) = x′(t)− x(t− δ(t)), δ′(t) = x′(t− δ′(t))− x(t). We differentiate these equations and use

them along with (2.3–2.4):

δ̇′(t) =
v′(t− δ′(t))− v(t)

1 + v′(t− δ′(t))
, δ̇(t) =

v′(t)− v(t− δ(t))
1− v(t− δ(t))

, (2.5)

Note the retarded Coulomb interaction δ′−2 = [x′(t− δ′(t))− x(t)]−2 in the right-hand-side of

(2.3).

2.2 Energy momentum-tensor for free radiation

Here we discuss the energy-momentum tensor (1.19) for free radiation. Within this section

we put c = 1.

Consider a charge e moving on a world-line zi(s). Define ui = dzi(s)/ds for the 4-velocity.
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Recall that uiui = 1. Let wi and ci be defined as follows

wiwi = −1, uiwi = 0, (2.6)

ci = ui + wi, cici = 0. (2.7)

Given an observation event with 4-coordinates xi, there is a unique point zi(sret), so that the

light signal emitted from a zi(sret) reached xi. Define using (2.6, 2.7) [44]:

Ri = xi − zi(sret), RiRi = 0, (2.8)

Ri = ρci, ρ = Riui. (2.9)

When xi changes, zi(sret) changes as well. Hence there is a problem of calculating derivatives

[44]. There are 3 main formulas here (recall that ∂i ≡ ∂/∂xi):

∂ksret = ck, (2.10)

∂kR
i = δik − uick, (2.11)

∂kρ = uk + ck(Ria
i − 1), ai ≡ d2xi(s)/ds2. (2.12)

To derive (2.10, 2.11), note from (2.8): ∂kR
i = δik − ui∂ks. This relation together with

RiRi = 0 implies: Ri∂kR
i = 0 = Rk − Riui∂ks. Together with (2.9) this leads to (2.10) and

then to (2.11). Eq. (2.12) is deduced from ∂kρ = ∂k(R
iui) using ∂kui = ai∂ks = aick.

The Lienard-Wichert potential of a charge e reads

Ai = eui/ρ. (2.13)

53



Employing (2.10–2.12) we obtain

F ik = ∂iAk − ∂kAi = e(Riωk −Rkωi), (2.14)

ωi =
ai

ρ2
+
ui(1− alRl)

ρ3
, (2.15)

∂iAl∂kAl =
e2cick[ala

l + (alw
l)2]

ρ2
(2.16)

− (alw
l)
e2[ciwk + ckwi]

ρ3
+
e2wiwk

ρ4
, (2.17)

∂kA
l∂kAl = (alw

l)
2e2

ρ3
− e2

ρ4
. (2.18)

These expressions determine from (1.19) the energy-momentum tensor of EMF.

Note that the right-hand-side of (2.16) is the only term that scales as ρ−2. This is the term

responsible for the energy-momentum of the emitted radiation. It coincides with the radiation

energy-momentum tensor obtained from the standard expression (1.53) [44]. In particular, it

is symmetric and has zero trace due to (2.7).

2.3 Energy transfer and work

It is expected that due to interaction there is a transfer of energy from one particle to

another. We assume that one of the particles (say P′) is much heavier than another m′ � m.

Hence its motion is perturbed weakly. P′ will be the source of work. The definition of work is

based simultaneously on two concepts: the change ∆t2|t1E = E(t2)− E(t1) of the full energy

of P [cf. (2.20)] and the change ∆t2|t1K
′ = K ′(t2)−K ′(t1) of the kinetic energy

K ′ = −m′ +m′/
√

1− v′2, (2.19)

of P′. The relation of the work to the kinetic energy of P′ is due to the fact that this kinetic

energy can be fully and immediately transferred to heat, e.g. by stopping the particle via a

static target.

The energy of the light particle is defined as its kinetic energy plus the potential energy
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in the Lorenz gauge (2.2):

E = K + eφ′(x(t), t) =
m√

1− v2(t)
+

ee′

δ′(t)[1 + v′(t− δ′(t))]
, (2.20)

The work transfer from P to P′ (or back) can be defined approximately via either ∆t2|t1E or

∆t2|t1K
′ provided that

|∆t2|t1(E +K ′)| � |∆t2|t1E|, |∆t2|t1K
′|. (2.21)

We shall see that this definition does apply in the relativistic situation and does predict a

causal behavior for the energy change. Note the analogy with the non-relativistic situation

described by the Newton equations with Coulomb potential. Here there is an exact relation

[conservation of energy] mv
2(t)
2

+ ee′

|x′(t)−x(t)| = −m′v′2(t)
2

+ const. If m′v′2(t)
2

is identified with the

energy of P, we get an exact correspondence between the two aspects of work. The main

drawback of this non-relativistic argument is that the interaction term ee′

|x′(t)−x(t)| can equally

well be prescribed to the work-source P′. We see below that the drawback is corrected in the

relativistic situation.

Technically, delay-differential equations of motion (2.3–2.5) with the self-force can be

solved only from the future boundary conditions for coordinates, velocities and accelerations

[44]. Hence we pose future conditions ( v̇(tf) = 0, v̇′(tf) = 0 ) and numerically integrate back

up to minus infinity employing a version of the self-consistent method [87]. Similar problems

were studied in [84], but without looking at energies, which is our main question here.

The existence and uniqueness of the above (Cauchy) solution is not generally known. There

are only certain partial results [87–89,109], e.g. that the solution exists and it is unique for 1D

repelling case, ee′ > 0, if the final separation |x(tf)−x′(tf)| is sufficiently large [81]. We focus

on this situation. Hence the final time is chosen so large that the particles do not interact for

t ∼ tf and for t ∼ 0.

In (2.3–2.4) we measure the time and space by units of e2/m. This leaves free two dimen-

sionless parameters: e/e′ that take 1 (repulsive case) and m′/m� 1. Examples of numerical

solution are presented in Figs. 2.1-2.3.
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Fig. 2.1 displays a situation, where asymptotically (i.e. when comparing t = tf with t = 0)

the particle do not exchange energy; only a small part of the energy is radiated away. However,

Fig. 2.1 shows that a sizable exchange of energy occurs for intermediate times, and that this

exchange is well described by (2.21). First, the energy (work) flows from the heavy particle

to the light one, and then it comes back to the heavy particle (source of work). Some energy

is radiated away, hence the heavy particle ends up with a lower kinetic energy at t = tf ; see

Fig. 2.1. Now ∆t|0(E + K ′) slowly decays due to radiated energy. Note that ∆t|0(E ′ + K)

(kinetic energy of the light particle plus the full energy of the heavy one) is neither a slowly

decaying, nor approximately constant. It also does not follow the trend of energy radiation.

Thus in contrast to the non-relativistic situation [cf. after (2.21)], our relativistic results

clarify also the direction of the energy flow, since in choosing between ∆t|0(E ′ + K) and

∆t|0(E + K ′) the preference should be given to the latter. Likewise, ∆t|0(K ′ + K) (sum of

kinetic energies) is not approximately constant; see Fig. 2.1.

Fig. 2.1 shows that ∆t|0(E + K ′) is bounded from below by the integrated sum of the

Larmor rates [see (2.1)]:

∆t|0(E +K ′) ≥ 2

3

∫ t

0

dt̄

[
duk

ds

duk
ds

+
du′k

ds′
du′k
ds′

]
≡ −2

3

∫ t

0

dt̄

[
v̇2(t̄)

(1− v2(t̄))3
+

v̇′2(t̄)

(1− v′2(t̄))3

]
,(2.22)

where the latter sum is naturally dominated by the contribution from the light particle, since

the heavy particle is weakly perturbed. Inequality (2.22) holds-at least for sufficiently large

t (cf. Fig. 2.3)-for all situations we were able to check. Note that the full amount of the

radiated energy is to be determined from ∆t|0(E+K ′), and not from the Larmor rates. They

can be misleading not only quantitatively, but also qualitatively, e.g. looking at the Larmor

rates (for m′ � m) may imply that it is the light particle that looses energy, while for the

situation on Fig. 2.1 the radiated energy comes from the heavy particle.

Fig. 2.2 shows that the energy transfer takes place from the heavy to the light particle.

