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Abstract⎯The effect of sequence disorder on thermodynamics of ssRNA is studied on the basis 
of constrained annealing approach. A random sequence with bimodal disorder is considered. The 
temperature behavior of specific heat and helicity degree is examined. A reasonable agreement with 
numerical results is obtained. In the presence of competing interactions the model exhibits not only 
partial high-temperature melting, but also partial cold denaturation. 
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1.  INTRODUCTION 
Single-stranded RNA plays central role in all live systems. In addition to transmission of genetic 

information RNA participates actively in different cellular processes [1]. RNA-strand consists of four 
different types of nucleotides, A, C, G, and U, and can form double helical structures consisting of 
successive stable A–U or G–C Watson–Crick pairs. Nucleatide sequence affects the three-dimensional 
native structure of RNA. At the same time, RNA-sequence is the result of evolution and, hence, it is 
expected that the stability of the secondary structure is important for natural selection [2]. There exist 
efficient algorithms for exact calculation of partition functions and corresponding thermodynamical 
parameters of secondary structures of RNA [3, 4]. 

Stability of the secondary structure can experimentally be measured in the process of denaturation 
when RNA molecule is losing its tertiary and secondary structures. It is common, like in proteins, to 
distinguish thermal and cold denaturation. The former occurs at heating [5] while the latter at cooling. 
The cold denaturation of RNA is studied in [6]. 

Phase behavior of ssRNA was studied carefully in the context of glass states [7–11], long-loop effects 
[12], tension [13], and so on. From the point of view of statistical physics, a decisive obstacle on the way 
to quantitative analytical description of ssRNA is the quenching mean when logarithm of the partition 
function is disorder averaged, whereas in case of annealing the partition function is itself disorder 
averaged. The quenching approximation corresponds physically to thermodynamical equilibrium between 
the degrees of freedom relating to the sequence and structure. Comparative analysis of quenched and 
annealed ensembles is given [14–17]. Work [16] proposes a technique of constrained annealing which we 
use in the present work. So far we know it is the first case where the constrained annealing technique is 
applied to thermodynamics of ssRNA. We evaluate analytically thermodynamic parameters of ssRNA 
using approach proposed in [16]. The heat capacity we obtain has two peaks indicating two structural 
transitions. Our analytical results are in good agreement with numerical results obtained on the basis of 
methods proposed in [3, 4]. We obtained cold denaturation when the RNA molecule loses essentially its 
secondary structure. 

2.  MODEL 
We propose to consider for simplicity a random sequence of ssRNA consisting of only A and U 

nucleotides. Topological rules which determine the allowed structures are important for effective 
numerical calculation of the free energy of secondary structure. The basic rule consists in forbidding of 
formation of so-called pseudonodes from many accessible secondary structures, as in majority of other 
works concerning the physics of ssRNA. Thus, for any two pairs of bases ( ),i j  and ( ),k l  with ,i j<  

,k l<  and i k<  we have either i k l j< < <  or i j k l< < <  [7]. The secondary structure is by definition 
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the set of all pairs of bases and each base bay is a part of no more than one pair. Partition function of an 
arbitrary substrand of ssRNA molecule without pseudonodes is calculated recursively [3, 4] as 
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− − + −
=
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where ,i jZ  is the partition function of substrand between nucleotides i  and j  and ( )expij ijQ = −βε  is 
statistical weight of formation of hydrogen bonds between nucleotides i  and .j  The Hamiltonian of the 
model looks like 

 { }( )ˆ , ,i ij ij
i j

H m h m
<

= ε∑  (2) 

where the interaction constant is 0 ,ij i jh hε = ε + ε  the sum is taken over all non-repeating pairs of bases, 
1ijm =  if bases i  and j  are a pair, and 0ijm =  otherwise. The variables { }ih  describe the type of 

nucleotides; 1ih = ±  with 1+  corresponding to A nucleotide and 1−  to U nucleotide. Partition function 
for ssRNA strand of N  nucleotides is written as 

 { }( ) { }( )ˆ
ˆ'exp , ,N i im

Z h H m h⎡ ⎤= −β⎣ ⎦∑  (3) 

where 1 Bk Tβ =  and the sum is taken over all realizations of the m̂  without pseudonodes. The matrix m̂  
contains no more than a unity in every line or column. The last condition describes saturation of 
base-pairing. A random sequence { }ih  is generated in correspondence with the distribution function  

 { } ( )
1

,
N

i
i

P h h
=

= ρ∏  (4) 

where ( ) ( ) ( ) ( )1 1 1i i ih q h q hρ = δ − + − δ +  and 0 1.q< <  Due to the property of self-averaging, the 
reduced free energy becomes in the thermodynamic limit N →∞  not random quantity and 

 { } ( ) { }( )1 ln ,i Nf h f N Z h= = −  (5) 

where f  is the reduced quenched free energy [18], O  is the average with the distribution function of the 
sequence (4). According to [16], the free energy of ssRNA with random fixed sequence of nucleotides 
satisfies the following conditions: 
 ( ), ,af g f≥ β μ ≥  (6) 
where af  is the reduced quenched free energy 

 ( ) { }( ) { }( )1 1, ln ln .iN h
N N ig Z Z h e

N N
− μαβ μ = − = −  (7)  

