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0.1 Introduction

The study of two-dimensional conformal field theories passed long way. Their applications to

the various topic of physics are so numerous that conformal field theory became one of the most

powerful techniques in modern physics. The first great success was the precise computation

of the critical exponents for the second-order phase transitions in two-dimensional statistical

systems.

The tremendous branch of applications of conformal field theories is String theory. Today

string theory offers the most well developed candidate for a fundamental theory of quantum

gravity and an approach to the unification of all known interactions. Conformal field theories

appear as solutions of string theoretic equations of motion.

The study of boundary conditions is very important problem in physics. Realistic systems

possess boundaries and therefore their full understanding obviously requires control of boundary

conditions. For two-dimensional conformal field theories, the study of boundaries was started

by John Cardy in sequence of papers, in particular [41, 42]. The presence of powerful infinite-

dimensional symmetries resulted to numerous exact results on boundary correlation functions.

Boundary conformal field theories are more directly applicable to real physical situations

than conformal field theories on closed surfaces. Many processes in three space dimensions

possess rotational symmetry and hence all the relevant quantities depend on time and radial

coordinates. Therefore, conformal field theories on the half-plane appear naturally. Quantum

impurity scattering, the Kondo effect, is the most well known example [1].

In string theory, we need two-dimensional conformal field theories with boundaries to de-

scribe open strings.

At low energy limit, p-branes appear as supergravity solitonic solution , describing stable

objects whose mass and charge are distributed along (p + 1)-dimensional hypersurfaces in the

spacetime. Beyond the low-energy regime, supergravity should to be replaced by full-fledged

string theory, and we need to understand how to describe branes in string theory. For a class of
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branes, those that called D-branes, the answer was found by Polchinski in [142]: D-branes are

objects on which open strings can end. The “D” in D-branes stands for the Dirichlet boundary

conditions, which constrain the open-string endpoints to live within the brane worldvolume.

String theory contains many kinds of branes, which are characterized by their dimension and

some additional data. All the data in fact are encoded in the choice of boundary states.

The importance of D-branes for our understanding of string theory, and perhaps many other

branches of modern theoretical physics is enormous. Non-complete list of applications includes:

Brane modelling of gauge theories [98], Braneworld scenario [11, 149], Braneworld cosmology

and inflation [50], Counting of states on black holes by superstring theory [177], Holographic

principle: gravitational description of quarks (also known as AdS/CFT correspondence) [2].

The boundary CFT can be generalized to consider a situation in which two (or more)

non-trivial CFT are glued together along a common interface.

Interfaces in two-dimensional theories are oriented lines separating two different quantum

field theories. In this thesis we consider special class of interfaces, for which the energy-

momentum tensor is continuous across the defect. These interfaces are called topological de-

fects [13].

During the last years topological defects in two-dimensional quantum field theories have

appeared in the various topics. Let us mention some of them. Topological defects appear in

quantum Hall problem [65], quantum wires problem [189], in the consideration of impurities

[135,154,155]. Topological defects played an important role in the topologically twisted N = 4

SYM approach to the geometric Langland program [111]. Defects provide us with examples of

2-category in physics [45,69,166,174]. Defects in Liouville and Toda field theories [48,164,168]

appear as holographic counterpart of the Wilson lines in the AGT correspondence [5,48,49,140].

Defects appear as domain wall in the Ads/CFT correspondence in the presence of D-branes [12].

Recently they were found to be useful also in study of the renormgroup flow [81,116].

The topological defects have proved to be very useful in study of the boundary state trans-

formation. Since the topological defect can be moved to the boundary without changing the

correlator, it can be fused with the boundary producing new boundary condition. Remember-
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ing that in String theory boundary states correspond to D-branes, one arrives to the conclusion

that topological defects induce D-brane transformation. This property was crucial for example

in the topologically twisted N = 4 SYM approach to the Langland problem [111]. On other side

D-branes are classified by their Ramond-Ramond or K-theory charges. Therefore topological

defects should induce also transformations in cohomology or K-theory groups. It is expected

that this transform should be of the Fourier-Mukai type [15,35,57,78,93,163,166].

In this dissertation we study D-branes and defects in the following CFTs: WZW models,

Product of WZW models, Gauged WZW models, Liouville and Toda field theories, Gepner

model. We also study duality defects implementing T-duality, Non-abelian T-duality. Fermionic

T-duality.

Let us briefly review our findings and contributions in the mentioned topics.

Non-maximally symmetric D-branes in WZW models and D-branes

on cosets

Based on papers [54–56,156–161].

Given a Conformal Field Theory (CFT) on a world-sheet with boundary one inevitably

encounters with problem of specifying of boundary conditions. Hence in Boundary Conformal

Field Theory (BCFT) one of the most important problems is classification of the boundary

conditions. One of the clues to this problem is the amount of the preserved symmetries. In

typical situation one has some extended symmetries algebra, which contains conformal algebra

as its subalgebra. Cardy in his seminal paper [42] has shown that for diagonal models so

called maximally symmetric boundary states, preserving full diagonal subalgebra always exist,

and labelled by primaries. On the other side, in CFT’s admitting Lagrangian approach as 2D

Sigma models, boundary conditions can be specified by constraints imposed on the boundary

values of the fields. Amongst most important models are WZW model, providing Lagrangian

description of affine algebras, and gauged WZW model, providing Lagrangian description of

coset models. The geometrical description of the Cardy states in the WZW model is given by
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conjugacy classes [8]. This set-up immediately raised the following problems:

1. to find geometrical realization of the Cardy states in coset models,

2. to find non-maximally symmetric boundary conditions breaking full diagonal symmetry

to some subalgebra always containing conformal symmetry.

In [56], the first problem using the Lagrangian of the gauged WZW model has been solved. It

was shown that the Cardy states in cosets realized by pointwise product of conjugacy classes. In

this paper geometrical realization of selection rule and field identification in cosets was addressed

as well. The methods developed in this paper, in particular the use of the Polyakov-Wiegmann

identities, turned out to be very fruitful and enabled in the next publications [156–158,160,161]

to address the second problem and build many new examples of non-maximally symmetric

boundary conditions and branes in various cosets. In particular we would like to mention the

following findings:

• Geometrical realization of the Maldacena-Moore-Seiberg parafermionic D-branes [156,

157]

• D-branes in asymmetric cosets [158]

• D-branes in cosmological Nappi-Witten model and in Guadagnini-Martellini-Mintchev

model [158]

• Non-maximally symmetric non-factorizable D-branes on product of WZW models [159,

160]

• Geometrical realization of permutation D-branes and defects in coset models [161]

D-branes in Gepner model

Based on papers [10,162].

The Gepner model is one of the most interesting exact-solvable compactification schemes.

We have studied Cardy states in (2)4 Gepner model. This model is still rather simple to handle,
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and yet enough complicated to capture typical difficulties one encounters using Gepner model.

In particular this model possesses a simple current extension fixed point, and requires to use

corresponding machinery for fixed point resolution. The full list of 88 characters of this model

has been presented, and using equivalence of this model with toroidal orbifold T 4/Z4, partial

geometric realization of Cardy states has been obtained.

Topological defects

Defects in two-dimensional quantum field theory are oriented lines separating different quantum

field theories. The notion of the defects is very rich and defects appear in the numerous different

topics, like condensed matter, string theory, algebraic topology, Langland theory, boundary

conformal field theory, D-branes.

I have published numerous papers on topological defects. In these papers the following

aspects of the defects have been discussed: applications of defects to string dualities, defects in

Liouville and Toda field theories, defects in WZW and gauged WZW models.

Defects and dualities

Based on papers [57,93,163].

In [57,93,163], defects separating two bulk systems, each described by its own Lagrangian,

where the two descriptions are related by a discrete symmetry, were considered, and defect

equations of motion ( defect analogue of boundary equation of motion) have been elaborated.

In particular the descriptions related by T-duality, fermionic T-duality, and non-abelian T-

duality were considered. This analysis implies that to each kind of dualities a bundle on a

defect world-volume can be associated. A defect corresponding to a duality, sometimes called

defect performing or implementing the duality, since it can be also considered as an operator

implementing the duality. We have found that the defect equations of motion encode the

duality relations. We observed that bundles on world-volumes of defects performing various

T-dualities, are in fact different cousins of the Poincaré bundle. It was shown that the duality
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action on D-branes and the Ramond-Ramond fields is identical to the Fourier-Mukai transform

with a kernel given by the corresponding Poincaré bundles or the exponential of the gauge

invariant flux on a defect respectively. This enabled us to develop new method of calculation

of the Ramond-Ramond field transformation under the non-abelain T-duality. We also studied

in detail T-duality between SU(2) WZW model and the lens space, and axially and vectorially

gauged WZW models.

Defects in WZW and gauged WZW models

Based on papers [165–167].

In [165], the famous relation between WZW model and Chern-Simons gauge theory [52,186]

has been elaborated in the presence of defects and permutation branes. Using the Lagrangian

formulation of WZW model with defects [78] and boundaries [87] the following three symplec-

tomorphisms have been established:

1. The symplectic phase space of the WZW model with N defects on a cylinder is symplec-

tomorphic to that of Chern-Simons gauge theory on an annulus A times the time-line R

with N time-like Wilson lines.

2. The symplectic phase space of the WZW model with N defects on a strip is symplecto-

morphic to that of Chern-Simons gauge theory on a disc D times the time-line R with

N + 2 time-like Wilson lines.

3. The symplectic phase space of N -fold product of WZW models on a strip with boundary

conditions given by the permutation branes is symplectomorphic to that of Chern-Simons

gauge theory on a sphere with N holes times the time-line R and with two time-like Wilson

lines.

In [166, 167], the relation between gauged WZW model G/H model and double Chern-

Simons gauge theory [131] has been studied in the presence of defects and permutation branes

and the following isomorphisms have been established:
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1. The symplectic phase space of the gauged WZW G/H model on a cylinder with N defects

is symplectomorphic to the symplectic phase space of the double Chern-Simons theory

on an annulus A times the time-line R with G and H gauge fields both coupled to N

Wilson lines.

2. The symplectic phase space of the gauged WZW G/H model on a strip with N defects is

symplectomorphic to the symplectic phase space of the double Chern-Simons theory on a

disc D times the time-line R with G and H gauge fields both coupled to N + 2 time-like

Wilson lines.

3. The symplectic phase space of the N -fold product of the gauged WZW models on a

strip with boundary conditions given by permutation branes is symplectomorphic to the

symplectic phase space of the double Chern-Simons theory on a sphere with N holes times

the time-line R with G and H gauge fields both coupled to two Wilson lines.

In the special case of topological coset G/G these isomorphisms take the form:

4. The symplectic phase space of the gauged WZW G/G model on a cylinder with N defects

is symplectomorphic to the symplectic phase space of the Chern-Simons theory on T 2×R

with 2N Wilson lines.

5. The symplectic phase space of the gauged WZW G/G model on a strip with N defects is

symplectomorphic to the symplectic phase space of the Chern-Simons theory on S2 × R

with 2N + 4 time-like Wilson lines.

6. The symplectic phase space of the N -fold product of the topological coset G/G on a

strip with boundary conditions given by permutation branes is symplectomorphic to the

symplectic phase space of the Chern-Simons theory on a Riemann surface of the genus

N − 1 times the time-line with four Wilson lines.

Defects in the Liouville and Toda field theories

Based on papers [144,164,168]
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In [164,168], using the Cardy-Lewellen cluster equation for defects, derived in [139], defects

in the Liouville and Toda field theories have been constructed. It was shown that defects labelled

by the physical and degenerate primaries of Liouville/Toda field theories, and correspondingly

compose discrete and continuous families. Acting by the defects of the continuous family on

the well-known Fateev-Zamolodchikov-Zamolodchikov boundary states, new boundary states in

the Liouville field theory have been obtained. We also have shown in [168] that the well known

relation [20] between the OPE structure constants and the fusing matrix with an intermediate

entry set to the vacuum proved for rational CFT, holds also for the Liouville theory. We checked

that it holds also for the Toda field theory with an external entry set a degenerate field. But

we have gathered evidences that it should hold for all primaries also in the Toda field theory.

In paper [144], we study semiclassical limit of the continuous family of the defect two-point

functions in the Liouville field theory, derived in [164].

We show that semiclassical limits are in agreement with the recently suggested Lagrangian

with topological defects of the continuous family constructed in [3]. In particular we demon-

strate that the heavy asymptotic limit is given by the exponential of the Liouville action with

defects, evaluated on the solutions of the defect equations of motion with two singular points.

This dissertation is organized in the following way.

The dissertation consists of 8 chapters. In chapter 1 we review the material necessary to

present our findings. In chapters 2-7 we deliver our findings. The Chapter 8 contains the list

of findings.

In chapter 1 we collect and review the necessary stuff and technique of two-dimensional

conformal field theory including bulk as well as boundary aspects. In section 1.1 we review

two-dimensional conformal field theory on closed surfaces (bulk aspects). In section 1.2 we

collect all the necessary gadgets of conformal field theory on a world-sheet with a boundary. In

section 1.3 we study topological defects. In section 1.4 we illustrate the developed technique

for the case of free boson theory. In section 1.5 we introduce WZW and gauged WZW models

(coset models).

The Chapter 2 is based on papers [54–56, 156–160]. In this chapter we study non-
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maximally symmetric branes on WZW model, preserving only part of the diagonal affine sym-

metry. In section 2.1 we analyze general properties of WZW model on a world-sheet with

a boundary. In section 2.2 we study so called parafermionic D-branes. In subsection 2.2.1

we define non-maximally symmetric D-brane, sometimes called also parafermionic, as point-

wise product of the conjugacy class and a U(1) subgroup. We construct Lagrangian with the

boundary condition constraining group field to take on boundary values in the parafermionic

D-brane. We study symmetries of the action and show that it is invariant under the axial com-

bination of the left and right U(1) currents, and vectorial combination of the currents belonging

to the subgroup commuting with U(1) group. In subsection 2.2.2 we study geometry of the

parafermionic D-branes for SU(2) group and show that generically it is three-dimensional and

given by an inequality constraining the values of the second Euler angle. In subsection 2.2.3

we review construction of the boundary state of the parafermionic D-brane for SU(2) group,

called MMS (Maldacena-Moore-Seiberg) state, given in [123]. In subsection 2.2.4 we compute

the overlap of the MMS boundary state with the graviton wave packet and show that it gives

the inequality derived in subsection 2.2.2. In section 2.3 we study permutation branes on a

K+1-fold product of group G on a world-sheet with a boundary, with boundary condition con-

straining product of group fields to take value again in discrete set of conjugacy classes defined

in 2.1.2. In subsection 2.3.1 we describe geometry of the permutation branes. In subsection

2.3.2 we write the Lagrangian with these boundary conditions and show that it has symmetries

of permutation branes studied in 1.2.4. In subsection 2.3.3 we compute for SU(2) group overlap

of the permutation boundary states defined in 1.2.4 with the graviton wave packet and show

that in the semiclassical limit they indeed have geometry described in 2.3.1. In section 2.4 we

construct type I non-maximally symmetric non-factorizable branes on a product of identical

groups. In subsection 2.4.1 we define new branes as product of permutation branes studied in

2.3 with elements of an U(1) subgroup. We construct Lagrangian with these boundary condi-

tions and study their symmetries. In subsection 2.4.2 we study geometry of these branes for

SU(2) × SU(2) group. In subsection 2.4.3 we construct boundary states of the type I branes

for SU(2) × SU(2) group, compute the overlap with the graviton wave packet and show that
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it is in agreement with the calculations in 2.4.2. We also check that type I boundary states

satisfy the Cardy criteria.

In section 2.5 we study type II non-maximally symmetric non-factorizable branes on product

of identical groups. In subsection 2.5.1 we define new branes as product of permutation branes

studied in 2.3 with elements of two of U(1) subgroups. We construct Lagrangian with these

boundary conditions and study their symmetries. In subsection 2.5.2 we study geometry of

these branes for SU(2)×SU(2) group. In subsection 2.5.3 we construct boundary states of the

type II branes for SU(2) × SU(2) group, compute the overlap with the graviton wave packet

and show that it is in agreement with the calculations in 2.5.2. We also check that type II

boundary states satisfy the Cardy criteria.

The chapter 3 is based on papers [56, 158, 160, 161]. In chapter 3 branes and defects in

gauged WZW models are constructed. In section 3.1 we study branes in the vectorially gauged

WZW model G/H. In subsection 3.1.1 we construct D-branes in vectorially gauged WZW

model using the representation of the gauged WZW model Lagrangian via the auxiliary fields

reviewed in 1.5.5 and the action of the WZW model with a boundary presented in 2.1.1.

Analysing global issues mentioned in 2.1.2 we find correspondence of the found D-branes

with the Cardy states of the coset models in the absence of the common center of G and H.

In subsection 3.1.2 we analyze special case of the cosets when G and H has common center.

We show that found D-branes satisfy present in this case field identification and selection rules

of the primary fields of coset models.

In section 3.2 we present the Lagrangian approach to defects in WZW models. In section

3.3 we construct Cardy defects and permutation branes in vectorially gauged WZW model. In

subsection 3.3.1, using again the representation of the gauged WZW model Lagrangian via the

auxiliary fields presented in 1.5.5 and the Lagrangian of the WZW model with defects reviewed

in 3.2, the geometry and action of the topological defects and permutation branes in GWZW

are constructed. We show that they are in one-to-one correspondence with primary fields of

coset models. In subsection 3.3.2 we consider overlap of the permutation brane boundary state

on product of cosets SU(2)k/U(1)×SU(2)k/U(1) with the graviton wave packet and show that
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it has geometry found in 3.3.1.

In section 3.4 we cosnsider D-branes in asymmetrically gauged cosmological Nappi-Witten

model and in the Guadagnini-Martellini-Mintchev model. In subsection 3.4.1 we present D-

branes in the Nappi-Witten model, construct the action with these boundary conditions and

check gauge invariance. In subsection 3.4.2 we study in detail D-branes in the Nappi-Witten

cosmological model SL(2, R) × SU(2)/U(1) × U(1) and present the explicit equations of the

corresponding D-brane hypersurfaces. In subsection 3.4.3, in a similar way D-branes in the

Guadagnini-Martellini-Mintchev model are considered . In subsection 3.4.4 we consider in

detail D-branes in the SU(2)× SU(2)/U(1) GMM model.

The chapter 4 is based on papers [165–167]. In chapter 4 we establish symplectomorphisms

between certain phase space of the Chern-Simons and double Chern-Simons theory and that

of WZW and gauged models with branes and defects. In section 4.1 we review the symplectic

phase space of three-dimensional Chern-Simons theory with sources on a product of a Riemann

surface Σ and a time line R.

In section 4.2 we establish symplectomorphisms between certain phase space of the Chern-

Simons theory and that of WZW models with branes and defects. In subsection 4.2.1 we

compare the Hilbert spaces of the Chern-Simons theory with Wilson lines on certain spaces

and that of WZW models with branes and defects and list the statements which we prove here.

In subsection 4.2.2 we review bulk WZW model and establish that the symplectic phase space

of the WZW model on circle coincides with that of CS theory on annulus [52]. In subsection

4.2.3 we recall that the symplectic phase space of the WZW model on the strip coincides with

that of CS theory on the disc with two Wilson lines [88]. In subsection 4.2.4 we establish that

the symplectic phase space of the WZW model with a defect is symplectomorphic to that of

Chern-Simons theory on an annulus with a Wilson line. In subsection 4.2.5 we establish that the

symplectic phase space of the WZW model on a strip with a defect inserted is symplectomorphic

to that of CS theory on a disc with three Wilson lines. In subsection 4.2.6 we establish that the

symplectic phase space of the WZW model G×G on a strip with boundary conditions specified

by permutation branes coincides with that of CS on an annulus with two Wilson lines.
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In section 4.3 we perform canonical quantization of the vectorially gauged WZW model

G/H with the defects and boundaries and establish symplectomorphisms between their phase

spaces and certain phase spaces of the double Chern-Simons theories. In subsection 4.3.1 we

present short summary of the statements proved in this section. In subsection 4.3.2 we review

bulk gauged WZW model and show that its phase space on a cylinder coincides with that of

double Chern-Simons theory [89, 131] on product of annulus A and time-line R. In subsection

4.3.3 we show that the phase space of the gauged WZW model on a cylinder with a defect line

coincides with that of double Chern-Simons theory on A×R with gauge fields of groups G and

H coupled to a Wilson line. In subsection 4.3.4 we show that the phase space of the gauged

WZW model on a strip with a defect line coincides with that of the double Chern-Simons theory

on disc D times time-line R with gauge fields of groups G and H coupled to three Wilson lines.

In section 4.4 we analyze especially interesting case of the topological coset G/G. In subsection

4.4.1 we analyze bulk G/G coset and show that the phase space of a bulk G/G theory on a

cylinder is symplectomorphic to that of a Chern-Simons theory on T 2×R, where T 2 is a torus.

In subsection 4.4.2 we show that the topological coset G/G on a cylinder with a defect line is

symplectomorphic with that of a Chern-Simons theory on T 2 × R with two Wilson lines. In

subsection 4.4.3 we demonstrate the symplectomorphism of the phase space of G/G topological

coset on a strip with a defect and a Chern-Simons theory on S2 × R with six Wilson lines. In

section 4.5 we analyze a product of cosets G/H × G/H on a strip with boundary conditions

specified by permutation branes and show that its phase space is symplectomorphic to the phase

space of the double Chern-Simons theory on an annulus times the time-line and with G and H

gauge fields both coupled to two Wilson lines. In section 4.6 we establish symplectomorphism

of the phase space of product of topological cosets G/G × G/G on a strip with the boundary

conditions given by the permutation branes and that of Chern-Simons theory on a torus times

the time-line with four Wilson lines.

The chapter 5 is based on papers [57, 93,163].

In chapter 5 we study topological defects implementing various dualities.

In section 5.1 we review some basic facts concerning topological defects and their relation
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to T-duality. It is established that the defect implementing bosonic T-duality is given by the

Poincaré line bundle. We demonstrate in the simple example of a scalar field compactified on

a circle how the defect equations of motion reproduce the appropriate duality transformations.

In section 5.2 we generalize this to the factorized T-duality in non-linear sigma models with

isometries. We also present a defect generating a combined action of the Zk orbifolding together

with a T-duality transformation. In section 5.3 we explain how the T-duality transformation

of the Ramond-Ramond charges can be written as the Fourier-Mukai transform with the kernel

given by the exponent of the gauge invariant flux on the corresponding topological defect.

In section 5.4, we study T-dualities in the special case of SU(2) WZW model and a lens

space. In subsection 5.4.1 we review [32] kernel of the Fourier-Mukai transform of the T-duality

between SU(2) WZW model and lens space implementing the map between the corresponding

twisted cohomology groups. In subsection 5.4.2, we construct several families of defects by using

T-duality transformation and orbifoldig. In subsection 5.4.3 for one such family we determine

the geometry of the underlying bibranes. We recover structure familiar from Fourier-Mukai

transformations studied in 5.4.1.

In section 5.5 we construct defects between axial and vector gauging of G/U(1) gauged

WZW models [16, 85] for a general group G. For the case of G = SU(2) [17] the geometrical

construction is translated to the algebraic parafermionic language.

In subsection 5.5.1 we present geometry and flux of the defects gluing axially-vectorially

gauged models. In subsection 5.5.2 we specialize to group SU(2) and show that for level k

parafermions there are k + 1 topological defects mapping axially gauged SU(2)/U(1) cosets

to the vectorially gauged SU(2)/U(1) coset, labeled by the integrable spin j = 0, . . . , k
2
. In

subsection 5.5.3 we construct them as the appropriate operators in the parafermion Hilbert

space. We show that the defect corresponding to j = 0 implements Zk orbifolding together

with T-duality. These defects project Aj,n Cardy branes in SU(2)/U(1) coset to the Bj branes

constructed in [123].

In section 5.6 we study the defect performing the fermionic T-duality [24]. In subsection 5.6.1

we review the necessary information on pseudodifferential forms integration. In subsection 5.6.2
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we review the fermionic T-duality [24]. In subsection 5.6.3 we show that the defect inducing

the fermionic T-duality is given by the fermionic generalization of the Poincaré line bundle,

which we denote as Super-Poincaré line bundle. We demonstrate that the defect equations of

motion reproduce the fermionic T- duality transformation rules found in [24]. In subsection

5.6.4 using the exponent of the gauge invariant flux on this defect as a kernel of the Fourier-

Mukai transform with a pushforward map given by the fiberwise integration on supermanifold,

we derive the transformation of the Ramond-Ramond fields under the fermionic T-duality.

In section 5.7 we construct topological defects producing non-abelian T-duality.

In subsection 5.7.1 we review non-abelian T-duality. In particular we recall the duality

relations and demonstrate general formulas for the case of SU(2) principal chiral model. In

subsection 5.7.2 we present defect performing non-abelian T-duality, and show that the defect

equations of motion reproduce the duality relations derived in subsection 5.7.1. In subsection

5.7.3 using the flux of non-abelian T-duality defect derived in subsection 5.7.2, we derive the

Fourier-Mukai transform formula for non-abelian T-duality, and compute the RR fields trans-

formation for SU(2) isometry group. We obtain that our results are in agreement with that

of [109,175].

The chapter 6 is based on papers [144,164,168].

In chapter 6 we study topological defects in the Liouville and Toda field theories. In section

6.1 we write down topological defects in the Liouville field theory. It is shown that defects are

labelled by the physical and degenerate primaries of Liouville field theory, and correspondingly

compose discrete and continuous families. We also have shown that the well known relation [20]

between the OPE structure constants and the fusing matrix with an intermediate entry set

to the vacuum proved for rational CFT, holds also for the Liouville theory. In section 6.2

we write down topological defects in the Toda field theory. We have shown that topological

defects in Toda field theory are labelled by the physical, semi-degenerate and fully degenerate

primaries. In section 6.3 we analyze classical Liouville theory with defects. In subsection 6.3.1

we review the general solution of the Liouville equation. In subsection 6.3.2 we present general

solution of the defect equations of motion. In section 6.4 we review the heavy asymptotic
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semiclassical limit. In section 6.5 we calculate the defect two-point function in the heavy

asymptotic limit. In subsection 6.5.1 we calculate heavy asymptotic limit of defect two-point

functions. In subsection 6.5.2 we show that heavy asymptotic limit of defect two-point functions

found in the previous section is given by exponential of the action with defects evaluated on

solution of defect equations of motion with two singularities.

The chapter 7 is based on papers [10,162].

In chapter 7 we study Cardy states in (2, 2, 2, 2) Gepner model. In section 7.1 we review

necessary background material on the simple current extensions. In section 7.2 we review

Gepner models via simple current extension formalism. In section 7.3 we write down all the

necessary information on the (2, 2, 2, 2) model: orbit representatives, characters, conformal

weights. Using the resolved characters we compute the torus partition function and show that

it coincides with the one computed in the appendix 5 as an orbifold partition function at the

SU(2)4 point. Using the general formulae of section 7.1 we also derive the annulus partition

functions between different Cardy states, paying special attention to the peculiarities caused

by the presence of the fixed points. In section 7.4 we study D0 branes on the orbifold T 4/Z4 .

We compute all the annulus partition functions between D0 branes located at points in T 4/Z4

orbifold that are fully or partially fixed under the orbifold group action. Using previously

derived formulae for the annulus partition functions between Cardy states of the (2,2,2,2)

model we establish a partial dictionary between Cardy states and D0 branes.

In chapter 8 we presented list of our main findings.

In five appendices some technical points are collected. In appendix 1 double Gamma and

Sinus functions are reviewed. In appendix 2 asymptotic behaviour of Gamma function is

reviewed. In appendices 3 and 4 some identities on Theta function are collected. In appendix

5 some technical points on calculation of the partition function of T 4/Z4 orbifold are delivered.

All results of this dissertation are published in papers [10,54–57,93,144,156–168].
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Chapter 1

Two-dimensional conformal field

theories: bulk and boundary aspects

1.1 General facts 2D CFT on closed surfaces

Here we review necessary facts on two-dimensional conformal field theories on closed surfaces

(bulk aspects). The standard references here are [79,95].

1.1.1 Conformal group in two dimensions

Let us consider the conformal transformations in two dimensions D = 2. Denote by gµν the

metric tensor. By the definition conformal transformation of the coordinates is the invertible

map x→ x′ which leaves metric tensor invariant up to scale:

g′µν(x
′) = Λ(x)gµν(x) (1.1)

where

g′µν(x
′)
∂x′µ

∂xλ
∂x′ν

∂xρ
= gλρ (1.2)

Let us investigate the consequences of definition (1.1) on the infinitesimal transformation

xµ → x′µ = xµ + εµ(x) (1.3)
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It follows from (1.1)

gµν
∂x′µ

∂xλ
∂x′ν

∂xρ
= Λ−1gλρ (1.4)

and inserting (1.3) we obtain in the first order by ε:

gµν

(
δµλ +

∂εµ

∂xλ

)(
δνρ +

∂εν

∂xρ

)
= gλρ + ∂λερ + ∂ρελ (1.5)

Therefore the requirement that this map is conformal implies that

∂µεν + ∂νεµ = (Λ−1 − 1)gµν = f(x)gµν (1.6)

The factor f(x) can be determined by taking trace on both sides:

f(x) = ∂ρε
ρ (1.7)

Equation (1.6) for gµν = δµν becomes Cauchy-Riemann condition

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1 (1.8)

Thus it is natural to write ε(z) = ε1 + iε2 and ε̄(z̄) = ε1− iε2 in complex coordinates z = x+ iy

and z̄ = x−iy. Two dimensional conformal transformations then coincide with the holomorphic

coordinate transformations

z → f(z) z̄ → f̄(z̄) (1.9)

The metric in the complex coordinates is

ds2 = dzdz̄ (1.10)

Under the analytic coordinate transformations

z → f(z) z̄ → f̄(z̄) (1.11)

ds2 = dzdz̄ →
∣∣∣∣∂f∂z

∣∣∣∣2dzdz̄ (1.12)

The holomorphic infinitesimal transformation can be expressed as:

z′ = z + ε(z) ε(z) =
∞∑
−∞

cnz
n+1 (1.13)
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The effect of such a mapping on the field φ(z, z̄) living on plane is:

δφ = −ε(z)∂φ− ε̄(z̄)∂̄φ =
∑
n

{cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄)} (1.14)

where we have defined generators

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (1.15)

These generators obey commutation relations:

[ln, lm] = (n−m)ln+m (1.16)

[l̄n, l̄m] = (n−m)l̄n+m (1.17)

[ln, l̄m] = 0 (1.18)

(1.19)

We see that the conformal algebra is direct sum of two isomorphic algebras. The algebra (1.16)

is the Witt algebra.

Note that l0 = −z∂z and l̄0 = −z̄∂z̄ and hence introducing the polar coordinates z = reiθ

we obtain

r
∂

∂r
= z

∂

∂z
+ z̄

∂

∂z̄
= −(l0 + l̄0) (1.20)

and

∂

∂θ
= iz

∂

∂z
− iz̄ ∂

∂z̄
= −i(l0 − l̄0) (1.21)

Thus (l0 + l̄0) generates dilatations and i(l0 − l̄0) generates rotations.

Let us look for the generators well-defined globally on the Riemann sphere S2 = C ∪ ∞.

The analytic conformal transformations are generated by the vector fields:

v(z) = −
∑
n

anln =
∑
n

anz
n+1∂z (1.22)

The non-singularity of v(z) as z → 0 allows an 6= 0 only for n ≥ −1.To understand behavior of

v(z) as z →∞, we perform a transformation z = − 1
ω

,

v(z) =
∑
n

an

(
− 1

ω

)n+1(
dz

dω

)−1

∂ω =
∑
n

an

(
− 1

ω

)n−1

∂ω (1.23)
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The non-singularity as ω → 0 allows an 6= 0 only for n ≤ 1. We can see that only conformal

transformations generated by anln for n = 0,±1 are globally defined. The same considerations

work to the anti-holomorphic transformations.

These generators satisfy the commutation relation:

[l0, l−1] = l−1 (1.24)

[l0, l1] = −l1 (1.25)

[l1, l−1] = 2l0 (1.26)

(1.27)

and similar for antiholomorphic components. This is sl(2, C) algebra.

Let us examine also the group structure. We identify l−1 and l̄−1 as generators of translations

(globally z → z + α), l0 and l̄0 as generators of dilatations (globally z → λz), and l1 and l̄1 as

generators of the special conformal transformations (globally z → 1
1−βz ). The combined form

of these transformations is

z → az + b

cz + d
z̄ → āz̄ + b̄

c̄z̄ + d̄
(1.28)

where a, b, c, d ∈ C and ad− bc = 1. This is the group SL(2,C)/Z2. The quotient by Z2 is due

to fact that (1.28) is unchanged by taking a, b.c, d to minus of themselves.

1.1.2 Tensor energy-momentum, radial quantization, OPE

Under the coordinate transformation xµ → xµ + εµ, the action changes in the following way:

δS =

∫
d2xT µν∂µεν =

1

2

∫
d2xT µν(∂µεν + ∂νεµ) (1.29)

where T µν is the symmetric energy-momentum tensor. The definition (1.6) of the infinitesimal

conformal mapping implies that corresponding variation of the action reads

δS =
1

2

∫
d2xT µµ ∂ρε

ρ (1.30)
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The vanishing of the trace of the energy-momentum tensor thus implies the invariance of

the action under the conformal transformation. The current of conformal symmetry is

Jµ = Tµνε
ν (1.31)

This current is conserved because

∂µJµ = ∂µTµνε
ν + Tµν∂

µεν = 0 (1.32)

which vanishes because the tensor energy-momentum is conserved and traceless.

To implement the conservation equations in the complex plane we compute the components

of tensors in the complex coordinates. Since the flat Euclidean metric ds2 = dx2 + dy2 in the

complex coordinates z = x+ iy has the form ds2 = dzdz̄ one has

gzz = gz̄z̄ = 0 and gzz̄ = gz̄z =
1

2
(1.33)

and

gzz = gz̄z̄ = 0 and gzz̄ = gz̄z = 2 (1.34)

The components of the energy-momentum tensor in this frame are

Tzz =
1

4
(T00 − 2iT10 − T11) (1.35)

Tz̄z̄ =
1

4
(T00 + 2iT10 − T11)

Tzz̄ = Tz̄z =
1

4
(T00 + T11) =

1

4
T µµ

Therefore the tracelessness implies

Tzz̄ = Tz̄z = 0. (1.36)

The conservation law gαµ∂αTµν = 0 gives two equations

∂z̄Tzz + ∂zTz̄z = 0 and ∂zTz̄z̄ + ∂z̄Tzz̄ = 0 (1.37)

Using (1.36) we obtain

∂z̄Tzz = 0 and ∂zTz̄z̄ = 0 (1.38)
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The two non-vanishing components of the energy-momentum tensor

T (z) ≡ Tzz(z) and T̄ (z̄) ≡ Tz̄z̄(z̄) (1.39)

then have only the holomorphic and anti-holomorphic dependence.

Take the system on a cylinder Σ = R × S1 = (t, x mod 2π), where t is world-sheet time,

and x is compactified space coordinate.

Consider now conformal map w → z = ew = et+ix, that maps a cylinder to complex plane.

Then infinite past and future on a cylinder, t = ±∞ are mapped to points z = 0,∞ on a plane.

The equal time surfaces, t = const becomes circles of the constant radius on z-plane. Dilatation

on the plane ea becomes time translation t + a on the cylinder, and rotation on the plane eiα

is space translation x+α on the cylinder. Therefore the dilatation generator on the conformal

plane can be considered as the Hamiltonian, and the rotation generator on the conformal plane

can be considered as momentum.

The current of conformal transformations takes the form:

Jz = T (z)ε(z) and Jz̄ = T̄ (z̄)ε̄(z̄) (1.40)

The conserved charge of the conformal transformations takes the form

Q =
1

2πi

∮
dzT (z)ε(z) +

1

2πi

∮
dz̄T̄ (z̄)ε̄(z̄) (1.41)

Radial ordering

Product of operators make sense if they are radially ordered. This is an analogue of time

ordering for quantum field theory on a cylinder. Recall the time ordering rule:

TA(ta)B(tb) = A(ta)B(tb) for ta > tb and B(tb)A(ta) for ta < tb (1.42)

Passing from a cylinder to a plane, Euclidean time coordinate is mapped to radial coordinate,

and the time ordering becomes the radial ordering

RA(z)B(w) = A(z)B(w) for |z| > |w| and B(w)A(z) for |z| < |w| (1.43)

28



The variation of any field is given by commutator with the charge (1.41):

δε,ε̄Φ(w, w̄) = [Q,Φ(w, w̄)] = (1.44)

1

2πi

∮
dzε(z)(T (z)Φ(w, w̄)− Φ(w, w̄)T (z)) +

1

2πi

∮
dz̄ε̄(z̄)(T̄ (z̄)Φ(w, w̄)− Φ(w, w̄)T̄ (z̄))

Let us now analyze the order of operators in the second and the third lines in (1.44). We will

discuss the holomorphic part, the similar discussion holds for antiholomorphic part. We have

seen that the first term in the commutator is defined only if |z| > |w|, whereas the second one

requires |z| < |w|. Therefore we should use different contours in two terms in commutator

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] =

1

2πi

∮
|z|>|w|

dzε(z)(T (z)Φ(w, w̄)−
∮
|z|<|w|

Φ(w, w̄)T (z)) (1.45)

Using the definition of the radial ordering (1.43) one can write

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] =

1

2πi

[∮
|z|>|w|

−
∮
|z|<|w|

]
dzε(z)R(T (z)Φ(w, w̄)) (1.46)

Deforming the contours the result is

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] =

1

2πi

∮
w

dzε(z)R(T (z)Φ(w, w̄)) (1.47)

where integration contour encircles a point w. Collecting all we obtain:

δε,ε̄Φ(w, w̄) =
1

2πi

∮
w

dzε(z)R(T (z)Φ(w, w̄)) +
1

2πi

∮
w

dzε̄(z̄)R(T̄ (z̄)Φ(w, w̄)) (1.48)

Primary fields possess the following transformation rule:

Φ(z, z̄)→
(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
Φ(f(z), f̄(z̄)) (1.49)

The infinitesimal transformation of the primary fields of the weight h and h̄ is:

δε,ε̄Φ(w, w̄) = h∂ε(w)Φ(w, w̄) + ε(w)∂Φ(w, w̄) + h̄∂̄ε̄(w̄)Φ(w, w̄) + ε̄(w̄)∂̄Φ(w, w̄) (1.50)

Comparing (1.48) and (1.50) we get OPE of the energy-momentum tensor with the primary

field of the weights h, h̄

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w
∂wΦ(w, w̄) (1.51)

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄
∂w̄Φ(w, w̄) (1.52)
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1.1.3 Virasoro algebra

Schwarzian derivative

OPE of the tensor energy-momentum with itself takes the form:

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) (1.53)

The term on the rhs, with coefficient c a constant, is allowed by the analicity, Bose symmetry,

and the scale invariance. Besides of this term, (1.53) is just a statement that T (z) is conformal

field of the weight (2, 0). According to (1.48) the variation of T under infinitesimal conformal

transformation is

δεT (w) =
1

2πi

∮
ε(z)T (z)T (w) =

1

12
c∂3

wε(w) + 2T (w)∂wε(w) + ε(w)∂wT (w) (1.54)

The exponentiation of this infinitesimal variation to the finite transformation z → w(z)

reads

T (z)→
(
dw

dz

)2

T (w(z)) +
c

12
S(w; z) (1.55)

where we have introduced so called Schwarzian derivative:

S(w; z) =
(d3w/dz3)

(dw/dz)
− 3

2

(
(d2w/dz2)

(dw/dz)

)2

(1.56)

It is in fact unique weight two object that vanishes when restricted to the global SL(2, C)

subgroup of 2D conformal group. It satisfies a composition law:

S(w, z) =

(
df

dz

)2

S(w, f) + S(f, z) (1.57)

The energy-momentum tensor is example of the field that is quasi-primary, i.e. SL(2, C)

primary, but not Virasoro primary. For exponential map w → z = ew one has

S(ew, w) = −1/2 (1.58)

so

Tcyl(w) =

(
∂z

∂w

)2

T (z) +
c

12
S(z, w) = z2T (z)− c

24
(1.59)
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Using mode expansion T (z) =
∑
Lnz

−n−2 one finds

Tcyl(w) =
∑

Lnz
−n − c

24
=
∑
n

(
Ln −

c

24
δn0

)
e−nw (1.60)

The translation generator (L0)cyl on a cylinder is then given in the terms of the generator L0

on plane as

(L0)cyl = L0 −
c

24
(1.61)

Virasoro generators

We introduced a current J(z) = T (z)ε(z). Since ε(z) is an arbitrary holomorphic func-

tion, it is natural to expand it in modes. We expect that the current T (z)zn+1 generates the

transformation z → z + cnz
n+1. The corresponding charges are:

Ln =
1

2πi

∮
dzT (z)zn+1 (1.62)

This relation can be inverted:

T (z) =
∑
n

z−n−2Ln (1.63)

The commutator of the charges is

[Ln, Lm] =
1

(2πi)2

∮
0

dwwm+1

∮
w

dzzn+1T (z)T (w) =
1

12
cn(n2 − 1)δn+m,0 + (n−m)Lm+n (1.64)

Identical consideration for T̄ implies

T̄ (z̄)T̄ (w̄) =
c/2

(z̄ − w̄)4
+

2

(z̄ − w̄)2
T̄ (w̄) +

1

z̄ − w̄
∂T̄ (w̄) (1.65)

T̄ (z̄) =
∑
n

z̄−n−2L̄n (1.66)

[L̄n, L̄m] = (n−m)L̄m+n +
1

12
c̄n(n2 − 1)δn+m,0 (1.67)

Since T (z) and T̄ (z̄) have no power law singularity in their OPE, we have

[Ln, L̄m] = 0 (1.68)
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Highest weight state

Consider now state

|h, h̄〉 = φ(0, 0)|0〉 (1.69)

created by the holomorphic field φ(z) of the weight h. From the OPE (1.51) between the

energy-momentum tensor T and the primary field one finds:

[Ln, φ(w, w̄)] =

∮
dz

2πi
zn+1T (z)φ(w, w̄) = h(n+ 1)wnφ(w, w̄) + wn+1∂wφ(w, w̄) (1.70)

so that [Ln, φ(0, 0)] = 0, n > 0.

The anti-holomorphic counterpart of this equation is

[L̄n, φ(w, w̄)] = h̄(n+ 1)w̄nφ(w, w̄) + w̄n+1∂wφ(w, w̄) (1.71)

Applying this relation to the state (1.69) we conclude:

L0|h, h̄〉 = h|h, h̄〉 L̄0|h, h̄〉 = h̄|h, h̄〉 (1.72)

and

Ln|h, h̄〉 = 0 L̄n|h, h̄〉 = 0 n > 0 (1.73)

The state satisfying (1.72) and (1.73) is known as a highest weight state.

Correlation functions

Since global conformal group SL(2, C) preserves vacuum and anomaly free we have for f(z)

in the form (1.28):

〈Φ1(z1, z̄1) . . .Φn(zn, z̄n)〉 =
∏
j

(∂f(zj))
hj
(
∂̄f̄(z̄j)

)h̄j 〈Φ1(f(z1), f̄(z̄1)) . . .Φn(f(zn), f̄(z̄n)〉

(1.74)

These equations completely fix the coordinate dependence of the two and three- point

functions

〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉 =
C

(z1 − z2)2h(z̄1 − z̄2)2h̄
(1.75)
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where h1 = h2 = h, h̄1 = h̄2 = h̄, and

〈Φ1(z1, z̄1)Φ2(z2, z̄2)Φ3(z3, z̄3)〉 = (1.76)

C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

13

where zij = zi − zj.

1.1.4 CFT on torus and Modular transformation

Torus

The torus can be defined by specifying two linearly independent lattice vectors on a plane

and identifying points that differ by the integer combination of these vectors. On a complex

plane these lattice vectors can be represented by two complex numbers ω1 and ω2 which we

shall call periods of lattice and hence we have

w ≈ w + nω1 +mω2 (1.77)

Clearly properties of the conformal field theories defined on the torus should not depend

on overall scale of a lattice, nor on the absolute orientation of lattice vectors. The relevant

parameter is a ratio τ = ω2/ω1, called modular parameter.

Partition function on torus

CFT on the cylinder parameterized by w can now be transferred to the torus. Let H and P

be energy and momentum operators, namely the operators that implement translations in the

space and time directions Rew and Imw respectively. Remember that on a plane L0 + L̄0 and

L0− L̄0 generate dilatations and rotations respectively, so according to discussion of the radial

quantization one has H = (L0)cyl + (L̄0)cyl and P = (L0)cyl − (L̄0)cyl. To define the torus we

should identify two periods in w. Let us redefine w → iw and, as we discussed before, choose

w ≡ w + 2π and w ≡ w + 2πτ . Denote by τ1 and τ2 real and imaginary parts of τ

τ = τ1 + iτ2 (1.78)

This implies that surfaces Imw = 2πτ2 and Imw = 0 should be identified after the shift

by Rew → Rew + 2πτ1. Because we define time translation of Imw by the period 2πτ2 to be
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accompanied by the spatial translation of Rew by 2πτ1, the operator expression for the partition

function of the theory on the torus with the modular parameter τ is

Z =

∫
e−S = Tre2πiτ1P e−2πτ2H = Tre2πiτ1((L0)cyl−(L̄0)cyl)e−2πτ2((L0)cyl+(L̄0)cyl) (1.79)

= Tre2πiτ(L0)cyle−2πiτ̄(L̄0)cyl = TrqL0− c
24 q̄L̄0− c

24 = (qq̄)−
c
24 TrqL0 q̄L̄0

where q = e2πiτ .

Modular Invariance

Main point of studying conformal field theories on the torus is imposition of the constraints

on operator content of a theory from requirement that the partition function should be inde-

pendent of choice of periods ω1 and ω2 for the given torus.

Assume that ω′1 and ω′2 are two periods describing same lattice as ω1 and ω2. Since the

points ω′1 and ω′2 belong to lattice, they should be written as integer combinations of ω1 and

ω2:

ω′1 = aω1 + bω2 (1.80)

ω′2 = cω1 + dω2

where a, b, c, d,∈ Z and ad− bc = 1.

These transformations (1.80) form group SL(2,Z).

Under the change of period (1.80) the modular parameter transforms as

τ → aτ + b

cτ + d
(1.81)

The generators of the transformations (1.81) are

T : τ → τ + 1 (1.82)

and

S : τ → −1

τ
(1.83)

The Hilbert space of the conformal field theory has the form:

H = ⊕i,̄iRi(c)⊗Rī(c) (1.84)
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Ri(c) is the chiral algebra highest weight i representation. Hence defining the character

χi(τ) = TrRiq
L0−c/24 (1.85)

one can write

Z(τ) =
∑
i,h̄

Ni,̄iχi(τ)χ̄ī(τ̄) (1.86)

where Ni,̄i denotes multiplicity of occurrence of Ri(c) ⊗ Rī(c) in H. The first obvious condi-

tion for the partition function to be modular invariant is that the characters χi(τ) define a

representation space of the modular transpositions:

χi(q̃) =
∑
j

Sijχj(q) , q̃ = exp(−2πi/τ) (1.87)

χi(τ + 1) =
∑
j

Tijχi(τ) (1.88)

It is easy to see that

Tij = δije
2πi(hi−c/24) (1.89)

where hi is the conformal weight of the highest weight i. The matrixNi,̄i in the partition function

is determined by demanding modular invariance of the partition function of the model.

1.1.5 Orbifold model

In CFT the notion of orbifold acquires the following meaning. We start by taking a given

modular invariant theory T , whose Hilbert space possesses discrete symmetry G consistent

with operator algebra of a theory, and constructing a modded-out theory T /G that is modular

invariant as well.

Orbifold CFT’s have the geometric interpretation as σ-models whose target space is the

geometrical orbifold. But there are examples where the geometrical interpretation is non-

existent. Therefore it is preferable to consider orbifold CFT’s from the more abstract point of

modding out the modular invariant theory by the Hilbert space symmetry. We will consider

here the case of the abelian symmetry group G.
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The construction of the orbifold CFT T /G starts with the Hilbert space projection on the

G invariant states.

Therefore the first part of the partition function has the form:

Zproj = |q|−c/12 1

|G|
Tr
∑
g∈G

gqL0 q̄L̄0 =
1

|G|
∑
g∈G

Z[0, g] (1.90)

This means that we sum over all insertions of the operator realization of group element g in

the trace over states, or alternatively this can be understood as twisting in the time direction.

To have modular invariant partition function we should add contribution of the configurations

twisted in the space direction which should be derived performing modular transformation

τ → − 1
τ
:

S : Z[0, g]→ Z[g, 0] (1.91)

To obtain full modular invariant partition function we should perform projection also in twisted

sectors to G invariant states and sum all of them:

Zorb = |q|−c/12 1

|G|
∑
g,h∈G

Trhgq
L0 q̄L̄0 =

1

|G|
∑
g,h∈G

Z[h, g] (1.92)

1.1.6 Structure constants and conformal bootstrap

Let us study the holomorphic part of the three-point function (1.76) in the limit z1 → z2. The

leading singularity is:

〈0|Φi(z1)Φj(z2)Φk(z3)|0〉 = Cijk(z1 − z2)h3−h1−h2(z1 − z3)−2h3 (1.93)

The last term resembles the propagator of the field Φ3 and this expression assumes that the

two primary fields Φi and Φj contain in their product the field Φ3, with the strength Cijk. The

precise statement of this fact is the OPE , which states that the product of two operators Oi(x)

and Oj(y) in field theory can be expanded in the complete set of operators Ok(x)

Oi(x)Oj(y) =
∑
k

Cijk(x− y)Ok(x) (1.94)

In CFT one can take as the basis all primaries and the complete set of descendants. Thus

the OPE has the form [20,21]:
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Φ(īi)(z1, z̄1)Φ(jj̄)(z2, z̄2) =
∑
k,k̄,a,ā

C
(kk̄)

(īi)(jj̄)aā

(z1 − z2)hi+hj−hk(z̄1 − z̄2)hī+hj̄−hk̄
Φ(kk̄)(z2, z̄2) + descendants .

(1.95)

Let us explain notations used in this formula. Each primary has two indices referring to the

left i and right ī highest weight representations. Note that in general the primary field Φ(kk̄)

may appear more than one time in the OPE of the fields Φ(īi) and Φ(jj̄). In this case we

have different channels of the fusion of the fields Φ(īi) and Φ(jj̄) producing the field Φ(kk̄). The

number of the different channels is called fusion number and usually denoted as Nk
ij. To take

them into account the structure constants are provided with additional indices a = 1 . . . Nk
ij and

ā = 1 . . . N k̄
īj̄. We denote by i = 0 the vacuum representation having the property Nk

i0 = δik,

and by i∗ the conjugate representation in a sense N0
ii∗ = 1. Denote by R the set of all primary

fields of the theory, or by other words, the set of values of indices i, j, k in (1.95). If the OPE

algebra is closed with the finite set R the theory is called rational. The name is due to fact

that for rational theories the conformal weights hi take rational values [181].

The structure constants satisfy the bootstrap equation [21].

To derive this constraint one consider the four-point correlation function 〈ΦīiΦkk̄Φjj̄Φll̄〉.

It can be computed in two ways, so called s and t channels. In s channel we use at the

beginning the OPE of the fields Φjj̄ and Φll̄, producing in the fusion the field Φpp̄, and afterwards

computing the three-point function 〈ΦīiΦkk̄Φpp̄〉. This procedure brings to the expression

∑
pp̄

∑
ρτρ̄τ̄

Cpp̄

jj̄ll̄(τ τ̄)
C īi
kk̄pp̄(ρρ̄)F

s
pρτ

 k j

i l

F sp̄ρ̄τ̄
 k̄ j̄

ī l̄

 (1.96)

The function F spρτ

 k j

i l

 is so called s channel conformal block giving contribution of de-

scendant fields. The conformal blocks carry four indices of the in- and out- fields, the index

p of the intermediate field, and two indices ρ = 1 . . . N i
kp, τ = 1 . . . Np

jl to disentangle different

fusion channels. Note the order of indices of in- and out- fields in brackets. The lower left index

l fused with upper left index j, producing intermediate state p, which fused lower and upper
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right indices.

In t channel we use at the beginning the OPE of the fields Φjj̄ and Φkk̄, producing in

the fusion the field Φqq̄, and afterwards computing the three-point function 〈ΦīiΦqq̄Φll̄〉. This

procedure brings to the expression

∑
qq̄

∑
µνµ̄ν̄

Cqq̄

kk̄jj̄(µµ̄)
C īi
qq̄ll̄(νν̄)F

t
qνµ

 l j

i k

F tq̄ν̄µ̄
 l̄ j̄

ī k̄

 , (1.97)

The t channel conformal blocks as well carry additional indices µ = 1 . . . N q
kj ν = 1 . . . N i

ql

to disentangle different fusion channels. Conformal blocks in s and t channels are related by

the fusing matrix

F spρτ

 k j

i l

 =
∑
q

∑
νµ

Fp,q

 k j

i l


νµ

ρτ

F tqνµ

 l j

i k

 , (1.98)

and hence we obtain famous bootstrap constraint relating fusing matrix and structure constants:

∑
pp̄

∑
ρτρ̄τ̄

Cpp̄

jj̄ll̄(τ τ̄)
C īi
kk̄pp̄(ρρ̄)Fp,q

 k j

i l


νµ

ρτ

Fp̄,q̄

 k̄ j̄

ī l̄


ν̄µ̄

ρ̄τ̄

= Cqq̄

kk̄jj̄(µµ̄)
C īi
qq̄ll̄(νν̄) . (1.99)

Using the relation [20]

∑
q̄,ν̄,µ̄

Fp̄,q̄∗

 k̄ j̄

ī l̄


ν̄µ̄

ρ̄τ̄

Fq̄,s

 j̄ l̄

k̄∗ ī∗


γ1γ2

µ̄ν̄

= δp̄sδρ̄γ1δτ̄γ2 , (1.100)

one can write the bootstrap equation (1.99) in the form:

∑
p

∑
ρτ

Cpp̄

jj̄ll̄(τ τ̄)
C īi
kk̄pp̄(ρρ̄)Fp,q

 k j

i l


νµ

ρτ

=
∑
q̄,µ̄,ν̄

Cqq̄

kk̄jj̄(µµ̄)
C īi
qq̄ll̄(νν̄)Fq̄∗,p̄

 j̄ l̄

k̄∗ ī∗


ρ̄τ̄

µ̄ν̄

. (1.101)

In this work we will analyze the models with diagonal partition function

Z =
∑
i,̄i

Zi,̄iχi(q)χ̄ī(q̄), Zi,̄i = δi,i∗ , q = exp(2iπτ) (1.102)

These models called diagonal. Diagonal models satisfy the relation:

Cpp̄

kk̄īi(ρρ̄)
= Cp

ki(ρρ̄)δp̄p∗δk̄k∗δīi∗ (1.103)
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Now we will show that for the diagonal model one can solve the bootstrap equation to get the

explicit expression for structure constant via fusion matrix.

For diagonal model eq. (1.101) takes the form:

∑
ρτ

Ci
kp(ρρ̄)C

p
jl(τ τ̄)Fp,q

 k j

i l


νµ

ρτ

=
∑
µ̄ν̄

Cq
kj(µµ̄)C

i
ql(νν̄)Fq,p

 k∗ i

j l∗


τ̄ ρ̄

µ̄ν̄

. (1.104)

It is shown in [168] that the pentagon equation for fusing matrix [20, 129,132]

implies the following important relation:

∑
ρ,τ

F0,i

 p k

p k∗


ρ̄ρ

00

Fp,q

 k j

i l


νµ

ρτ

F0,p

 l j

l j∗


τ̄ τ

00

= (1.105)

∑
µ̄,ν̄

F0,q

 j k

j k∗


µ̄µ

00

Fq,p

 k∗ i

j l∗


τ̄ ρ̄

µ̄ν̄

F0,i

 q l

q l∗


ν̄ν

00

.

Comparing (1.105) and (1.104) we see that (1.104) can be solved by an ansatz

Cp
ij(µµ̄) =

ηiηj
η0ηp

F0,p

 j i

j i∗


µ̄µ

00

(1.106)

with arbitrary ηi. To find ηi we set p = 0

C0
ii∗ =

ηiηi∗

η2
0

Fi , (1.107)

where

Fi ≡ F0,0

 i i∗

i i

 . (1.108)

Using

C0
ii∗ =

Cii∗

C00

, (1.109)

where Cii∗ are two-point functions and that F0 = 1 one can solve (1.107) setting

ηi = εi
√
Cii∗/Fi , (1.110)

were εi a sign factor. We assume that εi can be chosen to satisfy εi = εi∗ .
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For diagonal models without multiplicities, i.e. all Nk
ij = 0, 1, we can derive the relation

(1.106) in the different way. For these models, we don’t need the Greek indices in the structure

constants, and fusion matrix to disentangle fusion channels, and the bootstrap equation (1.104)

takes the form

Cp∗

ki∗C
p
jlC

0
pp∗Fp,q

 k j

i l

 = Cq
kjC

q∗

i∗lC
0
qq∗Fq,p

 k∗ i

j l∗

 . (1.111)

Setting q = 0, k = j∗, i = l in (1.111) we obtain:

(
Cp
ij

)2
=

Cjj∗Cii∗F0,p

 j i

j i∗


C00Cpp∗Fp,0

 j∗ j

i i


. (1.112)

Using the relation [129,132]

F0,i

 j k

j k∗

Fi,0
 k∗ k

j j

 =
FjFk
Fi

, (1.113)

we can write (1.112) in two forms

Cp
ij =

ηiηj
η0ηp

F0,p

 j i

j i∗

 , (1.114)

and

Cp
ij =

ξiξj
ξ0ξp

1

Fp,0

 j∗ j

i i


, (1.115)

where ηi is defined in (1.110) and

ξi = ηiFi = εi
√
Cii∗Fi . (1.116)

Eq. (1.112) determines (1.114) and (1.115) only up to sign, but comparison with (1.106) shows

that the sign ambiguity can be absorbed in factors εi.
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In rational conformal field theory one has the relation

Fk =
S00

S0k

, (1.117)

and two-points functions can be normalized to 1. Therefore in rational conformal field theory

ξk =

√
S00√
S0k

. (1.118)

Dimension of the space of conformal blocks

It is easy to see that the number of conformal blocks, which can be derived in the process

of the fusion via all the different channels and intermediate states is

N ikjl =
∑
p

Np
jlN

i
pk (1.119)

It is possible to show that the number of conformal blocks is the same in s or t channel,

namely ∑
p

Np
jlN

i
pk =

∑
q

N q
kjN

i
ql (1.120)

The notion of conformal blocks can be generalized to n-point conformal blocks. We should start

with n-point function. Repeatedly using OPE we can as before to write the n-point function

as product of structure constants and n-point holomorphic and anti-holomorphic conformal

blocks. Schematically this can be written as

〈Φκ1κ̄1(z1, z̄1) · · ·Φκnκ̄n(zn, z̄n) = (1.121)∑
µ1,...µn−3

∑
µ̄1,...µ̄n−3

hµ1,...µn−3;µ̄1,...µ̄n−3Fκ1...κn
µ1,...µn−3

(z1, · · · zn)F κ̄1...κ̄n
µ̄1,...µ̄n−3

(z̄1, · · · z̄n)

where hµ1,...µn−3;µ̄1,...µ̄n−3 is built out of the structure constants. Again counting all different

fusion channels and intermediate states leads to the following formula for dimension of the

space of conformal blocks

N κ1...κn =
∑

µ1,...µn−3

Nµ1
κ1κ2

Nµ2
µ1κ3
· · ·Nκn

µn−3κn−1
(1.122)

The fusion coefficients are related to the matrix of modular transformation by the famous

Verlinde formula [183]:

Nk
ij =

∑
l

SilSjlS
∗
lk

S0l

(1.123)
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1.2 Boundary rational conformal field theory

In this section we review general aspects on conformal field theory on a world-sheet with

boundary [42,43].