This transfer is well described by the potential energy in the Lorenz gauge: (2.21) holds, as

seen in Figs. 2.2.
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Figure 2.1: For all figures we employ ee′ = 1, m′/m = 10 and the units of the light particle.
The inifinitely remote time is −103.
Cauchy solution for tf = 500, where v′(tf) = 0.04, v(tf) = −0.4, x′(tf) − x(tf) = 100; v′(0) =
−0.04804, v(0) = 0.40117.
From up to down.Upper line ∆t|0E.Upper dotted line ∆t|0(E ′+K). Dashed line ∆t|0(E+K ′);
cf. (2.19, 2.20).Middle dotted line: the sum of the Larmor rates (2.22).Lower line ∆t|0K

′.
Lower dotted line ∆t|0(K ′ +K).
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Figure 2.2: Cauchy solution for tf = 700, where v′(tf) = −0.3, v(tf) = −0.6, x′(tf) − x(tf) =
100; v′(0) = −0.364289, v(0) = 0.0102.
Upper line ∆t|0E. Lower line ∆t|0K

′. Dashed line ∆t|0(E +K ′).
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Figure 2.3: Cauchy solution for tf = 600, where v′(tf) = 0.3, v(tf) = −0.3, x′(tf)−x(tf) = 200;
v′(0) = 0.187263, v(0) = 0.677107.
Lower line ∆t|0E. Upper line ∆t|0K

′. Dashed line ∆t|0(E +K ′). Dotted line: the sum of the
Larmor rates (2.22).

Fig. 2.3 gives an example of the energy transfer from light to the heavy particle. Eq. (2.21)

still holds, but a new effect is visible: when the energy transfer starts (at t ∼ 200), ∆t|0(E+K ′)

first decreases, and then increases to a slightly smaller value: the transferred energy first goes

out of the light particle-hence ∆t|0(E+K ′) decreases-and then it arrives at the heavy particle.

The small mismatch between those initial and final values is due to the energy that is radiated

away. Since ∆t|0(E +K ′) is non-monotonic for t ∼ 250, one can choose times t2, t1 such that

∆t2|t1(E + K ′) ≈ 0 (t2 ≈ 300, t1 ≈ 220), while ∆t2|t1E accounts for the major part of the

energy transfer.

Relation (2.21) is confirmed in all other situations we studied, including the case of attrac-

tive particles (not shown on figures), where a special treatment of the self-force is necessary.
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Chapter 3

Adaptive heat engine 1

3.1 Introduction

Heat-engines drove the Industrial Revolution and their foundation, viz. thermodynam-

ics, became one of the most successful physical theories [110]. Extensions of thermody-

namics to stochastic [111, 112] and quantum domain [4] led to new generations of heat en-

gines [4, 112–128]. As everyone could observe, the work-extraction function of macroscopic

heat-engines requires external on-line control, e.g. the specific sequence of adiabatic and

isothermal processes for the Carnot cycle [14, 110]. Smaller engines may not demand on-line

control, i.e. they are autonomous [122–124], but they do demand fitting between internal

and environmental parameters [114–121], e.g. because for fixed environment (thermal baths)

there are internal parameters, under which the machine acts as a heat-pump or refrigerator

performing tasks just opposite to that of heat-engine. Such fitted engines are susceptible to

environmental changes, e.g. when the bath temperatures get closer due to the very engine

functioning. Car engines treat this problem by abandoning the partially depleted fuel (i.e.

the hot bath), and using fresh fuel.

Here we study a rudimentary model of autonomous, adaptive heat engine. Adaptive means

that the engine can work for a sufficiently general class of environments, i.e. it needs neither
1The results considered in this chapter are published in Ref. [180].
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on-line control, nor an externally imposed fitting between its internal parameters and the bath

temperatures. In particular, the engine can adapt to the results of its own functioning. Hence

adaptive engines can be useful for fueling devices via unknown or scarce resources [129].

The major biophysical heat engine, viz photosynthesis-which operates between the hot Sun

temperature and the low-temperature Earth environment [130]-does have adaptive features

that allow its functioning under decreased hot temperature (shadowing) or increased cold

temperature (hot whether) [131,132].

Recently, several physical models concentrated on adaptive sensors, adaptive transport

models etc [132–140]. These studies clarified thermodynamic costs of adaptation scenarios

[132, 135–140]. Other research lines related adaptation with (poly)homeostasis [141] and

models of artificial life [14, 142].

For analyzing the adaptation and its resources for heat engines, we need a tractable and

realistic model that is much simpler than e.g. its prototypes in photosynthesis. The model

ought to consist of the proper heat-engine and a controller that ensures the adaptation; see

Fig. 3.1. Together they form an autonomous system.

3.2 Working body

For the heat-engine we choose one of the most known models of quantum/stochastic

thermodynamics that was introduced and studied as a model for maser [114–119]. Related

models were studied in the context of photovoltaics [125, 126]. The model has three states:

i = 1, 2, 3. Each state i has energy Ei. Transitions between different states are caused by

thermal baths that can provide or accept necessary energies. We assume that the resulting

dynamics is described by a Markov master equation [143]:

ṗi ≡ dpi/dt =
∑

j
[ρi←jpj − ρj←ipi], i, j = 1, 2, 3, (3.1)

where pi(t) is the probability of the state i at time t, and ρi←j > 0 is the transition rate from

j to i. We assume for simplicity that each transition i↔ j couples with one equilibrium bath

at temperature Tij = Tji = 1/βji; see Fig. 3.1. The equilibrium nature of each bath imposes
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the detailed balance constraint for transitions [143]:

ρi←j e
−βijEj = ρj←i e

−βijEi , βij = βji. (3.2)

We take one temperature infinite: β21 = 0. This bath is then a work-source, because due to

dS21 = β21dQ21 = 0 it exchanges energy dQ21 6= 0 at zero entropy change dS21 = 0. The

other two thermal baths are the ones necessary for any heat-egine; see Fig. 3.1. Below we

ensure its function for a large range of β31 6= β32.

Figure 3.1: A schematic representation of the model. There are three thermal baths at
temperatures T32, T31 < T21 = ∞; each one drives a single transition among three engine
levels 1, 2, and 3. The bath with temperature T21 =∞ is the source of work. A controller x
interacts with energies, but does not couple directly with the baths.

Since each bath causes only one transition i↔ j,

Jij = Jji = (Ei − Ej)(ρi←jpj − ρj←ipi), (3.3)

is the average energy lost (if Jij > 0) or gained (if Jij < 0) by the bath per time-unit; see

(3.1). In the stationary state these energy currents Jij hold J31 + J32 + J21 =
∑3

i=1 ṗiEi = 0,
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as necessary for the average energy conservation. Eq. (3.1) implies for stationary probabilities

pi =
1

Z
[ρi←jρi←k + ρi←jρj←k + ρi←kρk←j], (3.4)

where Z ensures
∑3

i=1 pi = 1, and for each i = 1, 2, 3 we demand i 6= j 6= k 6= i; e.g. j = 2

and k = 3 for i = 1. Using (3.3–3.4) and ρ1←2 = ρ2←1 due to β21 = 0 we get

J21 =
Ê2

Z
ρ2←1 ρ1←3 ρ3←2

[
1− e(β32−β31)Ê3−β32Ê2

]
, (3.5)

J31 = −Ê3J21/Ê2, J32 = (Ê3 − Ê2)J21/Ê2, (3.6)

Ê2 ≡ E2 − E1, Ê3 ≡ E3 − E1. (3.7)

The heat-engine functioning is defined as [cf. (3.2)]

0 > J21 = −(E2 − E1)(p2 − p1)ρ1←2, (3.8)

i.e. the energy goes to the work-source with the power |J21|. Inequality (3.8) shows that the

heat-engine functions via population inversion between energy levels E1 and E2: when driving

the transition 1↔ 2, the work-source gains energy in average. Using (3.5, 3.7) we write (3.8)

as

Ê2[(1− θ)Ê3 − Ê2] > 0, θ ≡ β31/β32. (3.9)

Eq. (3.9) demands different temperatures: β32 6= β31. It also demands tuning between the

energies Ê2, Ê3 and θ: it is impossible to hold (3.9) for a wide range of θ by means of constant

Ê2 and Ê3; e.g. if (3.9) holds for 1 > θ due to Ê3 > Ê2 > 0, then it is violated for 1− θ < Ê2

Ê3
.

Tuning is necessary, since for suitable values of Ê2 and Ê3, the machine can function also as

a refrigerator or as a heat-pump; see section 3.7 for details.

The efficiency (power divided over the incoming current) η of the engine is given as (see
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(3.5, 3.6, 3.9))

η ≡ −J21

max[J31, J32]
≤ ηC ≡ 1−min[θ,

1

θ
], (3.10)

η = max

[
Ê2

Ê3

,
Ê2

Ê2 − Ê3

]
(3.11)

where η depends only on energy differences Ê2 and Ê3 [see (3.6)], and the Carnot value ηC

bounds η from above, as deduced from (3.9). For η → ηC inequality (3.9) saturates, and (3.5,

3.6) show that all Jij nullify (power-efficiency trade-off) [4, 112, 121]; see [144, 145] for most

recent discussion of this trade-off.

3.3 The controller

x should ensure adaptation to continuous environmental variations; hence it is continuous.

x and i interact via energies Ei(x). The joint probability pi(x, t) of x and i,
∫

dx
∑

i pi(x, t) =

1, evolves via the Fokker-Planck plus master equations [cf. (3.1)] [143]:

ṗi(x, t) =
∑3

j=1
[ρi←j(x)pj(x, t)− ρj←i(x)pi(x, t)]

+
1

γ
∂x[pi(x, t)E

′
i(x)] +D∂2

xpi(x, t), i = 1, 2, 3, (3.12)

where E ′i(x) ≡ dEi(x)
dx

, γ > 0 is the friction constant, and D > 0 is the diffusion constant.

