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0.1 Introduction

The study of two-dimensional conformal field theories passed long way. Their applications to
the various topic of physics are so numerous that conformal field theory became one of the most
powerful techniques in modern physics. The first great success was the precise computation
of the critical exponents for the second-order phase transitions in two-dimensional statistical
systems.

The tremendous branch of applications of conformal field theories is String theory. Today
string theory offers the most well developed candidate for a fundamental theory of quantum
gravity and an approach to the unification of all known interactions. Conformal field theories
appear as solutions of string theoretic equations of motion.

The study of boundary conditions is very important problem in physics. Realistic systems
possess boundaries and therefore their full understanding obviously requires control of boundary
conditions. For two-dimensional conformal field theories, the study of boundaries was started
by John Cardy in sequence of papers, in particular [41,/42]. The presence of powerful infinite-
dimensional symmetries resulted to numerous exact results on boundary correlation functions.

Boundary conformal field theories are more directly applicable to real physical situations
than conformal field theories on closed surfaces. Many processes in three space dimensions
possess rotational symmetry and hence all the relevant quantities depend on time and radial
coordinates. Therefore, conformal field theories on the half-plane appear naturally. Quantum
impurity scattering, the Kondo effect, is the most well known example [1].

In string theory, we need two-dimensional conformal field theories with boundaries to de-
scribe open strings.

At low energy limit, p-branes appear as supergravity solitonic solution , describing stable
objects whose mass and charge are distributed along (p + 1)-dimensional hypersurfaces in the
spacetime. Beyond the low-energy regime, supergravity should to be replaced by full-fledged

string theory, and we need to understand how to describe branes in string theory. For a class of



branes, those that called D-branes, the answer was found by Polchinski in [142]: D-branes are
objects on which open strings can end. The “D” in D-branes stands for the Dirichlet boundary
conditions, which constrain the open-string endpoints to live within the brane worldvolume.
String theory contains many kinds of branes, which are characterized by their dimension and
some additional data. All the data in fact are encoded in the choice of boundary states.

The importance of D-branes for our understanding of string theory, and perhaps many other
branches of modern theoretical physics is enormous. Non-complete list of applications includes:
Brane modelling of gauge theories [98|, Braneworld scenario [11,/149], Braneworld cosmology
and inflation [50], Counting of states on black holes by superstring theory [177], Holographic
principle: gravitational description of quarks (also known as AdS/CFT correspondence) [2].

The boundary CFT can be generalized to consider a situation in which two (or more)
non-trivial CFT are glued together along a common interface.

Interfaces in two-dimensional theories are oriented lines separating two different quantum
field theories. In this thesis we consider special class of interfaces, for which the energy-
momentum tensor is continuous across the defect. These interfaces are called topological de-
fects [13].

During the last years topological defects in two-dimensional quantum field theories have
appeared in the various topics. Let us mention some of them. Topological defects appear in
quantum Hall problem [65], quantum wires problem [189], in the consideration of impurities
[135,/154,/155]. Topological defects played an important role in the topologically twisted N = 4
SYM approach to the geometric Langland program [111]. Defects provide us with examples of
2-category in physics [45}69}[166}|174]. Defects in Liouville and Toda field theories [48.|164.[168]
appear as holographic counterpart of the Wilson lines in the AGT correspondence [5,48,49,/140].
Defects appear as domain wall in the Ads/CFT correspondence in the presence of D-branes [12].
Recently they were found to be useful also in study of the renormgroup flow [81,|116].

The topological defects have proved to be very useful in study of the boundary state trans-
formation. Since the topological defect can be moved to the boundary without changing the

correlator, it can be fused with the boundary producing new boundary condition. Remember-
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ing that in String theory boundary states correspond to D-branes, one arrives to the conclusion
that topological defects induce D-brane transformation. This property was crucial for example
in the topologically twisted N = 4 SYM approach to the Langland problem [111]. On other side
D-branes are classified by their Ramond-Ramond or K-theory charges. Therefore topological
defects should induce also transformations in cohomology or K-theory groups. It is expected
that this transform should be of the Fourier-Mukai type [15,35,/57.|78,93},163,166].

In this dissertation we study D-branes and defects in the following CFTs: WZW models,
Product of WZW models, Gauged WZW models, Liouville and Toda field theories, Gepner
model. We also study duality defects implementing T-duality, Non-abelian T-duality. Fermionic
T-duality.

Let us briefly review our findings and contributions in the mentioned topics.

Non-maximally symmetric D-branes in WZW models and D-branes

on cosets

Based on papers [54-56, 156-161].

Given a Conformal Field Theory (CFT) on a world-sheet with boundary one inevitably
encounters with problem of specifying of boundary conditions. Hence in Boundary Conformal
Field Theory (BCFT) one of the most important problems is classification of the boundary
conditions. Omne of the clues to this problem is the amount of the preserved symmetries. In
typical situation one has some extended symmetries algebra, which contains conformal algebra
as its subalgebra. Cardy in his seminal paper [42] has shown that for diagonal models so
called maximally symmetric boundary states, preserving full diagonal subalgebra always exist,
and labelled by primaries. On the other side, in CFT’s admitting Lagrangian approach as 2D
Sigma models, boundary conditions can be specified by constraints imposed on the boundary
values of the fields. Amongst most important models are WZW model, providing Lagrangian
description of affine algebras, and gauged WZW model, providing Lagrangian description of

coset models. The geometrical description of the Cardy states in the WZW model is given by
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conjugacy classes [8]. This set-up immediately raised the following problems:
1. to find geometrical realization of the Cardy states in coset models,

2. to find non-maximally symmetric boundary conditions breaking full diagonal symmetry

to some subalgebra always containing conformal symmetry.

In [56], the first problem using the Lagrangian of the gauged WZW model has been solved. It
was shown that the Cardy states in cosets realized by pointwise product of conjugacy classes. In
this paper geometrical realization of selection rule and field identification in cosets was addressed
as well. The methods developed in this paper, in particular the use of the Polyakov-Wiegmann
identities, turned out to be very fruitful and enabled in the next publications [156-158,/160,[161]
to address the second problem and build many new examples of non-maximally symmetric
boundary conditions and branes in various cosets. In particular we would like to mention the

following findings:

Geometrical realization of the Maldacena-Moore-Seiberg parafermionic D-branes [156,

157]

D-branes in asymmetric cosets [158]

D-branes in cosmological Nappi-Witten model and in Guadagnini-Martellini-Mintchev

model [158]

e Non-maximally symmetric non-factorizable D-branes on product of WZW models [159,

160]

Geometrical realization of permutation D-branes and defects in coset models [161]

D-branes in Gepner model

Based on papers [10,/162].
The Gepner model is one of the most interesting exact-solvable compactification schemes.

We have studied Cardy states in (2)* Gepner model. This model is still rather simple to handle,
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and yet enough complicated to capture typical difficulties one encounters using Gepner model.
In particular this model possesses a simple current extension fixed point, and requires to use
corresponding machinery for fixed point resolution. The full list of 88 characters of this model
has been presented, and using equivalence of this model with toroidal orbifold T*/Z,, partial

geometric realization of Cardy states has been obtained.

Topological defects

Defects in two-dimensional quantum field theory are oriented lines separating different quantum
field theories. The notion of the defects is very rich and defects appear in the numerous different
topics, like condensed matter, string theory, algebraic topology, Langland theory, boundary
conformal field theory, D-branes.

I have published numerous papers on topological defects. In these papers the following
aspects of the defects have been discussed: applications of defects to string dualities, defects in

Liouville and Toda field theories, defects in WZW and gauged WZW models.

Defects and dualities

Based on papers [57],93,(163].

In [57,93//163], defects separating two bulk systems, each described by its own Lagrangian,
where the two descriptions are related by a discrete symmetry, were considered, and defect
equations of motion ( defect analogue of boundary equation of motion) have been elaborated.
In particular the descriptions related by T-duality, fermionic T-duality, and non-abelian T-
duality were considered. This analysis implies that to each kind of dualities a bundle on a
defect world-volume can be associated. A defect corresponding to a duality, sometimes called
defect performing or implementing the duality, since it can be also considered as an operator
implementing the duality. We have found that the defect equations of motion encode the
duality relations. We observed that bundles on world-volumes of defects performing various

T-dualities, are in fact different cousins of the Poincaré bundle. It was shown that the duality
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action on D-branes and the Ramond-Ramond fields is identical to the Fourier-Mukai transform
with a kernel given by the corresponding Poincaré bundles or the exponential of the gauge
invariant flux on a defect respectively. This enabled us to develop new method of calculation
of the Ramond-Ramond field transformation under the non-abelain T-duality. We also studied
in detail T-duality between SU(2) WZW model and the lens space, and axially and vectorially

gauged WZW models.

Defects in WZW and gauged WZW models

Based on papers |[165-167].

In [165], the famous relation between WZW model and Chern-Simons gauge theory [52,(186]
has been elaborated in the presence of defects and permutation branes. Using the Lagrangian
formulation of WZW model with defects [78] and boundaries [87] the following three symplec-

tomorphisms have been established:

1. The symplectic phase space of the WZW model with N defects on a cylinder is symplec-
tomorphic to that of Chern-Simons gauge theory on an annulus A times the time-line R

with N time-like Wilson lines.

2. The symplectic phase space of the WZW model with N defects on a strip is symplecto-
morphic to that of Chern-Simons gauge theory on a disc D times the time-line R with

N + 2 time-like Wilson lines.

3. The symplectic phase space of N-fold product of WZW models on a strip with boundary
conditions given by the permutation branes is symplectomorphic to that of Chern-Simons
gauge theory on a sphere with N holes times the time-line R and with two time-like Wilson

lines.

In 166,167, the relation between gauged WZW model G/H model and double Chern-
Simons gauge theory [131] has been studied in the presence of defects and permutation branes

and the following isomorphisms have been established:
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1. The symplectic phase space of the gauged WZW G /H model on a cylinder with N defects
is symplectomorphic to the symplectic phase space of the double Chern-Simons theory
on an annulus A times the time-line R with G and H gauge fields both coupled to N

Wilson lines.

2. The symplectic phase space of the gauged WZW G/H model on a strip with N defects is
symplectomorphic to the symplectic phase space of the double Chern-Simons theory on a
disc D times the time-line R with G and H gauge fields both coupled to N + 2 time-like

Wilson lines.

3. The symplectic phase space of the N-fold product of the gauged WZW models on a
strip with boundary conditions given by permutation branes is symplectomorphic to the
symplectic phase space of the double Chern-Simons theory on a sphere with N holes times

the time-line R with G and H gauge fields both coupled to two Wilson lines.

In the special case of topological coset G/G these isomorphisms take the form:

4. The symplectic phase space of the gauged WZW G /G model on a cylinder with N defects
is symplectomorphic to the symplectic phase space of the Chern-Simons theory on 72 x R

with 2N Wilson lines.

5. The symplectic phase space of the gauged WZW G /G model on a strip with N defects is
symplectomorphic to the symplectic phase space of the Chern-Simons theory on S? x R

with 2N + 4 time-like Wilson lines.

6. The symplectic phase space of the N-fold product of the topological coset G/G on a
strip with boundary conditions given by permutation branes is symplectomorphic to the
symplectic phase space of the Chern-Simons theory on a Riemann surface of the genus

N — 1 times the time-line with four Wilson lines.

Defects in the Liouville and Toda field theories

Based on papers [144}/164,(168]
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In [164,/168], using the Cardy-Lewellen cluster equation for defects, derived in [139], defects
in the Liouville and Toda field theories have been constructed. It was shown that defects labelled
by the physical and degenerate primaries of Liouville/Toda field theories, and correspondingly
compose discrete and continuous families. Acting by the defects of the continuous family on
the well-known Fateev-Zamolodchikov-Zamolodchikov boundary states, new boundary states in
the Liouville field theory have been obtained. We also have shown in [168] that the well known
relation [20] between the OPE structure constants and the fusing matrix with an intermediate
entry set to the vacuum proved for rational CF'T, holds also for the Liouville theory. We checked
that it holds also for the Toda field theory with an external entry set a degenerate field. But
we have gathered evidences that it should hold for all primaries also in the Toda field theory.

In paper [144], we study semiclassical limit of the continuous family of the defect two-point
functions in the Liouville field theory, derived in [164].

We show that semiclassical limits are in agreement with the recently suggested Lagrangian
with topological defects of the continuous family constructed in [3]. In particular we demon-
strate that the heavy asymptotic limit is given by the exponential of the Liouville action with
defects, evaluated on the solutions of the defect equations of motion with two singular points.

This dissertation is organized in the following way.

The dissertation consists of 8 chapters. In chapter 1 we review the material necessary to
present our findings. In chapters 2-7 we deliver our findings. The Chapter 8 contains the list
of findings.

In chapter [1f we collect and review the necessary stuff and technique of two-dimensional
conformal field theory including bulk as well as boundary aspects. In section we review
two-dimensional conformal field theory on closed surfaces (bulk aspects). In section we
collect all the necessary gadgets of conformal field theory on a world-sheet with a boundary. In
section we study topological defects. In section we illustrate the developed technique
for the case of free boson theory. In section we introduce WZW and gauged WZW models
(coset models).

The Chapter [2| is based on papers [54-56,(156-160]. In this chapter we study non-
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maximally symmetric branes on WZW model, preserving only part of the diagonal affine sym-
metry. In section [2.1] we analyze general properties of WZW model on a world-sheet with
a boundary. In section we study so called parafermionic D-branes. In subsection [2.2.1
we define non-maximally symmetric D-brane, sometimes called also parafermionic, as point-
wise product of the conjugacy class and a U(1) subgroup. We construct Lagrangian with the
boundary condition constraining group field to take on boundary values in the parafermionic
D-brane. We study symmetries of the action and show that it is invariant under the axial com-
bination of the left and right U(1) currents, and vectorial combination of the currents belonging
to the subgroup commuting with U(1) group. In subsection we study geometry of the
parafermionic D-branes for SU(2) group and show that generically it is three-dimensional and
given by an inequality constraining the values of the second Euler angle. In subsection [2.2.3
we review construction of the boundary state of the parafermionic D-brane for SU(2) group,
called MMS (Maldacena-Moore-Seiberg) state, given in [123]. In subsection we compute
the overlap of the MMS boundary state with the graviton wave packet and show that it gives
the inequality derived in subsection 2.2.2] In section [2.3] we study permutation branes on a
K 4+ 1-fold product of group G on a world-sheet with a boundary, with boundary condition con-
straining product of group fields to take value again in discrete set of conjugacy classes defined
in 2.1.2] In subsection [2.3.1] we describe geometry of the permutation branes. In subsection
we write the Lagrangian with these boundary conditions and show that it has symmetries
of permutation branes studied in . In subsection We compute for SU(2) group overlap
of the permutation boundary states defined in with the graviton wave packet and show
that in the semiclassical limit they indeed have geometry described in [2.3.1] In section [2.4] we
construct type I non-maximally symmetric non-factorizable branes on a product of identical
groups. In subsection we define new branes as product of permutation branes studied in
m with elements of an U(1) subgroup. We construct Lagrangian with these boundary condi-
tions and study their symmetries. In subsection we study geometry of these branes for
SU(2) x SU(2) group. In subsection we construct boundary states of the type I branes

for SU(2) x SU(2) group, compute the overlap with the graviton wave packet and show that
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it is in agreement with the calculations in [2.4.2] We also check that type I boundary states
satisfy the Cardy criteria.

In section [2.5| we study type II non-maximally symmetric non-factorizable branes on product
of identical groups. In subsection [2.5.1] we define new branes as product of permutation branes
studied in with elements of two of U(1) subgroups. We construct Lagrangian with these
boundary conditions and study their symmetries. In subsection [2.5.2] we study geometry of
these branes for SU(2) x SU(2) group. In subsection we construct boundary states of the
type II branes for SU(2) x SU(2) group, compute the overlap with the graviton wave packet
and show that it is in agreement with the calculations in 2.5.21 We also check that type II
boundary states satisfy the Cardy criteria.

The chapter |3|is based on papers [56,/158,|160,(161]. In chapter [3[ branes and defects in
gauged WZW models are constructed. In section (3.1} we study branes in the vectorially gauged
WZW model G/H. In subsection we construct D-branes in vectorially gauged WZW
model using the representation of the gauged WZW model Lagrangian via the auxiliary fields
reviewed in [I.5.5 and the action of the WZW model with a boundary presented in

Analysing global issues mentioned in we find correspondence of the found D-branes
with the Cardy states of the coset models in the absence of the common center of G and H.

In subsection [3.1.2| we analyze special case of the cosets when G and H has common center.
We show that found D-branes satisfy present in this case field identification and selection rules
of the primary fields of coset models.

In section [3.2| we present the Lagrangian approach to defects in WZW models. In section
3.3 we construct Cardy defects and permutation branes in vectorially gauged WZW model. In
subsection [3.3.1], using again the representation of the gauged WZW model Lagrangian via the
auxiliary fields presented in and the Lagrangian of the WZW model with defects reviewed
in 3.2 the geometry and action of the topological defects and permutation branes in GWZW
are constructed. We show that they are in one-to-one correspondence with primary fields of
coset models. In subsection we consider overlap of the permutation brane boundary state

on product of cosets SU(2),/U(1) x SU(2),/U(1) with the graviton wave packet and show that
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it has geometry found in [3.3.1]

In section we cosnsider D-branes in asymmetrically gauged cosmological Nappi-Witten
model and in the Guadagnini-Martellini-Mintchev model. In subsection [3.4.1| we present D-
branes in the Nappi-Witten model, construct the action with these boundary conditions and
check gauge invariance. In subsection |3.4.2 we study in detail D-branes in the Nappi-Witten
cosmological model SL(2, R) x SU(2)/U(1) x U(1) and present the explicit equations of the
corresponding D-brane hypersurfaces. In subsection [3.4.3] in a similar way D-branes in the
Guadagnini-Martellini-Mintchev model are considered . In subsection we consider in
detail D-branes in the SU(2) x SU(2)/U(1) GMM model.

The chapter [4]is based on papers [165-167]. In chapter We establish symplectomorphisms
between certain phase space of the Chern-Simons and double Chern-Simons theory and that
of WZW and gauged models with branes and defects. In section [4.1| we review the symplectic
phase space of three-dimensional Chern-Simons theory with sources on a product of a Riemann
surface ¥ and a time line R.

In section [4.2| we establish symplectomorphisms between certain phase space of the Chern-
Simons theory and that of WZW models with branes and defects. In subsection we
compare the Hilbert spaces of the Chern-Simons theory with Wilson lines on certain spaces
and that of WZW models with branes and defects and list the statements which we prove here.
In subsection we review bulk WZW model and establish that the symplectic phase space
of the WZW model on circle coincides with that of CS theory on annulus [52]. In subsection
4.2.3| we recall that the symplectic phase space of the WZW model on the strip coincides with
that of CS theory on the disc with two Wilson lines [88]. In subsection we establish that
the symplectic phase space of the WZW model with a defect is symplectomorphic to that of
Chern-Simons theory on an annulus with a Wilson line. In subsection we establish that the
symplectic phase space of the WZW model on a strip with a defect inserted is symplectomorphic
to that of CS theory on a disc with three Wilson lines. In subsection [4.2.6| we establish that the
symplectic phase space of the WZW model G x G on a strip with boundary conditions specified

by permutation branes coincides with that of CS on an annulus with two Wilson lines.
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In section [4.3] we perform canonical quantization of the vectorially gauged WZW model
G /H with the defects and boundaries and establish symplectomorphisms between their phase
spaces and certain phase spaces of the double Chern-Simons theories. In subsection 4.3.1| we
present short summary of the statements proved in this section. In subsection 4.3.2 we review
bulk gauged WZW model and show that its phase space on a cylinder coincides with that of
double Chern-Simons theory [89,|131] on product of annulus A and time-line R. In subsection
4.3.3| we show that the phase space of the gauged WZW model on a cylinder with a defect line
coincides with that of double Chern-Simons theory on A x R with gauge fields of groups G and
H coupled to a Wilson line. In subsection [4.3.4] we show that the phase space of the gauged
WZW model on a strip with a defect line coincides with that of the double Chern-Simons theory
on disc D times time-line R with gauge fields of groups G and H coupled to three Wilson lines.
In section we analyze especially interesting case of the topological coset G/G. In subsection
we analyze bulk G/G coset and show that the phase space of a bulk G/G theory on a
cylinder is symplectomorphic to that of a Chern-Simons theory on 7% x R, where T? is a torus.
In subsection we show that the topological coset G/G on a cylinder with a defect line is
symplectomorphic with that of a Chern-Simons theory on 72 x R with two Wilson lines. In
subsection we demonstrate the symplectomorphism of the phase space of G/G topological
coset on a strip with a defect and a Chern-Simons theory on S? x R with six Wilson lines. In
section we analyze a product of cosets G/H x G/H on a strip with boundary conditions
specified by permutation branes and show that its phase space is symplectomorphic to the phase
space of the double Chern-Simons theory on an annulus times the time-line and with G and H
gauge fields both coupled to two Wilson lines. In section we establish symplectomorphism
of the phase space of product of topological cosets G/G x G/G on a strip with the boundary
conditions given by the permutation branes and that of Chern-Simons theory on a torus times
the time-line with four Wilson lines.

The chapter [5is based on papers [57,,93,(163].

In chapter [5| we study topological defects implementing various dualities.

In section [5.1| we review some basic facts concerning topological defects and their relation
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to T-duality. It is established that the defect implementing bosonic T-duality is given by the
Poincaré line bundle. We demonstrate in the simple example of a scalar field compactified on
a circle how the defect equations of motion reproduce the appropriate duality transformations.
In section [5.2] we generalize this to the factorized T-duality in non-linear sigma models with
isometries. We also present a defect generating a combined action of the Z; orbifolding together
with a T-duality transformation. In section [5.3| we explain how the T-duality transformation
of the Ramond-Ramond charges can be written as the Fourier-Mukai transform with the kernel
given by the exponent of the gauge invariant flux on the corresponding topological defect.

In section [5.4] we study T-dualities in the special case of SU(2) WZW model and a lens
space. In subsection we review [32] kernel of the Fourier-Mukai transform of the T-duality
between SU(2) WZW model and lens space implementing the map between the corresponding
twisted cohomology groups. In subsection [5.4.2 we construct several families of defects by using
T-duality transformation and orbifoldig. In subsection for one such family we determine
the geometry of the underlying bibranes. We recover structure familiar from Fourier-Mukai
transformations studied in [(.4.1]

In section we construct defects between axial and vector gauging of G/U(1) gauged
WZW models [16,[85] for a general group G. For the case of G = SU(2) [17] the geometrical
construction is translated to the algebraic parafermionic language.

In subsection [5.5.1] we present geometry and flux of the defects gluing axially-vectorially
gauged models. In subsection we specialize to group SU(2) and show that for level k
parafermions there are k + 1 topological defects mapping axially gauged SU(2)/U(1) cosets
to the vectorially gauged SU(2)/U(1) coset, labeled by the integrable spin j = 0,...,%. In
subsection |5.5.3| we construct them as the appropriate operators in the parafermion Hilbert
space. We show that the defect corresponding to j = 0 implements Z; orbifolding together
with T-duality. These defects project A;,, Cardy branes in SU(2)/U(1) coset to the B; branes
constructed in [123].

In section [5.6|we study the defect performing the fermionic T-duality [24]. In subsection

we review the necessary information on pseudodifferential forms integration. In subsection|5.6.2
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we review the fermionic T-duality [24]. In subsection we show that the defect inducing
the fermionic T-duality is given by the fermionic generalization of the Poincaré line bundle,
which we denote as Super-Poincaré line bundle. We demonstrate that the defect equations of
motion reproduce the fermionic T- duality transformation rules found in [24]. In subsection
using the exponent of the gauge invariant flux on this defect as a kernel of the Fourier-
Mukai transform with a pushforward map given by the fiberwise integration on supermanifold,
we derive the transformation of the Ramond-Ramond fields under the fermionic T-duality.

In section we construct topological defects producing non-abelian T-duality.

In subsection we review non-abelian T-duality. In particular we recall the duality
relations and demonstrate general formulas for the case of SU(2) principal chiral model. In
subsection [5.7.2] we present defect performing non-abelian T-duality, and show that the defect
equations of motion reproduce the duality relations derived in subsection [5.7.1] In subsection
using the flux of non-abelian T-duality defect derived in subsection |5.7.2] we derive the
Fourier-Mukai transform formula for non-abelian T-duality, and compute the RR fields trans-
formation for SU(2) isometry group. We obtain that our results are in agreement with that
of [109,]175].

The chapter |§| is based on papers [144}/164}/168|.

In chapter [6] we study topological defects in the Liouville and Toda field theories. In section
we write down topological defects in the Liouville field theory. It is shown that defects are
labelled by the physical and degenerate primaries of Liouville field theory, and correspondingly
compose discrete and continuous families. We also have shown that the well known relation [20]
between the OPE structure constants and the fusing matrix with an intermediate entry set
to the vacuum proved for rational CFT, holds also for the Liouville theory. In section [6.2
we write down topological defects in the Toda field theory. We have shown that topological
defects in Toda field theory are labelled by the physical, semi-degenerate and fully degenerate
primaries. In section [6.3| we analyze classical Liouville theory with defects. In subsection [6.3.1
we review the general solution of the Liouville equation. In subsection [6.3.2] we present general

solution of the defect equations of motion. In section we review the heavy asymptotic
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semiclassical limit. In section [6.5] we calculate the defect two-point function in the heavy
asymptotic limit. In subsection we calculate heavy asymptotic limit of defect two-point
functions. In subsection[6.5.2| we show that heavy asymptotic limit of defect two-point functions
found in the previous section is given by exponential of the action with defects evaluated on
solution of defect equations of motion with two singularities.

The chapter [7]is based on papers [10,/162].

In chapter [7] we study Cardy states in (2,2,2,2) Gepner model. In section we review
necessary background material on the simple current extensions. In section we review
Gepner models via simple current extension formalism. In section [7.3| we write down all the
necessary information on the (2,2,2,2) model: orbit representatives, characters, conformal
weights. Using the resolved characters we compute the torus partition function and show that
it coincides with the one computed in the appendix 5 as an orbifold partition function at the
SU(2)* point. Using the general formulae of section we also derive the annulus partition
functions between different Cardy states, paying special attention to the peculiarities caused
by the presence of the fixed points. In section we study DO branes on the orbifold 7%/Z, .
We compute all the annulus partition functions between D0 branes located at points in 7%/Z,
orbifold that are fully or partially fixed under the orbifold group action. Using previously
derived formulae for the annulus partition functions between Cardy states of the (2,2,2,2)
model we establish a partial dictionary between Cardy states and D0 branes.

In chapter [8| we presented list of our main findings.

In five appendices some technical points are collected. In appendix 1 double Gamma and
Sinus functions are reviewed. In appendix 2 asymptotic behaviour of Gamma function is
reviewed. In appendices 3 and 4 some identities on Theta function are collected. In appendix
5 some technical points on calculation of the partition function of T*/Z; orbifold are delivered.

All results of this dissertation are published in papers [10,54-57.93} 144} 156-168].
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Chapter 1

Two-dimensional conformal field

theories: bulk and boundary aspects

1.1 General facts 2D CFT on closed surfaces

Here we review necessary facts on two-dimensional conformal field theories on closed surfaces

(bulk aspects). The standard references here are [79,95].

1.1.1 Conformal group in two dimensions

Let us consider the conformal transformations in two dimensions D = 2. Denote by g,, the
metric tensor. By the definition conformal transformation of the coordinates is the invertible

map = — «’ which leaves metric tensor invariant up to scale:
giw(x') = Ax)gu(x) (1.1)

where

/1 v
, ox™ Ox

QW(@"/)W% = Gxp (1.2)

Let us investigate the consequences of definition (1.1) on the infinitesimal transformation

ot — " = ot 4 e (x) (1.3)
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It follows from ([1.1))

m v
ox'™ Ox 1

o o =9

and inserting (|1.3)) we obtain in the first order by e:

Oet 0e”
gw(&+5;)<&+aﬂ>:gm+&%+@q

Therefore the requirement that this map is conformal implies that
Ouew + Ouey = (A" = 1) gy = f ()G
The factor f(x) can be determined by taking trace on both sides:
Fx) = 0,
Equation for g, = d,, becomes Cauchy-Riemann condition

a161 = a262, a162 = —3261

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

Thus it is natural to write €(z) = €; + €3 and €(Z) = €; — i€ in complex coordinates z = = + iy

and Z = xr—1y. Two dimensional conformal transformations then coincide with the holomorphic

coordinate transformations
z— f(2) z— f(2)

The metric in the complex coordinates is
ds* = dzdz
Under the analytic coordinate transformations

2= f(2) z— f(2)

2

ds® = dzdz — dzdz

z

The holomorphic infinitesimal transformation can be expressed as:

7 =z+¢€(2) €(z) = Z cp 2"t
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(1.10)

(1.11)

(1.12)

(1.13)



The effect of such a mapping on the field ¢(z, Z) living on plane is:
06 = —€e(2)0¢ — &€(2)0¢ = Y _{calnd(2, 2) + Calndp(2, 2)} (1.14)
where we have defined generators
l, = —2"110, l, =—2""10; (1.15)

These generators obey commutation relations:

L] = (1 — 1) s (1.16)
Ly ln] = (0 — M) (1.17)
[l ] =0 (1.18)

(1.19)

We see that the conformal algebra is direct sum of two isomorphic algebras. The algebra ((1.16)

is the Witt algebra.

Note that Iy = —20, and ly = —Z0; and hence introducing the polar coordinates z = re®
we obtain
0 o _0 .
T’E —ZE—FZ% = —(l0+l0) (120)
and
0 _ 29 39 _ —i(lo — o) (1.21)

00 0z 0z

Thus (Ip + ly) generates dilatations and i(ly — ly) generates rotations.
Let us look for the generators well-defined globally on the Riemann sphere S? = C' U oo.

The analytic conformal transformations are generated by the vector fields:

v(z) = — Zanln = Zanznﬂaz (1.22)

The non-singularity of v(z) as z — 0 allows a,, # 0 only for n > —1.To understand behavior of

v(z) as z — oo, we perform a transformation z = —1,

v(z) =) a, (—é)nﬂ (3—;)1 0,=> a, <—£)nl s (1.23)

n
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The non-singularity as w — 0 allows a,, # 0 only for n < 1. We can see that only conformal
transformations generated by a,l, for n = 0, &1 are globally defined. The same considerations
work to the anti-holomorphic transformations.

These generators satisfy the commutation relation:

o, 1) =14 (1.24)

lo, 1] = (1.25)
[I1,1_1] = 2l (1.26)
(1.27)

and similar for antiholomorphic components. This is si(2, C') algebra.
Let us examine also the group structure. We identify I_; and I_; as generators of translations

(globally z — z + a), Iy and [y as generators of dilatations (globally z — Az), and I; and [; as

generators of the special conformal transformations (globally z — 1%52) The combined form

of these transformations is
b az+b
N z o, B0 (1.28)
cz+d cz+d

where a, b, c,d € C and ad — bc = 1. This is the group SL(2,C)/Z,. The quotient by Zs is due

to fact that (1.28]) is unchanged by taking a, b.c, d to minus of themselves.

1.1.2 Tensor energy-momentum, radial quantization, OPE

Under the coordinate transformation z# — x* 4+ €, the action changes in the following way:
1
08 = /deT””ﬁue,, =3 /dQQ:T’“’((‘?MeV + 0,€,) (1.29)

where T is the symmetric energy-momentum tensor. The definition (1.6]) of the infinitesimal

conformal mapping implies that corresponding variation of the action reads

1
5S:§/fﬂﬁkp (1.30)
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The vanishing of the trace of the energy-momentum tensor thus implies the invariance of

the action under the conformal transformation. The current of conformal symmetry is
Jy=T,€ (1.31)
This current is conserved because
oJ, =o'T,e +1T,0"¢ =0 (1.32)

which vanishes because the tensor energy-momentum is conserved and traceless.
To implement the conservation equations in the complex plane we compute the components
of tensors in the complex coordinates. Since the flat Euclidean metric ds? = dz? + dy? in the

complex coordinates z = x + iy has the form ds? = dzdZz one has

9zz = Jzz = 0 and g2z = Qz; = 5 (133)
and
¥ =¢*=0 and ¢*=g¢"*=2 (1.34)
The components of the energy-momentum tensor in this frame are
1 4
Tzz = Z(TOO — 2%T10 - Tll) (135)
1 .
T:: = Z(TOO + 2Ty — Th1)
oo = To = ~(Too+ Th1) = ~T*
zz — 41zz — 4 00 11) — 4 I
Therefore the tracelessness implies
ng - ng - 0 (136)
The conservation law ¢**9,T), = 0 gives two equations
agTZZ + aZng — O and 8ZT55 + agng — O (137)
Using ((1.36)) we obtain
agTZZ =0 and aZng =0 (138)



The two non-vanishing components of the energy-momentum tensor
T(z) =T..(2) and T(z) = T::(2) (1.39)

then have only the holomorphic and anti-holomorphic dependence.

Take the system on a cylinder ¥ = R x S' = (t,z mod 2), where ¢ is world-sheet time,
and z is compactified space coordinate.

Consider now conformal map w — z = ¥ = €%, that maps a cylinder to complex plane.
Then infinite past and future on a cylinder, ¢ = 00 are mapped to points z = 0, o0 on a plane.
The equal time surfaces, ¢ = const becomes circles of the constant radius on z-plane. Dilatation
on the plane e becomes time translation ¢ + a on the cylinder, and rotation on the plane e*®
is space translation x + a on the cylinder. Therefore the dilatation generator on the conformal
plane can be considered as the Hamiltonian, and the rotation generator on the conformal plane
can be considered as momentum.