1.2.1 Cardy Condition

Let us consider a conformal field theory on the σ−τ strip, 0 ≤ σ ≤ π, periodic in the τ -direction

with a period T . The manifold is an annulus with the modular parameter q ≡ exp(−2πiT ).

Given certain boundary conditions on the boundaries of the annulus, labelled α and β, the

partition function is:

Zαβ = Tr exp(−2πiTHαβ) , (1.124)

where Hαβ is the Hamiltonian corresponding to these boundary conditions. This is the open-

string loop channel.

For rational CFT the condition (1.124) can be elaborated further. The eigenstates of Hαβ

can be organized into highest weight representations Ro
i of the algebraAαβ preserved by the pair

of the boundary conditions α and β. These representations Ro
i (superscipt o refers to open)

will be labelled by an index i whose specification includes the L0-eigenvalue of the highest

weight state. We then define the non-negative integer niαβ to be the number of times that the

representation Ro
i occurs in the spectrum of Hαβ. The partition function in the open string

channel (1.124) is then

Zαβ = Tr exp(−2πiTHαβ) =
∑
i

niαβχi(q) (1.125)

where χi(q) is the character of the representation Ro
i .

One may also calculate the partition function using the Hamiltonian acting in the σ-

direction . This will be the Hamiltonian H(P ) for the cylinder, which is related by the ex-

ponential mapping ζ = exp(−i(t + iσ)) to the Virasoro generators in the whole ζ-plane by

H(P ) = L
(P )
0 + L0

(P ) − c/12, where we have used the superscript to stress that they are not

the same as the generators of the boundary Virasoro algebra. To every boundary condition α,
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there corresponds a particular boundary state |α〉 in the Hilbert space of the closed strings;

this enables us to compute the partition function by the following formula:

Zαβ = 〈α| exp(−πiH(P )/T )|β〉 = 〈α|(q̃1/2)L
(P )
0 +L0

(P )−c/12|β〉 , (1.126)

where q̃ ≡ e−2πi/T .

This is the closed-string tree channel.

The equality of (1.126) with (1.125) for some set of non-negative integers niαβ is known as

Cardy condition for boundary states. This condition promises that a boundary state |α〉 in the

closed string Hilbert space can be interpreted as open string boundary condition α on fields in

question.

1.2.2 Maximally-Symmetric Cardy state

Suppose we have a rational diagonal theory with extended holomorphic chiral algebra AL con-

taining besides tensor energy-momentum T the set of conserved currents W (r), and similarly

the antiholomorphic algebra AR with components T̄ and W̄ (r). Denote as before the represen-

tation of the chiral algebra Ri and characters χi. We denote by A(m) the set of all generators:

A(m) = {T,W (r)} and similarly for the right part: Ā(m) = {T̄ , W̄ (r)}. The maximally symmetric

boundary conditions impose constrints for all the generators and can be chosen as:

T (z) = T̄ (z̄)|z=z̄ W (r)(z) = W (r)(z̄)|z=z̄ (1.127)

The first of these conditions according to (1.35) has the direct physical meaning of the

absence of energy-momentum flow across the boundary Tστ = 0.

Imposing at the both ends of the strip the boundary condition (1.127) preserves the diagonal

subalgebra isomorphic to A of the full algebra AL × AR. Therefore the open string Hilbert

space will be organised as sum of the representations Ri of A.

Corresponding boundary states should satisfy

(
A(m)
n − (−)hAA

(m)

−n

)
|α〉 = 0 (1.128)
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Define the anti-unitary operator U acting in the way

UA
(m)

−n = (−)hAA
(m)

−n U (1.129)

Using |j,N〉, N ∈ N, to denote an orthonormal basis of Ri, one can define Ishibashi states:

|j〉〉 =
∞∑
N=0

|j,N〉 ⊗ U |j,N〉 (1.130)

It is shown in [42] that the Ishibashi states are solutions of (1.128). and satisfy

〈〈j|q̃L0−c/24|i〉〉 = δi,jχi(q̃) (1.131)

The boundary states are linear combinations of the Ishibashi states:

|α〉 =
∑

Bi
α|i〉〉 (1.132)

Inserting expansions (1.132) in the expression (1.126) for the partition function in the closed

string channel we obtain:

Zαβ =
∑
i

(Bi
α)∗Bi

βχi(q̃) (1.133)

Performing modular transformation we get for partition function in the open string channel:

Zαβ =
∑
i,j

(Bi
α)∗Bi

βSijχj(q) (1.134)

Equating (1.125) and (1.134) we derive

∑
i

(Bi
α)∗Bi

βSij = njαβ (1.135)

The eq. (1.135) was soved by Cardy in [42].

In Cardy’s solution, the index α takes the values in the same set R as the index i of the

irreducible highest weight states and

Bi
α =

Sαi√
S0i

, (1.136)

where Sij is the matrix of the modular transformations. Inserting (1.136) in (1.135) and us-

ing the Verlinde formula (1.123) we obtain that njαβ are integer and coincide with the fusion

numbers:

njαβ = N j
αβ (1.137)
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and

Zαβ =
∑
j

N j
αβχj(q) (1.138)

We proved that in every rational conformal field theory we have at least as much maximally-

symmetric boundary states, as we have irreducible highest weight representations. The bound-

ary states |α〉 carry the same labels as the irreducible representations, and their expansion into

Ishibashi states is

|α〉 =
∑
i

Sαi√
S0i

|i〉〉 (1.139)

Formula (1.139) describes the famous Cardy states.

The second part of the condition (1.127) may be generalized to incorporate a possible “gluing

automorphism” Ω

W (z) = ΩW (z̄)|z=z̄ (1.140)

The corresponding boundary state |α〉Ω satisfies the conditions

(
Ln − L̄−n

)
|α〉Ω = 0 and

(
W (r)
n − (−)hWΩ(W

(r)

−n)
)
|α〉Ω = 0 (1.141)

The state |α〉Ω is given by a linear combination of twisted Ishibashi states |i〉〉Ω:

|i〉〉Ω = (Id⊗ VΩ)|i〉〉 (1.142)

where VΩ is the representation of Ω on Hilbert space.

1.2.3 Cardy-Lewellen cluster condition

The coefficients of the expansion of the boundary states into the Ishibashi states should satisfy

also the boundary version of the bootstrap constraint. This condition was derived in [43, 118]

and known as Cardy-Lewellen cluster condition. Note that if the Cardy condition is true only

in rational theories, the Cardy-Lewellen condition should be fulfilled in all theories, including

non-rational. Now we will explain how Cardy-Lewellen cluster condition is obtained.

Consider a boundary state

|α〉 =
∑
i

Bi
α|i〉〉 (1.143)
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where i runs over primaries, and |i〉〉 are Ishibashi states. Recall the relation [20, 43] between

coefficients Bi
α and one-point functions

〈Φ(īi)(z, z̄)〉α =
U i
αδi∗ ī

(z − z̄)2hi
(1.144)

in the presence of the boundary condition α:

U i
α =

Bi
α

B0
α

eiπhi (1.145)

Considering now two-point function 〈Φi(z1, z̄1)Φj(z2, z̄2)〉α in the presence of boundary in

two pictures it was shown in [43,118] that the one-point functions U i
α in the presence of boundary

satisfy the equation

∑
k,a,ā

C
(k,k∗)
(ii∗)(jj∗)aāU

k
αB

(+)
k∗0

 j i∗

i∗ j∗


11

aā

= U i
(α)U

j
(α) (1.146)

We should note that here we used reflection amplitudes as they defined in [20]. The tradi-

tionally used reflection amplitudes [43,118] differ by phase

U i
(α) = Ũ i

(α)e
iπhi (1.147)

They have the advantage, that related to boundary states coefficients without phase factor:

Ũ i
(α) =

Bi
α

B0
α

(1.148)

Recalling relation between braiding and fusion matrices:

B(+)
pq

 i j

k l


cd

ab

= eiπ(∆k+∆l−∆p−∆q)Fpq

 i l

k j


cd

ab

(1.149)

and symmetry properties of fusion matrix [20]

Fpq

 k j

i l


cd

ab

= Fp∗q∗

 l i∗

j∗ k


cd

ab

(1.150)

we receive that Ũ i
(α) obey the equation:

∑
k,a,ā

C
(k,k∗)
(ii∗)(jj∗)aāŨ

k
αFk0

 i∗ i

j j


11

aā

= Ũ i
(α)Ũ

j
(α) (1.151)
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This is Cardy-Lewellen cluster equation.

For diagonal models eq.(1.151) can be significantly simplified. Putting (1.106) in (1.151),

and using formulas [20]

∑
t2

F0,l

 a b∗

a b


γ1t2

00

Fb∗,0

 a a∗

l l


00

t2α3

= F0,0

 a a∗

a a


00

00

δγ1,α3 ≡ Faδγ1,α3 . (1.152)

and

FiF0,i∗

 j k

j k∗


νu3

00

= Fk∗F0,k∗

 i j

i j∗


νu3

00

. (1.153)

to perform the sums by a and ā, we obtain

∑
k

ŨkNk
ij

ξiξj
ξ0ξk

= Ũ iŨ j , (1.154)

where Nk
ij are the fusion coefficients. Defining

Ũk = Ψk ξk
ξ0

(1.155)

one can write (1.154) in the form:

∑
k

ΨkNk
ij = ΨiΨj . (1.156)

In rational conformal field theory eq. (1.156) is solved by

Ψk
a =

Sak
S0a

. (1.157)

Taking into account the relation between one-point functions Ũk and coefficients of the bound-

ary state Bk (1.148), and using (1.118), we obtain that the Cardy solution (1.136) indeed satisfy

the Cardy-Lewellen constraint.

1.2.4 Permutation branes

Consider N -fold tensor product of a CFT with chiral symmetry algebra AL(AR).
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On such a product one can consider brane with gluing automorphism given by a cycle

(1 . . . N), or by other words, satisfying following equations:

A
(r)
L (z) = A

(r+1)
R (z̄)|z=z̄, r = 1 . . . N − 1 (1.158)

A
(N)
L (z) = A

(1)
R (z̄)|z=z̄

For diagonal rational conformal field theories permutation branes were constructed in [151]. It

is shown in [151] that for such a CFT permutation branes are labeled by primaries of single

copy and have boundary states:

|a〉P =
∑
j

Saj
(S0j)N/2

|j, j〉〉P (1.159)

where Sij is the matrix of the modular transformations of single copy, and |j, j〉〉P permuted

Ishibashi state satisfying (1.158). As we have discussed the boundary states should satisfy

two criteria: Cardy condition [42], requiring the annulus partition functions to be expressed

as sum of some characters with non-negative integer numbers, and Cardy-Lewellen cluster

condition [43,118]. It is shown in [151] that states (1.159) indeed satisfy the both criteria.

For further use we write down the Cardy and Cardy-Lewellen conditions in detail in case

of two-fold product N = 2. Generalization to generic N is straightforward and corresponding

formulae can be found in [151]. For two-fold product permutation boundary state (1.159)

satisfies the relations:

L(1)
n − L̄

(2)
−n = 0, W (1)

n − (−1)hW W̄
(2)
−n = 0 (1.160)

L(2)
n − L̄

(1)
−n = 0, W (2)

n − (−1)hW W̄
(1)
−n = 0

and takes the form:

|a〉P =
∑
j

Saj
S0j

|j, j〉〉P =
∑
j

Saj
S0j

∑
N,M

|j,N〉0 ⊗ U |j,N〉1 ⊗ |j,M〉1 ⊗ U |j,M〉0 . (1.161)

where 0 and 1 labels first and second copy of the CFT in question, sums over N and M run

over orthonormal basis of the highest weight representation Rj, and operator U in front of

right-movers is chiral CPT operator as usual.
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One can show that partition function between permutation branes is:

Za1,a2 =
∑
j,k,l

Sa1j

S0j

Sa2j

S0j

SjkSjlχk(q)χl(q) =
∑
r,k,l

N r
a1a2

Nk
rlχk(q)χl(q) . (1.162)

what has indeed the required form.

Note that integers in front of product of characters coincide with the dimension of the

space of four-point conformal blocks given by (1.119). The generalization of (1.162) to N -fold

product is straightforward. It is shown in [151] that the annulus partition function between

two permutation branes corresponding to single copy primaries a1 ad a2 on N -fold product is

Za1,a2 =
∑

i1,...,iN

N a1,a2,i1,...,iNχi1(q) · · ·χiN (q) (1.163)

where N a1,a2,i1,...,iN is dimension of the space of N + 2-point conformal blocks given by (1.122).

1.2.5 Cardy-Lewellen condition for permutation branes

The Cardy-Lewellen cluster condition for permutation branes was elaborated in detail in [164].

The primary fields of two-fold product are products of primary fields Φ
(1)
i Φ

(2)
j . The form of

the gluing relations (1.160) implies that for permutation branes two-point functions have the

form:

〈Φ(1)

(īi)
(z1)Φ

(2)

(jj̄)
(z2)〉P =

U i,̄i
(P)δij̄∗δīj∗

(z1 − z̄2)2hi(z̄1 − z2)2hī
(1.164)

The cluster condition for permutation branes was obtained in [151,164]:

∑
k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1j̄1)aā
C

(k̄∗,k∗)

(̄i∗1i
∗
1)(j̄∗1 j

∗
1 )cc̄

B
(+)
k∗0

 j1 i∗1

i∗1 j∗1


11

ac̄

B
(+)

k̄0

 j̄∗1 ī1

ī1 j̄1


11

cā

Uk,k̄
(P) = (1.165)

U i1 ,̄i1
(P) U

j1,j̄1
(P)

Again defining new amplitudes

Ũ i1 ,̄i1
(P) = U i1 ,̄i1

(P) e
iπ(hi+hī) (1.166)
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and using (1.149) and (1.150) we derive:

∑
k,k̄,a,ā,c,c̄

C
(k,k̄)

(i1 ī1)(j1j̄1)aā
C

(k̄∗,k∗)

(̄i∗1i
∗
1)(j̄∗1 j

∗
1 )cc̄

Fk0

 i∗1 i1

j∗1 j1


11

ac̄

Fk̄∗0

 ī1 ī∗1

j̄∗1 j̄∗1


11

cā

Ũk,k̄
(P) = (1.167)

Ũ i1 ,̄i1
(P) Ũ

j1,j̄1
(P)

This is Cardy-Lewellen constraint for permutation branes.

One can check, that for diagonal models, by use of eq. (1.106), (1.152) and (1.153), the

Cardy-Lewellen condition (1.167) simplifies to

∑
k

Uk
(2)PN

k
ij

(
ξiξj
ξ0ξk

)2

= U i
(2)PU

j
(2)P . (1.168)

where we set Uk
(2)P ≡ Ũk,k∗

(P) .

Eq. (1.168) can be solved by the relation

Uk
(2)P = Ψk

(
ξk
ξ0

)2

, (1.169)

with Ψk satisfying (1.156). It is straightforward to generalize (1.167) to general N -fold product.

It can be shown that for permutation branes on the N -fold product, permuted by a cycle

(1 . . . N), the corresponding equation has the form:

∑
k

Uk
(N)PN

k
ij

(
ξiξj
ξ0ξk

)N
= U i

(N)PU
j
(N)P , (1.170)

and therefore can be solved by the relation

Uk
(N)P = Ψk

(
ξk
ξ0

)N
, (1.171)

with Ψk again satisfying (1.156).

Remembering that for rational theories Ψk is given by (1.157), ξk by (1.118), and the

relation between boundary one-point function and coefficients of the expansion of the Cardy

states by Ishiabshi states (1.148), we see that that permutation states (1.159) indeed satisfy

the Cardy-Lewellen condition for permutation branes.
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1.3 Topological defects in RCFT

Recall basic facts on topological defects in RCFT [75,99,138,139]. The construction of defects

lines is analogous to that of boundary condition.

Maximally-symmetric topological defect lines are defined by the conditions:

T (1) = T (2) W (1) = W (2) (1.172)

T̄ (1) = T̄ (2) W̄ (1) = W̄ (2)

Following [138] we can define defect lines also as operators X, satisfying the relations:

[Ln, X] = [L̄n, X] = 0 (1.173)

[Wn, X] = [W̄n, X] = 0

As in the case of the boundary conditions, there are also consistency conditions, analogous

to the Cardy and Cardy-Lewellen constraints, which must be satisfied by the operator X.

For simplicity we shall write all the formulae for diagonal models (1.102). To formulate these

conditions, one first note that as consequence of (1.173) X is a sum of projectors

X =
∑
i,̄i

D(i,̄i)P (i,̄i) (1.174)

where

P (i,̄i) =
∑
N,N̄

(|i, N〉 ⊗ |̄i, N̄〉)(〈i, N | ⊗ 〈̄i, N̄ |) (1.175)

An analogue of the Cardy condition for defects requires that partition function with insertion

of a pair defects after modular transformation can be expressed as sum of characters with non-

negative integers. It is found in [138] that for diagonal models one can solve this condition

taking for each primary a

D(i,̄i)
a =

Sai
S0i

(1.176)

leading to the operators:

Xa =
∑
i

Sai
S0i

P (i,̄i) (1.177)
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For operators (1.177) one has:

Zab = Tr
(
X†aXbq̃

L0− c
24 ˜̄q

L̄0− c
24

)
=
∑
k,īi

Na
bkN

k
īiχi(q)χī(q̄) (1.178)

Note that coefficient in front of product of characters is dimension of the space of four-point

blocks (1.119).

Topological defects can be fused. For defects (1.176) again using the Verlinde formula one

derives:

XaXb =
∑
c

N c
abXc (1.179)

Using (1.179) the formula (1.178) can be generalized to the insertion of N defects: the torus

partition function with insertion of N defects corresponding to primaries ai is

Za1...aN =
∑
i,̄i

N a1...aN ,i,̄iχi(q)χī(q̄) (1.180)

whereN a1...aN ,i,̄i is dimension of the space of N+2-conformal blocks (1.122). Topological defects

can act on boundary states producing new boundary states. The action of defects (1.176) on

Cardy states (1.139) is easily obtained using the Verlinde formula:

Xa|b〉 =
∑
d

Nd
ab|d〉 (1.181)

Using (1.181) one can compute the annulus partition function between Cardy states corre-

sponding to primaries a and b with insertion of a defect corresponding to primary c:

Zab,c = TrHab
(
Xcq̃

L0− c
24

)
=
∑
d,i

Nd
bcN

a
idχi(q) (1.182)

Note that coefficient in front of product of characters is again dimension of the space of four-

point blocks (1.119). This result can be generalized to the insertion of any number N of defects

as well: the annulus partition function between Cardy states corresponding to primaries a and

b with insertion of N defects corresponding to primaries di is

Zab,d1...dN =
∑
i

N ab,d1...dN ,iχi(q) (1.183)

where N ab,d1...dN ,i is dimension of the space of N + 3-point conformal blocks (1.122).
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Now we turn to the cluster condition for defects [139, 164]. Here we should consider two-

point functions

〈Φi∗(z1, z̄1)XΦi(z2, z̄2)〉 =
D(i,̄i)

(z1 − z2)2hi(z̄1 − z̄2)hī
(1.184)

where

D(i,̄i) = D(i,̄i)Ci∗i (1.185)

It was shown in [139,164] that D(i,̄i) satisfies:

∑
k

D0D(kk̄)Ck
ij,aāC

k∗

i∗j∗,cc̄Fk0

 j∗ j

i i


00

ac

Fk̄0

 j̄∗ j̄

ī ī


00

āc̄

= D(īi)D(jj̄) (1.186)

This is Cardy-Lewellen cluster condition for defects.

By use of eq. (1.106), (1.152) and (1.153), the Cardy-Lewellen condition for defects (1.186)

simplifies to

∑
k

D0Dk,k̄Nk
ij

(
ξiξj
ξ0ξk

)2

= Di,̄iDj,j̄ . (1.187)

Eq. (1.187) can be brought to eq. (1.156):

Dk,k̄

D0
= Ψk

(
ξk

ξ0

)2

(1.188)

where Ψk satisfies (1.156). And finally to find the coefficient Di,i∗ of the defects expansion to

projectors we should according to (1.185) to divide Dk,k̄ by the two-point function. Remem-

bering that for rational theories ξk and Ψk are given by (1.118) and (1.157) respectively we see

that the ansatz (1.176) indeed satisfies the condition (1.186).

Comparing formulae (1.160) and (1.173), (1.161) and (1.174)-(1.176), (1.167) and (1.186)

one reveals deep connection between permutation branes on two-fold product from one side,

and defects on other side, known as folding trick [12, 14, 135, 189]. We see that mentioned

relations for permutation branes become corresponding relations for defects after performing

two-steps operation (folding) on the second copy of the CFT in question: left-right exchange

and then hermitian conjugation, turning boundary state to operator. Eq. (1.185) shows that

the hermitian conjugation requires inclusion of the two-point functions Ci∗i.
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1.4 Free boson

1.4.1 Action of 2D free boson

The action of a free massless boson φ is

S =
1

8π

∫
d2xηµν∂

µφ∂νφ (1.189)

In this and next section we will analyze the Euclidean action with the Cartesian metric ηµν =

δµν .

The equation of motion for the field φ is:

�φ =

(
∂2

∂x2
+

∂2

∂y2

)
φ = 0 (1.190)

The propagator of free scalar is

〈φ(x)φ(y)〉 = − log(x− y)2 (1.191)

or in complex coordinates z = x+ iy, z̄ = x− iy:

〈φ(z, z̄)φ(w, w̄)〉 = −(log(z − w) + log(z̄ − w̄)) (1.192)

It follows from eq. (1.192)

〈∂zφ(z, z̄)∂wφ(w, w̄)〉 = − 1

(z − w)2
and 〈∂z̄φ(z, z̄)∂w̄φ(w, w̄)〉 = − 1

(z̄ − w̄)2
(1.193)

The energy-momentum tensor of the free boson is

Tµν =
1

4π
(∂µφ∂νφ−

1

2
ηµν∂ρφ∂

ρφ) (1.194)

Note that ηµνTµν = 0, as we expect in conformal field theory.

Denoting ∂φ ≡ ∂zφ and ∂̄φ ≡ ∂z̄φ, the holomorphic and anti-holomorphic components of

the energy-momentum tensor are

T (z) = −1

2
: ∂φ∂φ : and T̄ (z̄) = −1

2
: ∂̄φ∂̄φ : (1.195)
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The normal ordering means:

T (z) = −1

2
limw→z(∂φ(z)∂φ(w)− 〈∂φ(z)∂φ(w)〉) (1.196)

The OPE of T (z) with ∂φ can be calculated from the Wick theorem:

T (z)∂φ(w) = −1

2
: ∂φ(z)∂φ(z) : ∂φ(w) ∼ ∂φ(z)

(z − w)2
(1.197)

By expanding ∂φ(z) around w we obtain OPE

T (z)∂φ(w) ∼ ∂φ(w)

(z − w)2
+
∂2φ(w)

(z − w)
(1.198)

Equations (1.193) and (1.198) imply that ∂φ(z) is a primary field with conformal dimension

h = 1. The presence of the primary field of the highest weight h = 1 means, that in fact we

have theory with extended chiral algebra, which besides Virasoro algebra contains the U(1)

current ∂φ. This is the reason that often the two-dimensional free boson theory called theory

of U(1) affine algebra.

The Wick theorem also allows us to obtain OPE of energy-momentum tensor with itself:

T (z)T (w) ∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(1.199)

The OPE (1.199) shows that two-dimensional free boson theory is conformal field theory with

the central charge c = 1.

Let us introduce the vertex operators:

Vα(z, z̄) =: eiαφ(z,z̄) : (1.200)

The vertex operators have the following OPE with the U(1) current ∂φ:

∂φ(z)Vα(w, w̄) ∼ −iαVα(w, w̄)

z − w
(1.201)

From here we can derive:[
1

2πi

∮
0

i∂φ(z)dz,Vα(w, w̄)

]
=

1

2πi

∮
w

∂φ(z)Vα(w, w̄)dz = αVα(w, w̄) (1.202)
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Next we need the OPE of Vα with the energy-momentum tensor:

T (z)Vα(w, w̄) ∼ α2

2

Vα(w, w̄)

(z − w)2
+
∂wVα(w, w̄)

z − w
(1.203)

This implies that vertex operators are primary with dimensions:

hα =
α2

2
(1.204)

Let us also write down the OPE of two vertex operators [79] :

Vα(z)Vα(w) ∼ (z − w)αβVα+β(w) (1.205)

1.4.2 Quantization of the compactified free boson on the cylinder

Consider the scalar field φ(τ, σ) compactified on circle of radius R, on a cylinder of circumference

L:

φ(σ + L, τ) ≡ φ(σ, τ) + 2πmR (1.206)

Here m is an integer called winding number.

The mode expansion of the solution of the wave equation (1.190) with the boundary condi-

tion (1.206) is

φ(σ, τ) = φ0 +
4πp

RL
τ +

2πRm

L
σ + i

∑
n6=0

1

n

(
ane

2πn(τ−iσ)/L + āne
2πn(τ+iσ)/L

)
(1.207)

From reality of φ we have

a†n = a−n and ā†n = ā−n (1.208)

Commutation relations follows from the equal-time commutation rules

[φ(σ), φ(σ′)] = 0, [∂τφ(σ), ∂τφ(σ′)] = 0 ,

[
1

4π
∂τφ(σ), φ(σ′)

]
= iδ(σ − σ′) (1.209)

which imply

[an, ak] = nδn+k [ān, āk] = nδn+k [an, āk] = 0 (1.210)

The total momentum of the string is∫ L

0

1

4π
∂τφ(σ)dσ =

p

R
(1.211)
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and p should be an integer since the vertex operator eipφ/R should be single valued under the

identification φ ≡ φ+ 2πR. Using the conformal coordinates:

z = e2π(τ−iσ)/L z̄ = e2π(τ+iσ)/L (1.212)

we find

φ(z, z̄) = φ0 − i
(
p

R
+

1

2
Rm

)
log(z) + i

∑
n6=0

1

n
anz

−n (1.213)

−i
(
p

R
− 1

2
Rm

)
log(z̄) + i

∑
n6=0

1

n
ānz̄

−n

and

i∂φ(z) =

(
p

R
+

1

2
Rm

)
1

z
+
∑
n6=0

anz
−n−1 (1.214)

i∂̄φ(z̄) =

(
p

R
− 1

2
Rm

)
1

z̄
+
∑
n6=0

ānz̄
−n−1 (1.215)

Using the expressions (1.195) and (1.62) we obtain for L0 and L̄0

L0 = N + P 2
L and L̄0 = N̄ + P 2

R (1.216)

where we introduced the left and right momenta

PL =

(
p

R
+

1

2
Rm

)
(1.217)

PR =

(
p

R
− 1

2
Rm

)
(1.218)

and the number operators:

N =
∑
n>0

a−nan and N̄ =
∑
n>0

ā−nān (1.219)

We conclude that the Hilbert space consists of the infinite number sectors |p,m〉 labelled by

momenta and winding p,m = −∞,∞, for which

L0|p,m〉 =
1

2
P 2
L|p,m〉 and L̄0|p,m〉 =

1

2
P 2
R|p,m〉 (1.220)

Sometimes the state |p,m〉 is also denoted as |PL〉⊗|PR〉. The bosonic Fock space generated by

α−n consists of all states of the form |p,m〉, α−n|p,m〉, α2
−n|p,m〉,. . .. Hence calculating trace
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in the left |p,m〉 sector we obtain:

χp,m(q) = q−1/24TrqL0 =
q

1
2( pR+mR

2 )
2

η
(1.221)

where

η(q) = q1/24

∞∏
n=1

(1− qn) (1.222)

is the Dedekind function.

The function χp,m(q) defined in (1.221) is a U(1) character.

Collecting all we have for the partition function (1.79):

Z =
1

ηη̄

∑
p,m

q
1
2( pR+mR

2 )
2

q̄
1
2( pR−

mR
2 )

2

(1.223)

It can be checked [79] that (1.223) is modular invariant.

Zk orbifold of U(1) scalar

It is well-known that modding out the circle theory at radius R by the Zk shift φ →

φ+ 2πR/k produces the circle theory, but the radius decreased to R/k. Geometrically the Zk

group generated by the rotation of the circle by 2π/k is the example of the group action without

fixed points, therefore the resulting orbifold S1/Zk is the manifold, in this case topologically

again S1, but at smaller radius. From Hilbert space point of view, projection in untwisted sector

removes momentum states allowed at a bigger radius, and twisted sectors provide windings

proper to a smaller radius.

T-duality

Note that under the transformation

p↔ m and R→ 2

R
(1.224)

the right momentum (1.217) remains unchanged and the left momentum (1.218) flips the sign.

PL → PL and PR → −PR (1.225)

Combined with the oscillator’s transformation

an → an and ān → −ān (1.226)
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this implies

∂φ(z)→ ∂φ(z) and ∂̄φ(z̄)→ −∂̄φ(z̄) (1.227)

Both transformations (1.225) and (1.226) leave the Virasoro modes L0 and L̄0 and therefore

the Hamiltonian unchanged. This is the simplest example of the famous T-duality discovered

in [114,153] (see for review [96]).

1.4.3 U(1)k theory

Consider the free scalar field φ compactified on a circle of radius
√

2k. This special case is

called U(1)k theory. The U(1)k chiral algebra (k ∈ N) contains, besides the Gaussian U(1)

current J = i
√

2k∂φ, two additional generators

Γ± = e±i
√

2kφ (1.228)

of integer dimension k. Eq. (1.202) implies that J0 = 1
2πi

∮
Jdz charges of Γ± are ±2k. The

primary fields of the extended theory are those vertex operators eiγφ whose OPEs with the

generators (1.228) are local. This requirement together with (1.205) fixes γ to be

γ =
n√
2k

, n ∈ Z (1.229)

Their conformal dimensions are ∆n = n2

4k
. For primary fields, the range of n must be restricted

to the fundamental domain n = −k + 1,−k + 2, . . . , k since the shift of n by 2k in Vn = einX/
√

2k

amounts to the insertion of the ladder operator Γ+, which produces the descendant field. We see

that w.r.t. to the extended symmetry, including also Γ±, the free boson theory compactified on

a circle of the radius
√

2k becomes rational theory, possessing only finite number of primaries.

From the point of view of the extended algebra the characters are easily derived. A factor

q∆n−1/24/η(q) takes care of the action of the free scalar generators. To account for the effect

of the distinct multiple applications of the generators (1.228), which give rise shifts of the

momentum n by the integer multiples of 2k, we should replace n by n + l2k and sum over l.

The corresponding character is

ψn(q) =
1

η(q)

∑
l∈Z

qk(l+n/2k)2

. (1.230)
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The action of the modular transformation S on the characters (1.230) is

ψn(q′) =
1√
2k

∑
n′

e
−iπnn′

k ψn′(q) q = e2πiτ τ ′ = −1

τ
. (1.231)

The diagonal modular invariant is

Z =
∑
n

|ψn(q)|2 (1.232)

The primary fields Vn have J0 charge n. Consider the symmetry Zk generated by element

g = e
2πi
2k

(J0+J̄0). This is in fact shift symmetry X → X + 2π
√

2k
k

discussed above. Let us mod

out this symmetry. According to general prescription we should form at the beginning the

projected sector (1.90):

Zproj =
k−1∑
s=0

Z[0, s] (1.233)

where

Z[0, s] =
∑
n

e
2πins
k |ψn(q)|2 (1.234)

To get twisted sectors we should perform in (1.234) modular transformation τ → − 1
τ
. Remem-

bering (1.231) we obtain:

Z[s, 0] =
∑
n,n′n′′

e
πin
k

(2s−n′+n′′)ψn′(q)ψ̄n′′(q) (1.235)

Performing sum over n we get

Z[s, 0] =
∑
n

ψn(q)ψ̄n−2s(q) (1.236)

Therefore twisted sectors are given by the relative shifts of the left and right charges. Taking

this into account we obtain the orbifold partition function (1.92):

Zorb =
1

k

∑
r,s

Z[r, s] =
1

k

∑
r,s

∑
n

e
2πis(2n−2r)

2k ψn(q)ψ̄n−2r(q) =
∑
n

ψn(q)ψ̄−n(q) (1.237)

Remembering (1.227) we see that Zk orbifolding leads to T dual theory. Note that this con-

sistent with the mentioned above fact that the Zk shift modding decreases the radius
√

2k to
√

2k
k

=
√

2/k, which is the radius of the T-dual theory (1.224): 2√
2k

=
√

2/k.
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1.4.4 Boundary c=1 systems

A scalar compactified on a circle of generic radius

Here we review for future use the free boson theory on a world-sheet with a boundary. We

find convenient to use in this part the Minkowski metric on a world-sheet. Introducing the

light-cone coordinate

x+ = τ + σ and x− = τ − σ (1.238)

and using the relations

∂τ = ∂ + ∂̄ and ∂σ = ∂ − ∂̄ (1.239)

we can write the action in the form

S =
1

4π

∫
∂φ∂̄φdx+dx− (1.240)

The variation of the action in the presence of the boundary takes the form:

δS = − 1

2π

∫
∂∂̄φδφdx+dx− +

1

4π

∫
(∂φdx+ − ∂̄φdx−)δφ (1.241)

Assume that boundary located at σ = 0 (open string loop channel).

In this case the boundary term takes the form:

1

4π

∫
(∂φdx+ − ∂̄φdx−)δφ =

1

4π

∫
∂σφδφdτ (1.242)

and we have two kinds of boundary conditions: the Neumann boundary condition

∂φ = ∂̄φ or ∂σφ|σ=0 = 0 (1.243)

and the Dirichlet boundary condition:

∂φ = −∂̄φ or φ|σ=0 = const (1.244)

We see that either the Neumann and Dirichlet boundary conditions preserve diagonal U(1) affine

symmetry, but the Dirichlet boundary condition includes the gluing automorphism (1.140) Ω

given by the reflection φ→ −φ.
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If the boundary located at τ = 0 (closed string tree channel), the boundary term takes the

form:

1

4π

∫
(∂φdx+ − ∂̄φdx−)δX =

1

4π

∫
∂τφδφdσ (1.245)

and the Neumann boundary condition takes the form:

∂φ = −∂̄φ or ∂τφ|τ=0 = 0 (1.246)

while the Dirichlet boundary condition is

∂φ = ∂̄φ or φ|τ=0 = const (1.247)

Note that the Neumann and Dirichlet boundary conditions are mapped to each other by the

T-duality (1.227).

Neumann boundary states

The action with the Neumann boundary condition can include also the Wilson line term at

the boundary :

S =
1

8π

∫ π

0

dσ

∫
dτ∂αφ∂

αφ+
∑
B

iaB
4π

∫
B

dφ , (1.248)

where B labels boundaries and aB are the constant modes of the U(1) gauge potential cou-

pling to the boundaries (and are periodic, with periods 4π/R). The Wilson line term being

topological, does not change neither bulk nor the boundary equations of motion, but can have

contribution to the action.

In the closed-string channel the task is to find the boundary states |Ni〉, with Chan-Paton

factor i, which are found by imposing the corresponding boundary conditions. The boundary

is located at τ = 0 and one has the boundary condition (1.246).

Inserting in (1.246) the mode expansion (1.207), where we performed the Wick rotation

τ → iτ , and set L = π,

φ(σ, τ) = φ0 +
4p

R
τ + 2Rmσ + i

∑
n6=0

1

n

(
ane

2in(τ−σ) + āne
2in(τ+σ)

)
(1.249)

we get:

p = 0, αn = −α̃−n . (1.250)
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Taking into account the properties of coherent state and the U(1) modes ai we get for |Ni〉:

|Ni〉 = gN
∑
w

e−iaimR/2 exp

(∑
n>0

−α−nα̃−n
n

)
|0,m〉 , (1.251)

where the phase factor comes from the Wilson line term:

iaB
4π

∫
dσ∂σφ =

1

2
iaBmBR , (1.252)

where mB is the winding number of the boundary. Here gN is the normalization factor, which

is not determined by the boundary condition (1.246). Note that the vacuum |0,m〉 has the

structure
∣∣Rm

2

〉
⊗
∣∣−Rm

2

〉
, consistent with the fact, that the Neumann boundary state has

vanishing momentum.

Let us closer look at the state (1.251). Expanding the exponential we can write

exp

(∑
n>0

−α−nα̃−n
n

)
|0,m〉 = (1.253)

∞∑
k1=0

∞∑
k2=0

· · ·
∞∏
n=1

1√
kn!

(
a−n√
n

)kn ∣∣∣∣Rm2
〉
⊗ 1√

kn!

(
−ā−n√

n

)kn ∣∣∣∣−Rm2
〉

The states

|k1, k2 . . .〉 =
∞∏
n=1

1√
kn!

(
a−n√
n

)kn ∣∣∣∣Rm2
〉

(1.254)

form orthonormal basis basis of the Fock space built over the vacuum
∣∣Rm

2

〉
. We see that the

coherent state appearing in (1.251) has the form of the Ishibashi state (1.130) for the Fock

space. To obtain the normalization factor gN = 〈0|Ni〉 we should equate the partition function

in the closed and open string channels [55]:

g2
N =

R

2
, (1.255)

Dirichlet boundary states

The boundary condition (1.247) leads to:

m = 0, αn = α̃−n . (1.256)

From these conditions, for the boundary state located at the point y we get

|Dy〉 = gDyδ(φ0−y) exp

(∑
n>0

α−nα̃−n
n

)
|0〉 = gDy

∑
p

e
−ipy
R exp

(∑
n>0

α−nα̃−n
n

)
|p, 0〉 . (1.257)
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Note that the Dirichlet boundary state is sum of sectors with the coinciding left and right

momenta: |p, 0〉 = | p
2R
〉 ⊗ | p

2R
〉. It is consistent with the fact the Dirichlet boundary state has

full momentum p
R

.

The normalization gD again can be derived equating partition functions calculated in closed

and open string channels [55]:

g2
D =

1

R
. (1.258)

It is easy to see that the Dirichlet boundary state (1.257) can be obtained from the Neuamnn

boundary state (1.251) by the T-duality, if an addition to the rules (1.224) and (1.226) we also

map Wilson line factors ai to coordinates yi.

Boundary states in U(1)k theory

Since U(1)k is a rational theory we can use the Cardy formula (1.139). For U(1)k theory it

takes the form:

|A, n̂〉C =
1

(2k)1/4

2k−1∑
n=0

e
−iπn̂n
k |An〉〉U(1) (1.259)

Let us elaborate the Ishibashi state |An〉〉U(1). As we discussed in 1.4.3 the space of the highest

weight representation of the U(1)k theory is generated by oscillators and Γ operators, and hence

is sum of Fock spaces
∑

l Fr+2kl. The part of the Ishibashi state over single Fock space we have

elaborated in the previous section, and shown that it is given by coherent state. Therefore the

extended symmetry (1.229) implies that the Ishibashi states of the U(1)k theory should have

the form [123]:

|Ar〉〉U(1) = exp

[
∞∑
n=1

α−nα̃−n
n

]∑
l∈Z

|r + 2kl√
2k
〉 ⊗ |r + 2kl√

2k
〉 . (1.260)

This shows that the Cardy states (1.260) are Dirichlet boundary states (1.257) at the spe-

cial quantized positions. We arrive to the conclusion that the extended symmetry leads to

the quantization of the D0-branes positions. This is easy to understand, since the extended

symmetry requires that all vacuums of the form |r + 2kl〉 should appear with same exponetial

factor.
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Let us consider Neumann boundary conditions. To derive them we will us the equivalence

of the T-duality and Zk orbifolding proved in (1.237). The relation (1.237) implies that starting

from the Dirichlet Cardy states, one can obtain the Neumann boundary state, implementing at

the beginning orbifolding, namely sum over Zk images, taking us to the boundary state on the

orbifold U(1)k/Zk, and consecutively performing T-duality yielding the Neumann boundary

state on U(1)k. Doing so we obtain two Neumann states :

|B, η ± 1〉 =

(
k

2

)1/4 (
|B, 0〉〉U(1) + η|B, k〉〉U(1)

)
(1.261)

where

|Br〉〉U(1) = exp

[
−
∞∑
n=1

α−nα̃−n
n

]∑
l∈Z

|r + 2kl√
2k
〉 ⊗ | − r + 2kl√

2k
〉 , (1.262)

is a B-type Ishibashi state of U(1)k theory satisfying the Neumann boundary conditions. The

parameter η is the two-valued Wilson line.

1.5 WZW model

1.5.1 Action

The world-sheet action of the bulk WZW model is [185]

SWZW(g) =
k

4π

∫
Σ

Tr(∂zg
−1∂z̄g)dzdz̄ +

k

4π

∫
B

1

3
Tr(g−1dg)3 (1.263)

≡ k

4π

[∫
Σ

dzdz̄Lkin +

∫
B

ωWZ

]
,

B is a 3-manifold such that ∂B = Σ. This action describes a bosonic field living on the

semisimple group manifold G associated with the Lie algebra A. The action (1.263) depends

on the extension of the field on three-manifold B. However given that k is integer the quantum

amplitude is unambiguously defined.

Let us obtain the equations of motion. The variation of the kinetic term yields

δ(Tr(∂zg
−1∂z̄g)) = (1.264)

= Tr
(
δgg−1[∂z̄(∂zgg

−1) + ∂z(∂z̄gg
−1)]− ∂z(δgg−1∂z̄gg

−1)− ∂z̄(δgg−1∂zgg
−1)
)
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The variation of the ωWZ is given by:

δωWZ = d[Tr(δgg−1(dgg−1)2)] (1.265)

Eq. (1.265) implies∫
B

δωWZ =

∫
Σ

Tr(δgg−1[∂z̄gg
−1∂zgg

−1 − ∂zgg−1∂z̄gg
−1] (1.266)

=

∫
Σ

Tr(δgg−1[∂z̄(∂zgg
−1)− ∂z(∂z̄gg−1)]

Taking the sum of (1.264) and (1.266) and omitting the full derivative terms we obtain:

δSWZW(g) =
k

2π

∫
Σ

dzdz̄Tr[δgg−1∂z̄(∂zgg
−1)] (1.267)

Using that

g∂z(g
−1∂z̄g)g−1 = ∂z̄(∂zgg

−1) (1.268)

one can equivalently write (1.267) in the form

δSWZW(g) =
k

2π

∫
Σ

dzdz̄Tr[g−1δg∂z(g
−1∂z̄g)] (1.269)

Taking δgg−1 arbitrary we get from equations (1.267), that EOM of the WZW model is

∂z̄(∂zgg
−1) = 0 (1.270)

or equivalently

∂z(g
−1∂z̄g) = 0 (1.271)

On the other hand taking δgg−1 ≡ ω(z) holomorphic we see from (1.267) using the integration

by parts that δωS = 0 identically. Therefore the WZW action (1.263) has the symmetry

δωg = ω(z)g (1.272)

and the corresponding conserved current is

J(z) = −k∂zgg−1 (1.273)
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The EOM in the form (1.270) coincides with the condition of of the conservation of the current

(1.273). Therefore the current (1.273) is holomorphic. Similarly taking −g−1δg ≡ ω̄(z̄) anti-

holomorphic we receive from (1.269) using the integration by parts that δω̄S = 0 identically.

Hence the action (1.263) has additionally the symmetry

δω̄g = −gω̄(z̄) (1.274)

and the corresponding conserved current is

J̄(z̄) = kg−1∂z̄g (1.275)

Again the EOM in the form (1.271) coincides with the condition of the conservation of the

current (1.275). Therefore the current (1.275) is anti-holomorphic. Thus we have shown that

the action (1.263) is invariant under the transformation:

g(z, z̄)→ hL(z)g(z, z̄)hR(z̄) (1.276)

Classically the components of the energy-momentum tensor are

T =
1

2k
TrJ2 and T̄ =

1

2k
TrJ̄2 (1.277)

The symmetries of the WZW model can be also derived using the Polyakov-Wiegmann

identities

Lkin(gh) = Lkin(g) + Lkin(h)−
(

Tr(g−1∂zg∂z̄hh
−1) + Tr(g−1∂z̄g∂zhh

−1)
)

(1.278)

ωWZ(gh) = ωWZ(g) + ωWZ(h)− d
(

Tr(g−1dgdhh−1)
)
, (1.279)

Indeed taking the sum of (1.278) and (1.279) we obtain

S(gh) = S(g) + S(h)− k

2π

∫
d2z
(

Tr(g−1∂z̄g∂zhh
−1)
)

(1.280)

Eq. (1.280) implies that the action (1.263) is indeed invariant under the transformation (1.276),

namely under the left multiplication by a holomorphic element and right multiplication by an

anti-holomorphic element.
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1.5.2 WZW model-Quantization

Remembering (1.48) and denoting by T a generators of the Lie algebra A we can write for the

transformation of a field X under (1.272) and (1.274)

δω,ω̄X = − 1

2πi

∮
dz
∑
a

ωaJaX +
1

2πi

∮
dz̄
∑
a

ω̄aJ̄aX (1.281)

where

J =
∑
a

JaT a, ω =
∑
a

ωaT a, and Tr(T aT b) = δab (1.282)

Denote by fabc structure constants:

[T a, T b] = ifabcT
c (1.283)

The transformation laws for currents follow from (1.272) and (1.273)

δωJ = −k(∂z(δωg)g−1 − ∂zgg−1δωgg
−1) = [ω, J ]− k∂zω (1.284)

Using (1.283), (1.284) can be rewritten as

δωJ
a =

∑
b,c

ifabcω
bJ c − k∂zωa (1.285)

Comparing (1.281) and (1.285) we arrive

Ja(z)Ja(w) ∼ kδab
(z − w)2

+
∑
c

ifabc
J c(w)

(z − w)
(1.286)

This is OPE of the affine algebra. Introducing the modes Jan from the expansion

Ja(z) =
∑
n∈Z

z−n−1Jan (1.287)

we can obtain the commutation relations of the affine algebra Lie at the level k:

[Jan, J
b
m] =

∑
c

ifabcJ
c
n+m + knδabδn+m,0 (1.288)

Transformation property of J̄ is

δω̄J̄ = [ω̄, J̄ ]− k∂zω̄ (1.289)
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This gives rise another copy of affine algebra for the modes J̄ bm. Since the ω̄(z̄) is independent

of z

δω̄J = 0 (1.290)

This implies

[Jan, J̄
b
m] = 0 (1.291)

The components of the energy-momentum tensor are given by the Sugawara formula

Ln =
1

2(k + hG)

∑
a

∑
m

: JamJ
a
n−m : (1.292)

where hG is the dual Coxeter number, which is half of the Casimir is the adjoint representation:∑
b,c

fabcfdbc = 2hGδad (1.293)

They satisfy the relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 (1.294)

[Ln, J
a
m] = −mJan+m

with c = k|G|
k+hG

.

1.5.3 Representations of the affine algebras

Cartan-Weyl basis of Lie algebra

Here we will review the Cartan-Weyl basis of the algebra and the general facts on the highest

weight representations.

The set of the commutation relations in the Cartan-Weyl basis is

[Hi,Hj] = 0 (1.295)

[Hi, Eα] = αiEα

[Eα, Eβ] = Nα,βE
α+β, if α + β ∈ ∆

= 2α · H/|α|2 if α = −β

= 0 otherwise
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The vectors αi are called roots and Eα are the corresponding ladder operators. ∆ denotes the

set of all roots. The set of generators Hi form the Cartan subalgebra h.

Positive roots

Let us fix the basis in the space of roots {β1, · · · βr}. Any root can be expanded in this

basis:

α =
r∑
1

niβi (1.296)

The α is said positive if the first nonzero number in the sequence (n1, n2, · · · , nr) is positive.

The set of positive roots we denote by ∆+. The simple root αi is defined to be the root

that can’t be written as a sum of two positive roots. There are r simple roots and their set

{α1, · · ·αr} provides very convenient basis for the r -dimensional space of roots. It is convenient

to introduce notion

α∨i =
2αi
|αi|2

(1.297)

The α∨i is the coroot associated with the root.

Highest root

The distinguished element of ∆ is highest root θ. It is unique object and which, in expansion∑
imiαi the sum

∑
imi gets maximized.

Highest weights of the affine algebra

In the Cartan-Weyl basis the commutation relation of the affine algebra takes the form:

[Hi
n,Hj

m] = knδijδn+m,0 (1.298)

[Hi
n, E

α
m] = αiEα

n+m

[Eα
n , E

β
m] = Nα,βE

α+β
n+m, if α + β ∈ ∆

=
2

|α|2
(α · Hn+m + knδn+m,0) if α = −β

= 0 otherwise
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The highest weight state now is defined to satisfy:

Hi
n|λ〉 = E±αn |λ〉 = 0, n > 0 (1.299)

Hi
0|λ〉 = λi|λ〉, and Eα

0 |λ〉 = 0, α > 0

Consider the su(2) subalgebra generated by: Eα
0 , E−α0 , 2

|α|2α · H0. Commutation relations

imply:

〈λ|Eα
0E
−α
0 |λ〉 = 〈λ|[Eα

0E
−α
0 ]|λ〉 =

2

|α|2
α · λ〈λ|λ〉 ≥ 0 (1.300)

Hence we must have α · λ ≥ 0.

Now look another su(2) subalgebra generated by: Eα
−1, E−α1 , 2

|α|2 (−α ·H0 +k). From (1.298)

we have

〈λ|E−α1 Eα
−1|λ〉 = 〈λ|[E−α1 Eα

−1]|λ〉 =
2

|α|2
(−α · λ+ k)〈λ|λ〉 ≥ 0 (1.301)

Restrict ourself for simplicity to the case of unitary algebras for which all roots normalized

to 2.

Since the component of the J3 generatot of su(2) are integer , and we know that for any

weight λ the α · λ is integer, we obtain that k is integer.

Then it follows from (1.301) that any highest weight should satisfy the inequility

α · λ ≤ k (1.302)

The condition (1.302) is stringent for the highest root θ

θ · λ ≤ k (1.303)

Using the expression (1.294) for L0 we derive the conformal weight of the highest weight

state:

L0|λ〉 =
Cλ

2(k + hG)
|λ〉 (1.304)

where Cλ is the quadratic Casimir of the representation λ.

Let us now specialize to the SU(2) group.
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Since the quadratic Casimir in the representation j has value Cj = 2j(j+1), therefore in the

adjoint representation j = 1, Cadj = 4, hSU(2) = 2, and the central charge of the corresponding

affine algebra is

c =
3k

k + 2
(1.305)

Here we have one root and all weights are given by half-integer j and the highest weights of

the su(2) affine algebra are given by the half-integer j satisfying the inequality:

2j ≤ k (1.306)

The conformal weight of these states are:

hj =
j(j + 1)

k + 2
(1.307)

The matrix of the modular transformation is

Saj =

√
2

k + 2
sin

(
(2a+ 1)(2j + 1)π

k + 2

)
. (1.308)

Characters are

χ
SU(2)
l =

Θl+1,k+2 −Θ−l−1,k+2

Θ1,2 −Θ−1,2

(1.309)

Θm,k(τ, z, u) = e−2πimu
∑

n∈Z+m/2k

e2πim(n2τ−nz) (1.310)

1.5.4 Coset models

GKO construction

Assume we have subgroup H of group G: H ⊂ G. We denote the G currents by JaG and the

H currents by J iH , where i runs from 1 to |H| ≡ dimH. We can now construct two energy-

momentum tensors

TG(z) =
1

2(kG + hG)

|G|∑
a=1

: JaG(z)JaG(z) : (1.311)

and

TH(z) =
1

2(kH + hH)

|H|∑
a=1

: J iH(z)J iH(z) : (1.312)
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Now we have:

TG(z)J iH(w) ∼ J iH(w)

(z − w)2
+
∂J iH(w)

(z − w)
(1.313)

but also that

TH(z)J iH(w) ∼ J iH(w)

(z − w)2
+
∂J iH(w)

(z − w)
(1.314)

Note that the OPE of (TG − TH) with J iH is non-singular. Since TH above is constructed only

from H currents J iH it follows that TG/H = TG − TH has the nonsingular OPE with all of TH .

This implies that

TG = (TG − TH) + TH = TG/H + TH (1.315)

gives the orthogonal decomposition of the Virasoro algebra generated by TG into two commuting

Virasoro subalgebras, [TG/H , TH ] = 0. To calculate central charge of the Virasoro subalgebra

generated by TG/H , we note that the highest negative degree in OPE of two TG’s decomposes

as

TGTG =
cG/2

(z − w)4
∼ TG/HTG/H + THTH ∼

cG/H/2 + cH/2

(z − w)4
(1.316)

This results

cG/H = cG − cH =
kG|G|
kG + hG

− kH |H|
kH + hH

(1.317)

To describe the states that arise in a G/H theory, we should consider how representation of

G decompose under (1.315). Let us denote representation space of affine G at level kG by

|cG, λG〉, where cG is the central charge corresponding to kG, and λG is the highest weight

representation. Under orthogonal decomposition of the Virasoro algebra TG = TG/H + TH , this

space will decompose as direct sum of the irreducible representations

|cG, λG〉 = ⊕j|cG/H , hjG/H〉 ⊗ |cH , λ
j
H〉 (1.318)

where |cG/H , hjG/H〉 denotes the irreducible representation of TG/H with the lowest L0 eigenvalue

hjG/H . It follows from decomposition (1.318) that a character of the affine G representation with

the highest weight λa satisfies:

χkGλaG
(τ) =

∑
j

χ
cG/H

hG/H(λaG,λ
j
H)

(τ)χkH
λjH
≡ χG/H · χHλH (1.319)
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In (1.319) L0 eigenvalues hG/H characterizing the TG/H Virasoro representation depend on

highest weights λaG and λjH characterizing corresponding G and H representation. On the r.h.s.

of (1.319) we have introduced the matrix notation.

Under the modular transformation:

ζ : τ → aτ + b

cτ + d
(1.320)

characters allowed at given fixed level kG of the affine algebra transform as the unitary repre-

sentation

χkG(τ ′) = MkG(ζ)χkG(τ) (1.321)

with MkG unitary matrix. From (1.319) we have

χkG(τ ′) = χkG/H (τ ′)MkH (ζ)χkH (τ) (1.322)

The linear independence of G and H characters thus enables us to solve for modular transfor-

mation properties of the TG/H characters as

χkG/H (τ ′) = MkG(ζ)χkG/H (τ)MkH (ζ)−1 (1.323)

1.5.5 Lagrangian of coset model: Gauged WZW model

Let G be a compact, simply connected, non-abelian group. The G/H coset CFT, where H is

a subgroup of G, can be described in terms of a gauged WZW action, where the symmetry

g → h(z, z̄)gh−1(z, z̄) (1.324)

g ∈ G, h ∈ H is gauged away. An H Lie algebra valued world sheet vector field A is added to

the system, and the G/H action on a world-sheet without boundary becomes [16,83,85,113]:,

SG/H = SWZW + Sgauge (1.325)

=
kG
4π

[ ∫
Σ

d2zLkin +

∫
B

ωWZW

]
+
kG
2π

∫
Σ

d2zTr[Az̄∂zgg
−1 − Az∂z̄gg−1 + Az̄gAzg

−1 − Az̄Az]
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The action (1.325) is invariant under the transformation (1.324) together with transformation

of gauge fields

Az → hAzh
−1 + ∂zhh

−1 (1.326)

Az̄ → hAz̄h
−1 + ∂z̄hh

−1

We can write the action (1.325) also in other form which make clear why this action describes

GKO coset models.

Introduce H group element valued world sheet fields U and Ũ as

Az = ∂zUU
−1 (1.327)

Az̄ = ∂z̄Ũ Ũ
−1 (1.328)

Using the Polyakov-Wiegmann identities (1.278) and (1.279) the coset action becomes:

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ) (1.329)

The level kH of the SH term is related to kG through the embedding index of H in G.

The form (1.329) demonstrates that the gauge invariant action (1.325) indeed gives the

GKO model. The form (1.329) also makes obvious the local gauge transformation

g(z, z̄)→ h(z, z̄)g(z, z̄)h−1(z, z̄) (1.330)

U(z, z̄)→ h(z, z̄)U(z, z̄)

Ũ(z, z̄)→ h(z, z̄)Ũ(z, z̄)

with h(z, z̄) ∈ H.

The parafermion APF (k) = SU(2)k
U(1)k

The chiral algebra of this theory has a set of irreducible representations described by pairs (j, n)

where j ∈ 1
2
Z, 0 ≤ j ≤ k/2, and n is an integer defined modulo 2k. The pairs are subject to a

constraint 2j+n = 0mod2, and an equivalence relation (j, n) ∼ (k/2− j, k+n). The character

of the representation (j, n), denoted by χj,n(q), is determined implicitly by the decomposition

χ
SU(2)
j (q) =

k+1∑
n=−k

χkj,n(q)ψn(q) . (1.331)
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where χ
SU(2)
j (q) is SU(2) affine characters given by (1.309) and ψn(q) is U(1)k affine characters

(1.230). The action of the S element of the modular group on the character is

χkj,n(q̃) =
∑

(j′,n′)

SPF(j,n),(j′n′)χ
k
j′,n′(q) (1.332)

and the PF S-matrix according to (1.323) is

SPF(j,n),(j′n′) =

√
2

k
e
iπnn′
k Sjj′ , (1.333)

where Sjj′ defined in (1.308).