ρi←j(x) is specified in (3.22); it holds (3.3) with Ei → Ei(x) and Ej → Ej(x).

Eq. (3.12) has a wide range of chemical and biological applications [146–160]. It accounts

for enzyme dynamics, where a reaction (to be accelerated) is described by a discrete variable i

that interacts with a coarse-grained conformational coordinate x of the enzyme [149–158]. The

existence of x was inquired from experiments [146–156], and also deduced from microscopic

models [157,158]. Reactions of photosynthesis are also known to interact with conformational

degrees of freedom [161]: the main mechanism of the photosynthesis adaptation was located

in conformational changes of the thylakoid membrane that bounds light-dependent reactions

[131].
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Eq. (3.12) has similarities with recent models for quantum heat engines; but there the

continuous variable is employed for storing the extracted work [127,128].

The harmonic choice of interaction energies Ei(x) verified itself well in various applications

[149,150,155–157,159,160]

Ei(x) = a(x− bi)2 + ci, i = 1, 2, 3, (3.13)

where a > 0, bi and ci are constants; a is i-independent, since Ei(x) have the same shape for

x→ ±∞. Eq. (3.13) was explained in [158] via quantum chemistry.

The exact stationary solution pi(x) of (3.12) is not found. We need an explicit form of

pi(x), since from within pi(x) we should search for adaptation-friendly shapes of Ei(x). This

issue is solved, if we assume in (3.12) that x is slow: 1
γ
, D � ρi←j(x). This is realistic for

enzymes, where x includes large molecular groups whose motion is slow [153–156]. A virtue

of the slow limit is that it decreases energy costs related to control, akin to the standard

reversibility limit of thermodynamics; see below. Section 3.8 justifies the slow limit. It is

implemented by introducing in (3.12) the conditional probability pi|x(t) [162],

pi(x, t) = pi|x(t)p(x, t),

∫
dx p(x, t) = 1,

3∑
i=1

pi|x(t) = 1,

and collecting fast terms:

ṗi|x =
∑3

j=1
[ρi←j(x)pj|x − ρj←i(x)pi|x]. (3.14)

Slow terms are found from (3.12, 3.14) by summing over i:

ṗ(x, t) =
1

γ
∂x[p(x, t)

3∑
i=1

pi|xE
′
i(x)] +D∂2

xp(x, t). (3.15)

Since i is fast, pi|x in (3.15) can be taken as time-independent, i.e. pi|x is found from (3.4)

upon replacing there ρij → ρij(x) [162]. The stationary probability of x is found from (3.15)
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via the zero-current condition p(x)
∑3

i=1pi|xE
′
i(x) + γD∂xp(x) = 0:

p(x) ∝ e−Ψ(x)/(γD), Ψ′(x) ≡
∑3

i=1
pi|xE

′
i(x), (3.16)

where Ψ′(x) = dΨ
dx
. Using

∑3
i=1 pi|x = 1 we define [cf. (3.7)]

Φ′(x) ≡
∑3

i=2
pi|xÊ

′
i(x) = Ψ′(x)− E ′1(x), (3.17)

Êi(x) ≡ Ei(x)− E1(x). (3.18)

3.4 Adaptation

The energies Ei(x) do not depend on β31 and β32. We choose Ei(x) as follows. First, there

is a unique maximally probable value x̂ of x, which is the minimum of the effective potential

Ψ(x), i.e. [from (3.16, 3.17)]:

Φ′(x̂) = −E ′1(x̂), Φ′′(x̂) > −E ′′1 (x̂), (3.19)

where the latter condition means stability.

Second, the heat-engine condition J21(x) < 0 holds in a vicinity of the maximally probable

value x̂ [cf. (3.9, 3.18)]:

Ê2(x)[(1− θ)Ê3(x)− Ê2(x)] > 0, x ' x̂, (3.20)

Work-extraction should also hold in average [cf. (3.3, 3.2)]:

〈J21〉 = ρ1←2

∫
dx Ê2(x)p(x)(p1|x − p2|x) < 0. (3.21)

Eq. (3.20) implies (3.21), if γD is small enough, because in this limit the probability of x

concentrates around x̂; see (3.16). More generally (e.g. out of the slow limit), the adaptation

criterion can be based directly on (3.21).
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The adaptation scenario implied by (3.17, 3.20) is as follows. Assume that the machine

in its stationary state is already working as a heat-engine for certain bath temperatures β31

and β32. If one of them (or both) change, pi|x goes out of the stationary state. As shown

by (3.17), this moves x̂ to a new value, where according to (3.20) the heat-engine function is

recovered. We stress that in this feedback scheme, x does not interact directly with the baths:

the change of x̂ comes from pi|x; see (3.17). Using a feed-forward scheme, where x directly

couples with the baths, does not lead to advantages with respect to adaptation, because it

changes only friction and diffusion in (3.12); see section 3.9. Section 3.10 studies scenarios,

where in addition to the heat-engine function (3.20) the adaptation optimizes the heat-engine

efficiency η or its power |J21|.

To search for adaptation, we focus on the following class of transition rates [cf. (3.1, 3.3)]:

ρi←j(x) = fij[Ej(x)− Ei(x) ], (3.22)

where fij[y] holds (3.3). Eq. (3.22) includes the Kramers’ rate fij[y] = eβij [∆ij+min(y,0)], where

∆ij = ∆ji is the barrier height [143], and fij[y] = eβijy/2 that relates to the discrete-space

Fokker-Planck equation [148]. The constraint (3.22) relates to one of conditions of the no-

pumping theorem [163, 164]; see section 3.11that also studies adaptation scenarios which go

beyond (3.22).

Eqs. (3.22, 3.18, 3.4) imply that ρij(x), the stationary pi|x, and Φ′(x) in (3.17) depend on

E1(x) only via Ê3(x) and Ê2(x). Hence we study Φ′(x) for given Ê3(x) and Ê2(x), look for

a domain where (3.20) holds, and then define x̂ via (3.19) by choosing a suitable E1(x) that

does not depend on β31 and on β32. This is achieved by plotting Φ′(x) as a function of x

under different values of β31 and β32.

Note that (3.20) confines the shape of Ê2(x): since (3.20) should hold for θ → 1, there

exists x0 such that x̂ → x0 for θ → 1, and Ê2(x0) = 0. In the vicinity of x0, Ê3(x) is either

finite or goes to zero slower than Ê2(x), so that (3.20) still holds for θ → 1 and x̂→ x0.

66



3.5 Restricted adaptation.
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Figure 3.2: Restricted adaptation scenario. Φ′(x) given by (3.17, 3.22) with fij[y] = eβijy/2.
(Similar results hold for all other physical choices of fij[y]; see (3.22) and 3.10) We assume
Ê3(x) = −x, Ê2(x) = x−2; see (3.18, 3.13). Now heat-engine conditions (3.20) hold for x > 2
if θ > 2, and for x ∈ ( 2

2−θ , 2) if θ < 2. Normal (resp. dashed) curves: Φ′(x) for x that support
(3.20) under β32 = 1 (resp. β32 = 0.7) and various θ = β31/β32. They are indicated from the
top to the bottom in the right (resp. left). The magenta (bold) curve shows −E ′1(x), where
E ′1(x) = 1.8(x − 2) + 0.680289; cf. (3.13). Intersections of −E ′1(x) with Φ′(x) determine x̂.
Conditions (3.19) hold for all normal curves, and none of dashed curves.

Let us first assume that one temperature (say β31) takes arbitrary positive values, while

another one (β32) is fixed. Adaptation is necessary here, since θ = β31/β32 is an arbtrary

positive number, hence (3.20) cannot be valid for x-independent Ei. Applying the above

method, we deduce that (3.17, 3.20) for adaptation can be satisfied for the experimentally

motivated choice (3.13) for Ei(x); see Fig. 3.2.

Since the validity domain (3.20) of the heat-engine shrinks to a point for θ → 1, we need

progressively smaller values of Dγ in (3.16) for ensuring the average work-extraction (3.21)

under θ → 1. If the diffusion of x is caused by an equilibrium bath, we get Dγ = T in

(3.12) [143], and the temperature T of this bath should be sufficiently low for (3.21) to hold.

If this is the lowest temperature, there is a heat current JA towards it tending to increase it;

see section 3.14. Hence this low temperature is a resource; see [135–140] for related results. In
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the slow limit, JA = O( 1
γ
) can be much smaller than the energy currents Jij of the heat-egine.

Eqs. (3.6, 3.9 3.10) imply that Jij → 0 for high efficiencies η → ηC. In that case JA stays

finite and is the dominant energy current.