The current of conformal transformations takes the form:
J.=T(2)e(z) and J; =T(2)e(2) (1.40)
The conserved charge of the conformal transformations takes the form

Q= 1 j[dzT(z)e(z) + QL %dzT(z)e(z) (1.41)

2w i
Radial ordering

Product of operators make sense if they are radially ordered. This is an analogue of time

ordering for quantum field theory on a cylinder. Recall the time ordering rule:
TA(ty)B(ty) = A(ta)B(ty) for t, > t, and B(ty)A(t,) for t, <t (1.42)

Passing from a cylinder to a plane, Euclidean time coordinate is mapped to radial coordinate,

and the time ordering becomes the radial ordering

RA(z)B(w) = A(2)B(w) for |z| > |w| and B(w)A(z) for |z| < |w] (1.43)
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The variation of any field is given by commutator with the charge (|1.41)):

bee®(w, w) = [Q, P(w, w)] = (1.44)

1 dze(2)(T(2)®(w,w) — ®(w,w)T(2)) + L 7{ dze(z)(T(z2)P(w, w) — ®(w, w)T'(Z2))

2mi 2mi
Let us now analyze the order of operators in the second and the third lines in . We will
discuss the holomorphic part, the similar discussion holds for antiholomorphic part. We have
seen that the first term in the commutator is defined only if |z| > |w|, whereas the second one
requires |z| < |w|. Therefore we should use different contours in two terms in commutator

= dze(z)[T(z), (w,w)] = L dze(2)(T(z)P(w,w) —7{ O(w,w)T(z)) (1.45)

o 20 S 2l <l
Using the definition of the radial ordering (|1.43) one can write

L J o)1), B(w, @) = % MM |_7|§|<| J dze(2)R(T(2)®(w, @)  (1.46)

271
Deforming the contours the result is

% dze(2)[T(z), ®(w,w)] = L,]{Udze(z)R(T(z)@(w,u_))) (1.47)

211
where integration contour encircles a point w. Collecting all we obtain:

5. (w, @) = — ]{ dze(2) R(T()®(w, @) + — 7{ dze(2)R(T(2)® (w, ©)) (1.48)

2T o7ri

Primary fields possess the following transformation rule:
NINCIANEIAY -
09 - (F) () *e). 7@ (1.49)

The infinitesimal transformation of the primary fields of the weight k and h is:

5ee®(w, ) = hde(w)®(w, W) + €(w)IP(w, w) + hoe(w)P(w, w) + é(w)0P(w,w)  (1.50)

g
g
g

Comparing (1.48) and (1.50) we get OPE of the energy-momentum tensor with the primary

field of the weights h, h

00 ®(w, W) (1.51)

Op®(w, w) (1.52)




1.1.3 Virasoro algebra

Schwarzian derivative

OPE of the tensor energy-momentum with itself takes the form:

/2 2 " 1
TETW) = gt el W+ 0y

OT (w) (1.53)

The term on the rhs, with coefficient c a constant, is allowed by the analicity, Bose symmetry,
and the scale invariance. Besides of this term, (1.53)) is just a statement that 7'(z) is conformal
field of the weight (2,0). According to (1.48]) the variation of 7" under infinitesimal conformal

transformation is

0.1 (w) = 7{ e(2)T(2)T (w) = 1—12083)6(10) + 2T (w) Ope(w) + €(w)0y, T (w) (1.54)

= o

The exponentiation of this infinitesimal variation to the finite transformation z — w(z)

reads

T(z) — (é—f) T(w(z)) + %S(w;z) (1.55)

where we have introduced so called Schwarzian derivative:

L (Pwfd?) 3 ((Pw/d?)\
Slw:2) = (dw/dz) _5( (dw/dz) ) (1.56)

It is in fact unique weight two object that vanishes when restricted to the global SL(2,C)

subgroup of 2D conformal group. It satisfies a composition law:

S(w, z) = (Z—Z) S(w, )+ S(f, 2) (1.57)

The energy-momentum tensor is example of the field that is quasi-primary, i.e. SL(2,C)

primary, but not Virasoro primary. For exponential map w — z = ¢ one has
S(e",w)=—-1/2 (1.58)

SO

Top(w) = (6’_w) T(z) + 1—025(2,11)) = 2T(2) - 5 (1.59)



n—2

Using mode expansion 7'(z) = > L,z~""* one finds

Tc}’l(w) - Z an—n - i = Z (Ln - i@zo) e " (160)

The translation generator (Lg)c, on a cylinder is then given in the terms of the generator Lg
on plane as
c

(Lo)eyt = Lo — 57 (1.61)

Virasoro generators
We introduced a current J(z) = T'(2)e(z). Since €(z) is an arbitrary holomorphic func-
tion, it is natural to expand it in modes. We expect that the current 7T'(z)z"*! generates the

transformation z — z + ¢,2""!. The corresponding charges are:

1
Ly, =— ¢ dzT(2)z"™ (1.62)
2mi

This relation can be inverted:

T(z)=)» 2 "L, (1.63)

The commutator of the charges is

1 1
Ly, L] = e jgdwwmJrl j{ dzz"TT(2)T(w) = Ecn(n2 — 1)0nsmo + (mn—m)Lpyn (1.64)
0 w

Identical consideration for T implies

T(2)T(0) = (1/1)4 + fw)QT(w) s ! 0T (w) (1.65)
T(z)=)» 7" °L, (1.66)
(Lo L] = (1 — m) Lo + 1—125n(n2 )i (1.67)

Since T(z) and T'(Z) have no power law singularity in their OPE, we have

[Ly, L] =0 (1.68)
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Highest weight state
Counsider now state

|h, h) = $(0,0)]0) (1.69)

created by the holomorphic field ¢(z) of the weight h. From the OPE (1.51)) between the

energy-momentum tensor 7' and the primary field one finds:

Lo, d(w, )] = f 92 1T (g, ) = h(n + D $w, @) + 0" Ou(w, @) (1.70)

21

so that [L,, ¢(0,0)] =0, n > 0.
The anti-holomorphic counterpart of this equation is

(L, o(w, @)] = h(n + 1)@"$(w, @) + " 9yd(w, @) (1.71)
Applying this relation to the state (1.69)) we conclude:

and

Lyn|h,h) =0 Lyn|h,h) =0 n >0 (1.73)

The state satisfying ((1.72)) and (1.73)) is known as a highest weight state.
Correlation functions
Since global conformal group SL(2,C') preserves vacuum and anomaly free we have for f(z)

in the form (|1.28]):

(®1(21,21) - Dz, 20)) = [T O ()" (D)™ (@1(F(20), F(21) - Pl F (z0)s F(20)
(1.74)
These equations completely fix the coordinate dependence of the two and three- point

functions

i L C
<(I)1(Zl, 21>q)2(227 Zg)> = (Zl — z2>2h(21 — 22)25 (175)
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where hl = hQ = h, }_ll = ]_12 = B, and

(D1 (21, 21) Do (22, 22) P3 (23, 23)) = (1.76)
Clas

hi+ha—hs _ho+hz—h1 hs+h1—ha hi+ho—hs cho+hs—hi1 shs+hi—ha
212 293 <13 212 293 213

where z;; = 2z, — z;.

1.1.4 CFT on torus and Modular transformation

Torus

The torus can be defined by specifying two linearly independent lattice vectors on a plane
and identifying points that differ by the integer combination of these vectors. On a complex
plane these lattice vectors can be represented by two complex numbers w; and ws which we

shall call periods of lattice and hence we have
W R W+ nwy + mws (1.77)

Clearly properties of the conformal field theories defined on the torus should not depend
on overall scale of a lattice, nor on the absolute orientation of lattice vectors. The relevant
parameter is a ratio 7 = wy/wy, called modular parameter.

Partition function on torus

CFT on the cylinder parameterized by w can now be transferred to the torus. Let H and P
be energy and momentum operators, namely the operators that implement translations in the
space and time directions Rew and Imw respectively. Remember that on a plane Ly + Lo and
Lo — Lo generate dilatations and rotations respectively, so according to discussion of the radial
quantization one has H = (Lg)ey1 + (Lo)eyt and P = (Lg)eyt — (Lo)ey1- To define the torus we
should identify two periods in w. Let us redefine w — iw and, as we discussed before, choose

w=w+ 271 and w = w + 277. Denote by 71 and 75 real and imaginary parts of 7
T=T+1im (1.78)

This implies that surfaces Imw = 2775 and Imw = 0 should be identified after the shift

by Rew — Rew + 277. Because we define time translation of Imw by the period 271, to be
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accompanied by the spatial translation of Rew by 277, the operator expression for the partition

function of the theory on the torus with the modular parameter 7 is

7 — /e—S — Tye2rinP —2mmH _ Tr€27r'i7—1((LO)cyl_(LO)cyl)6_27rT2((L0)cyl+(EO)cyl) (1‘79)

— Tre??riT(Lo)cyle—2ﬂi’7‘(io)cy1 — Tquo—iqio—i — (qq)—iTquo qf/o

where g = €27,

Modular Invariance

Main point of studying conformal field theories on the torus is imposition of the constraints
on operator content of a theory from requirement that the partition function should be inde-
pendent of choice of periods w; and wy for the given torus.

Assume that w| and w) are two periods describing same lattice as w; and wy. Since the

points wj and w) belong to lattice, they should be written as integer combinations of w; and

Wa:

Wi = aw; + bws (1.80)
Wy = cwq + dwsy
where a, b, c,d, € Z and ad — bc = 1.

These transformations ((1.80]) form group SL(2,7Z).

Under the change of period (|1.80)) the modular parameter transforms as

at + b
1.81
T ct+d ( )
The generators of the transformations ([1.81]) are
T:7—>717+1 (1.82)
and
1
ST — —— (1.83)
T
The Hilbert space of the conformal field theory has the form:
H = 33 Ri(0) @ Ri(0 (1.84)
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R;(c) is the chiral algebra highest weight ¢ representation. Hence defining the character
Xi(7) = Trg,q"o=* (1.85)

one can write

Z(r) = Niaxi(m)xi(7) (1.86)

ih
where N;; denotes multiplicity of occurrence of R;(c) ® R;(c) in H. The first obvious condi-

tion for the partition function to be modular invariant is that the characters x;(7) define a

representation space of the modular transpositions:

xi(@) =Y Six;(a) q = exp(—2mi/T) (1.87)
J
Xi(T+1) = Tyxilr) (1.88)
J
It is easy to see that
/IWZ] — Z'j€27ri(hifc/24) (189)

where h; is the conformal weight of the highest weight :. The matrix IV, ; in the partition function

is determined by demanding modular invariance of the partition function of the model.

1.1.5 Orbifold model

In CFT the notion of orbifold acquires the following meaning. We start by taking a given
modular invariant theory 7, whose Hilbert space possesses discrete symmetry G consistent
with operator algebra of a theory, and constructing a modded-out theory 7 /G that is modular
invariant as well.

Orbifold CFT’s have the geometric interpretation as o-models whose target space is the
geometrical orbifold. But there are examples where the geometrical interpretation is non-
existent. Therefore it is preferable to consider orbifold CFT’s from the more abstract point of
modding out the modular invariant theory by the Hilbert space symmetry. We will consider

here the case of the abelian symmetry group G.
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The construction of the orbifold CFT T /G starts with the Hilbert space projection on the
(G invariant states.

Therefore the first part of the partition function has the form:

o 1 r 1
Zoroj = la| ™ = Tr > gq™oq™ = e > 2[0,4] (1.90)

|G| geG geG

This means that we sum over all insertions of the operator realization of group element g in
the trace over states, or alternatively this can be understood as twisting in the time direction.
To have modular invariant partition function we should add contribution of the configurations
twisted in the space direction which should be derived performing modular transformation
T — —1i:

S:Z[0,9] = Z|g,0] (1.91)
To obtain full modular invariant partition function we should perform projection also in twisted

sectors to GG invariant states and sum all of them:

1 7 1
Zowy = la| ™= Y Trngg™g™ = = Y Z[h 1.92
g,heG g,heG

1.1.6 Structure constants and conformal bootstrap

Let us study the holomorphic part of the three-point function ([1.76)) in the limit z; — z3. The

leading singularity is:
(0[@(21) @5 (22) Pr(23)|0) = Cijp(z1 — 20)" 17122y — 25) 2" (1.93)

The last term resembles the propagator of the field ®3 and this expression assumes that the
two primary fields ®; and ®; contain in their product the field ®3, with the strength Cj;;. The
precise statement of this fact is the OPE , which states that the product of two operators O;(z)

and O;(y) in field theory can be expanded in the complete set of operators Oy (x)

0:(2)0;(y) = Y _ Ciji(a — y)Ox(x) (1.94)
k
In CFT one can take as the basis all primaries and the complete set of descendants. Thus
the OPE has the form [20,21]:
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(kk)

_ _ (1) (§j)aa _
D (21, 21) @5 (22, 22) = Z CEPN = (j; AT D (k) (22, Z2) + descendants .
k.k,a,a

(1.95)
Let us explain notations used in this formula. Each primary has two indices referring to the
left 4 and right i highest weight representations. Note that in general the primary field D ()
may appear more than one time in the OPE of the fields ®(; and ®;. In this case we
have different channels of the fusion of the fields ®; and ®;;) producing the field ® ;. The
number of the different channels is called fusion number and usually denoted as NZ-’;. To take
them into account the structure constants are provided with additional indices a = 1... N}; and
a=1... N{% We denote by i = 0 the vacuum representation having the property NY = 6,
and by i* the conjugate representation in a sense NjJ. = 1. Denote by R the set of all primary
fields of the theory, or by other words, the set of values of indices i, j, k in . If the OPE
algebra is closed with the finite set R the theory is called rational. The name is due to fact
that for rational theories the conformal weights h; take rational values [181].
The structure constants satisfy the bootstrap equation [21].
To derive this constraint one consider the four-point correlation function (®;®.;®;;®;7).
It can be computed in two ways, so called s and ¢ channels. In s channel we use at the
beginning the OPE of the fields ®,; and ®;;, producing in the fusion the field ®,;, and afterwards

computing the three-point function (®;®,7®P,5). This procedure brings to the expression

'S k ] S l;; j
Z Z j]ll(TT kkpp pp)fppT ‘Fpp'r - (196)
pTPT Z l 'l l
k
The function F;pT is so called s channel conformal block giving contribution of de-
i1

scendant fields. The conformal blocks carry four indices of the in- and out- fields, the index

p of the intermediate field, and two indices p = 1... N}

tp» T=1...Nj; to disentangle different

fusion channels. Note the order of indices of in- and out- fields in brackets. The lower left index

[ fused with upper left index j, producing intermediate state p, which fused lower and upper
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right indices.
In ¢ channel we use at the beginning the OPE of the fields ®;; and ®,;, producing in
the fusion the field ®,4, and afterwards computing the three-point function (®;®,;P;;). This

procedure brings to the expression

o~

t l ] t j
Z Z kkjj (i) qqll (vp) ‘Fql/u . 'szﬂﬁ B ) (197)

qq pviiv 1k k

~.

The t channel conformal blocks as well carry additional indices = 1... N,‘jj v=1... N;l
to disentangle different fusion channels. Conformal blocks in s and ¢ channels are related by

the fusing matrix
vp
k j k j [
Forr =22 Fha Foaon 7 (1.98)
o a vp '
pT

and hence we obtain famous bootstrap constraint relating fusing matrix and structure constants:

v o vk
K J b J q i1
pp pTPT 1 A
pT pT
Using the relation [20]
o Ui B 2
k j g 1
Z Fﬁ7q* _ _ Fqﬁs _ -~ = 5]5855’)/1 5?72 9 (1100)
3,0, 11 k* o
pT v

one can write the bootstrap equation (1.99) in the form:
v pT

194 zz k j qq i
ZZC]M (r7) kkpp(pp)Fp,q . = Z Ckm (i) C oqll(v7) Fy 5 . . (1.101)

11 4,10
pT nv

.

In this work we will analyze the models with diagonal partition function
Z = Z Xi(Xa(@), Zig =i, q = exp(2imT) (1.102)
These models called diagonal. Diagonal models satisfy the relation:

C«p? - = (P,

kkii(pp) ki(pp)

O+ Ok O (1.103)
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Now we will show that for the diagonal model one can solve the bootstrap equation to get the

explicit expression for structure constant via fusion matrix.

For diagonal model eq. (|1.101)) takes the form:

vp

E Cllfp(pﬁ) CZ(T%)Fp,q
pT )
pPT

It is shown in [168] that the pentagon equation for fusing matrix [204129}132]

implies the following important relation:

- - pp v
p kK ko J
Z F(),i Fp,q FO,p
p k* 11
- - 00 pT
B q B 0
J ok k* 1
Z FO,q Fq,p FO,i
P ik i
L 400 7

Comparing ((1.105) and ([1.104)) we see that ([1.104)) can be solved by an ansatz

fin

ij 0
](MU) fr] n P

with arbitrary 7;. To find 7; we set p =0

2
o
where
7 1"
F, = Fo,o
T 1
Using
CO _ sz*
[ I
Coo

where Cj;« are two-point functions and that Fy = 1 one can solve (1.107)) setting

N = € Cii*/Fia

were ¢€; a sign factor. We assume that ¢; can be chosen to satisfy ¢; = €.
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l Z Ck] (i) ql(W

00

00

(1.104)

(1.105)

(1.106)

(1.107)

(1.108)

(1.109)

(1.110)



For diagonal models without multiplicities, i.e. all NZ-’; = 0,1, we can derive the relation
(1.106f) in the different way. For these models, we don’t need the Greek indices in the structure
constants, and fusion matrix to disentangle fusion channels, and the bootstrap equation (1.104)

takes the form

. kg . k*
CrieChC - Fr g = CLCLCo Foy : (1.111)
11l A
Setting ¢ =0, k = j*, 7 =1 in (1.111]) we obtain:
] 1
CijCii» Fop
J o
2 i
(cr)” = = (1.112)
.
C’OOC(pp*F‘p,O
vl
Using the relation [129}/132]
j ok k*k F.F
Fo, Fio =k (1.113)
j ok JoJ
we can write ((1.112]) in two forms
i1 J o
cr="0g,, : (1.114)
ToMp ] i*
and
& 1
Cr = ity : (1.115)
fOfp % .
J
F,o
v o1

where 7); is defined in ((1.110)) and
& =mnik = e/ Cin Fy. (1.116)

Eq. (1.112)) determines (|1.114]) and ({1.115]) only up to sign, but comparison with ({1.106)) shows

that the sign ambiguity can be absorbed in factors ;.
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In rational conformal field theory one has the relation

SOO

Fo=2%
" Son

(1.117)

and two-points functions can be normalized to 1. Therefore in rational conformal field theory

§k = Vi (1.118)

V' Sor
Dimension of the space of conformal blocks
It is easy to see that the number of conformal blocks, which can be derived in the process

of the fusion via all the different channels and intermediate states is
NHE=N"NIN;, (1.119)
p

It is possible to show that the number of conformal blocks is the same in s or ¢ channel,

namely

3 N~ NN (L
p q
The notion of conformal blocks can be generalized to n-point conformal blocks. We should start
with n-point function. Repeatedly using OPE we can as before to write the n-point function

as product of structure constants and n-point holomorphic and anti-holomorphic conformal

blocks. Schematically this can be written as

<q)l<1f_€1(21)21) c 'q)ﬁnfin<znazn) - (1121)
Z Z h/‘l7-~~:un73;/117~-~/:L7L73f:11;....,lz’;_3 (’217 e Zn)f§;7%2—3 (Zl, AR Zn>
Mo bn—3 f1,.-fin—3

where hy, . s, in_s 1S built out of the structure constants. Again counting all different
fusion channels and intermediate states leads to the following formula for dimension of the

space of conformal blocks

Nlﬂ...l-@n — Z NHL NH2 . Nkn (1122)

KR1K2™ H1K3 Hn—3Kn—1
K1y fin—3

The fusion coefficients are related to the matrix of modular transformation by the famous

Verlinde formula [183]:

Si1S.1.S%
NE — E it Llagl 1} 1.123
K l Soi ( )
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1.2 Boundary rational conformal field theory

In this section we review general aspects on conformal field theory on a world-sheet with

boundary [42,43].

1.2.1 Cardy Condition

Let us consider a conformal field theory on the o —7 strip, 0 < ¢ < 7, periodic in the 7-direction
with a period 7. The manifold is an annulus with the modular parameter g = exp(—2miT).
Given certain boundary conditions on the boundaries of the annulus, labelled o and (3, the

partition function is:

Zop = Trexp(—2miT H,p) | (1.124)

where H,z is the Hamiltonian corresponding to these boundary conditions. This is the open-
string loop channel.

For rational CF'T the condition can be elaborated further. The eigenstates of H,z
can be organized into highest weight representations R{ of the algebra A,z preserved by the pair
of the boundary conditions o and B. These representations R (superscipt o refers to open)
will be labelled by an index i whose specification includes the Lg-eigenvalue of the highest
weight state. We then define the non-negative integer nfm to be the number of times that the

representation R; occurs in the spectrum of H,s. The partition function in the open string

channel (|1.124)) is then
Zop = Trexp(—2miTHyp) = anﬁxi(q) (1.125)

where x;(q) is the character of the representation RY?.

One may also calculate the partition function using the Hamiltonian acting in the o-
direction . This will be the Hamiltonian H") for the cylinder, which is related by the ex-
ponential mapping ¢ = exp(—i(t + io)) to the Virasoro generators in the whole (-plane by

(P)

HWP) = Lép) + Lo —¢/12, where we have used the superscript to stress that they are not

the same as the generators of the boundary Virasoro algebra. To every boundary condition «,
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there corresponds a particular boundary state |a) in the Hilbert space of the closed strings;

this enables us to compute the partition function by the following formula:

. . ), =(P)_,,
Zos = {a] exp(—miHP) /T)|8) = (a|(§"/*)ko Hlow =e12) (1.126)

where § = e 27/T,

This is the closed-string tree channel.

The equality of (1.126]) with (1.125)) for some set of non-negative integers ngﬁ is known as
Cardy condition for boundary states. This condition promises that a boundary state |a) in the
closed string Hilbert space can be interpreted as open string boundary condition « on fields in

question.

1.2.2 Maximally-Symmetric Cardy state

Suppose we have a rational diagonal theory with extended holomorphic chiral algebra Aj, con-
taining besides tensor energy-momentum 7" the set of conserved currents W), and similarly
the antiholomorphic algebra Ap with components T and W), Denote as before the represen-
tation of the chiral algebra R; and characters y;. We denote by A(™) the set of all generators:
A = LT W™} and similarly for the right part: A = {T, W)}, The maximally symmetric

boundary conditions impose constrints for all the generators and can be chosen as:

T(z) =T(D)=z W) =WO(2)|.—z (1.127)

The first of these conditions according to has the direct physical meaning of the
absence of energy-momentum flow across the boundary 7,, = 0.

Imposing at the both ends of the strip the boundary condition (|1.127)) preserves the diagonal
subalgebra isomorphic to A of the full algebra A, x Ag. Therefore the open string Hilbert
space will be organised as sum of the representations R; of A.

Corresponding boundary states should satisfy

(4G = (=)= A7) ) jay = 0 (1.128)

n
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Define the anti-unitary operator U acting in the way
—(m) |\ hy(m)
UA™ = (=A™ (1.129)
Using |j, N), N € N, to denote an orthonormal basis of R;, one can define Ishibashi states:

o0

) =15 N) @ Uj, N) (1.130)

N=0

It is shown in [42] that the Ishibashi states are solutions of ([1.128)). and satisfy

(1G5 YY) = 61 5x:(q) (1.131)

The boundary states are linear combinations of the Ishibashi states:

@) = > Bili) (1.132)

Inserting expansions ([1.132)) in the expression ([1.126)) for the partition function in the closed

string channel we obtain:

Zag =Y _(BL)"Bixi(d) (1.133)

]

Performing modular transformation we get for partition function in the open string channel:

Zap =Y _(BL)"BjSiix;(q) (1.134)

1,J

Equating ((1.125]) and ((1.134]) we derive

> (B.)BjSi; =mnl, (1.135)

The eq. ((1.135]) was soved by Cardy in [42].

In Cardy’s solution, the index « takes the values in the same set R as the index i of the

irreducible highest weight states and

S
B; — at ’
V SOi

where S;; is the matrix of the modular transformations. Inserting (1.136)) in (1.135) and us-

(1.136)

ing the Verlinde formula ({1.123]) we obtain that niﬂ are integer and coincide with the fusion

numbers:

nly =N (1.137)

e}
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and
Zap = Z Jaxi(a (1.138)

We proved that in every rational conformal ﬁeld theory we have at least as much maximally-
symmetric boundary states, as we have irreducible highest weight representations. The bound-
ary states |a) carry the same labels as the irreducible representations, and their expansion into

Ishibashi states is

Z m (1.139)

Formula (|1.139)) describes the famous Cardy states.
The second part of the condition ((1.127]) may be generalized to incorporate a possible “gluing
automorphism” €2

W(z) = QW(2)].es (1.140)

The corresponding boundary state |«a)q satisfies the conditions

(Ln—L_,)]a)o=0  and (W(’") — (MW" )) Yo = 0 (1.141)

n

The state |a)q is given by a linear combination of twisted Ishibashi states |i))q:
li))o = (Id @ Vq)li)) (1.142)

where Vg, is the representation of €2 on Hilbert space.

1.2.3 Cardy-Lewellen cluster condition

The coefficients of the expansion of the boundary states into the Ishibashi states should satisfy
also the boundary version of the bootstrap constraint. This condition was derived in [43}/118§]
and known as Cardy-Lewellen cluster condition. Note that if the Cardy condition is true only
in rational theories, the Cardy-Lewellen condition should be fulfilled in all theories, including
non-rational. Now we will explain how Cardy-Lewellen cluster condition is obtained.

Consider a boundary state

= ZB‘i"i>> (1.143)
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where ¢ runs over primaries, and |i)) are Ishibashi states. Recall the relation [20,43] between

coefficients B!, and one-point functions

(@i (2,20 = 2500 (1.144)
in the presence of the boundary condition a:
Ut = aemh (1145)

Considering now two-point function (®;(z1, z1)®;(z2, 22)), in the presence of boundary in
two pictures it was shown in [43,118] that the one-point functions U! in the presence of boundary

satisfy the equation

11

J ot .
> Ot Uk By = Ui,yUL, (1.146)

aa «
;% » %

k,a,a 7 J
aa

We should note that here we used reflection amplitudes as they defined in [20]. The tradi-

tionally used reflection amplitudes [43,[118] differ by phase
Uy = Ulye™ (1.147)

They have the advantage, that related to boundary states coefficients without phase factor:

Bz’
U(a) BO (1.148)
Recalling relation between braiding and fusion matrices:
cd cd
g , i1
By e ) 0N (1.149)
k1 k j
ab ab
and symmetry properties of fusion matrix [20]
cd cd
k j [ i
qu - Fp*q* (1150)
il J* ok
ab ab
we receive that U (ia) obey the equation:
11
k v ri 779
Z O(u aansz’O o = a)U(a) (1151)
k,a,a 7 7



This is Cardy-Lewellen cluster equation.

For diagonal models eq.(|1.151)) can be significantly simplified. Putting (1.106) in ((1.151]),

and using formulas [20]

Y1t2 00 00
a b a a* a a*
) " Foy Fy o = Fop Oyia5 = Fadyyaq -
ta a b [ 1 a a
00 toas 00
and
rus rug
J ok (]
FiFp i+ = Fp I o
J kK iog"
00 00

to perform the sums by a and a, we obtain

Nt SS i
2V Mg

where Ni’j- are the fusion coefficients. Defining

€o

one can write (|1.154]) in the form:
> UENS = wrw
k

In rational conformal field theory eq. (|1.156)) is solved by

Sak
ph = 228
“ SOa

(1.152)

(1.153)

(1.154)

(1.155)

(1.156)

(1.157)

Taking into account the relation between one-point functions U* and coefficients of the bound-

ary state B¥ ((1.148)), and using (|1.118)), we obtain that the Cardy solution ((1.136]) indeed satisfy

the Cardy-Lewellen constraint.

1.2.4 Permutation branes

Consider N-fold tensor product of a CFT with chiral symmetry algebra Ap(Ag).
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On such a product one can consider brane with gluing automorphism given by a cycle

(1...N), or by other words, satisfying following equations:

AV () = AT GE) s, r=1... N1 (1.158)

For diagonal rational conformal field theories permutation branes were constructed in [151]. It
is shown in [151] that for such a CFT permutation branes are labeled by primaries of single
copy and have boundary states:

Saj ..

a)p = ZJ: WUJ»P (1.159)
where S;; is the matrix of the modular transformations of single copy, and |j, j))p permuted
Ishibashi state satisfying (1.158). As we have discussed the boundary states should satisfy
two criteria: Cardy condition [42], requiring the annulus partition functions to be expressed
as sum of some characters with non-negative integer numbers, and Cardy-Lewellen cluster
condition [43,|118]. It is shown in [151] that states indeed satisfy the both criteria.

For further use we write down the Cardy and Cardy-Lewellen conditions in detail in case
of two-fold product N = 2. Generalization to generic N is straightforward and corresponding
formulae can be found in [151]. For two-fold product permutation boundary state

satisfies the relations:

LY~ L% =0, W — (c1) i = 0 (1.160)

and takes the form:

Saj . . Saj . — . —_—
|a>P=ZS—;]7J>>P:Z LN N @ UG N), @ |j, M)y @ UJj,M),.  (1.161)
i J

Soj N,M
where 0 and 1 labels first and second copy of the CFT in question, sums over N and M run
over orthonormal basis of the highest weight representation R;, and operator U in front of

right-movers is chiral CPT operator as usual.
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One can show that partition function between permutation branes is:

Sa j Sa
al,a2 Z +J QJS ijle Z a1as le )Xl(q). (1.162)
okl Soj So; okl

what has indeed the required form.

Note that integers in front of product of characters coincide with the dimension of the
space of four-point conformal blocks given by ((1.119). The generalization of (1.162)) to N-fold
product is straightforward. It is shown in [151] that the annulus partition function between
two permutation branes corresponding to single copy primaries a; ad as on N-fold product is

Za1,a2 = Z Nal,aQ’il"..yiNXil <q> o Xin (Q) (1163)

115 IN

where N@:9241iN i5 dimension of the space of N + 2-point conformal blocks given by (1.122)).

1.2.5 Cardy-Lewellen condition for permutation branes

The Cardy-Lewellen cluster condition for permutation branes was elaborated in detail in [164].
The primary fields of two-fold product are products of primary fields ®£1)®§2). The form of
the gluing relations implies that for permutation branes two-point functions have the

form: N
(O )0 () = R (L164)

(21 — 22)2hi(Z) — 29)%hi

The cluster condition for permutation branes was obtained in [151}/164]:

11 . qu
DS RNl I ) RN I ST
k,k,a,a,c,C ) o LSRN .
s
Again defining new amplitudes
Uibt = Ugsretmhth) (1.166)
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and using (1.149) and (1.150) we derive:

11 11
. _ it T .
(k.k) (k* k*) L 3 L Frhk
Z ClivinrinaaC i) Gy igyest k0 I B A N I (1.167)
k.k,a,a,c,c N e J1 1 i
Fri1,i1 771,01
U Uiy

This is Cardy-Lewellen constraint for permutation branes.

One can check, that for diagonal models, by use of eq. (1.106]), (1.152)) and (1.153|), the

Cardy-Lewellen condition ((1.167)) simplifies to

2
Uk, » Nk (&gj) = UlypUs . 1.168
Xk: PN g, @rVip (1.168)
where we set U(k2)7> = U(kp’;
Eq. (1.168)) can be solved by the relation

Ulyp = UF <€—’“>2 (1.169)
2P = &) )

with UF satisfying ((1.156)). It is straightforward to generalize (1.167)) to general N-fold product.
It can be shown that for permutation branes on the N-fold product, permuted by a cycle

(1...N), the corresponding equation has the form:

G\
> Ulnyp N (&)é) = UlnpUlnyp » (1.170)
k

and therefore can be solved by the relation

Ulvyp = UF (5—’“>N (1.171)
(NP — 50 ) .

with U* again satisfying ([1.156]).
Remembering that for rational theories Wy is given by (1.157), & by (1.118), and the

relation between boundary one-point function and coefficients of the expansion of the Cardy

states by Ishiabshi states (|1.148)), we see that that permutation states (1.159)) indeed satisfy

the Cardy-Lewellen condition for permutation branes.
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1.3 Topological defects in RCFT

Recall basic facts on topological defects in RCFT [75[99}|138]/139]. The construction of defects
lines is analogous to that of boundary condition.

Maximally-symmetric topological defect lines are defined by the conditions:

TO — 7@ ) — @ (1.172)

T — 72 w® — w®
Following [138] we can define defect lines also as operators X, satisfying the relations:

Lo, X] = [Ln, X] = 0 (1.173)

(W, X] = [W,, X] =0

As in the case of the boundary conditions, there are also consistency conditions, analogous
to the Cardy and Cardy-Lewellen constraints, which must be satisfied by the operator X.
For simplicity we shall write all the formulae for diagonal models (1.102). To formulate these
conditions, one first note that as consequence of (1.173)) X is a sum of projectors
X =Y ptipti (1.174)
where

P =N (i, Ny & [i, N))({i, N| @ (i, N|) (1.175)

N,N

An analogue of the Cardy condition for defects requires that partition function with insertion
of a pair defects after modular transformation can be expressed as sum of characters with non-
negative integers. It is found in [138] that for diagonal models one can solve this condition

taking for each primary a

DI = =% 1.176
(= 2 (1.176)
leading to the operators:
S .-
X, = @ pld) 1.177
25 (1.177)



For operators ([1.177]) one has:

Zay =T (X[Xogh 57 5) = 37 NgNEwi(a)xa(a) (1.178)

k,ii

Note that coefficient in front of product of characters is dimension of the space of four-point

blocks ([1.119)).
Topological defects can be fused. For defects (1.176]) again using the Verlinde formula one

derives:

XoXy =) Ny X, (1.179)

Using (1.179) the formula (1.178]) can be generalized to the insertion of N defects: the torus

partition function with insertion of NV defects corresponding to primaries a; is

Zal...aN - ZN(II aN7Z77« (q)XZ(Q) (1180)

i

where N4~ ig dimension of the space of N42-conformal blocks (1.122). Topological defects
can act on boundary states producing new boundary states. The action of defects (|1.176[) on

Cardy states (|1.139) is easily obtained using the Verlinde formula:
Xalb) = 37 N d) (1.181)
d

Using (|1.181]) one can compute the annulus partition function between Cardy states corre-

sponding to primaries a and b with insertion of a defect corresponding to primary c:

Zab,c - TrH ab c Lo= 24 Z Nbc dXz (1182)

Note that coefficient in front of product of characters is again dimension of the space of four-
point blocks ((1.119)). This result can be generalized to the insertion of any number N of defects
as well: the annulus partition function between Cardy states corresponding to primaries a and

b with insertion of N defects corresponding to primaries d; is

Zabdy... ZN“bdl Aiyi(q) (1.183)

where A/®d1-dn+i i dimension of the space of N + 3-point conformal blocks (|1.122)).
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Now we turn to the cluster condition for defects [139,[164]. Here we should consider two-

point functions

D)

(B (21, 21) X Dy (20, 7)) = CEDCEL (1.184)
where
D) = plic,,, (1.185)
It was shown in , that DU satisfies:
00 - - 00
S pptick ok me | 0| BT T | = p@pw (1.186)

This is Cardy-Lewellen cluster condition for defects.