When combining left and right-movers, the simplest modular invariant partition function

of the parafermion theory is obtained by summing over all distinct representations

Z =
∑

(j,n)∈PFk

|χj,n|2 . (1.334)

The parafermion theory has a global Zk symmetry under which the fields ψj,n generating the

representation (j, n) transform as

g : ψj,n → ωnψj,n, ω = e
2πi
k . (1.335)

Therefore we can orbifold the theory by this group. Taking the symmetric orbifold by Zk

of (1.334) similar to U(1)k case leads to the partition function

Z =
∑

(j,n)∈PFk

χj,nχ̄j,−n . (1.336)

We see that effect of the orbifold is to change the relative sign between the left and right movers

of the U(1) group with which we orbifold. Therefore the Zk orbifold of the parafermion theory

at level k is T-dual to the original theory. This fact will be the basis of many constructions in

the main text.
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Chapter 2

Non-maximally symmetric D-branes in

the WZW models

2.1 WZW model on a world-sheet with boundary

2.1.1 Action of Boundary WZW model

Here we analyze the action of the WZW model on a world-sheet with a boundary. In particular

we present geometric realization [8, 87] of the Cardy boundary states (1.139). Let us consider

the maximally-symmetric boundary conditions preserving a diagonal affine symmetry:

Ja = J̄a, a = 1, · · · dim G (2.1)

As we explained before in the absence of the boundary the WZW action possesses the affine

GL ×GR symmetry:

g(z, z̄)→ hL(z)g(z, z̄)h−1
R (z̄) (2.2)

The boundary condition (2.1) implies that the symmetry (2.2) is broken to the diagonal sym-

metry, requiring that hL = hR = h on the boundary. The presence of this symmetry constraints

the boundary conditions that can be placed on g. Allowing g|boundary = f for some f ∈ G we

must also allow g|boundary = hfh−1 for every h ∈ G. This means that g on the boundary takes
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value in the conjugacy class Cf containing f :

g|boundary = Cf = {g ∈ G | there exists h ∈ G with g = hfh−1}. (2.3)

Now we are going to write down the corresponding boundary Lagrangian. Recall that to

write the WZW model we used the three-manifold B satisfying the condition ∂B = Σ. When

the world-sheet Σ has itself boundaries, it cannot be the boundary of a three dimensional

manifold, since a boundary cannot have boundary. To define the WZW term for this case, one

should fill holes in the worldsheet by adding auxiliary discs, and extend the mapping from the

worldsheet into the group manifold to these discs. One further demands that the whole disc

D is mapped into a region inside the conjugacy class in which the corresponding boundary

lies. B will then be defined as a three-manifold bounded by the union Σ ∪ D,which now has

no boundaries. To make the action independent on the location of the auxiliary disc inside

conjugacy class we should demand that

ωWZW(g)|g∈Cf = dωf (2.4)

and modify the action by the boundary term

Sbndry−WZW = SWZW − kG
4π

∫
D

ωf (2.5)

First of all using the Polyakov-Wiegmann identities it is easy to check that indeed (2.4) for

Cf = kfk−1 fulfilled with:

ωf (k) = Tr(k−1dkfk−1dkf−1) (2.6)

Note that ωf (k) is in fact depends only on elements of conjugacy class.

Now we can check that the action (2.5) is invariant under the transformation

g(z, z̄)→ hL(z)g(z, z̄)h−1
R (z̄) (2.7)

with the boundary condition hL(z)|boundary = hR(z̄)boundary = h(τ).

Under this transformation, the change in the Lkin term is canceled by the corresponding

Σ integral of the boundary term from the change in the ωWZW term. In the presence of a
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world-sheet boundary there remains the contribution from D to the latter change. And since

according to the Polyakov-Wiegmann identity (1.279)

ωWZW(hgh−1)− ωWZW(g) = −dΨ(h, g) (2.8)

where

Ψ(h, g) = Tr[h−1dh(g−1h−1dhg + g−1dg + dgg−1)] (2.9)

we have

∆(SWZW) = −kG
4π

∫
D

Ψ(h, g) (2.10)

On the other hand under this transformation k → hk and

ωf (hk)− ωf (k) = −Ψ(h, Cf ) (2.11)

where Cf = kfk−1.

Equations (2.10) and (2.11) imply invariance of the action (2.5) under (2.7).

Let us now elaborate boundary equation of motion. The full derivatives terms from (1.264)

gives the following contribution to the boundary terms:∫
Tr[δgg−1∂zgg

−1dz − δgg−1∂z̄gg
−1dz̄] (2.12)

To find contribution from the ωWZW and ωf (k) terms note the identity [54]:

Tr(g−1δg(g−1dg)2)|g=C − δωf (k) = dAf (k) . (2.13)

Af (k) = Tr[k−1δk(f−1k−1dkf − fk−1dkf−1)] . (2.14)

Using the parametrization

z = τ + iσ z̄ = τ − iσ (2.15)

and taking boundary at the σ = 0 we get∫
Tr
[
δgg−1∂zgg

−1 − δgg−1∂z̄gg
−1 + k−1δkf−1k−1dk

dτ
f − k−1δkfk−1dk

dτ
f−1
]
dτ (2.16)
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Remembering that g = kfk−1, after some transformation we obtain:∫
Tr
[
2δkk−1

(
g−1∂z̄g + ∂zgg

−1
) ]
dτ (2.17)

Therefore boundary equations of motion imply

g−1∂z̄g + ∂zgg
−1 = 0 (2.18)

or recalling the definition of currents

J = J̄ (2.19)

as expected.

We have chosen the boundary conditions (2.3) such that the particular diagonal subgroup

G of G×G defined in eq. (2.2) will survive them. This is of course not a unique choice. One

can act on these boundary conditions with any element of the G × G symmetry group to get

equivalent boundary conditions which preserve a different diagonal subgroup. Thus we can

multiply the conjugacy class Cf in eq. (2.3) from the right (which is the same as multiplying

from the left) by any group element f to get modified boundary conditions

g|boundary ∈ Cfm (2.20)

These boundary conditions also preserve a diagonal subgroup, since the set Cfm satisfies

Cfm = h(Cfm)m−1h−1m (2.21)

for any h ∈ G. Therefore, the boundary conditions (2.20) preserve the diagonal subgroup of

GL ×GR defined by hR = m−1h−1
L m. In terms of the infinitesimal generators of GL ×GR, i.e.

the left and right handed currents, the invariance of (2.20) under this subgroup implies for the

corresponding boundary state the condition

Ja = (Adm−1J)a (2.22)

which modifies (2.1) by conjugating the right handed currents by m−1.

80



2.1.2 Global issues

The modified action (2.5) is independent, by construction, of continuous deformation of D inside

Cf . However, in general, the second homotopy of a conjugacy class π2(Cf ) is non-trivial. We

should compare then the value of the action for D and D′, two different choices of embedding

the disc in Cf with the same boundary, where D′ may not be a continuous deformation of D

in Cf . The union of two such embedded discs is not the boundary of a three volume inside the

conjugacy class, where (2.4) is valid. In that case the above analysis does not imply that the

two ways to evaluate the action (2.5) agree. Since there is no natural way to choose between

the two embeddings, (2.5) is not yet a well defined action. In particular, for G = SU(2) the

conjugacy clases Cf have the topology of S2, the two-sphere generated by all possible axes of

rotation by a fixed angle in three dimensions. One may then choose D and D′ such that their

union covers the whole of S2. In that case the difference between the action SD, the value of

(2.5) with embedding D, and SD′ with embedding D′ is

∆Sbndry−WZW =
kG
4π

[ ∫
B

ωWZW −
∫
Cf
ωf

]
(2.23)

where B is the three-volume in SU(2) bounded by the two-sphere Cf . For the case of SU(2),

which has the topology of S3, the form ωWZW 4 times the volume form on the unit three sphere.

For Cf with f = eiψσ3 , the first term in (2.23) is∫
B

ωWZW = 8π(ψ − 1

2
sin(2ψ)) (2.24)

As to the two-form ωf it is proportional to the volume form of the unit two-sphere. We can

directly compute for Cψ

ωf = sin(2ψ)volS2 (2.25)

This gives for the change in the action for two topologically different embeddings

∆Sbndry−WZW = 2kGψ (2.26)

Although this is non-zero, the quantum theory is still well-defined if ∆S is an multiple of 2π.

We find that the possible conjugacy classes on which a boundary state live are quantized, the
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corresponding ψ should take the values:

ψ0 = 2π
a

kG
(2.27)

with a integer or half-integer satisfying 0 ≤ a ≤ k/2.

For an arbitrary group G we can argue in the following way. Since h in (2.3) is defined

modulo right multiplication by any element commuting with f and the group of such elements

for a generic f is isomorphic to TG, the Cartan torus of G, the conjugacy class (2.3) can be

described as G/TG. Its second homotopy group is therefore,

Π2(CG
f ) = Π1(TG) (2.28)

If r is the rank of G, a topologically non trivial embedding of S2 in CG
f is characterized by an r

dimensional vector in the coroot lattice of G. Namely, if one embedding D of the disc into CG
f

is given by hfh−1 and another embedding D′ sends it into h′fh′−1, then on the topologically

circular boundary the two embeddings should coincide. This implies

h(τ)h′(τ)−1 = t(τ) (2.29)

where t(τ) is an element of the subgroup isomorphic to TG which commutes with f . Eq. (2.29)

determines a mapping from the circular boundary of a given hole in the world sheet into the

torus TG. Since TG is Rr modulo 2π times the coroot lattice, every such mapping belongs to

a topological sector parameterized by a vector in the coroot lattice describing the winding of

this circle on the torus TG. This lattice vector determines, by (2.28) , the element of Π2(CG
f )

corresponding to the union of D and D′.

Let the element f in (2.3) chosen in the Cartan torus be of the form f = eiλ·H where H

are Cartan generators. The change in the action resulting from a topological change in the

embedding of the disc which is characterized by a coroot lattice vector s, is given by [87]

∆Sbndry−WZW = kG(λ · s) (2.30)

where the length of long roots is normalized to 2 . Consistency of the model then implies the

condition

λ · α∨ ∈ 2πZ/kG (2.31)
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for any coroot α∨. In this normalization the weight lattice is the set of points in Rr whose

scalar product with any coroot takes integral values. Eq. (2.31) implies then, that λ should be

2π/kG times a vector in the weight lattice. As a point in TG, λ is defined modulo 2π times the

coroot lattice. The allowed conjugacy classes correspond then to points in the weight lattice

divided by kG, modulo the coroot lattice. This is also the characterization of the integrable

representations of Ĝ, the affine G algebra at level kG, which correspond to the primary fields

of the WZW model.

We proved that geometrical realization on the group manifold of the Cardy states, is given

by the following set of the conjugacy classes

Cµ = {hfµh−1 = he2iπµ/kGh−1, h ∈ G} , (2.32)

where µ ≡µ · H is a highest weight representation integrable at level kG, taking value in the

Cartan subalgebra of the G Lie algebra.

2.1.3 Boundary states geometry

In the previous section we checked that maximally symmetric boundary conditions of the WZW

model are given by the quantized set of the conjugacy classes. Here we will show for the SU(2)

group that Cardy boundary states indeed has the geometry of the above described conjugacy

classes.

Given a boundary state (1.139),

|a〉C =
∑
j

Saj√
S0j

|j〉〉 (2.33)

the shape of the brane can be deduced by considering the overlap of the boundary state

with the localised bulk state |~θ〉, with ~θ denoting the three SU(2) angles in some coordinate

system. As we will see, the boundary state wave function over the configuration space of all

localised bulk states peaks precisely at those states which are localised at positions derived by

the effective methods in the previous sections. In the large k limit, the eigen-position bulk state
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is given by

|~θ〉 =
∑
j,m,m′

√
2j + 1Djmm′(~θ)|j,m,m

′〉 , (2.34)

where Djmm′ are the Wigner D-functions:

Djmm′ = 〈jm|g(~θ)|jm′〉, 〈jm|jm′〉 = δm,m′ (2.35)

where |jm〉 are a basis for the spin j representation of SU(2). Using the matrix of the modular

transformation S of SU(2) at level k (1.308), we can compute in the large-k limit the ratio of

S-matrix elements appearing in the boundary state

Saj√
S0j

∼ (2(k + 2))1/4√
π(2j + 1)

sin[(2j + 1)ψ̂] , (2.36)

where, to shorten the notation, we have introduced

ψ̂ =
(2a+ 1)π

k + 2
. (2.37)

Note that in the limit of the large a and k ψ̂ → ψ0 defined in (2.27). Using these results, the

overlap between the boundary state and the localised bulk state becomes

〈~θ|a〉C ∼
∑
j,m

(2(k + 2))1/4

√
π

sin[(2j + 1)ψ̂]Djmm(g(~θ) . (2.38)

Finally, one needs the property of the Wigner D-functions that

∑
n

Djnn(g) =
sin(2j + 1)ψ

sinψ
, (2.39)

where ψ is defined by the relation Trg = 2 cosψ. The overlap (2.38) becomes

〈~θ|a〉C ∼
(2k + 4)1/4

√
π sinψ

∑
j

sin[(2j + 1)ψ̂] sin[(2j + 1)ψ] (2.40)

and from the completeness of sin(nψ) on the interval [0, π] one concludes

〈~θ|a〉C ∼
√
π(k + 2)1/4

27/4 sinψ
δ(ψ − ψ̂) . (2.41)

Hence we see that the brane wave function in the large k limit is localized on ψ = 2π a
k
. as

required by (2.27).
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2.2 Parafermionic branes

2.2.1 Lagrangian construction

Let us consider D-brane in the WZW model with a group G as a product of the conjugacy class

with the U(1) subgroup [156]:

g|boundary = LC = Lhfh−1 (2.42)

where f is defined in (2.32), L = eiαY ∈ U(1)Y and Y is an arbitrary but fixed generator in the

Cartan subalgebra of G. We should check that on this subset exists a two-form ω(2) satisfying

the condition (2.4):

dω(2) = ωWZW|boundary (2.43)

It may be easily checked using the Polyakov-Wiegmann identity (1.279):

ωWZW(LC) = ωWZW(L) + ωWZW(C)− dTr(L−1dLdCC−1) (2.44)

Using that for the abelian group, L, ωWZW(L) = 0, and

ωWZW(C) = dωf (h) = d
(

Tr
(
h−1dhfh−1dhf−1

) )
(2.45)

we get that indeed

ωWZW|boundary = dω(2)(L, h) (2.46)

where

ω(2)(L, h) = ωf (h)− Tr(L−1dLdCC−1) (2.47)

where ωf (h) is defined in (2.6). Now the action is

Spf−br = SWZW(g)− k

4π

∫
D

ω(2)(L, h) (2.48)

Here we use the setup and notations of the previous section.

Let us show that the action (2.48) is invariant under the following symmetries
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1.

g(z, z̄)→ hL(z)g(z, z̄)hR(z̄) (2.49)

with hL(z)|boundary = hR(z̄)boundary = k(τ), k ∈ U(1)Y . Under this transformation L →

kLk and C → k−1Ck and h→ k−1h.

2.

g(z, z̄)→ hL(z)g(z, z̄)h−1
R (z̄) (2.50)

with hL(z)|boundary = hR(z̄)boundary = k(τ), where k satisfies the conditions [k, L] = 0,

Tr(Y k−1dk) = 0. Under this transformation C → kCk−1.

Under the transformation (2.49), as before the change in the Lkin term is canceled by the

corresponding Σ integral of the boundary term from the change in the ωWZW term. In the

presence of a world sheet boundary there remains the contribution from D to the latter change

∆(SWZW) =
k

4π

∫
D

Tr[k−1dk(g−1dg − gk−1dkg−1 − dgg−1)] (2.51)

where g = LC. Substituting this value in (2.51) we get

∆SWZW =
k

4π

∫
D

Tr[k−1dk(C−1dC − Ck−1dkC−1 + C−1L−1dLC − dLL−1 − dCC−1)] (2.52)

Now we compute ω(2)(kLk, k−1h)− ω(2)(L, h) using that

ωf (k
−1h)− ωf (h) = Tr[k−1dk(Ck−1dkC−1 + C−1dC + dCC−1)] (2.53)

and

Tr[(kLk)−1d(kLk)d(k−1Ck)k−1C−1k − L−1dLdCC−1] (2.54)

= Tr[k−1dk(2dCC−1 + 2Ck−1dkC−1 + L−1dL− C−1L−1dLC)]

resulting in

ω(2)(kLk, k−1h)− ω(2)(L, h) = Tr[k−1dk(C−1dC − Ck−1dkC−1 − (2.55)

dCC−1 − L−1dL+ C−1L−1dLC)]
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which cancels (2.52).

By the same arguments under (2.50):

∆(SWZW) =
kG
4π

∫
D

Tr[k−1dk(gk−1dkg−1 − g−1dg − dgg−1)], (2.56)

where g = LC. Substituting this value of g in (2.56) we get:

∆(SWZW) =
kG
4π

∫
D

Tr[k−1dk(LCk−1dkC−1L−1 − (2.57)

C−1L−1(dLC + LdC)− (dLC + LdC)C−1L−1)],

and using [k, L] = 0 and cyclic permutation under the trace we obtain:

∆(SWZW) =
kG
4π

∫
D

Tr[k−1dk(Ck−1dkC−1−C−1L−1dLC−C−1dC−dLL−1−dCC−1)]. (2.58)

Now we compute ω(2)(L, kh)− ω(2)(L, h), using that

ωf (kh)− ωf (h) = Tr[k−1dk(Ck−1dkC−1 − C−1dC − dCC−1)] (2.59)

and

Tr[L−1dLd(kCk−1)kC−1k−1 − L−1dLdCC−1] = Tr[L−1dLdkk−1 − L−1dLCk−1dkC−1], (2.60)

resulting in

ω(2)(L, kh)− ω(2)(L, h) = Tr[k−1dk(Ck−1dkC−1 − C−1dC − dCC−1 (2.61)

+L−1dL− C−1L−1dLC)].

Collecting (2.58) and (2.61) we obtain:

∆Spf−br =
kG
2π

∫
D

Tr(L−1dLk−1dk). (2.62)

Noting, that Tr(Y k−1dk) = 0, we prove that the action (2.48 possesses by the vectorially

diagonal symmetry commuting with U(1)Y . For G = SU(N + 1) this commuting symmetry

is SU(N) composed from generators commuting with Y . We also see from (2.62) that the

vectorially diagonal U(1)Y symmetry is broken. Thus we obtained the preserved symmetries of

the parafermionic brane:

Ja = J̄a, T a ∈ SU(N) (2.63)

JY = −J̄Y (2.64)
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2.2.2 Geometry

Here we elaborate geometry of the parafermionic branes (2.42) for SU(2) group [157]. Brane

is given by the conjugacy class multiplied by the U(1)σ3 group: g = hfh−1eiα
σ3
2 ≡ CL. The

geometry of the image can be determined as in [157]. Using the fact that Tr C = Trf = const =

2 cosψ0, where ψ0 is defined in (2.27), we can write

Tr
(
ge−iα

σ3
2

)
= 2 cosψ0 . (2.65)

From here we see that the element g belongs to the image of the brane surface if and only if

there is a U(1) element (eiα
σ3
2 ) such that the equation (2.65) is satisfied. So let us determine

for which g this equation admits solutions for α. Introduce the Euler parametrization

g = eiχ
σ3
2 eiθ̃

σ1
2 eiϕ

σ3
2 (2.66)

Expanding the exponentials one obtains

g =

 cos θeiφ̃ sin θeiφ

− sin θe−iφ cos θe−iφ̃

 (2.67)

where

χ = φ̃+ φ , ϕ = φ̃− φ , θ =
θ̃

2
. (2.68)

The equation (2.65) takes the form

cos θ cos(φ̃− α

2
) = cosψ0 , (2.69)

or equivalently,

0 ≤ cos2(φ̃− α

2
) =

cos2 ψ0

cos2 θ
≤ 1 . (2.70)

Hence, equation (2.70) can be solved for α only when cos2 θ ≥ cos2 ψ0, or equivalently when

cos θ̃ ≥ cos 2ψ0 , θ̃ = 2θ . (2.71)

We see that generic parafermionic brane on SU(2) is a three-dimensional surface defined by

the inequality (2.71). For ψ0 = 0 it is one-dimensional circle.
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2.2.3 Boundary state

Boundary state for the parafermionic branes were constructed in [123,124].

Let us start by reviewing the T-duality between a Lens space and the SU(2) theory. Geo-

metrically, a Lens space is obtained by quotienting the group manifold by the right action of the

subgroup Zk of the U(1), and in the Euler coordinates (2.66) it corresponds to the identification

ϕ ∼ ϕ + 4π
k

. In terms of the SU(2) WZW model this is the orbifold SU(2)/ZR
k , where ZR

k is

embedded in the right U(1). The partition function for this theory can be derived using the

technique elaborated in 1.4.3 and it is

Z =
∑
j

χ
SU(2)
j (q)χPFjn (q̄)ψ

U(1)
−n (q̄) (2.72)

Partition function (2.72) coincides with the one for the SU(2) group, up to T-duality. This

relation enables one to construct new D-branes in the SU(2) theory starting from the known

ones. As a first step one constructs the brane in the Lens theory. As is usual for orbifolds, this is

achieved by summing over images of D-branes under the right Zk multiplications. Performing

then the T-duality on the Lens theory brings us back to the SU(2) theory and maps the

orbifolded brane to a new SU(2) brane.

Our starting point is a maximally symmetric Cardy state. If we shift the brane by the right

multiplication with some element ωl = e
2πli
k
σ3 of the ZR

k group, then the symmetries preserved

by this brane, as we explained at the end of section 2.1.1, are∗

Ja + ωlJ̄aω−l = 0 , (a = 1, 2, 3) , (2.73)

while the brane is described by the Cardy state with rotated Ishibashi state

|A, a〉ωlC =
∑
j

Saj√
S0j

∑
N

|j,N〉 ⊗ (ωl|j,N〉) . (2.74)

Summing over the images one obtains a ZR
k invariant state, present in the Lens theory

k∑
l=0

|A, a〉ωlC =
∑
j

Saj√
S0j

k∑
l=0

∑
N

|j,N〉 ⊗ (ωl|j,N〉) . (2.75)

∗In this subsection we write gluing conditions in the closed string channel.
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To compute the sum of the Ishibashi states on the right-hand side, one next uses the parafermion

decomposition of SU(2)k (1.331). This decomposition implies that Ishibashi states for the

maximally symmetric A-brane can be written as

|A, j〉〉SU(2) =
2k∑
n=1

1 + (−1)2j+n

2
|A, j, n〉〉PF ⊗ |A, n〉〉U(1) , (2.76)

where

|A, j, n〉〉PF =
∑
N

|j, n,N〉 ⊗ |j, n,N〉 , (2.77)

is the A-type Ishibashi states for the parafermion and |A, n〉〉U(1) is defined in (1.260).

Under the action of element ωl ∈ ZR
k the expression (2.76) transform as

|A, j〉〉SU(2) →
2k∑
n=1

1 + (−1)2j+n

2
e

2πiln
k |A, j, n〉〉PF ⊗ |A, n〉〉U(1) . (2.78)

Hence summing over images projects onto the ZR
k -invariant Ishibashi states for which n is

restricted to the two values 0 and k. Performing T-duality, flips the sign of the right moving U(1)

sector and one gets a B-type Ishibashi state of the original SU(2) theory,

|B, j〉〉SU(2) =

[
1 + (−1)2j

2
|A, j, 0〉〉PF ⊗ |B, 0〉〉U(1) + (2.79)

1 + (−1)2j+k

2
|A, j, k〉〉PF ⊗ |B, k〉〉U(1)

]
,

where |Br〉〉U(1) is a B-type Ishibashi state of U(1)k theory satisfying the Neumann boundary

conditions defined in (1.262). Knowing the T-dual expression of the (2.75) allows one to write

down the boundary state for the B-type brane

|B, a〉SU(2)
C =

∑
j∈Z

√
kSaj√
S0j

|Aj, 0〉〉PF ⊗ (|B0〉〉U(1) + η|Bk〉〉U(1)) . (2.80)

where η = (−1)2a. In deriving this expression one uses the field identification rule (j, n) ∼

(k/2− j, k + n) and the following property of the matrix of modular transformation (1.308)

Sa,k/2−j = (−1)2aSaj . (2.81)

To derive the symmetries preserved by the B-brane, one observes from (2.73) that a ZR
k invariant

superposition of the A-branes preserves only the current J3 + J̄3 and breaks all other currents;
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namely, any two ZR
k images only have this preserved current in common. Performing further

T-duality in the J̄3 direction flips the relative sign between the two terms in this current and

hence implies that the only current preserved by the B-brane is

J3 − J̄3 = 0 . (2.82)

2.2.4 Overlap of the state and the coordinate wave function

We will now show that the boundary state (2.80) reproduces the effective brane geometry (2.71).

In the large k limit the second term in (2.80) can be ignored. As in the case of Cardy state one

should compute the overlap 〈~θ|B, a〉SU(2)
C . We will again use the formula (2.34), but taking into

account that the matrix D has left and right indices 0. Therefore, the overlap is again given

by formula (2.38), but with m set to zero. Hence we arrive at the equation

〈~θ|B, a〉SU(2)
C ∼

∑
j∈Z

k3/2

π
sin[(2j + 1)ψ̂]Dj00(g(~θ)) (2.83)

where ψ̂ is defined in (2.37).

Next we will need the relation between the Wigner D-functions and the Legendre polyno-

mials Pj(cos θ̃) given by Dj00 = Pj(cos θ̃), where θ̃ introduced in (2.66), as well as the formula

for the generating function for Legendre polynomials

∑
n

tnPn(x) =
1√

1− 2tx+ t2
. (2.84)

Using these expressions equation (2.83) can be simplified to

〈~θ|B, a〉SU(2)
C ∼ Θ(cos θ̃ − cos 2ψ̂)√

cos θ̃ − cos 2ψ̂

, (2.85)

where Θ is the step function. This indeed coincides with the expression for the effective geom-

etry (2.71) in the large k limit.

2.3 Permutation branes

Here we present Lagrangian description of the permutation branes (1.159) and (1.161).
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2.3.1 Definition of the brane

Let us consider a group manifold M , which is a product of K + 1 copies of a group G: M =

G×· · ·×G. We define the maximally symmetric, permutational brane by the following formula

[66]

(g0, g1, · · · , gK)|brane =
{

(h0f0h
−1
1 , h1f1h

−1
2 , h2f2h

−1
3 · · ·hK−1fK−1h

−1
K , hKfKh

−1
K+1)∣∣∣ h0 = hK+1 ,∀hi ∈ G , (i = 1, · · · , K + 1)

}
. (2.86)

where gi denotes an element of the i’th copy of G in target space, and |brane denotes the

restriction to the brane surface. It is easy to see that by redefinition of the elements hi one can

always bring an arbitrary brane (f0, . . . , fK) into the form (f0f1 · · · fK , e, . . . e), where e is the

identity element. Hence, another, more convenient form of writing the equation (2.86) is

(g0, g1, · · · , gK)|brane = (2.87){
(h0fh

−1
0 g−1

K · · · g
−1
1 , g1, · · · , gK)

∣∣∣ (2.88)

f ≡ f0f1 · · · fk , ∀h0, gi ∈ G , (i = 1, · · · , K)
}
.

The dimension of this brane can easily be determined by looking at the image of (2.86) under

the map m : M = G × . . . × G → G, defined by m(g0, g1, . . . , gK) = g0g1 . . . gK ≡ g [66]. The

map m maps the brane (2.86) to the conjugacy class

m(g0, g1, . . . , gk)|brane = C = {C = h0fh
−1
0 |h0 ∈ G} . (2.89)

The global issues again require the conjugacy class (2.89) to have the form (2.32).

Next, note that the inverse of a point under m is diffeomorphic to GK . To see this, observe

that for any element of the form

h ≡ (f0h
−1
1 , h1f1h

−1
2 , h2f2h

−1
3 , . . . , h−1

K fK) , (∀hi ∈ G) (2.90)

the relation m(h) = m(f0 . . . fK) holds. Hence altogether we see that the dimension D of a

generic brane (f0, . . . fK) is given by

D = dim C +K dimG . (2.91)
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As we explained before to write the Lagrangian of the WZW theory of the product group M

with a boundary condition specified by a permutation brane, the restriction of the WZW form

to the worldvolume of the brane should satisfy (2.4). Using the Polyakov-Wiegmann identities

(1.278) and (1.279) and the relation (2.86) it is easy to see that

K∑
i=0

ωWZ(gi)
∣∣∣
brane

= dω(2) (2.92)

where

ω(2) =
K∑
i=0

Tr
(
f−1
i h−1

i dhifih
−1
i+1dhi+1

)
, (2.93)

which will be used in the following sections. The global issues also here constrain the conjugacy

class C in (2.89) to have the form (2.32).

2.3.2 Symmetries of the brane

Next we want to determine the symmetries preserved by the brane (2.86). The boundary

conditions (2.86) are invariant under any transformation of the form

gi → gik
−1
i , gi+1 → kigi+1 , (2.94)

g0 → kg0 , gK → gKk
−1 , (ki, k ∈ G) , (i = 0, 1, . . . , (K − 1)) , (2.95)

which in our parametrisation correspond to the transformations

hi+1 → kihi+1 , hk+1 → khk+1 , (2.96)

respectively. We will now show that the full action

Sper−WZW =
k∑
i=0

SWZW(gi)−
k

4π

∫
D

ω(2) (2.97)

with boundary condition (2.86) and ω(2) given in (2.93) is invariant under the following trans-

formations

gi(z, z̄)→ gi(z, z̄)k−1
iR (z̄) ,

gi+1(z, z̄)→ kiL(z)gi+1(z, z̄) , (ki ∈ G) , (i = 0, 1, . . . , K − 1) , (2.98)

kiL(z)|boundary = kiR(z̄)|boundary = ki(τ) ,
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as well as

g0(z, z̄)→ kL(z)g0(z, z̄) ,

gK(z, z̄)→ gK(z, z̄)k−1
R (z̄) , (2.99)

kL(z)|boundary = kR(z̄)|boundary = k(τ) , (k ∈ G) .

For fixed i, in order to determine the variation of the action, we only need to consider the

following terms

S(gi, gi+1) = SWZW(gi) + SWZW(gi+1) , (2.100)

ω(2)(hi+1) = Tr
(
f−1
i h−1

i dhifih
−1
i+1dhi+1 + f−1

i+1h
−1
i+1dhi+1fi+1h

−1
i+2dhi+2

)
. (2.101)

The variation of the kinetic and Wess-Zumino terms in the action can be read off from (1.278)

and (1.279). Using the fact that, due to the (anti-)holomorphicity, ωWZ(kiR/L) = 0, one deduces

that the variation of the Wess-Zumino term reduces to a surface integral over the disc D and the

string worldsheet Σ. The integral over the string world sheet is canceled by the corresponding Σ

integral coming from the variation of the kinetic term. The remaining integral over the disc is

∆(S(gi, gi+1)) = − k

4π

∫
D

Tr
(
k−1
i dki(g

−1
i dgi + dgi+1g

−1
i+1)
)
. (2.102)

Substituting gi = hifih
−1
i+1 and gi+1 = hi+1fi+1h

−1
i+2 we obtain

∆(S(gi, gi+1)) = (2.103)

k

4π

∫
D

Tr
(
k−1
i dki(hi+1fi+1h

−1
i+2dhi+2f

−1
i+1h

−1
i+1 − hi+1f

−1
i h−1

i dhifih
−1
i+1)
)
.

This term is canceled by the variation of the two-form term in (2.101). Computing the change

of (2.101) we find

ω(2)(kihi+1)− ω(2)(hi+1) = (2.104)

Tr
(
k−1
i dki(hi+1fi+1h

−1
i+2dhi+2f

−1
i+1h

−1
i+1 − hi+1f

−1
i h−1

i dhifih
−1
i+1)
)

which cancels (2.103). The proof of the invariance of the action (2.97) under the variation

(2.99) is similar.
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Having determined the symmetries of the brane (2.86) we can now turn to the question

of which bulk currents are preserved by this brane. The invariance of the manifold M under

separate left/right group multiplication in each subgroup gets lifted, on the world sheet of a

closed string, to a local infinite-dimensional symmetry group M(z) ×M(z̄). The presence of

these symmetries implies the existence of the conserved currents Ji(z) = −∂gig−1
i and J̄i(z̄) =

g−1
i ∂̄gi (i = 0, 1, . . . , K). As we have seen, the symmetries under separate left/right group

multiplication are, in the presence of the worldsheet boundary, reduced to symmetries under

simultaneous multiplication (2.98) and (2.99). This implies the following relations between the

currents,

J̄ai = Jai+1 , (i = 0, . . . K − 1) , (2.105)

Ja0 = J̄aK , ∀T a ∈ Lie(G) . (2.106)

These are gluing conditions of permutation branes (1.158) for WZW model.

2.3.3 Effective geometry for maximally symmetric, permutation branes

Let us consider an explicit example of the maximally symmetric permutation branes (2.86) for

the case of double product with the group G = SU(2), i.e. M = SU(2)× SU(2). In this case

the general formula (2.86) reduces to

(g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 , h1f1h

−1
0 ) . (2.107)

where f0f1 = e
2iπaσ3
k , with a integer or half-integer satisfying 0 ≤ a ≤ k/2.

The preserved currents are

Ja0 = J̄a1 , Ja1 = J̄a0 (a = 1, 2, 3) . (2.108)

The general expression for two form ω(2) given in (2.93) reduces to

ω(2)(h0, h1) = Tr
(
h−1

0 dh0(f0h
−1
1 dh1f

−1
0 − f−1

1 h−1
1 dh1f1)

)
. (2.109)
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Using the constructed boundary states we then calculate the effective geometries of these branes,

recovering the classical results from the previous sections.

Recall the permutation brane boundary state (1.161)

|a〉P =
∑
j

Saj
S0j

|j, j〉〉P =
∑
j

Saj
S0j

|j〉〉SU(2)0×SU(2)1̄ |j〉〉SU(2)0̄×SU(2)1 . (2.110)

|j〉〉SU(2)0×SU(2)1̄ =
∑
N

|j,N〉0 ⊗ |j,N〉1 (2.111)

|j〉〉SU(2)0̄×SU(2)1 =
∑
M

|j,M〉1 ⊗ |j,M〉0 (2.112)

Using the S matrix of the modular transformation for SU(2)k (1.308), one obtains in the large-k

limit the ratio of S-matrix elements appearing in the defect operator

Saj
S0j

∼ (k + 2)

π(2j + 1)
sin[(2j + 1)ψ̂] , (2.113)

where, as before, we have introduced ψ̂ = (2a+1)π
k+2

. Using these results, the overlap between the

boundary state (2.110) and the localised bulk state (2.34) becomes

〈~θ0, ~θ1|a〉P ∼
∑
j,m,n

(k + 2)

π
sin[(2j + 1)ψ̂]Djnm(g0(~θ0))Djmn(g1(~θ1)) . (2.114)

To simplify this expression we need the identity

∑
m

Djnm(g1(~θ1))Djmn′(g2(~θ2)) = Djnn′(g1(~θ1)g2(~θ2)) , (2.115)

which follows from the fact that the matrices Djnm form a representation of the group. Remem-

bering (2.39) we obtain

〈~θ0, ~θ1|a〉P ∼
k + 2

π sinψ

∑
j

sin[(2j + 1)ψ̂] sin[(2j + 1)ψ] (2.116)

where

Tr(g0g1) = 2 cosψ (2.117)

and from the completeness of sin(nψ) on the interval [0, π] one concludes

〈~θ0, ~θ1|a〉P ∼
k + 2

4 sinψ
δ(ψ − ψ̂) . (2.118)

Hence we see that the brane wave function has the geometry (2.107).

96



2.4 The symmetry breaking brane of type I on a product

G×G

In this section we construct new non-maximally symmetric non-factorizable branes in the WZW

model with a product group G×G following [160].

2.4.1 Definition and symmetries

We define the boundary conditions of the type I brane as

I : (g0, g1)
∣∣∣
brane

=
{

(h0f0h
−1
1 , h1f1h

−1
0 L)

∣∣∣ , ∀L ≡ eiαY ∈ U(1)Y

}
(2.119)

where Y is an arbitrary (but fixed) generator in the Cartan subalgebra of G. As before, in order

to fully specify the consistent D-brane we need to determine the worldvolume two-form ω(2).

We can reduce this calculation to the one which we did for (2.86) by introducing variables

K0 = h0f0h
−1
1 and K1 = h1f1h

−1
0 . We have already shown that

ωWZ(K0)
∣∣∣
brane

+ ωWZ(K1)
∣∣∣
brane

= dω(2)(h0, h1)
∣∣∣
brane

(2.120)

with ω(2)(h0, h1) given in (2.109). Using (1.279) and the property that ωWZ(L) = 0 for abelian

groups, we further get that

ωWZ(K1L)
∣∣∣
brane

= ωWZ(K1)
∣∣∣
brane
− d
(

Tr(K−1
1 dK1dLL−1)

)
. (2.121)

Combining (2.120) and (2.121) we finally obtain

ωWZ(g)
∣∣∣
brane

= dω(2)(h0, h1, L) = d
(
ω(2)(h0, h1)− Tr(K−1

1 dK1dLL−1)
)
. (2.122)

The full action with the boundary condition (2.119) is:

SBR−I = SWZW(g0) + SWZW(g1)−
∫
D

ω(2)(h0, h1, L) (2.123)

To determine the symmetries preserved by the brane we first look for the symmetries preserved

by the boundary (2.119):
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1. g0 → g0k
−1, g1 → kg1 for all k ∈ G; under this transformation h1 → kh1 and K1 → kK1.

2. g0 → kg0, g1 → g1k
−1 for all k ∈ G, k /∈ U(1)Y and [k, L] = 0. Under this transformation

h0 → kh0. This means that for example, in the case of G = SU(N + 1) we get that

k ∈ SU(N) generated with isospin generators commuting with Y .

3. g0 → kg0, g1 → g1 for all k ∈ U(1)Y . Under this transformation h0 → kh0 and L→ kL.

4. g0 → g0, g1 → g1k for all k ∈ U(1)Y . Under this transformation L→ Lk.

When extending these transformations to transformations of the action (as in equations (2.98)

and (2.99)) one can show that the full action (2.123) with the boundary term on the auxiliary

disc given by (2.122) is invariant separately under the transformations 1 and 2. On the other

hand, only the following combination of the transformations 3 and 4 is a real symmetry of the

full action:

3’. g0 → kg0, g1 → g1k where k ∈ U(1)Y . Under this transformation h0 → kh0, L→ kLk.

The details of all of these calculation can be found in [160]. The set of symmetries listed above

implies that the D-brane (2.119) preserves the following set of currents,

J̄0
a

= Ja1 , ∀T a ∈ Lie(G) (2.124)

Ja0 = J̄1
a
, ∀T a ∈ Lie(G) s.t. [Ta,Y] = 0 , (2.125)

JY0 = −J̄Y1 . (2.126)

We see that multiplication of the second group with the U(1)L subgroup leads to a removal of

some of the currents present in the symmetric brane (2.106) and, as expected, also flips the

sign of the current in the Y-direction.

2.4.2 Geometry of type I brane on an SU(2)× SU(2)

Next we want to determine the geometry of the type I brane (2.119) on an SU(2) × SU(2)

manifold,

(g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 , h1f1h

−1
0 L), (2.127)
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where we will take L to be of the form L = eiα
σ3
2 . In this case, the preserved currents (2.124)–(2.126)

reduce to

J3
0 = −J̄3

1 , J̄a0 = Ja1 , (a = 1, 2, 3) . (2.128)

Under the map m of (2.89), the type I brane gets mapped to the conjugacy class multiplied

by the U(1)σ3 group: ĝ ≡ g0g1 = h0f0f1h
−1
0 eiα

σ3
2 ≡ CL. In what follows we will always denote

with hats those quantities which appear in a product of group elements from the first and the

second group. The geometry of the image can be determined as in section 2.2.2. Repeating the

same steps we easily obtain that the world-volume of the brane is given by inequality

cos ˆ̃θ ≥ cos 2ψ0 ,
ˆ̃θ = 2θ̂ , (2.129)

where ψ0 is defined in (2.27). We see that the image of the brane under multiplication m is a

three-dimensional surface defined by the inequality (2.129). To determine the geometry of the

full brane, let us denote the Euler angles for elements in g0 and g1 with “0” and “1” indices.

Then the ˆ̃θ and ˆ̃φ angles of their product are given by [184]

cos ˆ̃θ = cos θ̃0 cos θ̃1 − sin θ̃0 sin θ̃1 cos(χ1 + ϕ0) , (2.130)

ei
ˆ̃
φ =

ei
χ0+ϕ1

2

cos
ˆ̃
θ
2

(
cos

θ̃0

2
cos

θ̃1

2
ei
χ1+ϕ0

2 − sin
θ̃0

2
sin

θ̃1

2
e−i

χ1+ϕ0
2

)
. (2.131)

Substituting the expression for ˆ̃θ in the equation for the image of the brane, we see that a

generic brane (2.119) is six dimensional and given by the inequality

cos ˆ̃θ = cos θ̃0 cos θ̃1 − sin θ̃0 sin θ̃1 cos(χ1 + ϕ0) ≥ cos 2ψ0 . (2.132)

As before, the previous discussion was valid in the cases for which f0f1 6= e. If ψ0 = 0, the

conjugacy class C is a point and the total brane is four dimensional, given by the relations

θ̃0 = θ̃1, χ1 + ϕ0 = π . (2.133)

2.4.3 Boundary states for symmetry breaking type I branes

We now want to construct the boundary state for the brane of type I given in (2.127),

(g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 , h1f1h

−1
0 eiα

σ3
2 ) . (2.134)
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Recall that, as we have derived before using the Langrangian approach, this brane preserves

the currents†

J3
0 − J̄3

1 = 0 , (2.135)

J̄a0 + Ja1 = 0 , (a = 1, 2, 3) . (2.136)

To construct the boundary state, our starting point is the maximally symmetric permutation

brane (2.110) which preserves the symmetries (2.108). In order to reduce these symmetries down

to (2.135), we will now show that one should apply the procedure described in the previous

section to the second SU(2) group in which the permutation brane lives. Namely, let us shift

the brane (2.110) by multiplying it from the right with an element ωl(2) = e
2πli
k
σ3 of the ZR

k

subgroup of the second SU(2) group. The shifted brane preserves the symmetries

Ja0 + ωl(2)J̄
a
1ω
−l
(2) = 0 , (2.137)

J̄a0 + Ja1 = 0 , (a = 1, 2, 3) , (2.138)

and is given by the Cardy state

|a〉
ωl

(2)

C =
∑
j

Saj
S0j

|j〉〉SU(2)1×SU(2)0̄
τ ⊗ |j〉〉

ωl
(2)
τ , (2.139)

where

|j〉〉
ωl

(2)
τ =

∑
N

|j,N〉0 ⊗ (ωl(2)|j,N〉1̄) . (2.140)

As in the previous section, summing over the images and performing the T-duality in the

right sector, will reduce the first set of currents (2.137) down to (2.135), as desired. As far as

the boundary state is concerned, summing over images will not touch the first Ishibashi state

in (2.139) but will project the second Ishibashi state down to the ZR
k invariant components.

Let us introduce parafermion and U(1)k permuted Ishibshi states

|j1, n1〉〉PF0×PF1̄
τ =

∑
N

|j1, n1, N〉0 ⊗ |j1, n1, N〉1 , (2.141)

|j2, n2〉〉PF1×PF0̄
τ =

∑
M

|j2, n2,M〉1 ⊗ |j2, n2,M〉0 .

†Here we write gluing conditions in the closed string channel.
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and

|r〉〉U(1)0×U(1)1̄
τ± = exp

[
±
∞∑
n=1

α0
−nα̃

1
−n

n

]∑
l∈Z

|r + 2kl√
2k
〉0 ⊗ | ±

r + 2kl√
2k
〉
1

(2.142)

|r′〉〉U(1)1×U(1)0̄
τ± = exp

[
±
∞∑
n=1

α1
−nα̃

0
−n

n

]∑
l′∈Z

| ± r′ + 2kl′√
2k
〉1 ⊗ |

r′ + 2kl′√
2k
〉
0

.

Using the permuted version of the decomposition (2.76)

|j〉〉SU(2)0×SU(2)1̄ =
2k∑
n=1

1 + (−1)2j+n

2
|j, n〉〉PF0×PF1̄

τ ⊗ |n〉〉U(1)0×U(1)1̄
τ+ (2.143)

and applying T-duality to it, one obtains the permuted B-type Ishibashi state of the initial

SU(2) theory,

|B, j〉〉01̄
τ =

1 + (−1)2j

2
|j, 0〉〉PF0×PF1̄

τ ⊗ |0〉〉U(1)0×U(1)1̄
τ− (2.144)

+
1 + (−1)2j+k

2
|j, k〉〉PF0×PF1̄

τ |k〉〉U(1)0×U(1)1̄
τ− .

Here the permutation U(1) and the permutation parafermion Ishibashi states are given in

formulas (2.142) and (2.141). Using this expression the Cardy state for a new brane can be

written as:

|a〉(1)
C =

√
k
∑
j

Saj
S0j

|j〉〉SU(2)1×SU(2)0̄
τ ⊗ |B, j〉〉01̄

τ . (2.145)

Note also that since the boundary state (2.145) is “derived” from the maximally symmetric

boundary state (2.110), it is characterised with a single primary j as was the case for the

brane (2.110). This is again related to the fact that in the effective description (2.134), there

is only one independent parameter (f ≡ f0f1).‡

To check the consistency of the proposed boundary state, one should check, as usual, the

Cardy condition. Since we are in a theory which admits several different types of branes, one

should in principle check these conditions for the type I brane with any of the other branes in

the spectrum. We have done the calculation involving two branes of type I, with one of type I

and a permutational brane, and with a brane which is direct product of two SU(2) A-branes.

The tree-level amplitude between two Cardy states for two type I branes reduces, after the

‡This can be easily be seen by changing coordinates as h0 → h0f
−1
1 .
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S-modular transformation reduces, to

Za1a2 =
∑
r,j′,j′′

∑
n1,n2

N r
a1a2

N j′

rj′′χj′(q)χj′′,n1(q)ψn2(q)
1 + (−1)n1+n2

2
, (2.146)

hence satisfying the Cardy requirement. The annulus amplitude between the type I and the

maximally symmetric permutation brane (2.110) reduces, after the S-modular transformation,

to

Za1a2 =
∑
r,j′,j′′

∑
n1

N r
a1a2

N j′

rj′′χj′(q)χj′′,n1(q)
q1/48∏

m(1− qm−1/2)
, (2.147)

Here the factor q1/48∏
m(1−qm−1/2)

is the partition function of a scalar with mixed Neumann-

Dirichlet type boundary conditions. The details of calculations of (2.146) and (2.147) can be

found in [160].

We will now show that the boundary state (2.145) reproduces the effective brane geome-

try (2.132). In the large k limit the second term in (2.144) can be ignored. As in section 2.3.3

one should compute the overlap 〈~θ0, ~θ1|a〉(1)
C . We will again use the formula (2.34), but taking

into account that the matrix D(1) derived for the first group has left index 0 and the right

index m, whereas the D(2) matrix derived for the second group has left index m and the right

index 0. Therefore, the overlap is again given by formula (2.114), but with n set to zero. Using

furthermore (2.115) we arrive at the equation

〈~θ0, ~θ1|a〉(1)
C ∼

∑
j∈Z

k3/2

π
sin[(2j + 1)ψ̂]Dj00(g0(~θ0)g1(~θ1)) (2.148)

where ψ̂ is defined by (2.37). Again using (2.84) equation (2.148) can be simplified to

〈~θ0, ~θ1|a〉(1)
C ∼

Θ(cos ˆ̃θ − cos 2ψ̂)√
cos ˆ̃θ − cos 2ψ̂

, (2.149)

where Θ is the step function. This indeed coincides with the expression for the effective geom-

etry (2.132) in the large k limit.
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2.5 Symmetry-breaking branes of type II

2.5.1 Definition

The number of preserved affine symmetries can be further reduced by implementing the proce-

dure from the previous section on both groups in M = G×G. More precisely, let us consider

the brane

II : (g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 L0, h1f1h

−1
0 L1), (2.150)

where L0, L1 belong to two different U(1) groups in M : L0,∈ U(1)Y0 , L1,∈ U(1)Y1 , L0 = eiβY0 ,

L1 = eiαY1 . Using the same technique as for brane I, we can write the full action with the

boundary conditions (2.150). Having the action, it is easy to show that this brane preserves

the currents (2.125). On the other hand, the equations (2.124) and (2.126) get modified in an

obvious manner,

J̄0
a

= Ja1 , ∀T a ∈ Lie(G) s.t. [Ta,Y0] = 0 , (2.151)

JY1
0 = −J̄Y1

1 , J̄Y0
0 = −JY0

1 . (2.152)

The details of calculations can be found in [160].

2.5.2 The symmetry-breaking brane of type II on an SU(2)× SU(2)

As explained before, the symmetries preserved by the brane of type I can be broken further by

multiplying its first term by a U(1) subgroup,

(g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 eiβ

σ3
2 , h1f1h

−1
0 eiα

σ3
2 ) . (2.153)

Here we have taken both U(1) groups to be along the same generator, but we take them to

be parametrised by two independent parameters α and β. The symmetries of brane I, given

in (2.128) are now reduced to

J3
0 = −J̄3

1 , J3
1 = −J̄3

0 . (2.154)
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Note that the following equation holds

Tr
(
g0 e

−iβ σ3
2 g1e

−iασ3
2

)
= Tr

(
f0f1

)
. (2.155)

Using the same arguments which, in the previous case, led to the inequality (2.132), one now

concludes that

cos θ̃0 cos θ̃1 − sin θ̃0 sin θ̃1 cos(χ1 + ϕ0 − β) ≥ cos 2ψ0 , (2.156)

where Tr(f0f1) = 2 cosψ0 and ψ0 is defined by (2.27). As before, the elements g0 and g1 will

belong to the brane surface if and only if this inequality admits a solution for the parameter

β. This will happen if and only if the maximum of the left hand side of (2.156) is larger

than cos 2ψ0. It is easy to see that this maximum is equal to cos(θ̃0 − θ̃1). Therefore, the

generic brane (2.153) is six dimensional and given by an inequality

cos(θ̃0 − θ̃1) ≥ cos 2ψ0 . (2.157)

When ψ0 = 0 the brane is five dimensional and given by the equation θ̃0 = θ̃1.

2.5.3 Boundary states for symmetry breaking type II branes

Let us now turn to the type II brane (2.153)

(g0, g1)
∣∣∣
brane

= (h0f0h
−1
1 eiβ

σ3
2 , h1f1h

−1
0 eiα

σ3
2 ) , (2.158)

which preserves the currents§

J3
0 − J̄3

1 = 0 , J̄3
0 − J3

1 = 0 . (2.159)

This brane has a structure which is very similar to the type I brane. It can be derived from this

brane by applying the described procedure (with right cosetting) to the first SU(2) group in

which brane I lives. As for brane I, this procedure will reduce the currents (2.135) and (2.136)

down to (2.159). At the level of the boundary state, the Ishibashi state in the 01̄ sector will

remain unchanged, while the 0̄1 Ishibashi state (2.112) will be projected down to a ZR
k,1 invariant

§Here we again work in the closed string channel.
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state (where subscript 1, indicates that this action is taken in the first SU(2) group). Finally,

applying the T-duality we obtain the boundary state

|a〉(2)
C = k

∑
j

Saj
S0j

|B, j〉〉01̄
τ ⊗ |B, j〉〉10̄

τ (2.160)

where |B, j〉〉10̄
τ is defined as in (2.144) with 0 and 1 exchanged, and the coefficients in the linear

combination are fixed by the Cardy condition. For even k the tree-level amplitude between the

states (2.160) reduces to

Za1a2 =
∑
r,j′,j′′

∑
n1,n2

∑
n3,n4

N r
a1a2

N j′

rj′′χj′,n1(q)χj′′,n3(q)ψn2(q)ψn4(q) (2.161)

×(1 + (−1)n1+n2)(1 + (−1)n3+n4)

4
.

For an odd k (2.160) can be simplified and written as

|a〉(2)
C = k

∑
j

Saj
S0j

[1 + (−1)2j

2
|j, 0〉〉PF0×PF1̄

τ ⊗ |j, 0〉〉PF1×PF0̄
τ (2.162)

⊗|0〉〉U(1)0×U(1)1̄
τ− ⊗ |0〉〉U(1)1×U(1)0̄

τ−

+
1 + (−1)2j+k

2
|j, k〉〉PF0×PF1̄

τ ⊗ |j, k〉〉PF1×PF0̄
τ

⊗|k〉〉U(1)0×U(1)1̄
τ− ⊗ |k〉〉U(1)1×U(1)0̄

τ−

]
,

The tree level amplitude between the states (2.162) is

Za1a2 =
∑
r,j′,j′′

∑
n1,n2

∑
n3,n4

N r
a1a2

N j′

rj′′χj′,n1(q)χj′′,n3(q)ψn2(q)ψn4(q)
1 + η(−1)n2+n4

4
(2.163)

where η = (−1)2a1+2a2 . The Cardy condition is satisfied in this case because, after taking into

account field identification in the parafermionic sector, one can show that each state in the sum

appears twice, and therefore all states appear with integer coefficient. The calculations leading

to (2.161) and (2.163) follow closely to that of for (2.146) outlined in [160].

To derive the effective geometry of this brane, one follows the same arguments we as pre-

sented for the type I brane. The overlap with the localised bulk probe is given by

〈~θ0, ~θ1|a〉(2)
C ∼

∑
j∈Z

k2

π
sin[(2j + 1)ψ̂]Pj(cos θ̃0)Pj(cos θ̃1) . (2.164)
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where ψ̂ is defined by (2.37). Using now the formula [184]

Pj(cos θ̃0)Pj(cos θ̃1) =
1

π

∫ θ̃0+θ̃1

|θ̃0−θ̃1|
Pj(cos θ)

sin θdθ√
[cos θ − cos(θ̃0 + θ̃1)][cos(θ̃0 − θ̃1)− cos θ]

(2.165)

and equation (2.84) we obtain

〈~θ0, ~θ1|a〉(2)
C ∼

1

π

∫ θ̃0+θ̃1

|θ̃0−θ̃1|

Θ(cos θ − cos 2ψ̂)√
cos θ − cos 2ψ̂

sin θdθ√
[cos θ − cos(θ̃0 + θ̃1)][cos(θ̃0 − θ̃1)− cos θ]

.

(2.166)

The integral (2.166) is different from zero if cos(θ̃0 − θ̃1) ≥ cos 2ψ̂ which is precisely the condi-

tion (2.157) in the large k limit.
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Chapter 3

Defects and branes in gauged WZW

models

3.1 Branes in vectorially gauged WZW model

3.1.1 Open strings in gauged WZW model

Here we construct boundary conditions for the vectorially gauged WZW model, corresponding

to the Cardy states [56].

As we explained in subsection 1.5.5, the action of the gauged WZW model using the

Polyakov-Wiegamnn identities can be written in the form:

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ) (3.1)

Consider the action (3.1) on a world-sheet with a boundary. Following the corresponding

discussion of the WZW model on a world-sheet with a boundary in section 2.1.1 we suggest

the following boundary conditions:

U−1gŨ |boundary = (U−1n)f(U−1n)−1, n, f ∈ G (3.2)

and

U−1Ũ |boundary = (U−1p)l−1(U−1p)−1 p, l ∈ H (3.3)
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Conditions (3.2) and (3.3) imply

g|boundary = nfn−1plp−1 = c1c2 (3.4)

where c1 = nfn−1 and c2 = plp−1, and also on the boundary

Ũ = pl−1p−1U (3.5)

Now we can write the action of the gauged WZW model in the presence of a boundary:

Sbndry−G/H = SG/H(U−1gŨ)− SH(U−1Ũ)− k

4π

∫
D

ωf (U
−1n) +

k

4π

∫
D

ωl−1(U−1p) (3.6)

where ωf (k) is defined in (2.6). Using again PW identities (1.278) and (1.279) we obtain

Sbndry−G/H = SWZW + Sgauge (3.7)

=
kG
4π

[ ∫
Σ

d2zLkin +

∫
B

ωWZW

]
+
kG
2π

∫
Σ

d2zTr[Az̄∂zgg
−1 − Az∂z̄gg−1 + Az̄gAzg

−1 − Az̄Az]−
k

4π

∫
D

Ω

with

Ω = ωf (U
−1n)− ωl−1(U−1p) (3.8)

+Tr
[
g−1dgdŨŨ−1 − dUU−1dgg−1 − dUU−1gdŨŨ−1g−1 + dUU−1dŨŨ−1

]
After some straightforward calculations we obtain that is

Ω(c1, c2) = ωf (n) + ωl(p) + Tr(dc2c
−1
2 c−1

1 dc1) (3.9)

It is easy to check that:

ωWZW(c1c2) = dΩ (3.10)

As in section 2.1.2, the embedding of the disc D into CG
f C

H
l involves a topological choice.

Holding plp−1 in (3.4) fixed on the disc while performing a topological change corresponding

to a G coroot lattice vector sG in the definition on the interior of D, of the factor nfn−1 , will

induce in Sbndry−G/H in (3.7) the same change as that of section 2.1.2

∆GS
bndry−G/H = kG(θG · sG) (3.11)
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where f = eiθG·HG . The consistency of the action requires then the same quantization condition

(2.31) on the G conjugacy class

θG · αG ∈ 2πZ/kG (3.12)

Similarly, a topological change corresponding to an H coroot vector sH in the continuation

to D of the factor plp−1 in (3.4) with the nfn−1 held fixed, will also change Sbndry−G/H. For

l = eiθH ·HH this change will be

∆HS
bndry−G/H = kH(θH · sH) (3.13)

The consistency of the action (3.7) then also constrains the H conjugacy class factor by

θH · αH ∈ 2πZ/kH . (3.14)

3.1.2 The case of a common center

When H contains some subgroup C of the center of G, the above discussion gets modified in

two ways. First, for z ∈ C the region CG
f C

H
l is identical to the region CG

zfC
H
z−1l. The brane

corresponding to the pair (f, l) of conjugacy classes is then identical to the brane corresponding

to the pair (zf, z−1l). This is the geometrical origin of the phenomena known in the context

of coset CFT without boundary as ”field identification” [79,90,91]. It is again consistent with

Cardy’s identification of boundary states with primary fields.