3.6 Full adaptation
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Figure 3.3: Full adaptation scenario (γ < 0). Φ′(x) with fij[y] = eβijy/2 for varying β31

and fixed β32; cf. Fig. 3.2. We assume Ê3(x) = x/2, Ê2(x) = x − 2, and (3.20) holds for
x ∈ ( 4

1+θ
, 2). Normal (resp. dashed) curves: Φ′(x) for x that support (3.20) under β32 = 1

(resp. β32 = 3) and various θ = β31/β32, as indicated from the top to the bottom in the left
(resp. right). The magenta (bold) curve shows −E ′1(x), where for the considered range of x,
E ′1(x) = −0.1(x− 2)− 0.5. Adaptation conditions (3.23) hold for all curves, and for all β31,
β32.

Let now both β31 and β32 vary. Fig. 3.2 shows that the set-up which worked for a fixed β32

does not apply: adaptation conditions (3.19) break down in a vicinity of θ = 1. Topologically,

changing both β32 and β31 destroys fine-tuned equality in (3.19); see Fig. 3.2.

In section 3.13 we argue that adaptation conditions (3.19) cannot hold together, if both

β31 and β32 vary, and if d
dy
fij[y] ≥ 0; see (3.22). The latter holds for all physical examples we

are aware of, and means that the transition from one energy to another is facilitated, if the

lower energy increases or the higher energy decreases.

The only way we found for recovering adaptation is to assume that x is subject to a
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negative friction: γ < 0. Note that the γ < 0 and D > 0 situation is stable, since (3.15) does

predict relaxation to (3.16).

One way to achieve γ < 0 is to subject x to a negative-temperature (population-inverted)

thermal bath: β < 0. Eqs. (3.12) with γ ∝ β < 0 is then an effective description of quasi-

continuous, but discrete degrees of freedom; see section 3.8. Negative temperatures are known

for various systems whose energies are bounded from above [165–170]. Now β < 0 is a resource,

since when coupled to positive temperatures, β tends to increase [165,166]. Physically, β < 0

means a reservoir of stored energy, and the fact that β decreases means that this energy is

spent for adaptation.

Other examples of negative friction include negative resistance of electric circuits [171],

negative viscosity of driven fluids [172], and the negative absolute mobility for Brownian

systems [173–175].

Now Dγ < 0 in (3.16), and the most probable x̂ means that inequalities in (3.19) are

reversed. New adaptation conditions are (3.20) and [instead of (3.19)]

Φ′(x̂) = −E ′1(x̂), Φ′′(x̂) < −E ′′1 (x̂). (3.23)

These conditions can be satisfied, as seen in Fig. 3.3. In contrast to the previous scenario, now

Φ′(x) is very robust with respect to changing β31 and β32, i.e. the adaptation is achieved for all

β31 and β32 (excluding a |γD|-dependent vicinity of β31 = β32). Though the choice of E1(x) is

more flexible than for the previous restricted adaptation scenario, it cannot belong to the set

(3.13) of harmonic functions. For γD < 0, x should change in a bounded domain; otherwise

for the natural shape of energies (Ei(x)→∞ for x→ ±∞) one gets a non-normalizable p(x)

in (3.16).
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3.7 Functioning regimes of the machine (heat-engine, re-

frigerator, heat-pump)

Eq.(3.2) defines Jij as the average energy lost (if Jij > 0) or gained (if Jij < 0) by the

thermal bath at temperature 1/βij. Here (ij) = (21), (31), (32).

Thus Jij are the energy currents. Recall that β21 = 0 is the source of work, and hence

the corresponding bath is the source of work. The energy conservation in the stationary state

implies: J21 + J31 + J32 = 0.

Now neglecting the possibility that some of Jij could be zero we get the following 4 regimes:

J21 < 0, (3.24)

J21 > 0, J32 < 0, J31 < 0, (3.25)

J21 > 0, J32 < 0, J31 > 0, (3.26)

J21 > 0, J32 > 0, J31 < 0. (3.27)

Eq. (3.24) refers to the heat engine regime, where the energy goes to the work-source.

Within (3.25) the energy (work) coming from the source of work heats up both thermal

baths. This regime did not get a special name, because it is rarely useful.

If T32 > T31, (3.26) means refrigeration: thanks to the work consumption (J21 > 0), the

lower-temperature bath looses energy. Eq. (3.27) implies pumping, where the hotter bath

looses energy. Note that the heat-engine and refrigerator are devises that function against

their natural thermal gradients. (The natural gradient for the infinite-temperature bath is to

loose energy. Analogously, it is natural that the lowest temperature bath gains energy and

not looses it.) The heat-pump regime is useful as far as the natural gradient is enhanced by

the injection of work.

If T32 < T31, then the heat-pumping and refrigeration regime interchange: now (3.27)

refers to refrigeration, while (3.26) refers to heat-pumping.
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3.8 Derivation of the Fokker-Planck equation and justifi-

cation of the slow limit

3.8.1 Fokker-Planck equation

Eq.(3.14) was studied in the limit, where x is slow. Here we shall show that this limit

emerges naturally from the dynamics of two discrete random variables, when one of them

becomes quasi-continuous. In this context, we also study the applicability of the slow limit.

Consider the following master equation for two discrete degrees of freedom i and α:

ṗiα =
∑3

j=1
[ρi←j|α pjα − ρj←i|α piα]

+
∑N

γ=1
[ωα←γ|i piγ − ωγ←α|i piα], (3.28)

i = 1, 2, 3, α = 1, ..., N,

where piα is the joint probability of i and α, and ρi←j|α and ωα←γ|i are transition probabilities.

We shall make three assumptions. First is that transitions between α and γ are governed

by a thermal bath at temperature T = 1/β. Hence the detailed balance holds:

ωα←γ|i e
−βEiγ = ωγ←α|i e

−βEiα , (3.29)

where Eiγ is the energy of the state (iγ). As a concrete example of the rates (3.29) we take:

ωγ+1 γ|i =
1

τ
e
β
2

(Ei γ−Ei γ+1), (3.30)

where τ is a constant characteristic time.

Second we shall assume that the states α make up a one-dimensional chain:

ωα←γ = [1− δα1]δα−1 γ ωα←α−1

+[1− δαN ]δα+1 γ ωα←α+1, α = 1, ..., N, (3.31)
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Figure 3.4: (a) 〈E〉 =
∑3

i=1

∑N
α=1 piαEiα is the stationary average energy as a function of

θ = β31/β32 calculated from (3.28, 3.30, 3.31) for β32 = 1, N = 100, τ = 2, β = 0.5 and
Eiα = iα2. 〈Ẽ〉 =

∑3
i=1

∑N
α=1 p̃iαEiα is the stationary average energy calculated via the

probabilities p̃iα under the slow limit; see (3.43–3.45). Now (a) shows the relative difference
〈E〉−〈Ẽ〉
〈E〉 between 〈E〉 and 〈Ẽ〉. It is seen that the validity of the slow limit (as measured by

the magnitude of 〈E〉−〈Ẽ〉〈E〉 ) gets worst for θ → 0 and θ → ∞. This is natural because low
temperatures of the heat-engine baths freeze some of its motions and tend to make it less
fast, i.e. low temperatures act against the slow limit.
(b) piα are the stationary probabilities calculated from (3.28, 3.30, 3.31) for the same param-
eters as in (a), but τ = 1, β = 2. p̃iα are the slow-limit stationary probabilities calculated
from (3.43, 3.44, 3.45). The figure shows maxiα|piα − p̃iα|, which is another measure for the
validity of the slow limit. We again see that the validity of the slow limit gets worst for θ → 0
and θ →∞.
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where δαγ = 1 if α = γ, and δαγ = 0 if α 6= γ.

Third, we shall assume that α is quasi-continuous, i.e. N � 1 and Ei α+1 − Ei α is small.

Hence we have

Ei γ → Ei(x), Ei γ+1 → Ei(x) + εE ′i(x), (3.32)

where x is a continuous parameter, ε is a small parameter (step of the chain), and where

E ′i(x) ≡ d
dx
Ei(x).

Let us recall how one obtains the Fokker-Planck equation in the continuous limit; see

e.g. [148]. We expand (3.30) as

τωγ+1 γ|i = 1 +
β

2
(Ei γ − Ei γ+1) +O(ε2), (3.33)

and write the last term in (3.28) as

∑
γ

[ωαγ|i piγ − ωγα|i piα] (3.34)

= β[ζi α+1 − ζi α] + [ξi α+1 − ξi α], (3.35)

where we denoted

ζi α+1 ≡
1

τ
(Ei α+1 − Ei α)

pi α + pi α+1

2
, (3.36)

ξi α+1 ≡
1

τ
(pi α+1 − pi α). (3.37)

Hence (3.35) can be written as

(3.35) = β ε ζ ′i(x) + ε ξ′i(x). (3.38)

Eqs. (3.36, 3.37) imply

ζi(x) =
ε

τ
pi(x)E ′i(x), ξi(x) =

ε

τ
p′i(x). (3.39)
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Eqs. (3.28) and (3.34–3.39) lead to the Fokker-Planck equation:

ṗi(x) =
∑
j

[ρi←j(x) pj(x)− ρj←i(x) pi(x)]

+
ε2

τ
∂x [ β pi(x)E ′i(x) + p′i(x) ] , (3.40)

where τ is the characteristic time that was introduced in (3.30), and where ε2 emerged due

to the continuous limit.