By use of eq. (|1.106|), (1.152]) and ((1.153)), the Cardy-Lewellen condition for defects (|1.186)

simplifies to

2
> DD*FNE (%) = DY D7 (1.187)
k ok
Eq. (1.187]) can be brought to eq. (|1.156)):
Dk i gk 2

where U¥ satisfies (1.156)). And finally to find the coefficient D**" of the defects expansion to
projectors we should according to (1.185]) to divide DF:F by the two-point function. Remem-
bering that for rational theories £€¥ and W* are given by (1.118]) and (|1.157) respectively we see

that the ansatz ((1.176]) indeed satisfies the condition ([1.186)).

Comparing formulae (1.160|) and (1.173)), (1.161)) and (1.174)-(1.176)), (1.167) and (1.186)

one reveals deep connection between permutation branes on two-fold product from one side,

and defects on other side, known as folding trick [12}[14,[135,[189]. We see that mentioned
relations for permutation branes become corresponding relations for defects after performing
two-steps operation (folding) on the second copy of the CFT in question: left-right exchange
and then hermitian conjugation, turning boundary state to operator. Eq. shows that

the hermitian conjugation requires inclusion of the two-point functions Cj«;.
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1.4 Free boson

1.4.1 Action of 2D free boson

The action of a free massless boson ¢ is

1 14
S = . /dzxnwﬁ“(ba 0]

(1.189)

In this and next section we will analyze the Euclidean action with the Cartesian metric 7, =

Sy

The equation of motion for the field ¢ is:

0? 0?
=5+ 3) 0=

The propagator of free scalar is

(p(x)p(y)) = —log(x —y)?

or in complex coordinates z = x + iy, Z = x — iy:
(¢(z, 2)¢(w, w)) = —(log(z — w) + log(z — w))

It follows from eq. (|1.192))

<8Z¢(Z, 2)8w¢(w,w)> = _;2 and <a€¢(27 2)8w¢<w7w)> = 77z 9

(z —w)

The energy-momentum tensor of the free boson is

1 1
T = E(ﬁﬂqﬁ&,qﬁ - 577lwap¢ap¢>

Note that n**T),,, = 0, as we expect in conformal field theory.

(1.190)

(1.191)

(1.192)

(1.193)

(1.194)

Denoting d¢ = 0.¢ and 0¢ = 0z, the holomorphic and anti-holomorphic components of

the energy-momentum tensor are

T(z) = —% 10000 . and T(z) = —% : 00 :

o4

(1.195)



The normal ordering means:

T(2) = — 5 lima .- (00(2)00(w) — (96()06(w) (1.196)

The OPE of T'(z) with 0¢ can be calculated from the Wick theorem:

T(2)06(w) = —%  06(2)06(2) : D(w) ~ (ff—(z})Q (1.197)
By expanding 0¢(z) around w we obtain OPE
T(2)06(w) ~ 22 o) (1.198)

(z—w)? (2 —-w)

Equations ((1.193)) and ((1.198)) imply that 0¢(z) is a primary field with conformal dimension

h = 1. The presence of the primary field of the highest weight h = 1 means, that in fact we
have theory with extended chiral algebra, which besides Virasoro algebra contains the U(1)
current 0¢. This is the reason that often the two-dimensional free boson theory called theory
of U(1) affine algebra.

The Wick theorem also allows us to obtain OPE of energy-momentum tensor with itself:

1/2 2T (w) N oT (w)

4 2

T(2)T(w) ~ (1.199)

(z —w) (z —w) (z —w)

The OPE ((1.199)) shows that two-dimensional free boson theory is conformal field theory with

the central charge ¢ = 1.

Let us introduce the vertex operators:
Valz, 2) =: 9= (1.200)

The vertex operators have the following OPE with the U(1) current 0¢:

_ - Val(w, w)
From here we can derive:
[QLM ]f i@qzﬁ(z)dz,va(w,w)} - QLM j[ 06(2)Va(w, D)dz = aVa (w, ) (1.202)
0 w
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Next we need the OPE of V, with the energy-momentum tensor:

@ Vo (w,w) 0y Va(w,w)
TV, (w, @) ~ =L i 1.2
(2)Vao(w, ) 3 o= w)? + o (1.203)
This implies that vertex operators are primary with dimensions:

2
he = & (1.204)

2

Let us also write down the OPE of two vertex operators [79] :

Val2)Valt) ~ (= = 0)* V() (1.205)

1.4.2 Quantization of the compactified free boson on the cylinder

Consider the scalar field ¢(7, o) compactified on circle of radius R, on a cylinder of circumference

L:

oo+ L,7) = ¢(o,7) + 2rmR (1.206)

Here m is an integer called winding number.

The mode expansion of the solution of the wave equation ([1.190)) with the boundary condi-

tion (|1.206]) is

47 2mrRm 1 . 4
¢(0,7) = ¢o + RZZLJT + 7 C +i Z - (aneQ’m(T’“’)/L + @, ermirio)/ L) (1.207)
n#0

From reality of ¢ we have

al =a_, and a =a_, (1.208)

Commutation relations follows from the equal-time commutation rules

[6(0),¢(0)] =0, [0:¢(0),0:¢(0")] =0, {%6@(0), ¢(0’)] =idlc—o')  (1.209)
which imply
[CL”, ak] = n5n+k [C_Ln, C_Lk] - n5n+k [CL”, C_Lk] =0 (1210)

The total momentum of the string is

|
/0 E Tgb(g)do‘:

56

(1.211)
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and p should be an integer since the vertex operator e?/% should be single valued under the

identification ¢ = ¢ + 27 R. Using the conformal coordinates:

» = 62 (T*’L‘U)/L 7= 627T(T+Z'U)/L (1212)
we find
b(2.2) = b0 —i (L + 2 Rm ) log(x) +1 3 ~ane™ (1.213)
2,2) = o —i| 5+ 5ftm | log(z Z,#O"anz :
1
—1 <}% — —Rm) log(z) + 1 Z —apz "
n#0
and
i0¢(z) = (3 + 1Rm> L > ap ! (1.214)
R 2 z " '
n#0
id(z) = (L - Lpm) iy > az! (1.215)
R 2 z " '

Using the expressions (1.195)) and ((1.62)) we obtain for Ly and Ly

Ly=N+P? and Ly=N + P; (1.216)

where we introduced the left and right momenta

p 1
p= (242 1.21
L (R+2Rm> ( 7)
Pe=(L_-1p (1.218)
r=\r 2" '

and the number operators:

N = Za_nan and N = Zd_ndn (1.219)

n>0 n>0

We conclude that the Hilbert space consists of the infinite number sectors |p, m) labelled by

momenta and winding p, m = —o0, 0o, for which
Lo 7 Lo
Lolp,m) = S Pilp,m) and  Lolp,m) = 5 Pglp,m) (1.220)

Sometimes the state |p, m) is also denoted as |Pr) ® | Pr). The bosonic Fock space generated by

a_, consists of all states of the form |p,m), a_,|p,m), a?, |p,m),.... Hence calculating trace
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in the left [p, m) sector we obtain:

g (heet)
Xpm(q) = g~ /* Trg™ = ; (1.221)
where
n(q) =g T - q") (1.222)
n=1
is the Dedekind function.
The function x,.,(¢) defined in (1.221]) is a U(1) character.
Collecting all we have for the partition function (|1.79)):
1 1(p mRY2 _1(p_mR)>2
[/ — q§(§+7) qE(E_T) 1.223
i 2 (1229

It can be checked [79] that is modular invariant.

Zy. orbifold of U(1) scalar

It is well-known that modding out the circle theory at radius R by the Z; shift ¢ —
¢ + 2mR/k produces the circle theory, but the radius decreased to R/k. Geometrically the Zj
group generated by the rotation of the circle by 27 /k is the example of the group action without
fixed points, therefore the resulting orbifold S'/Z; is the manifold, in this case topologically
again S', but at smaller radius. From Hilbert space point of view, projection in untwisted sector
removes momentum states allowed at a bigger radius, and twisted sectors provide windings
proper to a smaller radius.

T-duality

Note that under the transformation
2
p<m and R — I (1.224)
the right momentum (|1.217)) remains unchanged and the left momentum ([1.218) flips the sign.
P, — P, and PR — _PR (1225)
Combined with the oscillator’s transformation

a, — a, and a, — —an, (1.226)

28



this implies
09(2) = 0é(z) and 0¢(z) — —0¢(Z) (1.227)

Both transformations (1.225) and (1.226)) leave the Virasoro modes Ly and Ly and therefore
the Hamiltonian unchanged. This is the simplest example of the famous T-duality discovered

in [114,/153] (see for review [96]).

1.4.3 U(1); theory

Consider the free scalar field ¢ compactified on a circle of radius v2k. This special case is
called U(1)g theory. The U(1), chiral algebra (k € N) contains, besides the Gaussian U(1)

current J = iv/2k0¢, two additional generators
[* = *ivZke (1.228)

of integer dimension k. Eq. (1.202]) implies that Jy = sz ¢ Jdz charges of 't are +£2k. The

primary fields of the extended theory are those vertex operators ¢’ whose OPEs with the

generators (|1.228]) are local. This requirement together with ({1.205)) fixes v to be

——— . neZ (1.229)

Their conformal dimensions are A,, = Z—z. For primary fields, the range of n must be restricted
to the fundamental domainn = —k + 1, —k + 2, ..., k since the shift of n by 2k in V,, = einX/V2k
amounts to the insertion of the ladder operator I'", which produces the descendant field. We see
that w.r.t. to the extended symmetry, including also I'*, the free boson theory compactified on
a circle of the radius v/2k becomes rational theory, possessing only finite number of primaries.
From the point of view of the extended algebra the characters are easily derived. A factor
¢ 1?4 In(q) takes care of the action of the free scalar generators. To account for the effect
of the distinct multiple applications of the generators , which give rise shifts of the
momentum n by the integer multiples of 2k, we should replace n by n + [2k and sum over [.

The corresponding character is

Un(q) = ﬁ D ghtn (1.230)

lez
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The action of the modular transformation S on the characters ([1.230)) is

1 —'L'Trnn/ . 1
n(q) = — ek Uy — ¥t = 1.231
¥n(d) \/ﬁ; Yu(q) q - ( )

The diagonal modular invariant is

Z=Y (@) (1.232)

The primary fields V,, have Jy charge n. Consider the symmetry 7Z, generated by element
g = ek (Jo+Jo)  This is in fact shift symmetry X — X + 277% discussed above. Let us mod
out this symmetry. According to general prescription we should form at the beginning the

projected sector (|1.90)):
Zowoj = ) Z|0, 5] (1.233)

where

n(9)[? (1.234)

_ Z 6271';':115 w
n
To get twisted sectors we should perform in (1.234)) modular transformation 7 — —%. Remem-

bering (|1.231)) we obtain:

20,01 = 3 e Cm i (q)h(q) (1.235)

n,n'n’’

Performing sum over n we get

= Z wn(q)d_}anS(Q) (1'236)

Therefore twisted sectors are given by the relative shifts of the left and right charges. Taking

this into account we obtain the orbifold partition function (1.92):

Zorty = Z Z[r, s] Z Z T (@) an (Q)V—n (1.237)

Remembering (|1.227)) we see that Z; orbifolding leads to T dual theory. Note that this con-

sistent with the mentioned above fact that the Z; shift modding decreases the radius v2k to

\/TT]“ = +/2/k, which is the radius of the T-dual theory (|1.224)): \/% =/2/k.
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1.4.4 Boundary c=1 systems

A scalar compactified on a circle of generic radius

Here we review for future use the free boson theory on a world-sheet with a boundary. We

find convenient to use in this part the Minkowski metric on a world-sheet. Introducing the

light-cone coordinate

T =740 and T =7-—0

and using the relations

0,=0+0 and 0,=0-0

we can write the action in the form

S = i/@qﬁé@hfrdw
47
The variation of the action in the presence of the boundary takes the form:
1 - L, 1 AL
0S = —— [ 00¢dpda™dx™ + — [ (Opdx™ — Opdx™ )¢
2m 47

Assume that boundary located at o = 0 (open string loop channel).

In this case the boundary term takes the form:
1 v AL - 1
— [ (0pdz™ — Opdx™)dp = — | O,PpdpdT
AT 4
and we have two kinds of boundary conditions: the Neumann boundary condition
dp = 5¢ or 8U¢|J=O =0
and the Dirichlet boundary condition:

dp = —0¢ or ¢|,—o = const

(1.238)

(1.239)

(1.240)

(1.241)

(1.242)

(1.243)

(1.244)

We see that either the Neumann and Dirichlet boundary conditions preserve diagonal U (1) affine

symmetry, but the Dirichlet boundary condition includes the gluing automorphism ({1.140) €2

given by the reflection ¢ — —¢.
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If the boundary located at 7 = 0 (closed string tree channel), the boundary term takes the

form:
1 _ 1
E/(@(bdﬂﬁ — O0pdr™)0X = E/(?T@Mda (1.245)

and the Neumann boundary condition takes the form:

0p =—0¢ or 0.¢lr—o=0 (1.246)
while the Dirichlet boundary condition is

0p =0¢ or ¢|,—g = const (1.247)

Note that the Neumann and Dirichlet boundary conditions are mapped to each other by the
T-duality (1.227).

Neumann boundary states

The action with the Neumann boundary condition can include also the Wilson line term at

the boundary :
1 4 iaB
= — d d @ — [ d 1.24
S=% /. U/Taa¢a¢+§3347r/8¢, (1.248)

where B labels boundaries and ap are the constant modes of the U(1) gauge potential cou-
pling to the boundaries (and are periodic, with periods 47/R). The Wilson line term being
topological, does not change neither bulk nor the boundary equations of motion, but can have
contribution to the action.

In the closed-string channel the task is to find the boundary states |V;), with Chan-Paton
factor 7, which are found by imposing the corresponding boundary conditions. The boundary
is located at 7 = 0 and one has the boundary condition (I.246]).

Inserting in the mode expansion (|1.207]), where we performed the Wick rotation

T — 7, and set L =,

4 1 , ,
(o, T) = go + EPT +2Rmo +1i Z - (a,e*™=) + g, e (F)) (1.249)
n#0
we get:
p=0, U = —Qp . (1.250)



Taking into account the properties of coherent state and the U(1) modes a; we get for |N;):

N;) = —iamR/2 _0onlon ) g 1.251
) = o Y (- o (L251)

n>0

where the phase factor comes from the Wilson line term:

1 1.
4—7;9 do0,¢p = §mBmBR , (1.252)

where mpg is the winding number of the boundary. Here gy is the normalization factor, which
is not determined by the boundary condition ([1.246|). Note that the vacuum |0, m) has the
structure }R7m> ® ‘—R7m>, consistent with the fact, that the Neumann boundary state has
vanishing momentum.

Let us closer look at the state ((1.251]). Expanding the exponential we can write
QO
——="110 = 1.253
exp (Z - ) |0, m) (1.253)

Rm> (1.254)

2

The states

Iklng...>:E\/%(g\/__;)kn

form orthonormal basis basis of the Fock space built over the vacuum ’R7m> We see that the
coherent state appearing in (1.251) has the form of the Ishibashi state (1.130]) for the Fock
space. To obtain the normalization factor gy = (0]V;) we should equate the partition function

in the closed and open string channels [55]:

R
Gi=r (1.255)
Dirichlet boundary states
The boundary condition ([1.247)) leads to:
m = 0, Ay = Ay - (1.256)

From these conditions, for the boundary state located at the point y we get

ID,) = gp,d(¢o—y) exp (Z a‘”j‘”) 0) = gp, > e * exp (Z O‘"f“”) p,0) . (1.257)

n>0 D n>0
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Note that the Dirichlet boundary state is sum of sectors with the coinciding left and right
momenta: |p,0) = |55%) ® |J%). It is consistent with the fact the Dirichlet boundary state has
full momentum %.

The normalization gp again can be derived equating partition functions calculated in closed

and open string channels [55]:

1
h=—=. 1.258
9D R ( )
It is easy to see that the Dirichlet boundary state (1.257) can be obtained from the Neuamnn

boundary state ((1.251)) by the T-duality, if an addition to the rules - and m we also

map Wilson line factors a; to coordinates ;.

Boundary states in U(1); theory

Since U(1) is a rational theory we can use the Cardy formula (1.139). For U(1); theory it

takes the form:
2%—1

A, A)e = W 3 = An)) U0 (1.259)

n=0
Let us elaborate the Ishibashi state |An))Y("). As we discussed in m the space of the highest

weight representation of the U(1) theory is generated by oscillators and I' operators, and hence
is sum of Fock spaces ), F,ior. The part of the Ishibashi state over single Fock space we have
elaborated in the previous section, and shown that it is given by coherent state. Therefore the
extended symmetry implies that the Ishibashi states of the U(1); theory should have

the form [123]:

|Ar))"™ = exp [Z S ”] Z|T:;3kl r\—;ikl> (1.260)

This shows that the Cardy states ({1.260)) are Dirichlet boundary states ({1.257)) at the spe-

n=1

cial quantized positions. We arrive to the conclusion that the extended symmetry leads to
the quantization of the DO0-branes positions. This is easy to understand, since the extended
symmetry requires that all vacuums of the form |r + 2kl) should appear with same exponetial

factor.
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Let us consider Neumann boundary conditions. To derive them we will us the equivalence
of the T-duality and Z; orbifolding proved in . The relation implies that starting
from the Dirichlet Cardy states, one can obtain the Neumann boundary state, implementing at
the beginning orbifolding, namely sum over Z; images, taking us to the boundary state on the
orbifold U(1)x/Zy, and consecutively performing T-duality yielding the Neumann boundary

state on U(1)x. Doing so we obtain two Neumann states :

IB,n+1) = (g) v (|B, oNYW 4B, k)>U<1>) (1.261)

where

2 a_,a 2kl r+ 2kl
B = exp |- 5 Enlen TH by o= T2ty 1.262
|Br)) xp [— ) - ;I o ) @ | o ) ( )

is a B-type Ishibashi state of U(1); theory satisfying the Neumann boundary conditions. The

n=1

parameter 7 is the two-valued Wilson line.

1.5 WZW model

1.5.1 Action

The world-sheet action of the bulk WZW model is [185]

k _ -k 1 _ )
SV (g) = = ZTI“(azg 13zg)dzdz+E/B§Tr(g Ydg)? (1.263)

ﬁ |:/ dZdZLkin—l—/oJWZ] 7
41 » B

B is a 3-manifold such that 0B = ¥. This action describes a bosonic field living on the

semisimple group manifold GG associated with the Lie algebra A. The action ((1.263]) depends
on the extension of the field on three-manifold B. However given that k is integer the quantum
amplitude is unambiguously defined.

Let us obtain the equations of motion. The variation of the kinetic term yields
5(Tr(0.g0:9)) = (1.264)

=Tr (599‘1[05(@99‘1) +0.(0:9971)] — 0.(6g9 " 0=997") — 05(599‘1@99‘1))
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The variation of the w""Z is given by:
s = d[Tr (599" (dgg™")?)] (1.265)
Eq. (1.265]) implies

/ S = / Tr(5gg ' [0:99 ' 0.99™" — 0.99™ ' 0-99™ "] (1.266)
B >

- /2 Tr(6gg9'[0:(0.997") — 9.(9:99")]

Taking the sum of (1.264)) and ([1.266|) and omitting the full derivative terms we obtain:

35" (g) = oo [ dad=TilSgg~'0-(0.997) (1.267)
)
Using that
99.(970:9)9™" = 9:(0-997") (1.268)

one can equivalently write (1.267]) in the form

55V (g) = & / d=d=Tr[g~ 690, (g 0:g)] (1.260)
>

2m
Taking dgg~! arbitrary we get from equations ((1.267)), that EOM of the WZW model is

0:(0.997") =0 (1.270)

or equivalently

0.(97'0:9) = 0 (1.271)

On the other hand taking §gg~! = w(z) holomorphic we see from ((1.267)) using the integration

by parts that 6,5 = 0 identically. Therefore the WZW action ([1.263)) has the symmetry
dwg = w(2)g (1.272)
and the corresponding conserved current is

J(2) = —kd.gg7! (1.273)

66



The EOM in the form ([1.270]) coincides with the condition of of the conservation of the current
(1.273)). Therefore the current ([1.273)) is holomorphic. Similarly taking —g~'dg = @(Z) anti-
holomorphic we receive from (1.269|) using the integration by parts that 055 = 0 identically.

Hence the action has additionally the symmetry

du9 = —gw(Z) (1.274)
and the corresponding conserved current is

J(2) = kg '0zg (1.275)

Again the EOM in the form ([1.271]) coincides with the condition of the conservation of the
current (1.275)). Therefore the current (1.275)) is anti-holomorphic. Thus we have shown that

the action ([1.263)) is invariant under the transformation:
9(2,2) = hp(2)g(z, 2)hr(2) (1.276)
Classically the components of the energy-momentum tensor are

1 _ 1 -
T = %Trﬁ and T = %Trj2 (1.277)

The symmetries of the WZW model can be also derived using the Polyakov-Wiegmann

identities

LXin(gh) = LXin(g) + LKin(R) — <Tr(g_182g85hh_1) + Tr(g_lﬁgg(?zhh_l)) (1.278)

WV (gh) = wWV?%(g) + WV (h) — d(Tr(g_ldgdhh_1)> : (1.279)

Indeed taking the sum of ((1.278]) and (1.279)) we obtain

S(gh) = S(g) + S(h) — % / = (Te(g 09000 7")) (1.280)

Eq. (1.280]) implies that the action (|1.263)) is indeed invariant under the transformation ((1.276)),

namely under the left multiplication by a holomorphic element and right multiplication by an

anti-holomorphic element.
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1.5.2 WZW model-Quantization

Remembering ([1.48]) and denoting by T generators of the Lie algebra A we can write for the

transformation of a field X under ((1.272) and (|1.274])

X = 271m dszaJ“X + — J(I{dz waa

where
J=YJT, w=)» w'T% and T(T"T") ="

Denote by f,p. structure constants:

[Taa Tb] - iftzbcTc

The transformation laws for currents follow from (|1.272)) and (|1.273))
6wd = —k(0.(6,9)g™" — 0.99 6,997") = [w, J] — kO.w

Using ([1.283]), (1.284)) can be rewritten as

0ud® =) i fupeJ¢ — kO.w"

b,c
Comparing ((1.281)) and ([1.285)) we arrive

J(2) T w) o 0 # Y a0 T w)

(z — w)? —w)
This is OPE of the affine algebra. Introducing the modes J? from the expansion

JUz) =Y s

neZ

we can obtain the commutation relations of the affine algebra Lie at the level k:

[‘]ga an] Z ifabcjrcb+m + knéab6n+m,0

[

Transformation property of J is

(1.281)

(1.282)

(1.283)

(1.284)

(1.285)

(1.286)

(1.287)

(1.288)

(1.289)



This gives rise another copy of affine algebra for the modes J° . Since the &(Z) is independent

of z
0o =0 (1.290)
This implies
[J2, J2] =0 (1.291)

The components of the energy-momentum tensor are given by the Sugawara formula

1 a 7a .
Ln = m ;; . JmJnfm . (1292)

where h¢ is the dual Coxeter number, which is half of the Casimir is the adjoint representation:

Z fabcfdbc = 2th’éad (1293)
b,c

They satisfy the relations:

[Lns L] = (0= 1) L + 5 (0" = 1) (1.204)
(L, I = —mJy

: _ k|G|
with ¢ = e -

1.5.3 Representations of the affine algebras

Cartan-Weyl basis of Lie algebra

Here we will review the Cartan-Weyl basis of the algebra and the general facts on the highest
weight representations.

The set of the commutation relations in the Cartan-Weyl basis is

[H', H] =0 (1.295)
[Hi, Ea] — aiEa
[E%, EP) = N, 3E**5, if a+BeA

=2a - H/|af? if a=-0
=0 otherwise
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The vectors o' are called roots and E® are the corresponding ladder operators. A denotes the
set of all roots. The set of generators H¢ form the Cartan subalgebra h.
Positive roots
Let us fix the basis in the space of roots {31, - 3.}. Any root can be expanded in this
basis:
.
a=> np; (1.296)
1
The « is said positive if the first nonzero number in the sequence (nq,ng,---,n,) is positive.
The set of positive roots we denote by A,. The simple root «; is defined to be the root
that can’t be written as a sum of two positive roots. There are r simple roots and their set
{a1, -+ .} provides very convenient basis for the r -dimensional space of roots. It is convenient
to introduce notion

v 20éi
i

a (1.297)

ol
The « is the coroot associated with the root.
Highest root
The distinguished element of A is highest root 6. It is unique object and which, in expansion

> mioy the sum ) . m; gets maximized.

Highest weights of the affine algebra

In the Cartan-Weyl basis the commutation relation of the affine algebra takes the form:

[Hy, Hapl = kné™ im0 (1.298)
[Huo Bp] = &' B
[ES,EP) = Ny sEoLP if a+pBeA

= \a% (o Hppm + kndpimo) if a=—p

=0 otherwise
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The highest weight state now is defined to satisfy:

HEN) = EX*|\) =0, n>0 (1.299)

Hol\) = N[N, and ESI\) =0, a>0

Consider the su(2) subalgebra generated by: E§, Ej°, #a - Ho. Commutation relations

imply:

(ALEGEg A = AILEGEy “]IA) = &Oﬂ AN =0 (1.300)

Hence we must have o - A > 0.
Now look another su(2) subalgebra generated by: E%,, ET %, %(—a-?—[o%—l{:). From ({1.298))

|

we have

B ) = (A[EE ]I\ = —2—(—a - A+ k)(A[A) > 0 (1.301)

|af?
Restrict ourself for simplicity to the case of unitary algebras for which all roots normalized
to 2.
Since the component of the J3 generatot of su(2) are integer , and we know that for any
weight A\ the o - A\ is integer, we obtain that k is integer.

Then it follows from that any highest weight should satisfy the inequility

a A<k (1.302)
The condition (|1.302)) is stringent for the highest root 6

0.\<k (1.303)

Using the expression (|1.294)) for Ly we derive the conformal weight of the highest weight
state:

LolA) = 2 I\) (1.304)

(k + hg)

where C'y is the quadratic Casimir of the representation \.

Let us now specialize to the SU(2) group.
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Since the quadratic Casimir in the representation j has value C; = 2j(j+1), therefore in the
adjoint representation j = 1, Chqj = 4, hsy(2) = 2, and the central charge of the corresponding

affine algebra is
3k

_ v 1.
€= (1.305)

Here we have one root and all weights are given by half-integer 57 and the highest weights of

the su(2) affine algebra are given by the half-integer j satisfying the inequality:

25 <k (1.306)
The conformal weight of these states are:
i +1)
h: = 1.
T k+2 (1.307)

The matrix of the modular transformation is

2 ((Qa+1)2j+ )
Saj = : 1.308
IV e+ ( k+2 (1.308)
Characters are
su@  Oripre — O 1 k42
— 1.309
Xi 6126 15 (1.309)
@m,k (,7_7 z, u) — 6—27rimu Z 627rim(n27'—nz) (1310)
n€Z+m/2k

1.5.4 Coset models

GKO construction

Assume we have subgroup H of group G: H C G. We denote the G currents by J& and the
H currents by Ji, where i runs from 1 to |H| = dimH. We can now construct two energy-

momentum tensors

G|
Te(z) = m S () A(2) (1.311)
and
1 |H] . .
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Now we have:

(1.313)

but also that

Talw)  0Jj(w)

TH(Z)J;{(U})N (Z_w)Q (Z—’UJ)

(1.314)

Note that the OPE of (T — Ty) with J¥ is non-singular. Since Ty above is constructed only
from H currents J it follows that Ta/u = Te — Ty has the nonsingular OPE with all of Th.
This implies that

Te = (Te — Tu) + Ty = Tayu + T (1.315)

gives the orthogonal decomposition of the Virasoro algebra generated by T¢; into two commuting
Virasoro subalgebras, [T /u,Tr] = 0. To calculate central charge of the Virasoro subalgebra

generated by T/, we note that the highest negative degree in OPE of two T¢;’s decomposes

as
Cg/2 Cg/H/2+CH/2
Tl = ——— ~Ta/gT TyTy ~ 1.316
clc G—w) g/Hlce/g +1ply - w)! ( )
This results
ka|lG kgl|H
CG/H = CG — CH = |Gl il H] (1.317)

ko +he kg +hy
To describe the states that arise in a G/H theory, we should consider how representation of
G decompose under . Let us denote representation space of affine G at level kg by
lca, Ag), where cg is the central charge corresponding to kg, and A\g is the highest weight
representation. Under orthogonal decomposition of the Virasoro algebra T; = Tig i + Ty, this

space will decompose as direct sum of the irreducible representations

lca Aa) = ®jleam, bl ) © lem, Xy) (1.318)

where |cq/p, hé / ) denotes the irreducible representation of T /i With the lowest L eigenvalue

hé e It follows from decomposition ((1.318)) that a character of the affine G representation with

the highest weight \* satisfies:

K o by
g (1) = ) Xhz//I;()\“G7/\§I)(T)X>\Z = XG/H " Xay (1.319)

J
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In (1.319) Lo eigenvalues hg g characterizing the Ti;/y Virasoro representation depend on
highest weights A}, and )\% characterizing corresponding GG and H representation. On the r.h.s.
of (1.319) we have introduced the matrix notation.

Under the modular transformation:

ar +b

1.32
ct +d (1.320)

characters allowed at given fixed level kg of the affine algebra transform as the unitary repre-

sentation

xXHa(r') = M Q)X (r) (1.321)
with M*¢ unitary matrix. From (1.319)) we have
X' (') = xterm (7)) MFH () x " (7) (1.322)

The linear independence of G and H characters thus enables us to solve for modular transfor-

mation properties of the Ti;/ 5 characters as

xForn(r'y = M*a (Q)x er (m) MM (¢) (1.323)

1.5.5 Lagrangian of coset model: Gauged WZW model

Let G be a compact, simply connected, non-abelian group. The G/H coset CFT, where H is

a subgroup of GG, can be described in terms of a gauged WZW action, where the symmetry
g — h(z,2)gh™"(z,2) (1.324)

g € G, h € H is gauged away. An H Lie algebra valued world sheet vector field A is added to

the system, and the G/H action on a world-sheet without boundary becomes [16},83,85,(113]:,

SO — GWZW y geauge (1.325)
—_ k_G |:/ deLkin + / wWZW:|
| Js B
k
+§ dP2Tr[A:0.997" — A,0:997 " + AsgA.g~" — A A,]
b

74



The action (|1.325)) is invariant under the transformation ((1.324)) together with transformation

of gauge fields

A, — hAR + 0.hh7! (1.326)

A; — hAR Y+ Ohht

We can write the action (|1.325)) also in other form which make clear why this action describes
GKO coset models.

Introduce H group element valued world sheet fields U and U as
A, =0.UU! (1.327)
A; =0:U0 1 (1.328)
Using the Polyakov-Wiegmann identities and the coset action becomes:
SEMH — SGMH(=1g07) — SH(UID) (1.329)

The level ky of the S term is related to kg through the embedding index of H in G.
The form ([1.329) demonstrates that the gauge invariant action ((1.325) indeed gives the

GKO model. The form (|1.329)) also makes obvious the local gauge transformation

g(z,2) = h(z,2)g9(z,2)h (2, 2) (1.330)

U(z,2) = h(z,2)U(z, 2)

U(z,2) = h(z,2)U(z, %)

with h(z,z) € H.

SU(2)k

. PF(k) _
The parafermion A = T,

The chiral algebra of this theory has a set of irreducible representations described by pairs (j, n)
where j € %Z, 0 <j <k/2, and n is an integer defined modulo 2k. The pairs are subject to a
constraint 25 +n = Omod2, and an equivalence relation (j,n) ~ (k/2—j, k+n). The character

of the representation (j,n), denoted by x;(q), is determined implicitly by the decomposition

k+1

X7 ) = X @ala) - (1.331)

n=—"k
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where XS (2)( ) is SU(2) affine characters given by ([1.309) and 1, (q) is U(1) affine characters

(1.230). The action of the S element of the modular group on the character is
XJ" ZSJH (4'n’) X] n() (1332)

(3’n)

and the PF S-matrix according to (|1.323)) is

S(] n),(j'n’) — \/;emznsjj’ ) (1.333)

where S;; defined in (1.308]).

When combining left and right-movers, the simplest modular invariant partition function
of the parafermion theory is obtained by summing over all distinct representations
Z= 3 k. (1.334)
(]7n)ePFk
The parafermion theory has a global 7, symmetry under which the fields 1;,, generating the

representation (j,n) transform as

27

g: wj,n — wn¢j7na w=ek . (1335)

Therefore we can orbifold the theory by this group. Taking the symmetric orbifold by Zj
of similar to U(1) case leads to the partition function
Z XjnXj—n - (1.336)
(j,n)EPFy,
We see that effect of the orbifold is to change the relative sign between the left and right movers
of the U(1) group with which we orbifold. Therefore the Z, orbifold of the parafermion theory
at level k is T-dual to the original theory. This fact will be the basis of many constructions in

the main text.
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Chapter 2

Non-maximally symmetric D-branes in

the WZW models

2.1 WZW model on a world-sheet with boundary

2.1.1 Action of Boundary WZW model

Here we analyze the action of the WZW model on a world-sheet with a boundary. In particular
we present geometric realization [8,[87] of the Cardy boundary states (1.139)). Let us consider

the maximally-symmetric boundary conditions preserving a diagonal affine symmetry:
J¢=J°, a=1,---dim G (2.1)

As we explained before in the absence of the boundary the WZW action possesses the affine
G x Gr symmetry:
9(2,2) = hp(2)g(2, 2)hz' (2) (2.2)

The boundary condition (2.1)) implies that the symmetry (2.2)) is broken to the diagonal sym-
metry, requiring that h;, = hgr = h on the boundary. The presence of this symmetry constraints
the boundary conditions that can be placed on g. Allowing g|boundary = f for some f € G we

must also allow g|boundary = fh=! for every h € G. This means that g on the boundary takes
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value in the conjugacy class C; containing f:
Glboundary =Cp = {g € G | there exists h€ G with g=hfh'}. (2.3)

Now we are going to write down the corresponding boundary Lagrangian. Recall that to
write the WZW model we used the three-manifold B satisfying the condition 0B = ¥. When
the world-sheet ¥ has itself boundaries, it cannot be the boundary of a three dimensional
manifold, since a boundary cannot have boundary. To define the WZW term for this case, one
should fill holes in the worldsheet by adding auxiliary discs, and extend the mapping from the
worldsheet into the group manifold to these discs. One further demands that the whole disc
D is mapped into a region inside the conjugacy class in which the corresponding boundary
lies. B will then be defined as a three-manifold bounded by the union ¥ U D,which now has
no boundaries. To make the action independent on the location of the auxiliary disc inside

conjugacy class we should demand that

W (g)|gec, = dwy (2.4)

and modify the action by the boundary term

SbndrnyZW — SWZW _ k_G/ wy (25)
47 D

First of all using the Polyakov-Wiegmann identities it is easy to check that indeed ([2.4) for
Cy = kfk™! fulfilled with:

wi(k) = Tr(k 'dkfk~ dkf) (2.6)
Note that ws(k) is in fact depends only on elements of conjugacy class.