Since the gauge transformation takes g into hgh−1, it does not distinguish between the

transformations h and zh for any z ∈ C. We can then think of the gauge group as H/C. Recall

that the element n in (3.4) is defined modulo right multiplication by G group elements from

the torus TGf commuting with f . Similarly p in that equation can be multiplied from the right

by any element of THl . Let the boundary of the hole be parameterized by 0 ≤ τ ≤ 2π. We have

seen in (2.29) that upon replacing the boundary value n(τ) by

n′(τ) = n(τ)t(τ) (3.15)

with

t(τ) = e
i

2π
τ(s·H) (3.16)
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s being a coroot lattice vector and H a vector of generators commuting with f , continuing n′

rather than n into the disc, the change (3.11) is induced in the action. This gave rise to the

quantization condition (3.12). A similar independent change in p(τ) induces the change (3.13)

leading to the condition (3.14). Recall also that a gauge transformation h ∈ H multiplies both

n and p by h from the left. Let z ∈ C be represented as

z = ei(w·H). (3.17)

Notice that w is a common weight vector of G and H. Consider an H/C gauge transformation

h(z, z̄) ∈ H, which satisfies on the boundary of the hole

h(0) = z−1h(2π) (3.18)

Let this transformation act on a configuration with a given continuous choice of n and p on the

boundary and inside the disc. On the world sheet Σ the action density, being gauge invariant,

does not change. The representation (3.4) of g on the boundary is changed, the transformed n

and p satisfy

n(0) = z−1n(2π) (3.19)

p(0) = z−1p(2π)

In this form n and p are discontiuous in H. They are continuous in H/C, but the paths n(τ)

and p(τ) of (3.19) are non contractible in H/C and cannot be continued into the interior of

the disc to be substituted in the action (3.7). To define the action we must, before continuing

into the disc, to redefine n and p according to (3.15), multiplying them from the right by an

appropriate Cartan element, changing n into n′ and p into p′ defined as

n′(τ) = n′(τ)e
i

2π
τ(w·H) (3.20)

p′(τ) = p′(τ)e
i

2π
τ(w·H)

The redefined n′ and p′ are contractible and can be continued into the disc. The redefinition

(3.20), like (3.15), induces a change in the disc term of the action, according to (3.11) and
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(3.13). Notice that, unlike (3.16), (3.20) contains a weight vector rather than a root vector,

and that this twist is done together on n and on p. Equations (3.11) and (3.13) give then for

the change of the action induced by (3.20)

∆Sbndry−G/H = (kGθG + kHθH) · w (3.21)

where f = ei(θG·H) and l = ei(θH ·H). Invariance under the gauge transformation (3.18) requires

this change to be a multiple of 2π leading to a further condition, a correlation between G and

H conjugacy classes,

(kGθG + kHθH) · w ∈ 2πZ (3.22)

for every common weight of G and H. This is again in accordance with Cardy’s correspondence

of boundary states with primary fields of the CFT without boundary. The condition (3.22) for

coset CFT is known as the selection rule [79,90,91] , demanding the same behavior of members

of the pair of G and H representations under the common center.

3.2 Lagrangian of the WZW model with defects

In this section we review that action of the WZW model with defect [78] and for future appli-

cations consider geometrical realization of the Cardy defects (1.177).

Let us assume that one has a defect line S separating the world-sheet into two regions Σ1

and Σ2. In such a situation the WZW model is defined by pair of maps g1 and g2. On the

defect line itself one has to impose conditions that relate the two maps. The necessary data are

captured by the geometrical structure of a bibrane: a bibrane is in particular a submanifold of

the Cartesian product of the group G with itself : Q ⊂ G × G. The pair of maps (g1, g2) are

restricted by the requirement that the combined map

S → (G×G) : s→ (g1(s), g2(s) ∈ Q (3.23)

takes its value in the submanifold Q. Additionally one should require, that on the submanifold

Q a two-form $(g1, g2) exists satisfying the relation

d$(g1, g2) = ωWZ(g1)|Q − ωWZ(g2)|Q . (3.24)
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To write the action of the WZW model with defect one should introduce an auxiliary disc D

satisfying the conditions:

∂B1 = Σ1 +D and ∂B2 = Σ2 + D̄ , (3.25)

and continue the fields g1 and g2 on this disc always holding the condition (3.23). After this

preparations the topological part of the action takes the form :

Stop−def =
k

4π

∫
B1

ωWZ(g1) +
k

4π

∫
B2

ωWZ(g2)− k

4π

∫
D

$(g1, g2) . (3.26)

Equation (3.24) guarantees that (3.26) is well defined.

The full action is

Sdef−WZW = Skin−def + Stop−def (3.27)

where

Skin−def(g1, g2) =
k

4π

∫
Σ1

Lkin(g1)d2z +
k

4π

∫
Σ2

Lkin(g2)d2z (3.28)

Let us consider as the bibrane Q the submanifold:

(g1, g2) = (Cµp, p) (3.29)

or alternatively

g1g
−1
2 = Cµ (3.30)

where Cµ is defined in (2.32).

We can easily check that the equation (3.24) is satisfied with

$(Cµ, p) = ωf (h)− Tr(C−1
µ dCµdpp

−1) (3.31)

where ωf (h) is defined in (2.6).

It is straightforward to prove that

Tr(g−1
1 δg1(g−1

1 dg1)2)− Tr(g−1
2 δg2(g−1

2 dg2)2)− δ$ = dBµ . (3.32)

where

Bµ = Aµ(h)− Tr(δpp−1C−1
µ dCµ) + Tr(C−1

µ δCµdpp
−1) (3.33)
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Aµ is defined by (2.14) for f defined in (2.32).

Recalling that the first two terms come from the equation

δωWZ = d[Tr(g−1δg(g−1dg)2)] , (3.34)

we see that the existence of the one-form B satisfying (3.32) is a consequence of the equation

(3.24).

The defect equation of motion is

Tr
[
δg1g

−1
1 (∂zg1g

−1
1 − ∂z̄g1g

−1
1 )
]
dτ − Tr

[
δg2g

−1
2 (∂zg2g

−1
2 − ∂z̄g2g

−1
2 )
]
dτ +Bµ = 0 (3.35)

After some calculation one can show that (3.35) implies:

J1 = J2 and J̄1 = J̄2 (3.36)

These are indeed the topological defect gluing conditions (1.172) for WZW model. To take Cµ

in the form (2.32) is forced again by the global issues discussed in the previous section.

Now we show for SU(2)k model that the geometry of the defect operator (1.177) is indeed

that of described in (3.30). Consider a defect operator corresponding to a primary a:

Xa =
∑
j

Saj
S0j

∑
N,N̄

(|j,N〉 ⊗ |j, N̄〉)(〈j,N | ⊗ 〈j, N̄ |) (3.37)

We will show that it has geometry of the form (3.30) with µ = aσ3 as it should be for SU(2)

group.

Using the S matrix of the modular transformation for SU(2)k (1.308), one obtains in the

large-k limit the ratio of S-matrix elements appearing in the defect operator

Saj
S0j

∼ (k + 2)

π(2j + 1)
sin[(2j + 1)ψ̂] , (3.38)

where, as before, we have introduced ψ̂ = (2a+1)π
k+2

. Using these results, the overlap between the

boundary state and the localised bulk state (2.34) becomes

〈~θ1|Xa|~θ2〉 ∼
∑
j,m,n

(k + 2)

π
sin[(2j + 1)ψ̂]Djnm(g1(~θ1))Djmn(g−1

2 (~θ2)) . (3.39)
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To simplify this expression we need the identity

∑
m

Djnm(g1(~θ1))Djmn′(g
−1
2 (~θ2)) = Djnn′(g1(~θ1)g−1

2 (~θ2)) , (3.40)

which follows from the fact that the matrices Djnm form a representation of the group. Finally,

recalling (2.39), the overlap (3.39) becomes

〈~θ1|Xa|~θ2〉 ∼
k + 2

π sinψ

∑
j

sin[(2j + 1)ψ̂] sin[(2j + 1)ψ] (3.41)

where ψ defined by

Tr(g0g
−1
1 ) = 2 cosψ (3.42)

and from the completeness of sin(nψ) on the interval [0, π] one concludes

〈~θ1|Xa|~θ2〉 ∼
k + 2

4 sinψ
δ(ψ − ψ̂) . (3.43)

We see that the defect world-volume indeed has the required form.

3.3 Defects in vectorially gauged WZW model

3.3.1 Geometry and action

Let us consider the action (3.1)

SG/H = SG/H(U−1gŨ)− SH(U−1Ũ) (3.44)

on a world-sheet with a defect. The analysis of the WZW theory with defects in section 3.2

implies that we should impose the following constraints:

U−1
1 g1Ũ1 = p̃1C̃1 = Ũ−1

1 p1Ũ1Ũ
−1
1 C1Ũ1 (3.45)

U−1
2 g2Ũ2 = p̃1 = Ũ−1

1 p1Ũ1 (3.46)

U−1
1 Ũ1 = p̃2C̃2 = Ũ−1

1 p2Ũ1Ũ
−1
1 C−1

2 Ũ1 (3.47)

U−1
2 Ũ2 = p̃2 = Ũ−1

1 p2Ũ1 (3.48)
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These equations imply

g1 = C2p
−1
2 p1C1 (3.49)

and

g2 = Lp−1
2 p1L

−1 (3.50)

where

L = Ũ2Ũ
−1
1 (3.51)

Defining p = p−1
2 p1 and redefining C1 → p−1C1p we obtain for bibrane the following ansatz:

(g1, g2) = (C2C1p, LpL
−1) . (3.52)

Here C1 ∈ Cµ1

G , C2 ∈ Cµ2

H , p ∈ G and L ∈ H.

The Polyakov-Wiegmann identity (1.279) implies that the bibrane (3.52) satisfies the con-

dition (3.24) with the following $:

$(L, p, C2, C1) = Ω(2)(C2, C1)− tr((C2C1)−1d(C2C1)dpp−1) + Ψ(L, p) , (3.53)

where Ω(2)(C2, C1) is defined in (3.9), ωµ(C) is defined in (2.6) and Ψ(L, p) is defined in (2.9).

Permutation branes are given by the folded version of (3.52):

(g1, g2) = (C2C1p, Lp
−1L−1) . (3.54)

Alternatively (3.52) and (3.54) can be written as

(g1, g2) = (nrn−1h1fh
−1
2 , L−1h1h

−1
2 L) (3.55)

and

(g1, g2) = (nrn−1h1fh
−1
2 , L−1h2h

−1
1 L) (3.56)

3.3.2 Permutation branes on SU(2)k/U(1)× SU(2)k/U(1)

In this section we consider permutation branes on product of SU(2)k/U(1) × SU(2)k/U(1)

coset. We show that the geometrical description given above coincide with the permutation

boundary state (1.161) overlap with the graviton wave packet.
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Taking as H the U(1) subgroup generated by σ3, the brane (3.56) takes the form:

(g1, g2)
∣∣∣
brane

= (h1fh
−1
2 , eiα

σ3
2 h2h

−1
1 e−iα

σ3
2 ei

πM
k

σ3
2 ) . (3.57)

where as before f = eiψ0
σ3
2 , ψ0 = 2jπ

k
, j = 0, . . . , k

2
, and M is an integer. The factor ei

πM
k

σ3
2

reflects Zk symmetry of an abelian coset [123]. One can multiply with this factor also the first

element in (3.57) , but performing the redefinition of h1, one gets again (3.57). We see that

all the branes are labelled by two indices ψ0 and M , exactly as the permutation states on the

parafermions product. The elements g1 and g2 belong to the brane surface if the following

equation admits a solution for the parameter α,

tr
(
g1e
−iασ3

2 g2e
iα
σ3
2 e−i

πM
k

σ3
2

)
= 2 cosψ0 . (3.58)

This equation can be further elaborated in the Euler coordinates (2.66).

Denoting by Θ̃, Φ̃ Euler angles θ̃ and φ̃ of the product g1e
−iασ3

2 g2 and using (2.130) and

(2.131) we can rewrite (3.58) as

cos
Θ̃

2
cos(γ/2− ξ/2− φ̃1 − φ̃2 +

πM

2k
) = cosψ0 , (3.59)

where

cos Θ̃ = cos θ̃1 cos θ̃2 − sin θ̃1 sin θ̃2 cos γ , (3.60)

and we have introduced new labels γ = χ2 +ϕ1− α and ξ/2 = Φ̃− χ1+ϕ2

2
. The variables ξ and

γ are related to each other by the equation

ei
ξ
2 =

1

cos Θ̃
2

(
cos

θ̃1

2
cos

θ̃2

2
ei
γ
2 − sin

θ̃1

2
sin

θ̃2

2
e−i

γ
2

)
. (3.61)

Let us recall that the vectorial gauging of U(1) symmetry is given by the translation of φ

and the resulting target space of the SU(2)k/U(1) model, derived after the gauge fixing φ = 0

and integrating out of the gauge field, is the two-dimensional disc, parameterized by θ and φ̃. In

the case of product the target space is parameterized by θ1, θ2, φ̃1, φ̃2. Hence the brane consists

of those points for which equation (3.59) admits a solution for γ. Θ and ξ are considered here

as the complicated functions of θ̃1, θ̃2 and γ given by (3.60) and (3.61) respectively. For ψ0 = 0
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there are additional constraints, which imply that in this case the brane is two dimensional and

given by the equations

θ̃1 = −θ̃2, φ̃1 = −φ̃2 +
πM

2k
. (3.62)

Now we calculate the effective geometry corresponding to the permutation boundary state

(1.161), which recalling the matrix of the modular transformation for the parafermions (1.333),

takes the form:

|L,M〉 =
∑
j,m

SLj
S0j

eiπMm/k
∑
N1,N2

|j,m,N1〉1 ⊗ |j,m,N1〉2 ⊗ |j,m,N2〉2 ⊗ |j,m,N2〉1 (3.63)

where SLj is matrix of the modular transformation of SU(2)k (1.308)

SLj =

√
2

k + 2
sin

(
(2L+ 1)(2j + 1)π

k + 2

)
. (3.64)

To obtain the effective geometry, one should compute the overlap 〈θ1, φ̃1, θ2, φ̃2|L,M〉. At

the beginning we should find the wave-functions of the parafermion disc theory [123]:

Ψj,m(θ, φ̃) = 〈θ, φ̃|j,m〉〉 (3.65)

The wave-functions of the disc are the SU(2) wave-functions that are invariant under translation

of φ. (Note that in [123] axial gauging is considered, and as a consequence the roles of φ and φ̃ are

interchanged). Recalling that the SU(2) wave-functions are the normalized Wigner functions

√
2j + 1Djnm(g(~θ)) =

√
2j + 1e−i(nχ+mϕ)djnm(cos θ̃) , (3.66)

we see that the function on disc are those of them with m = n. Using the eq. (3.38) for the

ratio of the elements of the SU(2)k matrix of the modular transformations for the large k:

SLj
S0j

∼ (k + 2)

π(2j + 1)
sin[(2j + 1)ψ̂] , (3.67)

where ψ̂ = (2L+1)π
k+2

, one obtains that in the large-k limit the overlap reduces to

〈~θ1, ~θ2|L,M〉 ∼
∑
j

∑
m

sin[(2j + 1)ψ̂]eiπMm/kDjmm(g1(~θ1))Djmm(g2(~θ2)) . (3.68)

It is known [184] that djnm are satisfying the relation (note that there is no summation

assumed for the repeated indices)

djmm(cos θ̃1)djmm(cos θ̃2) =
1

2π

∫ π

−π
eim(γ−ξ)djmm(cos Θ̃)dγ , (3.69)
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The functions Θ̃ and ξ are functions of θ̃1, θ̃2 and γ defined in equations (3.60) and (3.61).

Using (3.69) the overlap of the boundary state with the bulk probe can be written as

〈~θ1, ~θ2|L,M〉 ∼
∑
j

∑
m

∫ π

−π
sin[(2j + 1)ψ̂]eim(γ−ξ−2φ̃1−2φ̃2+πM

k
)djmm(cos Θ̃)dγ (3.70)

Now using that
∑

mDjmm(g) = sin(2j+1)ψ
sinψ

, where ψ is defined by the relation Trg = 2 cosψ, and

the completeness of sin[(2j + 1)ψ] on the interval [0, π] we get

〈~θ1, ~θ2|L,M〉 ∼
∫ π

−π

δ(ψ − ψ̂)

sin ψ̂
dγ , (3.71)

where

cosψ = cos
Θ̃

2
cos(γ/2− ξ/2− φ̃1 − φ̃2 +

πM

2k
) (3.72)

From this equation it follows that the brane consist of all those points for which the expression

in the argument of the δ function has a root for γ. This is the same condition as the one coming

from equation (3.59), obtained in the Langrangian approach.

3.4 D-branes in asymmetrically gauged WZW model

3.4.1 D-branes in the Nappi-Witten model

Let us consider the gauged WZW model G/H defined in the following way [133]. One takes

G = G1 × G2 and chooses two U(1) subgroups U(1)1 ∈ G1 and U(1)2 ∈ G2. As gauge group

H one takes a product of the two U(1) groups, parametrized by ρ and τ , H = U(1)ρ × U(1)τ ,

with embeddings emρ,1 : U(1)ρ → U(1)1, emρ,2 : U(1)ρ → U(1)2, emτ,1 : U(1)τ → U(1)1,

emτ,2 : U(1)τ → U(1)2. We assume that U(1)1 is generated by a1, U(1)1 = eiλ1a1 and U(1)2

by a2: U(1)2 = eiλ2a2 and the generators are normalized in the usual way, Tra2
1 = Tra2

2 = 2.

The action of H we take in the form

(g1, g2)→ (h1g1h2, h
′
2g2h

′
1)), (3.73)

where

h1 = emρ,1(hρ) = eipρa1 , (3.74)

h′1 = emρ,2(hρ) = eiqρa2 ,
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hρ ∈ U(1)ρ, and

h2 = emτ,1(hτ ) = eipτa1 , (3.75)

h′2 = emτ,2(hτ ) = eiqτa2 ,

where hτ ∈ U(1)τ .

The action of the model in the absence of a boundary is

SNW = SWZW(g1, k1) + SWZW(g2, k2) + S(g1, g2, A1, A2), (3.76)

where SWZW(gi, ki), i = 1, 2 are the usual WZW actions given by (1.263) and S(g1, g2, A1, A2)

makes the action gauge invariant. Its explicit form is not important here for us and can be

found in [133] . For gauge invariance, the levels k1, k2, and embedding coefficients p, q should

satisfy

k1p
2 = k2q

2. (3.77)

Now we consider the model in the presence of a boundary. We take the U(1)α group parametrized

by α and consider embeddings emα,1 : U(1)α → U(1)1, and emα,2 : U(1)α → U(1)2. We

define the boundary conditions

g = (g1, g2)|boundary = (m1C1,m2C2), (3.78)

where

m1 = emα,1(mα) = eip(α+γ1)a1 , (3.79)

m2 = emα,2(mα) = eiq(α+γ2)a2 ,

and mα ∈ U(1)α, C1 = l1f1l
−1
1 and C2 = l2f2l

−1
2 . The parameters p and q are the same as

in (3.108) and (3.75). γ1 and γ2 are possibly quantized [123] constants.

In other words, we take as the D-branes diagonally embedded U(1)s multiplied by the

conjugacy classes. These boundary conditions were suggested in [148]. Our description (3.78)

is slightly different from that in [148], and more convenient for present purposes. Note that

boundary conditions on each group coincide with (2.42).
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Let us check that the boundary conditions (3.78) are invariant under the gauge transforma-

tion (3.73) :

g = (g1, g2)→ (h1g1h2, h
′
2g2h

′
1) = (h1m1l1f1l

−1
1 h2, h

′
2m2l2f2l

−1
2 h′1) = (3.80)

((h1m1h2)(h−1
2 l1)f1(h−1

2 l1)−1, (h′2m2h
′
1)(h

′−1
1 l2)f2(h

′−1
1 l2)−1).

We see that the boundary conditions preserve their form under the gauge transformation, with

modified parameters:

α→ α + ρ+ τ, l1 → h−1
2 l1, l2 → h−1

1 l2. (3.81)

As explained in section 2.2, in the presence of a boundary the action should be modified by

adding the boundary two-form (2.47 :

Sbndry−NW = SWZW(g1, k1)− k1

4π

∫
D

ω(2)(m1, l1)+SWZW(g2, k2)− k2

4π

∫
D

ω(2)(m2, l2)+S(g1, g2, A1, A2),

(3.82)

where ω(2)(m, l) is

ω(2)(m,h) = ωf (l)− Tr(m−1dmdCC−1). (3.83)

We now check that (3.82) is invariant under (3.73) accompanied by (3.81) .

First we compute the change of

S1 = SWZW(g1, k1)− k1

4π

∫
D

ω(2)(m1, l1) (3.84)

under the transformations g1 → h1g1h2, m1 → h1m1h2 and l1 → h−1
2 l1, resulting from the

presence of the boundary. From the Polyakov-Wiegmann identity (1.279) we get

∆boundSWZW(g1, k1) = − k1

4π

∫
D

Tr(h−1
1 dh1dm1m

−1
1 + h−1

1 dh1dC1C
−1
1 (3.85)

+h−1
1 dh1C1dh2h

−1
2 C−1

1 + C−1
1 m−1

1 dm1C1dh2h
−1
2 + C−1

1 dC1dh2h
−1
2 ).

Then we have

∆ωf (l) = Tr(dh2h
−1
2 C−1

1 dC1 + dh2h
−1
2 dC1C

−1
1 + dh2h

−1
2 C1dh2h

−1
2 C−1

1 ), (3.86)

and

∆(Tr(m−1
1 dm1dC1C

−1
1 )) = Tr(−h−1

1 dh1h
−1
2 dh2 + h−1

1 dh1dC1C
−1
1 (3.87)
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+h−1
1 dh1C1dh2h

−1
2 C−1

1 −m−1
1 dm1h

−1
2 dh2 +m−1

1 dm1C1dh2h
−1
2 C−1

1

+h−1
2 dh2dC1C

−1
1 + h−1

2 dh2C1dh2h
−1
2 C−1

1 ).

Collecting (3.85) ,(3.86) and (3.87) we obtain

∆boundS1 =
k1

4π

∫
D

Tr(h−1
2 dh2m

−1
1 dm1 − h−1

1 dh1dm1m
−1
1 − h−1

1 dh1h
−1
2 dh2). (3.88)

Similarly for

S2 = SWZW(g2, k2)− k2

4π

∫
D

ω(2)(m2, l2) (3.89)

we obtain

∆boundS2 =
k2

4π

∫
D

Tr(h
′−1
1 dh′1m

−1
2 dm2 − h

′−1
2 dh′2dm2m

−1
2 − h

′−1
2 dh′2h

′−1
1 dh′1). (3.90)

Taking into account (3.74) , (3.75) ,(3.79) and (3.77) we find that ∆boundS1 + ∆boundS2 = 0,

proving the gauge invariance of the action (3.82).

3.4.2 SL(2, R)× SU(2)/U(1)× U(1) NW model

Let us consider the SL(2, R)× SU(2)/U(1)× U(1) Nappi-Witten model.

Here G1 = SL(2, R), G2 = SU(2), k1 = −k2, p = −i, q = 1, and the U(1)ρ × U(1)τ gauge

group acts in the following way:

(g1, g2)→ (eρσ3g1e
τσ3 , eiτσ3g2e

iρσ3). (3.91)

The D-branes proposed in section 3.4.1 have the form

gboundary = (e(α+γ1)σ3C1, e
i(α+γ2)σ3C2), (3.92)

where C1 = l1f1l
−1
1 and C2 = l2f2l

−1
2 are conjugacy classes, and f2 = eiψ̂σ3 , where ψ̂ belongs to

the set (2.27). γ1 and γ2 are possibly quantized constants. Now we describe this hypersurface

in detail. For this purpose we introduce Euler angles for SL(2, R) and SU(2),

g1 = eχ1
σ3
2 eiθ1

σ2
2 eφ1

σ3
2 , (3.93)

g1 = eχ1
σ3
2 eτ1

σ1
2 eφ1

σ3
2 , (3.94)
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g2 = eiχ2
σ3
2 eiθ̃2

σ1
2 eiφ2

σ3
2 , (3.95)

where the first two formulae describe different patches of SL(2, R) and the last one is the usual

Euler parametrisation for SU(2). It is shown in [156] that in the Euler angle parametrisations

the product of a U(1) subgroup and a conjugacy class can be described by inequalities: eασ3C1

in the patch given by (3.93) is described by the condition

cos
θ1

2
≤ Trf1

2
, (3.96)

and in the patch (3.94) by the condition

cosh
τ1

2
≤ Trf1

2
, (3.97)

and eiασ3C2 in the parametrisation (3.95) is given by the condition

cos
θ̃1

2
≥ Trf2

2
. (3.98)

In order to find the equation of the D-brane hypersurface we should find α on the SL(2, R) and

SU(2) sides and equate them to each other. It is easy to find the angle α in each case. Writing

the boundary condition in the form e−ασ3g1 = C1 and taking the trace on both sides we easily

obtain in the first patch:

cosh(α + γ1 −
χ1 + φ1

2
) =

Trf1

2 cos θ1
2

, (3.99)

in the second patch:

cosh(α + γ1 −
χ1 + φ1

2
) =

Trf1

2 cosh τ1
2

, (3.100)

and for SU(2):

cos(α + γ2 −
χ2 + φ2

2
) =

Trf2

2 cos θ̃2
2

. (3.101)

We see that the conditions (3.96) , (3.97) and (3.98) are necessary for the existence of solutions

to eq. (3.99) ,(3.100) and (3.101) respectively. Now using gauge fixing conditions χ1 = 0 and

φ1 = 0 we can explicitly write down the D-brane hypersurface equation. In the first patch we

have

cosh

(
arccos

(
Trf2

2 cos θ̃2
2

)
+
χ2 + φ2

2
+ γ2 − γ1

)
=

Trf1

2 cos θ1
2

, (3.102)
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and in the second patch

cosh

(
arccos

(
Trf2

2 cos θ̃2
2

)
+
χ2 + φ2

2
+ γ2 − γ1

)
=

Trf1

2 cosh τ1
2

. (3.103)

3.4.3 D-branes in the Guadagnini-Martellini-Mintchev Model

We begin by reviewing the model introduced in [102,103] (see also [136] ). This model is a kind

of gauged WZW model based on a group G1 × G2. The gauge group H acts in the folowing

way: we choose subgroups H1 ∈ G1 and H2 ∈ G2 and take embeddings em1 : H → H1

and em2 : H → H2. It is assumed that H1 and H2 are the same subgroups of G1 and G2

:H = H1 = H2. The group H acts by the formula

(g1, g2)→ (g1em1(h−1), em2(h)g2). (3.104)

It was shown in [102] that the following action is invariant under (3.120) :

SGMM = SWZW(g1, k1) + SWZW(g2, k2) + Sint(g1, g2, k), (3.105)

where SWZW(gi, ki), i = 1, 2 are the usual WZW actions (1.263) and

Sint(g1, g2, k) = − k

2π

∫
d2x(Tr(Rαg

−1
1 ∂µg1)Tr(R′α∂

µg2g
−1
2 ) (3.106)

+εµνTr(Rαg
−1
1 ∂µg1)Tr(R′α∂νg2g

−1
2 )).

Here Rα and R′α are the generators of the Lie algebra of the subgroup H in G1 and G2 respec-

tively. It is shown in [102] that for gauge invariance the coefficients entering in (3.105) should

satisfy

k1 = kr′, k2 = kr, (3.107)

where r and r′ are given by the embeddings:

Tr(RαRβ) = rδαβ, Tr(R′αR
′
β) = r′δαβ. (3.108)

The conformal field theory defined by this sigma model was discussed in [103] , where the

current algebra and the Virasoro algebra with a central charge value coinciding with that of

the GKO construction for the coset (G1 ×G2)/H were found.
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Here we consider the case when the gauge group is an abelian group, parametrized by ρ:

H = U(1)ρ. As before we assume that H1 is generated by a generator a1, H1 = eiλ1a1 and H2

by a2: H2 = eiλ2a2 , and that the generators are normalized as usual: Tra2
1 = Tra2

2 = 2. In this

case the gauge group acts as

(g1, g2)→ (g1h1, h2g2), (3.109)

where

h1 = em1(h−1
ρ ) = e−ipρa1 , (3.110)

h2 = em2(hρ) = eiqρa2 ,

hρ ∈ U(1)ρ and p and q satisfy the relation

k1p
2 = k2q

2. (3.111)

Now we consider the model in the presence of a boundary. We take the U(1)α group parametrized

by α and consider embeddings emα,1 : U(1)α → U(1)1, and emα,2 : U(1)α → U(1)2. We

suggest the following boundary conditions:

(g1, g2)|boundary = (m1C1,m2C2), (3.112)

where

m1 = emα,1(mα) = e−ip(α+γ1)a1 , (3.113)

m2 = emα,2(mα) = eiq(α+γ2)a2

and mα ∈ U(1)α, C1 = l1f1l
−1
1 , C2 = l2f2l

−1
2 . The parameters p and q are the same as in

(3.110). γ1 and γ2 are possibly quantized [123] constants. These boundary conditions are

invariant under (3.109) :

(m1l1f1l
−1
1 ,m2l2f2l

−1
2 )→ (m1l1f1l

−1
1 h1, h2m2l2f2l

−1
2 ) (3.114)

= ((h1m1)(h−1
1 l1)f1(h−1

1 l1)−1, (h2m2)l2f2l
−1
2 ).

We see that boundary conditions keep the form with modified parameters

α→ α + ρ, l1 → h−1
1 l1. (3.115)
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In the presence of a boundary we suggest the following action:

Sbndry
GMM = SWZW(g1, k1)− k1

4π

∫
D

ω(2)(m1, l1) + SWZW(g2, k2)− k2

4π

∫
D

ω(2)(m2, l2) + Sint(g1, g2, k).

(3.116)

Now we check that the action is invariant under (3.109) accompanied by (3.115) . We easily

derive the change of S1 and S2 defined in (3.84) and (3.89) correspondingly under a gauge

transformation,

∆boundaryS1 =
k1

4π

∫
D

Tr(h−1
1 dh1dm1m

−1
1 ), (3.117)

∆boundaryS2 = − k2

4π

∫
D

Tr(h−1
2 dh2dm2m

−1
2 ). (3.118)

which cancel each other as a consequence of the conditions (3.110) , (3.113) and (3.111) .

3.4.4 SU(2)× SU(2)/U(1) GMM model

We begin by describing this model following [136].

The SU(2) group elements are parametrized as

g1 = exp(iφ1σ3) exp(iθ1σ2) exp(iψ1σ3), (3.119)

g2 = exp(iφ2σ3) exp(iθ2σ2) exp(iψ2σ3).

The gauge action of the U(1) subgroup is defined by

ψ1 → ψ1 − pε(z, z̄), φ2 → φ2 + qε(z, z̄). (3.120)

In the parametrization (3.119) the action (3.105) is

S =
1

4π

∫
d2x[k1(∂µθ1∂

µθ1 + ∂µφ1∂
µφ1 + ∂µψ1∂

µψ1 + cos(2θ1)∂µφ1∂νψ1(ηµν + εµν))(3.121)

+k2 (∂µθ2∂
µθ2 + ∂µφ2∂

µφ2 + ∂µψ2∂
µψ2 + cos(2θ2)∂µφ2∂νψ2(ηµν + εµν))

+k3(cos(2θ1)∂µφ1 + ∂µψ1)(cos(2θ2)∂νψ2 + ∂µφ2)(ηµν + εµν)].

For the action to be invariant under (3.120) one needs to impose the following algebraic con-

straints:

k1p = k3q, k2q = k3p. (3.122)
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Multiplying these equation we obtain

k3 =
√
k1k2, p/q =

√
k2/k1. (3.123)

Fixing the gauge by setting φ2 = 0 one gets a background whose metric is of the (non-Einstein)

T 1,Q type

ds2 = k[dθ2
1 + sin2 θ1dφ

2
1 +Q2(dθ2

2 + sin2 θ2dφ
2
2) + (dψ + cos θ1dφ1 +Q cos θ2dφ2)2], (3.124)

where we have rescaled all variables by 1/2, renamed ψ2 → φ2, ψ1 → ψ and introduced

Q = p/q =
√
k2/k1, k = k1. (3.125)

The background also includes the antisymmetric tensor field

Bφ1ψ = k cos θ1, Bφ1φ2 = kQ cos θ1 cos θ2, Bφ2ψ = −kQ cos θ2. (3.126)

The D-branes proposed in section 3.4.3 have the form

(g1, g2)boundary = (e−ip(α+γ1)σ3C1, e
iq(α+γ2)σ3C2), (3.127)

where C1 = h1f1h
−1
1 and C2 = h2f2h

−1
2 are conjugacy classes, f1 = eiψ̂1σ3 and f2 = eiψ̂2σ3 , and

ψ̂1, ψ̂2 belong to the set (2.27) . Let us now find the equation describing this hypersurface.

As before, we should find in the parametrization (3.119) the angle α and equate both sides.

Writing the boundary conditions as

Tr(eip(α+γ1)σ3g1) = 2 cos ψ̂1, (3.128)

Tr(e−iq(α+γ2)σ3g2) = 2 cos ψ̂2, (3.129)

from (3.128) and (3.129) we obtain

cos(p(α + γ1) + φ1 + ψ1) =
cos ψ̂1

cos θ1

, (3.130)

and

cos(−q(α + γ2) + φ2 + ψ2) =
cos ψ̂2

cos θ2

. (3.131)
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Eliminating α from (3.130) and (3.131) we get

1

p
arccos

(
cos ψ̂1

cos θ1

)
− φ1 + ψ1

p
− γ1 = −1

q
arccos

(
cos ψ̂2

cos θ2

)
+
φ2 + ψ2

q
− γ2. (3.132)

Using now the gauge fixing condition φ2 = 0, and rescaling and renaming all the variables as

before, we get the D-brane hypersurface on this T 1,Q type space,

φ2 = 2 arccos

(
cos ψ̂2

cos θ2
2

)
+

2

Q
arccos

(
cos ψ̂1

cos θ1
2

)
− φ1 + ψ

Q
+ 2q(γ2 − γ1), (3.133)

where Q is defined in (3.125) . As before θ1 and θ2 satisfy the inequalities

cos
θ1

2
≥ cos ψ̂1, cos

θ2

2
≥ cos ψ̂2. (3.134)

The presence of the constant term q(γ2− γ1) reflects the invariance of the action (3.121) under

the rotations φi → φi + βi, ψi → ψi + δi, where βi and δi are constant angles, i = 1, 2. But,

as noted in [123] , in the gauged WZW models these symmetries are broken to some discrete

subgroups. In the case in question we have

γ1 =
n1

k1p2
, γ2 =

n2

k2q2
, (3.135)

where n1 and n2 are integers, and using (3.123) we have for the last part

2q(γ1 − γ2) =
2n

qk2

, (3.136)

where n = n1−n2. We see that the branes (3.133) are specified by the three parameters ψ̂1, ψ̂2

and n, in one-to-one correspondence with the primaries of the corresponding GKO coset model

(SU(2)× SU(2))/U(1).
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Chapter 4

Canonical quantization of the WZW

and gauged WZW models with defects

and boundaries

4.1 3D Chern-Simons theory

4.1.1 Action of Chern-Simons theory

Consider Chern-Simons theory with sources on a product of a Riemann surface Σ and a time

line R [52]:

SCS =
k

4π

∫
Σ×R

tr

(
A ∧ dA+

2

3
A3

)
(4.1)

+i
∑
i

∫
Ri

dtitrλivi(t)
−1(∂0 +A0)vi(t)

where A is a three-dimensional connection, vi(t) is a group valued map on the line Ri,

λi ≡λi · H is a highest weight representation integrable at level k, taking value in the Cartan

subalgebra.

Writing A = A+A0dt, where A is tangent to the surface Σ, one can use gauge freedom to

impose the condition A0 = 0. In this gauge equations of motion are
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k

2π
F (z) + i

n∑
i=1

Tiδ(z − zi) = 0 (4.2)

where F = dA + A2, and zi are points where Wilson lines hit M . Ti are conjugacy classes in

the Lie algebra g

Ti = viλiv
−1
i , vi ∈ G (4.3)

Introducing local angular coordinate φi on discs Di around point zi one can locally write

Ai = − i
k
ηiλiη

−1
i dφi − dηiη−1

i (4.4)

where ηi ∈ G is single-valued on the disc and ηi(zi) = vi.

The solution (4.4) implies that holonomy Mi of flat connection around point zi takes value

in conjugacy classes Ci:

Mi = ηie
2πiλi/kη−1

i (4.5)

The phase space of the Chern-Simons theory is given by the moduli space of flat connections

on the Riemann surface Σ punctured at the points zi where Wilson lines hit M , with the

holonomies around punctures belonging to the conjugacy classes Mi.

4.1.2 genus 0

Here we present details on symplectic form on moduli space of flat connections on sphere S2
n,m

with n Wilson line and m holes.

Holonomies are subject to the relation

Mn · · ·M1 = 1 (4.6)

The symplectic form on the moduli space of flat connections on 2-dimensional manifold M

with n sources is given by formula

Ω =
k

4π
tr

∫
M

(δA)2 + i

n∑
i=1

tr(λi(v
−1
i δvi)

2) (4.7)

where A satisfies (4.2). The δ denotes here exterior derivative on moduli space.
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In the terms of holonomies Mi it takes the form [7]:

ΩS2
n

=
k

4π

n∑
i=1

ωλi(Mi) +
k

4π

n∑
i=1

tr(K−1
i−1δKi−1K

−1
i δKi) (4.8)

where ωλi(Mi) is the same two-form which appeared in (2.6):

ωλi(Mi) = tr(η−1
i δηie

2πiλi/kη−1
i δηie

−2πiλi/k) (4.9)

Here K0 = Kn = I and

Ki = Mi · · ·M1 (4.10)

Let us briefly explain how quantization of the moduli space of flat connection on S2
n,0 with

form (4.8) leads to the space of conformal blocks. By a change of variables symplectic form

(4.8) can be written as sum of Poisson-Lie ΩPL forms,

ΩS2
n

=
n∑
i=1

ΩPL(Mi) (4.11)

where

ΩPL(M) = ωλ(M) + Tr(L−1
+ δL+L

−1
− δL−) (4.12)

L+ and L− here are components of the Gauss decomposition L+L− = M . On the other side

it is known that quantization with ΩPL leads to the highest weight representations Υq,λ of the

deformed enveloping algebra Uq(g). Hence quantizing PS2
n,0

with the form ΩS2
n

leads to the

tensor product ⊗iΥq,λi . Gauge transformation of gauge connections give rises on the quantum

level to the diagonal action of Uq(g) on ⊗iΥq,λi . Therefore, in the first approximation, we obtain

the subspace of invariant tensors of that action. More precisely, the subspace of invariants may

be equipped with a semipositive scalar product and one should divide by the subspace of null-

vectors. The quotient spaces are isomorphic to the spaces of conformal blocks of the WZW

theory.

Consider now the case of sphere with m holes.

The symplectic form on moduli space of flat connections on sphere with n sources and m

holes can be decomposed as sum of symplectic forms on moduli space of flat connections on
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sphere S2
n+m,0 with n+m sources and m copies of the symplectic form on moduli space of flat

connections on the two-dimensional disc with one source D1:

ΩS2
n,m

= ΩS2
n+m,0

+
m∑
i=1

ΩD1i
(4.13)

ΩD1 = ΩLG(η, λ) (4.14)

where

ΩLG(η, λ) =

∫
∂D

k

4π
tr(η−1δη)d(η−1δη) +

1

2π
tr(iλ(η−1δη)2)dφ (4.15)

Geometrical quantization of the coadjoint orbits of L̂G with the form (4.15) leads to the inte-

grable representation Hλ of the affine algebra ĝ at level k.

We obtain that Hilbert space of quantized Chern-Simons theory on S2
n,m×R, were n time-like

Wilson lines assigned with representations λ1, . . . λn must be of the form

Hn,m =
∑
τ1,...τm

Vλ1,...λn,τ1,...τm ⊗Hτ1 ⊗ . . . Hτm (4.16)

where Hτi are the representation spaces of L̂G corresponding to the highest weights τi, and

Vκ1,...κl is space of conformal blocks of the WZW model with group G.

We finish this section by writing explicitly formula (4.8) for the cases n = 3 and n = 4,

which we need in next sections. For the case of n = 3

ΩS2
3,0

=
k

4π

3∑
i=1

ωλi(Mi) +
k

4π
tr(δM1M

−1
1 M−1

2 δM2) (4.17)

For the case of n = 4 the second term in (4.8) can be written in two equivalent forms:

ΩS2
4,0

=
k

4π

4∑
i=1

ωλi(Mi) +
k

4π
tr(δM1M

−1
1 M−1

2 δM2 + δM3M
−1
3 M−1

4 δM4) (4.18)

or

ΩS2
4,0

=
k

4π

4∑
i=1

ωλi(Mi)+
k

4π
tr(δM1M

−1
1 M−1

2 δM2+δM1M
−1
1 M−1

2 M−1
3 δM3M2+δM2M

−1
2 M−1

3 δM3)

(4.19)
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4.1.3 genus g

Denoting holonomies around handles aj and bj by Aj and Bj, and around punctures byMi ∈ Cλi
G

we arrive at the conclusion that the moduli space of the flat connections on a Riemann surface

of the genus g with punctures is

Fg,n = G2g ×
n∏
i=1

Cλi
G (4.20)

subject to the relation

[Bg, A
−1
g ] · · · [B1, A

−1
1 ]Mn · · ·M1 = I , (4.21)

where

[Bj, Aj] = BjAjB
−1
j A−1

j , (4.22)

and to the adjoint group action.

The symplectic form on Fg,n was derived in [7] and has the form:

ΩMg,n =
n∑
i=1

ΩMi
+

g∑
j=1

ΩHj , (4.23)

where

ΩMi
=

k

4π
ωλi(Mi) +

k

4π
tr(K−1

i−1δKi−1K
−1
i δKi) , (4.24)

ΩHj =
k

4π
Ψ(Bj, Aj) +

k

4π
(tr(K−1

n+2j−2δKn+2j−2K
−1
n+2j−1δKn+2j−1) (4.25)

+ tr(K−1
n+2j−1δKn+2j−1K

−1
n+2jδKn+2j)) ,

and where

Ki = Mi · · ·M1 i ≤ n , (4.26)

Kn+2j−1 = Aj[Bj−1, A
−1
j−1] · · · [B1, A

−1
1 ]Kn , (4.27)

Kn+2j = [Bj, A
−1
j ] · · · [B1, A

−1
1 ]Kn 1 ≤ j ≤ g .

K0 can be chosen to be equal to the unity element. According to (4.21) also

Kn+2g = I . (4.28)
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ωλ(M) and Ψ(B,A) are defined in equations (4.9) and (2.9) correspondingly.

It was also proved in [7] that quantization of the moduli space Fg,n with the symplectic

form (4.23) leads to the space of n-point conformal blocks on a Riemann surface of the genus

g.

4.1.4 Double Chern-Simons theory

The last piece which we need is the double CS theory [131] with a pair (A,B) of the respectively

group G and group H ⊂ G gauge fields. The action functional of the double theory is the

difference of the CS actions for group G and H:

S2CS(A,B) = SCS(A)− SCS(B) (4.29)

The symplectic form is

Ω2CS =
k

4π

∫
Σ

Tr
[
(δA)2 − (δB)2

]
(4.30)

Clearly, both gauge fields may be coupled to time-like Wilson lines with labels in the Cartan

subalgebras of g and h respectively.

4.2 Canonical quantization of the WZW model with de-

fects and boundaries

4.2.1 Statements to prove

Let us now explain how the Hilbert space described by eq.(4.16) appears in the different in-

stances of the WZW model.

Comparing H0,2 with (1.102) we see that it is the Hilbert space of the WZW model on

cylinder. This implies that the symplectic phase space of the WZW model on a cylinder

is symplectomorphic to that of the Chern-Simons theory on an annulus. This was observed

in [52].
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Comparing H2,1 with (1.138) shows that it is the Hilbert space of the WZW model on a

strip with the boundary conditions specified by the Cardy states. It was proved in [88] that

the symplectic phase space of the WZW model on a strip is indeed symplectomorphic to that

of Chern-Simons theory on a disc with two Wilson lines.

Inclusion of defects allows to extend these results [165].

Comparing HN,2 with (1.180) shows that it is the Hilbert space of the WZW model on

cylinder with N defects.

Comparing HN+2,1 with (1.183) we see that it is the Hilbert space of the WZW model on a

strip with N defects.

Comparing H2,N with (1.163) shows that it is the Hilbert space of N -fold product of WZW

models on a strip with boundary conditions given by the permutation branes.

This leads to the following statements [165] proved in the next section:

1. The symplectic phase space of the WZW model with N defects on a cylinder is isomorphic

to that of Chern-Simons gauge theory on an annulus A times the time-line R with N

time-like Wilson lines.

2. The symplectic phase space of the WZW model with N defects on a strip is isomorphic

to that of Chern-Simons gauge theory on a disc D times the time-line R with N + 2

time-like Wilson lines.

3. The symplectic phase space of N -fold product of WZW models on a strip with boundary

conditions given by the permutation branes is isomorphic to that of Chern-Simons gauge

theory on a sphere with N holes times the time-line R and with two time-like Wilson

lines.

4.2.2 Bulk WZW model

In this section we review canonical quantization of the WZW model on the cylinder Σ =

R× S1 = (t, x mod 2π) [44,58,86]. The world-sheet action of the bulk WZW model is studied
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in section 1.5.1, is given by (1.263), but here for the purpose of the canonical quantization we

will perform Wick rotation, and use instead of the complex the light cone coordinates x± = x±t:

Sbulk(g) = (4.31)

k

4π

∫
Σ

Tr(g−1∂+g)(g−1∂−g)dx+dx− +
k

4π

∫
B

ωWZ(g)

Note also that we use here and in the next chapter the WZW kinetic term with the opposite

sign than in section 1.5.1. The phase space of solutions P can be described by the Cauchy data

at t = 0.

g(x) = g(0, x) and ξ0(x) = g−1∂tg(0, x) (4.32)

The corresponding symplectic form is

Ωbulk =
k

4π

∫ 2π

0

Π(g)dx (4.33)

where

Π(g) = tr
(
−δξ0g

−1δg + (ξ0 + g−1∂xg)(g−1δg)2
)

(4.34)

The δ denotes here as before exterior derivative on the phase space P . It is easy to check that

the symlectic form density Π(g) has the following exterior derivative

δΠ(g) = ∂xω
WZ(g) (4.35)

what implies closedness of the Ω

δΩbulk = 0 (4.36)

The general solution of equations of motion (1.270) satisfying the periodicity conditions

g(t, x+ 2π) = g(t, x) (4.37)

is

g(t, x) = gL(x+)g−1
R (x−) (4.38)

with gL,R satisfying monodromy conditions

gL(x+ + 2π) = gL(x+)γ (4.39)
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gR(x− + 2π) = gR(x−)γ (4.40)

with the same matrix γ. Expressing the symlectic form density Π(g) in the terms of gL,R we

obtain

Π = tr[g−1
L δgL∂x(g

−1
L δgL)− g−1

R δgR∂x(g
−1
R δgR) + ∂x(g

−1
L δgLg

−1
R δgR)] (4.41)

Using (4.41) and (4.39), (4.40) one derives for Ω

Ωbulk = Ωchiral(gL, γ)− Ωchiral(gR, γ) (4.42)

where

Ωchiral(gL, γ) =
k

4π

∫ 2π

0

tr
(
g−1
L δgL∂x(g

−1
L δgL)

)
dx+

k

4π
tr(g−1

L δgL(0)δγγ−1) (4.43)

The chiral field gL can be decomposed into the product of a closed loop in G, a multivalued

field in the Cartan subgroup and a constant element in G:

gL(x) = h(x)eiτx/kg−1
0 (4.44)

where h ∈ LG, τ ∈ t ( the Cartan algebra) and g0 ∈ G. For the monodromy of gL we obtain

γ = g0e
2iπτ/kg−1

0 (4.45)

Parametrization (4.44) induces the following decomposition of Ωchiral(gL, γ)

Ωchiral(gL, γ) = ΩLG(h, τ) +
k

4π
ωτ (γ) (4.46)

where ΩLG(h, τ) is defined in (4.15), and ωτ (γ) is defined in (4.9). Recalling (4.13), and

(4.42) we see that the symplectic phase of the WZW model on circle coincides with that of CS

theory on annulus.

4.2.3 Boundary WZW model

Consider the WZW model on a strip R × [0, π] for the Cardy boundary conditions. From the

analysis of the section 2.1.1 follows that for the case of strip we should impose the boundary

conditions (2.32):

g(t, 0) ∈ Cµ0 , g(t, π) ∈ Cµπ (4.47)
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The boundary equations of motion (2.18)∗

∂+gg
−1 = g−1∂−g (4.48)

force gL and gR to satisfy the constraint

gL(y + 2π) = gL(y)γ, and gR(y) = gL(−y)h−1
0 (4.49)

The equations (4.49) imply

g(t, 0) = gL(t)g−1
R (−t) = gL(t)h0g

−1
L (t) (4.50)

and

g(t, π) = gL(π + t)g−1
R (π − t) = gL(−π + t)γh0g

−1
L (−π + t) (4.51)

Therefore to be in agreement with (4.47) one should require

h0 ∈ Cµ0 , and γh0 = hπ ∈ Cµπ (4.52)

The symplectic form on the phase space of the WZW model on the strip is:

Ωstrip =
k

4π

[∫ π

0

Π(g)dx+ ωµ0(g(0, 0))− ωµπ(g(0, π))

]
(4.53)

where ωµ is defined in (2.6).

The equations (4.35), (2.4) imply that the form (4.53) is closed. Using the relations above

it is obtained in [88] that

Ωstrip = ΩLG(h, τ) + Ωbndry (4.54)

where

Ωbndry =
k

4π

[
ωτ (γ) + ωµ0(h0)− ωµπ(γh0) + tr(δh0h

−1
0 γ−1δγ)

]
(4.55)

Note that (4.55) has the form (4.17). Therefore comparing (4.52) with (4.6), and (4.54) with

(4.13) for n = 2 and m = 1 we obtain that symplectic phase space of the WZW model on the

strip coincides with that of CS theory on the disc with two Wilson lines.

∗The sign difference comes from the choice of the light cone coordinates x±.
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4.2.4 WZW model with Topological defects

Recall briefly the basic facts on defects studied in section 3.2. Assume that one has defect line

separating world-sheet on two regions Σ1 and Σ2. In such a situation WZW model defined

by a pair of maps g1 and g2. Maximally-symmetric topological defects defined as defect lines

satisfying conditions:

J1 = J2|defect line and J̄1 = J̄2|defect line (4.56)

The conditions (4.56) imply that on the defect line fields g1 and g2 satisfy the constraint

g1g
−1
2 |defect line = F ∈ Cµ = βe2iπµ/kβ−1, β ∈ G (4.57)

where µ ≡µ ·H, as before, is a highest weight representation integrable at level k, taking value

in the Cartan subalgebra. To write action of the WZW model with defect one again should

introduce auxiliary disc satisfying conditions

∂B1 = Σ1 + D̄ and ∂B2 = Σ2 +D (4.58)

and continue fields g1 and g2 on this disc always holding the condition (4.57). After this

preparations the action takes the form:

S = Sbulk(g1) + Sbulk(g2) +
k

4π

∫
D

$(g1, g2) (4.59)

where

$(g1, g2) = ωµ(F )− Tr(g−1
1 dg1g

−1
2 dg2) (4.60)

The form (4.60) satisfies the equation:

d$(g1, g2) = ωWZ(g1)|defect − ωWZ(g2)|defect (4.61)

Equation (4.61) guarantees that the action (4.59) is well defined.

Now consider WZW model on the same cylinder as in section 4.2.2, and put defect line at

x = a in parallel to the time line. The defect gluing conditions (4.56) constrain gL1 ,gR1 ,gL2 ,gR2

to satisfy the following relations:

gL2(y) = gL1(y)h−1
a (4.62)

gR2(y) = gR1(y)ma
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The equations (4.62) imply

F (t, a) = g1g
−1
2 (t, a) = (4.63)

gL1(a+ t)g−1
R1

(a− t)gR2(a− t)g−1
L2

(a+ t) =

gL1(a+ t)mahag
−1
L1

(a+ t)

Therefore to satisfy the boundary condition (4.57) we should require

maha = da ∈ Cµa (4.64)

Given that we consider WZW model on cylinder we should additionally require

g2(t, 2π) = g1(t, 0) (4.65)

The condition (4.65) imposes the following relation on monodromies γL, γR of gL1 and gR1 :

gL1(y + 2π) = gL1(y)γL (4.66)

gR1(y + 2π) = gR1(y)γR

and

γ−1
R γL = maha = da (4.67)

It is instructive to compare (4.67) to (4.39) and (4.40). We have seen in section 4.2.2, that in

the absence of defect left and right monodromies are equal, whereas presence of defect creates

relative shift between them equal to the defect conjugacy class. The symplectic form now is:

Ωd =
k

4π

[∫ a

0

Π(g1)dx+

∫ 2π

a

Π(g2)dx−$(g1(0, a), g2(0, a))

]
(4.68)

The conditions (4.35) and (4.61) imply that

δΩd = 0 (4.69)

Substituting in (4.68) the relations above, we can show that [165]

Ωd = ΩLG(hL, τL)− ΩLG(hR, τR) + Ωdl (4.70)
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where

Ωdl =
k

4π
[ωτL(γL)− ωτR(γR)− ωµa(da)] + tr(δγRγ

−1
R δγLγ

−1
L ) (4.71)

Note that (4.71) has the form (4.17). Comparing (4.67) with (4.6) and (4.70) with (4.13)

for n = 1 and m = 2 we obtain that the phase space of the WZW model with a defect

is symplectomorphic with that of Chern-Simons theory on an annulus with a Wilson line.

Generalization to an arbitrary number of defects is straightforward.

4.2.5 Defects in open string

In this section we consider WZW model with defect on a strip. Assume again that we have

defect at point x = a in parallel to the time line. The strip is divided to two parts with fields

g1 and g2. We should impose here boundary conditions (2.32) at x = 0 on g1, requiring

g1(t, 0) ∈ Cµ0 = β0e
2iπµ0/kβ−1

0 , β0 ∈ G (4.72)

then defect condition (4.57) at x = a, requiring

g1g
−1
2 (t, a) ∈ Cµa = βae

2iπµa/kβ−1
a , βa ∈ G (4.73)

and finally boundary condition (2.32) at x = π on g2, requiring

g2(t, π) ∈ Cµπ = βπe
2iπµπ/kβ−1

π , βπ ∈ G (4.74)

Equations (4.72) and (4.73) as before yield:

gR1(y) = gL1(−y)h−1
0 (4.75)

g1(0, t) = gL1(t)g−1
R1

(−t) = gL1(t)h0g
−1
L1

(t) (4.76)

h0 ∈ Cµ0 (4.77)

gL2(y) = gL1(y)h−1
a (4.78)

gR2(y) = gR1(y)ma
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maha = da ∈ Cµa (4.79)

To solve the last boundary condition (4.74) we assume that gL1 has monodromy matrix γ:

gL1(y + 2π) = gL1(y)γ (4.80)

Using (4.75) and (4.78) one obtains:

gL2(y + 2π) = gL2(y)haγh
−1
a (4.81)

gR2(y) = gL2(−y)hah
−1
0 ma (4.82)

Equations (4.81) and (4.82) imply

g2(π, t) = gL2(π + t)g−1
R2

(π − t) = (4.83)

gL2(−π + t)haγh
−1
a m−1

a h0h
−1
a g−1

L2
(−π + t)

To satisfy (4.74) one should require

γh−1
a m−1

a h0 = γd−1
a h0 = hπ ∈ Cµπ (4.84)

It is again instructive to compare (4.84) to (4.52). We see that presence of defect again requires

to include defect conjugacy class. This is classical analogue of the defect-boundary fusion

(1.181). The symplectic form is

Ωsd =
k

4π

[ ∫ a

0

Π(g1)dx+

∫ π

a

Π(g2)dx− (4.85)

$(g1(0, a), g2(0, a)) + ωµ0(g1(0, 0))− ωµπ(g2(0, π))

]
Using the relations above we obtain [165]:

Ωsd = ΩLG(h, τ) + Ωb−d (4.86)

where

Ωb−d =
k

4π
[ωτ (γ) + ωµ0(h0)− ωµπ(hπ)− (4.87)

ωµa(da) + tr(d−1
a δh0h

−1
0 daγ

−1δγ) + tr(γ−1δγd−1
a δda)

+tr(δdad
−1
a δh0h

−1
0 )]
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Note that (4.87) has the form (4.19). Therefore comparing (4.84) to (4.6) and (4.86) to

(4.13) for n = 3 and m = 1 we obtain that the phase space of the WZW model on a strip with

a defect inserted is symplectomorphic to that of CS theory on disc with three Wilson lines.

4.2.6 Permutation branes

Recall basic facts on the permutation branes studied in section 2.3.