Eq. (3.40) coincides with Eq. (3.12), where we denote

D = ε2/τ, γ−1 = ε2β/τ. (3.41)

Note that the Fokker-Planck equation naturally comes out with the slow limit due to ε in

(3.40).

3.8.2 Fokker-Planck equation for a negative temperature

Note from (3.41) that D > 0, since τ > 0. The latter follows from the posivity of

probability in (3.30). The sign of γ coincides with that of β. The degree of freedom α is

discrete, hence it can have a negative temperature: β < 0 [165–167, 169, 170]. Note that if

in (3.28) both i and α have the same negative temperature, then the stationary probability

reads:

piα =
1

Z
e−βEiα , Z =

3∑
i=1

N∑
α=1

e−βEiα . (3.42)

It is consistent provided that N is finite (though possibly large).

3.8.3 Checking the slow limit

One way of studying the applicability of the slow limit is to start with a finite N in (3.28,

3.31), and then to compare numerically the stationary solution of (3.28) obtained under the

slow limit in (3.28) with the exact stationary solution of (3.28). Implementing the slow limit
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directly within (3.28, 3.31) we get for the stationary solution:

p̃iα = p̃αp̃i|α, (3.43)

where the conditional probability p̃i|α is found from

∑
j
[ρi←j|α p̃j|α − ρj←i|α p̃i|α] = 0, (3.44)

and where the stationary probability of α reads

p̃α =
1

Z

α−1∏
γ=1

Ωγ+1 γ

Ωγ γ+1

, Ωαγ ≡
∑
i

ωαγ|i p̃i|γ. (3.45)

Here Z is found from
∑

α p̃α = 1.

Figs. 3.4(a) and 3.4(b) compare the outcome of solving (3.28, 3.31) numerically with

predictions of (3.43–3.45). For the numerics we adopted ρi←j|α = e
1
2
βij [Ejα−Eiα] in (3.28).

It is seen that the agreement of the numerical solution with the slow limit prediction is

fair, even for moderately large values of N and for τ ≤ 2 (these values of τ means that no

attempt is made to introduce the slow limit “by hands”, i.e. due to a large τ). The agreement

does improve significantly for larger values of N and/or larger values of τ .

3.9 Feedforward does not provide advantages for adapta-

tion

The feedback control studied in above amounts to an autonomous scheme, where the

controller x does not interact directly with the thermal bath, but it achieves the heat-engine

functioning due to the interaction with the probabilistic state pi|x of the heat-engine.

Within a feedforward control scheme, we try to have for x certain anticipatory features:

it will couple to both thermal baths at temperatures T31 = 1/β31 and T32 = 1/β32, whose

changing temperatures damage the heat-engine functioning. Thus a feedforward scheme tries

to implement a temperature sensor via x; see [176] for a general discussion on the differences
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Figure 3.5: A schematic representation of the model with the feedforward control. There
are three thermal baths at temperatures T32 < T31 < T21 = ∞; each one drives a transition
among three engine states 1, 2, and 3. x is a controller that changes energies of states, and
also does interact directly with the two baths;

between feedback and feedforward control.

Now x couples directly to the baths at temperatures T31 = 1/β31 and T32 = 1/β32
2. This

amounts to adding in Eq. (3.12) the following terms

∑
α=31,32

γ−1
α [∂x[pi(x, t)E

′
i(x)] + Tα∂

2pi(x, t)], (3.46)

where γα is the friction constant due to the coupling with the bath α, and the detailed balance

with respect to this coupling is naturally assumed.

Using (3.46), Eq. (3.12) becomes

ṗi(x, t) =
∑

j
[ρi←j(x)pj(x, t)− ρj←i(x)pi(x, t)]

+

(
1

γ
+

1

γ32

+
1

γ31

)
∂x[pi(x, t)E

′
i(x)]

+

(
D +

T32

γ32

+
T31

γ31

)
∂2
xpi(x, t). (3.47)

Eq. (3.47) coincides with Eq.(3.14), after we take effective friction and diffusion. In particular,

2A naive possibility for a feedforward control would amount just to taking Ê2 and Ê3 as functions of the
bath temperatures. For our purposes this is not legitimate, since we need a physical coupling of the controller
x to thermal baths.
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the stationary probability density p(x) of x reads (within the adiabatic approximation)

p(x) ∝ e−Ψ(x)/σ, σ =
D +

∑
α=31,32 γ

−1
α Tα

γ−1 +
∑

α=31,32 γ
−1
α

, (3.48)

where Ψ(x) is still defined by Eq. (3.16). Hence the maximally probable value x̂ does not

change.

We conclude that the feed-forward scheme does not provide real advantages for adaptation

3. The origin of this result should be sought in the form (3.46) of the coupling between x and

the baths. For a discrete x this coupling is more flexible (i.e. less constrained) and there may

be more possibilities for a feed-forward adaptation [136]. However, x had to be continuous,

if we want to ensure that the system adapts to continuously changing bath temperatures T31

and T32.

3.10 Heat-engine adaptation: symmetric vs. Kramers

rates

For simplicity we have concentrated on the symmetric transition rates

ρi←j(x) = e
1
2
βij [Ej(x)−Ei(x)], (3.49)

where βij is the inverse temperature of the bath that drives the transition (3.49). Figs. 3.2

and 3.3 demonstrate (resp.) the restricted and full adaptation situation by showing Φ′(x̂) and

x̂ for (3.49).

The aim of this section is to show that basically the same results are valid for the Kramers

rates [143]:

ρi←j(x) = eβij∆(x)+min[ 0,βij(Ej(x)−Ei(x)) ], (3.50)
3A small advantage may be that σ in (3.48) can be smaller than γD, i.e. the direct coupling to the baths

can under specific conditions make the density of x more narrow.
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Figure 3.6: (a) Φ′(x) with fij[y] = eβijy/2 for varying β31 and fixed β32 = 1 (restricted
adaptation scenario). We assume Ê3(x) = −x, Ê2(x) = x − 2, and (3.20) holds for x > 2 if
θ > 2, for 2

2−θ > x > 2 if 1 < θ < 2, and for 2
2−θ < x < 2 if θ < 1. Φ′(x) is shown for various

θ = β31/β32 and those x that support (3.20): θ = 0.1 (red curve), θ = 0.25 (green), θ = 0.5
(blue), θ = 0.75 (brown), θ = 0.95 (black), θ = 1.2 (black-dashed), θ = 1.5 (brown-dashed),
θ = 2.5 (blue-dashed). The magenta curve shows−E ′1(x), where E ′1(x) = 1.8(x−2)+0.680289.
Intersections of −E ′1(x) with Φ′(x) determine x̂.
(b) The same as in Fig. 3.6(a), but for β32 = 0.7. It is seen that for θ close to 1, no heat-engine
functioning exists (i.e. (3.20) does not hold): the magenta curve does not cross the curves
with θ = 0.95, θ = 1.2 and θ = 1.5.
(c) Adaptation for a negative friction γ < 0, β32 = 3 and varying β13. The same parameters as
in Fig. 3.6(a), but now Ê3(x) = x/2. Conditions (3.20) amount to 4

1+θ
> x > 2 if θ < 1, and to

4
1+θ

< x < 2 if θ > 1. Φ′(x) is shown for: θ = 0.1 (red curve), θ = 0.25 (green), θ = 0.5 (blue),
θ = 0.75 (brown), θ = 0.95 (black), θ = 1.2 (black-dashed), θ = 1.5 (brown-dashed), θ = 2.5
(blue-dashed), θ = 4 (green-dashed), θ = 6 (red-dashed). The magenta curve shows −E ′1(x),
where for the considered range of x, E ′1(x) is approximated as E ′1(x) = −0.1(x− 2)− 0.5.
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Figure 3.7: (a) and (b) are the analogues of (resp.) Fig. 3.6(a) and Fig. 3.6(c), but with the
Kramers rates (3.50) under ∆ = 1.
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Figure 3.8: (a) and (b) are the analogues of (resp.) Fig. 3.6(a) and Fig. 3.6(c) [also, respec-
tively, of Fig. 3.2 and Fig. 3.3 ], but with the rates given by (3.56) under Fij = 1.
(c) is the analogue of (b), but with β32 = 3.
For (a): Ê1(x) = 0.9(x− 2)2 + 0.680289(x− 2), Ê2(x) = x− 2, Ê3(x) = −x.
For (b) and (c): Ê1(x) = −0.05(x−2)2−0.5(x−2) (in the considered range of x), Ê2(x) = x−2,
Ê3(x) = x/2.
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where ∆ is the energy barrier that separates the states i and j. Here we assumed for simplicity

that the barrier ∆ does not depend on i and j, and it does not depend on x.