Now we can check that the action ([2.5)) is invariant under the transformation
9(2,2) = hr(2)g(z, 2)h3' (2) (2.7)

with the boundary condition hr(2)|boundary = PRr(Z)boundary = A(T).
Under this transformation, the change in the L¥" term is canceled by the corresponding

Y integral of the boundary term from the change in the wW%W term. In the presence of a
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world-sheet boundary there remains the contribution from D to the latter change. And since

according to the Polyakov-Wiegmann identity (|1.279))
WV (hgh™") — W™ (g) = —d¥(h, g)

where

U(h,g) = Te[h 'dh(g *h'dhg + g 'dg + dgg™")]

we have

k
A(SWZW _ MG U
(SVE) =~ | Wlg)

On the other hand under this transformation & — hk and
wy(hk) —wp(k) = =Y (h,Cy)

where C; = kfk™".

Equations (2.10) and (2.11)) imply invariance of the action (2.5) under (2.7).

(2.8)

(2.11)

Let us now elaborate boundary equation of motion. The full derivatives terms from ({1.264)

gives the following contribution to the boundary terms:

/ Tr[6gg~'0.99 'dz — 699~ ' 0:99 " dz]

To find contribution from the w"V*W and w; (k) terms note the identity [54]:

Te(g~"'0g(g~"dg)*)lg=c — dwy (k) = dAf(k).

Ap(k) = Te[k 6k(f "k~ dkf — fEdkf™)].

Using the parametrization
z2=T+1i0 Z=T—10

and taking boundary at the o = 0 we get

dk

e
de T

dk
/Tr [599‘1@99_1 — 899 0997 + k_15kf_1k_lgf — k7 YkfET?
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(2.15)
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Remembering that g = kfk™!, after some transformation we obtain:

/Tr [25kk;_1 (97'0:9 + D.997") }dT (2.17)

Therefore boundary equations of motion imply
g '0:9+0.997" =0 (2.18)

or recalling the definition of currents

N
I
<

(2.19)

as expected.

We have chosen the boundary conditions such that the particular diagonal subgroup
G of G x (G defined in eq. will survive them. This is of course not a unique choice. One
can act on these boundary conditions with any element of the G x G symmetry group to get
equivalent boundary conditions which preserve a different diagonal subgroup. Thus we can
multiply the conjugacy class Cy in eq. from the right (which is the same as multiplying

from the left) by any group element f to get modified boundary conditions
9lboundary € Cym (2.20)
These boundary conditions also preserve a diagonal subgroup, since the set Cym satisfies
Cym = h(Cym)m™'h™'m (2.21)

for any h € G. Therefore, the boundary conditions (2.20]) preserve the diagonal subgroup of
G x Gg defined by hg = m~'h; 'm. In terms of the infinitesimal generators of G, x G, i.e.
the left and right handed currents, the invariance of (2.20]) under this subgroup implies for the

corresponding boundary state the condition
J* = (Ady 1 J)" (2.22)

which modifies (2.1)) by conjugating the right handed currents by m™!.
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2.1.2 Global issues

The modified action is independent, by construction, of continuous deformation of D inside
Cs. However, in general, the second homotopy of a conjugacy class m5(Cy) is non-trivial. We
should compare then the value of the action for D and D', two different choices of embedding
the disc in C; with the same boundary, where D’ may not be a continuous deformation of D
in C¢. The union of two such embedded discs is not the boundary of a three volume inside the
conjugacy class, where is valid. In that case the above analysis does not imply that the
two ways to evaluate the action agree. Since there is no natural way to choose between
the two embeddings, is not yet a well defined action. In particular, for G = SU(2) the
conjugacy clases C; have the topology of S?, the two-sphere generated by all possible axes of
rotation by a fixed angle in three dimensions. One may then choose D and D’ such that their
union covers the whole of S2. In that case the difference between the action Sp, the value of

(2.5) with embedding D, and Sp with embedding D’ is

k WZW
bndry-WZW __ MG / W _ / 2.2
AS = — [ w ; wfi| ( 3)

where B is the three-volume in SU(2) bounded by the two-sphere Cy. For the case of SU(2),
which has the topology of S3, the form wW“%W 4 times the volume form on the unit three sphere.

For C; with f = €™73 the first term in (2.23) is

/BwWZW =8 (1) — %sm(w)) (2.24)

As to the two-form w/ it is proportional to the volume form of the unit two-sphere. We can
directly compute for Cy,

w! = sin(2¢)volS? (2.25)
This gives for the change in the action for two topologically different embeddings

AsbndrnyZW — Qka (226)

Although this is non-zero, the quantum theory is still well-defined if AS is an multiple of 2.

We find that the possible conjugacy classes on which a boundary state live are quantized, the
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corresponding v should take the values:

Yo = 2m— (2.27)
kg

with a integer or half-integer satisfying 0 < a < k/2.

For an arbitrary group G we can argue in the following way. Since h in is defined
modulo right multiplication by any element commuting with f and the group of such elements
for a generic f is isomorphic to T¢, the Cartan torus of G, the conjugacy class can be

described as G/TY. Its second homotopy group is therefore,
II°(C¢) = IY(T*) (2.28)

If r is the rank of G, a topologically non trivial embedding of S? in CfG is characterized by an r
dimensional vector in the coroot lattice of G. Namely, if one embedding D of the disc into C’?
is given by hfh~! and another embedding D’ sends it into A/ fh/~!, then on the topologically

circular boundary the two embeddings should coincide. This implies
h(T)W (7)™t = t(7) (2.29)

where #(7) is an element of the subgroup isomorphic to T¢ which commutes with f. Eq.
determines a mapping from the circular boundary of a given hole in the world sheet into the
torus T¢. Since T¢ is R" modulo 27 times the coroot lattice, every such mapping belongs to
a topological sector parameterized by a vector in the coroot lattice describing the winding of
this circle on the torus T¢. This lattice vector determines, by , the element of HQ(CJ?)
corresponding to the union of D and D’.

Let the element f in chosen in the Cartan torus be of the form f = e where H
are Cartan generators. The change in the action resulting from a topological change in the

embedding of the disc which is characterized by a coroot lattice vector s, is given by [87]
ASPrAY=WIW — Lo (X - 5) (2.30)

where the length of long roots is normalized to 2 . Consistency of the model then implies the
condition

A-a¥ e 2nZ/kg (2.31)
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for any coroot . In this normalization the weight lattice is the set of points in R" whose
scalar product with any coroot takes integral values. Eq. implies then, that A\ should be
21/ kg times a vector in the weight lattice. As a point in T, X is defined modulo 27 times the
coroot lattice. The allowed conjugacy classes correspond then to points in the weight lattice
divided by kg, modulo the coroot lattice. This is also the characterization of the integrable
representations of G, the affine G algebra at level kg, which correspond to the primary fields
of the WZW model.

We proved that geometrical realization on the group manifold of the Cardy states, is given

by the following set of the conjugacy classes

C, = {hf,h™" = he*™/kep=t - he G}, (2.32)

where © =p - H is a highest weight representation integrable at level k¢, taking value in the

Cartan subalgebra of the G Lie algebra.

2.1.3 Boundary states geometry

In the previous section we checked that maximally symmetric boundary conditions of the WZW
model are given by the quantized set of the conjugacy classes. Here we will show for the SU(2)
group that Cardy boundary states indeed has the geometry of the above described conjugacy

classes.

Given a boundary state (|1.139)),

ayo = Z \/S_oj ' (2.33)

the shape of the brane can be deduced by considering the overlap of the boundary state
with the localised bulk state m, with # denoting the three SU (2) angles in some coordinate
system. As we will see, the boundary state wave function over the configuration space of all

localised bulk states peaks precisely at those states which are localised at positions derived by

the effective methods in the previous sections. In the large k limit, the eigen-position bulk state
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is given by

0y = > V2i+ 1D, ,(0)]j.m,m'), (2.34)

j7m7m/

where Df;m, are the Wigner D-functions:

where |jm) are a basis for the spin j representation of SU(2). Using the matrix of the modular
transformation S of SU(2) at level k (1.308]), we can compute in the large-k limit the ratio of

S-matrix elements appearing in the boundary state

‘ 1/4 .
Sa] ~ (2(k + 2)) SHI[(Q] + 1)7” , (236)

Soi V/m(27+1)

where, to shorten the notation, we have introduced

(2a+ 1) .

p = 2.
4 k42 (237)
Note that in the limit of the large a and & zﬂ — 1) defined in ([2.27]). Using these results, the

overlap between the boundary state and the localised bulk state becomes

~ 2(k + 2))1/4 N ~
Plie ~ 3 B snl (25 + 101D} 0. (2.39)
Finally, one needs the property of the Wigner D-functions that
; sin(2j + 1)y
DI — -\ )7 2.
Xn: 7 (9) TR (2.39)
where 9 is defined by the relation Trg = 2 cosp. The overlap (2.38) becomes
. 2 4)1/4 .
(Ola)yc ~ (j;—s—m)w z]: sin[(27 + 1)¢] sin([(25 + 1)v] (2.40)
and from the completeness of sin(ni) on the interval [0, 7] one concludes
Gy VAR
~— — ). 2.41
Bla)e ~ Vet b0 = ) (241

Hence we see that the brane wave function in the large k limit is localized on ¢ = 27%. as

required by ([2.27]).
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2.2 Parafermionic branes

2.2.1 Lagrangian construction

Let us consider D-brane in the WZW model with a group G as a product of the conjugacy class

with the U(1) subgroup [156]:

g’boundary =LC = thh_l

(2.42)

where f is defined in (2.32), L = ¢ € U(1)y and Y is an arbitrary but fixed generator in the

Cartan subalgebra of G. We should check that on this subset exists a two-form w
the condition (2.4):

dw® = WYV undary
It may be easily checked using the Polyakov-Wiegmann identity (1.279):
WwVEWV(LO) = WwVEY(L) + WYY (O) — d Tr (L' dLdCC ™)
Using that for the abelian group, L, w2V (L) = 0, and
WVIW(O) = dw! (h) = d (Tr (h=Ydhfh"dhf") )
we get that indeed
OV oundary = dw® (L, )

where

w(L,h) = wp(h) — Tr(L'dLdCC™)

where wy(h) is defined in (2.6). Now the action is

Spffbr _ SWZW(g) k / w(Q)(L, h)
D

Cdr

Here we use the setup and notations of the previous section.

Let us show that the action ([2.48) is invariant under the following symmetries
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(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)



9(2,2) = hi(2)g(2, 2)hr(2) (2.49)

with hz(2)|boundary = PR(Z)boundary = k(7), k € U(1)y. Under this transformation L —

kLk and C — k*Ck and h — k=1h.

9(2,2) = hr(2)g(z, 2)hg' () (2.50)

with Az (2)|boundary = PR(Z)boundary = K(7), where k satisfies the conditions [k, L] = 0,

Tr(Yk~'dk) = 0. Under this transformation C' — kCk~".

Under the transformation (2.49)), as before the change in the L¥" term is canceled by the
corresponding ¥ integral of the boundary term from the change in the wW4W term. In the

presence of a world sheet boundary there remains the contribution from D to the latter change

k
A(SWVEWY = — /D Tr[k~tdk(g~'dg — gk'dkg™" — dgg™)] (2.51)

A
where g = LC'. Substituting this value in (2.51]) we get

L3 / Tr[k~'dk(C™1dC — Ck™'dkC™' + C 'L 'dLC — dLL™' — dCC™1)] (2.52)
D

™

ASWIW _
Now we compute w® (kLk, k~*h) — w® (L, h) using that
wi(k™h) — wi(h) = Te[k'dk(Ck™ ' dkC™ + C~1dC + dCC™)] (2.53)
and

Te[(kLk)d(kLk)d(k*Ck)k~'C~'k — L~'dLdCC™] (2.54)

= Tr[k~'dk(2dCC~ 4+ 2Ck™dkC™ + L™'dL — C'L'dLC))
resulting in

WA (ELE, k7 h) — w (L, h) = Te[k~'dk(C1dC — CktdkC™! — (2.55)

dCC™ — L7YdL + C 'L dLC))
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which cancels ([2.52)).
By the same arguments under ([2.50)):

k
A(SWVIWY — ﬁ/ Trlk'dk(gk " dkg™" — g 'dg — dgg™")], (2.56)
D

where g = LC'. Substituting this value of g in (2.56)) we get:

A(SVEVY) = Z—G / Tr[k~'dk(LCk™'dkC L™ — (2.57)
D

7

C 'L YdLC + LdC) — (dLC + LdC)C~'L™h)],

and using [k, L] = 0 and cyclic permutation under the trace we obtain:
A(SVEW) = i—;‘ /D Tr[k~'dk(Ck™'dkC™ —C L' dLC — C7'dC —dLL™' —dCC™)]. (2.58)
Now we compute w® (L, kh) —w® (L, h), using that
wi(kh) — ws(h) = Tr[k~'dk(CE~ dkC ™! — C~1dC — dCC™Y)] (2.59)
and
Tr[L'dLd(kCk  )kC 'k~ — L7'dLdCC™'] = Tx[L*dLdkk™" — L™*dLCk™dkC™], (2.60)
resulting in
W (L, kh) — wP (L, h) = Te[k~tdk(Ck~*dkC~! — C1dC — dCC™* (2.61)
+L7 YL — C7'L 7N LC)).

Collecting ([2.58]) and (2.61) we obtain:
kg

™

ASPIPT = / Tr(L~'dLEk'dk). (2.62)
D

Noting, that Tr(Yk~'dk) = 0, we prove that the action possesses by the vectorially
diagonal symmetry commuting with U(1)y. For G = SU(N + 1) this commuting symmetry
is SU(N) composed from generators commuting with Y. We also see from that the
vectorially diagonal U(1)y symmetry is broken. Thus we obtained the preserved symmetries of
the parafermionic brane:

Jo=J* T*c SU(N) (2.63)

JY=-J¥ (2.64)
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2.2.2 Geometry

Here we elaborate geometry of the parafermionic branes (2.42) for SU(2) group [157]. Brane
is given by the conjugacy class multiplied by the U(1),, group: g = hfh 'e®3 = CL. The
geometry of the image can be determined as in |[157]. Using the fact that TrC = Trf = const =

2 cos 1)y, where 1 is defined in (2.27)), we can write
Tr (ge‘ia%> = 2cosy . (2.65)

From here we see that the element g belongs to the image of the brane surface if and only if
there is a U(1) element (%) such that the equation (2.65)) is satisfied. So let us determine

for which ¢ this equation admits solutions for .. Introduce the Euler parametrization

g =Tl T (2.66)

Expanding the exponentials one obtains

cos fei® sin fe’®
g= ~ (2.67)
—sinfe™  cosfe?
where
5 - 0
X=90+¢, 9=90-9¢, 0=3. (2.68)
The equation (2.65)) takes the form
-«
cos f cos(¢p — 5) = cosy, (2.69)
or equivalently,
-~ a,  cos?iy
< cos?(p— =) = <1. 2.
0 < cos™(¢ 2) cos?f — (2.70)

Hence, equation (2.70)) can be solved for a only when cos? 6 > cos? 1, or equivalently when

cosf > cos2t,, 0 =26. (2.71)

We see that generic parafermionic brane on SU(2) is a three-dimensional surface defined by

the inequality (2.71]). For 1)y = 0 it is one-dimensional circle.

88



2.2.3 Boundary state

Boundary state for the parafermionic branes were constructed in [123,|124].

Let us start by reviewing the T-duality between a Lens space and the SU(2) theory. Geo-
metrically, a Lens space is obtained by quotienting the group manifold by the right action of the
subgroup Z of the U(1), and in the Euler coordinates it corresponds to the identification
¢ ~ ¢+ 2. In terms of the SU(2) WZW model this is the orbifold SU(2)/Zf, where Z[ is
embedded in the right U(1). The partition function for this theory can be derived using the

technique elaborated in and it is

Z = ZXSU(Q) X (@) () (2.72)

Partition function (2.72)) coincides with the one for the SU(2) group, up to T-duality. This
relation enables one to construct new D-branes in the SU(2) theory starting from the known
ones. As a first step one constructs the brane in the Lens theory. As is usual for orbifolds, this is
achieved by summing over images of D-branes under the right Z; multiplications. Performing
then the T-duality on the Lens theory brings us back to the SU(2) theory and maps the
orbifolded brane to a new SU(2) brane.

Our starting point is a maximally symmetric Cardy state. If we shift the brane by the right
multiplication with some element w' = e?%'93 of the Z group, then the symmetries preserved

by this brane, as we explained at the end of section 2.1.1] are
J* 0t =0, (a=1,2,3), (2.73)

while the brane is described by the Cardy state with rotated Ishibashi state

Z \/S—OJZL% (W[5, N)) - (2.74)

Summing over the images one obtains a Z/* invariant state, present in the Lens theory

k
214, Z ZZ 5, N) @ (W']5, N)) - (2.75)

J =0 N
*In this subsection we write gluing conditions in the closed string channel.
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To compute the sum of the Ishibashi states on the right-hand side, one next uses the parafermion
decomposition of SU(2); (1.331). This decomposition implies that Ishibashi states for the

maximally symmetric A-brane can be written as

2k :
1 -1 2j4+n
|A7j>>SU(2) - Z %|A7]7 n>>PF ® |A7n>>U(1) ) (276)
n=1
where
A, 5, )" =" lj,n, Ny @ j,n, N}, (2.77)
N

is the A-type Ishibashi states for the parafermion and |4, n))Y®) is defined in (1.260)).

Under the action of element w! € Zf the expression (2.76|) transform as

2k _ 2]+n omiln
4,0 > 57 S ) ). (2.78)

Hence summing over images projects onto the Z[-invariant Ishibashi states for which n is
restricted to the two values 0 and k. Performing T-duality, flips the sign of the right moving U (1)

sector and one gets a B-type Ishibashi state of the original SU(2) theory,

1+ (—1)%

B.i SU(2)
1B, j)) 5

1A, 7,00 @ |B, o)V (2.79)

1+ (=1)%+k

oA LR @B k)T

where |Br))U(") is a B-type Ishibashi state of U(1), theory satisfying the Neumann boundary
conditions defined in ([1.262)). Knowing the T-dual expression of the (2.75)) allows one to write

down the boundary state for the B-type brane

) _ 5 Vi) g 0P 6 (1B0))UO + g3V (2.80)

jez 'V SOJ

where = (—1)?*. In deriving this expression one uses the field identification rule (j,n) ~

(k/2 — 7,k + n) and the following property of the matrix of modular transformation ((1.308|)
Sak/a—; = (—1)*S,; . (2.81)

To derive the symmetries preserved by the B-brane, one observes from (2.73)) that a Z[ invariant

superposition of the A-branes preserves only the current J* + J° and breaks all other currents;
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namely, any two Z/ images only have this preserved current in common. Performing further
T-duality in the J? direction flips the relative sign between the two terms in this current and

hence implies that the only current preserved by the B-brane is

JP =T =0. (2.82)

2.2.4 Overlap of the state and the coordinate wave function

We will now show that the boundary state (2.80]) reproduces the effective brane geometry .
In the large k£ limit the second term in (2.80]) can be ignored. As in the case of Cardy state one
should compute the overlap <§|B , a)éU(Q). We will again use the formula , but taking into
account that the matrix D has left and right indices 0. Therefore, the overlap is again given
by formula , but with m set to zero. Hence we arrive at the equation

- 3/2 . .
018, a2’ ~ 3" B sin[(2) + 1)d] D (9(6)) (2.83)

- s
JEZ

where 9 is defined in 1)

Next we will need the relation between the Wigner D-functions and the Legendre polyno-
mials P;(cos ) given by D}, = Pj(cosf), where § introduced in (2.66), as well as the formula

for the generating function for Legendre polynomials

. B 1
> tPy(x) = Nk (2.84)

Using these expressions equation ([2.83]) can be simplified to

n

@B, a>gU(2) N ©(cosf — cos 21)) (2.85)

\/0085—0052@

where O is the step function. This indeed coincides with the expression for the effective geom-

etry (2.71)) in the large k limit.

2.3 Permutation branes

Here we present Lagrangian description of the permutation branes (|1.159)) and (|1.161]).
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2.3.1 Definition of the brane

Let us consider a group manifold M, which is a product of K + 1 copies of a group G: M =
G x ---x G. We define the mazimally symmetric, permutational brane by the following formula
[66]
(90,91, 9K )|brane = {(hofohf17 hyfihy ' hafohs' - gy fre—1hy hKth[_(lJrl)
) ho = hiy1,Vhi € G, @:L~HK+D}. (2.86)
where ¢; denotes an element of the i'th copy of G in target space, and |prane denotes the
restriction to the brane surface. It is easy to see that by redefinition of the elements h; one can

always bring an arbitrary brane (fo, ..., fx) into the form (fof1--- fx,e,...e), where e is the

identity element. Hence, another, more convenient form of writing the equation (2.86) is
(go’gla"'agK”brane = (287)
{(hofha*gi g 1, 01| (2.88)
= fofies fi Yho,gi € G (i= 1+, K) .
The dimension of this brane can easily be determined by looking at the image of (2.86|) under
themap m: M =G x ... x G — G, defined by m(g0,91,---,9x) = Gog1---9x = g [66]. The
map m maps the brane (2.86|) to the conjugacy class

m(907917 s 7gk)|brane - C - {O - hofhalwlo S G} . (289)

The global issues again require the conjugacy class (2.89) to have the form (2.32)).
Next, note that the inverse of a point under m is diffeomorphic to G¥. To see this, observe

that for any element of the form
h = (fohi', hifihy ' hofohy .. bl ), (Vhi € G) (2.90)

the relation m(h) = m(fo... fx) holds. Hence altogether we see that the dimension D of a

generic brane (fo, ... fx) is given by

D=dimC+ K dimG. (2.91)
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As we explained before to write the Lagrangian of the WZW theory of the product group M
with a boundary condition specified by a permutation brane, the restriction of the WZW form

to the worldvolume of the brane should satisfy (2.4). Using the Polyakov-Wiegmann identities

(11.278) and ([1.279) and the relation (2.86)) it is easy to see that

K
> WV (g; L= dw® (2.92)
=0
where
K
w? =3 Tr( £ N, f,.h;jldhm) , (2.93)
1=0

which will be used in the following sections. The global issues also here constrain the conjugacy

class C in ([2.89) to have the form ({2.32]).

2.3.2 Symmetries of the brane

Next we want to determine the symmetries preserved by the brane (2.86). The boundary
conditions (2.86)) are invariant under any transformation of the form
9 = gkt gin = kigis (2.94)

90 = kgo, gx — gk, (ki,k e G), (i=0,1,..., (K —-1)), (2.95)
which in our parametrisation correspond to the transformations
hiv1 = kihivr,  hipr — khgga, (2.96)

respectively. We will now show that the full action

k
R Sy (297
=0

4 Jp
with boundary condition (2.86) and w® given in ([2.93) is invariant under the following trans-

formations
gi<za Z) - gi(27 2>k;}21(2> )
gi+1(372) —>kiL<2)gi+1(Z,§>, (kl € G), (Z :0,1,...,[(— 1), (298)

kiL(Z)‘boundary = kiR(g)‘boundary = ki (T) ’
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as well as

90(27 2) - kL(Z)g()(Z’ 2) )
g (2,2) = g (2,2)k5"(2), (2.99)

kL(Z>’boundary = kR(’g)’boundary = k(T) ’ (k S G) :

For fixed 4, in order to determine the variation of the action, we only need to consider the
following terms

S(gi, gir1) = SV (g:) + SV W (giyr) (2.100)

w? (hipr) = Tr (fiflh;ldhifih;_lldhi+l + fi:-llh;-i-lldhi+1fi+lh;_12dhi+2> : (2.101)

The variation of the kinetic and Wess-Zumino terms in the action can be read off from (1.278])
and ([1.279)). Using the fact that, due to the (anti-)holomorphicity, w"#(kig/) = 0, one deduces
that the variation of the Wess-Zumino term reduces to a surface integral over the disc D and the
string worldsheet Y. The integral over the string world sheet is canceled by the corresponding

integral coming from the variation of the kinetic term. The remaining integral over the disc is

k
A(S(gi, gisr)) = _E/ Tr(k;ldki(gjldgi —i—dgiﬂg;rll)). (2.102)
D
Substituting g; = h; f,-h;fl and git1 = hit1firahy, +12 we obtain

A(S(gi, gir1)) = (2.103)

k
— [ Tr <kfldki(hi+1fi+1hfﬁ2dhi+2 b — h¢+1f[1h;1dhz‘fihf+l1)> :

a7 Jp
This term is canceled by the variation of the two-form term in (2.101)). Computing the change

of (2.101)) we find

CU(Q)(k’ihH_l) — W(Q)(hi_H) = (2104)
I (k:i_ldki(hi—&-lfi-&-lhi_JrIthi+2fi_+11hi_Jrll - hi+1fi_1hi_1dhif’ihi_+11)>

which cancels (2.103). The proof of the invariance of the action (2.97) under the variation

(2.99) is similar.
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Having determined the symmetries of the brane we can now turn to the question
of which bulk currents are preserved by this brane. The invariance of the manifold M under
separate left/right group multiplication in each subgroup gets lifted, on the world sheet of a
closed string, to a local infinite-dimensional symmetry group M(z) x M(Zz). The presence of
these symmetries implies the existence of the conserved currents J;(z) = —0g;g; ' and J;(2) =
g;'0g; (i = 0,1,...,K). As we have seen, the symmetries under separate left/right group

multiplication are, in the presence of the worldsheet boundary, reduced to symmetries under

simultaneous multiplication (2.98) and (2.99). This implies the following relations between the

currents,

Je=Je, (i=0,.. . K—1), (2.105)

()

J§=J%, VT € Lie(G) . (2.106)

These are gluing conditions of permutation branes (|1.158)) for WZW model.

2.3.3 Effective geometry for maximally symmetric, permutation branes

Let us consider an explicit example of the maximally symmetric permutation branes (2.86)) for
the case of double product with the group G = SU(2), i.e. M = SU(2) x SU(2). In this case

the general formula (2.86f) reduces to

= (hofohi!', hifihg'). (2.107)

brane

(90,91)

2imaosy

where fofi = e~ * , with a integer or half-integer satisfying 0 < a < k/2.

The preserved currents are
Jo=Jr, Ji=J¢ (a=1,2,3). (2.108)
The general expression for two form w® given in reduces to
W (ho, hy) = Tr (hgldho( fohi Ry fot — fh Ry f1)> . (2.109)
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Using the constructed boundary states we then calculate the effective geometries of these branes,

recovering the classical results from the previous sections.

Recall the permutation brane boundary state (1.161]

Saii. . Sai . _
p= ZS_Oj Ji)p = Zs_oj 7) SU(2)0><SU |j>>SU(2)O><SU(2)1' (2.110)
J J
[j)) 5V @oxsUC Z 15, N)o @ Tj, N, (2.111)
|]~>>SU(2)6><SU( )1 — Z |]7 M>1 ® |]7 M>0 (2.112)
M

Using the S matrix of the modular transformation for SU(2) (1.308)), one obtains in the large-k

limit the ratio of S-matrix elements appearing in the defect operator

Saj (k+2)
So; w25 +1)

sin[(27 + 1)¢] (2.113)

(2a+1)7

wro - Using these results, the overlap between the

where, as before, we have introduced ¢ =

boundary state (2.110]) and the localised bulk state ([2.34]) becomes

<§()7 §1|G>P ~ Z (& ;L 2) sin[(2j + 1)¢]D2m(90(§0))pﬂn(91(51)) : (2.114)

Jym,n

To simplify this expression we need the identity

D Dl OD)D;80) = D (P82, (2.115)

which follows from the fact that the matrices D/ = form a representation of the group. Remem-

bering (2.39) we obtain

(6o, 61]a) Zsm 27 + 1)1] sin[(25 4+ 1)¢] (2.116)

7rsmz/)

where

Tr(gog1) = 2cos v (2.117)

and from the completeness of sin(ni) on the interval [0, 7] one concludes

L. k42
(80,91a *

|a)p ~ 4siw5(¢—¢). (2.118)

Hence we see that the brane wave function has the geometry ([2.107)).
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2.4 The symmetry breaking brane of type I on a product
G xG

In this section we construct new non-maximally symmetric non-factorizable branes in the WZW

model with a product group G x G following [160].

2.4.1 Definition and symmetries

We define the boundary conditions of the type I brane as

I (90, 91) = {(hofohfl, hifihg'L) |, VL = €Y € U(l)y} (2.119)

brane

where Y is an arbitrary (but fixed) generator in the Cartan subalgebra of G. As before, in order
to fully specify the consistent D-brane we need to determine the worldvolume two-form w®.
We can reduce this calculation to the one which we did for (2.86|) by introducing variables

Ko = hofohy! and K, = hifihy'. We have already shown that

WWZ(K()) + WWZ(Kl) = dw(g)(hg, hl) (2120)

brane brane brane

with w® (hg, hy) given in (2.109)). Using (1.279)) and the property that w"%(L) = 0 for abelian

groups, we further get that

MUK =WV - d(Tr(KfldKldLL*1)> . (2.121)
Combining (2.120]) and ([2.121f) we finally obtain
wWV%(g) L= dw® (hg, hy, L) = d<w<2>(ho, hy) — Tr(KfldKldLLfl)) . (2.122)

The full action with the boundary condition ([2.119)) is:

SERT = WAV (go) + SVAW (gy) — / w®(ho, hn, L) (2.123)
D

To determine the symmetries preserved by the brane we first look for the symmetries preserved

by the boundary (2.119)):
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1. go — gok™', g1 — kgi for all k € G; under this transformation h; — kh; and K; — kK.

2. go — kgo, g1 = g1k for all k € G, k ¢ U(1)y and [k, L] = 0. Under this transformation
ho — kho. This means that for example, in the case of G = SU(N + 1) we get that

k € SU(N) generated with isospin generators commuting with Y.
3. go — kgo, g1 — g1 for all k € U(1)y. Under this transformation hy — khy and L — kL.

4. go = go, g1 — g1k for all kK € U(1)y. Under this transformation L — Lk.

When extending these transformations to transformations of the action (as in equations ([2.98))
and ) one can show that the full action (2.123]) with the boundary term on the auxiliary
disc given by is invariant separately under the transformations 1 and 2. On the other
hand, only the following combination of the transformations 3 and 4 is a real symmetry of the

full action:
3. go — kgo, g1 — g1k where k € U(1)y. Under this transformation hg — khg, L — kLk.

The details of all of these calculation can be found in [160]. The set of symmetries listed above

implies that the D-brane (2.119)) preserves the following set of currents,

Jo" = Ji, VT* € Lie(G) (2.124)
Jo=TJ%, VT*¢€Lie(G) st [T*Y]=0, (2.125)
J=—J. (2.126)

We see that multiplication of the second group with the U(1); subgroup leads to a removal of
some of the currents present in the symmetric brane (2.106) and, as expected, also flips the

sign of the current in the Y-direction.

2.4.2 Geometry of type I brane on an SU(2) x SU(2)

Next we want to determine the geometry of the type I brane (2.119) on an SU(2) x SU(2)

manifold,

(90, 91) T (hofohl_17h1f1h61L), (2.127)

rane
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where we will take L to be of the form L = €3 . In this case, the preserved currents f
reduce to

Jo=—J7, Ji=J¢, (a=1,2,3). (2.128)
Under the map m of , the type I brane gets mapped to the conjugacy class multiplied
by the U(1),, group: § = gog1 = hofofihg leie3 = CL. In what follows we will always denote
with hats those quantities which appear in a product of group elements from the first and the
second group. The geometry of the image can be determined as in section [2.2.2] Repeating the

same steps we easily obtain that the world-volume of the brane is given by inequality
cosf > cos2ty, 0 =20, (2.129)

where )y is defined in (2.27)). We see that the image of the brane under multiplication m is a
three-dimensional surface defined by the inequality (2.129)). To determine the geometry of the
full brane, let us denote the Euler angles for elements in gy and g; with “0” and “1” indices.

Then the 6 and ¢ angles of their product are given by [184]

cos § = cos Oy cos 0, — sin , sin 6, cos(x1 + ©o) (2.130)
Lo g g G 6
¢ =" | cos 2 cos L5 — sin 2 sin e T | (2.131)
0 2 2 2 2
cos 5

Substituting the expression for # in the equation for the image of the brane, we see that a

generic brane (2.119) is six dimensional and given by the inequality
cos 0 = cos B cos 0, — sin B sin 6, cos(x1 + o) > cos 20 . (2.132)

As before, the previous discussion was valid in the cases for which fyf1 # e. If ¢y = 0, the

conjugacy class C is a point and the total brane is four dimensional, given by the relations

90 = 91, X1 + Yo = T. (2133)

2.4.3 Boundary states for symmetry breaking type I branes

We now want to construct the boundary state for the brane of type I given in (2.127)),

(90, 91) LT (hofohflahlﬁhalem%g). (2.134)

rane
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Recall that, as we have derived before using the Langrangian approach, this brane preserves

the currentd

Jo - J}=0, (2.135)

Jo o+ Jr=0, (a=1,2,3). (2.136)

To construct the boundary state, our starting point is the maximally symmetric permutation
brane (2.110]) which preserves the symmetries (2.108)). In order to reduce these symmetries down
o (2.135]), we will now show that one should apply the procedure described in the previous

section to the second SU(2) group in which the permutation brane lives. Namely, let us shift

2mli

the brane (2.110) by multiplying it from the right with an element wa) = e * % of the ZJ!

subgroup of the second SU(2) group. The shifted brane preserves the symmetries

J§ + wgyliwg =0, (2.137)

Jo o+ Jr=0, (a=1,2,3), (2.138)
and is given by the Cardy state

(2) SU 1><SU(2)0® (2) 2.139
- > 2 Bl (2.130)

where
“or ZIL 15 V1) - (2.140)

As in the previous section, summing over the images and performing the T-duality in the
right sector, will reduce the first set of currents down to , as desired. As far as
the boundary state is concerned, summing over images will not touch the first Ishibashi state
in but will project the second Ishibashi state down to the Zf invariant components.