Maximally symmetric permutation branes on two-fold product of the WZW models G×G

is defined as boundary conditions satisfying the relations (2.108)†:

J1 = −J̄2|∂M (4.88)

and

J2 = −J̄1|∂M (4.89)

Here label 1 and 2 refer two the first and the second copy. The conditions (4.88) and (4.89)

imply that values of g1 and g2 on the boundary constrained by the relation:

g1g2|∂M = F̃ ∈ Cµ = βe2iπµ/kβ−1, β ∈ G . (4.90)

The corresponding Lagrangian is:

S = Sbulk(g1) + Sbulk(g2)− k

4π

∫
D

ωP(g1, g2) (4.91)

where

ωP(g1, g2) = ωµ(F̃ ) + Tr(g−1
1 dg1dg2g

−1
2 ) (4.92)

The form (4.92) satisfies the equation:

dωP(g1, g2) = ωWZ(g1)|boundary + ωWZ(g2)|boundary (4.93)

Equation (4.93) guarantees that the action (4.91) is well defined. Consider now two-fold product

on a strip with boundary conditions (4.88) and (4.89) imposed at points x = 0 and x = π. It is

possible to show that these boundary conditions can be solved with gL1 ,gR1 ,gL2 ,gR2 satisfying:

gL1(y + 2π) = gL1(y)γ1 (4.94)

†The sign difference comes from the choice of the light cone coordinates x±
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gL2(y + 2π) = gL2(y)γ2 (4.95)

gR2(y) = gL1(−y)h−1
0 (4.96)

gR1(y) = gL2(−y)m−1
0 (4.97)

From (4.96), (4.97) we obtain:

F̃ (0, t) = gL1(t)m0h0g
−1
L1

(t) (4.98)

Therefore to be in agreement with (4.90) we should require:

m0h0 = p0 ∈ Cµ0 (4.99)

Equations (4.94) and (4.95) further imply

F̃ (π, t) = gL1(−π + t)γ1m0γ2h0g
−1
L1

(−π + t) (4.100)

Therefore we additionally should require:

γ1m0γ2h0 = γ1p0h
−1
0 γ2h0 = γ1p0γ̃2 = pπ ∈ Cµπ (4.101)

where

γ̃2 = h−1
0 γ2h0 (4.102)

The symplectic form corresponding to the action (4.91) on the strip is

ΩP =
k

4π

[∫ π

0

(Π(g1) + Π(g2))dx+ ωP(g1(0, 0), g2(0, 0))− ωP(g1(0, π), g2(0, π))

]
(4.103)

Repeating the same steps as explained in the previous sections we obtain [165]:

ΩP = ΩLG(h1, τ1, ) + ΩLG(h2, τ2, ) + Ωbndry−perm (4.104)

where

Ωbndry−perm =
k

4π
[ωτ1(γ1) + ωτ2(γ̃2) + ωµ0(p0)− ωµπ(pπ) (4.105)

− tr(p−1
0 δp0δγ̃2γ̃

−1
2 )− tr(γ−1

1 δγ1δp0p
−1
0 )− tr(p−1

0 γ−1
1 δγ1p0δγ̃2γ̃

−1
2 )
]
.
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Comparing (4.6) to (4.101) and (4.105) to (4.19), and finally (4.104) with (4.13) for n = 2 and

m = 2, we see that symplectic phase space of the WZW model G×G on strip with boundary

conditions specified by permutation branes coincides with that of CS on annulus with two

Wilson lines. The generalization to the case of permutation branes on N -fold product is again

cumbersome but straightforward.

4.3 Canonical quantization of the Gauged WZW model

with boundaries and defects

4.3.1 Main Statements

In this chapter we prove the following statements [166,167]:

1. The symplectic phase space of the gauged WZW G/H model on a cylinder with N defects

is symplectomorphic to the symplectic phase space of the double Chern-Simons theory

on an annulus A times the time-line R with G and H gauge fields both coupled to N

Wilson lines.

2. The symplectic phase space of the gauged WZW G/H model on a strip with N defects is

symplectomorphic to the symplectic phase space of the double Chern-Simons theory on a

disc D times the time-line R with G and H gauge fields both coupled to N + 2 time-like

Wilson lines.

3. The symplectic phase space of the N -fold product of the gauged WZW models on a

strip with boundary conditions given by permutation branes is symplectomorphic to the

symplectic phase space of the double Chern-Simons theory on a sphere with N holes times

the time-line R with G and H gauge fields both coupled to two Wilson lines.

In the special case of topological coset G/G these isomorphisms take the form:

4. The symplectic phase space of the gauged WZW G/G model on a cylinder with N defects
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is symplectomorphic to the symplectic phase space of the Chern-Simons theory on T 2×R

with 2N Wilson lines.

5. The symplectic phase space of the gauged WZW G/G model on a strip with N defects is

symplectomorphic to the symplectic phase space of the Chern-Simons theory on S2 × R

with 2N + 4 time-like Wilson lines.

6. The symplectic phase space of the N -fold product of the topological coset G/G on a

strip with boundary conditions given by permutation branes is symplectomorphic to the

symplectic phase space of the Chern-Simons theory on a Riemann surface of the genus

N − 1 times the time-line with four Wilson lines.

The isomorphisms 4 and 5 allow us to achieve to a very detailed picture of defects in this

particular example of topological field theory. This picture enables us to infer that in general

defects in semisimple 2D TFT should be described by means of a 2-category of matrices of

vector spaces [82] and that the action of defects on boundary states is given by the discrete

Fourier-Mukai transform.

4.3.2 Bulk gauged WZW model

Here we review quantization of the gauged WZW model on the cylinder Σ = R × S1 =

(t, x mod 2π) as it is done in [89].

The action of the gauged WZW model is studied in section 1.5.5:

SG/H(g, A) = SWZW(g) + Sgauge(g, A) , (4.106)

where

SWZW(g) =
k

4π

∫
Σ

Tr(g−1∂+g)(g−1∂−g)dx+dx− +
k

4π

∫
B

1

3
tr(g−1dg)3 (4.107)

≡ k

4π

[∫
Σ

dx+dx−Lkin +

∫
B

ωWZ

]
,

Sgauge(g, A) =
k

2π

∫
Σ

Lgauge , (4.108)
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Lgauge(g, A) = −tr[−∂+gg
−1A− + g−1∂−gA+ + gA+g

−1A− − A+A−] . (4.109)

Here as in the previous section x± = x ± t. and since the kinetic term has the opposite sign

than in section 1.5.5, the terms in (4.109) also have different signs than in 1.5.5.

With the help of the Polyakov-Wiegmann identities (1.279) and (1.278) it is easy to check

that the action (4.106) is invariant under the gauge transformation:

g → hgh−1 , A→ hAh−1 − dhh−1 (4.110)

for h : Σ→ H.

The equations of motions are:

D+(g−1D−g) = 0 , Tr(g−1D−gTH) = Tr(gD+g
−1TH) = 0 , F (A) = 0 , (4.111)

where D±g = ∂±g + [A±, g] and TH is any element in the H Lie algebra.

The flat gauge field A can be written as h−1dh for h : R2 → H and satisfying:

h(t, x+ 2π) = ρ−1h(t, x) (4.112)

for some ρ ∈ H.

Define g̃ = hgh−1. Note that g̃ satisfies

g̃(t, x+ 2π) = ρ−1g̃(t, x)ρ . (4.113)

In the terms of g̃ equations (4.111) take the form:

∂+(g̃−1∂−g̃) = 0 , Tr(g̃−1∂−g̃TH) = Tr(g̃∂+g̃
−1TH) = 0 . (4.114)

The canonical symplectic form density, obtained following the general prescription [38, 39,

86], is given by:

ΠG/H(g, h) = ΠG(g̃) + ∂xΨ(h, g) , (4.115)

where Ψ(h, g) is two-form defined in (2.9), ΠG(g̃) is defined in (4.34).

Integrating (4.115) we get the canonical symplectic form:
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ΩG/H =
k

4π

∫ 2π

0

ΠG(g̃)dx+
k

4π
Ψ(ρ−1, hgh−1(0)) . (4.116)

Collecting (4.35), (4.113) and using (2.8) one can show that the form (4.116) is closed.

Equations (4.114) can be solved in the terms of the chiral fields:

g̃ = gL(x+)g−1
R (x−) , Tr(∂ygLg

−1
L TH) = Tr(∂ygRg

−1
R TH) = 0 (4.117)

with the monodromy properties:

gL(y + 2π) = ρ−1gL(y)γ , gR(y + 2π) = ρ−1gR(y)γ . (4.118)

The monodromy properties (4.118) imply that the chiral fields gL,R should be written as

products of fields as well:

gL = h−1
B gA , gR = h−1

D gC , (4.119)

where hB, hD ∈ H and gA, gC ∈ G. The fields in (4.119) should additionally satisfy‡:

tr[TH(∂yhBh
−1
B − ∂ygAg

−1
A )] = 0 , tr[TH(∂yhDh

−1
D − ∂ygCg

−1
C )] = 0 (4.120)

and

hB(y + 2π) = hB(y)ρ , gA(y + 2π) = gA(y)γ , (4.121)

hD(y + 2π) = hD(y)ρ , gC(y + 2π) = gC(y)γ . (4.122)

Using (4.120) one can show:

tr[g−1
L δgL∂y(g

−1
L δgL)] = tr[g−1

A δgA∂y(g
−1
A δgA)− h−1

B δhB∂y(h
−1
B δhB) + ∂y(δhBh

−1
B δgAg

−1
A )]

(4.123)

and similarly for gR and hD, gC .

Collecting (4.117)-(4.123) and (4.41) one can show that

ΩG/H = Ωchiral(gA, γ)− Ωchiral(gC , γ)− Ωchiral(hB, ρ) + Ωchiral(hD, ρ) (4.124)

‡One can arrive at the decomposition (4.119) with the properties (4.121) and (4.122) in the following way:

taking, say, a field hB satisfying the first part of (4.121), one can then define gA as gA ≡ hBgL, satisfying the

second part of (4.121).
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Comparing (4.124) with (4.42), remembering that the latter is the symplectic form of the

Chern-Simons theory on A×R, and recalling (4.30), we arrive at the conclusion that the phase

space of the gauged WZW model on a cylinder coincides with that of double Chern-Simons

theory [89,131] on A×R.

4.3.3 Quantization of GWZW with defects

Recall the action of the gauged WZW model with defect studied in section 3.3. The bibrane

has the form (3.52):

(g1, g2) = (C2C1p, LpL
−1) . (4.125)

where C1 ∈ Cµ1

G , C2 ∈ Cµ2

H , p ∈ G and L ∈ H and action is

SG/H−def (g1, g2, A1.A2) = Skin−def(g1, g2) + Sgauge−def(g1, g2, A1, A2) + Stop−def , (4.126)

where

Skin−def(g1, g2) =
k

4π

∫
Σ1

Lkin(g1)dx+dx− +
k

4π

∫
Σ2

Lkin(g2)dx+dx− (4.127)

and

Sgauge(g1, g2, A1, A2) =
k

2π

∫
Σ1

Lgauge(g1, A1) +
k

2π

∫
Σ2

Lgauge(g2, A2) . (4.128)

Stop−def =
k

4π

∫
B1

ωWZ(g1) +
k

4π

∫
B2

ωWZ(g2)− k

4π

∫
D

$(g1, g2) . (4.129)

where $(g1, g2) is given by (3.53):

$(L, p, C2, C1) = Ω(2)(C2, C1)− tr((C2C1)−1d(C2C1)dpp−1) + Ψ(L, p) , (4.130)

The gauge fields A1 and A2 are not restricted on the defect line.

One can check that the action (4.126) is invariant under the gauge transformations:

g1 → h1g1h
−1
1 , A1 → h1A1h

−1
1 − dh1h

−1
1 , (4.131)

g2 → h2g2h
−1
2 , A2 → h2A2h

−1
2 − dh2h

−1
2 ,

where h1 : Σ → H, h2 : Σ → H. For this purpose note that under (4.131) the boundary

parameters transform in the following way:

p→ h1ph
−1
1 , C1 → h1C1h

−1
1 , C2 → h1C2h

−1
1 , L→ h2Lh

−1
1 . (4.132)
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The gauge invariance follows from the Polyakov-Wiegmann identities and the transformation

properties of $(L, p, C2, C1):

$(h2Lh
−1
1 , h1ph

−1
1 , h1C2h

−1
1 , h1C1h

−1
1 )−$(L, p, C2, C1) ,= −Ψ(h1, C2C1p) + Ψ(h2, LpL

−1)

(4.133)

Now we consider the gauged WZW model on the cylinder Σ = R× S1 = (t, x mod 2π) and

put defect line at x = a in parallel to the time line.

The variational equation δSG/H−def (g1, g2, A1.A2) = 0 implies the bulk equations (4.111)

for g1, A1 and g2, A2 separately supplemented by the defect equations at x = a:

g−1
1 D−g1 − L−1g−1

2 D−g2L = 0 , (4.134)

C−1
2 g1D+g

−1
1 C2 − L−1g2D+g

−1
2 L = 0 , (4.135)

L−1DtL = 0 , C−1
2 DtC2 = 0 , (4.136)

where Dt = D+ − D−, D±L = ∂±L + A2±L − LA1±, D±g1 = ∂±g1 + [A1±, g1], D±g2 =

∂±g2 + [A2±, g2], D±C2 = ∂±C2 + [A1±, C2].

The equations (4.134), (4.135), (4.136) are derived in [166].

Flat gauge fields can be parameterised as before:

A1 = h−1
1 dh1 , A2 = h−1

2 dh2 . (4.137)

Defining as before:

g̃1 = h1g1h
−1
1 , g̃2 = h2g2h

−1
2 , (4.138)

C̃1 = h1C1h
−1
1 , C̃2 = h1C2h

−1
1 ,

p̃ = h1ph
−1
1 , L̃ = h2Lh

−1
1 ,

we have the bulk equations (4.114) for g̃1 and g̃2 and the defect equations (4.134), (4.135),

(4.136) take the form:

g̃−1
1 ∂−g̃1 − L̃−1g̃−1

2 ∂−g̃2L̃ = 0 , (4.139)

C̃−1
2 g̃1∂+g̃

−1
1 C̃2 − L̃−1g̃2∂+g̃

−1
2 L̃ = 0 , (4.140)
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L̃−1∂tL̃ = 0 , C̃−1
2 ∂tC̃2 = 0 . (4.141)

Equation (4.141) implies that L̃ and C̃2 are constant along the defect line.

Using that, the bulk-defect equations can be solved in the terms of the chiral fields:

g̃1 = g1Lg
−1
1R , Tr(∂yg1Lg

−1
1LTH) = Tr(∂yg1Rg

−1
1RTH) = 0 , (4.142)

g̃2 = g2Lg
−1
2R , Tr(∂yg2Lg

−1
2LTH) = Tr(∂yg2Rg

−1
2RTH) = 0 , (4.143)

and

g2L = L̃C̃−1
2 g1Ln

−1 , g2R = L̃g1Rm
−1 , (4.144)

with m and n ∈ G. Equations (4.144) imply

(g̃1(t, a), g̃2(t, a)) = (C̃2C̃1p̃, L̃p̃L̃
−1) , (4.145)

where

p̃ = C̃−1
2 g1L(a+ t)n−1mg−1

1R(a− t) , (4.146)

C̃1 = C̃−1
2 g1L(a+ t)m−1ng−1

1L (a+ t)C̃2 . (4.147)

To have that C̃1 ∈ Cµ1

G we should require that d ≡ m−1n ∈ Cµ1

G .

Given that we consider GWZW model on a cylinder we should additionally require:

g1(t, 0) = g2(t, 2π) , (4.148)

h1(t, 0) = ρh2(t, 2π) . (4.149)

From (4.148) and (4.149) one obtains:

g̃1(t, 0) = ρg̃2(t, 2π)ρ−1 , (4.150)

and

g1L(y + 2π) = C̃2L̃
−1ρ−1g1L(y)γL , g1R(y + 2π) = L̃−1ρ−1g1R(y)γR , (4.151)

with γL and γR satisfying the relation:

γ−1
R γL = d . (4.152)
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Comparing (4.151) with (4.118) we see that the presence of the defect leads to the relative

shifts between the left and right monodromies, equal to the defect conjugacy classes.

The monodromies (4.151) as before can be realized in the terms of the decomposition of the

fields g1L and g1R as products:

g1L = h−1
B gA , g1R = h−1

D gC (4.153)

of the new fields hB, gA, hD, gC possessing the monodromy properties:

hB(2π) = hB(0)ρL̃C̃−1
2 , gA(2π) = gA(0)γL , (4.154)

hD(2π) = hD(0)ρL̃ , gC(2π) = gC(0)γR , (4.155)

and satisfying (4.120).

The symplectic form of the gauged WZW model with a defect can be written using the

symplectic form density (4.115) and the form $:

ΩG/H−def =
k

4π

[∫ a

0

ΠG/H(g1, h1)dx+

∫ 2π

a

ΠG/H(g2, h2)dx−$(g1(a), g2(a))

]
. (4.156)

Substituting in (4.156) the symplectic form density (4.115) and using the transformation prop-

erty (4.133) we obtain:

ΩG/H−def =
k

4π

[∫ a

0

Π(g̃1)dx+

∫ 2π

a

Π(g̃2)dx−$(L̃, p̃, C̃2, C̃1)−Ψ(ρ, g̃2(2π))

]
, (4.157)

where p̃ and C̃1 defined in (4.146) and (4.147).

Performing similar steps as before we arrive at the following expression for the symplectic

form of the gauged WZW model with defects:

ΩG/H−def = Ωchiral(gA, γL)− Ωchiral(gC , γR)− Ωchiral(hB, ρL̃C̃
−1
2 ) + Ωchiral(hD, ρL̃) (4.158)

+
k

4π

[
−ωµ2(C̃2)− ωµ1(d)− tr(d−1δdγ−1

L δγL)− tr(C̃−1
2 δC̃2(ρL̃)−1δ(ρL̃))

]
.

Recalling the decomposition (4.46) of Ωchiral and (4.17), (4.30), we arrive at the conclusion

that the phase space of the gauged WZW model on a cylinder with a defect line coincides with
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that of double Chern-Simons theory on A×R with gauge fields of groups G and H coupled to

a Wilson line. This result can be straightforwardly generalized to the presence of the N defect

lines.

4.3.4 Defects in open coset model G/H

Let us at the beginning remind some facts on boundary coset model G/H studied in section

3.1.1.

Boundary condition corresponding to a Cardy state (µ, ν) is given by the product of the

conjugacy classes

g|boundary = bc , (4.159)

where b ∈ Cµ
G and c ∈ Cν

H . As explained in section 3.1.1 in the presence of the common center

C µ and ν should satisfy the selection rule.

To write the action one should introduce an auxiliary disc D satisfying the condition ∂B =

Σ+D, and continue the field g on this disc, always taking value in product of conjugacy classes.

The action with the boundary conditions (4.159) has the form (3.7):

SG/H−bndry = SG/H − k

4π

∫
D

Ω(2)(b, c) , (4.160)

where Ω(2)(b, c) is defined in (3.9).

Consider a WZW model with a defect on the strip R× [0, π]. Assume again that we have a

defect at the point x = a in parallel to the time line. The strip is divided into two parts with

the fields g1, A1 and g2, A2. We impose a Cardy boundary condition (4.159) at x = 0 on g1

requiring:

g1(t, 0) = C3C4 , C3 ∈ Cµ3

G , C4 ∈ Cµ4

H , (4.161)

a defect condition (3.52) at x = a:

(g1, g2) = (C2C1p, LpL
−1) , (4.162)

152



and again a Cardy boundary condition (4.159) at x = π:

g2(t, π) = C5C6 , C5 ∈ Cµ5

G , C6 ∈ Cµ6

H . (4.163)

Let us analyze first the consequences of the boundary condition (4.161) at the point x = 0.

The boundary equations of motion resulting from the action (4.160) at x = 0 are derived

in [89]:

g−1
1 D−g1 + C−1

4 g1D+g
−1
1 C4 = 0 , C−1

4 DtC4 = 0 . (4.164)

Representing again the flat gauge field A1 = h−1
1 dh1, and again defining g̃1 = h1g1h

−1
1 , C̃3 =

h1C3h
−1
1 , C̃4 = h1C4h

−1
1 one can write (4.164) as:

g̃−1
1 ∂−g̃1 + C̃−1

4 g̃1∂+g̃
−1
1 C̃4 = 0 , (4.165)

C̃−1
4 ∂tC̃4 = 0 . (4.166)

The last equation implies that C̃4 is constant on the boundary. Therefore using the chiral

decomposition (4.142) g̃1 = g1Lg
−1
1R one can solve (4.165):

g1R(y) = C̃−1
4 g1L(−y)R−1

0 (4.167)

with R0 ∈ G. Now we get that :

g̃1(t, 0) = g1L(t)R0g
−1
1L (t)C̃4 . (4.168)

The boundary condition (4.161) implies:

g̃1(0, t) = C̃3C̃4 , C̃3 ∈ Cµ3

G , C̃4 ∈ Cµ4

H . (4.169)

We find that

C̃3 = g1L(t)R0g
−1
1L (t) . (4.170)

To be in agreement with the requirement that C̃3 ∈ Cµ3

G one should demand:

R0 ∈ Cµ3

G . (4.171)
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The defect condition as before implies:

g1L = C̃2L̃
−1g2Ln , g1R = L̃−1g2Rm, (4.172)

where g2L, g2R are fields of the chiral decomposition (4.143): g̃2 = g2Lg
−1
2R .

From the boundary condition (4.163) we conclude:

g̃2(t, π) = C̃5C̃6 , C̃5 ∈ Cµ5

G , C̃6 ∈ Cµ6

H , (4.173)

where C̃5 = h2C5h
−1
2 , C̃6 = h2C6h

−1
2 .

To satisfy (4.173) we assume the following monodromy behaviour of g1L:

g1L(y + 2π) = ρ−1g1L(y)γ . (4.174)

From relations (4.167), (4.172) and (4.174) we derive:

g̃2(t, π) = L̃C̃−1
2 g1L(π + t)n−1mR0γ(L̃C̃−1

2 g1L(π + t))−1L̃C̃−1
2 ρ−1C̃4L̃

−1 . (4.175)

We see that

C̃5 = L̃C̃−1
2 g1L(π + t)n−1mR0γ(L̃C̃−1

2 g1L(π + t))−1 , (4.176)

and

C̃6 = L̃C̃−1
2 ρ−1C̃4L̃

−1 . (4.177)

To satisfy (4.173) we should demand:

d−1R0γ = Rπ ∈ Cµ5

G , (4.178)

C̃−1
2 ρ−1C̃4 = Sπ ∈ Cµ6

H . (4.179)

The symplectic form is

ΩG/H−def−bndry =
k

4π

[∫ a

0

Π(g̃1) +

∫ π

a

Π(g̃2)−$(L̃, p̃, C̃2, C̃1) + Ω(C̃3, C̃4)− Ω(C̃5, C̃6)

]
.

(4.180)

In formula (4.180) p̃, C̃1, C̃3, C̃5, C̃6 are given by the equations (4.146), (4.147), (4.170), (4.176),

(4.177) correspondingly. Representing again

g1L = h−1
B gA , (4.181)
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with hB and gA possessing the monodromy properties:

hB(y + 2π) = hB(y)ρ , (4.182)

gA(y + 2π) = gA(y)γ , (4.183)

and repeating the same steps as before we obtain:

4π

k
ΩG/H−def−bndry =

4π

k
Ωchiral(gA, γ)− 4π

k
Ωchiral(hB, ρ) + ωµ3(R0) + (4.184)

ωµ4(C̃4)− ωµ5(Rπ)− ωµ6(Sπ)− ωµ2(C̃2)− ωµ1(d)

−tr(R−1
0 δR0δγγ

−1) + tr(δdd−1δR0R
−1
0 ) + tr(δdd−1R0δγγ

−1R−1
0 )

−tr(δC̃4C̃
−1
4 δρρ−1)− tr(δC̃2C̃

−1
2 ρ−1δρ) + tr(δC̃2C̃

−1
2 ρ−1δC̃4C̃

−1
4 ρ) .

Recalling again the decomposition (4.46) of Ωchiral and (4.19), (4.30), we arrive at the con-

clusion that the phase space of the gauged WZW model on a strip with a defect line coincides

with that of the double Chern-Simons theory on D × R with gauge fields of groups G and H

coupled to three Wilson lines. This result can be straightforwardly generalized to the presence

of the N defect lines.

4.4 Defects in Topological G/G coset

4.4.1 Bulk G/G coset

In this section we consider the bulk G/H model studied in section 4.3.2 for the special case

G = H. It was shown in section 4.3.2 that the phase space of the bulk G/H model is sym-

plectomorphic to that of the double Chern-Simons theory on R×A. In the special case, when

G = H it becomes a Chern-Simons theory on the torus times R : R × (A ∪ (−A)) = R × T 2.

This result can be obtained also by a direct calculation.

In the case when G = H the equations of motion (4.114) imply that g̃ is (t, x) independent

and therefore the symplectic form ΩG/H (4.116) reduces to

ΩG/G =
k

4π
Ψ(ρ, g̃−1) . (4.185)
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The fact that g̃ is constant on a cylinder and the relation (4.113) also imply

ρg̃ρ−1g̃−1 = I . (4.186)

Comparing (4.185) and (4.186) with formulae (4.21) and (4.23) we arrive at the conclusion that

the phase space of a bulk G/G theory on a cylinder is symplectomorphic to that of a Chern-

Simons theory on T 2 ×R. The quantization of the latter gives rise to the space of the 0-point

conformal blocks of the WZW theory on the torus. The dimension of the space of conformal

blocks on a Riemann surface of genus g with insertion of the primary fields with labels µn is:

Nµn(g) =
∑
α

(Sα0 )2−2g
∏
n

(Sαµn/S
α
0 ) . (4.187)

This implies that the Hilbert space of the quantized G/G theory on a cylinder has dimension

equals to the number of the integrable primaries. The equivalence of the topological G/G coset

on a cylinder R×S1 with a Chern-Simons on R×T 2 demonstrated here is actually a particular

case of the more general equivalence of the topological G/G coset on a Riemann surface Σ and

the Chern-Simons theory on Σ× S1 established in [27,176,187].

4.4.2 A defect in a closed topological model G/G

We have established in section 4.3.3 that the phase space of the coset G/H on a cylinder with

a defect is symplectomorphic to that of a double Chern-Simons theory on R×A with G and H

gauge fields both coupled to a time like Wilson line. In the case when G = H we again arrive

at the conclusion that the topological coset G/G on a cylinder with a defect line is equivalent

to the Chern-Simons theory on R × T 2 with two time like Wilson lines. This again can be

verified by a direct calculation. For the case G = H the bulk equations of motion imply that

g̃1 and g̃2 are (t, x) independent.

Therefore one has:

g̃1(0) = g̃1(a) = C̃2C̃1p̃ , L̃p̃L̃−1 = g̃2(a) = g̃2(2π) . (4.188)

From (4.150) we also obtain:

g̃1(0) = ρg̃2(2π)ρ−1 . (4.189)
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Inserting (4.189) in (4.188) we get:

C̃2C̃1p̃ = ρL̃p̃L̃−1ρ−1 . (4.190)

The symplectic form (4.157) now takes the form:

ΩG/G−def = − k

4π
$(ρL̃, p̃, C̃2, C̃1) . (4.191)

Comparing (4.190) and (4.191) with (4.21) and (4.23) we arrive at the conclusion that the

topological coset G/G on a cylinder with a defect line is symplectomorphic with that of a

Chern-Simons theory on T 2×R with two Wilson lines. The quantization of the latter gives rise

to the space of the 2-point conformal blocks of the WZW theory on a torus. Using equation

(4.187) we can compute the dimension of the Hilbert space of the quantized topological coset

G/G on cylinder with a defect line (µ1, µ2) :

dimHdµ1,µ2
=
∑
αβ

Nβ
αµ1
Nα
βµ2

. (4.192)

4.4.3 Defects in the open topological model G/G

Previously we have seen that the phase space of G/H coset on a strip with a defect is sym-

plectomorphic to that of the double Chern-Simons theory on D × R with gauge fields G and

H both coupled to three Wilson lines. In the case when G = H we arrive at the conclusion

that the G/G topological coset on a strip with a defect line is equivalent to the Chern-Simons

theory on sphere times R : (D∪ (−D))×R = S2×R with six time-like Wilson lines. This can

be verified also directly. In this case g̃1 and g̃2 are (t, x) independent and therefore one has:

g̃1(0) = C̃3C̃4 = C̃2C̃1p̃ = g̃1(a) , (4.193)

g̃2(a) = L̃p̃L̃−1 = C̃5C̃6 = g̃2(2π) . (4.194)

From equations (4.193) and (4.194) one obtains:

(L̃C̃−1
1 L̃−1)(L̃C̃−1

2 L̃−1)(L̃C̃3L̃
−1)(L̃C̃4L̃

−1)C̃−1
6 C̃−1

5 = I , (4.195)
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and from (4.180) one derives:

ΩG/G−def−bndry = − k

4π
$(L̃, p̃, C̃2, C̃1) +

k

4π
Ω(C̃3, C̃4)− k

4π
Ω(C̃5, C̃6) . (4.196)

Comparing (4.195) and (4.196) with 4.8 we arrive at the mentioned symplectomorphism of the

phase space of G/G topological coset on a strip with a defect and a Chern-Simons theory on

S2×R with six Wilson lines. The quantization of the latter gives rise to the space of the 6-point

conformal blocks of the WZW theory on a sphere. Using equation (4.187) we can compute the

dimension of the Hilbert space of the quantized topological coset G/G on a strip with a defect

line:

Nλ1
µ3µ4

Nλ2
λ1µ1

Nλ3
λ2µ2

Nµ6

λ3µ5
. (4.197)

Recall that here (µ3, µ4) are labels of the Cardy state on the first end of the strip, (µ5, µ6) are

labels of the Cardy state on the second end of the strip, and (µ1, µ2) are the labels of the defect.

To interpret this result let us remind some general facts on a semisimple 2D topological

theory on a world-sheet with boundary [130]. First of all let us recall that the whole content

of the 2D topological field theory is encoded in a finite-dimensional commutative Frobenius

algebra C. In the case when C is semisimple it can be realized as the algebra of complex-

valued functions on a finite set X = Spec C, which can be considered as a toy ”space-time“.

Using sewing constraints of open topological theory it was proved in [130] that every boundary

condition a is realized by a collections of vector spaces corresponding to each point of X:

x→ Vx,a. This can be considered as a vector bundle over finite space-time, in agreement with

the K-theory interpretation of boundary conditions. The Hilbert space of open string with

boundary conditions specified by a and b is given by the bundle morphism:

Hab = ⊕xHom(Vx,a;Vx,b) . (4.198)

Consider now an open topological G/G coset. Note that in this case the points of X are

labelled by integrable primaries. Let us remind first the situation without defect considered

in [89]. The dimension of the Hilbert space for this case can be derived from (4.197) putting
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there µ1 and µ2 equal to vacuum state:

Nλ
µ3µ4

Nµ6

λµ5
. (4.199)

This can be interpreted saying that the Hilbert space of the open string with the Cardy bound-

ary conditions (µ3, µ4) and (µ5, µ6) at the ends is

Hµ3,µ4;µ5,µ6 = ⊕λHom(Wµ3µ4λ;Wµ5µ6λ) , (4.200)

where Wµνλ are spaces of three points conformal blocks. This implies that the Cardy state

(µ.ν) is given by the vector bundle

λ→ Wµνλ . (4.201)

Now consider the case with a defect (µ1, µ2).

It is well known (see e.g. [69,99,111,141,174]), that open string propagating with boundary

conditions a and b with inserted defect d can be considered, as propagating between one of the

original boundary conditions, say a, and the second transformed by defect: d ∗ b. According to

formula (4.197) the transformed state corresponds to the spaces Vλ,µ1,µ2,µ5,µ6 with the dimensions

Nλ2
λ1µ1

Nλ3
λ2µ2

Nµ6

λ3µ5
, (4.202)

and therefore can be considered as transformed by tensoring and summing with the space of

4-point conformal blocks Wµ1µ2λ1λ3 :

Vλ1,µ1,µ2,µ5,µ6 = ⊕λ3Wµ1µ2λ1λ3 ⊗Wµ5µ6λ3 . (4.203)

This suggests the following general description of defects in semisimple 2D TFT’s. It seems

that to every defect separating 2D TFT’s with ”space-time“’s X and Y corresponds a collection

of spaces V D
x,y where x ∈ X and y ∈ Y . This can be considered as a fibre bundle over X × Y .

Then the boundary condition given by the fibre bundle Vy over Y is transformed to the boundary

condition corresponding to the following bundle over X:

x→ ⊕yV D
x,y ⊗ Vy . (4.204)
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It is interesting to note that the transformation (4.204) can be viewed as a discrete Fourier-

Mukai transform in agreement with the general interpretation of the defect worldvolume or

bi-brane as kernel of the Fourier-Mukai transform suggested in [35,112,163].

Let us elaborate now on fusion of defects. For this purpose consider an open string with

insertion of two defects. The Hilbert space in this case is given by the space of 8-point conformal

blocks. Along the same lines we conclude that the fusion of two defects (µ1, µ2) and (ν1, ν2) is

given by the space of 6-point conformal blocks: Wµ1,µ2,ν1,ν2,λ1,λ2 . According to the factorization

properties of the space of conformal blocks this space can be expressed through the space of

4-point conformal blocks:

Wµ1,µ2,ν1,ν2,λ1,λ2 = ⊕γWµ1,µ2,λ1,γ ⊗Wν1,ν2,λ2,γ . (4.205)

This suggests that in general the fusion of two defects given by the bundles V D1
x,y and V D2

y,z

over the spaces X × Y and Y × Z is given by the equation:

V D1∗D2
x,z = ⊕yV D1

x,y ⊗ V D2
y,z . (4.206)

It is interesting to note that equation (4.206) appeared as a composition rule in the 2-

category of matrices of vector spaces (see for example [82]). The relation with 2-categories

actually can be traced further.

Note that equation (4.192) for the dimension of the G/G theory on a cylinder with a defect

can be written as the dimension of the space
∑

λWµ,ν,λ,λ:

dimHdµ,ν = dim
∑
λ

Wµ,ν,λ,λ . (4.207)

We can conclude that probably in the general case the dimension of the bulk theory with

defect given by the collection of the spaces {Vx1,x2 , x1, x2 ∈ X}, is given by the dimension of

the space ⊕xV D
x,x:

dimHd = dim ⊕x V D
x,x . (4.208)

The space ⊕xV D
x,x appears in [82] as categorical trace.
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4.5 Permutation branes in gauged WZW model

Worldvolume Q of the permutation branes on product of cosets G/H ×G/H corresponding to

a primary (µ, ν) has been constructed in [161] and reviewed in section 3.3) and have the form:

(g1, g2) = (cbp, Lp−1L−1) , (4.209)

where p ∈ G, L ∈ H, c ∈ Cν
H , b ∈ Cµ

G and Cµ
G are the conjugacy classes in G (2.32):

Cµ
G = {βfµβ−1 = βe2iπµ/kβ−1, β ∈ G} , (4.210)

where µ ≡µ · H is a highest weight representation integrable at level k, taking value in the

Cartan subalgebra of the G Lie algebra. Cν
H are the similarly defined conjugacy classes in H. If

G and H possess common center, µ and ν should satisfy the selection rules explained in section

3.1.2.

To write the action one should introduce an auxiliary disc D satisfying the condition ∂B =

Σ +D and continue the fields g1 and g2 on this disc always holding the condition (4.209).

The action with the boundary condition (4.209) has the form

S
G/H×G/H
P = SG/H(g1, A1) + SG/H(g2, A2)− k

4π

∫
D

$(L, p, c, b) (4.211)

where

$(L, p, c, b) = Ω(2)(c, b)− tr((cb)−1d(cb)dpp−1) + Ψ(L, p) , (4.212)

where

Ω(2)(c, b) = ων(c)− tr(c−1dcdbb−1) + ωµ(b) (4.213)

is defined in (3.9), and ωµ(C) is defined in (2.6) and Ψ(L, p) is defined in (2.9). The form

$(L, p, c, b) satisfies the condition:

d$(L, p, c, b) = ωWZ(g1)|Q + ωWZ(g2)|Q . (4.214)

One can check that the action (4.211) is invariant under the gauge transformations:

g1 → h1g1h
−1
1 , A1 → h1A1h

−1
1 − dh1h

−1
1 , (4.215)

g2 → h2g2h
−1
2 , A2 → h2A2h

−1
2 − dh2h

−1
2 ,
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where h1 : Σ → H, h2 : Σ → H. For this purpose note that under (4.215) the boundary

parameters transform in the following way:

p→ h1ph
−1
1 , c→ h1ch

−1
1 , b→ h1bh

−1
1 , L→ h2Lh

−1
1 . (4.216)

The gauge invariance follows from the Polyakov-Wiegmann identities and the transformation

properties of $(L, p, c, b):

$(h2Lh
−1
1 , h1ph

−1
1 , h1ch

−1
1 , h1bh

−1
1 )−$(L, p, c, b) . = −Ψ(h1, cbp)−Ψ(h2, Lp

−1L−1) (4.217)

Consider G/H × G/H product of coset models on the strip R × [0, π] with boundary con-

ditions on both sides given by the permutation branes:

(g1, g2)(0) = (C2C1p1, L1p
−1
1 L−1

1 ) (4.218)

(g1, g2)(π) = (C4C3p2, L2p
−1
2 L−1

2 ) (4.219)

Here C1 ∈ Cµ1

G , C2 ∈ Cµ2

H , C3 ∈ Cµ3

G ,C4 ∈ Cµ4

H , L1, L2 ∈ H, p1, p2 ∈ G.

The boundary equation of motion resulting from the action (4.211) at x = 0 are [167]:

g−1
1 D−g1 + L−1

1 g2D+g
−1
2 L1 = 0 (4.220)

C−1
2 g1D+g

−1
1 C2 + L−1

1 g−1
2 D−g2L1 = 0 (4.221)

L−1
1 DtL1 = 0 C−1

2 DtC2 = 0 (4.222)

where Dt = D+ − D−, D±L = ∂±L + A2±L − LA1±, D±g1 = ∂±g1 + [A1±, g1], D±g2 =

∂±g2 + [A2±, g2], D±C2 = ∂±C2 + [A1±, C2].

Parameterising again flat gauge fields as

A1 = h−1
1 dh1 A2 = h−1

2 dh2 (4.223)

one can define as before

g̃1 = h1g1h
−1
1 g̃2 = h2g2h

−1
2 (4.224)

C̃1 = h1C1h
−1
1 C̃2 = h1C2h

−1
1
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p̃1 = h1p1h
−1
1 L̃1 = h2L1h

−1
1

C̃3 = h1C3h
−1
1 C̃4 = h1C4h

−1
1

p̃2 = h1p2h
−1
1 L̃2 = h2L2h

−1
1

and we have the bulk equations (4.114) for g̃1 and g̃2 and boundary equations take the form:

g̃−1
1 ∂−g̃1 + L̃−1

1 g̃2∂+g̃
−1
2 L̃1 = 0 (4.225)

C̃−1
2 g̃1∂+g̃

−1
1 C̃2 + L̃−1

1 g̃−1
2 ∂−g̃2L̃1 = 0 (4.226)

L̃−1
1 ∂tL̃1 = 0 C̃−1

2 ∂tC̃2 = 0 (4.227)

Equation (4.227) implies that L̃1 and C̃2 are constant along the boundary. Boundary conditions

(4.218) and (4.219) imply

(g̃1, g̃2)(0) = (C̃2C̃1p̃1, L̃1p̃
−1
1 L̃−1

1 ) (4.228)

(g̃1, g̃2)(π) = (C̃4C̃3p̃2, L̃2p̃
−1
2 L̃−1

2 ) (4.229)

Using the chiral decomposition one can solve the boundary equation of motion

g1R(y) = L̃−1
1 g2L(−y)m (4.230)

g2R(y) = L̃1C̃
−1
2 g1L(−y)n (4.231)

Equations (4.230) and (4.231) indeed imply (4.228) with

p̃1(t) = C̃−1
2 g1L(t)ng−1

2L (t)L̃1 (4.232)

C̃1 = C̃−1
2 g1L(t)m−1n−1g−1

1L (t)C̃2 (4.233)

To have that C̃1 ∈ Cµ1

G we should require m−1n−1 ≡ R0 ∈ Cµ1

G .

To satisfy (4.229) we assume the following monodromy properties of g1L and g2L

g1L(y + 2π) = ρ−1
1 g1L(y)γ1 g2L(y + 2π) = ρ−1

2 g2L(y)γ2 (4.234)

Now one can show that (4.229) is satisfied with

p̃2(t) = L̃−1
2 L̃1C̃

−1
2 ρ1g1L(π + t)γ−1

1 ng−1
2L (π + t)L̃2 (4.235)

163



C̃3 = C̃−1
4 g1L(π + t)m−1γ2n

−1γ1(C̃−1
4 g1L(π + t))−1 (4.236)

if we require

ρ−1
2 = L̃2L̃

−1
1 (4.237)

and

ρ−1
1 C̃2L̃

−1
1 L̃2 = ρ−1

1 C̃2ρ̃
−1
2 = C̃4 (4.238)

where ρ̃2 = L̃−1
1 ρ2L̃1.

To have that C̃3 ∈ Cµ3

G we should require m−1γ2n
−1γ1 = γ̃2R0γ1 = Rπ ∈ Cµ3

G , where

γ̃2 = m−1γ2m.

The monodromies (4.234) as before can be realized in the terms of the decomposition of the

fields g1L and g2L as products:

g1L = h−1
B gA , g2L = h−1

D gC (4.239)

of the new fields hB, gA, hD, gC possessing the monodromy properties:

hB(2π) = hB(0)ρ1 , gA(2π) = gA(0)γ1 , (4.240)

hD(2π) = hD(0)ρ2 , gC(2π) = gC(0)γ2 , (4.241)

and satisfying (4.120).

The symplectic form of product of the gauged WZW models on the strip with boundary

conditions specified by the permutation branes can be written using the symplectic form density

(4.115) and the form $:

Ω
G/H
P =

k

4π

[∫ π

0

ΠG/H(g1, h1)dx+

∫ π

0

ΠG/H(g2, h2)dx+$(g1(0), g2(0))−$(g1(π), g2(π))

]
.

(4.242)

Substituting in (4.242) the symplectic form density (4.115) and using the transformation prop-

erty (4.217) we obtain:

Ω
G/H
P =

k

4π

[∫ π

0

Π(g̃1)dx+

∫ π

0

Π(g̃2)dx+$(L̃1, p̃1, C̃2, C̃1)−$(L̃2, p̃2, C̃4, C̃3)

]
, (4.243)
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where p̃1 and C̃1 defined in (4.232) and (4.233) and p̃2 and C̃3 defined in (4.235) and (4.236).

Using (4.44) one can obtain for (4.243):

Ω
G/H
P = ΩLG(s1, τ1) + ΩLG(s2, τ2)− ΩLG(s3, τ3)− ΩLG(s4, τ4) + Ωbndry

1 − Ωbndry
2 (4.244)

Ωbndry
1 =

k

4π
[ωτ1(γ1) + ωτ2(γ̃2) + ωµ1(R0)− ωµ3(Rπ) (4.245)

− tr(R−1
0 δR0δγ1γ

−1
1 )− tr(γ̃−1

2 δγ̃2δR0R
−1
0 )− tr(R−1

0 γ̃−1
2 δγ̃2R0δγ1γ

−1
1 )
]

Ωbndry
2 =

k

4π

[
ωτ3(ρ1) + ωτ4(ρ̃2)− ωµ2(C̃2) + ωµ4(C̃4) (4.246)

+ tr(δC̃2C̃
−1
2 δρ1ρ

−1
1 ) + tr(ρ̃−1

2 δρ̃2C̃
−1
2 δC̃2)− tr(C̃2ρ̃

−1
2 δρ̃2C̃

−1
2 δρ1ρ

−1
1 )
]

Comparing (4.244) with the formulae 4.8) and (4.30) we arrive at the conclusion that the phase

space of product of coset models on a strip with boundary conditions specified by permutation

branes is symplectomorphic to the phase space of the double Chern-Simons theory on an annulus

times the time-line and with G and H gauge fields both coupled to two Wilson lines.

4.6 Permutation branes in topological G/G coset

In this section we discuss permutation branes on the product of topological coset G/G×G/G.

In the previous section we have seen that the phase space of the product of the gauged WZW

models on a strip with boundary conditions given by the permutation branes is symplectomor-

phic to the phase space of the double Chern-Simons theory on an annulus times the time-line

with G and H gauge fields both coupled to two Wilson lines. In the case when G = H we

arrive at the conclusion that product of topological cosets G/G×G/G on a strip with boundary

conditions given by the permutation branes is equivalent to the Chern-Simons theory on the

torus T 2 = A ∪ (−A) times the time-line R with four Wilson lines. This can be verified by a

direct calculation. For the case G = H the bulk equations of motion (4.114) imply that g̃1 and

g̃2 are (t, x) independent.

Therefore one has:
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g̃1(0) = C̃2C̃1p̃1 = g̃1(π) = C̃4C̃3p̃2 (4.247)

g̃2(0) = L̃1p̃
−1
1 L̃−1

1 = g̃2(π) = L̃2p̃
−1
2 L̃−1

2 (4.248)

From equations (4.247) and (4.248) we get

mp̃2m
−1p̃−1

2 C̃−1
3 C̃−1

4 C̃2C̃1 = 1 (4.249)

where

m = L̃−1
1 L̃2 (4.250)

The symplectic form (4.243) in this case reduces to

Ω
G/G
P =

k

4π

[
$(L̃1, p̃1, C̃2, C̃1)−$(L̃2, p̃2, C̃4, C̃3)

]
, (4.251)

Comparing formulae (4.249) and (4.251) with the formulae (4.21) and (4.23) we arrive at the

mentioned symplectomorphism of the product of topological cosets G/G×G/G on a strip with

the boundary conditions given by the permutation branes and that of Chern-Simons theory on

the torus times the time-line with four Wilson lines.

This construction can be easily generalized to N -fold product of coset models G/H. The

ansatz for permutation branes has the form:

(g1, . . . , gN) = (C2C1pN−1 · · · p1, L1p
−1
1 L−1

1 , . . . , LN−1p
−1
N−1L

−1
N−1) (4.252)

where C1 ∈ Cµ1

G , C2 ∈ Cµ2

H , pi ∈ G, Li ∈ H. The ansatz is invariant under the N -fold adjoint

action : gi → higih
−1
i , where hi : Σ→ H. Using the Polyakov-Wiegmann identity (1.279) it is

straightforward to check the existence of the two-form $N satisfying the relation:

N∑
1

ωWZ(gi)|brane = d$N (4.253)

Performing the same steps as before we arrive at the conclusion, that the phase space of the

N -fold product of the gauged WZW model G/H on a strip with boundary conditions given by
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permutation branes is symplectomorphic to the phase space of the double Chern-Simons theory

on a sphere with N holes times the time-line and with G and H gauge fields both coupled to

two Wilson lines. For the special case of the toplogical coset G/G we get, that the phase space

of the N -fold product of the topological cosets G/G on a strip with boundary conditions given

by permutation branes is symplectomorphic to the phase space of Chern-Simons theory on a

Riemann surface of genus N − 1 times the time-line with four Wilson lines.
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Chapter 5

Duality Defects

5.1 Preliminaries

We review the construction of an action with defects [78, 163]. We locate the defect at the

vertical line S defined by the condition σ = 0. Denote by Σ1 the left half-plane (σ ≤ 0), and

by Σ2 the right half-plane (σ ≥ 0), and a pair of maps X : Σ1 → M1 and X̃ : Σ2 → M2,

where M1 and M2 are the target spaces for the two quantum field theories. Suppose we have

a submanifold Q of the cartesian product of target spaces: Q ⊂ M1 ×M2, with a connection

one-form A, and a combined map :

Φ : S →M1 ×M2 (5.1)

s 7→ (X(s), X̃(s))

which takes values in the submanifold Q. Q is called the world-volume of the defect.

In this setup we can write the action:

I =

∫
Σ1

dx+dx−L1 +

∫
Σ2

dx+dx−L2 +

∫
S

Φ∗A (5.2)

where

L1 = E(1)
mn∂X

m∂̄Xn, (5.3)

L2 = E(2)
mn∂X̃

m∂̄X̃n. (5.4)
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In this section we use the light-cone coordinates defined as

x± = τ ± σ, (5.5)

with E
(i)
mn being the components of two second rank tensors. The tensors E(i) are split as

E(i) = G(i) +B(i). (5.6)

where G(i) are the symmetric target space metrics of the two sigma models and B(i) are the

corresponding NS antisymmetric two-forms.

As a warm-up exercise we work out the following simple example, when we have on both

sides free scalars compactified on circles S1
X and S1

X̃
of radii R1 and R2:

L1 = R2
1∂X∂̄X (5.7)

and

L2 = R2
2∂X̃∂̄X̃. (5.8)

The world-volume of the defect is a product of the target spaces S1
X × S1

X̃
with the connection

A = −XdX̃. The curvature of this connection is F = dX̃ ∧ dX. This forms a Poincaré bundle

P [101]. The equations of motion on the defect line are:

R2
1(∂X − ∂̄X)− ∂τX̃ = 0 (5.9)

R2
2(∂X̃ − ∂̄X̃)− ∂τX = 0 (5.10)

For R2 = 1
R1

, (5.9) and (5.10) take the form:

R2
1(∂X − ∂̄X)− (∂X̃ + ∂̄X̃) = 0 (5.11)

(∂X̃ − ∂̄X̃)−R2
1(∂X + ∂̄X) = 0 (5.12)

Equations (5.11) and (5.12) imply

R2
1∂X = ∂X̃ (5.13)

R2
1∂̄X = −∂̄X̃ (5.14)
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which are the T-duality relations (1.227). Equations (5.13) and (5.14) also show that the defect

given by the Poincaré bundle P for R2 = 1
R1

is topological.

One generalization that comes to mind is a defect Pk with the same world-volume but with

k units of the flux above: F = kdX̃ ∧ dX. In the same way it is possible to show that this

defect is topological when the radii satisfy the relation

R1R2 = k (5.15)

and instead of (5.13) and (5.14) one obtains:

R2
1∂X = k∂X̃ (5.16)

R2
1∂̄X = −k∂̄X̃ (5.17)

These relations imply that the defect Pk combines the actions of the Zk orbifolding and

T-duality.

All this is in agreement with [14, 77], where more general submanifolds Q are considered.

There the worldvolume Q of the defect is either two dimensional with flux F = k1dX̃ ∧dX, but

allowed to wrap the product S1
X × S1

X̃
torus k2 times, or Q is made one dimensional winding

around the cycles (k1, k2) times. Then the existence of the topological defect is proved for the

radii satisfying the relations:

R1R2 =

∣∣∣∣k1

k2

∣∣∣∣ or
R2

R1

=

∣∣∣∣k1

k2

∣∣∣∣ (5.18)

where k1, k2 ∈ Z.

5.2 Factorized T-duality in non-linear sigma model

Consider the action:

S =

∫
dx+dx−(Gij +Bij)∂X

i∂̄Xj =

∫
dx+dx−Eij∂X

i∂̄Xj = (5.19)∫
dx+dx−(E11∂X

1∂̄X1 + E1N∂X
1∂̄XN + EM1∂X

M ∂̄X1 + EMN∂X
M ∂̄XN)
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Suppose that Gij and Bij do not depend on X1. We assume here that lower case indices

run from 1 to the dimension of the target space, and upper case indices run from 2 to the

dimension of the target space. Replace derivatives of X1 by vector fields (A, Ā) and add a

lagrange multiplier field X̃1 to force the vector field to be the derivatives of a scalar:

S =

∫
dx+dx−(E11AĀ+ E1NA∂̄X

N + EM1∂X
M Ā+ EMN∂X

M ∂̄XN + X̃1(∂Ā− ∂̄A)) (5.20)

Intergrating out first X̃1 we obtain ∂Ā− ∂̄A = 0 which can be solved setting

A = ∂X1 and Ā = ∂̄X1, (5.21)

and we go back to the original action. If we first integrate out the vector field:

A =
1

E11

(∂X̃1 − EM1∂X
M) and Ā = − 1

E11

(∂̄X̃1 + E1M ∂̄X
M) (5.22)

we obtain T-dualized action

S =

∫
dx+dx−(Ẽ11∂X̃

1∂̄X̃1 + Ẽ1N∂X̃
1∂̄XN + ẼM1∂X

M ∂̄X̃1 + ẼMN∂X
M ∂̄XN) (5.23)

where

Ẽ11 =
1

E11

(5.24)

Ẽ1M =
E1M

E11

ẼM1 = −EM1

E11

ẼMN = EMN −
EM1E1N

E11

In components one has:

G̃11 =
1

G11

(5.25)

G̃1M =
B1M

G11

B̃1M =
G1M

G11

G̃MN = GMN −
1

G11

(GM1G1N +B1NBM1)

B̃MN = BMN −
1

G11

(GM1B1N +G1NBM1)
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The capital latin indices run from 2 to dimM .

The dual coordinate X̃1 is related to the original X1 by the relations:

∂X̃1 = E11∂X
1 + EM1∂X

M and ∂̄X̃1 = −(E11∂̄X
1 + E1M ∂̄X

M) (5.26)

The rest of the coordinates remains unchanged.

Consider the action (5.2) with a defect as in the situation above, where M and M̃ are related

by the equations (5.24), Q is the correspondence space, given by the equations

XN = X̃N , N = 2 . . . dimM (5.27)

with the connection

A = −X1dX̃1 (5.28)

and the curvature

F = dX̃1 ∧ dX1. (5.29)

In this case the action (5.2) yields

Ej1∂X
j − E1j ∂̄X

j − ∂τX̃1 = 0 (5.30)

EjN∂X
j − ENj ∂̄Xj − ẼjN∂X̃j + ẼNj ∂̄X̃

j = 0, N = 2 . . . dimM (5.31)

Ẽj1∂X̃
j − Ẽ1j ∂̄X̃

j − ∂τX1 = 0. (5.32)

The index j runs from 1 to dimM . Additionally the conditions (5.27) imply

∂τX
N = ∂τX̃

N , N = 2 . . . dimM (5.33)

or in the coordinates (5.5):

∂XN + ∂̄XN = ∂X̃N + ∂̄X̃N , N = 2 . . . dimM (5.34)
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Solving the equations (5.30), (5.31), (5.32) and (5.34) one obtains:

∂̄X̃N = ∂̄XN N = 2, . . . dimM (5.35)

∂X̃N = ∂XN N = 2, . . . dimM

∂X̃1 = E11∂X
1 + EM1∂X

M

∂̄X̃1 = −(E11∂̄X
1 + E1M ∂̄X

M)

We see that equations (5.35) coincide with the T-duality relations (5.26). Therefore the defect

given by the Poincaré bundle on the correspondence space induces T-duality.

One can check that (5.25) and (5.35) imply

T = Gij∂X
i∂Xj = T̃ = G̃ij∂X̃

i∂X̃j (5.36)

and

T̄ = Gij ∂̄X
i∂̄Xj = ˜̄T = G̃ij ∂̄X̃

i∂̄X̃j (5.37)

which means that the defect is topological.

In this general set-up one can also consider the defect with the same world-volume given by

equations (5.27) but with the flux

F = kdX̃1 ∧ dX1. (5.38)

Repeating the calculations above one can show that this defect is topological if E and Ẽ are

related by the equations

Ẽ11 =
k2

E11

(5.39)

Ẽ1M =
kE1M

E11

ẼM1 = −kEM1

E11

ẼMN = EMN −
EM1E1N

E11

Again the effects of the Zk orbifolding of the first coordinate and the T-duality are combined.
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All this can be generalized to T-dualizing of several coordinates. Suppose we T-dualize the

first n coordinates, indexed by Greek letters. The matrix E is broken to four pieces:

E =

 Eαβ EαN

EMβ EMN

 (5.40)

The transformed background has the form

Ẽ =

 E−1
αβ E−1

αβEβN

−EMαE
−1
αβ EMN − EMαE

−1
αβEβN

 (5.41)

Now we should consider the defect, with the world-volume

XN = X̃N , N = n+ 1, . . . dimM, (5.42)

with the connection

A = −
n∑
1

XαdX̃α (5.43)

and the curvature

F =
n∑
1

dX̃α ∧ dXα. (5.44)

In the same way it can be shown that for M and M̃ related by equations (5.41) this defect is

topological and implies the defect equations:

∂̄X̃N = ∂̄XN N = n+ 1, . . . dimM (5.45)

∂X̃N = ∂XN N = n+ 1, . . . dimM

∂X̃α = Eβα∂X
β + EMα∂X

M

∂̄X̃α = −(Eαβ∂̄X
β + EαM ∂̄X

M)

We have obtained again T-duality relations for several T-dualized coordinates.

5.3 Defects and Fourier-Mukai transform

As we mentioned, a topological defect can be fused with a boundary, producing new boundary

condition from the old one. From the other side boundary conditions correspond to D-branes,
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which can be characterized by their RR charges or by elements of the K-theory. Therefore an

action of the defect on the Ramond-Ramond charges and K-theory elements can be defined.

It is expected [15, 35, 57, 78, 163, 166] that the action should be “Fourier-Mukai” type with

a kernel given by the exponent of the gauge invariant flux F = B̂ − B + F on defect, or

by the defect bundle P correspondingly. Saying Fourier-Mukai type transform we mean the

following construction.∗ . Suppose we can associate to a target space X a ring D(X) ( e.g.

cohomology groups, K-theory groups, etc.), in a way that for a map p : X1 → X2 exist pullback

p∗ : D(X2)→ D(X1) and pushforward p∗ : D(X1)→ D(X2) maps. Assume one has an element

K ∈ D(X × Y ). Now we can define the Fourier-Mukai transform, FM(F ): D(X) → D(Y )

with the kernel K by the formula:

FM(F ) = pY∗ (K · pX∗F ) (5.46)

where F ∈ D(X), and pX : X × Y → X, pY : X × Y → Y are projections. One can see that

usual Fourier transform has this form with the Riemann integral as pushforward map.

To derive the transformation of the RR fields under the T-duality several approaches were

developed: via dimensional reduction [23, 127], vertex operators for RR fields [143], the grav-

itino supersymmetry transformation [104], pure spinor formalism [22]. Dimensional reduction

approach brings to the expression:

Ĝ(n)
M...NA1 = G(n−1)

M...NA − (n− 1)
G(n−1)

[M...N |1G|A]1

G11

(5.47)

Ĝ(n)
M...NAB = G(n+1)

M...NAB1 + nG(n−1)
[M...NABB]1 + n(n− 1)

G(n−1)
[M...N |1B|A|1G|B]1

G11

(5.48)

Three other approaches bring to the expression:

P̂ = PΩ−1 (5.49)

where P = eΦ

2

∑
k

1
k!
Gµ1...µkΓ

µ1...µk and k runs the values k = 1, 3 . . . 9 in the case of IIB, and

the values k = 0, 2 . . . 10 in the case of IIA. The curved indices Gamma matrices are defined

∗The paragraph below is neither a rigorous nor a precise definition of the Fourier-Mukai transform, and only

has a goal to outline basic ideas. For the rigorous definitions see [19,108] and references therein.
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as usual by contracting with the tetrads eAµ . The matrix Ω is spinor representation of the

relative twist between the left and right movers. For example for T-duality in the direction of

coordinate 1, it is spinor representation of the parity operator in the direction 1: Γ1Γ11.