Figs. 3.7(a) and 3.7(b) show that the adaptive functioning of the heat-engine with the

Kramers rate (3.50) is very similar to that of the symmetric rates (3.49); cf. Figs. 3.2 and 3.3

with (resp.) Figs. 3.7(a) and 3.7(b).

3.11 Relations with the no-pumping theorem

The Kramers rate (3.50) can be re-written as

ρi←j(x) = eβij(Ej(x)−Fij(x)), Fij(x) = Fji(x), (3.51)

Fij(x) ≡ max[Ei(x), Ej(x)]−∆ij(x). (3.52)

The authors of [163, 164] employed (3.51, 3.52) and proved the following no-pumping

theorem (which we somewhat simplify for our purposes). Let us assume that the following

three conditions hold:

(i) x = x(t) in (3.51, 3.52) are time-dependent periodic function with a period τ : x(t) =

x(t+ τ).

(ii) Fij in (3.52) is x-independent (hence time-independent).

(iii) All temperatures in (3.51) are equal, βij = β.

Then the time-averaged probability current generated by such an external field x(t) nullify

(no external pumping) [163,164]:

∫ T+τ

T

ds Ii←j(s) = 0, (3.53)

Ii←j(s) ≡ ρi←j(s)pj(s)− ρj←i(s)pi(s), (3.54)

where T is sufficiently large for the system to forget about its initial state.

Now condition (ii) above does relate with conditions (3.21) that we assumed for the
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adaptive heat engine. Indeed if these conditions are written for the Kramers rate we get:

∆ij(Ej(x)− Ei(x)) = ∆ji(Ej(x)− Ei(x)). (3.55)

Now this is not compatible with (3.52), where Fij is x-independent.

Thus, whenever Fij is x-independent the method presented above for studying adaptation

does not apply, i.e. we do not know how to search systematically for Ei(x) that achieves

adaptation.

However, it can be checked directly that once the functions Ei(x) that achieved adaptation

were found via condition (3.20) are sufficient for adaptation if the rates are given as

ρi←j(x) = eβij(Ej(x)−Fij), Fij = Fji, (3.56)

with barriers Fij = Fji that do not depend on x. For instance the message of Figs. 3.2 and

3.3 is fully reproduced when using (3.56); see Figs. 3.8(a), 3.8(b) and 3.8(c).

Thus condition (3.20) is useful for searching for adaptation, but a violation of this condition

does not mean that the adaptation is impossible.

3.12 Efficiency and power

The adaptation was employed merely for supporting the heat-engine functioning. There

are two important characteristics of any heat-engine|viz. efficiency and power|and we now

show how the adaptation with respect to the heat-engine functioning should be modified to

account also for their optimization.

We recall features of efficiency and power starting (for simplicity) with the case without

any controller x.

The following formulas hold for the energy current Jij of the heat bath at temperature
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Tij = 1/βij (i, j = 1, 2, 3):

J21 =
Ê2

Z
ρ2←1 ρ1←3 ρ3←2

[
1− e(β32−β31)Ê3−β32Ê2

]
, (3.57)

J31 = −Ê3J21

Ê2

, J32 =
(Ê3 − Ê2)J21

Ê2

, (3.58)

Ê2 ≡ E2 − E1, Ê3 ≡ E3 − E1, (3.59)

Recall that β21 = 0, i.e. the bath at this temperature is the source of work. Thus the

work-extraction power is |J21|. Now the efficiency η of the heat-engine is defined as

η = −J21

J31

=
Ê2

Ê3

, if β31 < β32, (3.60)

= −J21

J32

=
Ê2

Ê2 − Ê3

, if β31 > β32. (3.61)

Indeed, if β31 < β32, the energy lost (per time-unit) by the high-temperature thermal bath is

J31, hence definition (3.60) follows. Likewise, for β31 < β32 we obtain (3.61).

It is seen that the efficiency η depends only on the energy differences Ê2 and Ê3. This is

a feature of the present class of heat-engines. The Carnot bound

η < ηC ≡ 1−min[θ,
1

θ
], θ ≡ β31

β32

, (3.62)

follows from (3.60, 3.61) when demanding J21 < 0 (i.e. the heat-engine functioning) and using

(3.57).

Eqs. (3.60, 3.61, 3.62) show the notorious power-efficiency trade-off: when η tends to its

maximal (Carnot) value, the work-extraction power −J21 nullifies due to (1− θ)Ê3− Ê2 → 0

in (3.57).

Let us now study the work power−J21 in more detail. To this end, we specify the transition

rates ρi←j, taking for simplicity

ρi←j = e
1
2
βij [Ej−Ei], (3.63)
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Ê2 and Ê3 which minimize J21 (i.e. maximize the power of the heat-engine); see (3.66). The
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3.61).
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which were already employed above; cf. also Figs. 3.2 and 3.3. We get from (3.57, 3.63)

J21 =
1

ẑ
Ê2 e

β32[(1−θ)Ê3−Ê2], (3.64)

ẑ ≡ 1 + eβ32[(1−θ)Ê3−Ê2](1 + 2 e
β31
2
Ê3)

+e−β31Ê3 + e−
β31
2
Ê3 + e

β32
2

[Ê3−Ê2] (2 + e−β31Ê3). (3.65)

It is seen from (3.64, 3.65) that the minimum (i.e. the optimum with the respect to the

heat-engine function) of the J21 is achieved for

Ê2 = T32f2(θ), Ê3 = T32f3(θ), (3.66)

where T32 = 1/β32 and f2 and f3 are one-variable functions deduced from (3.64, 3.65).

Fig. 3.9 shows the shape of f2(θ) and f3(θ). Fig. 3.10 studies the efficiency at the maximum

power that is obtained from (3.60, 3.64, 3.65). This figure also compares the Carnot (maximal)

efficiency with the efficiency at the maximal power. Both Fig. 3.9 and Fig. 3.10 display the

optimized J21, which is seen to be a symmetric function of θ − 1 only for θ ≈ 1.

3.12.1 Adaptation of efficiency

Let us now inlcude the controller x. Ei(x) contain interaction energies that depend both

on x and on i. Hence also ρi←j(x) and J21(x) depend on x. Let us first focus on the case,

where γD is so small that we can restrict ourselves with x ≈ x̂, where x̂ is the maximally

probable value of x; see (3.19).

Now to the heat-engine functioning conditions

Ê2(x̂)[(1− θ)Ê3(x̂)− Ê2(x̂)] > 0, (3.67)

we add conditions of the efficiency maximization that read from (3.60, 3.61, 3.67):

(1− θ)Ê3(x̂)− Ê2(x̂) ≈ 0. (3.68)
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Fig. 3.11 shows an example for the efficiency adaptation. This is the same example as in

Fig. 3.2, but E1(x) is chosen so that both (3.68) and (3.67) hold. Note that it is impossible

to take (1− θ)Ê3(x̂)− Ê2(x̂) = 0 [cf. (3.68)], even though this provides the global maximum

(η = ηC) for the efficiency η. Indeed, this will lead to J21 = 0 [see (3.57)], hence the engine

is useless. Yet another (not less important) reasons for the above impossibility is that we

consider a small γD, where the whole distribution of x reduces to its maximally probable

value x̂. But since γD is necessarily non-zero, the density p(x) of x does have certain width,

and taking (3.68) too close to zero will mean that for certain values of x we loose the very

heat-engine function.

3.12.2 Adaptation of power

We turn to the situation, where the adaptation not only supports the heat-engine function-

ing, but also maximizes the power −J21. First of all, (3.66) show that the full minimization

of J21 amounts to two independent conditions, and they cannot generically be satisfied via

one controller variable x. Second, conditions (3.66) that minimize J21 strongly depend on the

concrete form of transition rates

Hence we should look for adaptation scenarios that optimize the power partially and

(simultaneously) sufficiently independent on the form of ρi←j.

Thus to simplify the situation, we shall look at J21 in the high-temperature regime, where

both β32 and β31 are sufficiently small. Recalling that β21 = 0, we see that this regime relates

to the linear non-equilibrium thermodynamics (all inverse temperatures are small). Eq. (3.57)

implies for this regime:

J21(x̂) = −ρ β32 Ê2(x)[(1− θ)Ê3(x)− Ê2(x)], (3.69)

where ρ > 0 is constant that is found from the infinite-temperature limit of ρi←j.