Let us introduce parafermion and U(1), permuted Ishibshi states

i, na )PP — lebnu 0 ®1j1,n1, N)y, (2.141)

|2, na))y T = Z|]2,n2, 1 ® |j2,ma, Mg .

THere we write gluing conditions in the closed string channel.
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and

B oo 0 ~1 N

U(1)oxU(1); Oé,nOé,n r+ 2kl r+ 2kl
T))r = exp |* —_— + — 2.142
L S S helE ) @

[ i 1 g0 / / /
MU XU a0, ! +2k:l r' + 2kl
). = exp £y Y+ L ® _
| >> + i n - llez’ ‘ m >0

Using the permuted version of the decomposition ([2.76|)

2k ;
, ; 14 (—1)%+ )
esuen = LU Rk g [ Znton (21

n=1
and applying T-duality to it, one obtains the permuted B-type Ishibashi state of the initial

SU(2) theory,

1+ (—1)%
2
4, ) 7P ) 7O

T

15, 0))PFoxPFr ) gyy U (NoxU s (2.144)

T

B, N =
14 (—1)2+k
REIC) i

Here the permutation U(1) and the permutation parafermion Ishibashi states are given in
formulas (2.142)) and (2.141]). Using this expression the Cardy state for a new brane can be

written as:

(1) \/_Z 2 SU(2 )1xSU(2)5 ®Q |B j>> (2.145)
OJ

Note also that since the boundary state is “derived” from the maximally symmetric
boundary state , it is characterised with a single primary j as was the case for the
brane . This is again related to the fact that in the effective description , there
is only one independent parameter (f = f fl)ﬂ

To check the consistency of the proposed boundary state, one should check, as usual, the
Cardy condition. Since we are in a theory which admits several different types of branes, one
should in principle check these conditions for the type I brane with any of the other branes in
the spectrum. We have done the calculation involving two branes of type I, with one of type I
and a permutational brane, and with a brane which is direct product of two SU(2) A-branes.

The tree-level amplitude between two Cardy states for two type I branes reduces, after the

¥This can be easily be seen by changing coordinates as hg — ho fi L

101



S-modular transformation reduces, to

: 1t (1
Zaray = Z Z Na1a2 TJ”XJ )Xj//ﬁH (q)i/}m(q)f? (2.146)

rj’ 5" ni,na

hence satisfying the Cardy requirement. The annulus amplitude between the type I and the

maximally symmetric permutation brane (2.110]) reduces, after the S-modular transformation,

to
i g1/
a1a2 - Z Z ai1ag Tj”X] Q)Xj//7n1 (Q)H (1 _ qm71/2) ) (2147)
rg'g" n m
Here the factor I_I(IITM is the partition function of a scalar with mixed Neumann-

Dirichlet type boundary conditions. The details of calculations of and can be
found in [160).

We will now show that the boundary state reproduces the effective brane geome-
try . In the large k limit the second term in (2.144)) can be ignored. As in section m
one should compute the overlap (6, §1|a>(cl). We will again use the formula , but taking
into account that the matrix D) derived for the first group has left index 0 and the right
index m, whereas the D® matrix derived for the second group has left index m and the right
index 0. Therefore, the overlap is again given by formula , but with n set to zero. Using

furthermore (2.115]) we arrive at the equation

oL 3/2 . . .
o, Bula) D ~ 37 il (2) 4 1)4) D a0()01 7)) (2.143)
JEZ

where zﬂ is defined by 1} Again using 1} equation (2.148)) can be simplified to

@(cosé~ — cos 21))

\/ cos 0 — cos 21&

where O is the step function. This indeed coincides with the expression for the effective geom-

etry (2.132)) in the large k limit.

(0o, 61 ]a)ss) ~

(2.149)
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2.5 Symmetry-breaking branes of type II

2.5.1 Definition

The number of preserved affine symmetries can be further reduced by implementing the proce-
dure from the previous section on both groups in M = G x G. More precisely, let us consider

the brane

II: (90, 91) e (hofohi Lo, hifihg'Ly), (2.150)

where Lo, L1 belong to two different U(1) groups in M: Lo, € U(1)y,, L1, € U(1)y,, Ly = Y0,
L, = €M1, Using the same technique as for brane I, we can write the full action with the

boundary conditions (2.150). Having the action, it is easy to show that this brane preserves

the currents (2.125)). On the other hand, the equations (2.124)) and (2.126)) get modified in an

obvious manner,

Jo' = J¢, VT* € Lie(G) st. [T Y =0, (2.151)
Jh =0 R =—ar. (2.152)

The details of calculations can be found in |160].

2.5.2 The symmetry-breaking brane of type Il on an SU(2) x SU(2)

As explained before, the symmetries preserved by the brane of type I can be broken further by

multiplying its first term by a U(1) subgroup,

(90, 91) = (hofohi €%  hyfihg'e™ ). (2.153)

brane

Here we have taken both U(1) groups to be along the same generator, but we take them to

be parametrised by two independent parameters a and 5. The symmetries of brane I, given

in (2.128]) are now reduced to
J==J, == (2.154)
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Note that the following equation holds
Tr (go e i8S gle*ia%g> =Tr <f0f1> ) (2.155)

Using the same arguments which, in the previous case, led to the inequality (2.132)), one now
concludes that

cos B cos 0 — sin B sin 6y cos(x1 + o — ) > cos 2, (2.156)

where Tr(fof1) = 2cost and 9y is defined by . As before, the elements gy and g; will
belong to the brane surface if and only if this inequality admits a solution for the parameter
B. This will happen if and only if the maximum of the left hand side of is larger
than cos2¢y. It is easy to see that this maximum is equal to cos(éo — 51) Therefore, the

generic brane ([2.153) is six dimensional and given by an inequality
cos(9~0 — 9~1) > cos 21y . (2.157)

When vy = 0 the brane is five dimensional and given by the equation 0o = 0.

2.5.3 Boundary states for symmetry breaking type 11 branes

Let us now turn to the type II brane ([2.153))

(90.91)| = (hofohi'€® by fihg'le™ ), (2.158)

brane

which preserves the currents
J—-J=0, Jo—-J}=0. (2.159)

This brane has a structure which is very similar to the type I brane. It can be derived from this
brane by applying the described procedure (with right cosetting) to the first SU(2) group in
which brane I lives. As for brane I, this procedure will reduce the currents and
down to . At the level of the boundary state, the Ishibashi state in the 01 sector will

remain unchanged, while the 01 Ishibashi state ([2.112)) will be projected down to a Z 151 invariant

$Here we again work in the closed string channel.
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state (where subscript 1, indicates that this action is taken in the first SU(2) group). Finally,

applying the T-duality we obtain the boundary state

Sa' . 1 . 0
@& = kY GBI @B (2.160)
j J

where | B, j))10 is defined as in ([2.144)) with 0 and 1 exchanged, and the coefficients in the linear

combination are fixed by the Cardy condition. For even £ the tree-level amplitude between the

states (2.160)) reduces to

a1a2 - Z Z Z aias r']’/XJ n1( )X]” n3< )wnz( )wm(Q) (2'161)

r,j’,7" n1,m2 n3,n4

L+ (21 (1 (1))

4
For an odd k (2.160)) can be simplified and written as
-1
|a>(g) — kZ < |: ) ‘]’ >>PF0><PF1 Q ’], >>PF1><PF0 (2.162)
07
SO g LU
k
].+ (_21)2]+ ‘ ~’ k>>7I.DFOXPF1 ® ‘j, >>PF1><PFO

@[ 7LV @ [y VDo

The tree level amplitude between the states (2.162) is

a1a2 o Z Z Z aiaz r']”XJ m( )X]” 713( )wm( )wn4(Q)1+n(:ll)n2+n4 (2.163)

r,j3',j" ni1,n2 ng,ng

where n = (—1)%a1+2a2

. The Cardy condition is satisfied in this case because, after taking into
account field identification in the parafermionic sector, one can show that each state in the sum
appears twice, and therefore all states appear with integer coefficient. The calculations leading

to (2.161)) and (2.163]) follow closely to that of for (2.146]) outlined in [160].

To derive the effective geometry of this brane, one follows the same arguments we as pre-

sented for the type I brane. The overlap with the localised bulk probe is given by
2

<9},9‘;ya><§>~2’%sm[(2j+ 1] P, (cos o) P; (cos Br) (2.164)

JEZ
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where 1& is defined by {D Using now the formula ||

~ ~ 1 fo+061 :
P;(cos ) Pj(cosb) = — / ~ Pj(cos0) = Sl~n bdo — (2.165)
T J160=01] \/[cos 6 — cos(0y + 01)][cos(By — 61) — cos 0]
and equation ([2.84) we obtain
AR 1 /~9~°+~0~1 ©(cos f — cos 21%) i si~n 0do _ .
71061 \/COS@ — cos 21 \/[COSG — cos(By + 01)][cos(6y — 61) — cos 0]
(2.166)

The integral (2.166) is different from zero if cos(fy — 61) > cos 2 which is precisely the condi-

tion (2.157)) in the large k limit.
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Chapter 3

Defects and branes in gauged WZW

models

3.1 Branes in vectorially gauged WZW model

3.1.1 Open strings in gauged WZW model

Here we construct boundary conditions for the vectorially gauged WZW model, corresponding
to the Cardy states [56].
As we explained in subsection [1.5.5] the action of the gauged WZW model using the

Polyakov-Wiegamnn identities can be written in the form:
SCG/H — SCMH(=1g)) — SH(UTID) (3.1)

Consider the action (3.1)) on a world-sheet with a boundary. Following the corresponding
discussion of the WZW model on a world-sheet with a boundary in section we suggest

the following boundary conditions:
U_lgU|boundary = (U 'n)f(Un), n,f e€G (3.2)

and

U0 |poundary = (U1 p)I7H (U 1p) pl €eH (3.3)
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Conditions (3.2) and (3.3)) imply

g‘boundary = nfnilplpil = C1C2 (34)

Land ¢y = plp~!, and also on the boundary

where ¢; = nfn~
U=pl~p U (3.5)

Now we can write the action of the gauged WZW model in the presence of a boundary:

k k
Gudty=G/H _ 6G/H (j=1477) — gH(j~ 1U)—E/wf(U1 )+ 47T/wz (U™ 'p)  (3.6)

where wy(k) is defined in (2.6). Using again PW identities (1.278]) and (1.279)) we obtain

Sbndry G/H _ SWZW 4 Gsauge (3.7)

kG|:/d2 Lk1n+/wWZW:|
47T B

kG dngr[A 0.99" " — A0:99 " + AzgA.g7! — ALA] — ﬁ/ Q
27T 47T D
with
Q=wr(U 'n) —w- (U 'p) (3.8)

T [gfldgdﬁﬁfl — dUU ' dgg™" — dUU gdUT g~ + dUU’ldﬁﬁ"l]
After some straightforward calculations we obtain that is
Qer, 02) = wy(n) +wi(p) + Tr(deaey ey M dey) (3.9)

It is easy to check that:

WV (c1cy) = dQ (3.10)

As in section m the embedding of the disc D into CJ?CIH involves a topological choice.
Holding plp~' in (3.4]) fixed on the disc while performing a topological change corresponding

to a G coroot lattice vector sg in the definition on the interior of D, of the factor nfn=! , will

induce in SPrdy—G/H jp the same change as that of section m

Agsbndry_G/H = k’(;(eg . SG) (3‘11)
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where f = e%¢*c The consistency of the action requires then the same quantization condition
(2.31) on the G conjugacy class

Og - ag € 27TZ/]€G (3.12)

Similarly, a topological change corresponding to an H coroot vector sy in the continuation

to D of the factor plp~" in (3.4) with the nfn~" held fixed, will also change SP"4v~G/H  For

| = e Mu this change will be
AHsbndrny/H = ]{ZH(GH : SH) (313)
The consistency of the action (3.7)) then also constrains the H conjugacy class factor by

3.1.2 The case of a common center

When H contains some subgroup C' of the center of G, the above discussion gets modified in
two ways. First, for z € C the region C’fGC'lH is identical to the region C’ZGf ffll. The brane
corresponding to the pair (f,[) of conjugacy classes is then identical to the brane corresponding
to the pair (zf, z7!). This is the geometrical origin of the phenomena known in the context
of coset CFT without boundary as ”field identification” [79,90,91]. It is again consistent with
Cardy’s identification of boundary states with primary fields.

Since the gauge transformation takes g into hgh™!, it does not distinguish between the
transformations h and zh for any z € C'. We can then think of the gauge group as H/C'. Recall
that the element n in is defined modulo right multiplication by G group elements from
the torus T’ fG commuting with f. Similarly p in that equation can be multiplied from the right

by any element of T}, Let the boundary of the hole be parameterized by 0 < 7 < 27. We have

seen in (2.29)) that upon replacing the boundary value n(7) by
n' (1) = n(7)t(7) (3.15)

with

t(r) = ez (M) (3.16)



s being a coroot lattice vector and H a vector of generators commuting with f, continuing n’
rather than n into the disc, the change (3.11)) is induced in the action. This gave rise to the
quantization condition . A similar independent change in p(7) induces the change
leading to the condition . Recall also that a gauge transformation h € H multiplies both

n and p by h from the left. Let z € C' be represented as
z = W), (3.17)

Notice that w is a common weight vector of G and H. Consider an H/C' gauge transformation

h(z,z) € H, which satisfies on the boundary of the hole
h(0) = 2z 'h(27) (3.18)

Let this transformation act on a configuration with a given continuous choice of n and p on the
boundary and inside the disc. On the world sheet ¥ the action density, being gauge invariant,
does not change. The representation (3.4)) of g on the boundary is changed, the transformed n

and p satisfy
n(0) = 2~ 'n(2r) (3.19)
p(0) = z~"p(27)
In this form n and p are discontiuous in H. They are continuous in H/C, but the paths n(7)
and p(7) of (3.19) are non contractible in H/C and cannot be continued into the interior of
the disc to be substituted in the action (3.7)). To define the action we must, before continuing

into the disc, to redefine n and p according to (3.15)), multiplying them from the right by an

appropriate Cartan element, changing n into n’ and p into p’ defined as

n'(1) = n/(T)e#T(“"H) (3.20)

The redefined n’ and p’ are contractible and can be continued into the disc. The redefinition

(3.20), like (3.15)), induces a change in the disc term of the action, according to (3.11]) and
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(3.13). Notice that, unlike (3.16[), (3.20) contains a weight vector rather than a root vector,
and that this twist is done together on n and on p. Equations (3.11]) and (3.13]) give then for

the change of the action induced by (3.20)
ASPrAy=C/M — (L6 + k) - w (3.21)

where f = %) and [ = ¢ ") Invariance under the gauge transformation (3.18)) requires
this change to be a multiple of 27 leading to a further condition, a correlation between G and

H conjugacy classes,

for every common weight of G and H. This is again in accordance with Cardy’s correspondence
of boundary states with primary fields of the CFT without boundary. The condition ((3.22)) for
coset CFT is known as the selection rule [79,90,91] , demanding the same behavior of members

of the pair of G and H representations under the common center.

3.2 Lagrangian of the WZW model with defects

In this section we review that action of the WZW model with defect [78] and for future appli-
cations consider geometrical realization of the Cardy defects .

Let us assume that one has a defect line S separating the world-sheet into two regions >,
and Y,. In such a situation the WZW model is defined by pair of maps g; and g». On the
defect line itself one has to impose conditions that relate the two maps. The necessary data are
captured by the geometrical structure of a bibrane: a bibrane is in particular a submanifold of
the Cartesian product of the group G with itself : ) C G x G. The pair of maps (g1, g2) are

restricted by the requirement that the combined map
S—= (GXxG):s—(g1(s),92(8) € Q (3.23)

takes its value in the submanifold ). Additionally one should require, that on the submanifold

Q) a two-form w(g1, g2) exists satisfying the relation

dw(g1,92) = W (g1)lq — w" “(g2)la - (3.24)
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To write the action of the WZW model with defect one should introduce an auxiliary disc D

satisfying the conditions:
8B1 = 21 + D and 832 = 22 + D, (325)

and continue the fields g; and g, on this disc always holding the condition (3.23)). After this

preparations the topological part of the action takes the form :

k k k
Stop—def —_ _/ wz —/ wz — —/ . 3.26
i Jy, w” 7 (g1) + i BZW (92) gy Dw(gl,gz) (3.26)
Equation (3.24]) guarantees that (3.26]) is well defined.
The full action is
Sdef—WZW — Skin—def + Stop—def (327)
where
kin—def k kin 2 k kin 2
S (91,92) = — | L*™(g)d"z+ — [ L™(g2)d"z (3.28)
4 bl 47 Yo
Let us consider as the bibrane @) the submanifold:
(91, 92) = (Cup. p) (3.29)
or alternatively
99z =Cy (3.30)

where C), is defined in ([2.32)).
We can easily check that the equation (3.24)) is satisfied with

D (Clup) = wy(h) — Te(C, dCudpp ™) (3.31)

where wy(h) is defined in (2.6)).

It is straightforward to prove that
Tr(gy '0g1(91 'dgr)*) — Te(gz '092(95 ' dgn)?) — 6w = dB,,. (3.32)

where
B,=A,(h) — Tr(épp_lCljldC’u) + Tr(C’;léCMdpp_l) (3.33)
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A, is defined by ({2.14)) for f defined in ([2.32]).

Recalling that the first two terms come from the equation
0% = d[Tr(g~"0g(g~ " dg)*)], (3.34)

we see that the existence of the one-form B satisfying (3.32]) is a consequence of the equation
(13.24)).

The defect equation of motion is
T (39197 (09197 — D:g197) | dr — Tr|09205" (O-295" — O:295 ") |dT + B, =0 (3.35)
After some calculation one can show that implies:
J=Jy and J = Jy (3.36)

These are indeed the topological defect gluing conditions (1.172)) for WZW model. To take C,,
in the form ([2.32) is forced again by the global issues discussed in the previous section.
Now we show for SU(2); model that the geometry of the defect operator (1.177)) is indeed

that of described in (3.30]). Consider a defect operator corresponding to a primary a:

Xazz
J

We will show that it has geometry of the form (3.30) with u = aos as it should be for SU(2)

2 S (M @ . )N © () (3.37)

group.

Using the S matrix of the modular transformation for SU(2); (1.308]), one obtains in the

large-k limit the ratio of S-matrix elements appearing in the defect operator

Saj (k + 2) . . "
o ~ A sinf(27 + 1)3], (3.38)

Qat1)m

where, as before, we have introduced @/AJ = { 2 - Using these results, the overlap between the

boundary state and the localised bulk state (2.34) becomes

(61 Xal o) ~ D sin[(2] + 1)¢] D3, (91(61)Dj (95 (65)) - (3.39)

-]7m7n

(k+2)
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To simplify this expression we need the identity

ZD (91(00)D3,,.. (95 (62)) = D2, (91(01)g5 " (65)), (3.40)

which follows from the fact that the matrices D/ form a representation of the group. Finally,

recalling (2.39), the overlap (3.39) becomes

- - k+2 R
X (25 in|(27 +1 A1
X ~ 25 5 sl + D sinl 25+ 14 (3.41)
where ¢ defined by
Tr(gog; ') = 2cos v (3.42)

and from the completeness of sin(ni) on the interval [0, 7] one concludes

k+2
4sin

(011 Xo]a) ~ S —1)). (3.43)

We see that the defect world-volume indeed has the required form.

3.3 Defects in vectorially gauged WZW model

3.3.1 Geometry and action

Let us consider the action ({3.1)
SCGH — SCMH(=1g07) — SH(UTID) (3.44)

on a world-sheet with a defect. The analysis of the WZW theory with defects in section

implies that we should impose the following constraints:

Ui iUy = p1Cy = Uy 'pa 007110, (3.45)
Uy ' 92Uz = 1 = Uy 'pi U, (3.46)
Uy Uy = 5aCo = Uy 'puUh UG5 M0y (3.47)
Uy 'Us = po = Uy ' ool (3.48)
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These equations imply

g1 = Copy 'p1Ch (3.49)
and
g2 = Lpy'pi L7 (3.50)
where
L =001 (3.51)

Defining p = p; 'p1 and redefining C; — p~'C}p we obtain for bibrane the following ansatz:

(91,92) = (CoCip, LpL™Y). (3.52)

Here C, € C4}, Co € O, pe G and L € H.
The Polyakov-Wiegmann identity (1.279)) implies that the bibrane ([3.52)) satisfies the con-

dition (3.24)) with the following w:
@w(L,p,Cy,Cy) = Q(Z)(Cm Cy) — tr((CoCy) M d(CoCr)dpp™") 4+ ¥(L, p) (3.53)

where Q) (Cy, C}) is defined in (3.9), w,(C) is defined in (2.6) and W(L, p) is defined in (2.9).

Permutation branes are given by the folded version of :
(91,92) = (CoChp, Lp~'L71). (3.54)
Alternatively and can be written as
(91,92) = (nrn~'hy fhy ', L™ hyhy ' L) (3.55)
and

(g1,92) = (nrn *hyfhyt, L™ hoh 1 L) (3.56)

3.3.2 Permutation branes on SU(2),/U(1) x SU(2),/U(1)

In this section we consider permutation branes on product of SU(2),/U(1) x SU(2),/U(1)
coset. We show that the geometrical description given above coincide with the permutation

boundary state (|1.161)) overlap with the graviton wave packet.
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Taking as H the U(1) subgroup generated by o3, the brane (3.56) takes the form:

M O
k

w2

(917 92) - (hlfhg_l, eia%thl_le_ia%ei
b

rane

). (3.57)

where as before f = %07 | )y = QJT”, 3 =0,..., g, and M is an integer. The factor e' & =2

reflects Zj, symmetry of an abelian coset |[123]. One can multiply with this factor also the first
element in , but performing the redefinition of h;, one gets again . We see that
all the branes are labelled by two indices 1y and M, exactly as the permutation states on the
parafermions product. The elements ¢g; and go belong to the brane surface if the following

equation admits a solution for the parameter «,

. 03 .M O
2 k

tr <gle_m%3gge“" e’ 73) = 2081y . (3.58)

This equation can be further elaborated in the Euler coordinates (2.66)).
Denoting by ©, ® Euler angles 6 and qg of the product gle’ia%s g» and using ([2.130) and

(2.131)) we can rewrite (3.58)) as

Cos%cos(v/Z —£&/2— $1 — by +

M

oF ) = cos g, (3.59)

where
cos © = cos f; cos By — sin 0, sin O cos v, (3.60)

and we have introduced new labels v = o + ¢1 — o and £/2 = & — %. The variables £ and

~ are related to each other by the equation

. 1 0 0y, 0 . 0,
it — — | cos = cos —¢'3 — sin — sin —e '3 | . (3.61)
cos & 2 2 2 2
2

Let us recall that the vectorial gauging of U(1) symmetry is given by the translation of ¢
and the resulting target space of the SU(2),/U(1) model, derived after the gauge fixing ¢ = 0
and integrating out of the gauge field, is the two-dimensional disc, parameterized by 6 and ¢. In

the case of product the target space is parameterized by 61, 05, qgl, &2. Hence the brane consists

of those points for which equation (3.59)) admits a solution for v. © and £ are considered here

as the complicated functions of 6, 6, and ~ given by 1' and 1) respectively. For ¢y = 0
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there are additional constraints, which imply that in this case the brane is two dimensional and

given by the equations

~ ~ ~ ~ M
0y = 0y, ¢1=—¢2+ ok (3.62)

Now we calculate the effective geometry corresponding to the permutation boundary state

(1.161]), which recalling the matrix of the modular transformation for the parafermions ((1.333]),

takes the form:

|L, M) = Z S—LJ?“TMm/k Z |7,m, N1)1 ® |4, m, N1)o @ |j,m, No)o & |j,m, No)q (3.63)

jom 700 N1,N2
where S7; is matrix of the modular transformation of SU(2) (1.308)
2 . (2L+D1D(2j+)n
Spi=1/——= . 3.64
Lj k + ) Sm < k + 2 ( )

To obtain the effective geometry, one should compute the overlap (61, ¢, 05, ¢o| L, M). At

the beginning we should find the wave-functions of the parafermion disc theory |123]:

U (0,9) = (0, 03, m)) (3.65)

The wave-functions of the disc are the SU(2) wave-functions that are invariant under translation
of ¢. (Note that in [123] axial gauging is considered, and as a consequence the roles of ¢ and ¢ are

interchanged). Recalling that the SU(2) wave-functions are the normalized Wigner functions

V25 +1D3,,(9(0)) = /25 + 1e7 9 dl (cosh) (3.66)

we see that the function on disc are those of them with m = n. Using the eq. (3.38) for the
ratio of the elements of the SU(2), matrix of the modular transformations for the large k:

Sy, (k+2)

@D sin[(2 + 1)1] (3.67)

where 1& = (222)”, one obtains that in the large-k limit the overlap reduces to

(51, 52|L7 M) ~ Z Z sin[(2j + 1)?/;]6i7rMm/kDg;m(91(51))D%m(92(52)) : (3.68)

It is known [184] that &, are satisfying the relation (note that there is no summation

assumed for the repeated indices)

. o _ 1 [T . _
d’(cosb)d  (cosby) = 2—/ Mm@ (cosO)dy, (3.69)

™

—T
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The functions © and ¢ are functions of 6,0, and v defined in equations 1’ and 1’

Using (3.69) the overlap of the boundary state with the bulk probe can be written as
(0,05 L, M) ~ Z Z/ sin[(27 + 1)@2]eim(7_5_2‘51_2‘£2+%M)d{;m(cos O)dy (3.70)
joom <77

Now using that Y., DI (g) = %, where v is defined by the relation Trg = 2 cos ), and

the completeness of sin[(2j + 1)t] on the interval [0, 7] we get

@iz, by~ [y, (3.11)
where
cosw:cos%cos(’y/Q—é/Q—&l —q~52+%) (3.72)

From this equation it follows that the brane consist of all those points for which the expression
in the argument of the ¢ function has a root for «v. This is the same condition as the one coming

from equation (|3.59)), obtained in the Langrangian approach.

3.4 D-branes in asymmetrically gauged WZW model

3.4.1 D-branes in the Nappi-Witten model

Let us consider the gauged WZW model G/H defined in the following way [133]. One takes
G = G; x Gy and chooses two U(1) subgroups U(1); € G; and U(1); € G3. As gauge group
H one takes a product of the two U(1) groups, parametrized by p and 7, H = U(1), x U(1),
with embeddings em,; : U(1), = U(1)y, em,» : U(1), = U(1)2, em,; : U(1), — U(1)y,
em,5 : U(1); = U(1)y. We assume that U(1); is generated by ay, U(1); = e and U(1),
by ag: U(1)y = €292 and the generators are normalized in the usual way, Tra? = Tra3 = 2.

The action of H we take in the form

(g1,92) = (h1gihs, hygoht)), (3.73)

where

hy =em,;(h,) = e'Prar (3.74)



h, € U(1),, and

hy = em,(h,) = P, (3.75)

where h, € U(1),.

The action of the model in the absence of a boundary is
ST = SWEW (g1, k) + SV (ga, ko) + S(g1, 92, Ar, Ag), (3.76)

where SWZW(g;. k;), i = 1,2 are the usual WZW actions given by (1.263)) and S(g1, g2, A1, A2)
makes the action gauge invariant. Its explicit form is not important here for us and can be
found in [133] . For gauge invariance, the levels ki, ko, and embedding coefficients p, ¢ should

satisfy

k1p2 = k2q2. (377)

Now we consider the model in the presence of a boundary. We take the U(1),, group parametrized
by « and consider embeddings em,1 : U(l)y — U(1)1, and emy2 @ U(l), — U(1)y. We

define the boundary conditions

g = (91, 92) [boundary = (M1C1, m2Cy), (3.78)
where

My = emg(mg) = et (3.79)

— _ ig(at+y2)a
My = emgs(mg) = /1120,

and my, € U(1),, C1 = llfllfl and Cy = lgfglgl. The parameters p and ¢ are the same as
in and (3.75). 71 and 7, are possibly quantized [123] constants.

In other words, we take as the D-branes diagonally embedded U(1)s multiplied by the
conjugacy classes. These boundary conditions were suggested in [148]. Our description
is slightly different from that in [148], and more convenient for present purposes. Note that

boundary conditions on each group coincide with (2.42]).
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Let us check that the boundary conditions (3.78)) are invariant under the gauge transforma-

tion (3.73) :
9= (91, 92) = (ngiha, hygah') = (hamaly fili ha, Hymals ol 1Y) = (3.80)
((hamyhg)(hy ') fu(hy ') ™, (Rymah!t ) (R o) fo(Ry ) ™).

We see that the boundary conditions preserve their form under the gauge transformation, with

modified parameters:

a—a+p+T, ll — h;lll, lg — hfllg. (381)

As explained in section [2.2] in the presence of a boundary the action should be modified by

adding the boundary two-form (2.47]:

k k
oy W SV (gy )= [ (05N (g, ) 2 [l o, ) S 1,92, v, )
4 D 4 D
(3.82)
where w® (m, 1) is
w®(m, h) = ws(l) — Tr(m ™ 'dmdCC™?). (3.83)
We now check that (3.82)) is invariant under (3.73)) accompanied by (3.81]) .
First we compute the change of
WZW ky 2)
Sl == S (91; ]{?1) - w (ml, l1> (384)
i Jp

under the transformations g — higihe, m; — hymihy and [y — h;lll, resulting from the
presence of the boundary. From the Polyakov-Wiegmann identity (1.279)) we get
k

APeund GWIW (0 ey = —ﬁ i Tr(hy'dhydmymy* + hy'dhydC,C} (3.85)

+h1_1dh101dh2h2_101_1 + C’l_lml_ldmlc'ldhgh2_1 + Cl_ldoldhghgl)
Then we have

Aw! (1) = Tr(dhohy 'CTHAC + dhohy 'dCLCTY + dhohy *Cidhohy 'CTY), (3.86)

and

A(Tr(m{ dm,dC,CTY)) = Tr(=h{*dhihy ' dhg + hy*dh dCL O} (3.87)
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+hytdhiCidhohy 'O — mitdmyhy tdhg + mytdmy Crdhyhy PO

+hy tdhodCyCT Y + hytdhyCidhohy *CTY).

Collecting (3.85)) ,(3.86) and (3.87)) we obtain

k
Abeundg — ﬁ / Tr(hy 'dhomy ' dmy — hy'dhidmymy " — hy'dhihy ' dhy). (3.88)
D
Similarly for
k
Sy = SVEV gy ky) — 4—2 / w® (my, 1) (3.89)
T Jp
we obtain
k / / / ’
Abownd g, — ﬁ Tr(hy'dh,ymy tdmy — hy 'dhydmamy ' — by tdhbhy ' dh)). (3.90)
D

Taking into account (3.74) , (3.75)) ,(3.79) and (3.77) we find that APeundS; + AbPoundg, — ()

proving the gauge invariance of the action (3.82)).