Here { }( )ihα  is some self-averaged quantity depending on the sequence. So, ( ),g β μ  determines the 
lower boundary of quenched free energy .f  According to inequality (6), the best lower boundary of 
quenched free energy is given by ( )max , ,gμ β μ  and we can evaluate the free energy of ssRNA molecule 
with fixed random sequence as 
 ( )max , .f g

μ
≈ β μ  (8) 

The simplest constraint imposed on variables { },ih  describing the sequence, is given by the expression 
{ }( ) ( ) ( )1

1 2 1 ,N
i ii

h N h q
=

α = ⎡ − − ⎤⎣ ⎦∑  which does not specify the types of separate monomers ,ih  but only 
the mean value of the sum .ii

h∑  It may be shown that the partition function NZ  defined in formula (7) 
can after some transformations be written as  

 ( ) ( )2 1 0
0 ,N q N

N NZ e Zμ −= Ω ε + ε  (9) 
where ( )0

0NZ ε + ε  is the partition function (3) for homopolymer ssRNA with effective interaction 
constant 0 .ijε = ε + ε  Here  
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As the partition function of homopolymer single-strand RNA may be written in the form [9] 
( ) ( ) ( )0 3/2

0 1 2 ,
N

NZ A Q N Q−ε +  where ( )exp ,Q = βε  the variational free energy ( ),g β μ  for long 
chains ( 1N ) acquires the form 

 ( ) ( ) ( ) ( ), 2 1 ln ln 1 2 ,g q Qβ μ = −μ − − Ω μ − +  (11)  

where ( )0 .Q e−β ε +ε=  Maximization of the potential ( ),g β μ  with respect to μ  gives the solution ( )0 ,μ β  
determined by the equation 

 ( ) ( )ln ln , ,2 212 1 1 .
21 2 1 2

d WQ Q
q

dQ Q

⎡ ⎤ Ω μ ∂ μ β ε
− = − −⎢ ⎥
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3.  RESULTS  AND  DISCUSSION 
Entropy per monomer has the form 

 ( ) ( ) ( ) ,s g dg dβ = − β +β β β  (13) 
and the heat capacity 

 ( ) ( )2
2

2 .V

d g
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β

β = −β
β
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Figure 1 compares the behavior of heat capacity obtained by the technique of constrained annealing 
with that calculated numerically using McCaskill algorithm [4]. The mean value of heat capacity 
calculated numerically agrees well with that determined by the method of constrained annealing. 
Temperature dependence of heat capacity exhibits two peaks which is the evidence of two structural 
transitions. 

In order to ascribe the behavior of heat capacity to structural transformations of ssRNA, we define the 
degree of helicity as a mean fraction of the Watson–Crick base-pairs: 

 
22 ,
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i j

Q
m

N Q<

θ = =
+

∑  (15) 

where …  stands for thermodynamical average. It may be shown that the rhs of equation (15) is given by 
the expression for the degree of helicity of homopolymer ssRNA obtained directly from the partition 
function of the latter [9]. So, in the approximation of constrained annealing the degree of helicity is 
written as for homopolymer RNA, but with effective statistical weight .Q  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Dependence of heat capacity per nucleotide ( VC ) on the temperature 1 .T = β  Dashed lines are obtained by 
means of McCaskill algorithm for 3 random realizations for 150N =  nucleotides with parameters 0 1,ε = −  1.5,ε =   and 

0.75.q =  Solid lines are obtained in variational approximation (8) in thermodynamical limit .N →∞   
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The degree of helicity can also be calculated numerically using the probability of formation of base 
pair between nucleotides i  and j  [9]: 

 ( )1, 1 1, 1 1, .ij ij ij i j j N i Np m Q Z Z Z+ − + + −= =  (16) 

The rhs of equation (16) was calculated on the basis of expression (1) and the degree of helicity for a 
specific realization of nucleotide sequence is determined as 
 ( )2 .ij

i j
N p

<

θ = ∑  (17) 

Figure 2 compares the degree of helicity obtained by the method of constrained annealing with the 
results obtained on the basis of equations (1), (16), and (17) for a collection of randomly generated 
sequences. As in case of heat capacity, the mean value of the degree of helicity calculated numerically is 
in good agreement with that determined by means of the method of constrained annealing. It is seen in 
Fig. 2 that the degree of helicity increases sharply with the increase in temperature and then, above some 
temperature near 0.5, decreases. Such behavior of the degree of helicity indicates high- and 
low-temperature melting and, possibly, denaturation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Dependence of the degree of helicity θ  on the temperature 1 .T = β  Dashed lines are obtained by means of 
McCaskill algorithm for 3 random realizations for 150N =  nucleotides with parameters 0 1,ε = −  1.5ε =  and q = 0.75. 
Solid lines are obtained in variational approximation (8) in thermodynamical limit .N →∞  
 
The high-temperature limit corresponds to the homopolymer case where the contribution from 

internucleotide interactions is negligible. We neglect for simplicity the temperature dependence of the 
(free) energy of formation of base-pairs and lim 2 3.

T→∞
θ =  For more realistic choice, for example 

0 ,H T Sε = Δ − Δ  the high-temperature limit of the degree of helicity will mainly be determined by 
entropy loss SΔ  in formation of one base pair. HΔ  is the enthalpy per base-pair. When comparing with 
Fig. 1, the low-temperature peak of heat capacity may be attributed to the low-temperature (cold) 
denaturation and the high-temperature peak to usual thermal denaturation.  

Thus, the technique of constrained annealing provides results in good agreement with numerical 
simulation. 
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