Hori suggested in [106] that the RR fields of the theory on T n×M and those of the T-dual

theory on T̂ n ×M are related by a Fourier-Mukai transform [19,108]:

Ĝ =

∫
Tn
G ∧ eF =

∫
Tn
G ∧ eB̂−B+

∑n
i=1 dt̂i∧dti (5.50)

Here B is the Neveu-Schwarz B-field and G =
∑

p Gp is the sum of gauge invariant RR field

strength where the sum is over p = 0, 2, 4, . . . for Type IIA and p = 1, 3, . . . for Type IIB. The

integrand in (5.50) is considered as a form on the space M × T n × T̂ n and pushforward map

is fiberwise integration
∫
Tn

[31], mapping forms on M × T n × T̂ n to forms on M × T̂ n. The

integral operates on the forms of the highest degree n in dti and sets to zero forms of lower

degree in dti:

f(x, t̂i, t
i)p∗ω ∧ dti1 ∧ . . . dtir 7→ 0, r < n (5.51)

f(x, t̂i, t
i)p∗ω ∧ dt1 ∧ . . . dtn 7→ ω

∫
Tn
f(x, t̂i, t

i)dt1 . . . dtn

Here p is the projection M × T n × T̂ n → M × T̂ n, ω is a form on M × T̂ n, f(x, t̂i, t
i) is an

arbitrary function and x denotes a point in M . The fiberwise integration is actually Berezin

integration, which is not surprising when one remembers that the one-forms dti anticommute.

Since the gauge invariant flux F satisfies the condition

dF = Ĥ −H , dB = H , dB̂ = Ĥ (5.52)

and the exterior differentiation d commutes with the fiberwise integration, one can show that

the dual forms satisfy the equation [32]:

(d− Ĥ) ∧ Ĝ =

∫
Tn
eF ∧ (d−H) ∧ G (5.53)

This implies that dH = d − H closed forms mapped to dĤ = d − Ĥ closed form. This means

that if the RR fields G satisfy the supergravity Bianchi identity, so do the dual RR fields Ĝ.
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Note that the kernel of the Fourier-Mukai transform (5.50) is indeed the exponential of the

gauge invariant combination of the B fields and the flux of the T-duality defect (5.44):

eF = eB̂−B+
∑n
i=1 dt̂i∧dti (5.54)

Let us check that the formula (5.50) produces the known transformation rules of the Ramond-

Ramond fields for the case of the abelian T-dualization in the direction of one coordinate, which

we choose to be the first one.

Using transformation rules (5.25), (5.50) takes the form:

Ĝ =

∫
S1

G ∧ e(A1+dt̂1)∧(A2+dt1) =

∫
S1

G ∧ (1 + (A1 + dt̂1) ∧ (A2 + dt1)) (5.55)

where

A1 = B1NdX
N and A2 =

G1N

G11

dXN (5.56)

Taking G in the form

G = G(0) + G(1) ∧ dt1 (5.57)

and using the rules (5.51), one obtains

Ĝ = Ĝ(0) + Ĝ(1) ∧ dt̂1 (5.58)

where

Ĝ(0) = G(1) + G(0) ∧ A1 + G(1) ∧ A1 ∧ A2 (5.59)

and

Ĝ(1) = G(0) − G(1) ∧ A2 (5.60)

5.4 Defects and T-duality on lens space

5.4.1 Fourier-Mukai kernel of SU(2) WZW model and lens space

T-duality

The construction of the previous section can be applied fibrewise to torus fibration and can be

expected to relate pairs of torus fibrations π : E →M and π̃ : Ẽ →M . It should be noted that
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in this case the fibre product E ×M Ẽ appearing e.g. in [32] can be identified with the subset

of elements of the product space E × Ẽ of pairs (e, ẽ) with π(e) = π̃(ẽ). This submanifold is

the world volume Q of the relevant bibrane.

We exemplify [163] the situation in the case of the T-duality relating conformal sigma-models

with a lens space as a target space and the WZW theory based on the compact connected

Lie group SU(2) at level k. As we explained in section 2.2.3, the relevant lens space is a

quotient of the group manifold SU(2) by the right action of a cyclic subgroup Zk of a maximal

torus of SU(2). Recall that in the Euler coordinates for SU(2) (2.66), this corresponds to the

identification ϕ ∼ ϕ+ 4π
k

.

We use another parametrisation [94] of the group manifold SU(2) in terms of Pauli matrices,

g = eiφ
σ3
2 eiθ

σ2
2 ei(ξ−φ)

σ3
2 , (5.61)

in which the metric takes form

ds2 = (dξ − (1− cos θ) dφ)2 + dθ2 + sin2 θ dφ2 (5.62)

with θ ∈ [0, π], φ ∈ [0, 2π] and ξ ∈ [0, 4π].

Identifying ξ as the fibre coordinate exhibits the structure of the group manifold SU(2) as

an S1 bundle over S2 of monopole charge 1, the Hopf bundle. Considering the bundle with

charge m amounts to the substitution ξ → ξ
m

. Due to the orbifold description of the lens space

SU(2)/Zk, the latter can be considered as an S1-bundle over S2 with Chern class k and thus

admits a parametrization as in (5.61), but with ξ ∼ ξ + 4π
k

. It is convenient to reparameterize

the lens space bundle coordinate ξ̃ as ξ̃ = ξ′/k.

To the S1-bundle description of the lens space and the group manifold, we can apply the

standard geometric T-duality construction [32] for torus fibrations. It involves a correspondence

space E ×M Ẽ, where in our case E := SU(2), Ẽ is the lens space and the base manifold is

M := S2. It leads to the following relations for the first Chern classes of the S1-bundles on M

and the three-forms H and H̃ on E and Ẽ, respectively:

F = c1(E) = π̃∗H̃ and F̃ = c1(Ẽ) = π∗H , (5.63)
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where π∗ is integration on the S1-fibre. It is observed in [32] that the pullbacks π∗F and π̃∗F̃

are exact on E and Ẽ respectively, and therefore can be written as

π∗F = dA and π̃∗F̃ = dÃ, (5.64)

where A ∈ Ω1(E) and Ã ∈ Ω1(Ẽ) are global one-forms on E and Ẽ, respectively, which are

assumed to be normalized such that

π∗A = 1 = π̃∗Ã (5.65)

It is shown in Section 3 of [32] that there exists a three-form Ω on the base manifold M that

obeys the two relations

H = A ∧ π∗F̃ − π∗Ω and H̃ = π̃∗F ∧ Ã− π̃∗Ω . (5.66)

One then introduces a two-form ω on the correspondence space E ×M Ẽ by

ω := p̃∗Ã ∧ p∗A (5.67)

where p and p̃ are the projections E ×M Ẽ → E and E ×M Ẽ → Ẽ respectively. They obey

the relation πp = π̃p̃.

It follows from (5.66) and (5.64) and commutativity p∗π∗ = p̃∗π̃∗, that

dω = −p̃∗H̃ + p∗H (5.68)

This two-form also enters [32] in the following isomorphism of twisted cohomologies

T∗ : p∗ ◦ eω ◦ p̃∗ : H•(Ẽ, H̃)→ H•+1(E,H) . (5.69)

Let us comment on the important role of the equation (5.68) in the isomorphism (5.69).

It is shown in [32] that thanks to this equation H-twisted cohomologies mapped to H̃-twisted

cohomologies. On the other hand, this equation coincides with equation (3.24), which was

derived in [78] from the requirement of a well-defined worldsheet action. This coincidence can

be seen as additional evidence for the relation between defects and kernels of Fourier-Mukai

transforms we propose in this thesis.
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In the case when E = SU(2) and Ẽ is a lens space, this yields

H = k
16π2 sin θ dφ dθ dξ

F = 1
4π

sin θ dφ dθ

A = 1
4π

(dξ − (1− cos θ) dφ)

(5.70)

and

H̃ = 1
16π2 sin θ dφ dθ dξ′

Ã = 1
4π

(dξ′ − k(1− cos θ) dφ)

F̃ = k
4π

sin θ dφ dθ

(5.71)

and thus surpressing the projectors p and p̃ for brevity in calculations in explicit coordinates

Ã ∧ A =
1

16π2
(da ∧ dξ + (1− cos θ)dφ ∧ da) (5.72)

where a is defined by the equation

ξ̃ =
ξ′

k
= ξ +

a

k
. (5.73)

5.4.2 Defect operators on bulk fields

In this section, we describe defects by their action on bulk fields. In the case of rational

conformal field theories, it is known (see Proposition 2.8 of [69]) that this action characterizes

a defect uniquely.

The bulk partition function for the rational conformal field theory associated to a lens space

is

Z(q) =

k/2∑
j=0

∑
n∈Z

χ
SU(2)
j (q)χPFjn (q̄)ψ

U(1)
−n (q̄) . (5.74)

To derive conformal defects between SU(2)k and the lens space SU(2)/Zk we need the following

endomorphisms of a direct sum of Fock spaces for left movers and right movers, respectively:

P
U(1)
r± = exp

[
±
∞∑
n=1

α0
−nα

1
n

n

]∑
l∈Z

|r + 2kl√
2k
〉0 ⊗ 1〈±

r + 2kl√
2k
| (5.75)

P̄
U(1)
r′± = exp

[
±
∞∑
n=1

α̃0
−nα̃

1
n

n

]∑
l′∈Z

| ± r′ + 2kl′√
2k
〉0 ⊗ 1〈

r′ + 2kl′√
2k
| , (5.76)
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where the subscripts 0 and 1 distinguish free boson theories on the two sides of the defect.

The bra- and ket-states are highest weight states in Fock spaces. They obey the following

conservation equations for the U(1)-currents

J3
0 ± J3

1 = 0 , J̄3
0 ± J̄3

1 = 0 , (5.77)

where e.g. the first equation is a short hand for the intertwining property

P
U(1)
± J3

1 = ∓J3
0P

U(1)
± .

Similarly, we consider for the parafermion theories APF (k)
0 ×APF (k)

1 the following two operators

P PF
[j,n] =

∑
N

|j, n,N〉0 ⊗ 1〈j, n,N | , (5.78)

P̄ PF
[j,n] =

∑
M

|j, n,M〉0 ⊗ 1〈j, n,M | , (5.79)

where the sums over M and N are over orthonormal bases of the parafermion state spaces.

Here j ∈ {0, 1
2
, 1, . . . k

2
} and n ∈ Z/2kZ satisfy the constraint 2j + n = 0 mod 2. The pairs

(j, n) and (k/2− j, k + n) have to be identified.

Our starting point are symmetry preserving defects in the SU(2)-theory. The corresponding

operators on bulk fields can be expressed in terms of the modular matrix S of SU(2) and the

identity operators on irreducible highest weight modules of the corresponding untwisted affine

Lie algebra,

P
SU(2)
j =

∑
N

|j,N〉0 ⊗ 1〈j,N | , (5.80)

P̄
SU(2)
j =

∑
M

|j,M〉0 ⊗ 1〈j,M | , (5.81)

where the sums over M and N are over orthonormal bases of the SU(2) state spaces. These

endomorphisms preserve, of course, all SU(2) symmetries,

Ja0 + Ja1 = 0 , (5.82)

J̄a0 + J̄a1 = 0 , (a = 1, 2, 3) . (5.83)

The action of a symmetry preserving defect on bulk fields is given in terms of these endomor-

phisms by [138]:

Xa =
∑
j

Saj
S0j

P
SU(2)
j P̄

SU(2)
j . (5.84)
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Since in the situation at hand no field identification fixed points occur, we can apply the

procedure described in [123, 160] to derive a new family of defects separating SU(2)k and the

lens space SU(2)/Zk. Performing a T-duality in (5.84) yields

Y AB
a =

∑
j

∑
n

Saj
S0j

P
SU(2)
j P̄ PF

j,n P̄
U(1)
n− . (5.85)

The defects (5.85) preserve all left moving currents, but only the right moving current corre-

sponding to the maximal torus,

Ja0 + Ja1 = 0 , (a = 1, 2, 3) (5.86)

J̄3
0 − J̄3

1 = 0 . (5.87)

As a consequence of these equations, the defects (5.85) transform A-type branes on SU(2)k to

B-type brane on SU(2)/Zk.

A third family of defects is obtained by summing over the images of (5.84) under the action

of Zk, with a prefactor determined by the Cardy condition:

Y AA
a =

√
k
∑
j

Saj
S0j

P
SU(2)
j

(
P̄ PF
j,0 P̄

U(1)
0+ + P̄ PF

j,k P̄
U(1)
k+

)
. (5.88)

The defects (5.88) satisfy the conservation equations

Ja0 + Ja1 = 0 , (a = 1, 2, 3) (5.89)

J̄3
0 + J̄3

1 = 0 , . (5.90)

and transform A-type branes on SU(2)k to A-type branes on the lens space SU(2)/Zk.

Performing a T-duality on the defects (5.88), one derives another family of defects on SU(2)k

that map an A-type brane on SU(2)k to a B-type brane on SU(2)k:

XAB
a =

√
k
∑
j

Saj
S0j

P
SU(2)
j

(
P̄ PF
j,0 P̄

U(1)
0− + P̄ PF

j,k P̄
U(1)
k−

)
. (5.91)

The defects (5.91) satisfy the conservation equations

Ja0 + Ja1 = 0 , (a = 1, 2, 3) (5.92)

J̄3
0 − J̄3

1 = 0 , . (5.93)
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Summing over images and performing T-duality in the left moving sector of (5.88) yields a

fifth family of defects that map B-type branes on SU(2)k to A-type branes on SU(2)/Zk:

Y BA
a = k

∑
j

Saj
S0j

(
P PF
j,0 P

U(1)
0− + P PF

j,k P
U(1)
k−

)(
P̄ PF
j,0 P̄

U(1)
0+ + P̄ PF

j,k P̄
U(1)
k+

)
. (5.94)

The defects (5.94) satisfy the conservation equations:

J3
0 − J3

1 = 0 (5.95)

J̄3
0 + J̄3

1 = 0 , . (5.96)

5.4.3 Geometry of defects

We finally determine the geometry of the family of defects (5.85) relating SU(2) and the lens

space SU(2)/Zk. To this end, we parametrize bulk fields in terms of Euler angles ~θ using the

representation function Djmm′ of the spin j representation (2.34):

|~θ〉 :=
∑
j,m,m′

√
2j + 1Djmm′(~θ)|j,m,m

′〉 . (5.97)

We are thus interested in the overlap 〈~θ0|Y AB
a |~θ1〉 as a function of two sets of Euler angles. As

in the calculation in [29], the definition of the lens spaces as right quotients implies that only

terms of the defect operator (5.85) with n = 0, k contribute to the overlap; in the large k limit

also the term with n = k can be ignored. Therefore, we arrive in the limit of large level k at

the function

〈~θ0|Y AB
a |~θ1〉 ∼

∑
j∈Z

k

π
sin[(2j + 1)ψ̂]Dj00(g−1

0 (~θ0)g1(~θ1)) , (5.98)

where the angle ψ̂ is given in terms of a by ψ̂ := (2a+1)π
k+2

. Using (2.84) and repeating the same

steps as in section 2.2.4 we obtain

〈~θ0|Y AB
a |~θ1〉 ∼

Θ(cos δ − cos 2ψ̂)√
cos δ − cos 2ψ̂

. (5.99)

Here Θ is the Heavyside step function and δ is the second Euler angle of the product element

g−1
0 (~θ0)g1(~θ1). As we explained in section 2.2.2 equation (5.99) implies that the “difference”
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g−1
0 (~θ0)g1(~θ1) takes its values in a subset consisting of products of an element in a fixed conjugacy

class C with an element L ∈ U(1):

g−1
0 (~θ0)g1(~θ1) ∈ CL . (5.100)

We next determine the two-form ω satisfying equation (H1−H2)|bibrane = dω that is part of

the bibrane-data. Its value in the element xfx−1L with f a fixed element of the conjugacy class

C and x ∈ G and L ∈ U(1) arbitrary, can be derived from the Polyakov-Wiegmann identity

(1.279). We compute for g−1
0 g1 ∈ CL the difference

ωWZ(g0)− ωWZ(g1) = ωWZ(g0)− ωWZ(g0CL)

= ωWZ(g0)− [ωWZ(g0) + ωWZ(CL)− dTr
(
g−1

0 dg0d(CL) (CL)−1
)
]

= −ωWZ(C) + dTr (C−1dC dLL−1) + dTr
(
g−1

0 dg0 d(CL)(CL)−1
)
.

As a consequence, the two-form

ω :=
k

8π2
Tr(C−1dC dLL−1 + g−1

0 dg0 d(CL)(CL)−1)− ωf (x) , (5.101)

where the two form ωf (x) is defined in (2.6):

ωf (x) =
k

8π2
Tr(x−1dxfx−1 dxf−1) (5.102)

and obeys (2.4), has the desired property k
8π2ω

WZ(g0)− k
8π2ω

WZ(g1) = dω. The coefficient fixed

by the requirement
∫
SU(2)

k
8π2ω

WZ(g) = k to make contact with the geometrical consideration.

Asymptotically, for large k, the situation simplifies in the case when f ≈ e, and the bibrane

worldvolume, i.e. the correspondence space, consists of all pairs of the form (g0, g0L), with

g0 ∈ SU(2) and L ∈ U(1). The corresponding two-form takes the form

ω =
k

8π2
Tr(g−1

0 dg0 dLL−1) (5.103)

In this case, the defect acts as an isomorphism on bulk fields, and we thus expect a relation to

T-duality. Indeed, we find in the parametrization (5.61)

(g−1dg)11 = −(g−1dg)22 = i
dξ

2
− idφ

1− cos θ

2
. (5.104)
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Writing L = ei
aσ3
2k , we see that the two-form (5.103) coincides with the two-form (5.72) from the

geometric approach. This nicely demonstrates how geometric structure familiar from Fourier-

Mukai transformations is encoded in the algebraic data describing defects.

5.5 Defects between vectorially and axially gauged WZW

models

In this section we construct topological defects mapping the axially gauged G
U(1) axial

WZW

model to the vectorially gauged G
U(1) vectorial

WZW model for a general group G. For the case

G = SU(2) we analyze the corresponding operators acting in the Hilbert space of parafermions

and find that for the level k parafermions there are k+1 such topological defects, labeled by the

integrable spin j = 0, . . . , k
2
. This is another example of the case of a non trivial null space for

the defect. The object is to realize these defects in the Lagrangian approach as a line separating

axially and vectorially gauged WZW models. This problem is solved in this section. First we

present the geometrical ansatz for the defects (formula (5.112) below) and check that it leads

to the action that glues axially and vectorially gauged models. Then we study in detail the

defect given by j = 0 and show that it coincides with the defect with the flux (5.38), studied

in the previous section, and implements Zk orbifolding together with the T-duality. In the rest

of the section we construct defects as operators in the Hilbert space of the parafermions.

5.5.1 Geometry and flux of the defects gluing axially-vectorially

gauged models

The action of the gauged WZW model is studied in section 1.5.5

SG/H(g, A) = SWZW + Sgauge , (5.105)

where

SWZW(g) =
k

4π

∫
Σ

Tr(∂+g∂−g
−1)dx+dx− +

k

4π

∫
B

1

3
tr(g−1dg)3 (5.106)
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≡ k

4π

[∫
Σ

dx+dx−Lkin +

∫
B

ωWZ

]
,

Sgauge =
k

2π

∫
Σ

Lgauge
v dx+dx− , (5.107)

Lgauge
v (g, A) = tr[−g−1∂+gA− + ∂−gg

−1A+ + A−g
−1A+g − A+A−] . (5.108)

Here H is subgroup of G, g ∈ G and B is a 3-manifold such that ∂B = Σ and A is a gauge

field taking values in the H Lie algebra.

Using the Polyakov-Wiegmann identities (1.278) and (1.279) it is possible to verify that the

action (5.105) is invariant under the gauge transformation:

g → hgh−1 , A→ hAh−1 + dhh−1 (5.109)

for h : Σ→ H. This is a vectorially gauged model.

For the case of H = U(1) considered here there exists the system is axially gauge invariant

under the transformations

g → hgh , A→ A+ dhh−1 (5.110)

for h : Σ→ U(1). In the axially gauged model the gauge field dependent term is

Lgauge
a (g, A) = tr[g−1∂+gA− + ∂−gg

−1A+ − A−g−1A+g − A+A−] . (5.111)

As we explained in section 3.2 to write the defect action with WZW terms we should specify a

bibrane with a two-form satisfying the condition (3.24).

We suggest the following ansatz:

(g1, g2) = (Cµp, L1pL2) (5.112)

Here p ∈ G, L1 ∈ U(1), L2 ∈ U(1) and Cµ is a conjugacy class

Cµ = le2iπµ/kl−1, l ∈ G (5.113)

where µ ≡µ · H is a highest weight representation integrable at level k, taking value in the

Cartan subalgebra of the G Lie algebra. This condition is a consequence of global issues [78].

Note that under the full gauge transformation

g1 7→ h1g1h
−1
1 and g2 7→ h2g2h2 (5.114)
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the parameters in (5.112) transform as

Cµ 7→ h1Cµh
−1
1 (5.115)

p 7→ h1ph
−1
1

L1 7→ L1h
−1
1 h2

L2 7→ L2h1h2

Using the Polyakov-Wiegamann identity (1.279) one can check that the condition (3.24) is

satisfied with the following two-form

$(Cµ, p, L1, L2) = ωµ(Cµ)− Tr(C−1
µ dCµdpp

−1) + Tr(p−1dpdL2L
−1
2 ) + (5.116)

+Tr(L−1
1 dL1dpp

−1) + Tr(L−1
1 dL1pdL2L

−1
2 p−1)− Tr(L−1

1 dL1L
−1
2 dL2)

where ωµ(Cµ) = Tr(l−1dle2iπµ/kl−1dle−2iπµ/k) is defined in(2.6). Now the full action can be

written as

SA−V = Skin−def + Sgauge−def + Stop−def (5.117)

here

Skin−def =
k

4π

∫
Σ1

dx+dx−Lkin(g1) +
k

4π

∫
Σ2

dx+dx−Lkin(g2) (5.118)

and

Sgauge−def =
k

2π

∫
Σ1

Lgauge
v (g1, A1)dx+dx− +

k

2π

∫
Σ2

Lgauge
a (g2, A2)dx+dx− (5.119)

Stop−def =
k

4π

∫
B1

ωWZ(g1) +
k

4π

∫
B2

ωWZ(g2)− k

4π

∫
D

$(g1, g2) (5.120)

with $(g1, g2) given by (5.116).

It is cumbersome but straightforward to check that the action (5.117) is invariant the gauge

transformations:

g1 7→ h1g1h
−1
1 , A1 7→ A1 + dh1h

−1
1 (5.121)

g2 7→ h2g2h2 , A2 7→ A2 + dh2h
−1
2

where h1 : Σ1 → U(1) and h2 : Σ2 → U(1).
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5.5.2 Duality defect for the parafermion disc SU(2)/U(1)

Specialize now to the case of G = SU(2) [17].

We write the group elements using the Euler coordinates:

g = eiχ
σ3
2 eiθσ1eiϕ

σ3
2 = ei(φ̃+φ)

σ3
2 eiθσ1ei(φ̃−φ)

σ3
2 (5.122)

The ranges of the variables are 0 ≤ θ ≤ π
2
, 0 ≤ ϕ ≤ 2π, 0 ≤ χ ≤ 4π, −π ≤ φ, φ̃ ≤ π.

The axially gauged model SU(2)
U(1) axial

is derived by the gauging of the U(1) symmetry corre-

sponding to shifting of φ̃ and has the target space MA with the following metric and dilaton

field [96,123]:

ds2 = k(dθ2 + tan2 θdφ2) (5.123)

eΦ =
gs

cos θ

φ ∼ φ+ 2π

Using the T-duality rules of section 5.2 one can see that T-dual background to the axially

gauged model is

d̃s
2

= k

(
dθ̃2 +

dφ̃2

tan2 θ̃

)
(5.124)

eΦ̃ =
gs√
k sin θ̃

φ̃ ∼ φ̃+
2π

k

Vectorially gauged model SU(2)
U(1) vec

is derived by the gauging of the U(1) symmetry corre-

sponding to the shifting of φ and has the target space MV with the metric and the dilaton:

d̃s
2

= k

(
dθ̃2 +

dφ̃2

tan2 θ̃

)
(5.125)

eΦ̃ =
gs

sin θ̃

φ̃ ∼ φ̃+ 2π

Comparing (5.124) and (5.125) one can see that the background T-dual to the axially gauged

model is the Zk orbifold of the vectorially gauged model.
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According to the results of section 5.2 the world-volume of the T-duality defect DT
A between

backgrounds (5.123) and (5.124) is the submanifold θ = θ̃ of the product MV ×MA with the

flux F = dφ ∧ dφ̃. The defects between backgrounds (5.123) and (5.125) DV−A has the same

world volume but the flux is F = kdφ ∧ dφ̃. Consider the defects given by equation (5.112).

The conjugacy class takes the form Cj = le
2πijσ3
k l−1, j = 0, 1

2
. . . k

2
, (since we are working in the

specific case of G = SU(2), the general subscript µ was changed to j, which is standard for

this group) and therefore we have a family of the defects labelled by j. Now we show that the

T-duality defect above, DV−A, corresponds to j = 0.

Let us examine this defect in more detail. Parameterizing L1 = eiα1σ3/2 and L2 = eiα2σ3/2

and writing p using the Euler coordinates, we obtain for this special defect:

(g1, g2) =
(
ei(κ̃+κ)

σ3
2 eiθσ1ei(κ̃−κ)

σ3
2 , ei(κ̃+κ+α1)

σ3
2 eiθσ1ei(κ̃−κ+α2)

σ3
2

)
(5.126)

From (5.126) it can be seen that this defect satisfies the condition θ = θ̃. To project down this

defect to the product space MV ×MA we impose gauge fixing conditions κ = 0 for the first

vectorially gauged model and

(κ̃+ κ+ α1) + (κ̃− κ+ α2) = 0 (5.127)

for the axially gauged model. From (5.127) one obtains:

κ̃ = −α1 + α2

2
(5.128)

Therefore the angles φ and φ̃ of the target spaces are related to the defect parameters by

equations:

φ̃ = κ̃ = −α1 + α2

2
(5.129)

φ =
α1 − α2

2
(5.130)

Let us evaluate the two-form (5.116). For j = 0 it simplifies to:

$(p, L1, L2) = Tr(p−1dpdL2L
−1
2 ) + Tr(L−1

1 dL1dpp
−1) + (5.131)

Tr(L−1
1 dL1pdL2L

−1
2 p−1)− Tr(L−1

1 dL1L
−1
2 dL2)
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This implies

Tr(p−1dpdL2L
−1
2 ) = −(dκ̃ cos2 θ − dκ sin2 θ)dα2 (5.132)

Tr(L−1
1 dL1dpp

−1) = −dα1(dκ̃ cos2 θ + dκ sin2 θ)

Tr(L−1
1 dL1pdL2L

−1
2 p−1) = −dα1dα2(cos2 θ − 1

2
)

−Tr(L−1
1 dL1L

−1
2 dL2) =

dα1dα2

2

Using that κ = 0 and (5.128), (5.129) and (5.130) one obtains that the θ dependent terms

drop and we end up with

k

4π
$(p, L1, L2) =

k

4π
dα1dα2 =

k

2π
dφ̃dφ (5.133)

This is the flux on the defect DV−A and as demonstrated in sec. 2, this defect is topological.

Geometry for a generic defect can be concluded noting that the bibrane (5.112) geometrically

(but not the flux and symmetries) is folded version of the symmetry-breaking type II brane

considered in section 2.5.2. Using the arguments explained there, one can conclude that a

generic defect has a geometry given by the inequality (2.157):

cos 2(θ − θ̃) ≥ cos
4πj

k
(5.134)

5.5.3 Axial-vectorial defects as operators in the parafermion Hilbert

space

It has been shown that the backgrounds (5.123) and (5.125) correspond to the parafermion

theory, and therefore the defects above can be realized as operators in the parafermions Hilbert

space.

To construct the corresponding operator one should start with the Cardy defect in the

parafermion theory [138]:

Xĵ,n̂ =
∑
j,n

SPF
(ĵ,n̂);(j,n)

SPF
(0,0);(j,n)

PPF
j,n P̄

PF
j,n (5.135)

Here SPF
(ĵ,n̂);(j,n)

is the parafermion matrix of the modular transformation (1.333)

SPF
(ĵ,n̂);(j,n)

=

√
2

k
S

SU(2)

ĵj
e
iπnn̂
k (5.136)
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PPF
j,n and P̄PF

j,n are projectors defined in (5.78) and (5.79). We need to construct a defect mapping

A- branes to B- branes. This can be done along the lines used in [123] for the parafermion B-

branes construction. Recall that the Zk orbifold of the parafermion theory at level k is T-dual

to the original theory. To get a defect mapping A- branes to B- branes one should sum over

Zk images of Xĵ,n̂ and perform T-duality. In order to circumvent the fixed point problem, we

consider the case of odd k † . Summing over images leaves in (5.135) only the n = 0 term and

T-duality exchanges P̄PF
j,n with its B-type version, which can be derived in the following way.

Using the decomposition of SU(2)k as a product of parafermion and scalar theories (1.331) one

can write

P̄
SU(2)
j =

∑
r

P̄PF
j,r P̄

U(1)
r+ (5.137)

where the projector P̄
SU(2)
j for SU(2)k is defined in (5.81), for parafermions P̄PF

j,r in (5.79), and

for U(1)k scalar P̄
U(1)
r+ in (5.76).

To define the T-dual projector BP
PF

j,n we rotate the SU(2) projector P̄
SU(2)
j (5.81) with

operator eiπJ̄
1
0 , satisfying

eiπJ̄
1
0 J̄3

0e
−iπJ̄1

0 = −J̄3
0 (5.138)

and afterwards decompose it again as a product of the parafermion and scalar theories:

1⊗ eiπJ̄1
0 P̄

SU(2)
j =

∑
r

BP
PF

j,r P̄
U(1)
r− (5.139)

where P̄
U(1)
r− is defined in (5.76).

Combining the orbifolding and the T duality procedures results is:

Y AB
ĵ

=
√
k
∑
j

S
SU(2)

ĵ,j

S
SU(2)
0,j

PPF
j,0 BP

PF

j,0 (5.140)

Using the arguments of section 2.5.3, one can show that in the large k limit Y AB
j has the

geometry given with the overlap (2.166):

†In the case of an even k, the primary field k
4 has the non-trivial stabilizator Z2, which requires the fixed point

resolution procedure. As a consequence the formulae for branes and defects derived in this way get modified.

See for details [123].
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〈θ, φ|Y AB
ĵ
|θ̃, φ̃〉 ∼ (5.141)

k

π2

∫ 2θ+2θ̃

|2θ−2θ̃|

Θ(cos γ − cos 2ψ̂)√
cos γ − cos 2ψ̂

sin γdγ√
[cos γ − cos 2(θ + θ̃)][cos 2(θ − θ̃)− cos γ]

where ψ̂ = (2ĵ+1)π
k+2

and Θ is the Heavyside step function. Eq. (5.141) shows that the world-

volume of the defect should satisfy the inequality

cos 2(θ − θ̃) ≥ cos 2ψ̂ (5.142)

which in the large k limit coincides with the inequality (5.134), defining the geometry of a

generic defect.

Note that in the defect Y AB
0 , the relation of the elements of the matrix of the modular

transformation drops, and it is a sum of projectors, projecting down to the n = 0 subspace

and performing T-duality, thus mapping the Aj,n Cardy branes to the Bj branes constructed

in [123]. For generic ĵ one derives a linear combination of the Bl branes with coefficients given

by the fusion numbers N l
ĵj

.

5.6 Fermionic T-duality

In this section we show how do defects generate T-duality on fermionic coordinates. We show

here that the fermionic T-duality is implemented by the defect, given by the fermionic analogue

of the Poincaré line bundle, which we call Super-Poincaré line bundle. This defect is invertible.

Then we define the super Fourier-Mukai transform, as in the bosonic case, as an integral

with an appropriate kernel given by the exponent of the flux of a super Poincare line bundle.
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5.6.1 Pseudodifferential forms integration

Pseudodifferential forms [25, 26, 117], defined on a supermanifold of p bosonic and q fermionic

coordinates, are of the form

f =
∑
v,u

fv,u(x, dθ)θ
vdxu (5.143)

Where: v = v1, ..., vq; u = u1, ..., up; vi, ui ∈ 0, 1; x = x1, ...xp; dθ = dθ1, ...dθq; θ
v = θv1

1 · ... · θ
vq
q ;

dxu = dxu1
1 · ... · dx

up
p , and the sum is over all possible values of u and v. Such an object can be

integrated over the bundle on which it is defined. The integration is defined as∫
B
f =

∫
B

f1,1,...,1 (5.144)

Where B is the cotangent bundle of the supermanifold and B is its underlying bundle, with

just the bosonic coordinates. The dθs are coordinates along the bundle, and unlike the case

of the fibrewise integration presented above, they are bosonic. For that reason one needs f

to be sufficiently rapidly decreasing in them in order for the integral to converge. As will be

demonstrated bellow, this is indeed the case for the super Fourier-Mukai transform.

5.6.2 Review of the fermionic T-duality

Consider the action (5.19) for the case when one has fermionic as well as bosonic variables, and

Gij and Bij are graded-symmetric and graded -antisymmetric tensors respectively. Suppose

that Gij and Bij do not depend on the fermionic variable θ1 [24]. Separating the variable θ1

one has

S =

∫
dx+dx−(B11∂θ

1∂̄θ1 + E1N∂θ
1∂̄XN + EM1∂X

M ∂̄θ1 + EMN∂X
M ∂̄XN) (5.145)

Replacing derivatives of θ1 by fermionic vector (A, Ā) and introducing a Lagrange multiplier

field θ̃1 one gets

S =

∫
dx+dx−(B11AĀ+E1NA∂̄X

N +EM1∂X
M Ā+EMN∂X

M ∂̄XN + θ̃1(∂Ā− ∂̄A)) (5.146)
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Integrating out θ̃1 imposes that

A = ∂θ1 and Ā = ∂̄θ1. (5.147)

Integrating out (A, Ā) results in:

Ā =
1

B11

(
(−)sME1M ∂̄X

M + ∂̄θ̃1
)

and A = − 1

B11

(
EM1∂X

M − ∂θ̃1
)

(5.148)

Inserting (5.148) in (5.146) one obtains fermionic T-dual background:

B̃11 = − 1

B11

(5.149)

Ẽ1M =
E1M

B11

ẼM1 =
EM1

B11

ẼMN = EMN −
E1NEM1

B11

or in the components:

B̃11 = − 1

B11

(5.150)

G̃1M =
G1M

B11

B̃1M =
B1M

B11

G̃MN = GMN −
1

B11

(G1NBM1 +B1NGM1)

B̃MN = BMN −
1

B11

(G1NGM1 +B1NBM1)

Equating (5.147) and (5.148) one gets:

∂θ̃1 = B11∂θ
1 + EM1∂X

M and ∂̄θ̃1 = B11∂̄θ
1 − (−)sME1M ∂̄X

M (5.151)

The rest of the coordinates remains unchanged.

5.6.3 Defects implementing the fermionic T-duality and the Super

Poincaré line bundle

We now consider the action with defect, with target spaces related by the equations (5.149),

and the defect given again by the correspondence space

XN = X̃N , N = 2 . . . dimM (5.152)
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and connection

A = θ1dθ̃1 (5.153)

with curvature

F = dθ1 ∧ dθ̃1. (5.154)

We will call this super line bundle by analogy with the bosonic case a Super-Poincaré bundle.

Now the defect equations of motion take the form:

Ej1∂X
j − (−)sjE1j ∂̄X

j − ∂τ θ̃1 = 0 (5.155)

EjN∂X
j − (−)sjsNENj ∂̄X

j − ẼjN∂X̃j + (−)sjsN ẼNj ∂̄X̃
j = 0, N = 2 . . . dimM (5.156)

Ẽj1∂X̃
j − (−)sj Ẽ1j ∂̄X̃

j + ∂τθ
1 = 0 (5.157)

Additionally as before we have:

∂XN + ∂̄XN = ∂X̃N + ∂̄X̃N , N = 2 . . . dimM (5.158)

Solving (5.155), (5.156), (5.157), (5.158) we obtain

∂̄X̃N = ∂̄XN , N = 2 . . . dimM (5.159)

∂X̃N = ∂XN , N = 2 . . . dimM

∂θ̃1 = B11∂θ
1 + EM1∂X

M

∂̄θ̃1 = B11∂̄θ
1 − (−)sME1M ∂̄X

M

The details of the calculation can be found in [57]. The relations (5.159) coincide with the

equations (5.151). Therefore the defect given by the Super-Poincare bundle on the super-

correspondence space induces the fermionic T-duality.

One can check that equations (5.150) and (5.159) imply:

T = Gij∂X
i∂Xj = T̃ = G̃ij∂X̃

i∂X̃j (5.160)
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and

T̄ = Gij ∂̄X
i∂̄Xj = ˜̄T = G̃ij ∂̄X̃

i∂̄X̃j (5.161)

which means that the defect is topological.

All this again can be generalized to the T-dualizing of several coordinates. Suppose we

T-dualize the first n coordinates, indexed by Greek letters.

The transformed background has the form

Ẽ =

 −E−1
αβ E−1

αβEβN

EMαE
−1
αβ EMN − EβNEMαE

−1
αβ

 (5.162)

Now we should consider the defect with the worldvolume

XN = X̃N , N = n+ 1 . . . dimM (5.163)

and connection

A =
n∑

α=1

θαdθ̃α. (5.164)

It has the curvature

F =
n∑

α=1

dθα ∧ dθ̃α. (5.165)

In the same way as above we can show that for M and M̃ related by equations (5.162) this

defect is topological and implies the defect equations of motion:

∂̄X̃N = ∂̄XN , N = n+ 1 . . . dimM (5.166)

∂X̃N = ∂XN , N = n+ 1 . . . dimM

∂θ̃α = Eβα∂θ
β + EMα∂X

M

∂̄θ̃α = Eαβ∂̄θ
β − (−)sMEαM ∂̄X

N

We have obtained again T-duality relations for several T-dualized fermionic coordinates.

5.6.4 Super Fourier-Mukai transform

We now elaborate the Fourier-Mukai transform for fermionic T-duality. It has the form:

e−B̂Ĝ =

∫
dηe−BGeηη̃ (5.167)
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with G and B as in (5.50), where we set η = dθ1. As we explained η is a bosonic variable, so

we have a usual integration over η. From (5.150) one obtains:

B̂ −B = − 1

2B11

η̃2 − 1

2
B11η

2 (5.168)

− 1

2B11

(G1NGM1 +B1NBM1)dXMdXN +
B1M

B11

η̃dXM −B1MηdX
M

Suppose that G does not depend on η. Using the formula for the Gaussian integral∫
dxe−

1
2
ax2+Jx =

√
2π√
a
e
J2

2a (5.169)

we obtain that the terms in (5.167) containing B1M and the first quadratic term are canceled

and, we end up with

Ĝ =

√
2π√
B11

Ge−
1

2B11
G1NGM1dX

MdXN

(5.170)

Note that G1N and B1N have parity (−)sN+1. Hence if dXM and dXN are differentials of

the bosonic coordiantes, the product G1NGM1 contains fermionic coordinates and drops if we

consider the lowest θ = 0 components, in agreement with the observation [24] that the fermionic

T-duality does not modify D-brane dimensionality. Note that the lowest θ = 0 components

of (5.170) coincide with the homogeneous part of the transformation of the Ramond-Ramond

forms in [24].

Using the transformations rules (5.162) equation (5.170) can be generalized to the case of

the T-dualization of several fermionic variables θα. Keeping in mind that eventually we are

going to project to the θ = 0 component we can set Gαβ = 0, since Gαβ = ηabEα
aE

β
b , and taking

into account that a and b are bosonic and α and β are fermionic, one sees that Eα
a and Eβ

b

are odd. With this simplification the Fourier-Mukai transform for G independent on θα can be

computed to yield:

Ĝ =

√
2π√

det||Bαβ||
Ge−

1
2
B−1
αβGαNGMβdX

MdXN

(5.171)

The lowest component of (5.171) again coincides with the homogeneous part of the transfor-

mation of Ramond-Ramond forms in [24] for the fermionic T-dualization of the n coordinates.

197



5.7 Non abelian T-duality

5.7.1 Review of non-abelian T-duality

Non-abelian T-duality was developed in early nineties [9, 30,53,97,120,121,134].

Here we recall and collect some facts on non-abelian T-duality for isometry groups acting

without isotropy [97, 110]. Suppose we have a target space with an isometry group G, with

generators T a, structure constants fabc, and coordinates θa, and in some coordinates the metric

and the NS two-form take the form

ds2 = Gµν(Y )dY µdY ν + 2Gµa(Y )Ωa
kdY

µdθk + +Gab(Y )Ωa
mΩb

kdθ
mdθk (5.172)

B =
1

2
Bµν(Y )dY µ ∧ dY ν +Bµa(Y )Ωa

kdY
µ ∧ dθk + +

1

2
Bab(Y )Ωa

mΩb
kdθ

m ∧ dθk (5.173)

where Ωa
k are components of the right-invariant Maurer-Cartan forms La:

dgg−1 = LaTa = Ωa
kTadθ

k (5.174)

The background fields depend on group coordinates θa only through the Maurer-Cartan forms.

Also as it is clear from the notations they can depend on some spectator coordinates Y . Since

d(dgg−1) = dgg−1 ∧ dgg−1, La and Ωa
k satisfy the Maurer-Cartan relations

dLa =
1

2
fabcL

bLc (5.175)

and

∂iΩ
c
j − ∂jΩc

i = f cabΩ
a
iΩ

b
j (5.176)

The corresponding Lagrangian density is

L = Qµν∂Y
µ∂̄Y ν +QµaΩ

a
k∂Y

µ∂̄θk +QaµΩa
k∂θ

k∂̄Y µ +QabΩ
a
mΩb

k∂θ
m∂̄θk (5.177)

where

Qµν = Gµν +Bµν , Qµa = Gµa +Bµa (5.178)

Qaµ = Gaµ +Baµ , Qab = Gab +Bab .
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To find the dual action one can use the Buscher method and write the Lagrangian (5.177) in

the form

L = Qµν∂Y
µ∂̄Y ν +Qµa∂Y

µĀa +QaµA
a∂̄Y µ + (5.179)

QabA
aĀb − xa(∂Āa − ∂̄Aa − fabcAbĀc)

The equations of motion of the Lagrangian multiplier xa force the field strength

F a
+− = ∂Āa − ∂̄Aa − fabcAbĀc (5.180)

to vanish. The solution to these constraints is

Aa = Ωa
k∂θ

k and Āa = Ωa
k∂̄θ

k. (5.181)

Putting this solution into (5.179) yields the original action (5.177). On the other hand inte-

grating out gauge fields Aa one obtains:

M−1
ba (Qµb∂Y

µ + ∂xb) = −Aa (5.182)

M−1
ab (∂̄xb −Qbµ∂̄Y

µ) = Āa

where

Mab = Qab + xcf cab (5.183)

Inserting expressions (5.182) back in (5.179) we find the dual action:

L̂ = Êµν∂Y
µ∂̄Y ν + Êµa∂Y

µ∂̄xa + Êaµ∂x
a∂̄Y µ + Êab∂x

a∂̄xb (5.184)

where

Êµν = Qµν −QµaM
−1
ab Qbν (5.185)

Êµa = QµbM
−1
ba

Êaµ = −QbµM
−1
ab

Êab = M−1
ab

Equating (5.181) and (5.182), one gets the duality relations of non-abelian T-duality [30,121]

M−1
ba (Qµb∂Y

µ + ∂xb) = −Ωa
k∂θ

k (5.186)
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M−1
ab (∂̄xb −Qbµ∂̄Y

µ) = Ωa
k∂̄θ

k (5.187)

Separating in (5.185) symmetric and antisymmetric parts we derive metric and NS form of the

dual theory:

Ĝµν = Gµν −
1

2
(QµaM

−1
ab Qbν +QνaM

−1
ab Qbµ) (5.188)

Ĝµa =
1

2
(QµbM

−1
ba −QbµM

−1
ab ) (5.189)

Ĝab =
1

2
(M−1

ab +M−1
ba ) (5.190)

B̂µν = Bµν −
1

2
(QµaM

−1
ab Qbν −QνaM

−1
ab Qbµ) (5.191)

B̂µa =
1

2
(QµbM

−1
ba +QbµM

−1
ab ) (5.192)

B̂ab =
1

2
(M−1

ab −M
−1
ba ) (5.193)

and for dilaton

Φ̃ = Φ− 1

2
log(detM) (5.194)

Let us recall the SU(2) Principal Chiral Model [67, 68,175]

S(g) =

∫
kTr(g−1∂gg−1∂̄g) (5.195)

where g ∈ SU(2). The metric in the Euler coordinates is

ds2 = k(dθ2 + dφ2 + dψ2 + 2 cos θdφdψ) (5.196)

and there is no NS two-form. To obtain the dual background one should compute M−1
ab matrix.

Denoting the dual coordinates xa, a = 1, 2, 3, one has here

Mab = kδab + εabcxc (5.197)

and

M−1
ab =

1

k2 + r2

(
kδab +

xaxb
k
− εabcxc

)
(5.198)
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Separating symmetric and antisymmetric parts and denoting r2 = xaxa one derives

Ĝab =
1

k2 + r2

(
kδab +

xaxb
k

)
(5.199)

B̂ab = − 1

k2 + r2
εabcxc (5.200)

Φ̂ = −1

2
log(k3 + kr2) (5.201)

and hence one has

d̂s
2

=
dr2

k
+

kr2

k2 + r2
ds2(S2) (5.202)

B̂ = − r3

k2 + r2
Vol(S2) (5.203)

5.7.2 Defects generating non-abelian T-duality

Consider the action (5.2) with a defect as in the situation above, where M1 is the target space

with the coordinates (Y µ, θk) and has metric and NS 2-form given by (5.172) and (5.173), M2

is the space with the coordinates (Y µ, xa) and with metric and 2-form given by (5.188)-(5.193),

and Q is the correspondence space, with the coordinates (Y µ, θk, xa), the connection

A = −xaLa = −xaΩa
kdθ

k (5.204)

and the curvature

F = dA = −(dxaLa +
1

2
xafabcL

bLc) (5.205)

To derive (5.205) we used the Maurer-Cartan relation (5.175). By other words we take as L1

in (5.2) the L given by (5.177), and as L2 the L̂ given by (5.184).

The conditions (5.204) and (5.205) define a line bundle PNA over Q, with the curvature

(5.205), which can be called non-abelian Poincarè line bundle. In this case the action (5.2)

yields the following equations of motion on the defect line:

Qµa∂Y
µ +QbaΩ

b
m∂θ

m −Qaµ∂̄Y
µ −QabΩ

b
m∂̄θ

m = −xcΩb
mf

c
ba∂τθ

m − ∂τxa (5.206)

Êµa∂Y
µ + Êba∂x

b − Êaµ∂̄Y µ − Êab∂̄xb = −Ωa
k∂τθ

k. (5.207)
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Qµα∂Y
µ +QaαΩa

k∂θ
k −Qαµ∂̄Y

µ − (5.208)

QαaΩ
a
k∂̄θ

k − Êµα∂Y µ − Êaα∂xa + Êαµ∂̄Y
µ + Êαa∂̄x

a = 0

In the first line we used the second of the Maurer-Cartan relations (5.176).

Solving equations (5.206)-(5.208) we obtain the duality relations of non-abelian T-duality

(5.186) and (5.187)

Qµa∂Y
µ +MbaΩ

b
m∂θ

m = −∂xa (5.209)

Qaµ∂̄Y
µ +MabΩ

b
m∂̄θ

m = ∂̄xa (5.210)

M−1
ba (Qµb∂Y

µ + ∂xb) = −Ωa
m∂θ

m (5.211)

M−1
ab (∂̄xb −Qbµ∂̄Y

µ) = Ωa
m∂̄θ

m (5.212)

Using expressions (5.185) and the duality relations (5.209) and (5.210) we obtain

T = T̂ and T̄ = ˆ̄T (5.213)

where

T = Gµν∂Y
µ∂Y ν + 2GµaΩ

a
k∂Y

µ∂θk +GabΩ
a
mΩb

k∂θ
m∂θk (5.214)

T̄ = Gµν ∂̄Y
µ∂̄Y ν + 2GµaΩ

a
k∂̄Y

µ∂̄θk +GabΩ
a
mΩb

k∂̄θ
m∂̄θk (5.215)

T̂ = Ĝµν∂Y
µ∂Y ν + 2Ĝµa∂Y

µ∂xa + Ĝab∂x
a∂xb (5.216)

ˆ̄T = Ĝµν ∂̄Y
µ∂̄Y ν + 2Ĝµa∂̄Y

µ∂̄xa + Ĝab∂̄x
a∂̄xb (5.217)

what means that the defect is topological.

5.7.3 Non-abelian T-duality Fourier-Mukai transform of the Ramond-

Ramond fields

Taking into account that the curvature of the defect generating the non-abelian T-duality is

given by the formula (5.205), the Fourier-Mukai transform of the RR fields takes the form:
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Ĝ =

∫
G

G ∧ eB̂−B−dxa∧La−
1
2
xafabcL

b∧Lc (5.218)

Here we apply this formula to the case of background considered in [109,175],

namely:

ds2 = ds2(M7) + k(Y )ds2(S3) (5.219)

Here M7 is a seven-dimensional manifold, Y are coordinates on M7, k(Y ) is a function of Y .

One can have also B field on M7. The second term is actually the SU(2) principal chiral model,

considered in section 5.7.1. Therefore, using formulae (5.202) and (5.203) the dual model takes

the form:

d̂s
2

= ds2
M7

(Y ) +
dr2

k
+

kr2

k2 + r2
ds2(S2) (5.220)

and

B̂ = B − r3

k2 + r2
Vol(S2) (5.221)

Consider the following RR forms:

G = G(0) + G(1)
a ∧ La +

1

2
G(2)
ab ∧ L

a ∧ Lb + G(3) ∧ L1 ∧ L2 ∧ L3 (5.222)

Here G(0), G(1), G(2), G(3) are forms on M7.

Denote the forms in the exponent of (5.218) as

A(2,0) = B̂ −B (5.223)

A(1,1) = −dxa ∧ La (5.224)

A(0,2) = −1

2
xafabcL

b ∧ Lc (5.225)

In this notations we indicate by the first number the degree of the form in dxa, and by the

second in La. Expanding the exponent and remembering that one can have at most third degree

terms in the both kinds of 1-forms we get:

eB̂−B−dx
a∧La− 1

2
xafabcL

b∧Lc = 1 + A(2,0) + A(1,1) + (5.226)

A(0,2) +
1

2
A(1,1) ∧ A(1,1) + A(2,0) ∧ A(1,1) +
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A(1,1) ∧ A(0,2) + A(2,0) ∧ A(0,2) +

1

6
A(1,1) ∧ A(1,1) ∧ A(1,1) + A(2,0) ∧ A(1,1) ∧ A(0,2)

Using the rules of the fiberwise integration we obtain that the dual of the first term comes from

the all third order terms in La appearing in the expansion of the exponent:

Ĝ(0) = G(0) ∧ ω(3) (5.227)

where

ω(3) =

∫
G

1

6
A(1,1) ∧ A(1,1) ∧ A(1,1) + A(2,0) ∧ A(1,1) ∧ A(0,2) + A(0,2) ∧ A(1,1) (5.228)

One can explicitly compute that

1

6
A(1,1) ∧ A(1,1) ∧ A(1,1) = dx1 ∧ dx1 ∧ dx2 ∧ vol(SU(2)) (5.229)

where we introduced vol(SU(2)) = L1 ∧ L2 ∧ L3,

A(0,2) ∧ A(1,1) = xadxa ∧ vol(SU(2)) = rdr ∧ vol(SU(2)) (5.230)

A(2,0) ∧ A(1,1) ∧ A(0,2) = − r4dr

k2 + r2
∧ Vol(S2) ∧ vol(SU(2)) (5.231)

To derive (5.231) we used the expressions (5.221) and (5.223) for A(2,0). Collecting all and using

that dx1 ∧ dx2 ∧ dx3 = r2dr ∧ vol(S2) we obtain

Ĝ(0) = G(0) ∧
(
r2k2dr

k2 + r2
∧ vol(S2) + rdr

)
(5.232)

Similarly collecting all the second order terms in La in the expansion of the exponent one

obtains the dual of the second term:

̂G(1)
a ∧ La =

∫
G

1

2
G(1)
a ∧ La ∧ A(1,1) ∧ A(1,1) + (5.233)∫

G

G(1)
a ∧ La ∧ A(0,2) +

∫
G

G(1)
a ∧ La ∧ A(2,0) ∧ A(0,2)

= −1

2
εabcG(1)

a ∧ dxb ∧ dxc − G(1)
a xa − A(2,0) ∧ G(1)

a xa

Picking up the first order terms in La gives us the dual of the third term:

̂G(2)
ab ∧ La ∧ Lb =

∫
G

G(2)
ab ∧ L

a ∧ Lb ∧ A(1,1) +

∫
G

G(2)
ab ∧ L

a ∧ Lb ∧ A(1,1) ∧ A(2,0) (5.234)

= −εabcG(2)
ab ∧ dx

c + εabcG(2)
ab x

c ∧ r2dr

k2 + r2
∧ vol(S2)
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And finally the dual of the last term is given by the terms not containing La at all:∫
G

G(3) ∧ L1 ∧ L2 ∧ L3 ∧ eF = G(3) + G(3) ∧ (B̂ −B) (5.235)

Rearranging the terms in order of dxa we can write for the non-abelian T-dual of G:

Ĝ = Ĝ(0) + Ĝ(1) + Ĝ(2) + Ĝ(3) (5.236)

where

Ĝ(0) = −G(1)
a xa + G(3) (5.237)

Ĝ(1) = G(0) ∧ rdr − 1

2
εabcG(2)

ab ∧ dx
c (5.238)

Ĝ(2) = −1

2
εabcG(1)

a ∧ dxb ∧ dxc − (B̂ −B) ∧ G(1)
a xa + G(3) ∧ (B̂ −B) (5.239)

Ĝ(3) = G(0) ∧ r2k2dr

k2 + r2
∧ Vol(S2) +

1

2
εabcG(2)

ab x
c ∧ r2dr

k2 + r2
∧ vol(S2) (5.240)

As we have explained before, since the gauge invariant flux on the defect, which appears in

the exponent of (5.218), satisfies the relation (5.52) , and the exterior differentiation commutes

with the fiberwise integration, the dual fields satisfy the relation:

(d− Ĥ) ∧ Ĝ =

∫
G

eB̂−B−dx
a∧La− 1

2
xafabcL

b∧Lc ∧ (d−H) ∧ G (5.241)

The relation (5.241) guarantees that the hatted forms satisfy the supergravity Bianchi iden-

tity given that so do the original forms G. In the mentioned papers, the non-abelian T-duality

transformation of the RR fields was performed for backgrounds (5.219), using the approach

based on equation (5.49), with the RR fields having the form:

G = G(0) + G(3) ∧ L1 ∧ L2 ∧ L3 (5.242)

The results obtained in these works are in agreement with the formulae (5.237)-(5.240) for this

case.
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Chapter 6

Defects in the Liouville and Toda field

theories

6.1 Liouville field theory

Let us review basic facts on the Liouville field theory (see e.g. [178]). Liouville field theory is

defined on a two-dimensional surface with metric gab by the local Lagrangian density

L =
1

4π
gab∂aϕ∂bϕ+ µe2bϕ +

Q

4π
Rϕ , (6.1)

where R is associated curvature. This theory is conformal invariant if the coupling constant b

is related with the background charge Q as

Q = b+
1

b
. (6.2)

The symmetry algebra of this conformal field theory is the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
cL
12

(n3 − n)δn,−m (6.3)

with the central charge

cL = 1 + 6Q2 . (6.4)

Primary fields Vα in this theory, which are associated with exponential fields e2αϕ, have

conformal dimensions

∆α = α(Q− α) . (6.5)

206



The spectrum of the Liouville theory is believed [33,34,40] to be of the following form

H =

∫ ∞
0

dP RQ
2

+iP ⊗RQ
2

+iP , (6.6)

where Rα is the highest weight representation with respect to Virasoro algebra. Characters of

the representations RQ
2

+iP are

χP (τ) =
qP

2

η(τ)
, (6.7)

where

η(τ) = q1/24

∞∏
n=1

(1− qn) . (6.8)

Modular transformation of (6.7) is well-known:

χP (−1

τ
) =
√

2

∫
χP ′(τ)e4iπPP ′dP ′ . (6.9)

Degenerate representations appear at

αm,n =
1−m

2b
+

1− n
2

b (6.10)

and have conformal dimensions

∆m,n = Q2/4− (m/b+ nb)2/4 , (6.11)

where m,n are positive integers. At general b there is only one null-vector at the level mn.

Hence the degenerate character reads:

χm,n(τ) =
q−(m/b+nb)2 − q−(m/b−nb)2

η(τ)
. (6.12)

Modular transformation of (6.12) is worked out in [192]

χm,n(−1

τ
) = 2

√
2

∫
χP (τ) sinh(2πmP/b) sinh(2πnbP )dP . (6.13)

Given that the identity field is specified by (m,n) = (1, 1) one finds the vacuum component of

the matrix of modular transformation:

S0α = −2
√

2 sinπb−1(2α−Q) sinπb(2α−Q) . (6.14)
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To present formula (1.115) in the Liouville field theory we need two-point function

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 =
S(α)

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
. (6.15)

Let us for this purpose recall some facts on the values of the correlation functions in the

Liouville field theory in the Coulomb gas approach.