3.4.2 SL(2,R) x SU(2)/U(1) x U(1) NW model

Let us consider the SL(2, R) x SU(2)/U(1) x U(1) Nappi-Witten model.
Here Gy = SL(2,R), Go = SU(2), ky = —k2, p= —1, ¢ = 1, and the U(1), x U(1), gauge

group acts in the following way:
(91,92) = ("7 greT7, €77 gae™P7*). (3.91)
The D-branes proposed in section have the form
Jhoundary = (e@TM7CY efletr2)osc,) (3.92)

where C; = I fil;" and Cy = I, f5l; ' are conjugacy classes, and f, = ew‘”’, where 1& belongs to
the set (2.27). v and ~, are possibly quantized constants. Now we describe this hypersurface

in detail. For this purpose we introduce Euler angles for SL(2, R) and SU(2),
G = €X1%3€i91%2e¢>1%3, (393)

g =TT e T (3.94)
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gy = X273 0277 ¢i0275 (3.95)

where the first two formulae describe different patches of SL(2, R) and the last one is the usual
Euler parametrisation for SU(2). It is shown in [156] that in the Euler angle parametrisations
the product of a U(1) subgroup and a conjugacy class can be described by inequalities: e*?3(C}

in the patch given by (3.93) is described by the condition

1 Trfy
AP 3.96
cos o < —=, (3.96)
and in the patch (3.94) by the condition
nn _Trfy
h— < 3.97
cosh o < —~—, (3.97)
and e“?3()y in the parametrisation (3.95) is given by the condition
Trf 2
e > 3.98
cos 5 5 (3.98)

In order to find the equation of the D-brane hypersurface we should find « on the SL(2, R) and
SU(2) sides and equate them to each other. It is easy to find the angle « in each case. Writing
the boundary condition in the form e~*?*g; = '} and taking the trace on both sides we easily

obtain in the first patch:
X1+ ¢1 Trf1

ha 4 — 3.99
cosh(a + 7 5 2c05921 (3.99)
in the second patch:
X1+ ¢ Trfi
h — = 1
cosh(a + v 5 ) Jcosh 3 (3.100)
and for SU(2):
T
cos(a + 7 — Xo * ¢2) e (3.101)

2 2 cos 2 92

We see that the conditions (3.96)) , (3.97)) and (3.98]) are necessary for the existence of solutions

to eq. (3.99) ,(3.100) and (3.101]) respectively. Now using gauge fixing conditions x; = 0 and

¢1 = 0 we can explicitly write down the D-brane hypersurface equation. In the first patch we

have

2 cos 2 2 2cos &

T T
cosh (arccos < rf29 ) + X2 R +72 — ’y1> rf191 (3.102)
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and in the second patch

T T
cosh (arccos < rf2~ ) + X2 + 9 + 72 — ’yl> r—fl (3.103)

2 cos %2 2 2cosh 3

3.4.3 D-branes in the Guadagnini-Martellini-Mintchev Model

We begin by reviewing the model introduced in [102,[103] (see also [136] ). This model is a kind
of gauged WZW model based on a group G; x G5. The gauge group H acts in the folowing
way: we choose subgroups H; € G; and Hy € G5 and take embeddings em; : H — H;
and emy : H — H,. It is assumed that H; and Hy are the same subgroups of GG; and Go

:H = Hy = H,. The group H acts by the formula

(91,92) = (gremy(h™1), ema(h)ga). (3.104)

It was shown in [102] that the following action is invariant under (3.120)) :
Semm = SWZW(QL k1) + SWZW(QQ, k2) + Sint (91, 92, k), (3.105)

where SWZW (g, k;), i = 1,2 are the usual WZW actions (1.263) and

k
Sint (91,92, k) = =5~ / &z (Te(Ragy ' 0ug1) Tr(R,0" 9295 ") (3.106)
+e" Tr(Ragy '0,91) Tr( R0, 9295 ).
Here R, and R/, are the generators of the Lie algebra of the subgroup H in G and G respec-
tively. It is shown in [102] that for gauge invariance the coefficients entering in (3.105) should

satisfy

]{?1 = k’?“/, k’g = kJT, (3107)
where r and ' are given by the embeddings:
Tr(RoRg) = 10, Tr(R,LRj) = 1"04p. (3.108)

The conformal field theory defined by this sigma model was discussed in [103] , where the
current algebra and the Virasoro algebra with a central charge value coinciding with that of

the GKO construction for the coset (G; x G3)/H were found.
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Here we consider the case when the gauge group is an abelian group, parametrized by p:
H =U(1),. As before we assume that H; is generated by a generator a;, H; = ™M1 and Hy
by ay: Hs = €292 and that the generators are normalized as usual: Tra? = Tra3 = 2. In this

case the gauge group acts as

(91, 92) = (g1h1, haga), (3.109)
where
hy = emy(h, ') = e PP, (3.110)

h2 — emg(hp) — ez‘qpm’
h, € U(1), and p and ¢ satisfy the relation
kip? = kag?. (3.111)

Now we consider the model in the presence of a boundary. We take the U(1),, group parametrized
by « and consider embeddings em,1 : U(l)y — U(1)1, and emy2 @ U(l)y — U(1)s. We

suggest the following boundary conditions:

(91792)’boundary = (m1017m202); (3112)

where

my = emg1(mg) = e~ Pletma (3.113)

My = emg z(mg) = 142

and m, € U(l),, C1 = llflll_l, Cy = lgfglz_l. The parameters p and ¢ are the same as in

(3.110). 7, and 72 are possibly quantized [123] constants. These boundary conditions are

invariant under ((3.109) :

(maly fil7Y mala fol ') — (maly il ha, hamals foly ) (3.114)

= ((Pama) (b ') fu(hy )™ (hamo)la foly ).
We see that boundary conditions keep the form with modified parameters

a—a+p, I — hi'l. (3.115)
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In the presence of a boundary we suggest the following action:

ndr k k
Sgl\?h/y{ = Swzw(gh ]ﬁ) -1 /DM(Z)(WH, l1) + SWZW(Q% k’z) - —2/Dw(2) (?7127 12) + Sint(g1>g2u k)

47 4
(3.116)
Now we check that the action is invariant under (3.109)) accompanied by (3.115) . We easily

derive the change of S; and Sy defined in (3.84) and (3.89) correspondingly under a gauge

transformation,
k
Aboundarysl — _1 Tr(hl_ldhldmlmfl), (3117)
47T D
k
Aboundarys2 _ __2/ Tr(h;ldhgdmgmgl). (3118)
47T D

which cancel each other as a consequence of the conditions (3.110)) , (3.113]) and (3.111]) .

3.4.4 SU(2) x SU(2)/U(1) GMM model

We begin by describing this model following [136].
The SU(2) group elements are parametrized as

g1 = exp(ig103) exp(ibho2) exp(ith03), (3.119)

g2 = exp(ipa03) exp(ifa0s) exp(ithyos).
The gauge action of the U(1) subgroup is defined by
U — P —pe(z,2), P2 — P2+ qe(z, 2). (3.120)
In the parametrization the action ([3.105)) is

1
S=1 / d*x[ky(8,010"01 + 8,010" 1 + 0101041 + c08(2601)0,910, 01 (" + €)) (3.121)
+ko (8H926“02 + 020" b + Dpihp0*ahy + cos(292)au¢2au¢2(77m’ + ™))

+k3(cos(2601)0, 1 + 0,101)(co8(202)D, s + 8,62) (N + ).

For the action to be invariant under (3.120)) one needs to impose the following algebraic con-

straints:

kip = ksq, koq = k3p. (3.122)
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Multiplying these equation we obtain

]{?3 = \/ klkg, p/q = \/ k’g/k’l. (3123)

Fixing the gauge by setting ¢, = 0 one gets a background whose metric is of the (non-Einstein)

TH? type
ds® = k[d0} + sin® 0,d¢7 + Q*(d05 + sin® Odg3) + (dip + cos O1dgy + Q cos Oadgs)?],  (3.124)
where we have rescaled all variables by 1/2, renamed 1y — ¢, 1)1 — ¢ and introduced
Q=p/q=Vk/ki, k=k. (3.125)
The background also includes the antisymmetric tensor field
By = kcosby, By, = kQcosbycosbty, By, =—kQ cosbs. (3.126)
The D-branes proposed in section have the form
(915 92)boundary = (e PltmosCy elalatn)oscy) (3.127)

where C; = hy fih" and Cy = ha foh; " are conjugacy classes, f; = €19 and f, = 293 and
1[}1, 1&2 belong to the set |D . Let us now find the equation describing this hypersurface.
As before, we should find in the parametrization (3.119) the angle o and equate both sides.

Writing the boundary conditions as
Tr (P17 6.} = 2 cos 1)y, (3.128)

Tr(e @ +12)73 g)) — 2 cos 1)y, (3.129)

from ((3.128]) and (3.129)) we obtain

cos wAl
_ 1
cos(p(ar+m) + 1 +4) = — 5 (3.130)
and
cos(—qla+ 1) + s+ ) = 202 (3.131)
q V2 2 2) = cosly .
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Eliminating « from (3.130)) and (3.131]) we get

1 ) 1 )
— arccos (COS%) _ it Y1 = —— arccos <C08w2> + b2 Y2 - Y. (3.132)
p q

P cos 6, cos 6y q

Using now the gauge fixing condition ¢, = 0, and rescaling and renaming all the variables as

before, we get the D-brane hypersurface on this 7" type space,

cos zﬁg 2 cos 151 o1+
= 2 arccos + — arccos — + 2 - M), 3.133
P2 (COS % ) 0 (COS % ) 0 q(2 — ) (3.133)

where () is defined in (3.125]) . As before 6; and 0, satisfy the inequalities
0, - 0, -
cos B > cosy, cos 5} > cos . (3.134)

The presence of the constant term ¢g(y2 — ;) reflects the invariance of the action (3.121]) under
the rotations ¢; — ¢; + B;, ¥; — ¥; + 0;, where 3; and 9d; are constant angles, ¢ = 1,2. But,
as noted in [123] , in the gauged WZW models these symmetries are broken to some discrete

subgroups. In the case in question we have

s )

where n; and ny are integers, and using (3.123)) we have for the last part

2n

2 — p) =~ 3.136
b =) = = (3.130)

where n = n; —ny. We see that the branes (3.133)) are specified by the three parameters 1/31, wAQ

and n, in one-to-one correspondence with the primaries of the corresponding GKO coset model

(SU(2) x SU(2))/U(1).
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Chapter 4

Canonical quantization of the WZW
and gauged WZW models with defects

and boundaries

4.1 3D Chern-Simons theory

4.1.1 Action of Chern-Simons theory

Consider Chern-Simons theory with sources on a product of a Riemann surface ¥ and a time
line R [52]:

k

T 4r

+1 Z/ dt,tr)\lvl(t)_l(ao + A())Ul(t)
i YR

Se8 tr (A AdA + §A3) (4.1)
YXR

where A is a three-dimensional connection, v;(t) is a group valued map on the line R;,
Ai =A; + H is a highest weight representation integrable at level k, taking value in the Cartan
subalgebra.

Writing A = A + Apdt, where A is tangent to the surface Y, one can use gauge freedom to

impose the condition Ay = 0. In this gauge equations of motion are
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2)+iY Tid(z—2)=0 (4.2)
i=1
where F' = dA + A?, and z; are points where Wilson lines hit M. T} are conjugacy classes in
the Lie algebra g

E = Ui)\i’l}iil, v; € G (43)

Introducing local angular coordinate ¢; on discs D; around point z; one can locally write

Ay = — Ao, — dn (4.4)
where 7; € G is single-valued on the disc and 7;(z;) = v;.
The solution implies that holonomy M; of flat connection around point z; takes value
in conjugacy classes C;:

M, = me%i,\i/kn;l

7

(4.5)

The phase space of the Chern-Simons theory is given by the moduli space of flat connections
on the Riemann surface ¥ punctured at the points z; where Wilson lines hit M, with the

holonomies around punctures belonging to the conjugacy classes M;.

4.1.2 genus (

Here we present details on symplectic form on moduli space of flat connections on sphere thm
with n Wilson line and m holes.

Holonomies are subject to the relation

M- M =1 (4.6)

The symplectic form on the moduli space of flat connections on 2-dimensional manifold M

with n sources is given by formula

k
0= —tr/ (6A)* + zZtr vy 1v;)?) (4.7)
where A satisfies (4.2). The ¢ denotes here exterior derivative on moduli space.
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In the terms of holonomies M; it takes the form [7]:

RN ko —1 —1
where wy, (M;) is the same two-form which appeared in (2.6]):
wa, (M) = tr(; o™ Mt ge=2mN /by (4.9)

Here Ko = K,, = I and

Ki= M, M, (4.10)

Let us briefly explain how quantization of the moduli space of flat connection on Sﬁ)o with
form (4.8) leads to the space of conformal blocks. By a change of variables symplectic form

(4.8) can be written as sum of Poisson-Lie QFF forms,

Qg = Y Q") (4.11)
i=1
where
QPH(M) = wy(M) + Tr(Ly'6 Ly LZ'0L-) (4.12)
L, and L_ here are components of the Gauss decomposition L, L_ = M. On the other side

it is known that quantization with QF” leads to the highest weight representations Y, of the
deformed enveloping algebra U,(g). Hence quantizing 735721’0 with the form Qg leads to the
tensor product ®; T, y,. Gauge transformation of gauge connections give rises on the quantum
level to the diagonal action of ,(g) on ®;Y, »,. Therefore, in the first approximation, we obtain
the subspace of invariant tensors of that action. More precisely, the subspace of invariants may
be equipped with a semipositive scalar product and one should divide by the subspace of null-
vectors. The quotient spaces are isomorphic to the spaces of conformal blocks of the WZW
theory.

Consider now the case of sphere with m holes.

The symplectic form on moduli space of flat connections on sphere with n sources and m

holes can be decomposed as sum of symplectic forms on moduli space of flat connections on
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sphere S?

im0 With n +m sources and m copies of the symplectic form on moduli space of flat

connections on the two-dimensional disc with one source Dj:

sz, =2, +> D, (4.13)
=1
Qp, = Q% (n, \) (4.14)
where
ko ) 1
QM. \) = / B () 6m) + —te (A 60)?)do (4.15)
oD 471' 27T

Geometrical quantization of the coadjoint orbits of LG with the form (4.15)) leads to the inte-
grable representation H), of the affine algebra g at level k.
We obtain that Hilbert space of quantized Chern-Simons theory on Sy, x R, were n time-like

Wilson lines assigned with representations A, ...\, must be of the form
Hn,m - Z V)\l,...)\n,Tl,...Tm X Hn X ... H’T'm (416)
T1y--Trm

where H,, are the representation spaces of LG corresponding to the highest weights 7;, and

Vi1...r, 18 space of conformal blocks of the WZW model with group G.

l

We finish this section by writing explicitly formula (4.8]) for the cases n = 3 and n = 4,

which we need in next sections. For the case of n = 3
koo k
. -1
QS%,O = El wy,; (M;) + Etr(éMlMl My M) (4.17)

For the case of n = 4 the second term in (4.8]) can be written in two equivalent forms:

4

k k o I
Qsz, == > wa (M) + Lt (OM M LM 6 My + S MM M o My) (4.18)
=1
or
ko k
Qsg, = ZwAZ.(Mi)+gtr(6M1Mf1M§15M2+5M1MflMglM§16M3M2+5M2M;1M§15M3)

i=1

(4.19)
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4.1.3 genus g

Denoting holonomies around handles a; and b; by A; and B;, and around punctures by M; € C’éf'

we arrive at the conclusion that the moduli space of the flat connections on a Riemann surface

of the genus ¢ with punctures is

Fom =G x [[ C¥

i=1

subject to the relation

[Bg,Agl} By, AT My - My =1,

where

[Bj, Aj] = B;A; B TAS

and to the adjoint group action.

The symplectic form on F,, was derived in |7] and has the form:

n g
Uty = Ut + Y
i=1 j=1
where
k k —1 ~1
QM«L = —w,\i(Mi) + —tr(KifléKi_lKi 5K7,) s
47 4
k k 1
Qu, = U(Bj,Aj) + (K 20 Knyzj—2 K n2j10Knt2j-1)
+ ( n+2j 16Kn+2] 1 7’L+2j5Kn+2]))
and where

Ki = M;--- M, 1<n,

Kn+2j—1 = Aj[Bj—17 Aj_—ll] ce [Bh Al_l]Kn s
Kn+2j = [ijAgl][BlaAfl]Kn 1 SJ <g

K can be chosen to be equal to the unity element. According to (4.21)) also

Kn+gg - ] .
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wr(M) and ¥(B, A) are defined in equations (4.9)) and (2.9)) correspondingly.
It was also proved in [7] that quantization of the moduli space F,, with the symplectic

form (4.23) leads to the space of n-point conformal blocks on a Riemann surface of the genus

g.

4.1.4 Double Chern-Simons theory

The last piece which we need is the double CS theory [131] with a pair (A, B) of the respectively
group G and group H C G gauge fields. The action functional of the double theory is the

difference of the CS actions for group G and H:

S2C5(A,B) = S99 (A) — S99(B) (4.29)
The symplectic form is
Qs _ K / Tr [(6A4)* — (6B)?] (4.30)
dr [y,

Clearly, both gauge fields may be coupled to time-like Wilson lines with labels in the Cartan

subalgebras of g and h respectively.

4.2 Canonical quantization of the WZW model with de-

fects and boundaries

4.2.1 Statements to prove

Let us now explain how the Hilbert space described by eq. appears in the different in-
stances of the WZW model.

Comparing Hj, with we see that it is the Hilbert space of the WZW model on
cylinder. This implies that the symplectic phase space of the WZW model on a cylinder
is symplectomorphic to that of the Chern-Simons theory on an annulus. This was observed

in [52].
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Comparing Hs; with shows that it is the Hilbert space of the WZW model on a
strip with the boundary conditions specified by the Cardy states. It was proved in [88] that
the symplectic phase space of the WZW model on a strip is indeed symplectomorphic to that
of Chern-Simons theory on a disc with two Wilson lines.

Inclusion of defects allows to extend these results [165].

Comparing Hy o with shows that it is the Hilbert space of the WZW model on
cylinder with NV defects.

Comparing Hyyo1 with we see that it is the Hilbert space of the WZW model on a
strip with N defects.

Comparing Hy y with shows that it is the Hilbert space of N-fold product of WZW
models on a strip with boundary conditions given by the permutation branes.

This leads to the following statements [165] proved in the next section:

1. The symplectic phase space of the WZW model with N defects on a cylinder is isomorphic
to that of Chern-Simons gauge theory on an annulus A times the time-line R with N

time-like Wilson lines.

2. The symplectic phase space of the WZW model with N defects on a strip is isomorphic
to that of Chern-Simons gauge theory on a disc D times the time-line R with N + 2

time-like Wilson lines.

3. The symplectic phase space of N-fold product of WZW models on a strip with boundary
conditions given by the permutation branes is isomorphic to that of Chern-Simons gauge
theory on a sphere with N holes times the time-line R and with two time-like Wilson

lines.

4.2.2 Bulk WZW model

In this section we review canonical quantization of the WZW model on the cylinder > =

R x S = (t,z mod 27) [44},58,86]. The world-sheet action of the bulk WZW model is studied
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in section is given by ([1.263]), but here for the purpose of the canonical quantization we

will perform Wick rotation, and use instead of the complex the light cone coordinates x* = z4t:

ghulk(g) = (4.31)
k

_ . ok
o [ Tl 049)(g7 0 g)daTda + — | W H(g)
>

A Jp

Note also that we use here and in the next chapter the WZW kinetic term with the opposite
sign than in section The phase space of solutions P can be described by the Cauchy data
at t =0.

g(z) = g(0,2) and &(x) =g '0,9(0, ) (4.32)

The corresponding symplectic form is

I{Z 27
QPulk = oo /O I(g)dx (4.33)
where
II(g) = tr (=689 '0g + (S0 + 9 '0a9) (9 '09)*) (4.34)

The ¢ denotes here as before exterior derivative on the phase space P. It is easy to check that

the symlectic form density I1(g) has the following exterior derivative
0T1(g) = D" % (g) (4.35)

what implies closedness of the €2

sQPulk — 0 (4.36)
The general solution of equations of motion ((1.270)) satisfying the periodicity conditions
g(t,z +2m) = g(t,x) (4.37)
is
gt ) = gr(at)gp'(a7) (4.38)
with gz, r satisfying monodromy conditions
gr(a® +2m) = gr(z")y (4.39)
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gr(x™ +2m) = gr(z™)y (4.40)
with the same matrix v. Expressing the symlectic form density II(g) in the terms of g, r we

obtain
I = tr[g; '691.0. (97 ' 091) — 95 09r0:(95" 0gr) + 0. (91 ' 09r.9% Ogr)] (4.41)

Using (4.41)) and (4.39)), (4.40) one derives for €

Qbulk — Qchiral(gl” '7) o Qchiral<gR7 7) (442)

where

k

) 2T B B k 3 _
Qehiral(g, ) = E/ tr (9, 091.0: (91, 091)) d + o —tr(g;"091(0)077 ™) (4.43)
0

The chiral field g; can be decomposed into the product of a closed loop in GG, a multivalued

field in the Cartan subgroup and a constant element in G:
gr(w) = h(z)e™ gyt (4.44)
where h € LG, T € t ( the Cartan algebra) and gy € G. For the monodromy of g;, we obtain
v = goe®™ gyt (4.45)
Parametrization induces the following decomposition of Qiral(g; ~)

) k
QChlral(gL, ,Y) — QLG<h7 7—) + qu_(ry) (446)

where QFY(h,7) is defined in (4.15), and w,(7) is defined in (4.9). Recalling (4.13), and

(4.42)) we see that the symplectic phase of the WZW model on circle coincides with that of CS

theory on annulus.

4.2.3 Boundary WZW model

Consider the WZW model on a strip R x [0, 7] for the Cardy boundary conditions. From the

analysis of the section follows that for the case of strip we should impose the boundary

conditions ([2.32)):
g(t,0) e C,y, g(t,m) €Cp, (4.47)
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The boundary equations of motion (2.18)f]
digg ' =g '0_g (4.48)
force g, and gg to satisfy the constraint

9y +2m) = go(y)y, and gr(y) = go(—y)hg' (4.49)
The equations imply
9(t,0) = gr(t)gr' (—t) = gr(t)hogy (1) (4.50)
and

g(t,m) = gr(m + t)gp' (r — t) = go(—7 + t)yhogy (-7 + t) (4.51)

Therefore to be in agreement with (4.47) one should require
ho € Cy,, and ~hg=h, €C,, (4.52)

The symplectic form on the phase space of the WZW model on the strip is:

Qv _ % [ /0 " 1(g)dz + wpy (90, 0)) — wp_ ((0, 7)) (4.53)

where w,, is defined in ([2.6]).
The equations (4.35)), (2.4) imply that the form (4.53)) is closed. Using the relations above
it is obtained in [88] that

Qstrip — QLG(]'L, 7_) + andry (454)

where

k
QPndy = P [wr (7) + Wyo (o) — Wy, (Yho) + tr(Shohg 'y ~17)] (4.55)

Note that (4.55) has the form (4.17). Therefore comparing (4.52) with (4.6]), and (4.54]) with
(4.13) for n = 2 and m = 1 we obtain that symplectic phase space of the WZW model on the

strip coincides with that of CS theory on the disc with two Wilson lines.

*The sign difference comes from the choice of the light cone coordinates z=.
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4.2.4 WZW model with Topological defects

Recall briefly the basic facts on defects studied in section [3.2] Assume that one has defect line
separating world-sheet on two regions »; and 5. In such a situation WZW model defined
by a pair of maps ¢g; and g. Maximally-symmetric topological defects defined as defect lines
satisfying conditions:

J1 = Jolactect tine  and Jy = J|defect line (4.56)

The conditions (4.56|) imply that on the defect line fields g, and go satisfy the constraint
9192_1|defect line — F S Cu = ﬁemﬂu/kﬁ_l) 6 S G (457)

where ;1 =p - H, as before, is a highest weight representation integrable at level k, taking value
in the Cartan subalgebra. To write action of the WZW model with defect one again should
introduce auxiliary disc satisfying conditions

OB =%+ D and 0By =5+ D (4.58)

and continue fields g; and g, on this disc always holding the condition (4.57). After this

preparations the action takes the form:

k
5 = 85 (g1) + SMMga) + 1 [ (100 (4.59)
T JD
where
@ (g1, 92) = wu(F) — Tr(gy 'dgrg; ' dgo) (4.60)

The form (4.60]) satisfies the equation:

dw(gla 92) - WWZ(gl)|defect - WWZ(QQ)ldefect (461)

Equation (4.61)) guarantees that the action (4.59) is well defined.
Now consider WZW model on the same cylinder as in section [4.2.2] and put defect line at
x = a in parallel to the time line. The defect gluing conditions (4.56) constrain gr.,,9r,,91,,9R,

to satisty the following relations:

gL, (y) =491, (y)h(;l (462)
IR, (y) = 9Rr, (y)ma
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The equations (4.62)) imply

F(t,a) = g1g5 ' (t,a) = (4.63)
g, (a+ t)gg. (a —t)gr,(a — t)gp) (a+1) =

gr, (a + t)mahagzll(a +1)
Therefore to satisfy the boundary condition we should require
Mmahe = do € Cy, (4.64)
Given that we consider WZW model on cylinder we should additionally require
g2(t,2m) = ¢1(t,0) (4.65)
The condition imposes the following relation on monodromies vy, vz of gz, and gg,:

9. (y +27) = g1, (Y) 1 (4.66)
9r, (Y + 27) = gr, (¥) VR

and

VAL = Maha = dq (4.67)

It is instructive to compare (4.67) to (4.39) and (4.40). We have seen in section that in

the absence of defect left and right monodromies are equal, whereas presence of defect creates

relative shift between them equal to the defect conjugacy class. The symplectic form now is:

k

T ar

Q4 [/Oa (g1 )dx + /a ' [I(g2)dx — w(g1(0,a), g2(0,a)) (4.68)

The conditions (4.35)) and (4.61)) imply that
604 =0 (4.69)
Substituting in (4.68) the relations above, we can show that [165]

QY = QF(hy, 1) — QX4 (hg, r) + QF (4.70)
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where

k

0l = 1w () = @y (7) = Wy (da)] + tr(6vrV5 0y ") (4.71)

Note that (4.71) has the form (4.17). Comparing (4.67) with (4.6) and (4.70) with (4.13))

for n = 1 and m = 2 we obtain that the phase space of the WZW model with a defect
is symplectomorphic with that of Chern-Simons theory on an annulus with a Wilson line.

Generalization to an arbitrary number of defects is straightforward.

4.2.5 Defects in open string

In this section we consider WZW model with defect on a strip. Assume again that we have
defect at point x = a in parallel to the time line. The strip is divided to two parts with fields

g1 and go. We should impose here boundary conditions at x = 0 on ¢y, requiring
91(t,0) € Cuy = Boe™™* 551, By e G (4.72)
then defect condition at x = a, requiring
9195 ' (t,a) € C,, = Bu®™/*p 1 B, € G (4.73)
and finally boundary condition at r = 7 on go, requiring
go(t,m) €Cy, = Bre®™/kp 1 B € G (4.74)

Equations (4.72)) and (4.73) as before yield:

9Rr, (y) =91, (_y)h(;l (475)

910, 1) = gr, (t)gg, (—t) = gr, () hogy (1) (4.76)
ho € Cy, (4.77)

9L, (y) =J1, (y)h(;l (478)

Ir,(Y) = gr, (Y)Maq
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Maha = d, € C,, (4.79)

To solve the last boundary condition (4.74) we assume that g;, has monodromy matrix -:

9o, (y +27) = g1, ()Y (4.80)
Using and one obtains:
91, (y +2m) = gr, (y) havhy! (4.81)
IR, (Y) = gL, (=y)hahg ma (4.82)
Equations and imply
ga(,1) = gra(m + )gpL(m — 1) = (4.83)

91, (=7 + Dhayhy 'm hohy tgp, (=7 + 1)
To satisfy (4.74)) one should require
yh'm; ho = vd; ' ho = hy € C,., (4.84)

It is again instructive to compare (4.84)) to (4.52)). We see that presence of defect again requires

to include defect conjugacy class. This is classical analogue of the defect-boundary fusion

(1.181]). The symplectic form is
Sd k‘, a ™
= — H(gr)dz+ | TI(ge)dx — (4.85)
Ar | Jo a

w<gl <O7 @)7 92(0’ a)) + Wyo (91 (07 O)) — Wy (92(0’ 77))

Using the relations above we obtain |165]:
o4 = Q% (h, ) + QP (4.86)

where

k
Q" = e (9) + Wi (o) = Wi () - (4.87)
Wy (do) + tr(d;  Shohgy 'dyy ™' 67) + tr(y~'0vd, *6d,)

+tr(0d,d, Shohg )]
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Note that (4.87) has the form (4.19)). Therefore comparing (4.84) to (4.6) and (4.86]) to
(4.13) for n = 3 and m = 1 we obtain that the phase space of the WZW model on a strip with

a defect inserted is symplectomorphic to that of CS theory on disc with three Wilson lines.

4.2.6 Permutation branes

Recall basic facts on the permutation branes studied in section [2.3]
Maximally symmetric permutation branes on two-fold product of the WZW models G x G

is defined as boundary conditions satisfying the relations 2.108|ﬂ
Ji = —Jolom (4.88)

and

J2 = —j1|3M (489)

Here label 1 and 2 refer two the first and the second copy. The conditions (4.88) and (|4.89)

imply that values of g; and gy on the boundary constrained by the relation:
galonr = F € C, = B¥™/k3~1 e @, (4.90)

The corresponding Lagrangian is:

5 = S5 (g0) + 5"(gn) — 1 [ wrlon a0 (4.91)
where
wp (91, 92) = wu(F) + Tr(gy ' dgidgzgy ™) (4.92)
The form satisfies the equation:
dwp (g1, 92) = 0" Z(g1) lboundary + @" Z(92) [boundary (4.93)

Equation (4.93) guarantees that the action (4.91)) is well defined. Consider now two-fold product
on a strip with boundary conditions (4.88]) and (4.89)) imposed at points z = 0 and x = 7. It is

possible to show that these boundary conditions can be solved with g.,,9r,,91,,9r, satisfying:

9, (y +27) = gr, (Y)n (4.94)

"The sign difference comes from the choice of the light cone coordinates z®
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9L, (y +27) = g, (y) e (4.95)

9r,(y) = gL, (—y)hg* (4.96)
9r, () = gL, (—y)mg" (4.97)
From (4.96)), (4.97) we obtain:

Therefore to be in agreement with (4.90)) we should require:
moho = po € Cy, (4.99)

Equations (4.94) and (4.95)) further imply

F(m,t) =gp,(—7 + t)vlmwghogzll(—ﬂ +1) (4.100)

Therefore we additionally should require:

nmoy2ho = Mpohg v2ho = M1poTe = px € Cp, (4.101)

where

o = hy 'yl (4.102)
The symplectic form corresponding to the action (4.91)) on the strip is

k

T 4r

Q’P |:/O7T(H(gl) +H(Q2))d$+W73<91<0,0>,g2(0,0)) _WP(QI(O,W),QQ(O,W)) (4103)

Repeating the same steps as explained in the previous sections we obtain [165]:

Qp = QX% (hy, 71, ) + QF%(hy, 73, ) 4 QPRdy—Perm (4.104)
where
andryfperm _ k ~
- E [wﬁ (71) + Wry (72) + Whg (pO) — Wy (pﬂ') (4105)

— tr(py " opodiady ) — tr(vy 0mdpopy ) — tr(py vy oipedTeds )] -
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Comparing (4.6)) to (4.101)) and (4.105]) to (4.19)), and finally (4.104]) with (4.13)) for n = 2 and

m = 2, we see that symplectic phase space of the WZW model G x G on strip with boundary

conditions specified by permutation branes coincides with that of CS on annulus with two
Wilson lines. The generalization to the case of permutation branes on N-fold product is again

cumbersome but straightforward.

4.3 Canonical quantization of the Gauged WZW model

with boundaries and defects

4.3.1 Main Statements

In this chapter we prove the following statements [166,(167]:

1. The symplectic phase space of the gauged WZW G /H model on a cylinder with N defects
is symplectomorphic to the symplectic phase space of the double Chern-Simons theory
on an annulus A times the time-line R with G and H gauge fields both coupled to N

Wilson lines.

2. The symplectic phase space of the gauged WZW G/H model on a strip with N defects is
symplectomorphic to the symplectic phase space of the double Chern-Simons theory on a
disc D times the time-line R with G and H gauge fields both coupled to N + 2 time-like

Wilson lines.

3. The symplectic phase space of the N-fold product of the gauged WZW models on a
strip with boundary conditions given by permutation branes is symplectomorphic to the
symplectic phase space of the double Chern-Simons theory on a sphere with N holes times

the time-line R with G and H gauge fields both coupled to two Wilson lines.

In the special case of topological coset G/G these isomorphisms take the form:

4. The symplectic phase space of the gauged WZW G /G model on a cylinder with N defects
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is symplectomorphic to the symplectic phase space of the Chern-Simons theory on 72 x R

with 2N Wilson lines.

5. The symplectic phase space of the gauged WZW G/G model on a strip with N defects is
symplectomorphic to the symplectic phase space of the Chern-Simons theory on S? x R

with 2N + 4 time-like Wilson lines.

6. The symplectic phase space of the N-fold product of the topological coset G/G on a
strip with boundary conditions given by permutation branes is symplectomorphic to the
symplectic phase space of the Chern-Simons theory on a Riemann surface of the genus

N — 1 times the time-line with four Wilson lines.

The isomorphisms 4 and 5 allow us to achieve to a very detailed picture of defects in this
particular example of topological field theory. This picture enables us to infer that in general
defects in semisimple 2D TFT should be described by means of a 2-category of matrices of
vector spaces [82] and that the action of defects on boundary states is given by the discrete

Fourier-Mukai transform.

4.3.2 Bulk gauged WZW model

Here we review quantization of the gauged WZW model on the cylinder ¥ = R x S' =
(t,x mod 27) as it is done in [89).

The action of the gauged WZW model is studied in section [1.5.5
SG/H(g, A) _ SWZW<9) + Sgauge(‘%A) : (4106)
where

k ko1
S = - / Tr(g'0,9) (97 0-g)dade™ + — [ ctr(g7'dg)®  (4.107)
¥

47T B 3
k + 7.~ 7kin WZ
— dr™dx L™ + | w ,
ar | Js B

k
Sgauge(g’ A) — 2_ / Lgauge’ (4108)
b))

™
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LEee(g, A) = —tr[~0499 A+ g7 '0_gAs +gAgTIAL — ALA] (4.109)

+

Here as in the previous section = = x 4+ t. and since the kinetic term has the opposite sign

than in section the terms in (.109) also have different signs than in [1.5.5]
With the help of the Polyakov-Wiegmann identities ((1.279) and ({1.278) it is easy to check

that the action (4.106)) is invariant under the gauge transformation:
g — hgh™*, A — hAh™' —dhh™? (4.110)

for h:>X — H.

The equations of motions are:

D (¢7*'D_g) =0, Tr(¢g"'D_gTy)=Tr(gD g 'Ty) =0, F(A) =0, (4.111)

where Dig = 0+g + [A+, g] and Ty is any element in the H Lie algebra.

The flat gauge field A can be written as h=*dh for h : R*> — H and satisfying:
h(t,r +2m) = p 'h(t, z) (4.112)

for some p € H.

Define § = hgh~!. Note that § satisfies
gtz +2m) = p g, z)p. (4.113)
In the terms of § equations take the form:
0. (G7'0_g) =0, Tr(§7'0_§Ty) = Tr(§org "Ty) =0. (4.114)

The canonical symplectic form density, obtained following the general prescription [38,39,
80|, is given by:
%" (g, n) = 11%(g) + 9,¥(h, g) , (4.115)
where U (h, g) is two-form defined in (2.9, I1(g) is defined in (4.34)).

Integrating (4.115) we get the canonical symplectic form:

146



k

21
QE/H — —/ 11%(§)dx + 4£\I/(p_1, hgh™1(0)) . (4.116)
0 7I

47
Collecting (4.35)), (4.113) and using ([2.8]) one can show that the form (4.116) is closed.
Equations (4.114]) can be solved in the terms of the chiral fields:

g=gr(@")gr' (@), Tr(d,929; ' Tr) = Tr(9y9r95 Tr) = 0 (4.117)
with the monodromy properties:

gy +2m) = p gr(y)y, gr(y+2m) = p gr(y)y. (4.118)

The monodromy properties (4.118) imply that the chiral fields g r should be written as

products of fields as well:

9. = hg'ga, 9r = hp'ge, (4.119)

where hg,hp € H and g4, g9c € G. The fields in (4.119)) should additionally satisfyﬂ:

tr(Tu (9, hphy' — 9,9495")] =0, tr(Tu (9, hphp' — dy9c95")] = 0 (4.120)

and
hp(y +27) = hs(y)p, ga(y +2m) = ga(y)v, (4.121)
hp(y +2m) = hp(y)p, go(y +2m) = go(y)y - (4.122)

Using (4.120)) one can show:

trlg; 0910y (g; " 0g1)] = trlg1 6940, (91" 6ga) — ' 6hpdy(hy'ohe) + 0,(0hshy' 6g4g5")]

(4.123)
and similarly for g and hp, gc.
Collecting (4.117)-(4.123)) and (4.41) one can show that
QG/H — Qchiral(gA’ ’7) _ Qchiral(gc’ ’7) _ Qchiral(hB’ ,0) + (2(:hiral(hD7 p) (4124)

fOne can arrive at the decomposition (4.119) with the properties (4.121) and (4.122) in the following way:

taking, say, a field hp satisfying the first part of (4.121}), one can then define g4 as g4 = hpgyr, satisfying the

second part of (4.121)).
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Comparing (4.124]) with (4.42)), remembering that the latter is the symplectic form of the
Chern-Simons theory on A x R, and recalling ({4.30]), we arrive at the conclusion that the phase
space of the gauged WZW model on a cylinder coincides with that of double Chern-Simons

theory [89,131] on A x R.