It is seen that the minimization of (3.69) over Ê2(x) is achieved for

Ê2(x) =
1

2
(1− θ)Ê3(x), (3.70)
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where J21 reads

J21(x̂) = −ρ
4
β32 (1− θ)2Ê2

3(x̂), (3.71)

where we already took x = x̂. Within the high-temperature regime we cannot minimize (3.71)

also over Ê3, because this will take us out of this regime. Hence the regime naturally leads

to a partial power optimization.
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Figure 3.11: Efficiency adaptation.
Φ′(x) under rates (3.63) for varying β31 and fixed β32 = 1 (restricted adaptation scenario).
We assume Ê3(x) = −x, Ê2(x) = x− 2, and (3.67) holds for x > 2 if θ > 2, for 2

2−θ > x > 2 if
1 < θ < 2, and for 2

2−θ < x < 2 if θ < 1. Φ′(x) is shown for various θ = β31/β32, as indicated
on the right from top to bottom.
The magenta (dashed) curve shows −E ′1(x); it is chosen so that both (3.67) and (3.68) hold.
Intersections of −E ′1(x) with Φ′(x) determine x̂. The magenta curve passes on the edges of
Φ′(x), i.e it passes through ≈ 2

2−θ that for the present choice of Ê2 and Ê3 fullfils (3.68).
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Figure 3.12: Power adaptation.
The same as for Fig. 3.11, but the magenta (dashed) curve −E ′1(x) is chosen so that both
(3.67) and (3.70) hold, i.e. the magenta curve passes through 4

3−θ that for the present choice
of Ê2(x) = x− 2 and Ê3(x) = −x fullfils (3.70).
Note that the adopted value β32 = 1 is sufficiently small for the high-temperature result (3.69)
to apply.

Thus the adaptation with a partial optimization of power will be defined via (3.67) and

86



(3.70). Fig. 3.12 shows the same example as in Fig. 3.11, but now the energy E1(x) is chosen

so as to achieve this partial optimization.

3.13 No-go statement for adaptation

Let us recall from Eq. (3.16–3.19) the adaptation conditions:

Ê2(x̂)[(1− θ)Ê3(x̂)− Ê2(x̂)] > 0, (3.72)

Êi(x) ≡ Ei(x)− E1(x), (3.73)

Φ′(x̂) = −E ′1(x̂), (3.74)

Φ′′(x̂) > −E ′′1 (x̂), (3.75)

where

Φ′(x) ≡
∑3

i=2
pi|xÊ

′
i(x). (3.76)

Recall that pi|x in (3.76) is defined via Eq. (3.4) that we write in an expanded form:

p1|x =
1

Z
[ρ1←2ρ1←3 + ρ3←2ρ1←3 + ρ2←3ρ1←2], (3.77)

p2|x =
1

Z
[ρ2←1ρ2←3 + ρ3←1ρ2←3 + ρ2←1ρ1←3], (3.78)

p3|x =
1

Z
[ρ3←1ρ3←2 + ρ2←1ρ3←2 + ρ1←2ρ3←1], (3.79)

where Z ensures p1|x + p2|x + p3|x = 1, and where ρi←j = ρi←j(x).

Our aim is to show that (3.72, 3.74, 3.75) and (3.76) are not compatible if both β31 and

β32 vary. To this end, we shall determine the form of Φ′(x) for θ ≡ β31/β32 ' 1. For θ → 1,

we have x̂→ x0, where

Ê2(x0) = 0. (3.80)
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Eq. (3.80) follows from the fact that (3.72) should hold both for θ < 1 and also θ > 1. For

simplicity we assume that Ê3(x0) 6= 0; otherwise, the arguments below generalize straightfor-

wardly.

Now we assume that x̂ ∼ x0 due to θ ∼ 1. We get for Φ′(x) in the first order of x̂− x0:

Φ′(x̂) = Φ′′(x0)(x̂− x0) + Φ′(x0). (3.81)

Here Φ′′(x0) and Φ′(x0) are functions of β31 and β32. We should work them out for β31 ∼ β0

and β32 ∼ β0, where β0 is some reference value between β31 and β32, e.g. β0 = (β31 + β32)/2.

Neglecting quantities that are higher than linear over x̂ − x0, β0 − β31 and β0 − β32, we get

from (3.81)

Φ′(x̂) = Φ′′(x0) |β31=β32=β0 (x̂− x0)

+Φ′(x0) |β31=β32=β0 + b, (3.82)

b ≡
∑

α=31,32
(βα − β0) ∂βαΦ′(x0) |β31=β32=β0 . (3.83)

Taking x̂→ x0 in (3.74) we get

Φ′(x0) |β31=β32=β0 = −E ′1(x0). (3.84)

Once E ′1(x) does not depend on β31 and β32, Φ′(x0) |β31=β32=β should not depend on β0; see

(3.84).

Let us work out implications of this fact. Eqs. (3.77–3.79) show that under β31 = β32 = β0

and (3.80), we get equilibrium probabilities

p1|x0 |β31=β32=β0 = p2|x0 |β31=β32=β0 =
1

Z
, (3.85)

p3|x0 |β31=β32=β0 =
e−β0Ê3(x0)

Z
. (3.86)
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Hence we obtain

Φ′(x0) |β32=β31=β0 =
Ê ′2(x0) + Ê ′3(x0)e−β0Ê3(x0)

2 + e−β0Ê3(x0)
. (3.87)

This expression is not a function of β0 only for

Ê ′2(x0) = 2Ê ′3(x0), (3.88)

where

Φ′(x0) |β31=β32=β0 = Ê ′3(x0). (3.89)

Now using (3.88, 3.76) and the fact that Ê2(x) and Ê3(x) do not depend on β31 and β32, we

get from (3.83)

b = Ê ′3(x0)
∑

α=31,32
(βα − β)∂βα [p2|x0 − p1|x0 ]. (3.90)

To work out (3.90) via (3.77–3.79), we recall that we assumed for the transition rates

ρi←j(x) [see Eq. (3.22)]:

ρi←j(x) = fij[Ej(x)− Ei(x)], (3.91)

where fij[y] holds the detailed balance conditions [see Eq. (3.2)]:

fij(y) = fji(−y)eβijy. (3.92)
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Combining (3.90) with (3.91) and with (3.77–3.79), we get

p2|x0 − p1|x0 =
1

Z(x0)
[f32(Ê3(x0))f31(−Ê3(x0))−

f31(Ê3(x0))f32(−Ê3(x0)) ], (3.93)

b =
Ê3(x0)Ê ′3(x0)

Z(x0)

∑
α=31,32

β0 − βα
β0

ψα[Ê3(x0)], (3.94)

where we denoted

f ′ij[y] ≡ d

dy
fij[y], (3.95)

ψ31[x] ≡ f ′31[x]f32[−x] + f ′31[−x]f32[x], (3.96)

ψ32[x] ≡ −f ′32[−x]f31[x]− f ′32[x]f31[−x]. (3.97)

Now let us assume the following inequality

f ′ij[y] ≥ 0. (3.98)

This inequality is clearly not implied by the detailed balance condition (3.92). It means that

the transition from a lower energy to a higher energy is facilitated, if the lower energy increases

or the higher energy decreases. This inequality holds for all physical examples we are aware

of. It thus should be regarded as an additional and physically well-motivated condition that

we impose on the present set-up.

Eqs. (3.95–3.98) imply

ψ31[Ê3(x0)] ≥ 0, ψ32[Ê3(x0)] ≤ 0. (3.99)

Recalling that β0 is in between of β31 and β32 we see from (3.94, 3.99)

sign[b] = sign[Ê3(x0)Ê ′2(x0)(1− θ)] (3.100)

Let us now return to (3.72) and work it out in the considered first-order over x̂− x0 and
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1− θ:

Ê ′2(x0)(x̂− x0)[ (1− θ) Ê3(x0)− Ê ′2(x0) (x̂− x0) ] ≥ 0. (3.101)

Next, we put (3.82) into (3.74), expand in the latter E ′1(x̂) for x̂ ∼ x0, and employ (3.84):

[ Φ′′(x0) |β31=β32=β0 + E ′′1 (x0) ](x̂− x0) + b = 0. (3.102)

On the other hand, (3.75) leads to

Φ′′(x0) |β31=β32=β0 + E ′′1 (x0) > 0. (3.103)

Hence (3.102, 3.103) mean that sign[b(x̂− x0)] < 0, which implies from (3.100)

sign[Ê3(x0)(1− θ)Ê ′2(x0)(x̂− x0)] < 0. (3.104)

Eq. (3.101) and (3.104) contradict each other, hence no adaptation is possible.

3.14 Slow current

Eq. (3.12) shows that the dynamics of the controller x amounts to drift and diffusion. Let

us assume that they originate from an equailibrium thermal bath at temperature T = 1/β.