1. The three-point functions satisfying the relation α1 +α2 +α3 = Q are set to 1. This rule

actually sets normalization of the fields, since from here we receive that

〈Vα(z1, z̄1)VQ−α(z2, z̄2)〉 =
1

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
. (6.16)

The fields Vα and VQ−α have the same conformal dimensions and represent the same

primary field, i.e. they are proportional to each other, and it follows from (6.15) and

(6.16) that

Vα = S(α)VQ−α (6.17)

2. The three-point functions C(α1, α2, α3) for the values of αi satisfying the relation

α1 + α2 + α3 = Q− nb , (6.18)

are given by the Coulomb gas or screening integrals computed in [47]

In(α1, α2, α3) =
(
b4γ(b2)πµ

)n ∏n
j=1 γ(−jb2)∏n−1

k=0 [γ(2α1b+ kb2)γ(2α2b+ kb2)γ(2α3b+ kb2)]
, (6.19)

where γ(x) = Γ(x)
Γ(1−x)

.

The structure constants derived as the Coulomb gas integrals are denoted by C to distinguish

from their values derived from the DOZZ formula.

The structure constant are related to the three-point functions by the relation:

Cα3
α1,α2

= C(α1, α2, Q− α3) . (6.20)

Thus we derive:

Cα−b/2−b/2,α = 1 , (6.21)
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and

Cα+b/2
−b/2,α =

πµb4γ(b2)

γ(2αb)γ(b2 − 2αb+ 2)
. (6.22)

Now one can obtain the two-point function S(α) by the following trick [60]. Consider the

auxiliary three-point function

〈Vα(x1)Vα+b/2(x2)V−b/2(z)〉 . (6.23)

Using the OPE

V−b/2Vα = Cα−b/2−b/2,α
[
Vα−b/2

]
+ Cα+b/2

−b/2,α
[
Vα+b/2

]
, (6.24)

one receives that in the limit z → x1 the three-point function (6.23) takes the form:

Cα+b/2
−b/2,αS(α + b/2) , (6.25)

whereas in the limit z → x2, it is

Cα−b/2−b/2,αS(α) . (6.26)

Equating (6.25) and (6.26) we get that the two-point function S(α) satisfies the condition:

S(α)

S(α + b/2)
= Cα+b/2

−b/2,α . (6.27)

Solving (6.27) one derives:

S(α) =
(πµγ(b2))

b−1(Q−2α)

b2

Γ(1− b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(b(Q− 2α))Γ(1 + b−1(Q− 2α))
. (6.28)

We have all the necessary ingredients to compute classifying algebra: two-point function

S(α) and vacuum component of the matrix of the modular transformation. Before to continue

let us recall that both of them can be conveniently written using ZZ function [192]:

W (α) = − 23/4(πµγ(b2))−
(Q−2α)

2b π(Q− 2α)

Γ(1− b(Q− 2α))Γ(1− b−1(Q− 2α))
. (6.29)

It can be easily shown that

W (Q− α)

W (α)
= S(α) , (6.30)

and

W (Q− α)W (α) = S0α . (6.31)

209



Recalling (1.117), Fα takes the form:

Fα =
S00

W (Q− α)W (α)
. (6.32)

Combining (6.30) and (6.32) we obtain coefficients ξα for the Liouville field theory:

ξLα =
√
S(α)F (α) =

√
S00

W (α)
. (6.33)

Eq. (1.115) implies:

Cα3
α1,α2

Fα3,0

 α1 α1

α2 α2

 = W (0)
W (α3)

W (α1)W (α2)
. (6.34)

Let us compare (6.34) with the calculations in literature. First of all recall the calculations

in [60] for one of the momenta taking the degenerate value α1 = − b
2
. The fusing matrix can

be computed using that conformal blocks with the degenerate primary − b
2

satisfy the second

order differential equation, which can be solved by the hypergeometric functions. The fusion

matrix is given by the transformation properties of the hypergeometric functions. The fusion

matrix derived in this way we denote by F ∗ to distinguish from the values of the fusion matrix

derived from the Ponsot-Teschner formula. The corresponding values of F ∗ are [60,180]:

F ∗α−b/2,0

 −b/2 −b/2

α α

 =
Γ(2αb− b2)Γ(−1− 2b2)

Γ(2αb− 2b2 − 1)Γ(−b2)
, (6.35)

F ∗α+b/2,0

 −b/2 −b/2

α α

 =
Γ(2 + b2 − 2αb)Γ(−1− 2b2)

Γ(1− 2αb)Γ(−b2)
. (6.36)

Using ZZ function W (α) (6.29) one can compactly rewrite (6.35), (6.36) as:

F ∗α−b/2,0

 −b/2 −b/2

α α

 =
W (0)

W (− b
2
)

W (α− b/2)

W (α)
, (6.37)

F ∗α+b/2,0

 −b/2 −b/2

α α

 =
W (0)

W (− b
2
)

W (Q− α− b/2)

W (Q− α)
. (6.38)
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Combining (6.21), (6.27), (6.30), (6.37), (6.38) we obtain

Cα−b/2−b/2,αF
∗
α−b/2,0

 −b/2 −b/2

α α

 =
W (0)

W (− b
2
)

W (α− b/2)

W (α)
, (6.39)

Cα+b/2
−b/2,αF

∗
α+b/2,0

 −b/2 −b/2

α α

 =
W (0)

W (− b
2
)

W (α + b/2)

W (α)
, (6.40)

in agreement with (6.34).

Next we compute the left hand side of (6.34) using DOZZ formula for structure constants

[46,191] and the explicit expression for the fusing matrix found in [145]. It is instructive at the

beginning to repeat the steps leading from (1.111) to (1.115) for the Liouville theory using the

DOZZ formula. Using the relation between three-point functions and OPE structure constant

(6.20) the associativity condition of the OPE in the Liouville field theory takes the form:

C(α4, α3, αs)C(Q− αs, α2, α1)Fαs,αt

 α3 α2

α4 α1

 = (6.41)

= C(α4, αt, α1)C(Q− αt, α3, α2)Fαt,αs

 α1 α2

α4 α3

 .

Consider the limit αt → 0 in (6.41).

From the DOZZ formula:

C(α1, α2, α3) = λ(Q−
∑3
i=1 αi)/b × (6.42)

Υb(b)Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 + α2 + α3 −Q)Υb(α1 + α2 − α3)Υb(α2 + α3 − α1)Υb(α3 + α1 − α2)
,

where

λ = πµγ(b2)b2−2b2 (6.43)

one can obtain [178]

C(α2, ε, α1) ' 2εS(α1)

(α2 − α1 + ε)(α1 − α2 + ε)
+

2ε

(Q− α2 − α1 + ε)(α1 + α2 −Q+ ε)
. (6.44)
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The functions Υb(α) and their properties leading to (6.44) are described in appendix .1.

Using the reflection property

C(α3, α2, α1) = S(α3)C(Q− α3, α2, α1) , (6.45)

one receives in this limit, setting also α1 = α4, α2 = α3

C2(α2, α1, αs) =
4S(α1)S(α2)S(αs)

S(0)

F0,αs

 α1 α2

α1 α2


limε→0ε2Fαs,ε

 α2 α2

α1 α1


. (6.46)

It was shown in [179] that the limit

F ′′α,0

 α3 α2

α4 α1

 ≡ limβ→0β
2Fα,β

 α3 α2

α4 α1

 (6.47)

exists and satisfies the equation:

F ′′α,0

 α2 α2

α1 α1

F0,α

 α2 α1

α2 α1

 =
Fα2Fα1

Fα
. (6.48)

Putting (6.48) in (6.46) one finally gets:

C(α1, α2, αs)F
′′
αs,0

 α1 α1

α2 α2

 = 2W (0)
W (Q− αs)
W (α1)W (α2)

. (6.49)

and

C(α1, α2, αs) = 2W (Q− α1)
W (Q− α2)

W (Q)W (αs)
F0,αs

 α1 α2

α1 α2

 . (6.50)

Here a sign factor could appear, but below we show that actually (6.49) and (6.50) hold without

it. Recalling the relation (6.20) and (6.45) we obtain (6.34). The emergence of the factor 2

will be explained below. This derivation also explains that the double pole in the fusing matrix

Fα,0

 α1 α1

α2 α2

 is related to the simple pole in the DOZZ formula.

One can compute the limit (6.47) also directly.
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Recall that the boundary three-point function is given by [146]

Cσ3σ2σ1
Q−β3β2β1

= Cσ3σ2σ1

β3|β2β1
=

gσ3σ1
β3

gσ3σ2
β2

gσ2σ1
β1

Fσ2β3

 β2 β1

σ3 σ1

 , (6.51)

where

gσ3σ1
β = λβ/2b

Γb(Q)Γb(Q− 2β)Γb(2σ1)Γb(2Q− 2σ3)

Γb(2Q− β − σ1 − σ3)Γb(σ1 + σ3 − β)Γb(Q− β + σ1 − σ3)Γb(Q− β + σ3 − σ1)
.

(6.52)

The function Γb(x) is described in appendix .1.

Therefore the fusing matrix can be expressed as

Fσ2β3

 β2 β1

σ3 σ1

 =
gσ3σ2
β2

gσ2σ1
β1

gσ3σ1
β3

Cσ3σ2σ1
Q−β3β2β1

. (6.53)

On the other side Cσ3σ2σ1
Q−β3β2β1

has a pole with residue 1 if β1 + β2 − β3 = 0. Therefore using

the invariance of the fusing matrix w.r.t. to the inversions αi → Q − αi one can write for the

corresponding residue of the fusion matrix

F ′σ2,0

 β1 β1

σ1 σ1

 = F ′σ2,Q

 Q− β1 β1

σ1 σ1

 =
gσ1σ2
Q−β1

gσ2σ1
β1

gσ1σ1
Q

. (6.54)

Using the explicit expressions (6.52) for gσ2σ1
β1

, the DOZZ formula (6.42) for structure con-

stants and the properties of the functions Γb(x), Υb(x) reviewed in appendix .1, it is easy to

compute that

gσ1σ2
Q−β1

gσ2σ1
β1

= 21/4 2πW (Q− σ1)W (Q− σ2)

W (β1)

1

C(σ1, σ2, β1)
. (6.55)

Using the properties of the functions Γb(x), reviewed in appendix .1, one can compute the limit

limβ3→Q
1

gσ1σ1
β3

, (6.56)

and obtain that it has simple pole with the residue

2−1/4W (0)

πW (σ1)W (Q− σ1)
. (6.57)

Combining (6.55) and (6.57) we again derive (6.49).

Some comments are in order at this point:
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1. This derivation shows that the fusing matrix element Fσ2,0

 β1 β1

σ1 σ1

 indeed has double

pole: one degree comes from the pole of the three-point function Cσ3σ2σ1
0,Q−β1,β1

and the second

from the pole of the 1
g
σ1σ1
Q

.

2. We have shown that (6.34) or (6.49) indeed always holds with the understanding that in

the case of the singular behavior one should take the coefficients of the leading singulari-

ties.

3. Note that (6.49) evidently satisfies the reflection property (6.45) since the fusing matrix

is invariant under the inversions α→ Q− α.

4. Let us explain the emergence of the factor 2 in (6.49). We have seen that the formula

(6.49), derived by using the DOZZ formula for structure constant and Ponsot-Teschner

(PT) formula for the fusing matrix has additional factor 2 compared to formulas (6.34),

(6.39), (6.40) using the values of the structure constant derived as the Coulomb gas

integrals and fusing matrix computed via the differential equations for the conformal

blocks. The derivation of the formula (6.49) via the limiting procedure (6.46)-(6.49)

indicates that the factor 2 originates from the coefficient 2 in formula (6.44). Point is

that as the formula (6.44) shows, the two-point functions, derived from the DOZZ formula

as residue of the pole in the limit α3 → 0, are twice the two-point functions (6.15) and

(6.16), derived in the Coulomb gas approach. Thus the states in the theory reconstructed

from the DOZZ formula have twice the normalization of the fields used in the calculations

leading to (6.34), (6.39), (6.40). This is the reason for emergence of the factor 2 in (6.49).

5. One can ask, what happens if one tries to compute the left hand side of formulae (6.39),

(6.40) from the DOZZ and PT formulae. First of all let us recall that, as noted in [191],

when the momenta αi satisfy the relation (6.18), the DOZZ formula has a pole with the

residue equals to the Coulomb gas integrals (6.19):

resα1+α2+α3=QC(α1, α2.α3) = 1 , (6.58)
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and

resα1+α2+α3=Q−nbC(α1, α2.α3) = In(α1, α2, α3) . (6.59)

But strictly speaking this is true only for the non-degenerate values of the momenta.

For the degenerate values (6.10), as we see from the DOZZ formula, it may happen that

additionally to the first vanishing term in the denominator, we have two more vanishing

terms, one in the denominator and another one in the numerator. This makes the limiting

procedure ambiguous and can bring to the values of the residue twice as the Coulomb gas

results.

Consider the values of the momenta appearing in formulae (6.39), (6.40): α1 = α, α2 =

− b
2
, α3 = Q − α ± b

2
. For these αi the DOZZ formula develops pole, and the matrix F ′′

defined in (6.47), vanishes. If now we set α2 = − b
2

+ δ and consider the limit δ → 0, we

obtain

limδ→0 δ C

(
α,− b

2
+ δ,Q− α∓ b

2

)
= 2Cα±b/2−b/2,α , (6.60)

limδ→0
1

δ
F ′′α±b/2,0

 −b/2 + δ −b/2 + δ

α α

 = F ∗α±b/2,0

 −b/2 −b/2

α α

 . (6.61)

On the other hand it was suggested in [105] a limiting procedure reproducing the Coulomb

gas values:

limδ→0

[
limε→0 ε C

(
α,− b

2
+ δ,Q− α∓ b

2
− δ + ε

)]
= Cα±b/2−b/2,α . (6.62)

But this procedure brings to the factor 2 in the fusion matrix:

limδ→0

limε→0
1

ε
F ′′α±b/2+δ−ε,0

 −b/2 + δ −b/2 + δ

α α


 = 2F ∗α±b/2,0

 −b/2 −b/2

α α

 .

(6.63)

In any case we are in agreement (6.49).
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Having demonstrated that (6.34) holds in the Liouville field theory we can use the the

boundary bootstrap technique developed in sections 1.2.3, 1.2.5, 1.3 to derive D-branes, defects

and permutation branes in the Liouville field theory in the simple and elegant way. To use

equation (1.156) in non-rational theory we should take care to have a finite number of terms in

the left hand side. This can be achieved taking j = − b
2
.

Setting j = − b
2
, i = α, and k = α± b/2, the equation (1.156) takes the form:

Ψ(α)Ψ(−b/2) = Ψ(α− b/2) + Ψ(α + b/2) . (6.64)

The solution of the equation (6.64) is

Ψm,n(α) =
sin(πmb−1(2α−Q)) sin(πnb(2α−Q))

sin(πmb−1Q) sin(πnbQ)
=
Sm,nα
Sm,n 0

, (6.65)

Using equations (1.155), (1.171) and (1.188), and recalling (6.33) we obtain one-point func-

tions for ordinary branes

Ũm,n(α) = Ψm,n(α)
W (0)

W (α)
, (6.66)

permutation branes on N -fold product

UN
Pm,n(α) = Ψm,n(α)

(
W (0)

W (α)

)N
. (6.67)

and defect two-point functions

Dm,n(α)

Dm,n(0)
= Ψm,n(α)

(
W (0)

W (α)

)2

. (6.68)

Using (1.148) one derives boundary state coefficients for ordinary branes:

Bm,n(α) =
Sm,nα
W (α)

, (6.69)

and permutation branes on N -fold product

BN
Pm,n(α) =

Sm,nα
WN(α)

, (6.70)

and for defects eq.(1.185) and (6.68) imply

Dm,n(α) =
Sm,nα
W 2(α)

(6.71)
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Dm,n(α) =
Sm,nα
S0α

. (6.72)

To find continuous family of the brane and defects we will use the strategy developed in [60].

Consider at the beginning ordinary branes. The idea is that the boundary one-point function

Ũ
(
− b

2

)
of the degenerate field V−b/2 can be considered as a function A(µB) of the boundary

cosmological constant µB. Setting in (1.154) Ũ
(
− b

2

)
= A and Ũ(α) = Λ(α)

W (α)
we obtain

W (−b/2)

W (0)
AΛ(α) = Λ(α− b/2) + Λ(α + b/2) (6.73)

The solution of the eq.(6.73) is

Λs(α) = −21/2 cosh(2πs(2α−Q)) , (6.74)

with

2 cosh 2πbs = A
W (−b/2)

W (0)
(6.75)

Note that function (6.74) coincide with the matrix of the modular transformation (6.9). This

leads to the FZZ (Fateev-Zamolodchikov-Zamolodchikov) boundary states:

Bs(α) =
Λs(α)

W (α)
, (6.76)

Similarly for permutation branes on N -fold product treating boundary one-point function

UN
P
(
− b

2

)
of the degenerate field V−b/2 as a function AP of the permutation branes boundary

cosmological constant λP and setting UN
P (α) = Λ(α)

W (α)N
in (1.170) we obtain(

W (−b/2)

W (0)

)N
APΛ(α) = Λ(α− b/2) + Λ(α + b/2) (6.77)

Eq. (6.77) has the same solution (6.74) but with s related to AP via

2 cosh 2πbs = AP

(
W (−b/2)

W (0)

)N
. (6.78)

Therefore the continuous family of the permutations brane has the form

BN
Ps(α) =

Λs(α)

WN(α)
, (6.79)
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Finally considering the defect two-point function of the degenerate field V−b/2 as a function

of the defect cosmological constant κ and setting D(−b/2)/D(0) = Ad and D(α) = Λ(α)
W 2(α)

in

(1.187) we obtain: (
W (−b/2)

W (0)

)2

AdΛ(α) = Λ(α− b/2) + Λ(α + b/2) (6.80)

The eq.(6.80) is again solved by function (6.74) but with s and Ad related by

2 cosh 2πbs = Ad

(
W (−b/2)

W (0)

)2

. (6.81)

Therefore the continuous family of defects has two-point functions

Ds(α) = −21/2 cosh(2πs(2α−Q))

W 2(α)
. (6.82)

and eigenvalues

Ds(α) =
cosh(2πs(2α−Q))

2 sinπb−1(2α−Q) sinπb(2α−Q)
. (6.83)

6.2 Toda field theory

Recall some facts on Toda field theory [59]. The action of the sl(n) conformal Toda field theory

on a two-dimensional surface with metric gab and associated to it scalar curvature R has the

form

A =

∫ (
1

8π
gab(∂aϕ∂bϕ) + µ

n−1∑
k=1

eb(ekϕ) +
(Q,ϕ)

4π
R

)
√
gd2x . (6.84)

Here ϕ is the two-dimensional (n− 1) component scalar field ϕ = (ϕ1 . . . ϕn−1):

ϕ =
n−1∑
i

ϕiei , (6.85)

where vectors ek are the simple roots of the Lie algebra sl(n), b is the dimensionless coupling

constant, µ is the scale parameter called the cosmological constant and (ek, ϕ) denotes the

scalar product.

If the background charge Q is related with the parameter b as

Q =

(
b+

1

b

)
ρ , (6.86)
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where ρ is the Weyl vector , then the theory is conformally invariant. The Weyl vector is

ρ =
1

2

∑
e>0

e =
n−1∑
i

ωi , (6.87)

where ωi are fundamental weights, such that (ωi, ej) = δij.

Conformal Toda field theory possesses higher-spin symmetry: there are n− 1 holomorphic

currents W k(z) with the spins k = 2, 3, . . . n. The currents W k(z) form closed Wn algebra,

which contains as subalgebra the Virasoro algebra with the central charge

c = n− 1 + 12Q2 = (n− 1)(1 + n(n+ 1)(b+ b−1)2) . (6.88)

Primary fields of conformal Toda field theory are the exponential field parameterized by a

(n− 1) component vector parameter α, α =
∑n−1

i αiωi,

Vα = e(α,ϕ) . (6.89)

They have the simple OPE with the currents W k(z). Namely,

W k(ξ)Vα(z, z̄) =
w(k)(α)Vα(z, z̄)

(ξ − z)k
. (6.90)

The quantum numbers w(k)(α) possess the symmetry under the action of the Weyl groupW of

the algebra sl(n):

w(k)(α) = w(k)(Q+ ŝ(α−Q)), ŝ ∈ W . (6.91)

In particular

w(2)(α) = ∆(α) =
(α, 2Q− α)

2
(6.92)

is the conformal dimension of the field Vα. Eq. (6.91) implies that the fields related via the

action of the Weyl group should coincide up to a multiplicative factor. Indeed we have [61]

Rŝ(α)VQ+ŝ(α−Q) = Vα , (6.93)

where Rŝ(α) is the reflection amplitude

Rŝ(α) =
A(Q+ ŝ(α−Q))

A(α)
, (6.94)
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A(α) = (πµγ(b2))
(α−Q,ρ)

b
2πb
√

Ξ∏
e>0 Γ(1− b(α−Q, e))Γ(−b−1(α−Q, e))

, (6.95)

where

Ξ = in−1
√

detC
1

|W|
, (6.96)

and C is the Cartan matrix. Two-point functions in Toda field theory are

〈Vα(z1, z̄1)Vα∗(z2, z̄2)〉 =
R(α)

(z1 − z2)4∆α(z̄1 − z̄2)4∆α
, (6.97)

where R(α) is the maximal reflection amplitude defined as

R(α) =
A(2Q− α)

A(α)
, (6.98)

and α∗ is defined by

(α, ek) = (α∗, en−k) . (6.99)

The representations which appear in the spectrum of sl(n) Toda field theory have momenta

α ∈ Q+ i
n−1∑
i

piωi , (6.100)

where pi are real.

To describe degenerate representations it is useful to write α as

α = Q+ ν . (6.101)

Degenerate representations appear at the momentum ν satisfying the condition

−(ν, e) = rb+
s

b
, (6.102)

where e is a root and r, s ∈ Z+ . Without loss of generality we can classify semi-degenerate

representations by a collection of simple roots I for which the equation is satisfied:

−(ν, ei) = rb+
s

b
i ∈ I . (6.103)

Fully degenerate representations appear when I consists of all the simple roots. It is easy

to show that for fully degenerate representations α takes the form:

αR1|R2 = −bλ1 −
1

b
λ2 , (6.104)
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where λ1 and λ2 are the highest weights correspondning to irreducible representations R1 and

R2 of sl(n).

The identity representation, as in the Liouville case before, belongs to the set of the fully

degenerate representations.

To characterize generic semi-degenerate representations we need more notations. Denote

by ∆I subsystem of roots which are linear combinations of the simple roots in I, and by ρI

restricted Weyl vector as half sum of the positive roots in ∆I . For semi-degenerate representa-

tions ν takes the form

νν̃,R1,R2 = ν̃ − (ρI + λ1)b− (ρI + λ2)/b , (6.105)

where ν̃ is continuous component of the ν in the direction orthogonal to simple roots in I, and

λ1 and λ2 are the highest weights correspomding to irreducible representations R1 and R2 of

the Lie algebra built from ∆I . The elements of the matrix of the modular transformation have

been computed in [48] and given by the following expressions:

Sβα = Ξ
∑
ω∈W

ε(ω)e2πi(ω(β−Q),α−Q) , (6.106)

SR1|R2,α = χR1(e2πib(Q−α))χR2(e2πib−1(Q−α))S0α , (6.107)

S0α = Ξ
∏
e>0

4 sin(πb(α−Q, e)) sin(−π
b

(α−Q, e)) , (6.108)

Sν̃R1|R2,α = Ξ
∑

ω̃∈W/WI

ε(ω)e2πi(ω̃(µ̃),α−Q)χR1(e2πibω̃−1(Q−α))× (6.109)

χR2(e2πib−1ω̃−1(Q−α))
∏
e∈∆+

I

4 sin(πb(α−Q, ω̃(e))) sin(−π
b

(α−Q, ω̃(e))) .

χR(ex) are the Weyl characters:

χR(ex) =

∑
ω∈W ε(ω)e(ω(ρ+λ),x)∑
ω∈W ε(ω)e(ω(ρ),x)

(6.110)

and Ξ is defined by (6.96).
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Note that as in the Liouville field theory in the Toda field theory holds the relation as well

A(α)A(2Q− α) = S0α . (6.111)

Recalling (1.117), we are ready to compute the coefficients ξα and ηα in the Toda field

theory:

ξTα = εα

√
A(2Q− α)

A(α)

S00

A(α)A(2Q− α)
= εα

√
S00

A(α)
, (6.112)

ηTα = εα

√
A(2Q− α)

A(α)

A(α)A(2Q− α)

S00

= εα
A(2Q− α)√

S00

. (6.113)

Here εα denotes a possible sign factor.

Therefore one has in the Toda field theory

Cα3
α1,α2,µµ̄

=
εα1εα2

ε0εα3

A(2Q− α1)A(2Q− α2)

A(2Q)A(2Q− α3)
F0,α3

 α1 α2

α1 α∗2


µ̄µ

00

. (6.114)

Here µ and µ̄ label multiplicity of the representation α3 appearing in the fusion of α1 and α2.

Eq. (6.114) implies:

∑
µµ̄

Cα3
α1,α2,µµ̄

Fα3,0

 α∗1 α1

α2 α2


00

µ̄µ

=
εα1εα2

ε0εα3

A(0)A(α3)

A(α1)A(α2)
Nα3
α1α2

. (6.115)

Some comments are in order at this point.

1. Presently we have no closed expressions for fusing matrices and structure constants in the

Toda field theory, and cannot verify the expression (6.114) fully as we have done in the

Liouville field theory. But in the absence of these expressions, the formula (6.114) can

help to draw many conclusions on different aspects of the Toda field theory.

2. Actually we can use equation (6.115) only for α1, α2 and α3 possessing finite fusion mul-

tiplicity. This is always true for important for us case of the degenerate representations.

3. In the Toda field theory one has also analogue of the relations (6.20) and (6.45) in the

Liouville field theory. In the Toda field theory they read:

Cα3
α1,α2

= C(α1, α2, 2Q− α3) (6.116)
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and

C(α∗3, α2, α1) = R(α3)C(2Q− α3, α2, α1) . (6.117)

It is easy to see that the relation (6.114) is in agreement with (6.116) and (6.117), ob-

serving that:

a) the fusing matrix is invariant under the Weyl reflections of the primaries, since they do

not change the conformal dimensions, and therefore it is invariant under the replacement

α∗i → 2Q− αi of any of its variables, and

b) using the definition (6.99) one can prove that the function A(α) is the same for α and

α∗

A(α) = A(α∗) . (6.118)

We assume that possible sign factors satisfy εα = εα∗ = ε2Q−α.

4. It was computed in [62] that for sl(3) Toda field theory

Cα−bh
−bω1,α

Fα−bh,0

 α∗ α

−bω1 −bω1

 = −Γ(−2− 3b2)

Γ(−b2)

πµ

γ(−b2)

A(α− bh)

A(α)
, (6.119)

where h ∈ Hω1 and Hω1 = {ω1, ω2 − ω1,−ω1}.

It is easy to show that for sl(3) Toda field theory

−Γ(−2− 3b2)

Γ(−b2)

πµ

γ(−b2)
=

A(0)

A(−bω1)
. (6.120)

Recalling that for this case there are no multiplicities we have perfect agreement with

(6.115). We also see that for this case (6.115) satisfied without any sign factor.

5. All calculations leading to (6.114), (6.115) and (6.119) are performed in the Coulomb

gas approach. Calculations using exact expressions for the structure constants and fusing

matrix, still unknown in the Toda field theory, may bring to the modifications similar to

what we encountered in the Liouville field theory.
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The degenerate fields have in their OPE with general primary Vα only finite number of primaries

Vα′

V−bλ1− 1
b
λ2
Vα =

∑
s,p

C
α′sp
−bλ1− 1

b
λ2,α

Vα′sp , (6.121)

where α′sp = α− bhλ1
s − b−1hλ2

p . hλ1
s are weights of the representation λ1:

hλ1
s = λ1 −

n−1∑
1

siei , (6.122)

where si are some non-negative integers.

Given the relation (6.115) we can write down the Cardy-Lewellen equations (1.151) for Toda

field theory when one of the primaries, say j, taken the degenerate one, using general formalism

developed in section 2.

Eq. (1.156) in Toda field theory takes the form:

Ψ(α)Ψ(−bωk) =
∑
s

Ψ(α− bhωks ) . (6.123)

The solution of the equation (6.123) is given as in the rational conformal field theory by the

relation of elements of the matrix of the modular transformation:

Ψλ1|λ2(α) =
SR1|R2,α

SR1|R2,0

. (6.124)

Continuing as in the previous sections we obtain discrete family of the boundary state

coefficients for ordinary branes, permutation branes and defects:

BR1|R2(α) =
SR1|R2,α

A(α)
εα , (6.125)

BN
P R1|R2

(α) =
SR1|R2,α

AN(α)
εNα , (6.126)

DR1|R2(α) =
SR1|R2,α

S0α

. (6.127)

The continuous family of branes and defects as explained in the previous section can be

obtained via solutions of the equation;

Λ(α)A
A(−bωk)
A(0)

=
∑
s

Λ(α− bhωks ) . (6.128)
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The equation (6.128) as before can be solved by the elements of the matrix of modular trans-

formation corresponding to non-degenerate and semi-degenerate representations:

Λβ(α) = Sβα , (6.129)

Λµ̃R1|R2(α) = Sµ̃R1|R2,α . (6.130)

Dividing (6.129) and (6.130) by A(α)/εα, AN(α)/εNα and S0α, we obtain ordinary branes, per-

mutation branes and defects correspondingly.

6.3 Classical Liouville theory with defects

6.3.1 Review of Liouville solution

Let us recall some facts on classical Liouville theory.

The action of the Liouville theory is

S =
1

2πi

∫ (
∂φ∂̄φ+ µπe2bφ

)
d2z . (6.131)

Here we use a complex coordinate z = τ + iσ, and d2z ≡ dz ∧ dz̄ is the volume form.

The field φ(z, z̄) satisfies the classical Liouville equation of motion

∂∂̄φ = πµbe2bφ . (6.132)

The general solution to (6.132), also derived below, was given by Liouville in terms of two

arbitrary functions A(z) and B(z̄) [119]

φ =
1

2b
log

(
1

πµb2

∂A(z)∂̄B(z̄)

(A(z) +B(z̄))2

)
. (6.133)

The solution (6.133) is invariant if one transforms A and B simultaneously by the following

constant Möbius transformations:

A→ ζA+ β

γA+ δ
, B → ζB − β

−γB + δ
, ζδ − βγ = 1 . (6.134)
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Classical expressions for left and right components of the energy-momentum tensor are

T = −(∂φ)2 + b−1∂2φ , (6.135)

T̄ = −(∂̄φ)2 + b−1∂̄2φ . (6.136)

Substituting (6.133) in (6.135) and (6.136) we get, that components of the energy-momentum

tensor are given by the Schwarzian derivatives of A(z) and B(z̄):

T = {A; z} =
1

2b2

[
A′′′

A′
− 3

2

(A′′)2

(A′)2

]
, (6.137)

T̄ = {B; z̄} =
1

2b2

[
B′′′

B′
− 3

2

(B′′)2

(B′)2

]
. (6.138)

The Schwarzian derivative is invariant under arbitrary constant Möbius transformation:{
ζF + β

γF + δ
; z

}
= {F ; z}, ζδ − βγ = 1 . (6.139)

Solutions of the Liouville equation (6.132) can be described also via linear combination of

some holomorphic and anti-holomorphic functions. Let us introduce the function V = e−bφ.

One can write the Liouville equation (6.132) as equation for V

V ∂∂̄V − ∂V ∂̄V = −πµb2 . (6.140)

Also the left and right components of the energy-momentum tensor (6.135) and (6.136) can be

written via V

∂2V = −b2V T , (6.141)

∂̄2V = −b2V T̄ . (6.142)

It is straightforward to check that the general solution of eq. (6.140) is given by linear combi-

nation of two holomorphic ai(z), i = 1, 2, and two anti-holomorphic functions bi(z̄), i = 1, 2:

V =
√
πµb2

(
a1(z)b1(z̄)− a2(z)b2(z̄)

)
, (6.143)

satisfying the condition

(a1a
′
2 − a′1a2)(b1b

′
2 − b′1b2) = 1 . (6.144)
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Usually the fields ai(z) and bi(z̄), i = 1, 2 are normalized to have the unit Wronskian:

a1a
′
2 − a′1a2 = 1 (6.145)

and

b1b
′
2 − b′1b2 = 1 . (6.146)

It is easy to see that the left and right components of the energy-momentum tensor can be

expressed via ai and bi in the very simple form:

T = − 1

b2

∂2a1

a1

= − 1

b2

∂2a2

a2

(6.147)

and

T̄ = − 1

b2

∂̄2b1

b1

= − 1

b2

∂̄2b2

b2

. (6.148)

The solutions (6.133) and (6.143) can be related in the following way. One can solve the unit

Wronskian conditions (6.145) and (6.146) via a holomorphic A(z) and an anti-holomorphic

function B(z̄)

a1 =
1√
∂A

and a2 =
A√
∂A

(6.149)

and

b1 =
B√
∂̄B

and b2 = − 1√
∂̄B

. (6.150)

Inserting (6.149) and (6.150) in (6.143) we get (6.133). Note that the Möbius transformations

of A and B (6.134) become linear SL(2,C) transformations of ai and bi:

ã1 = δa1 + γa2 , (6.151)

ã2 = βa1 + ζa2

and

b̃1 = ζb1 + βb2 , (6.152)

b̃2 = γb1 + δb2 .
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It is straightforward to check that indeed (6.143) is invariant under (6.151) and (6.152), and

both of them keep the unit Wronskian condition.

One can also check, that both component of the energy-momentum tensor (6.147) and

(6.148) are invariant under these transformations as well.

We finish this section with a remark which will be important in the parts on the light

asymptotic limit. In that parts we will consider an analytic continuation µ → −µ. At this

point the solution (6.143) is convenient to write as:

V =
√
−πµb2

(
a1(z)b1(z̄) + a2(z)b2(z̄)

)
. (6.153)

It is easy to check that (6.153) also solves the Liouville equation, given that ai and bi, i = 1, 2

obey the condition (6.144).

6.3.2 Lagrangian of the Liouville theory with defect

Recently in [3] the action of the Liouville theory with topological defects was suggested:

Stop−def =
1

2πi

∫
Σ1

(
∂φ1∂̄φ1 + µπe2bφ1

)
d2z +

1

2πi

∫
Σ2

(
∂φ2∂̄φ2 + µπe2bφ2

)
d2z (6.154)

+

∫
∂Σ1

[
− 1

2π
φ2∂τφ1 +

1

2π
Λ∂τ (φ1 − φ2) +

µ

2
e(φ1+φ2−Λ)b − 1

πb2
eΛb (cosh(φ1 − φ2)b− κ)

]
dτ

i
.

Here Σ1 is the upper half-plane σ = Imz ≥ 0 and Σ2 is the lower half-plane σ = Imz ≤ 0.

The defect is located along their common boundary, which is the real axis σ = 0 parametrized

by τ = Rez. Note that Λ(τ) here is an additional field associated with the defect itself. The

action (6.154) yields the following defect equations of motion at σ = 0:

1

2π
(∂ − ∂̄)φ1 +

1

2π
∂τφ2 −

1

2π
∂τΛ +

µb

2
e(φ1+φ2−Λ)b − 1

πb
eΛb sinh(φ1 − φ2)b = 0 , (6.155)

− 1

2π
(∂ − ∂̄)φ2 −

1

2π
∂τφ1 +

1

2π
∂τΛ +

µb

2
e(φ1+φ2−Λ)b +

1

πb
eΛb sinh(φ1 − φ2)b = 0 , (6.156)

1

2π
∂τ (φ1 − φ2)− µb

2
e(φ1+φ2−Λ)b − 1

πb
eΛb (cosh(φ1 − φ2)b− κ) = 0 . (6.157)

The last equation is derived calculating variation by the Λ.
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Using that ∂τ = ∂ + ∂̄ and forming various linear combinations of equations (6.155)-(6.157)

we can bring them to the form:

∂̄(φ1 − φ2) = πµbeb(φ1+φ2)e−Λb , (6.158)

∂(φ1 − φ2) =
2

b
eΛb (cosh(φ1 − φ2)b− κ) . (6.159)

∂(φ1 + φ2)− ∂τΛ =
2

b
eΛb sinh(b(φ1 − φ2)) . (6.160)

It is shown in [3] that requiring the defect equations of motion to hold for every σ brings

additionally to the condition, that Λ is restriction to the real axis of a holomorphic field

∂̄Λ = 0 . (6.161)

This condition allows to rewrite (6.160) in the form

∂(φ1 + φ2 − Λ) =
2

b
eΛb sinh(b(φ1 − φ2)) . (6.162)

It is checked in [3] that the system of the defect equations of motion (6.158)-(6.162) guarantees

that both components of the energy-momentum tensor are continuous across the defects and

therefore describes topological defects:

−(∂φ1)2 + b−1∂2φ1 = −(∂φ2)2 + b−1∂2φ2 , (6.163)

−(∂̄φ1)2 + b−1∂̄2φ1 = −(∂̄φ2)2 + b−1∂̄2φ2 . (6.164)

Another interesting consequence of the defect equations of motion, found in [3], is existence

together with the holomorphic field Λ(z) of an anti-holomorphic field Ξ:

∂Ξ = 0 , (6.165)

where

Ξ = e−b(φ1+φ2)ebΛ(cosh b(φ1 − φ2)− κ) . (6.166)

or alternatively

Ξ =
b

2
e−b(φ1+φ2)∂(φ1 − φ2) . (6.167)
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Now we will present the general solution for defect equations of motion (6.158)-(6.162).

We will follow essentially the same strategy which was used in [92] for analyzing the bound-

ary Liouville problem. On the one hand since the defect is topological both components of the

energy-momentum tensor are equal being computed in terms of φ1 or φ2. On the other hand

each component of the energy-momentum tensor is given by the Schwarzian derivative, which

is invariant under the Möbius transformation. This naturally leads to the following soluton:

φ1 =
1

2b
log

(
1

πµb2

∂A∂̄B

(A+B)2

)
, (6.168)

φ2 =
1

2b
log

(
1

πµb2

∂C∂̄D

(C +D)2

)
, (6.169)

where

C =
ζA+ β

γA+ δ
and D =

ζ ′B + β′

γ′B + δ′
. (6.170)

Remembering that φ2 is invariant under the simultaneous Möbius transformation (6.134) of C

and D, we can set B = D. Therefore without loosing generality we can look for a solution in

the form:

φ1 =
1

2b
log

(
1

πµb2

∂A∂̄B

(A+B)2

)
, (6.171)

φ2 =
1

2b
log

(
1

πµb2

∂C∂̄B

(C +B)2

)
, (6.172)

where

C =
ζA+ β

γA+ δ
. (6.173)

Substituting (6.171) and (6.172) in (6.158) we find that it is satisfied with

e−Λb =
A− C√
∂A∂C

. (6.174)

Since A and C are holomorphic functions, Λ is holomorphic as well, as it is stated in (6.161).

It is straightforward to check that (6.162) is satisfied as well with φ1, φ2 and Λ given by

(6.171), (6.172) and (6.174) respectively. And finally inserting (6.171), (6.172) and (6.174) in

(6.159) we see that it is also fulfilled with

κ =
ζ + δ

2
. (6.175)
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Inserting (6.171), (6.172) in (6.167) one can check that

Ξ =
πµb2

2

γB2 +B(ζ − δ)− β
∂̄B

. (6.176)

Remembering that B is anti-holomorphic we see that Ξ is anti-holomorphic as well.

We can write the solution of the defect equations of motion also using solution of the Liouville

equation in the form (6.143). Recalling that the Möbius transformations of the functions A

and B become linear SL(2,C) transformations of the functions ai and bi, which leave the

components of the energy-momentum tensor (6.147) and (6.148) invariant, we can write the

solution (6.171)-(6.173) in the form:

e−bφ1 =
√
πµb2

(
a1(z)b1(z̄)− a2(z)b2(z̄)

)
, (6.177)

e−bφ2 =
√
πµb2

(
c1(z)b1(z̄)− c2(z)b2(z̄)

)
, (6.178)

where denoting ~a = (a1, a2), ~c = (c1, c2), and D =

 δ γ

β ζ

, one has

~c = D~a (6.179)

and

2κ = Tr D . (6.180)

At this point we would like to make the following remark. Let us consider the identity

defect. It has A = C, and κ = 1. Setting A = C in (6.174) we obtain e−Λb = 0. This result can

be derived also directly setting φ1 = φ2 in (6.158). Therefore the identity defect does not belong

to the family of defects described by the action (6.154) and can be derived from them only in

the limit Λ → ∞. This can be understood recalling that defects described by (6.154) have a

two-dimensional world-volume in a sense that the values of φ1(τ) and φ2(τ) at an arbitrary

point τ on the defect line are not constrained and the point (φ1(τ), φ2(τ)) can take values in

the whole plane R2. Contrary to this, the identity defect has a one-dimensional world-volume,

since the point (φ1(τ), φ2(τ)) takes values on one-dimensional diagonal φ1 = φ2.
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6.4 Heavy asymptotic limit

Let us consider the action (6.131) for the rescaled variable ϕ = 2bφ

S =
1

8πib2

∫ (
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z , (6.181)

where λ = πµb2.

This form shows that b2 plays in the Liouville theory the role of the Planck constant, and

one can study semiclassical limit taking the limit b→ 0, in such a way that λ is kept fixed.

Let us consider correlation functions in the path integral formalism:〈
Vα1(z1, z̄1) · · ·Vαn(zn, z̄n)

〉
=

∫
Dϕ e−S

n∏
i=1

exp

(
αiϕ(zi, z̄i)

b

)
. (6.182)

We would like to calculate this integral in the semiclassical limit b → 0 using the method

of steepest descent, and we should decide how αi scales with b. Since S scales like b−2, for

operators to affect the saddle point, we should take αi = ηi/b, with ηi fixed. The conformal

weights ∆α = η(1 − η)/b2 scale like b−2 as well. This is the heavy asymptotic limit. Another

choice of the operator scaling will be discussed in the next subsection.

We see from (6.182) that in the semiclasscial limit the correlation function is given by e−Scl

where, at least naively, in a sense which will be clarified below, Scl is the action

S =
1

8πib2

∫ (
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z +

n∑
i=1

ηi
b2
ϕ(zi, z̄i) , (6.183)

evaluated on the solution of its equation of motion:

∂∂̄ϕ = 2λeϕ − 4π
n∑
i=1

ηiδ
2(z − zi) . (6.184)

Assuming that in the vicinity of the insertion point zi, one can ignore the exponential term we

get that in the neighborhood of the point zi ϕ has the following behavior

ϕ(z, z̄) = −4ηi log |z − zi|+Xi as z → zi . (6.185)

One can insert this solution back into the equation of motion to check, if indeed the expo-

nential term is subleading. We find, that this happens when

Re ηi <
1

2
. (6.186)
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This constraint is known as Seiberg bound [170]. It is the semiclassial version of the quantum

condition (6.17) stating that Vα and VQ−α represent the same quantum operator. Either α or

Q− α always obey the Seiberg bound.

Remembering that in the Liouville theory we have also background charge at infinity, con-

ditions (6.185) should be complemented by the behavior at the infinity:

ϕ(z, z̄) = −2 log |z|2 as |z| → ∞ . (6.187)

Since the energy-momentum tensor in the presence of primary fields acquires a quadratic sin-

gularity, functions aj, j = 1, 2, should solve the equation

∂2aj + b2Taj = 0 , (6.188)

where

b2T =
n∑
i=1

(
ηi(1− ηi)
(z − zi)2

+
ci

(z − zi)

)
(6.189)

and ci are the so called accessory parameters.

If one tries naively to evaluate the action (6.183) on a solution obeying (6.185), we find that

it diverges. Therefore we should consider a regularized action. It was constructed in [191]:

b2Sreg =
1

8πi

∫
D−∪idi

(
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z +

1

2π

∮
∂D

ϕdθ + 2 logR (6.190)

−
n∑
i=1

(
ηi
2π

∮
∂di

ϕdθi + 2η2
i log εi

)
.

Here D is a disc of radius R, di is a disc of radius εi around zi. It was shown in [191] that the

action (6.190) satisfies the equation

∂

∂ηi
b2Sreg = −Xi , (6.191)

where Xi is defined by the boundary condition (6.185).

The Polyakov conjecture proved in [193] states, that the action (6.190) also obeys the

relation:

∂

∂zi
b2Sreg = −ci . (6.192)

Let us write down regularized version of the action with a defect.
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First of all let us write it in the terms of λ = πµb2, ϕ1 = 2bφ1, ϕ2 = 2bφ2, and Λ̃ = 2bΛ:

b2Stop−def =
1

8πi

∫
Σ1

(
∂ϕ1∂̄ϕ1 + 4λeϕ1

)
d2z +

1

8πi

∫
Σ2

(
∂ϕ2∂̄ϕ2 + 4λeϕ2

)
d2z (6.193)

+

∫
∂Σ1

[
− 1

8π
ϕ2∂τϕ1 +

1

8π
Λ̃∂τ (ϕ1 − ϕ2) +

λ

2π
e(ϕ1+ϕ2−Λ̃)/2 − 1

π
eΛ̃/2

(
cosh

(
ϕ1 − ϕ2

2

)
− κ
)]

dτ

i
.

Since we consider here only insertion of the bulk field, and do not consider insertion of the

defect or boundary fields, the regularized action takes the form:

b2Stop−def =
1

8πi

∫
ΣR1 −∪idi

(
∂ϕ1∂̄ϕ1 + 4λeϕ1

)
d2z (6.194)

−
n∑
i=1

(
ηi
2π

∮
∂di

ϕ1dθi + 2η2
i log εi

)
+

1

2π

∫
sR1

ϕ1dθ + logR

+
1

8πi

∫
ΣR2 −∪jdj

(
∂ϕ2∂̄ϕ2 + 4λeϕ2

)
d2z

−
n+m∑
j=n+1

(
ηj
2π

∮
∂dj

ϕ2dθj + 2η2
j log εj

)
+

1

2π

∫
sR2

ϕ2dθ + logR +

∫ R

−R

[
− 1

8π
ϕ2∂τϕ1 +

1

8π
Λ̃∂τ (ϕ1 − ϕ2) +

λ

2π
e(ϕ1+ϕ2−Λ̃)/2 − 1

π
eΛ̃/2

(
cosh

(
ϕ1 − ϕ2

2

)
− κ
)]

dτ

i
,

where ΣR
i is a half-disc of the radius R and sRi is a semicircle of the radius R in the half-plane

Σi, i = 1, 2.

6.5 Defects in the heavy asymptotic limit

6.5.1 Heavy asymptotic limit of the correlation functions

In this section we consider the heavy asymptotic limit of two-point functions in the presence

of defects (6.82):

〈Vα(z1, z̄1)XsVα(z2, z̄2)〉 = − 1

W 2(α)

21/2i cosh(2πs(2α−Q))

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
(6.195)

Now we should compute the inverse ZZ function (6.29) and the factor cosh(2πs(2α − Q)) in

the limit b→ 0, setting α = η
b
, and s = σ

b
. In the heavy asymptotic limit we should keep only
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terms having the form ∼ e1/b2 .

To understand semiclassical origin of the denominator in (6.83) we find very useful to

consider in the spirit of [105] analytic continuation of the Liouville theory with complex η and

complex saddle points.

Taking the η satisfying the Seiberg bound (6.186) Re η < 1
2
, using properties of Γ functions

collected in appendix .2, we obtain

W−1
α= η

b
→ C(b, η)λ

1−2η

2b2
1

sin π
(

2η−1
b2

) exp

(
2η − 1

b2

[
log(1− 2η)− 1

])
. (6.196)

where

C(b, η) = −2−3/4e−3iπ/2b3Γ(2η)

(2η − 1)2
(6.197)

= exp

(
−3

4
log 2− iπ

2
+ log Γ(2η)− 2 log(1− 2η) + 3 log b

)
We see that all the terms in (6.197) are negligible compare to terms growing like ∼ e1/b2 in

the limit b → 0, and therefore C(b, η) can be omitted. The importance of the term 1

sinπ( 2η−1

b2
)

is explained in [105]. It was shown that this term in the semiclassical interpretation arises as

a sum over some “instanton” like sectors. As a preparation to this point we will expand this

term in two ways as suggested in [105]. Denoting y = eiπ(2η−1)/b2 one can write

1

sin π
(

2η−1
b2

) =
2i

y − y−1
= 2i

∞∑
k=0

y−(2k+1) = −2i
∞∑
k=0

y2k+1 . (6.198)

One expansion is valid for |y| > 1 and one for |y| < 1. So either way, there is a set T of integers

with

1

sin π
(

2η−1
b2

) = ±2i
∑
M∈T

e2iπ(M∓1/2)(2η−1)/b2 , (6.199)

where T consists of nonnegative integers if Im(2η − 1)/b2 > 0 and of nonpositive ones if

Im(2η − 1)/b2 < 0.

Setting α = η
b

and s = σ
b

we easily obtain:

cosh 2πs(2α−Q)→ e
2π
b2
|σ|(1−2η) . (6.200)

Now we are position to write down the limiting form of the defects correlation functions.
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Inserting (6.196), (6.200) in (6.195) we can write in the heavy asymptotic limit

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 ∼ (z1 − z2)−2η(1−η)/b2(z̄1 − z̄2)−2η(1−η)/b2 (6.201)

× λ
1−2η

b2
1

sin2 π
(

2η−1
b2

) exp

(
4η − 2

b2

[
log(1− 2η)− 1

])
e

2π
b2
|σ|(1−2η) .

Using also (6.199) we get

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 ∼
∑

M1,M2∈T

exp
(
−Sdef

M1,M2

)
, (6.202)

where

b2Sdef
M1,M2

= −2iπ(M1 +M2 ∓ 1)(2η − 1) + 4η(1− η) log |z1 − z2| (6.203)

−(1− 2η) log λ− (4η − 2) log(1− 2η) + (4η − 2)− 2π|σ|(1− 2η) .

It is instructive to compare the heavy asymptotic limit of the defect two-point function with

the corresponding limit of usual two-point function, computed in [105]

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 ∼ |z1 − z2|−4η(1−η)/b2 (6.204)

× λ(1−2η)/b2 1

sin π(2η − 1)/b2
exp

(
4η − 2

b2
[log(1− 2η)− 1]

)
.

The relation of (6.201) to (6.204) naturally gives the heavy asymptotic limit of the eigenvalues

Ds(α) of the defect operator:

Ds(α) =
〈Vα(z1, z̄1)XVα(z2, z̄2)〉
〈Vα(z1, z̄1)Vα(z2, z̄2)〉

→ e
2π
b2
|σ|(1−2η)

sin π
(

2η−1
b2

) . (6.205)

Surely (6.205) can be also easily derived directly from (6.83) in the heavy asymptotic limit.

6.5.2 Evaluation of the action for classical solutions

According to general prescription of the semiclassical heavy asymptotic limit, we should find

solutions of the Liouville equation, satisfying the defect equations of motion and possessing the

logarithmic singularities (6.185) at points z1 and z2. The form of the solution of the defect

equations of motion (6.171) and (6.172) implies that we should find functions A(z), C(z) and

B(z̄) in such a way that φ1 has a logarithmic singularity at the point z1 and φ2 has a logarithmic
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singularity at the point z2. Since the energy-momentum tensor is continuous across a defect

this implies that we should find solutions possessing two singular points. Two-point solutions

are well known ( see for example [105]) and we can build from them the Ansatz satisfying the

defect equations of motion.

To build the solution with the required singularities one should take a function A(z) which

is smooth and holomorphic away from z1 and z2. Let us take A(z) as

A(z) = e2ν1(z − z1)2η−1(z − z2)1−2η . (6.206)

One has also

a1 =
1√
∂A

=
e−ν1√

(z1 − z2)(2η − 1)
(z − z1)1−η(z − z2)η , (6.207)

a2 =
A√
∂A

=
eν1√

(z1 − z2)(2η − 1)
(z − z1)η(z − z2)1−η . (6.208)

Inserting (6.207) or (6.208) in (6.147) we obtain the energy-momentum tensor

b2T =
η(1− η)

(z − z1)2
+
η(1− η)

(z − z2)2
− 2η(1− η)

z1 − z2

(
1

z − z1

− 1

z − z2

)
, (6.209)

indeed possessing two singular points (6.189), with accessory parameters

c2 = −c1 =
2η(1− η)

z1 − z2

. (6.210)

The anti-holomorphic part is:

B(z̄) = −(z̄ − z̄1)1−2η(z̄ − z̄2)2η−1 , (6.211)

b1 =
B√
∂̄B

=
1√

(z̄1 − z̄2)(2η − 1)
(z̄ − z̄1)1−η(z̄ − z̄2)η , (6.212)

b2 = − 1√
∂̄B

=
1√

(z̄1 − z̄2)(2η − 1)
(z̄ − z̄1)η(z̄ − z̄2)1−η . (6.213)

Let us take the holomorphic part for φ2 as

C(z) = e2ν2(z − z1)2η−1(z − z2)1−2η = e2(ν2−ν1)A(z) , (6.214)

and the antiholomorphic part again given by (6.211). Using (6.175) one gets

κ = cosh(ν2 − ν1) . (6.215)
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Inserting (6.206), (6.214) and (6.211) in (6.171) and (6.172) we obtain:

e−ϕ1 =
λ

(2η − 1)2|z1 − z2|2
(
eν1|z − z1|2η|z − z2|2−2η (6.216)

−e−ν1|z − z1|2−2η|z − z2|2η
)2

,

e−ϕ2 =
λ

(2η − 1)2|z1 − z2|2
(
eν2|z − z1|2η|z − z2|2−2η (6.217)

−e−ν2|z − z1|2−2η|z − z2|2η
)2

.

It is easy to see that ϕ1 and ϕ2 given by (6.216) and (6.217) have the required singularity (6.185)

around z1 and z2 respectively. In fact each of the functions ϕ1 or ϕ2 given by (6.216) and (6.217)

coincides with the solution describing a saddle point for a two-point function considered in [105].

But in [105] this solution was considered on a full plane with the same parameter ν everywhere,

whereas here each of them is considered on a corresponding half-plane, namely in (6.216) z

belongs to the upper half-plane Σ1, and in (6.217) z belongs to the lower half-plane Σ2, and

we should also remember that, z1 ∈ Σ1 and z2 ∈ Σ2. The defect is created by the choice of

different parameters ν1 and ν2, ν1 6= ν2.

From (6.216) and (6.217) we obtain

ϕ1 = 4iπN1 − log λ+ 2 log(1− 2η) (6.218)

−2 log

(
eν1 |z − z1|2η|z − z2|2−2η

|z1 − z2|
− e−ν1|z − z1|2−2η|z − z2|2η

|z1 − z2|

)
,

ϕ2 = 4iπN2 − log λ+ 2 log(1− 2η) (6.219)

−2 log

(
−e

ν2|z − z1|2η|z − z2|2−2η

|z1 − z2|
+
e−ν2|z − z1|2−2η|z − z2|2η

|z1 − z2|

)
.

Here N1 and N2 are integer. The possibility to add the term 4iπNj, j = 1, 2, results from the

invariance of the bulk (6.132) and defect (6.158)-(6.162) Liouville equations of motion under

the transformation φj → φj + 2πiNj/b, or multiplying by 2b, under ϕj → ϕj + 4πiNj, j = 1, 2.

Note that the bulk Liouville equation (6.132) is invariant under the symmetry ϕj → ϕj+2πiNj,

and it is broken to the ϕj → ϕj + 4πiNj by the exponential terms of the defect action (6.154).
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To evaluate the action on solutions (6.216), (6.217), we will use the strategy used in [191].

Namely we will write the system of differential equations which this action should satisfy. The

first equation is (6.191), which given that η1 = η2 = η, reads

b2∂S
def
cl

∂η
= −X1 −X2 . (6.220)

where Xi is defined in (6.185). The leading terms of ϕ1 around z1 are

ϕ1 → −4η log |z − z1|+X1 , (6.221)

where

X1 = 4πiN1 − log λ+ 2 log(1− 2η)− (2− 4η) log |z1 − z2| − 2ν1 . (6.222)

The leading terms of ϕ2 around z2 similarly are

ϕ2 → −4η log |z − z2|+X2 , (6.223)

where

X2 = 4πiN2 − log λ+ 2 log(1− 2η)− (2− 4η) log |z1 − z2|+ 2ν2 . (6.224)

Inserting (6.222) and (6.224) in (6.220) one obtains

b2∂S
def
cl

∂η
= −2πi (2N1 + 2N2)+2 log λ−4 log(1−2η)+(4−8η) log |z1−z2|+2(ν1−ν2) . (6.225)

We would like to emphasize yet another difference from the calculation of the heavy asymptotic

limit of the two-point function in [105]. In the case of the usual two-point function the integers

N1 and N2 are equal since we have one continuous function φ. Here they can be different since

we have two different functions ϕ1 and ϕ2.