4.3.3 Quantization of GWZW with defects

Recall the action of the gauged WZW model with defect studied in section |3.3l The bibrane
has the form ([3.52):

(91,92) = (C2Chp, LpL™"). (4.125)

where Cy € CZ', Cy € 7, p € G and L € H and action is

SG/H=def (g g0 Ay Ay) = SKI—del (g o) | Geaugedel (g o 4 Ay | Glop—del (4.126)

where
kin—def k kin + — k: kin + -
S (91,92) = — | L"(g1)dxz"dax™ + — [ L*"(go2)dx"dx (4.127)
4 Jg, 4r Iy,
and

(5] k a ($] k a (5]

S8 (g, g2, Ar, Ag) = — L% (g1, Av) + — L (gy, Ag) . (4.128)

27T ol 27T P
st = 2 [ g+ - [ o) - [ o) (4.120)
4 /g, Vg By Y ), b2 '

where w(g1, g2) is given by :
w(L,p, Cy, C1) = QP (Cy, Cy) — tr((CoCy) Ld(CoC)dpp™t) + U(L, p), (4.130)

The gauge fields A; and A, are not restricted on the defect line.

One can check that the action (4.126) is invariant under the gauge transformations:
g1 — hlglhfl, Al — hlAlhfl — dhlhfl , (4131)
9o = hagehy', Ay = hadshy! — dhohy”

where hy : ¥ — H, hy : ¥ — H. For this purpose note that under (4.131]) the boundary

parameters transform in the following way:

D — hlphl_l , 01 — thlhl_l R 02 — thghl_l , L — thhl_l . (4132)
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The gauge invariance follows from the Polyakov-Wiegmann identities and the transformation

properties of w(L, p, Cy, C1):

w(hoLhit, hiphit, hiCohit hiCihY) — @ (L, p, Cy, C1) , = =W (hy, CyC1p) + W (hy, LpL ™)
(4.133)
Now we consider the gauged WZW model on the cylinder ¥ = R x S* = (¢, mod 27) and
put defect line at = a in parallel to the time line.
The variational equation 6S/#=%f (g, g,, A1.A3) = 0 implies the bulk equations

for g1, A1 and g¢o, Ay separately supplemented by the defect equations at x = a:

9r'D_g1 — L7'g;'D_goL =0, (4.134)
Cy'g1Dygy'Cy— L7'gsDo gy 'L =0, (4.135)
L'D,L=0, C;y'D,Cy=0, (4.136)

where D, = Dy — D_, DL = 0.L + Aoy L — LAy, Digi = 011 + [Ais, ¢1], Dige =

01ga + [Aax, go], D1Coy = 0,.Cy + [Ar, Cs).

The equations (4.134)), (4.135)), (4.136]) are derived in [166].

Flat gauge fields can be parameterised as before:

Al == h;ldhl 5 A2 - h;ldhg . (4137)
Defining as before:
g1 =higihi', G2 = hagahy ', (4.138)
C~'1 - hlclhl_l 5 6’2 - h,lCth_l ;
p = hiphit, L = hyLhi?t,

we have the bulk equations (4.114)) for ¢; and g and the defect equations (4.134)), (4.135)),

(4.136) take the form:

Gi'0_gn — L3 0_gpL =0, (4.139)
Cy1510,97 Cy — L1320, 'L =0, (4.140)
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L7Y9L=0, C;'9,Co=0. (4.141)

Equation (4.141)) implies that L and C, are constant along the defect line.

Using that, the bulk-defect equations can be solved in the terms of the chiral fields:

g1 = 91L91_1% ) Tr(aygngleTH) = Tr(ayglel_]%TH) =0, (4.142)
G2 = Gar.9op Tr(9yg20957 Trr) = Tr(8yg2rganTr) =0, (4.143)

and
gor = LCy 'gipn ™, gor = Lgirm ™", (4.144)

with m and n € G. Equations (4.144)) imply

(91(t, ), a(t, ) = (CoC1p, LHL ™), (4.145)

where
p= ~;191L<G + t)nilmgfﬁl,l(a —t), (4.146)
Cy = Cyltgi(a+t)m tngt(a +1)C;. (4.147)

To have that C; € C&' we should require that d = m~'n € C¥.

Given that we consider GWZW model on a cylinder we should additionally require:
g1(t,0) = go(t, 27) , (4.148)
hi(t,0) = pha(t,2m) . (4.149)
From and one obtains:
91(t,0) = pga(t,2m)p~" (4.150)
and
gLy +2m) = CoL p  gi ()i gir(y +2m) = L p  gir(y) s, (4.151)
with v, and g satisfying the relation:

ey, =d. (4.152)
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Comparing (4.151) with (4.118]) we see that the presence of the defect leads to the relative
shifts between the left and right monodromies, equal to the defect conjugacy classes.
The monodromies (4.151]) as before can be realized in the terms of the decomposition of the

fields g1, and g1r as products:
gL ="h5'ga,  gir=hp'gc (4.153)
of the new fields hpg, ga, hp, gc possessing the monodromy properties:

hp(2m) = hp(0)pLCy ", 9a(2m) = ga(0)yz , (4.154)

hD(27T> - hD(O>pL7 90(27‘—) = gC(O)/yRu (4155)

and satisfying (4.120)).

The symplectic form of the gauged WZW model with a defect can be written using the

symplectic form density (4.115)) and the form w:

k a 2
(W*M:LJ/HW%MMM+/IWW%MWPW@@&MD' (4.156)
0 a

Substituting in (4.156|) the symplectic form density (4.115|) and using the transformation prop-

erty (4.133) we obtain:

k a y 2 B -~ - B
QG/H_def = — |:/ H(gl)d.f + / H(QQ)df - w(Lapa 027 Cl) - \D<p7 92(27T)) ) (4157)
0 a

47

where p and C defined in (4.146) and (4.147).

Performing similar steps as before we arrive at the following expression for the symplectic

form of the gauged WZW model with defects:

QG/H—def — Qchiral(gA’ ’YL) _ QChiral(gc, ’YR) _ Qchiral(hB7 pf/éé_l) + Qchiral(hD’ p[:) (4158)

o [900(6) i (d) — (a5 ) — (G5 6Cs(oL) (o)

7

Recalling the decomposition (4.46)) of QNiral and (4.17)), (4.30), we arrive at the conclusion

that the phase space of the gauged WZW model on a cylinder with a defect line coincides with
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that of double Chern-Simons theory on A x R with gauge fields of groups G and H coupled to
a Wilson line. This result can be straightforwardly generalized to the presence of the N defect

lines.

4.3.4 Defects in open coset model G/H

Let us at the beginning remind some facts on boundary coset model G/H studied in section
B.I1
Boundary condition corresponding to a Cardy state (u,r) is given by the product of the

conjugacy classes

g‘boundary = bC, (4159)

where b € CF, and ¢ € C¥,. As explained in section in the presence of the common center
C p and v should satisfy the selection rule.
To write the action one should introduce an auxiliary disc D satisfying the condition 0B =

Y+ D, and continue the field g on this disc, always taking value in product of conjugacy classes.

The action with the boundary conditions (4.159) has the form (3.7)):

k
§G/H—bndry _ gG/H _ E/DQ(Q)@’ c), (4.160)

where Q) (b, ) is defined in (3.9).

Consider a WZW model with a defect on the strip R x [0, 7]. Assume again that we have a
defect at the point x = a in parallel to the time line. The strip is divided into two parts with
the fields ¢, A; and g, As. We impose a Cardy boundary condition at x = 0 on ¢
requiring:

gl(t, 0) = 30y, Cs € 053 , Cy € Cﬁfl , (4161)

a defect condition (3.52) at z = a:

(91, 92) = (CoChp, LpL™), (4.162)
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and again a Cardy boundary condition (4.159) at x =
gg(t, 7T) = 05067 Cs € 055 s Cs € O;LIG . (4163)

Let us analyze first the consequences of the boundary condition (4.161]) at the point x = 0.
The boundary equations of motion resulting from the action (4.160|) at x = 0 are derived
in [89):

gD g1+ Crg1Dygi ' Cy =0, C;'D,.Cy=0. (4.164)

Representing again the flat gauge field A; = h{'dh,, and again defining §; = higih7", Cy =

thghfl, C, = th4hf1 one can write (4.164) as:
31091+ Cy 0.5 ' Ca =0, (4.165)

C;lo,Cy=0. (4.166)

The last equation implies that C, is constant on the boundary. Therefore using the chiral

decomposition (4.142) g, = gngl’}% one can solve (4.165)):

nir(y) = Cytgir(=y) Ry (4.167)
with Ry € G. Now we get that :
31(t,0) = gir(t) Rogy (t)Ci . (4.168)
The boundary condition (4.161]) implies:

§1(0,t) = (30, ég S 053 , 04 S O[l? . (4169)

We find that

Cs = gi.(t)Rog L (t) . (4.170)

To be in agreement with the requirement that C € C%? one should demand:

Ry Cl . (4.171)
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The defect condition as before implies:

g1 = CoLlgarn, gir = L™ gogm, (4.172)

where o1, gor are fields of the chiral decomposition (4.143): G2 = gar.gop-

From the boundary condition (4.163|) we conclude:

gg(t, 7T) = C5C%, é5 S 055 , éﬁ S CZG , (4173)

where C5 = hyCshy ', Cs = hoCshy .

To satisfy (4.173]) we assume the following monodromy behaviour of g;:
gie(y +27) = p ' gin(y)y (4.174)

From relations (4.167)), (4.172) and (4.174]) we derive:

Go(t, ) = LOT gip(m + t)n 'mRoy(LCy g1 (m 4+ 1)) T LCy  p~ 1 CL LY (4.175)
We see that
é5 = Eé{lgm(w + t)n_lmRo'y(j}ég_lglL(ﬁ + t))_l N (4176)
and
Cs = LCy Y p~'Cy L. (4.177)

To satisfy we should demand:
d'Ryy = R, € C¥?, (4.178)
Cylp™'Cy= S, € Che. (4.179)
The symplectic form is

L a 3 T 3 L. L L
QG/H_def—bndTy — E |:/ H(gl) + / H(gg) — w(L,p, Cg, Ol) + Q(Og, 04) — 9(05, 06)
0 a

(4.180)

In formula p, C1, Cs, Cs, Cg are given by the equations (4.146), (4.147), (4.170), (4.176),

(4.177)) correspondingly. Representing again

g1 =hp'ga, (4.181)
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with hp and g possessing the monodromy properties:
hp(y +2m) = hg(y)p, (4.182)

ga(y +27) = ga(y)v, (4.183)

and repeating the same steps as before we obtain:

AT AT 47
_QG/H—def—bndry — QChlI'a,l(gA7 ’Y) .

’ : ?QChiral(hB, p) + w,s (Ro) + (4.184)
Wiy (64) - W%(Rﬂ) — Wy (STF) - w#2<é2) — W <d>
—tr(Ry "0 R0y 1) + tr(ddd V0 Ry Ry 1) + tr(ddd ' Rodyy ' Ry V)

—tr(6C,C o pp™Y) — tr(6CLCy tp~10p) + tr(6C,C5 tp 16 CuCitp) .

Recalling again the decomposition (4.46)) of Q3 and (4.19)), (4.30), we arrive at the con-

clusion that the phase space of the gauged WZW model on a strip with a defect line coincides
with that of the double Chern-Simons theory on D x R with gauge fields of groups G and H
coupled to three Wilson lines. This result can be straightforwardly generalized to the presence

of the N defect lines.

4.4 Defects in Topological G/G coset

4.4.1 Bulk G/G coset

In this section we consider the bulk G/H model studied in section for the special case
G = H. It was shown in section that the phase space of the bulk G/H model is sym-
plectomorphic to that of the double Chern-Simons theory on R x A. In the special case, when
G = H it becomes a Chern-Simons theory on the torus times R : R x (AU (—A)) = R x T*.
This result can be obtained also by a direct calculation.

In the case when G = H the equations of motion imply that ¢ is (¢,z) independent

and therefore the symplectic form Q% (4.116)) reduces to

Q%¢ = Zw(p,g7Y). (4.185)
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The fact that g is constant on a cylinder and the relation (4.113) also imply
pip tgt=1. (4.186)

Comparing (4.185)) and (4.186]) with formulae (4.21)) and (4.23)) we arrive at the conclusion that

the phase space of a bulk G/G theory on a cylinder is symplectomorphic to that of a Chern-
Simons theory on 7% x R. The quantization of the latter gives rise to the space of the 0-point
conformal blocks of the WZW theory on the torus. The dimension of the space of conformal

blocks on a Riemann surface of genus g with insertion of the primary fields with labels pu,, is:

N, (9) = (55 [T (sp./s6)- (4.187)

« n

This implies that the Hilbert space of the quantized G /G theory on a cylinder has dimension
equals to the number of the integrable primaries. The equivalence of the topological G/G coset
on a cylinder R x S* with a Chern-Simons on R x T? demonstrated here is actually a particular

case of the more general equivalence of the topological G/G coset on a Riemann surface ¥ and

the Chern-Simons theory on ¥ x S1 established in [27,/176L[187].

4.4.2 A defect in a closed topological model G/G

We have established in section that the phase space of the coset G/H on a cylinder with
a defect is symplectomorphic to that of a double Chern-Simons theory on R x A with G and H
gauge fields both coupled to a time like Wilson line. In the case when G = H we again arrive
at the conclusion that the topological coset G/G on a cylinder with a defect line is equivalent
to the Chern-Simons theory on R x T? with two time like Wilson lines. This again can be
verified by a direct calculation. For the case G = H the bulk equations of motion imply that
g1 and go are (t,z) independent.

Therefore one has:

G1(0) = g1(a) = C1C1p, LPL™" = Ga(a) = Ga(2m). (4.188)

91(0) = pga(2m)p~". (4.189)



Inserting (4.189) in (4.188) we get:

CyCvp = pLpL~tp~t. (4.190)
The symplectic form (4.157) now takes the form:

k L
QC/G—del — —Ew(pL,p, Cy, C1) . (4.191)

Comparing and with and we arrive at the conclusion that the
topological coset G/G on a cylinder with a defect line is symplectomorphic with that of a
Chern-Simons theory on T2 x R with two Wilson lines. The quantization of the latter gives rise
to the space of the 2-point conformal blocks of the WZW theory on a torus. Using equation
we can compute the dimension of the Hilbert space of the quantized topological coset

G/G on cylinder with a defect line (1, p2) :

dim Hy, . =» NI, Ng, . (4.192)
af

4.4.3 Defects in the open topological model G/G

Previously we have seen that the phase space of G/H coset on a strip with a defect is sym-
plectomorphic to that of the double Chern-Simons theory on D x R with gauge fields G and
H both coupled to three Wilson lines. In the case when G = H we arrive at the conclusion
that the G/G topological coset on a strip with a defect line is equivalent to the Chern-Simons
theory on sphere times R : (DU (—D)) x R = 5% x R with six time-like Wilson lines. This can

be verified also directly. In this case §; and g, are (t,z) independent and therefore one has:
31(0) = C5Cy = CoC1p = Gi(a) (4.193)
Go(a) = LpL™" = C5Ce = go(2r) . (4.194)
From equations (4.193)) and (4.194]) one obtains:

(LCT'L ™ Y(LCy Y LY (LCs LY (LC, L YO et =1, (4.195)
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and from (4.180)) one derives:

(C/G—def—bndry _ _EW(L’p’ Cy, Cy) + EQ(O& Cy) — EQ(OE” Cs) - (4.196)

Comparing (4.195)) and (4.196)) with we arrive at the mentioned symplectomorphism of the

phase space of G/G topological coset on a strip with a defect and a Chern-Simons theory on
S? x R with six Wilson lines. The quantization of the latter gives rise to the space of the 6-point
conformal blocks of the WZW theory on a sphere. Using equation (4.187)) we can compute the
dimension of the Hilbert space of the quantized topological coset G/G on a strip with a defect
line:

N N2 N} NHe (4.197)

H3p4” T AT Agpe T T Az s

Recall that here (us, p14) are labels of the Cardy state on the first end of the strip, (us, i6) are
labels of the Cardy state on the second end of the strip, and (p1, i) are the labels of the defect.

To interpret this result let us remind some general facts on a semisimple 2D topological
theory on a world-sheet with boundary [130]. First of all let us recall that the whole content
of the 2D topological field theory is encoded in a finite-dimensional commutative Frobenius
algebra C. In the case when C is semisimple it can be realized as the algebra of complex-
valued functions on a finite set X = SpecC, which can be considered as a toy ”space-time*.
Using sewing constraints of open topological theory it was proved in |[130] that every boundary
condition a is realized by a collections of vector spaces corresponding to each point of X:
x — V. This can be considered as a vector bundle over finite space-time, in agreement with
the K-theory interpretation of boundary conditions. The Hilbert space of open string with

boundary conditions specified by a and b is given by the bundle morphism:
Hy = @;(;Hom(‘/a:,a; ‘/x,b) . (4198)

Consider now an open topological G/G coset. Note that in this case the points of X are
labelled by integrable primaries. Let us remind first the situation without defect considered

in [89]. The dimension of the Hilbert space for this case can be derived from (4.197) putting
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there p1 and py equal to vacuum state:

N)\ Nﬂfﬁ

papa” " Aus

(4.199)

This can be interpreted saying that the Hilbert space of the open string with the Cardy bound-

ary conditions (us, 14) and (us, ig) at the ends is
H/"37N4?H5:H6 = EB)\HOID(W}LS,U,4/\; W/,L5p6)\) ) (4200)

where W\ are spaces of three points conformal blocks. This implies that the Cardy state
(u.v) is given by the vector bundle

A= Wi (4.201)

Now consider the case with a defect (puq, u12).

It is well known (see e.g. [69,99,(111}]141}[174]), that open string propagating with boundary
conditions a and b with inserted defect d can be considered, as propagating between one of the
original boundary conditions, say a, and the second transformed by defect: d*b. According to

formula (4.197)) the transformed state corresponds to the spaces V) i, o, 5,46 With the dimensions

A A ]
N NG N (4.202)

and therefore can be considered as transformed by tensoring and summing with the space of

4-point conformal blocks W, ,x05°

VAI»HDH%NS»HG - @Aswuluzhks ® Wusueks . (4'203)

This suggests the following general description of defects in semisimple 2D TFT’s. It seems

[13]

that to every defect separating 2D TFT’s with ”space-time*“’s X and Y corresponds a collection
of spaces Vx’?y where x € X and y € Y. This can be considered as a fibre bundle over X x Y.
Then the boundary condition given by the fibre bundle V}, over Y is transformed to the boundary

condition corresponding to the following bundle over X:

z— Vo eV, (4.204)
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It is interesting to note that the transformation can be viewed as a discrete Fourier-
Mukai transform in agreement with the general interpretation of the defect worldvolume or
bi-brane as kernel of the Fourier-Mukai transform suggested in [35},112,163].

Let us elaborate now on fusion of defects. For this purpose consider an open string with
insertion of two defects. The Hilbert space in this case is given by the space of 8-point conformal
blocks. Along the same lines we conclude that the fusion of two defects (1, po) and (1, 14) is
given by the space of 6-point conformal blocks: W, 0.01.00.0:,0.- According to the factorization
properties of the space of conformal blocks this space can be expressed through the space of

4-point conformal blocks:
WH17N27V17V27)\1:)‘2 = EB’YW/H“LL%M,'Y ® WV1,V2,>\2,7 : (4'205)

This suggests that in general the fusion of two defects given by the bundles fof;l and Vy/?;

over the spaces X x Y and Y x Z is given by the equation:
Vb =g Vi@ VD2 (4.206)

It is interesting to note that equation appeared as a composition rule in the 2-
category of matrices of vector spaces (see for example [82]). The relation with 2-categories
actually can be traced further.

Note that equation for the dimension of the G/G theory on a cylinder with a defect
can be written as the dimension of the space ), W,

dim Hy,, = dim Y W (4.207)
A

We can conclude that probably in the general case the dimension of the bulk theory with
defect given by the collection of the spaces {Vi, 4,, 1,72 € X}, is given by the dimension of
the space @, V.7 :

dim Hy = dim @, V., . (4.208)

The space GBIVQC% appears in [82] as categorical trace.
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4.5 Permutation branes in gauged WZW model

Worldvolume @ of the permutation branes on product of cosets G/H x G/H corresponding to

a primary (u,v) has been constructed in [161] and reviewed in section and have the form:

(91,92) = (cbp, Lp~'L7"), (4.209)

where p € G, L € H, ¢ € C¥, b e Cf, and CZ are the conjugacy classes in G ([2.32):

Ct ={Bfp~" = pe¥™/k 3!, peG}, (4.210)

where © =p - H is a highest weight representation integrable at level k, taking value in the
Cartan subalgebra of the G Lie algebra. (7, are the similarly defined conjugacy classes in H. If
G and H possess common center, p and v should satisfy the selection rules explained in section
B.I12

To write the action one should introduce an auxiliary disc D satisfying the condition 0B =
>+ D and continue the fields g; and g, on this disc always holding the condition .

The action with the boundary condition (4.209) has the form

Sg/HXG/H:SG/H( Ay 4 S (gy, Ay) ——/wLp,cb (4.211)

where
w(L,p, ¢,b) = Q% (e, b) — tr((ch)"'d(cb)dpp™") + U (L, p), (4.212)

where
QP (e, b) = w,(c) — tr(c ' dedbb™ ) 4 w,(b) (4.213)

is defined in (3.9), and w,(C) is defined in (2.6) and W(L,p) is defined in (2.9). The form

w(L,p,c,b) satisfies the condition:
dw(L,p.c,b) =" (g1)lq + " (g2)lq - (4.214)
One can check that the action is invariant under the gauge transformations:
g = hagihit, Ay — b AhTY — dhahi ! (4.215)
g2 = hagohyt, Ay = hoAshy ' — dhohy ™t
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where hy : X — H, hy : ¥ — H. For this purpose note that under (4.215) the boundary

parameters transform in the following way:
p— hiphi*, c¢— hichi', b— hbhy', L — hoLhi". (4.216)

The gauge invariance follows from the Polyakov-Wiegmann identities and the transformation

properties of w(L, p, ¢, b):
w(hoLhyt, haiphyt, hichit, hibhi') — w(L,p,c,b) . = —U(hy, cbp) — W(hy, Lp~'L7Y)  (4.217)

Consider G/H x G/H product of coset models on the strip R x [0, 7] with boundary con-

ditions on both sides given by the permutation branes:

(91,92)(0) = (CoChipy, Lipy ' L) (4.218)
(91, 92)(m) = (C4C3pa, Lapy ' Ly1) (4.219)

Here C, € C4', Cy € Ch2, O3 € CH.Co € O Ly, Ly € H, py,p2 € G.

The boundary equation of motion resulting from the action (4.211)) at x = 0 are [167]:

91 ' D_gi + L7 g2Dy g5 Ly = 0 (4.220)
Cylg1Dgi'Co+ Li'gs ' D_goLy = 0 (4.221)
Li'DiLy =0 Cy;'D,Cy =0 (4.222)

where Dy = Dy — D_, DyL = 0.L + Asy L — LAy, Digr = 0:91 + [Aix, 91], Diga =
O0sga + [Aax, go], D1Cy = 0,.Co + [Ar, Cs).

Parameterising again flat gauge fields as
Al == h;ldhl A2 - h;ldhg (4223)
one can define as before

g1 = hgihi! G2 = hagahy! (4.224)
Cy = hCihit Gy = hyCohyt

162



pr = hapthy! Ly = hoLyhy?
ég - hlcghfl CN'4 - h104hfl

Po = hipahy! Ly = hoLyh7!

and we have the bulk equations (4.114]) for g; and g, and boundary equations take the form:

G 0_g1 + L7 §204G5, Ly = 0 (4.225)
Cyl510,97 Cy + L7550 goLy = 0 (4.226)
L7'0L =0 C;'0,Cy =0 (4.227)

Equation (4.227) implies that L, and C, are constant along the boundary. Boundary conditions

(4.218]) and (4.219) imply
(1, 32)(0) = (CoChpr, Lapy L) (4.228)

(G1,92)(m) = (6463]52, [~/2]52_1[~/2_1) (4.229)
Using the chiral decomposition one can solve the boundary equation of motion
91r(y) = L' gor(—y)m (4.230)

9or(Y) = LiCy gip(—y)n (4.231)

Equations (4.230) and (4.231]) indeed imply (4.228)) with

pi(t) = C5 ' g1 (t)ngyr (t) Ly (4.232)

él = C’Q_lglL(t)m_ln_lgl_Ll (t)02 (4233)

To have that C; € CE' we should require m™'n~' = Ry € C4'.

To satisfy (4.229)) we assume the following monodromy properties of g;;, and gor,
gy +2m) = p g W 9wy +27) = py gan(y)re (4.234)
Now one can show that (4.229)) is satisfied with

ﬁg(t) = i;liléglplgm(ﬁ -+ t)'yl_lngz_Ll (’/T + t)j—zg (4235)
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Cy = Cilgip(m + t)ym tyon 1y (Citgip(m 4+ 1)) 71 (4.236)

if we require

pyt = LyLit (4.237)

and
A F1F 1A a1 A
where ﬁz = il_pole.
To have that C3 € C& we should require m'yyn~'y, = %2Roy1 = Ry € CH ., where
Yo = m ™ yam.
The monodromies (4.234)) as before can be realized in the terms of the decomposition of the

fields g1, and gor, as products:

gL =hg'g4, 921 = hp'gc (4.239)

of the new fields hpg, ga, hp, gc possessing the monodromy properties:
hg(2m) = hp(0)p1 9a(2m) = ga(0)71, (4.240)

hp(2m) = hp(0)p2, 9c(2m) = gc(0)ye , (4.241)

and satisfying (4.120)).

The symplectic form of product of the gauged WZW models on the strip with boundary
conditions specified by the permutation branes can be written using the symplectic form density

(4.115)) and the form ww:

Qg/H - % [/o7r 115 (g, hy)da + /07r 9 (g, ho)dz + w(g1(0), g2(0)) — (g1 (), ga())
(4.242)

Substituting in (4.242)) the symplectic form density (4.115]) and using the transformation prop-

erty (4.217) we obtain:

k s B ™ N - B - - - B - -
Qg/H = E [/ H(91)dl’ +/ H(92)d$ + w(Ll,pl, 02701) - w(L%pZa 04703) ) (4-243)
0 0
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where p; and C; defined in (4.232) and (4.233) and p, and Cj defined in (4.235) and (4.236).
Using (4.44)) one can obtain for (4.243)):

Qg/H - QLG(SL 1) + QLG(SQ, T2) — QLG(SS, T3) — QLG(SAL, 1) + Q?ndry - andry (4.244)

ndr, k ~
Q]i) = E [le (’71) + Wr, (72) + wﬂl(Ro) — Wus (RW) (4245)

- tI‘(Ral(;Ro(S’}/l’yl_l) - tl"(’?;l(;’i/g(SRoRo_l) - tI‘(Ral’?Q_l(;’i/gRo(S’yl’yl_l)}

ndr k ~ S
O = = [wn (1) + wry (32) = w3a(C2) + w0 (Co) (4.246)

+ tr(6CoCy ' apuprt) + tr(py ' 9paCy t6Cs) — tr(@ﬁgléﬁzé;léplp;l)}

Comparing (4.244]) with the formulae and (4.30]) we arrive at the conclusion that the phase
space of product of coset models on a strip with boundary conditions specified by permutation
branes is symplectomorphic to the phase space of the double Chern-Simons theory on an annulus

times the time-line and with G and H gauge fields both coupled to two Wilson lines.

4.6 Permutation branes in topological G/G coset

In this section we discuss permutation branes on the product of topological coset G/G x G/G.

In the previous section we have seen that the phase space of the product of the gauged WZW
models on a strip with boundary conditions given by the permutation branes is symplectomor-
phic to the phase space of the double Chern-Simons theory on an annulus times the time-line
with G and H gauge fields both coupled to two Wilson lines. In the case when G = H we
arrive at the conclusion that product of topological cosets G/G x G /G on a strip with boundary
conditions given by the permutation branes is equivalent to the Chern-Simons theory on the
torus T2 = AU (—.A) times the time-line R with four Wilson lines. This can be verified by a
direct calculation. For the case G = H the bulk equations of motion imply that g; and
g2 are (t,z) independent.

Therefore one has:
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71(0) = CoChpy = Ga(m) = CaClsfy (4.247)
320) = Lip 'Ly = §a(7) = Lopy ' Ly (4.248)

From equations (4.247)) and (4.248)) we get

mpem P, tC O CLCL = 1 (4.249)

where

m = L' Ly (4.250)

The symplectic form (4.243) in this case reduces to
k .. .
Qg/G = [W(thh Cy, C1) — @ (Lo, p2, Cy, 03)] ; (4.251)

Comparing formulae (4.249) and (4.251)) with the formulae (4.21]) and (4.23)) we arrive at the

mentioned symplectomorphism of the product of topological cosets G/G x G/G on a strip with
the boundary conditions given by the permutation branes and that of Chern-Simons theory on
the torus times the time-line with four Wilson lines.

This construction can be easily generalized to N-fold product of coset models G/H. The

ansatz for permutation branes has the form:

(915, gn) = (CoCipn—1-+-p1, Lipr 'L Y, o Lv—apn— L") (4.252)

where Cy € C4', Cy € O, p; € G, L; € H. The ansatz is invariant under the N-fold adjoint
action : g; — hig;h; ', where h; : ¥ — H. Using the Polyakov-Wiegmann identity (1.279) it is
straightforward to check the existence of the two-form wy satisfying the relation:

N
> W™ (g:) brane = dowy (4.253)

1

Performing the same steps as before we arrive at the conclusion, that the phase space of the

N-fold product of the gauged WZW model G/H on a strip with boundary conditions given by
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permutation branes is symplectomorphic to the phase space of the double Chern-Simons theory
on a sphere with N holes times the time-line and with G and H gauge fields both coupled to
two Wilson lines. For the special case of the toplogical coset G/G we get, that the phase space
of the N-fold product of the topological cosets G/G on a strip with boundary conditions given
by permutation branes is symplectomorphic to the phase space of Chern-Simons theory on a

Riemann surface of genus N — 1 times the time-line with four Wilson lines.
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Chapter 5

Duality Defects

5.1 Preliminaries

We review the construction of an action with defects [78,/163]. We locate the defect at the
vertical line S defined by the condition ¢ = 0. Denote by ¥; the left half-plane (¢ < 0), and
by ¥ the right half-plane (¢ > 0), and a pair of maps X : %1 — M; and X : Sy — My,
where M; and M, are the target spaces for the two quantum field theories. Suppose we have
a submanifold @) of the cartesian product of target spaces: () C M; x M,, with a connection

one-form A, and a combined map :
CDIS—>M1XM2 (51)
s (X(s), X(s))

which takes values in the submanifold @). @ is called the world-volume of the defect.

In this setup we can write the action:

]:/ dx+dx_L1+/ d:p+dx_L2+/<I>*A (5.2)
] P S
where
L, =EDaxmox", (5.3)
Ly = E@aXmoX". (5.4)
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In this section we use the light-cone coordinates defined as

t =140, (5.5)

with B, being the components of two second rank tensors. The tensors E are split as
E®O = g L gl (5.6)

where G are the symmetric target space metrics of the two sigma models and B® are the
corresponding NS antisymmetric two-forms.
As a warm-up exercise we work out the following simple example, when we have on both

sides free scalars compactified on circles Sk and S)lz of radii R; and R»:

L, = Rj0X0X (5.7)
and

L, = R20X0X. (5.8)

The world-volume of the defect is a product of the target spaces Sk x S}( with the connection
A = —XdX. The curvature of this connection is F' = dX A dX. This forms a Poincaré bundle

P [101]. The equations of motion on the defect line are:

R}(0X —0X)—9,X =0 (5.9)
R(OX —0X)— 9, X =0 (5.10)
For Ry = #-, and (5.10) take the form:
R}(0X —0X)— (0X +0X) =0 (5.11)
(0X — 0X) — R3(0X +0X) =0 (5.12)

Equations (5.11]) and (5.12)) imply
R20X = 0X (5.13)

R?0X = —0X (5.14)
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which are the T-duality relations (1.227). Equations (5.13)) and (5.14)) also show that the defect

given by the Poincaré bundle P for Ry, = Ril is topological.
One generalization that comes to mind is a defect P* with the same world-volume but with
k units of the flux above: F' = kdX A dX. In the same way it is possible to show that this

defect is topological when the radii satisfy the relation

and instead of (5.13) and (5.14)) one obtains:
R20X = koX (5.16)

R20X = —kOX (5.17)

These relations imply that the defect P* combines the actions of the Z, orbifolding and
T-duality.

All this is in agreement with [14}77], where more general submanifolds @) are considered.
There the worldvolume Q of the defect is either two dimensional with flux F = k;dX AdX, but
allowed to wrap the product S x S}( torus ko times, or () is made one dimensional winding
around the cycles (kq, ko) times. Then the existence of the topological defect is proved for the

radii satisfying the relations:

ky Ry |k
R R = |— — == 5.18
R T R R (518)
where kq, ky € Z.
5.2 Factorized T-duality in non-linear sigma model
Consider the action:

/ dztdr (E10X'0X* + Eyn0X '0XYN + EyioXMOX! + EynoXMoXxX™)
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Suppose that G;; and B;; do not depend on X'. We assume here that lower case indices
run from 1 to the dimension of the target space, and upper case indices run from 2 to the
dimension of the target space. Replace derivatives of X' by vector fields (A, A) and add a

lagrange multiplier field X' to force the vector field to be the derivatives of a scalar:
S = / drtdr (B AA + E\nAOXY 4+ Eyi0XMA 4 EynoXMoXYN + XY OA — 9A)) (5.20)
Intergrating out first X* we obtain 9A — A = 0 which can be solved setting
A=0X'" and A=0X" (5.21)
and we go back to the original action. If we first integrate out the vector field:

1 - _ IR _
A=—(0X"' - EyoX™M) and A = ———(0X' + B 0XM) (5.22)
Ell Ell

we obtain T-dualized action
S = / drtde™ (B 0X'0X + E\xnOX 1 OXYN + Eyi0XMOX!Y + EynoXMoxN)  (5.23)

where

F{=— 5.24
n= g5 (5.24)
~ Eim
E =
1M o
~ Ev
Erri — —
M1 o
Eu FE
Eny = Byy = =
11
In components one has:
Gy = — (5.25)
11 = G .
~ Bim
Gy —
1M G
~ Gim
Biny —
1M G
~ 1
Gun = Gun — G—(GM1G1N + BinBu)
11
_ 1
Byn = Bun — G_(GMlBlN + GinBun)
11
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The capital latin indices run from 2 to dimM.