Then the fluctuation-dissipation relation implies T = γD, where γ > 0 is the damping

constant, and D > 0 is the diffusion constant. Starting from Eq. (3.12), we define the energy

lost/gain by the thermal bath at temperature T :

JA =
1

γ

3∑
j=1

∫
dxEi(x)∂x[pi(x, t)E

′
i(x) + Tp′i(x, t)], (3.105)

where we recall that E ′i(x) ≡ dEi(x)
dx

. Indeed, (3.105) is that part of the overall energy change∑3
j=1

∫
dxEi(x)ṗi(x) that is driven by the bath at the temperature T .
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In the stationary state we integrate (3.105) by parts, and get

JA = −1

γ

∑3

j=1

∫
dxE ′i(x)[pi(x)E ′i(x) + Tp′i(x)], (3.106)

where the stationary probability is

pi(x) = pi|xp(x), p(x) ∝ e−βΨ(x), (3.107)

Ψ(x) =
∑

i
pi|xE

′
i(x), (3.108)

where pi|x is defined via (3.77–3.79).

For very small temperatures we deduce JA < 0 from (3.106), i.e. the thermal bath at

temperature T gains energy. Note that JA = O( 1
γ
), i.e. it is small in the slow limit. However,

for β32 ≈ β31 also all other energy currents are small, hence JA can become the domininant

energy current in the system. Our numerical results show that for β32 ≈ β31 < β, we get

JA < 0.

3.15 External force that generates negative friction

Recall Eqs. (3.12, 3.15). We generalize them so that Eq. (3.15)reads

ṗ(x, t) =
1

γ
∂x[p(x, t)Ψ

′(x)] +
T

γ
∂2
xp(x, t)

+∂x[p(x, t)G
′(x)], (3.109)

where we assume that x couples with a thermal bath at temperature T ,

γ > 0, (3.110)

is the friction constant, and G′(x) = d
dx
G(x) is an external force. If now we set

G(x) = −2

γ
Ψ(x), (3.111)
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the resulting joint influence of G(x) and Ψ(x) is equivalent to a negative friction.

The average energy Π dissipated per unit of time due to the external force G′(x) can be

estimated via the change of the free energy

F =

∫
dx p(x, t)[Ψ(x) + T ln p(x, t)], (3.112)

of x due to the external part (3.109) of the dynamics

Π =

∫
dx ∂x[p(x, t)G

′(x)] [Ψ(x) + T ln p(x, t)]. (3.113)

In the stationary state:

Π = −
∫

dx p(x)G′(x) [Ψ′(x) + T
d

dx
ln p(x)] (3.114)

= γ

∫
dx p(x)[G′(x)]2, (3.115)

where p(x) ∝ exp[−(Ψ(x) + γG(x))/T ]. Using (3.111) we finally obtain:

Π =
1

γ

∫
dx p(x)[Ψ′(x)]2. (3.116)

3.16 Non-equilibrium features and fragility

Above we saw that the heat-engine functioning is fragile in the sense that changing even

one bath temperature puts the machine out of the heat-engine functioning. But not all

non-equilibrium features are fragile in this sense, as we shall now show.

Recall the Markov equation (3.1) and consider the probability current

Ii←j = ρi←jpj − ρj←ipi (3.117)

from state j to i; cf. the definition of I3←1 with the definition of the energy current Ji>j given
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by Eq. (3.3). In the stationary regime Ii←j is read-off from (3.4–3.8):

I1←2 = I3←1 = I2←3 =
ρ3←1 ρ2←3 ρ1←2

Z
×(

1− e(β32+β31)[E3−E1]−β32[E2−E1]
)
, (3.118)

where we took into account ρ1←2 = ρ2←1 due to β21 = 0, and where Z is the normalization

factor defined via Eq. (3.4).

Now consider a cyclic transformation of the probability, e.g. between states 1← 2← 3←

1. Cycles are related to quasi-deterministic motion; they are the building blocks of metabolic

processes [112].

The cycle 1 ← 2 ← 3 ← 1 is determined by positivity of three probability currents I1←2,

I3←1 and I2←3. As shown by (3.118), the cycle can hold for all β32 and β31 by taking E3 = E1

and E2 > E1.

Thus the cyclic motion as such is not a fragile feature. Note that even we can still design

adaptation schemes that tend to put the value of the above probability current within certain

limits. But it is important to stress that the cyclic motion as such does not need adaptation,

since it is not fragile.

3.17 Coupling between heat-engine and controller has to

be informative in the Bayesian sense

The effect of heat-engine adaptation obtained above was related to assuming that Ei are

correlated random variables with the density

P (E1, E2, E3) =

∫
dx p(x)

3∏
k=1

δ(Ek − Ek(x)), (3.119)

and with specific forms of Ei(x). Here p(x) is the probability density of x.

To see why such assumptions are necessary, take an extreme case, where the probability

density of energies Π(E1, E2, E3) is non-informative in terms of the Bayesian statistics [5,120].
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Since we do not have prior expectations about correlations between random variables E1, E2

and E3, they are taken as independent [5]

Π(E1, E2, E3) =
3∏

k=1

Π(Ek). (3.120)

Also, since Ek can assume either sign, the non-informative density Π(Ek) is the homogeneous

one [5]:

Π(Ek) =
1

2A
Θ[Ek + A] Θ[A− Ek],

∫
dxΠ(x) = 1, (3.121)

where Θ[x] is the step function: Θ[x ≤ 0] = 0, Θ[x > 0] = 1, and where A > 0 serves for

regularizing the homogeneous density, it will not influence final results.

Recall that the heat-engine functioning conditions read

(1− θ)Ê3 > Ê2 > 0, or (1− θ)Ê3 < Ê2 < 0, (3.122)

Êk ≡ Ek − E1, θ ≡ β31/β32. (3.123)

Employing (3.121) we calculate from (3.122) the probability of the heat-engine functioning:

∫ A

−A

dE1 dE2 dE3

8A3

(
Θ[Ê2] Θ[(1− θ)Ê3 − Ê2]

+Θ[−Ê2] Θ[−(1− θ)Ê3 + Ê2]
)

=
1−min[θ, 1

θ
]

3
. (3.124)

This probability is generally lower than 1
3
. Hence it is not surprising that we found numerically

that the current J21 averaged over Π(E1, E2, E3) is positive, i.e. the random-structure machine

does not function as a heat-engine.

Thus the coupling between structure and function, which is encoded in P (E1, E2, E3) must

be informative in the above sense.
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Conclusion

Let’s shortly summarize the results obtained in this thesis.

We started by arguing that the problem of defining and interpreting the thermodynamic

work done on a charged particle by time-dependent electromagnetic field (EMF) is still open.

In particular, the definition of the thermodynamic work is not automatic, since the time-

dependent Hamiltonian (1.4) of the particle is not gauge-invariant. Hence deeper physical

reasons are needed for coming up with a consistent definition of work. We stress that previous

attempts [11,44,46,47,53,54] did not resolve this problem. In particular, it was not clear how

to formulate the first law (that relates the work to the energy of the EMF-source), and how

to connect with the mechanic work (force times displacement). All these issues are relevant

for relativistic statistical thermodynamics [177].

The solution of the problem was sought along the following lines:

– The definition of work ought to emerge from a consistent energy-momentum tensor of

the overall system (particles+EMF). In particular, this ensures that the definition is rela-

tivistically covariant. The standard energy-momentum tensor of EMF does not apply to this

problem, since it implies that the particle does not have a potential energy and hence indi-

rectly supports the choice of the temporal gauge φ = 0 that leads to unacceptable conclusions

for the definition of the thermodynamic work; see in introduction.

– The definition should hold the first law (work-energy theorem) that relates the energy

of the work-recipient with the energy of the work-source.

We carried out this program|within lacunae listed below|and showed that the physically

meaningful definition emerges from the Lorenz gauge of EMF. It comes from the energy-
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momentum tensor (for matter+EMF) that is proposed in section 1.2. This tensor is gauge-

invariant and holds several necessary features. Its differences and similarities with the stan-

dard energy-momentum tensor are discussed in section 1.2 and 1.6. The thermodynamic

work can be defined via the particle’s Hamiltonian in the Lorenz gauge. To an extent we were

able to check, it is only in this gauge that the thermodynamic work is relativistically consis-

tent and relates to the gauge-invariant kinetic energy of the source of EMF. The latter can

also be recovered as the mechanic work done by Lorentz force acting on the source, thereby

establishing a relation between the thermodynamic and mechanic work.

We verified the first law (1.46) also for the case, when the self-interaction is included in

the dynamics of system. The energy transfer direction is well defined also in this case.

Our motivation was and is to understand how to define work for particles interacting

with/via a non-stationary EMF. Besides its obvious importance in non-equilibrium statistical

mechanics.

We studied a model for an adaptive heat engine that can function under scarce or unknown

resources. The engine is consisted of working body and controller, which are feed-back con-

nected. Several physical limitations for the adaptation concept were uncovered. They relate

to the prior information available about the environment, i.e. whether both bath tempera-

tures vary or one of them is fixed. It is shown that the adaptation mechanism is valid both for

symmetric and Kramer’s rates. Feed-forward mechanism doesn’t provide any advantage of

adaptation mechanism. The efficiency and power adaptation is also presented in this thesis.

It is shown that if there is no any information (in Bayessian terms) about the probability

density of energy levels of working body, then the machine mainly doesn’t work as a heat

engine.
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