The action with defect (6.194) implies also

b2∂S
def
cl

∂κ
=

1

iπ

∫
∂Σ1

eΛbdτ . (6.226)

Inserting (6.206) and (6.214) in eq. (6.174) one obtains

eΛb =
1

2 sinh(ν1 − ν2)

(2η − 1)(z1 − z2)

(z − z1)(z − z2)
. (6.227)
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Using that

1

i

∫
∂Σ1

dz

(z − z1)(z − z2)
=

2π

(z1 − z2)
, (6.228)

we obtain

b2∂S
def
cl

∂κ
=

2η − 1

sinh(ν1 − ν2)
. (6.229)

Integrating equations (6.225) and (6.229) we obtain:

b2Sdef
N1,N2

= −2iπ(2N1 + 2N2)η + 4η(1− η) log |z1 − z2| (6.230)

+2η log λ− (4η − 2) log(1− 2η) + 4η − (ν1 − ν2)(1− 2η) + C ,

where C is a constant. To derive the penultimate term we should remember the relation

(6.215). To fix the constant term we can directly compute the action (6.194) for the Ansatz

(6.218)-(6.219) with η = 0:

ϕ1 = 4iπN1 − log λ− log

(
eν1

|z1 − z2|
|z − z2|2 −

e−ν1

|z1 − z2|
|z − z1|2

)2

, (6.231)

ϕ2 = 4iπN2 − log λ− log

(
eν2

|z1 − z2|
|z − z2|2 −

e−ν2

|z1 − z2|
|z − z1|2

)2

. (6.232)

Evaluation of the action (6.194) on the Ansatz (6.231), (6.232) is done in [144]. The result

is

b2S0 = 2iπ(N1 +N2)− log λ− 2− (ν1 − ν2) . (6.233)

Comparing (6.233) with (6.230) fixes the constant C:

C = 2iπ(N1 +N2)− log λ− 2 . (6.234)

Inserting this value of C in (6.230) we indeed obtain (6.203) if we set

N1 = M1 , (6.235)

N2 = M2 ∓ 1 , (6.236)
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and

2πσ = ν1 − ν2 . (6.237)

Some comments are in order at this point:

1. The action (6.230) satisfies the Polyakov relation (6.192) with the accessory parameters

defined in (6.210):

b2∂S
def
cl

∂zi
= (−)i+1 2η(1− η)

z1 − z2

, i = 1, 2 . (6.238)

2. In eq. (6.199) M takes nonnegative integer values if Im(2η − 1)/b2 > 0, and nonpositive

integer values if Im(2η−1)/b2 < 0. Therefore N1 also runs over nonnegative or nonpositive

integer values depending on the sign of Im(2η−1)/b2, and N2 takes values {1, 2, . . .}, when

Im(2η − 1)/b2 > 0 and N2 takes values {−1,−2, . . .}, when Im(2η − 1)/b2 < 0. The fact

that for the different values of the parameter η we should take contribution of the different

set of the saddle points is known as the Stokes phenomena, and was studied in detail for

two- and three-point correlation functions of the Liouville field theory in [105]. Recall

that it is caused by the fact that the sum (6.199) converges for the different values of M

depending on the sign of Im(2η−1)/b2. The values of parameters at which the jump of the

set of the contributing saddle point occurs define a (anti-) Stokes line. As we explained

in introduction the Stokes or anti-Stokes lines arise when at some values of parameters

of the system imaginary or real parts of actions evaluated at the different saddle points

coincide [105, 126, 188]. From (6.203) or (6.230) we see that Re Sdef
N1,N2

are the same for

all N1 and N2 if Im(2η− 1) = 0. The line Im(2η− 1) = 0 is the anti-Stokes line at which

indeed we observe jump in the set of the contributing saddle points. The jump is caused

by the fact that at this line the magnitudes of the amplitudes of all saddle points coincide.

3. The discussion above of the differences between calculation of two-point function with

and without defect suggests nice interpretation of the defect operator. We have seen

that there exist two sources of discontinuity giving rise to the corresponding terms in

the defect operators. The heavy asymptotic limit of D(α) (6.205) has an exponential in
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the numerator and sinus in the denominator. The exponential term in the numerator

as we have seen originates from the discontinuity created by the choice of the different

parameters ν1 and ν2. The correspondence between the Ni and Mi parameters makes

clear that the different logarithmic branch solutions, given by N1 and N2, are responsible

for the quadratic term sin2 π
(

2η−1
b2

)
term in the (6.201). On the other hand, as we

have mentioned before, in the heavy asymptotic limit calculation of the usual two-point

function one has N1 = N2, and it reflects the presence of the term sinπ
(

2η−1
b2

)
in the

denominator of (6.204) in the first degree. Therefore the denominator sinπ
(

2η−1
b2

)
in

D(α) reflects the possibility of the choice of different logarithmic branches with N1 6= N2

in the solution of the defect equations of motion. The final quantum expression (6.83)

results from the quantum corrections restoring b↔ b−1 duality of the Liouville theory.

Let us analyze in the heavy asymptotic limit also the relation (6.78) between parameter s and

A(b)

2 cosh 2πbs = A(b)

(
W (−b/2)

W (0)

)2

. (6.239)

It is easy to compute that

limb→0
W(−b/2)

W(0)
= − 2√

λ
. (6.240)

Setting that s = σ
b
, we get

cosh 2πσ =
2A(0)

λ
. (6.241)

This implies that parameter κ is proportional to A(0):

κ =
2A(0)

λ
. (6.242)

Note that as in the light asymptotic limit as well as in the heavy asymptotic limit we get the

same relation between σ and κ

κ = cosh 2πσ . (6.243)
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Chapter 7

Branes in (2,2,2,2) Gepner model

7.1 Simple current extension: brief review

Let us briefly remind the meaning of the simple current extension by simple currents of integral

conformal weight [28,70–72,169], [73]. A primary J is called a simple current if, fused with any

other primary λ, it yields just a single field Jλ. Simple current extension means the combination

of two operations:

• Projection. We keep only fields which obey QJ(λ) = 0 where

QJ(λ) = ∆λ + ∆J −∆Jλ (mod Z) (7.1)

• Extension. We extend the chiral algebra by including the simple current J . This means

that we organize the fields surviving the projection into orbits derived as a result of fusion

with the simple current J .

Before writing the torus partition function we should discuss the important issue of fixed

point resolution. If all the primaries form orbits of the same length, equal to the order |G| of

the full group G generated by the simple currents, or in other words have the same number of

images under the repeated fusion with the simple current, the characters could be labelled by

the primaries chosen, one from each orbit, called orbit representatives, and have the form:

χ̃λ̂ =
∑
J∈G

χJλ (7.2)
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The unitary matrix representing modular transformations on the extended theory is:

S̃â,b̂ = |G|Sab (7.3)

where with hatted variables we denoted the orbit representatives. However it may happen that

some of the primaries have a non-trivial stabilizer Sλ, i.e. be fixed under the action of currents

of a subgroup Sλ ∈ G. In this case the freely acting group is the factor Ga = G/Sa and the

orbit length is given by

|Ga| =
|G|
|Sa|

(7.4)

and therefore varies from orbit to orbit. The simple formula (7.3) for the modular transforma-

tion matrix does not work anymore. It turns out that in order to construct a unitary matrix

representation of the modular transformation in this case one needs to resolve the primaries

with non-trivial stabilizer, i.e. one should consider together with the orbit â additional |Sa|

orbits∗. Labelling the additional orbits by i we find the characters:

χ̃λ̂,i = mλ̂,i

∑
J∈G/Sλ

χJλ =
mλ̂,i

|Sλ|
∑
J∈G

χJλ (7.5)

where mi,a are usually equal to 1, but we keep them explicitly so as to keep track of the different

resolved orbits.

The diagonal modular invariant torus partition function of the extended theory reads

Zext =
∑
λ̂,i

|χ̃λ,i|2 =
∑

orbits Q(λ)=0

|Sλ| · |
∑

J∈G/Sλ

χJλ|2 (7.6)

where we used that

|Sa| =
∑
i

(ma,i)
2 (7.7)

∗Actually each primary should be resolved by the order of the subgroup Ua of the stabilizer, called untwisted

stabilizer [70], on which a certain alternating U(1)-valued bihomomorphism, or discrete torsion, on the stabilizer

Sa vanishes. It is well-known that discrete torsions are classified by the second U(1)-valued cohomology group

H2(Sa, U(1)) [182], and since in Gepner models with diagonal (or charge conjugation) torus partition function –

the situation of our interest below – the stabilizers are all isomorphic to the Z2 group, for which H2(Z2, U(1)) = 0

, one finds that the untwisted stabilizer coincides with stabilizer.
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The unitary matrix representation of the modular transformation S on the characters (7.5),

was constructed in [169], [70]. The following ansatz was suggested

S̃(a,i),(b,j) = ma,imb,j
|Ga||Gb|
|G|

Sa,b + Γ(a,i),(b,j) (7.8)

where Γ(a,i),(b,j) satisfies the equation

∑
j

Γ(a,i),(b,j)mb,j = 0 (7.9)

and it is therefore different from zero only between fixed points. It was found in [169] that

unitarity requires Γ(a,i),(b,j) to satisfy the condition:

∑
orbits Q(b)=0,j

Γ(a,i),(b,j)Γ
∗
(c,k),(b,j) = δac(δik −

ma,ima,k

|Sa|
) . (7.10)

Using the matrix (7.8) one can compute the fusion rule coefficients using Verlinde formula

and the annulus partition functions for the Cardy states. After some algebra we arrive at the

expression:

A(a,i),(d,e) =
∑

orbits Q(c)=0

∑
J∈G

ma,imd,eN d
Ja,c

|Sa||Sd|
∑
K∈Gc

χKc

+
∑

orbits Q(c)=0

∑
(orbits Q(b)=0,j)

Γ(a,i),(b,j)Sc,bΓ
∗
(b,j),(d,e)

S0,b

∑
K∈Gc

χKc (7.11)

Given that the resolving matrix Γ(a,i),(b,j) are different from zero only between fixed points we

observe that formula (7.11) simplifies if one of the states is not fixed. When a is not fixed and

d fixed (7.11) simplifies to

A(a),(d,e) =
∑

orbits Q(c)=0

∑
J∈G

md,eN d
Ja,c

|Sd|
∑
K∈Gc

χKc (7.12)

When neither a nor d are fixed (7.11) further simplifies to

Aad =
∑

orbits Q(c)=0

∑
J∈G

N d
Ja,c

∑
K∈Gc

χKc (7.13)

For later application to Gepner models let us discuss the matrix Γ(a,i),(b,j) and the second term

in (7.11) in the case when all the fixed points have a stabilizer isomorphic to Z2. In this case
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equations (7.9) and (7.10) can be satisfied by taking Γ(a,i),(b,j) in the form:

Γ(a,ψ),(b,ψ′) =
|Ga||Gb|
|G|

Ŝabψψ
′δafδbf (7.14)

where ψ is the resolving index which takes two values ±, and Ŝab is a unitary matrix. Plugging

(7.14) in (7.11) for the the second term one can write:

1

|Sa||Sd|
ψψ′′

∑
Orbits Q(c)=0

∑
b

∑
J∈G

ŜJa,bSc,bŜ
∗
b,d

S0,b

(∑
K∈Gc

χKc

)
δafδbfδdf (7.15)

We also show in [162] that formulae (7.13) and (7.11) are actually equivalent to the formulae

for the A-type annulus partition functions derived in [150] and [36].

7.2 Gepner models: generalities

Let us remind the basic facts about Gepner models [84]. The starting point of a Gepner model

is the tensor product theory

Cs−t
k1,···,kn = Cs−t ⊗ Ck1 ⊗ · · · ⊗ Ckn , (7.16)

where Cs−t is the D dimensional flat space-time part, and Ck is one of the N = 2 minimal

models, whose central charges ck = 3k
k+2

satisfy the relation

n∑
i=1

cki +
3

2
(D − 2) = 12 (7.17)

N = 2 minimal models can be described as cosets SU(2)k × U(1)4/U(1)2k+4. Accordingly

the primaries of Ck are labelled by three integers (l,m, s) with ranges l ∈ (0, · · · k) , m ∈

(−k − 1, · · · , k + 2), s ∈ (−1, 0, 1, 2), subject to the selection rule l +m+ s ∈ 2Z and the field

identification (l,m, s) ≡ (k − l,m + k + 2, s + 2). Primaries with even values of s belong to

the NS sector, while primaries with odd values of s belong to the R sector. The conformal

dimension and charge of the primary (l,m, s) are given by:

hlm,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
(mod 1) (7.18)

qlm,s =
m

k + 2
− s

2
(mod 2) (7.19)
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The exact dimensions and charges can be read off (7.18) and (7.19) using field identifications

to bring (l,m, s) into the standard range

l ∈ (0, · · · k), |m− s| ≤ l, s ∈ (−1, 0, 1, 2) (7.20)

The characters are given by

χl (k)
m, s(z, τ) =

k−1∑
j=0

c
l (k)
m+4j−s(τ)Θ2m+(4j−s)(k+2),2k(k+2)(z, τ) (7.21)

where

ΘM,N(z, τ) = θ

[ M
2N

0

]
(z, 2Nτ) =

∑
n∈Z

e2πiτN(n+ M
2N )

2

e2iπz(n+ M
2N ) (7.22)

that obviously satisfy the identity

ΘM+2N,N = ΘM,N (7.23)

and c
l (k)
m are the characters of the parafermionic field theory at level k, satisfying identities:

cl (k)
m = c

l (k)
−m = c

l (k)
m+2k = c

k−l (k)
k±m (7.24)

The fusion coefficients are

NN=2 l1l2l3
m1m2m3s1s2s3

= (7.25)

N SU(2) l3
l1l2

δm1+m2−m3δs1+s2−s3 +N SU(2) k−l3
l1l2

δm1+m2−(m3+k+2)δs1+s2−(s3+2)

The space-time part can be described in terms of the SO(D − 2)1 algebra. SO(2n)1 algebras

have four primaries λ = (o, v, s, c), with conformal dimensions

ho = 0, hv =
1

2
, hs = hc =

n

8
(7.26)

charges

qo = 0, qv = 1, qs =
n

2
, qc =

n

2
− 1 (7.27)

and characters:

χ
SO(2n)
O =

1

2ηn
(θn3 + θn4 ) (7.28)

χ
SO(2n)
V =

1

2ηn
(θn3 − θn4 )

χSO(2n)
s =

1

2ηn
(θn2 + i−nθn1 )

χSO(2n)
c =

1

2ηn
(θn2 − i−nθn1 )

247



O and V primaries belong to the NS sector, while S and C belong to the R sector. For future

use, let us write down also the fusion rules of the SO(2n)1 algebras.

n odd o v s c

o o v s c

v v o c s

s s c v o

c c s o v

(7.29)

n even o v s c

o o v s c

v v o c s

s s c o v

c c s v o

(7.30)

The primaries of the product theory (7.16) can be labelled by the following collection of

indices

(λ,~l, ~m,~s)) = (λ, l1,m1, s1, · · · , ln,mn, sn) (7.31)

The Gepner model is the simple current extension of the product Cs−t
k1,···,kn , with the following

simple currents:

• supersymmetry current: Stot = (s, (0, 1, 1), · · · (0, 1, 1))

• alignment currents: Vi = (v, · · · (0, 0, 2) · · ·), with (0, 0, 2) at the ith position.

Let us summarize the results of applying the formalism reviewed in the previous section

to Gepner models [28], [36], [73]. In Gepner models the simple current projection or, in the
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original Gepner’s language, β-projection with respect to the supersymmetry current Stot reads

Q(ω,~l,~m,~s)) = qω +
n∑
i=1

qlimi,si = 1 (mod 2Z) (7.32)

and is nothing else than the famous GSO projection yielding space-time supersymmetry†. The

projection with respect to the alignment current selects only primaries were all constituent

primaries belong to the same sector, either NS either R and guarantees world-sheet supersym-

metry.

To analyze the length of the orbits we should consider two cases:

1. all the levels ki are odd

In this case no fixed point occurs, all the primaries have trivial stabilizer, and the length

of the Stot current is K = lcm{4, 2ki + 4}. All Vi currents always act freely and have

length 2. But when all the ki levels are odd, it turns out that the Stot current has an

overlap with the Vi currents, and to cover all orbit it is enough to sum over only n− 1 of

the n Vi currents. As a result, the orbit length in this case is 2n−1K.

2. one has r 6= 0 even levels ki

Let us place the even levels in the first r positions. In this case for a generic primary the

orbit length of the supersymmetry current is again K = lcm{4, 2ki + 4}. But for the primaries

with all li at the first r positions equal ki
2

:

li =
ki
2

i = 1, . . . , r (7.33)

due to the previously discussed field identification, which for them reads :

(
k1

2
,m1, s1, · · · ,

kr
2
,mr, sr, lr+1,mr+1, sr+1 · · · , ln,mn, sn) ≡ (7.34)

(
k1

2
,m1 + k1 + 2, s1 + 2, · · · , kr

2
,mr + kr + 2, sr + 2, lr+1,mr+1, sr+1 · · · , ln,mn, sn)

there is a non-trivial stabilizer:

S
k1
2
,··· kr

2
,lr+1,···,ln

~m,~s = Z2. (7.35)

†Actually direct application of the formula (7.1) brings to shift 1 with respect to (7.32), but as explained

in [36] and [73] the shift is absorbed by the superghost part, or alternatively by the bosonic string map.
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We see that the stabilizer depends only on the values of li’s i = 1, . . . , r and one can write:

|S l1,···lr | = 1 + δ
l1
k1
2

· · · δlr kr2 (7.36)

Therefore here we have two kinds of orbits, long orbits with length 2nK for generic primary,

and short orbits with length 2n−1K for primaries of type (7.33). As we explained the short

orbits should be resolved and acquire an additional label ψ taking two values, which we choose

to be a sign ψ = ±.

7.3 The (2,2,2,2) Gepner model

From now on we will specialize to the case of the (2, 2, 2, 2) Gepner model, that corresponds to

a compactification down to six dimensions. The flat part is described by an SO(4)1 algebra.

In order to write down the characters of the model, first of all we note that using the fusion

rules (7.30) one can check that the subgroup generated by the currents S2
tot and ViVj has trivial

action on the space-time part. The length of the S2
tot current is K

2
= 4. Using (7.32) we find it

convenient to choose the primaries in the form {v, (l1,m1, s) · · · , (ln,mn, sn)}, with prescribed

space-time part v, and neutral internal part, i.e.

4∑
i=1

qlimi,si = 0 (mod 2Z) (7.37)

Now one can express the Gepner extension characters χG
~l

(~m,~s) in the form

χG
~l

(~m,~s) =
1

|S~l~m,~s|
(Xv −Xc + Xo −Xs) (7.38)

where

Xv =
χ
SO(4)
v

η4
A(m1, s1,m2, s2,m3, s3,m4, s4) (7.39)

Xc =
χ
SO(4)
c

η4
A(m1 + 1, s1 + 1,m2 + 1, s2 + 1,m3 + 1, s3 + 1,m4 + 1, s4 + 1)

Xo =
χ
SO(4)
o

η4
A(m1, s1 + 2,m2, s2,m3, s3,m4, s4)

Xs =
χ
SO(4)
s

η4
A(m1 + 1, s1 + 3,m2 + 1, s2 + 1,m3 + 1, s3 + 1,m4 + 1, s4 + 1)

250



with

A(mi, si) =
3∑

ν0=0

∑
ν1=0,2

∑
ν2=0,2

∑
ν3=0,2

χ
l1(2)
m1+2ν0, s1+ν1+ν2+ν3+2ν0

(z1) · (7.40)

χ
l2(2)
m2+2ν0, s2+ν1+2ν0

(z2) · χl3(2)
m3+2ν0, s3+ν2+2ν0

(z3) · χl4(2)
m4+2ν0, s4+ν3+2ν0

(z4)

and, as explained above,

|S~l~m,~s| = 1 + δl11δl21δl31δl41 (7.41)

Using (7.21), (7.24) and (18) for the characters of the k = 2 minimal model one obtains the

following simple expression

χl(2)
m, s(z) = c

l(2)
m−s(τ)Θ4q,4(

z

2
, τ) (7.42)

where q = m
4
− s

2
, and c

l (2)
m are related to the Ising characters:

c
0(2)
0 =

1

2η

(√
θ3

η
+

√
θ4

η

)
(7.43)

c
2(2)
0 = c

0(2)
2 =

1

2η

(√
θ3

η
−

√
θ4

η

)
(7.44)

c
1(2)
1 =

1

η

√
θ2

2η
(7.45)

Now let us compute A(mi, si). Repeatedly using theta functions product formulae from

appendix .3, we have

A(mi, si) = Θqtot,1

(ztot

8
, τ
)
B(mi, si) (7.46)

where

ztot = z1 + z2 + z3 + z4 (7.47)

qtot = q1 + q2 + q3 + q4 = even (7.48)

and
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B(mi, si) = (7.49)∑
ν1,ν2,ν3=0,2

c
l1(2)
m1−(s1+ν1+ν2+ν3)c

l2(2)
m2−(s2+ν1)c

l3(2)
m3−(s3+ν2)c

l4(2)
m4−(s4+ν3) ·∑

a=0,2

Θ(q1−q2+q3−q4)−ν2+a,2(y1, 2τ) ·

Θ(q1−q2−q3+q4)−ν3+a,2(y2, 2τ) ·Θ(q1+q2−q3−q4)−ν1+a,2(y3, 2τ)

where

y1 =
z1 − z2 + z3 − z4

4
, y2 =

z1 − z2 − z3 + z4

4
, y3 =

z1 + z2 − z3 − z4

4
(7.50)

Note that B(mi, si) = B(mi + 1, si + 1). Using (7.46), (7.28), (21), (23), this allows us to write

for (7.38):

χG
~l

(~m,~s) = (7.51)

1

η6|S~l~m,~s|

[ (
θ2

2(2τ)θ3

(ztot

8
, 2τ
)
− θ2(2τ)θ3(2τ)θ2

(ztot

8
, 2τ
))

B(mi, si)

+
(
θ2

3(2τ)θ2

(ztot

8
, 2τ
)
− θ2(2τ)θ3(2τ)θ3

(ztot

8
, 2τ
))

B(mi, s1 + 2, si))
]

We see that whenever

z1 + z2 + z3 + z4 = 0 (7.52)

the Gepner extension characters are supersymmetric. This plays a role in the study of magne-

tized D-branes and in the computations of threshold connections [10].

From now on we put all zi = 0. For this case the character (7.51) can be equivalently

written as

χG
~l

(~m,~s) =
J

2|S~l~m,~s|η6

(
B(mi, si)

θ3(0, 2τ)
+
B(mi, s1 + 2, si)

θ2(0, 2τ)

)
(7.53)

where J = 1
2
(θ4

3(0, τ) − θ4
4(0, τ) − θ4

2(0, τ)) is zero thanks to Jacobi aequatio identica satis

abstrusa. Using (7.49) and taking into account that

Θν,2(z, τ) = ηχSO(2)
ν (

z

2
, τ) (7.54)

as well as (7.43), (7.44), (7.45), we are now in a position to compute the characters for the

various orbits.
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To this end, we are going to present all the primaries of the model, or in other words to

list all the orbit representatives. Surely one can pick up orbit representatives in many different

ways. To be sure that we have not taken two primaries, belonging to the same orbit, one can

resort to some kind of “gauge fixing”. The gauge fixing chosen here, is the following.

1. We take the space-time part to be always v, as mentioned above.

2. we take s2 = s3 = s4 = 0

3. we limit m1 to the values 0 and 1.

4. to avoid taking primaries equivalent due to field identification, we always limit the values

of the li to be 0 or 1.

The final picture is the following.

In this model we can divide primaries in 4 big groups.

The first group has l1 = l2 = l3 = l4 = 0, s1 = s2 = s3 = s4 = 0 and contains 16 primaries.

We can divide them into three groups: K1, K2 and K3. All primaries in the same group have

the same conformal weights and characters. The results are presented in the tables below. It

is understood that all the entries should be multiplied by J
η12 .

K1 hK1 = 1
2

K1 = (v)(0, 0, 0)(0, 0, 0)(0, 0, 0)(0, 0, 0) χGK1
=

θ4
3(0,τ)+θ4

4(0,τ)

16
+ 3

θ2
3(0,τ)θ2

4(0,τ)

8

(7.55)
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K2 hK2 = 1

K2a = (v)(0, 0, 0)(0, 0, 0)(0,−2, 0)(0, 2, 0)

K2b = (v)(0, 0, 0)(0,−2, 0)(0, 0, 0)(0, 2, 0)

K2c = (v)(0, 0, 0)(0, 2, 0)(0,−2, 0)(0, 0, 0)

K2d = (v)(0, 0, 0)(0, 0, 0)(0, 2, 0)(0,−2, 0)

K2e = (v)(0, 0, 0)(0,−2, 0)(0, 2, 0)(0, 0, 0)

K2f = (v)(0, 0, 0)(0, 2, 0)(0, 0, 0)(0,−2, 0) χGK2
=

θ4
3(0,τ)−θ4

4(0,τ)

16

K2g = (v)(0, 0, 0)(0, 4, 0)(0, 2, 0)(0, 2, 0)

K2h = (v)(0, 0, 0)(0, 2, 0)(0, 4, 0)(0, 2, 0)

K2k = (v)(0, 0, 0)(0, 2, 0)(0, 2, 0)(0, 4, 0)

K2l = (v)(0, 0, 0)(0, 4, 0)(0,−2, 0)(0,−2, 0)

K2m = (v)(0, 0, 0)(0,−2, 0)(0, 4, 0)(0,−2, 0)

K2n = (v)(0, 0, 0)(0,−2, 0)(0,−2, 0)(0, 4, 0)

(7.56)

K3 hK3 = 3
2

K3a = (v)(0, 0, 0)(0, 0, 0)(0, 4, 0)(0, 4, 0)

K3b = (v)(0, 0, 0)(0, 4, 0)(0, 0, 0)(0, 4, 0) χGK3
=

θ4
3(0,τ)+θ4

4(0,τ)

16
− θ2

3(0,τ)θ2
4(0,τ)

8

K3c = (v)(0, 0, 0)(0, 4, 0)(0, 4, 0)(0, 0, 0)

(7.57)

The second group has l1 = l2 = l3 = l4 = 0, s1 = 2, s2 = s3 = s4 = 0 and also contains 16

primaries, which again can be divided into 3 subgroups, in such a way that all primaries inside

each group have the same characters.
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L1 hL1 = 1

L1a = (v)(0, 0, 2)(0, 4, 0)(0, 4, 0)(0, 4, 0)

L1b = (v)(0, 0, 2)(0, 0, 0)(0, 0, 0)(0, 4, 0)

L1c = (v)(0, 0, 2)(0, 0, 0)(0, 4, 0)(0, 0, 0) χGL1
=

θ4
3(0,τ)−θ4

4(0,τ)

16

L1d = (v)(0, 0, 2)(0, 4, 0)(0, 0, 0)(0, 0, 0)

(7.58)

L2 hL2 = 1
2

L2a = (v)(0, 0, 2)(0, 4, 0)(0, 2, 0)(0,−2, 0)

L2b = (v)(0, 0, 2)(0,−2, 0)(0, 2, 0)(0, 4, 0)

L2c = (v)(0, 0, 2)(0,−2, 0)(0, 4, 0)(0, 2, 0) χGL2
=

θ4
3(0,τ)+θ4

4(0,τ)

16
+

θ2
3(0,τ)θ2

4(0,τ)

8

L2d = (v)(0, 0, 2)(0, 4, 0)(0,−2, 0)(0, 2, 0)

L2e = (v)(0, 0, 2)(0, 2, 0)(0,−2, 0)(0, 4, 0)

L2f = (v)(0, 0, 2)(0, 2, 0)(0, 4, 0)(0,−2, 0)

(7.59)

L3 hL3 = 3
2

L3a = (v)(0, 0, 2)(0, 0, 0)(0, 2, 0)(0, 2, 0)

L3b = (v)(0, 0, 2)(0, 2, 0)(0, 0, 0)(0, 2, 0)

L3c = (v)(0, 0, 2)(0, 2, 0)(0, 2, 0)(0, 0, 0) χGL3
=

θ4
3(0,τ)+θ4

4(0,τ)

16
− θ2

3(0,τ)θ2
4(0,τ)

8

L3d = (v)(0, 0, 2)(0, 0, 0)(0,−2, 0)(0,−2, 0)

L3e = (v)(0, 0, 2)(0,−2, 0)(0,−2, 0)(0, 0, 0)

L3f = (v)(0, 0, 2)(0,−2, 0)(0, 0, 0)(0,−2, 0)

(7.60)

The third group containing 48 primaries with any two of li equal to 1, and other two of

them to 0. This group consists of 6 subgroups:

l1 = l2 = 1 l3 = l4 = 0 (7.61)
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l1 = l3 = 1 l2 = l4 = 0

l1 = l4 = 1 l2 = l3 = 0

l2 = l3 = 1 l1 = l4 = 0

l2 = l4 = 1 l1 = l3 = 0

l3 = l4 = 1 l1 = l2 = 0

Each such a subgroup consists of 8 primaries and can be derived from, let’s say, the first of

them by permutations, so we will write down only one of them, the one with l1 = l2 = 1 and

l3 = l4 = 0. We schematically denote the primaries in this group as Φ1,1,·,·
1a , indicating explicitly

in the superscript which li are equal to 1.

Φ1 hΦ1 = 3
4

Φ1,1,·,·
1a = (v)(1, 1, 0)(1, 3, 0)(0, 2, 0)(0, 2, 0)

Φ1,1,·,·
1b = (v)(1, 1, 0)(1,−1, 0)(0, 0, 0)(0, 0, 0) χGΦ1

=
θ2
2(0,τ)(θ2

3(0,τ)+θ2
4(0,τ))

8

(7.62)

Φ2 hΦ2 = 5
4

Φ1,1,·,·
2a = (v)(1, 1, 0)(1, 3, 0)(0, 0, 0)(0, 4, 0)

Φ1,1,·,·
2b = (v)(1, 1, 0)(1,−1, 0)(0,−2, 0)(0, 2, 0) χGΦ2

=
θ2
2(0,τ)(θ2

3(0,τ)−θ2
4(0,τ))

8

(7.63)

Φ3 hΦ3 = 1

Φ1,1,·,·
3a = (v)(1, 1, 0)(1,−3, 0)(0, 2, 0)(0, 0, 0)

Φ1,1,·,·
3b = (v)(1, 1, 0)(1,−3, 0)(0, 0, 0)(0, 2, 0) χGΦ3

=
θ4
3(0,τ)−θ4

4(0,τ)

8

(7.64)

Φ4 hΦ4 = 1
2

Φ1,1,·,·
4a = (v)(1, 1, 0)(1, 1, 0)(0,−2, 0)(0, 0, 0)

Φ1,1,·,·
4a = (v)(1, 1, 0)(1, 1, 0)(0, 0, 0)(0,−2, 0) χGΦ4

=
θ4
3(0,τ)+θ4

4(0,τ)

8

(7.65)

256



Finally we have a small group containing only 4 elements with l1 = l2 = l3 = l4 = 1,

s1 = s2 = s3 = s4 = 0. All primaries in this group, as we explained in section 7.2, have a

short orbit and should be resolved. After resolution we end up with 8 primaries. The ± in the

notations refers to the resolution process.

R1 hR1 = 1

R1a± = (v)(1, 1, 0)(1,−1, 0)(1, 1, 0)(1,−1, 0)±

R1b± = (v)(1, 1, 0)(1,−1, 0)(1,−1, 0)(1, 1, 0)± χGR1
=

θ4
2(0,τ)

8

R1c± = (v)(1, 1, 0)(1, 1, 0)(1,−1, 0)(1,−1, 0)±

(7.66)

R2 hR2 = 1
2

R2± = (v)(1, 1, 0)(1, 1, 0)(1,−3, 0)(1, 1, 0)± χGR2
=

θ4
3(0,τ)+θ4

4(0,τ)

8

(7.67)

We see that before fixed points resolution we had 84 orbits: 31 orbits with conformal

dimension 1, 12 orbits with conformal dimension 3
4
, 12 orbits with conformal dimension 5

4
, 20

orbits with conformal dimension 1
2
, 9 orbits with conformal dimension 3

2
. After the fixed points

resolution we have 88 primaries: 34 orbits with conformal dimension 1, 12 orbits with conformal

dimension 3
4
, 12 orbits with conformal dimension 5

4
, 21 orbits with conformal dimension 1

2
, 9

orbits with conformal dimension 3
2

[190].

Collecting all the above results, we can write down the torus amplitude:

Z =

∣∣∣∣ Jη12

∣∣∣∣2
[∣∣∣∣(θ4

3(0, τ) + θ4
4(0, τ)

16
+ 3

θ2
3(0, τ)θ2

4(0, τ)

8

)∣∣∣∣2 (7.68)

16

∣∣∣∣θ4
3(0, τ)− θ4

4(0, τ)

16

∣∣∣∣2 + 9

∣∣∣∣θ4
3(0, τ) + θ4

4(0, τ)

16
− θ2

3(0, τ)θ2
4(0, τ)

8

∣∣∣∣2
+6

∣∣∣∣θ4
3(0, τ) + θ4

4(0, τ)

16
+
θ2

3(0, τ)θ2
4(0, τ)

8

∣∣∣∣2 + 18

∣∣∣∣θ4
3(0, τ)− θ4

4(0, τ)

8

∣∣∣∣2
+14

∣∣∣∣θ4
3(0, τ) + θ4

4(0, τ)

8

∣∣∣∣2 + 12

∣∣∣∣θ2
2(0, τ)(θ2

3(0, τ) + θ2
4(0, τ))

8

∣∣∣∣2 +

12

∣∣∣∣θ2
2(0, τ)(θ2

3(0, τ)− θ2
4(0, τ))

8

∣∣∣∣2
]
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=

∣∣∣∣ Jη12

∣∣∣∣2 [ 1

16

(
|θ3(0, τ)|4 + |θ4(0, τ)|4 + |θ2(0, τ)|4

)2

+
1

4

(
|θ2(0, τ)θ3(0, τ)|4 + |θ2(0, τ)θ4(0, τ)|4 + |θ3(0, τ)(θ4(0, τ)|4

)
+

1

2

(
|θ3(0, τ)|8 + |θ4(0, τ)|8

)]
The partition function (7.68), as first noted in [51], coincides with the partition function of

the T 4/Z4 orbifold at the SU(2)4 point, which we review in appendix .5.

Now we elaborate on the expression (7.11) for the annulus partition function for the (2, 2, 2, 2, )

Gepner model.

Let us denote the first Cardy state I:

I = (S0, L1,M1, S1, · · · , L4,M4, S4) (7.69)

and the second J :

J = (S̃0, L̃1, M̃1, S̃1, · · · , L̃4, M̃4, S̃4) (7.70)

Consider first the case when neither the first boundary state nor the second are fixed.

Now using (7.13) and the fusion coefficients (7.25) we can easily derive:

ZIJ =
∑
s0

∑
li

|S l1···l4 |N SO(4) s0

v(S0)S̃0

4∏
i=1

N SU(2) li

LiL̃i
χG l̂1···l̂4ˆM1−M̃1··· ˆM4−M̃4,ŝ0,

ˆS1−S̃1··· ˆS4−S̃4

(7.71)

Actually the sum over J in (7.13)
∑

J∈GN d
Ja,c is running over the orbit of the primary

(s0, l1,M1 − M̃1, S1 − S̃1 · · · l4,M4 − M̃4, S4 − S̃4) (7.72)

while the sum over orbits in (7.13) runs over the specific representatives, for examples listed in

the tables above. It means that generically in this sum only one term will survive, the specific

representative of the orbit of the primary (7.72). If this primary has non-trivial stabilizer, due

to field identification the sum over J will produce the representative twice. The fusion v(S0) in

N SO(4)

v(S0)S̃0
is due to the bosonic string map [73]. Collecting all pieces we get (7.71). In practice in

order to use formula (7.71) one needs to compute the primary (7.72) and then use the action

of the simple current to find in the orbit which of the representatives listed in tables above it

belongs to, and substitute its character.
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Consider next the case when I is not fixed but J is. In this case elaborating on (7.12) we

obtain:

ZIJ =
1

|SJ |
∑
s0

∑
li

|S l1···l4 |N SO(4) s0

v(S0)S̃0

4∏
i=1

N SU(2) li

LiL̃i
χG l̂1···l̂4ˆM1−M̃1··· ˆM4−M̃4,ŝ0,

ˆS1−S̃1··· ˆS4−S̃4

(7.73)

The last case is when both and I and J are fixed points. To elaborate on this case we need

the matrices Sc,b and Ŝab in formula (7.15).

The matrix Sab for Gepner models is the product of all the elementary S’s and reads:

24S
SO(4)

s0s′0

4∏
i=1

S
SU(2)ki
lil′i

S
U(1)4

sis′i
S
U(1)k+2

mim′i
(7.74)

The matrix Ŝab was found in [73]. For the (2,2,2,2) model it has the form

−24S
SO(4)

s0s′0

4∏
i=1

S
U(1)4

sis′i
S
U(1)k+2

mim′i
(7.75)

The numerical factors come from the field identification.

Plugging (7.74) and (7.75) in (7.15) one obtains:

ZIψJψ′ =
1

|SI ||SJ |
∑
s0

∑
li

N SO(4) s0

v(S0)S̃0
· (7.76)(

4∏
i=1

N SU(2) li

LiL̃i
+ ψψ′

4∏
i=1

sin π
li + 1

2

)
χG l̂1···l̂4ˆM1−M̃1··· ˆM4−M̃4,ŝ0,

ˆS1−S̃1··· ˆS4−S̃4

7.4 D0-branes on the T 4/Z4 orbifold.

7.4.1 Fixed points

Defining complex coordinates z1 = x1 + ix2 and z2 = x3 + ix4 the Z4 group action can be

described as

z1 → e
2iπk

4 z1 z2 → e−
2iπk

4 z2 (7.77)

We can consider it as generated by the Z2 subgroup acting as z1 → −z1 and z2 → −z2 and a

Z ′2 subgroup rotating by π
2

and −π
2

the (x1, x2) and (x3, x4) planes: z1 → iz1 and z2 → −iz2.

The Z2 group has 16 fixed points (πRe1, πRe2, πRe3, πRe4), where ei = 0, 1, out of which

only 4 are also fixed under Z ′2 : D01f = (0, 0, 0, 0), D02f = (πR, πR, πR, πR), D03f =

(πR, πR, 0, 0), D04f = (0, 0, πR, πR).
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To begin with, let us calculate the annulus partition function for open strings having both

ends at the same fixed point.

The partition function is given by

ZD0fD0f = (7.78)

1

8

3∑
k=0

Tr(1 + (−)F )gke−2πτL0 =
1

4

J
η12

Zwindings +
1

8

3∑
k=1

(4 sin2 πk

4
)Z0,k

where

Zwindings = (7.79)∑
n1,n2,n3,n4

qn
2
1+n2

2+n2
3+n2

4 = θ4
3(0, 2τ) =

θ4
3(0, τ) + θ4

4(0, τ)

4
+
θ2

3(0, τ)θ2
4(0, τ)

2

and Z0,k can be found in (35), (36), (37) of appendix .5. Collecting all the pieces, we obtain:

ZD0fD0f =
J
η12

(
θ4

3(0, τ) + θ4
4(0, τ)

16
+

3θ2
3(0, τ)θ2

4(0, τ)

8

)
(7.80)

We see that (7.80) coincides with (7.55):

ZD0fD0f = χK1 (7.81)

In order to compute the partition function for strings with ends at different fixed point, we

need to recall the partition function for a scalar X compactified at the self-dual radius R = 1√
2

with Dirichlet boundary conditions placed at 2πRξ1 and 2πRξ2, so that

X = 2πRξ1 + (2R(ξ2 − ξ1) + 2nR)σ + oscillators (7.82)

The partition function is easily calculated to be

Zx1x2 =
1

η
q(ξ2−ξ1)2

θ3(2τ(ξ2 − ξ1), 2τ) (7.83)

Using (7.83) we can then compute the annulus partition functions between different fixed

points:

ZD01fD02f
=
J
η12

(
θ4

3(0, τ) + θ4
4(0, τ)

16
+
θ2

3(0, τ)θ2
4(0, τ)

8

)
= χL2 (7.84)
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ZD01fD03f
=
J
η12

(
θ4

3(0, τ)− θ4
4(0, τ)

16
+
θ2

3(0, τ)θ2
4(0, τ)

4

)
(7.85)

It seems that (7.85) does not fall in the list of characters computed in section 7.3. We think

it means that the D0f3 cannot be described by a Cardy state, and do not consider it any further

here.

7.4.2 Partially fixed points

Now we consider the case when the D0 branes lie at a point fixed only under Z2. We have the

following list of such branes:

D01 = A1 + A′1 : (0, πR, 0, 0) + (πR, 0, 0, 0) (7.86)

D02 = A2 + A′2 : (πR, 0, 0, πR) + (0, πR, πR, 0)

D03 = A3 + A′3 : (πR, πR, 0, πR) + (πR, πR, πR, 0)

D04 = A4 + A′4 : (πR, 0, πR, πR) + (0, πR, πR, πR)

D05 = A5 + A′5 : (0, 0, 0, πR) + (0, 0, πR, 0)

D06 = A6 + A′6 : (πR, 0, πR, 0) + (0, πR, 0, πR)

The partition functions between branes (7.86) and fixed point branes are given by equation:

ZD0iD0f = TrAiD0f

(1 + (−)F )

2

(1 + g2)

2
e−2πτL0 (7.87)

which taking into account (36) simplifies to

ZD0iD0f = TrAiD0f

(1 + (−)F )

4
e−2πτL0 (7.88)

Using (7.83) we can easily compute all annulus partition functions of this type. The result
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is presented in the following table:

Branes D01f D02f

D01f
θ4
3+θ4

4

16
+

3θ2
3θ

2
4

8

θ4
3+θ4

4

16
+

θ2
3θ

2
4

8

D02f
θ4
3+θ4

4

16
+

θ2
3θ

2
4

8

θ4
3+θ4

4

16
+

3θ2
3θ

2
4

8

D01
θ2
2(θ2

3+θ2
4)

8

θ2
2(θ2

3−θ2
4)

8

D02
θ4
3−θ4

4

8

θ4
3−θ4

4

8

D03
θ2
2(θ2

3−θ2
4)

8

θ2
2(θ2

3+θ2
4)

8

D04
θ2
2(θ2

3−θ2
4)

8

θ2
2(θ2

3+θ2
4)

8

D05
θ2
2(θ2

3+θ2
4)

8

θ2
2(θ2

3−θ2
4)

8

D06
θ4
3−θ4

4

8

θ4
3−θ4

4

8

(7.89)

where it is understood that all entries should be multiplied by J
η12 = 1

2η12 (θ4
3 − θ4

4 − θ4
2).

Using the characters in section 7.3 one can present table (7.89) in the form

Branes D01f D02f

D01f χK1 χL2

D02f χL2 χK1

D01 χΦ1 χΦ2

D02 χR1 χR1

D03 χΦ2 χΦ1

D04 χΦ2 χΦ1

D05 χΦ1 χΦ2

D06 χR1 χR1

(7.90)

Table (7.90) already gives a hint for the candidate Cardy states, describing D0 branes

located at fixed and partially fixed points.
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To make things more precise we should compute also the partition functions between the

different partially fixed branes (7.86). They have the form:

ZD0iD0j = TrAiAj
(1 + (−)F )

2

(1 + g2)

2
e−2πτL0 + TrAiA′j

(1 + (−)F )

2

(1 + g2)

2
e−2πτL0 (7.91)

which using (36) simplifies to

ZD0iD0j = TrAiAj
(1 + (−)F )

4
e−2πτL0 + TrAiA′j

(1 + (−)F )

4
e−2πτL0 (7.92)

Again using (7.83) we can present the result in the following table:

Branes D01 D02 D03 D04 D05 D06

D01
θ4
3

4
+

θ2
3θ

2
4

4

θ2
2θ

2
3

4

θ4
3−θ4

4

4

θ4
3

4
− θ2

3θ
2
4

4

θ4
3−θ4

4

4

θ2
2θ

2
3

4

D02
θ2
2θ

2
3

4

θ4
3+θ4

4

4

θ2
2θ

2
3

4

θ2
2θ

2
3

4

θ2
2θ

2
3

4

θ4
3−θ4

4

4

D03
θ4
3−θ4

4

4

θ2
2θ

2
3

4

θ4
3

4
+

θ2
3θ

2
4

4

θ4
3−θ4

4

4

θ4
3

4
− θ3

3θ
2
4

4

θ2
2θ

2
3

4

D04
θ4
3

4
− θ2

3θ
2
4

4

θ2
2θ

2
3

4

θ4
3−θ4

4

4

θ4
3

4
+

θ2
3θ

2
4

4

θ4
3−θ4

4

4

θ2
2θ

2
3

4

D05
θ4
3−θ4

4

4

θ2
2θ

2
3

4

θ4
3

4
− θ3

3θ
2
4

4

θ4
3−θ4

4

4

θ4
3

4
+

θ2
3θ

2
4

4

θ2
2θ

2
3

4

D06
θ2
2θ

2
3

4

θ4
3−θ4

4

4

θ2
2θ

2
3

4

θ2
2θ

2
3

4

θ2
2θ

2
3

4

θ4
3+θ4

4

4

(7.93)

where, as before, it is understood that all entries should be multiplied by J
η12 = 1

2η12 (θ4
3 −

θ4
4 − θ4

2).

After some trial and error we can solve these conditions with the following Cardy states:

D01f = |K1〉Cardy (7.94)

D02f = |L2a〉Cardy

D01 = |Φ1,1,·,·
1a 〉Cardy

D02 = |R1a+〉Cardy

D03 = |Φ·,·,1,12b 〉Cardy
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D04 = |Φ1,1,·,·
2b 〉Cardy

D05 = |Φ·,·,1,11a 〉Cardy

D06 = |R1a−〉Cardy

Using the formulae (7.71),(7.73),(7.76) we obtain for the annulus partition functions between

the states (7.94) the following table :

Branes D01 D02 D03 D04 D05

D01 Z11 χΦ2 + χΦ1 2χR1 2(χK3 + χL1) 2χR1

D02 χΦ2 + χΦ1 χK1 + 3χK3 χΦ2 + χΦ1 χΦ1 + χΦ2 χΦ1 + χΦ2

D03 2χR1 χΦ2 + χΦ1 Z11 2χR1 2(χK3 + χL1)

D04 2(χK3 + χL1) χΦ1 + χΦ2 2χR1 Z11 2χR1

D05 2χR1 χΦ1 + χΦ2 2(χK3 + χL1) 2χR1 Z11

D06 χΦ2 + χΦ1 4χL1 χΦ2 + χΦ1 χΦ1 + χΦ2 χΦ1 + χΦ2

where Z11 = χK1 + χK3 + 2χL1 , which coincides with table (7.93).
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Chapter 8

Conclusion

Let us briefly summarize our findings.

1. We constructed geometrical realization of the Cardy states in coset model. We have

shown that D-branes in coset are pointwise products of the cojugacy classes. We found

geometrical meaning of the field identification and selection rules in coset models.

2. We found geometrical realization of the parafermionic D-branes in WZW model. We have

shown that they are given by the pointwise products of a conjugacy and U(1) subgroup.

3. We found non-maximally symmetric non-factorizable D-branes in product of WZW mod-

els.

4. We have found geometrical realization of permutation D-branes and defects on cosets.

5. We have shown that certain diagonal embedding of the parafermionic D-branes in product

of WZW models provides D-branes in the Nappi-Witten cosmological model as well as in

the Guadagnini-Martelini-Mintchev model.

6. We proved symplectomorphism between phase space of the WZW model with boundaries

and defects and that of 3D Chern-Simons theory with Wilson lines on a manifold of the

form Σ×R, where Σ is a certain Riemann surface and R is time line.
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7. We proved symplectomorphism between phase space of the gauged WZW model with

boundaries and defects and that of 3D double Chern-Simons theory with Wilson lines on

a manifold of the form Σ×R, where Σ is a certain Riemann surface and R is time line.

8. We constructed topological defects implementing abelian, non-abelian and fermionic T-

dualities. We have shown that they are given by the Poincaré bundle and its non-abelian

and super cousins correspondingly.

9. We studied in detail defects implementing abelian T-duality between SU(2) WZW model

and lens space. We have paid also special attention to the Fourier-Mukai transform of

the twisted cohomology groups generated by the gauge invariant flux of this defect.

10. We studied in detail defects implementing T-duality between axially and vectorially

gauged WZW model.

11. We calculated Fourier-Mukai transform of the Ramond-Ramond fields under the non-

abelian T-duality.

12. We checked that the fusion matrix of the Liouville field theory with an intermediate state

set to the vacuum gives rise to the DOZZ structure constants.

13. We constructed topological defects in the Liouville and Toda field theories as intertwining

operators using Cardy-Lewelenn cluster equation. We have shown that in the Liouville

field theory defects are labelled by the degenerate and physical primaries. We proved that

in the Toda field theory topological defects are labelled by the physical, semi-degenerate

and degenerate primaries.

14. We studied Lagrangian of the Liouville theory with defects and demonstrated its agree-

ment with the operator description in the semiclassical limit.

15. We found geometrical realization of some Cardy states in (2,2,2,2,) Gepner model, using

its equivalence with the T 4/Z4 orbifold.
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.1 Special functions

The function Γb(x)

The function Γb(x) is a close relative of the double Gamma function studied in [18,172]. It

can be defined by means of the integral representation

log Γb(x) =

∫ ∞
0

dt

t

(
e−xt − e−Qt/2

(1− e−bt)(1− e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t

)
. (1)

Important properties of Γb(x) are

1. Functional equation: Γb(x+ b) =
√

2πbbx−
1
2 Γ−1(bx)Γb(x).

2. Analyticity: Γb(x) is meromorphic, poles: x = −nb−mb−1, n,m ∈ Z≥0.

3. Self-duality: Γb(x) = Γ1/b(x).

From the property 1 one can obtain the following relations:

Γb(Q) =
√

2πbΓ1/b

(
1

b

)
(2)

Γb(Q) =

√
2π

b
Γ1/b(b) (3)

W (x) = 2−1/4 Γb(2x)

Γb(2x−Q)
λ

2x−Q
2b , (4)

and the behaviour of the Γb(x) near x = 0:

Γb(x) ∼ Γb(Q)

2πx
. (5)

The function Υb(x)

The Υb may be defined in terms of Γb as follows

Υb(x) =
1

Γb(x)Γb(Q− x)
. (6)

An integral representation convergent in the strip 0 < Re(x) < Q is

log Υb(x) =

∫ ∞
0

dt

t

[(
Q

2
− x
)2

e−t −
sinh2(Q

2
− x) t

2

sinh bt
2

sinh t
2b

]
. (7)

Important properties of Υb(x) are
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1. Functional equation: Υb(x+ b) = b1−2bx Γ(bx)
Γ(1−bx)

Υb(x).

2. Analyticity: Υb(x) is entire analytic, zeros: x = −nb−mb−1, n,m ∈ Z≥0, x = Q + nb +

mb−1, n,m ∈ Z≥0 .

3. Self-duality: Υb(x) = Υ1/b(x).

4. Υb(x) = Υb(Q− x)

These properties imply:

Υb(2x)

Υb(2x−Q)
= S(x)λ

2x−Q
b (8)

and

Υb(x) ∼ xΥb(b), (9)

when x→ 0.

The function Sb(x)

The function Sb(x) may be defined in terms of Γb(x) as follows

Sb(x) =
Γb(x)

Γb(Q− x)
. (10)

An integral that represents logSb(x) is

logSb(x) =

∫ ∞
0

dt

t

(
sinh t(Q− 2x)

2 sinh bt sinh b−1t
− Q− 2x

2t

)
. (11)

The most important properties are

1. Functional equation: Sb(x+ b) = 2 sin πbxSb(x) .

2. Analiticity: Sb(x) is meromorphic, poles: x = −(nb + mb−1), n,m ∈ Z≥0 , zeros x =

Q+ (nb+mb−1), n,m ∈ Z≥0 .

3. Self-duality: Sb(x) = S1/b(x) .

4. Inversion relation: Sb(x)Sb(Q− x) = 1 .

These properties imply:

Sb(2x)

Sb(2x−Q)
=
√

2W (x)W (Q− x) (12)
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.2 Properties of Γ functions

The limiting behavior of the terms with Γ functions can be calculated using the approximation

Γ(x) ∼ ex log x−x+O(log x) . (13)

for x with big positive real part.

For negative x using the formula

Γ(x)Γ(−x) = − π

x sin πx
, (14)

one can bring problem to the previous case.

We also need well-known behavior of the Γ(x) function for x around zero:

Γ(x) ∼ 1

x
. (15)

.3 Theta functions identities

We start by reviewing some useful identities satisfied by Theta functions [125].

θ

[ a
n1

0

]
(x1, n1τ)θ

[ b
n2

0

]
(x2, n2τ) = (16)

n1+n2−1∑
µ=0

θ

[ n1µ+a+b
n1+n2

0

]
(x1 + x2, (n1 + n2)τ) ·

θ

[ n1n2µ+n2a−n1b
n1n2(n1+n2)

0

]
(n2x1 − n1x2, n1n2(n1 + n2)τ)

where

θ

[
a

b

]
(x, τ) =

∑
n∈Z

exp(iπ(n+ a)2τ + 2iπ(n+ a)(x+ b)) (17)

Using the identity

n−1∑
µ=0

θ

[ µ+a
n

0

]
(nx, n2τ) = θ

[
a

0

]
(x, τ) (18)
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we can exploit (16) for the case relevant to our analysis i.e. n1 = r1n and n2 = r2n

θ

[ a
r1n

0

]
(x1, r1nτ)θ

[ b
r2n

0

]
(x2, r2nτ) = (19)

r1+r2−1∑
µ=0

θ

[ r1µ
r1+r2

+ a+b
(r1+r2)n

0

]
(x1 + x2, (r1 + r2)nτ) ·

θ

[ µ
r1+r2

+ r2a−r1b
r1r2(r1+r2)n

0

]
(r2x1 − r1x2, r1r2(r1 + r2)nτ)

Let us explicitly write this formula for the most relevant for us case: n1 = n2 = n, r1 =

r2 = 1

θ

[ a
n

0

]
(x1, nτ)θ

[ b
n

0

]
(x2, nτ) = (20)

1∑
µ=0

θ

[ µ
2

+ a+b
2n

0

]
(x1 + x2, 2nτ)θ

[ µ
2

+ a−b
2n

0

]
(x1 − x2, 2nτ)

.4 Other relevant identities

Recall the identities:

θ2
3(τ)− θ2

4(τ) = 2θ2
2(2τ) (21)

θ2
3(τ) + θ2

4(τ) = 2θ2
3(2τ)

θ3(τ)θ4(τ) = θ2
4(2τ)

θ2
2(τ) = 2θ2(2τ)θ3(2τ)

From (21) we can derive another couple of useful identities:

θ3(2τ)θ2
2(τ) = θ2(2τ)(θ2

3(τ) + θ2
4(τ)) (22)

θ2(2τ)θ2
2(τ) = θ3(2τ)(θ2

3(τ)− θ2
4(τ))

Θ0,1(z, τ) = θ3(z, 2τ) (23)

Θ1,1(z, τ) = θ2(z, 2τ)
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Let us also mention the following formulae.

θ1

(
1

2
, τ

)
= θ2(0, τ) (24)

θ2

(
1

2
, τ

)
= 0 (25)

θ3

(
1

2
, τ

)
= θ4(0, τ) (26)

θ4

(
1

2
, τ

)
= θ3(0, τ) (27)

θ1

(
1

4
, τ

)
= θ2

(
1

4
, τ

)
= θ1

(
3

4
, τ

)
= −θ2

(
3

4
, τ

)
(28)

θ3

(
1

4
, τ

)
= θ4

(
1

4
, τ

)
= θ3

(
3

4
, τ

)
= θ4

(
3

4
, τ

)
(29)

θ2
3(1

4
, τ)

θ2
1(1

4
, τ)

=
θ3(0, 2τ)

θ2(0, 2τ)
=

θ2
2(0, τ)

θ2
3(0, τ)− θ2

4(0, τ)
(30)

.5 Partition function of the T 4/Z4 orbifold

Z =
1

4
Zlattice

∣∣∣∣ Jη12

∣∣∣∣2 +
′∑
r,s

nr,s|Zr,s|2 (31)

where

Zlattice = (|χSU(2)
1 |2 + |χSU(2)

2 |2)4 =
1

4

(
|θ3(0, τ)|4 + |θ4(0, τ)|4 + |θ2(0, τ)|4

)2
(32)

and

Zr,s =
∑
α,β

cα,β

θ2

[
α

β

]
(0, τ)

η6

θ

[
α + r

4

β + s
4

]
(0, τ)θ

[
α− r

4

β − s
4

]
(0, τ)

θ

[ 1
2

+ r
4

1
2

+ s
4

]
(0, τ)θ

[ 1
2
− r

4

1
2
− s

4

]
(0, τ)

(33)

Consider the Ramond part.

ZR
r,s =

θ2
2(0, τ)

η6

θ

[ 1
2

+ r
4

0 + s
4

]
(0, τ)θ

[ 1
2
− r

4

0− s
4

]
(0, τ)

θ

[ 1
2

+ r
4

1
2

+ s
4

]
(0, τ)θ

[ 1
2
− r

4

1
2
− s

4

]
(0, τ)

(34)
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ZR
0,1 = −θ4

2(0, τ)
θ2

3(0, τ)θ2
4(0, τ)

4η12
(35)

ZR
0,2 = 0 (36)

ZR
0,3 = −θ4

2(0, τ)
θ2

3(0, τ)θ2
4(0, τ)

4η12
(37)

ZR
2,0 = θ4

2(0, τ)
θ4

3(0, τ)

4η12
(38)

ZR
2,1 = θ4

2(0, τ)
θ2

3(0, τ)θ2
4(0, τ)

4η12
(39)

ZR
2,2 = θ4

2(0, τ)
θ4

4(0, τ)

4η12
(40)

ZR
2,3 = θ4

2(0, τ)
θ2

3(0, τ)θ2
4(0, τ)

4η12
(41)

ZR
1,0 = θ4

2(0, τ)
θ4

3(0, τ) + θ2
2(0, τ)θ2

3(0, τ)

4η12
(42)

ZR
1,2 = −θ4

2(0, τ)
θ4

3(0, τ)− θ2
2(0, τ)θ2

3(0, τ)

4η12
(43)

ZR
3,0 = θ4

2(0, τ)
θ4

3(0, τ) + θ2
2(0, τ)θ2

3(0, τ)

4η12
(44)

ZR
3,2 = −θ4

2(0, τ)
θ4

3(0, τ)− θ2
2(0, τ)θ2

3(0, τ)

4η12
(45)

ZR
1,1 = θ4

2(0, τ)
θ4

4(0, τ) + iθ2
2(0, τ)θ2

4(0, τ)

4η12
(46)

ZR
1,3 = θ4

2(0, τ)
θ4

4(0, τ)− iθ2
2(0, τ)θ2

4(0, τ)

4η12
(47)

ZR
3,1 = θ4

2(0, τ)
θ4

4(0, τ)− iθ2
2(0, τ)θ2

4(0, τ)

4η12
(48)

ZR
3,3 = θ4

2(0, τ)
θ4

4(0, τ) + iθ2
2(0, τ)θ2

4(0, τ)

4η12
(49)

The numbers nr,s are given by the following formulae: n0,s = 4 sin4 πs
4

, nr,s = nr,s+r, nr,s =

ns,4−r.

Plugging all in (31) we get (7.68).
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J.L. Varona, and J. Verdera, eds. European Mathematical Society, Zürich (2006) 443.
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