The dual coordinate X? is related to the original X! by the relations:
0X' = B 0XY + EpidX™M  and  0X' = —(Ej0X' + Eyp0X™M)

The rest of the coordinates remains unchanged.

(5.26)

Consider the action (5.2)) with a defect as in the situation above, where M and M are related

by the equations ([5.24)), @ is the correspondence space, given by the equations

XN =XV, N =2...dimM
with the connection
A=—X"dXx"
and the curvature
F=dX'AdX".

In this case the action (5.2) yields

Ej0X? — E;0X7 —9,X' =0

Ein0X? — Ex;0X? — Ejn0X? 4 En;0X7 =0, N =2...dimM

E;0X? — E,;0X’ — 9,X" = 0.

The index j runs from 1 to dimM. Additionally the conditions ([5.27) imply

2. XN =o0. XV, N =2...dimM
or in the coordinates ([5.5)):
OXN +oxN =oxN +oxV, N =2...dimM
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(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)



Solving the equations (5.30]), (5.31)), (5.32)) and ([5.34]) one obtains:

OXN =oxV N =2,...dimM (5.35)
oXN = axN N =2, ... dimM
OX' = F110X' + Ep0XM

OX' = —(EL0X! + By 0X™M)

We see that equations (5.35)) coincide with the T-duality relations (5.26)). Therefore the defect

given by the Poincaré bundle on the correspondence space induces T-duality.

One can check that ([5.25)) and ([5.35)) imply
T = G0X'0X? =T = G;;0X'0X’ (5.36)

and

T = G,;0X'0X) =T = G;;0X'0X (5.37)

which means that the defect is topological.
In this general set-up one can also consider the defect with the same world-volume given by

equations (5.27) but with the flux
F =kdX* AndX? (5.38)

Repeating the calculations above one can show that this defect is topological if E and E are

related by the equations

- ]g2
i = — 5.39
n=g (5.39)
. kE1n
-
1M E11
~ kEwv
By = —
M1 Ell
Ev B
Enn = Eyy — MEl v
11

Again the effects of the Z; orbifolding of the first coordinate and the T-duality are combined.
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All this can be generalized to T-dualizing of several coordinates. Suppose we T-dualize the

first n coordinates, indexed by Greek letters. The matrix E is broken to four pieces:

Eaﬁ EaN
E = (5.40)
Eyg Eun
The transformed background has the form
5 E; E iEsn
E= o ’ (5.41)
_EMaEt;ﬂl Eun — EMaEt;ﬁlEﬁN
Now we should consider the defect, with the world-volume
XN =XV N =n+1,...dimM, (5.42)
with the connection
A== XdX° (5.43)
1
and the curvature
F =Y dX*ANdX". (5.44)
1

In the same way it can be shown that for M and M related by equations 1} this defect is

topological and implies the defect equations:
XN =oxV N=n+1,...dimM (5.45)
oxXN =ox" N=n+1,...dimM
X = B3 0XP + Epn0X™M

OX* = —(Ea0XP + FE,p0X™M)

We have obtained again T-duality relations for several T-dualized coordinates.

5.3 Defects and Fourier-Mukai transform

As we mentioned, a topological defect can be fused with a boundary, producing new boundary

condition from the old one. From the other side boundary conditions correspond to D-branes,
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which can be characterized by their RR charges or by elements of the K-theory. Therefore an
action of the defect on the Ramond-Ramond charges and K-theory elements can be defined.
It is expected [15,35,57,/78,/163,/166] that the action should be “Fourier-Mukai” type with
a kernel given by the exponent of the gauge invariant flux F = B — B + F on defect, or
by the defect bundle P correspondingly. Saying Fourier-Mukai type transform we mean the
following Construction. . Suppose we can associate to a target space X a ring D(X) ( e.g.
cohomology groups, K-theory groups, etc.), in a way that for a map p : X; — X5 exist pullback
p*: D(X5) — D(X;) and pushforward p, : D(X;) — D(X5) maps. Assume one has an element
K € D(X xY). Now we can define the Fourier-Mukai transform, FM(F): D(X) — D(Y)

with the kernel K by the formula:
FM(F) =p, (K -p**F) (5.46)

where FF € D(X), and p¥ : X xY — X, p¥ : X x Y — Y are projections. One can see that
usual Fourier transform has this form with the Riemann integral as pushforward map.

To derive the transformation of the RR fields under the T-duality several approaches were
developed: via dimensional reduction [23,/127], vertex operators for RR fields [143], the grav-
itino supersymmetry transformation [104], pure spinor formalism [22|. Dimensional reduction

approach brings to the expression:

5 gl Glan
n n—1 M..N|1
Gii) v = G a — (n = 1) =2t (5.47)
11
5(n) (n+1) (n—1) g[(]\Zi.l])V\lBMUG\BU
Garvap = Garnapt + 790 vaBon +n(n—1) G (5.48)
Three other approaches bring to the expression:
P=pPQO! (5.49)

where P = % Dok %QM,”MF““'“’C and k runs the values £ = 1,3...9 in the case of 1IB, and

the values £ = 0,2...10 in the case of ITA. The curved indices Gamma matrices are defined

*The paragraph below is neither a rigorous nor a precise definition of the Fourier-Mukai transform, and only

has a goal to outline basic ideas. For the rigorous definitions see [19}/108] and references therein.
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as usual by contracting with the tetrads eﬁ. The matrix €) is spinor representation of the
relative twist between the left and right movers. For example for T-duality in the direction of
coordinate 1, it is spinor representation of the parity operator in the direction 1: I''I'y;.

Hori suggested in [106] that the RR fields of the theory on 7™ x M and those of the T-dual

theory on 7™ x M are related by a Fourier-Mukai transform [19,108]:

G= | GA eF = | 9n B-BATILy disnde! (5.50)

Here B is the Neveu-Schwarz B-field and G = Zp G, is the sum of gauge invariant RR field
strength where the sum is over p = 0,2,4, ... for Type IIA and p = 1,3, ... for Type IIB. The
integrand in ([5.50|) is considered as a form on the space M x T™ X 7™ and pushforward map
is fiberwise integration an [31], mapping forms on M x T™ X 1™ to forms on M x T™. The
integral operates on the forms of the highest degree n in dt; and sets to zero forms of lower

degree in dt;:

flz, ti, thp*w Adty, A...dt; +— 0, r<n (5.51)

flz, ti thp wAdty A .. dty —w [ fla, s, t)dty ... dt,
T’IL

Here p is the projection M x T™ x T™ — M x T™, w is a form on M x 1™, f(z,t;,t") is an
arbitrary function and x denotes a point in M. The fiberwise integration is actually Berezin
integration, which is not surprising when one remembers that the one-forms dt; anticommute.

Since the gauge invariant flux F satisfies the condition
dF =H—-H, dB=H, dB=H (5.52)

and the exterior differentiation d commutes with the fiberwise integration, one can show that

the dual forms satisfy the equation [32]:

(d—H)ANG= [ & A(d—H)AG (5.53)

Tn
This implies that dg = d — H closed forms mapped to dy; = d — H closed form. This means

that if the RR fields G satisfy the supergravity Bianchi identity, so do the dual RR fields G.
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Note that the kernel of the Fourier-Mukai transform (5.50)) is indeed the exponential of the

gauge invariant combination of the B fields and the flux of the T-duality defect (5.44)):

o — eB—B+Z?:1 di; ndt? (5.54)

Let us check that the formula (5.50]) produces the known transformation rules of the Ramond-
Ramond fields for the case of the abelian T-dualization in the direction of one coordinate, which

we choose to be the first one.

Using transformation rules (5.25)), (5.50) takes the form:

G= [ GAeMHdINAtd) — [ G A (14 (A 4+ dEYY A (Ay+dtY))  (5.55)
St St
where
G
Ay = BiydX" and A, = GLNdXN (5.56)
11

Taking G in the form

G=36"+gWaat (5.57)

and using the rules (5.51)), one obtains

G =G94+ GWAdf (5.58)
where
GO =GW +GONA +GU A A A4 (5.59)
and
G =g© — g A 4, (5.60)

5.4 Defects and T-duality on lens space

5.4.1 Fourier-Mukai kernel of SU(2) WZW model and lens space
T-duality

The construction of the previous section can be applied fibrewise to torus fibration and can be

expected to relate pairs of torus fibrations 7 : E — M and 7@ : E — M. It should be noted that
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in this case the fibre product E x,; E appearing e.g. in [32] can be identified with the subset
of elements of the product space E x E of pairs (e, ) with m(e) = #(¢). This submanifold is
the world volume () of the relevant bibrane.

We exemplify [163] the situation in the case of the T-duality relating conformal sigma-models
with a lens space as a target space and the WZW theory based on the compact connected
Lie group SU(2) at level k. As we explained in section the relevant lens space is a
quotient of the group manifold SU(2) by the right action of a cyclic subgroup Z; of a maximal
torus of SU(2). Recall that in the Euler coordinates for SU(2) (2.66), this corresponds to the
identification ¢ ~ ¢ + 47”.

We use another parametrisation [94] of the group manifold SU(2) in terms of Pauli matrices,
g = OB OF DT (5.61)

in which the metric takes form
ds* = (d€ — (1 — cos ) dp)* + df* + sin”  d¢? (5.62)

with 6 € [0, 7], ¢ € [0,27] and £ € [0, 47].

Identifying & as the fibre coordinate exhibits the structure of the group manifold SU(2) as
an S! bundle over S? of monopole charge 1, the Hopf bundle. Considering the bundle with
charge m amounts to the substitution £ — % Due to the orbifold description of the lens space
SU(2)/Z, the latter can be considered as an S'-bundle over S? with Chern class k and thus
admits a parametrization as in , but with & ~ & + 4%. It is convenient to reparameterize
the lens space bundle coordinate & as € = ¢’ k.

To the S'-bundle description of the lens space and the group manifold, we can apply the
standard geometric T-duality construction [32] for torus fibrations. It involves a correspondence
space E x; E, where in our case F = SU(2), E is the lens space and the base manifold is
M := S%. Tt leads to the following relations for the first Chern classes of the S'-bundles on M

and the three-forms H and H on E and E, respectively:

F=c¢(E)=#%H and F=c¢(E)=nH, (5.63)



where m, is integration on the S'-fibre. It is observed in [32] that the pullbacks 7*F and 7*F

are exact on E and F respectively, and therefore can be written as
™F=dA and 7F =dA, (5.64)

where A € Q'(E) and A € Q'(E) are global one-forms on E and E, respectively, which are

assumed to be normalized such that
mA=1=%A (5.65)

It is shown in Section 3 of [32] that there exists a three-form 2 on the base manifold M that

obeys the two relations
H=AATF—-7"Q and H=7FANA-7*Q . (5.66)
One then introduces a two-form w on the correspondence space E Xy, E by
w:=pANp‘A (5.67)

where p and p are the projections E x,; E — E and E x,; E — E respectively. They obey

the relation 7p = 7@p.

It follows from ([5.66]) and (5.64)) and commutativity p*n* = p*7*, that

dw=—p"H+pH (5.68)
This two-form also enters |32 in the following isomorphism of twisted cohomologies
T,:p.oe’op*: H(E,H) - H**\(E, H) . (5.69)

Let us comment on the important role of the equation in the isomorphism .
It is shown in [32] that thanks to this equation H-twisted cohomologies mapped to H-twisted
cohomologies. On the other hand, this equation coincides with equation , which was
derived in [78] from the requirement of a well-defined worldsheet action. This coincidence can
be seen as additional evidence for the relation between defects and kernels of Fourier-Mukai

transforms we propose in this thesis.
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In the case when F = SU(2) and E is a lens space, this yields

H = £5sin6de df de
F = Lsingdeds (5.70)
A = £ (d€— (1 —cos)do)

and
H = #sin& do df d¢’

A = L(d¢ — k(1 - cosh) do) (5.71)
F = [Esingdeds

and thus surpressing the projectors p and p for brevity in calculations in explicit coordinates

ANA= 1617r2 (da Ad€ + (1 — cosf)do A da) (5.72)

where a is defined by the equation

Iy
Il
my
I

£+ (5.73)

|
El e

5.4.2 Defect operators on bulk fields

In this section, we describe defects by their action on bulk fields. In the case of rational
conformal field theories, it is known (see Proposition 2.8 of [69]) that this action characterizes
a defect uniquely.

The bulk partition function for the rational conformal field theory associated to a lens space

is

k/2
=33 "ol @vl ). (5.74)
7=0 nez

To derive conformal defects between SU(2), and the lens space SU(2)/Z;, we need the following

endomorphisms of a direct sum of Fock spaces for left movers and right movers, respectively:

[ o 0 1]
- + 2kl r+ 2kl

P = ex iE :O‘ ) 5 + 5.75
+ p n | l€Z| 1< \/2—]{ ‘ ( )

> ~0 1 / / / /

_ 2 + 2kl r’ + 2kl
UM = ex iE Conln Nt ® , 5.76
r'+ p n llezl \/ﬁ >0 1< m | ( )
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where the subscripts 0 and 1 distinguish free boson theories on the two sides of the defect.
The bra- and ket-states are highest weight states in Fock spaces. They obey the following

conservation equations for the U(1)-currents
I =0, J+J =0, (5.77)
where e.g. the first equation is a short hand for the intertwining property

POy = £75PIY

PE(R) APF(k

Similarly, we consider for the parafermion theories A, the following two operators

Piyy = Y linN)o © 1(j.n, N, (5.78)
N

P = > liin M)y @ 1(j,n, M, (5.79)
M

where the sums over M and N are over orthonormal bases of the parafermion state spaces.
Here j € {0, ;, 1,... g} and n € Z/2kZ satisfy the constraint 25 + n = 0 mod 2. The pairs
(7,m) and (k/2 — 7,k + n) have to be identified.

Our starting point are symmetry preserving defects in the SU(2)-theory. The corresponding
operators on bulk fields can be expressed in terms of the modular matrix S of SU(2) and the

identity operators on irreducible highest weight modules of the corresponding untwisted affine

Lie algebra,

P = meo@l(j,N!, (5.80)

P = Z 7. M), @ 1(j, M], (5.81)

where the sums over M and N are over orthonormal bases of the SU(2) state spaces. These
endomorphisms preserve, of course, all SU(2) symmetries,
Jo o4 Ji=0, (5.82)
Jo + J'=0, (a=1,2,3). (5.83)
The action of a symmetry preserving defect on bulk fields is given in terms of these endomor-

phisms by [13§]:

X, psv@. 5.84
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Since in the situation at hand no field identification fixed points occur, we can apply the
procedure described in [123,|160] to derive a new family of defects separating SU(2), and the

lens space SU(2)/Zy. Performing a T-duality in (5.84) yields

@ prrplt (5.85)

The defects ((5.85)) preserve all left moving currents, but only the right moving current corre-
sponding to the maximal torus,
J§ + Ji=0, (a=1,2,3) (5.86)
I - J=0. (5.87)
As a consequence of these equations, the defects (5.85|) transform A-type branes on SU(2), to
B-type brane on SU(2)/Z.

A third family of defects is obtained by summing over the images of (5.84)) under the action

of Zj, with a prefactor determined by the Cardy condition:
=Vk Z Sej pSU (PEFPY + PEFRLYY (5.88)
The defects (5.88)) satisfy the conservation equations

Je o+ J9=0, (a=1,23) (5.89)
I+ Ji=0,. (5.90)
and transform A-type branes on SU(2), to A-type branes on the lens space SU(2)/Z.

Performing a T-duality on the defects ([5.88]), one derives another family of defects on SU(2),

that map an A-type brane on SU(2); to a B-type brane on SU(2)y:
XAB = VF-E: ‘”fﬁU”)(PPFf><)4-Fjjfiﬁ”>. (5.91)
The defects (5.91)) satisfy the conservation equations

J& + Jr=0, (a=1,2,3) (5.92)
B - J=0,. (5.93)
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Summing over images and performing T-duality in the left moving sector of (5.88)) yields a

fifth family of defects that map B-type branes on SU(2); to A-type branes on SU(2)/Z:
— k Z (p;;fpo_ "+ PEERIOY (PRFRIY 4 PEFRLY) L (5.00)
The defects (5.94)) satisfy the conservation equations:

B - =0 (5.95)

J 4+ J=0,. (5.96)

5.4.3 Geometry of defects

We finally determine the geometry of the family of defects relating SU(2) and the lens
space SU(2)/Z;. To this end, we parametrize bulk fields in terms of Euler angles # using the
representation function Df;m, of the spin j representation :
Z 2+ 1D7 (6)]j,m,m’). (5.97)
ym,m/
We are thus interested in the overlap (6o|VA2|6,) as a function of two sets of Euler angles. As
in the calculation in [29], the definition of the lens spaces as right quotients implies that only
terms of the defect operator with n = 0, k contribute to the overlap; in the large £ limit
also the term with n = k can be ignored. Therefore, we arrive in the limit of large level k at

the function

. . koo L
(Gol YV P100) ~ —sin[(2 + 1)¢] Poo (g0 (60)91(61)) - (5.98)
JEL
where the angle 1/3 is given in terms of a by 1& = % Using (|2.84)) and repeating the same

steps as in section [2.2.4] we obtain

O(cos § — cos 20))

\/COS(S—COSQ@&

Here © is the Heavyside step function and 0 is the second Euler angle of the product element

(BolY,7161) ~ (5.99)

951 (0)g1(61). As we explained in section equation (5.99) implies that the “difference”
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Jo 1(50) g1 (9:) takes its values in a subset consisting of products of an element in a fixed conjugacy

class C' with an element L € U(1):
g0 (0)g1(6) € CL. (5.100)

We next determine the two-form w satisfying equation (Hy — Hs)|pibrane = dw that is part of
the bibrane-data. Its value in the element z fx~'L with f a fixed element of the conjugacy class
C and z € G and L € U(1) arbitrary, can be derived from the Polyakov-Wiegmann identity

(1.279). We compute for gy 'g; € CL the difference

W (go) —w(g1) = w"(g0) =" (90CL)
= w"?(g0) = [w"#(g0) + " (CL) — dTr (g 'dgod(CL) (CL)™")]
= —w"4(C)+dTr (C7'dC dLL™) + dTr (gy 'dgo d(CL)(CL)™) .

As a consequence, the two-form
k
W= wTr(C_ldC dLL™" + g5 dgo d(CL)(CL)™") — wy(x) (5.101)
where the two form wy(z) is defined in ({2.6):

we(z) = iTr(ac_ldzchac_ldxf_l) (5.102)

2

and obeys 1D has the desired property #wwz (g0) — #wwz (91) = dw. The coefficient fixed

by the requirement |, SU@) Fw"?(g) = k to make contact with the geometrical consideration.

872
Asymptotically, for large k, the situation simplifies in the case when f = e, and the bibrane

worldvolume, i.e. the correspondence space, consists of all pairs of the form (go, goL), with

go € SU(2) and L € U(1). The corresponding two-form takes the form

k
w=—"Tr(g; dgodLL ™) (5.103)

82

In this case, the defect acts as an isomorphism on bulk fields, and we thus expect a relation to

T-duality. Indeed, we find in the parametrization (5.61))

.d .. 1—cos@
(97'dg)in = —(g7"'dg)ae = % idp———

5.104
5 5 (5.104)
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Writing L = ei%, we see that the two-form ([5.103|) coincides with the two-form 1) from the
geometric approach. This nicely demonstrates how geometric structure familiar from Fourier-

Mukai transformations is encoded in the algebraic data describing defects.

5.5 Defects between vectorially and axially gauged WZW

models
In this section we construct topological defects mapping the axially gauged % . WZW
model to the vectorially gauged & WZW model for a general group G. For the case

U(1) vectorial

G = SU(2) we analyze the corresponding operators acting in the Hilbert space of parafermions
and find that for the level k parafermions there are k+ 1 such topological defects, labeled by the
integrable spin j =0, ..., g This is another example of the case of a non trivial null space for
the defect. The object is to realize these defects in the Lagrangian approach as a line separating
axially and vectorially gauged WZW models. This problem is solved in this section. First we
present the geometrical ansatz for the defects (formula below) and check that it leads
to the action that glues axially and vectorially gauged models. Then we study in detail the
defect given by j = 0 and show that it coincides with the defect with the flux (5.38)), studied
in the previous section, and implements Z;, orbifolding together with the T-duality. In the rest

of the section we construct defects as operators in the Hilbert space of the parafermions.

5.5.1 Geometry and flux of the defects gluing axially-vectorially

gauged models
The action of the gauged WZW model is studied in section [1.5.5]
SCEM (g, A) = SWAW 4 geauge (5.105)
where

k 1
SWZW(g) _ 4ﬁ Tr(6+ga_g_1)d:v+dx_ + 4_ —tr(g—ldg)3 (5106)
T Jx T JB 3

185



= ﬁ |:/ d$+d$_Lkin+/wWZ:| ,
47T » B

Ggsauge _ ﬁ/ L%aUged[E+dI_ , (5107)
27T »
LB (g A) = tr[—g 'O, gA_+0_gg 'A, + A g 'ALg— A A (5.108)

Here H is subgroup of G, g € G and B is a 3-manifold such that 9B = ¥ and A is a gauge
field taking values in the H Lie algebra.
Using the Polyakov-Wiegmann identities (1.278]) and ((1.279) it is possible to verify that the

action ([5.105)) is invariant under the gauge transformation:
g — hgh™', A — hAL Y +dhh? (5.109)

for h: 3 — H. This is a vectorially gauged model.
For the case of H = U(1) considered here there exists the system is axially gauge invariant

under the transformations

g — hgh, A— A+dhh! (5.110)
for h: ¥ — U(1). In the axially gauged model the gauge field dependent term is
Lgee(g, A) = trlg™ 0y gA_ + g9 Ay — A g A g — ALA ] (5.111)

As we explained in section to write the defect action with WZW terms we should specify a
bibrane with a two-form satisfying the condition ([3.24]).

We suggest the following ansatz:
(91, 92) = (Cyp, L1pLo) (5.112)
Here p € G, Ly € U(1), Ly € U(1) and C,, is a conjugacy class
C,=1e¥k=l e q (5.113)

where ;1 =p - H is a highest weight representation integrable at level k, taking value in the
Cartan subalgebra of the G Lie algebra. This condition is a consequence of global issues [78§].

Note that under the full gauge transformation

g1 — hlglhfl and  go — hogoho (5.114)
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the parameters in ((5.112)) transform as

Cy + hiC,hy! (5.115)
D hlphfl
Ly — Llhl_lhg

Lo+— Lth hg

Using the Polyakov-Wiegamann identity (1.279) one can check that the condition (3.24) is

satisfied with the following two-form

w(Cy,p, L1, La) = w,(C,) — Tr(C;ldC“dpp_l) + Tr(p~'dpdLyLy ) + (5.116)

FTr(Ly dLydpp™) + Tr(L7 dLypd Lo Ly 'p~t) — Tr(Ly dLy Ly d L)

where w,(C,) = Tr(I"tdle*™/*[~1dle=271/k) is defined in(2.6). Now the full action can be

written as
GA-V _ gkin—def + Geauge—def + Gtop—def (5117)
here
st = 2 [ et g + - [ drtde 1) (5.118)
T b3l m Yo
and
k k
Geauge—def _ _/ LB (g, Ay)datdx™ + —/ L8 ( gy, Ag)datda™ (5.119)
2w bl m Yo
k k k
Stopfdef — _/ Wz —/ Wz — —/ 5.120
o Blw (g1) + ppm Bzw (92) gy Dw(91,92) ( )

with w(g1, g2) given by ((5.116]).
It is cumbersome but straightforward to check that the action (5.117)) is invariant the gauge

transformations:

g1 — hlglhfl s A1 — Al + dhlhfl (5121)

g2 — hagaha , Ay > Ay + dhohy!

where hy : ;1 — U(1) and hy : X9 — U(1).

187



5.5.2 Duality defect for the parafermion disc SU(2)/U(1)

Specialize now to the case of G = SU(2) [17].

We write the group elements using the FEuler coordinates:

g = éXF 00T _ iO+8)F 0o i(G-0)F (5.122)

The ranges of the variables are 0 <6 < 7, 0<¢ <27, 0<x <d4m, —7< gb,gg <.

SU(2)
U(1) axial

The axially gauged model is derived by the gauging of the U(1) symmetry corre-
sponding to shifting of ¢ and has the target space M4 with the following metric and dilaton

field [06][123):

ds® = k(d6® + tan® 0d¢?) (5.123)
®_ Ys

<~ cos f

O~ Q+2m

Using the T-duality rules of section [5.2] one can see that T-dual background to the axially

gauged model is

- _ dd?
dst = i g + 42 (5.124)
tan? 0
é _ Js
Vksin 6
~ - 27
o~ o+ T
Vectorially gauged model Sly((f)) is derived by the gauging of the U(1) symmetry corre-

sponding to the shifting of ¢ and has the target space My with the metric and the dilaton:

B 5 12
s’ = k <d92 + td¢2 9~> (5.125)
an
e = 95
sin 6
gg ~ é + 27

Comparing (5.124)) and (5.125)) one can see that the background T-dual to the axially gauged

model is the Zj, orbifold of the vectorially gauged model.
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According to the results of section [5.2] the world-volume of the T-duality defect D’ between
backgrounds (5.123)) and 1’ is the submanifold # = 6 of the product My x M, with the
flux F = dop N d&. The defects between backgrounds and Dy _ 4 has the same
world volume but the flux is F = kdp A d¢. Consider the defects given by equation |D

2mijog 1

The conjugacy class takes the form C; = le™ % [

SR

, 7 =0, % ... %, (since we are working in the
specific case of G = SU(2), the general subscript p was changed to j, which is standard for
this group) and therefore we have a family of the defects labelled by j. Now we show that the
T-duality defect above, Dy _4, corresponds to j = 0.

Let us examine this defect in more detail. Parameterizing Ly = €'*193/2 and L, = e'®273/2

and writing p using the Euler coordinates, we obtain for this special defect:
(g1, ) = (62'(%-1-&)07361'901 (% girtan G ito ei(fi—fﬁ-‘r(xg)%) (5.126)

From (5.126)) it can be seen that this defect satisfies the condition 8 = 6. To project down this
defect to the product space My x M4 we impose gauge fixing conditions x = 0 for the first

vectorially gauged model and
(FR+r+a)+(FR—kK+ay) =0 (5.127)

for the axially gauged model. From ([5.127]) one obtains:

a1 + Qo
2

PR (5.128)

Therefore the angles ¢ and & of the target spaces are related to the defect parameters by

equations:
b=k= _0‘120‘2 (5.129)
¢=2 5 @2 (5.130)
Let us evaluate the two-form . For 7 = 0 it simplifies to:
w(p, L1, Ly) = Tr(p 'dpdLyLy*) + Tr(Ly 'dLydpp™t) + (5.131)

Tr(L7'dLipdLsLy ' p~) — Tr(Ly'dL, Ly dLs)
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This implies

Tr(p~tdpdLyLy ') = —(dF cos® 6 — dk sin® 0)dov, (5.132)

Tr(L;'dLydpp™') = —doy (di cos® O + dr sin® 6)

1
Tr(Ly'dLypdLy Ly p™t) = —dagdas(cos® 6 — 5)

dOéldOég

2

—Tr(L;'dL Ly dLy) =

Using that x = 0 and (5.128]), (5.129)) and ([5.130) one obtains that the # dependent terms

drop and we end up with
k k k-~
E’WQD, Ll, LQ) = Edaldag == %dd)dgb (5133)

This is the flux on the defect Dy _ 4 and as demonstrated in sec. 2, this defect is topological.

Geometry for a generic defect can be concluded noting that the bibrane geometrically
(but not the flux and symmetries) is folded version of the symmetry-breaking type Il brane
considered in section [2.5.2l Using the arguments explained there, one can conclude that a
generic defect has a geometry given by the inequality :

_ Ami
cos2(0 — 6) > cos %‘7 (5.134)

5.5.3 Axial-vectorial defects as operators in the parafermion Hilbert
space

It has been shown that the backgrounds and correspond to the parafermion
theory, and therefore the defects above can be realized as operators in the parafermions Hilbert
space.

To construct the corresponding operator one should start with the Cardy defect in the

parafermion theory [138§]:
PF

SrE _
i = 3 g prepry 5139

J7n
g 7(0,0):(4,n)

is the parafermion matrix of the modular transformation (|1.333

2 imTnn
PF _ “ SU(2) imnn
S(j,ﬁ);(j,n) - \/;Sjj ek (5136)
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PPY and P} are projectors defined in ((5.78) and (5.79). We need to construct a defect mapping

A- branes to B- branes. This can be done along the lines used in [123] for the parafermion B-
branes construction. Recall that the Z, orbifold of the parafermion theory at level k is T-dual
to the original theory. To get a defect mapping A- branes to B- branes one should sum over
Zy images of X;  and perform T-duality. In order to circumvent the fixed point problem, we
consider the case of odd k E| . Summing over images leaves in only the n = 0 term and
T-duality exchanges P} with its B-type version, which can be derived in the following way.
Using the decomposition of SU(2) as a product of parafermion and scalar theories one

can write

pSUQ@) _ Z prFpYD (5.137)

where the projector ]5J~SU(2) for SU(2)y, is defined in (|5.81]), for parafermions PPF 5.79), and

for U(1) scalar P,Hr(l) in ([5.76]).

To define the T-dual projector ﬁf: we rotate the SU(2) projector PJ.SU(Q) 5.81) with

; jl . .
operator e satisfying

e Jie ™ = — J (5.138)
and afterwards decompose it again as a product of the parafermion and scalar theories:
inJ pSUR) _ 2P F pul)
1@e™hpt® = "BP; P (5.139)

where PTU,(U is defined in ([5.76)).

Combining the orbifolding and the T duality procedures results is:
(2)

\/_Z B (5.140)

Using the arguments of section [2.5.3 one can show that in the large & limit YA has the

geometry given with the overlap (2.166)):

In the case of an even k, the primary field % has the non-trivial stabilizator Zs, which requires the fixed point

resolution procedure. As a consequence the formulae for branes and defects derived in this way get modified.

See for details [123].
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(0, 9Y710, ) ~ (5.141)
o200 O(cosy — cos 27,@) sin yd~y

P ] - = -
12024 \/COS’y — o8 21) \/[cosv — 08 2(0 + 0)][cos 2(0 — 0) — cos 7]

where zﬂ = (2?;112)” and © is the Heavyside step function. Eq. (5.141]) shows that the world-

volume of the defect should satisfy the inequality
cos2(0 — 0) > cos 20 (5.142)

which in the large k limit coincides with the inequality , defining the geometry of a
generic defect.

Note that in the defect Y B, the relation of the elements of the matrix of the modular
transformation drops, and it is a sum of projectors, projecting down to the n = 0 subspace
and performing T-duality, thus mapping the A;, Cardy branes to the B; branes constructed
in [123|. For generic 7 one derives a linear combination of the B, branes with coefficients given

by the fusion numbers le,j.

5.6 Fermionic T-duality

In this section we show how do defects generate T-duality on fermionic coordinates. We show
here that the fermionic T-duality is implemented by the defect, given by the fermionic analogue
of the Poincaré line bundle, which we call Super-Poincaré line bundle. This defect is invertible.

Then we define the super Fourier-Mukai transform, as in the bosonic case, as an integral

with an appropriate kernel given by the exponent of the flux of a super Poincare line bundle.
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5.6.1 Pseudodifferential forms integration

Pseudodifferential forms [25,26}/117], defined on a supermanifold of p bosonic and ¢ fermionic

coordinates, are of the form

f =Y foula,do)6’da" (5.143)
Where: v = vy, ..., 05} U = Uy, ..., Up; U, u; € 0,15 & = 11, ...p; dO = dby, ...dO; 67 = 607 - ... - 0%
dz® = dz{* - ... - dx,”, and the sum is over all possible values of u and v. Such an object can be

integrated over the bundle on which it is defined. The integration is defined as

/Bf—/Bfm ..... 1 (5.144)

Where B is the cotangent bundle of the supermanifold and B is its underlying bundle, with
just the bosonic coordinates. The dfls are coordinates along the bundle, and unlike the case
of the fibrewise integration presented above, they are bosonic. For that reason one needs f
to be sufficiently rapidly decreasing in them in order for the integral to converge. As will be

demonstrated bellow, this is indeed the case for the super Fourier-Mukai transform.

5.6.2 Review of the fermionic T-duality

Consider the action (5.19)) for the case when one has fermionic as well as bosonic variables, and
Gi; and B;; are graded-symmetric and graded -antisymmetric tensors respectively. Suppose
that G;; and B;; do not depend on the fermionic variable 6! [24]. Separating the variable 6!

one has

S = / drtdz (B1100'00" + Ein00'0X Y + Eyi0XM00" + EynoXMOXY) (5.145)

Replacing derivatives of §' by fermionic vector (A, A) and introducing a Lagrange multiplier

field A one gets
S = / dztde™ (ByAA + EyyAOXY + ExpdXMA 4+ EynoXMoXN 4+ 01 (0A — DA)) (5.146)
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Integrating out #! imposes that
A=00" and A=060"
Integrating out (A, A) results in:

)M B XM 4 a‘él) and A= —BL (EMlaXM — aél>

Bll 11

Inserting ((5.148)) in ([5.146)) one obtains fermionic T-dual background:

- 1
Bi—
1 B
~ Eim
JoR—
=g
~ Ewvn
o=
= g

or in the components:

~ 1

By = _5

~ 1M

Giv = BBH

~ 1M

B =g,

Gun = Gun — B_H(GlNBMl + BinGn)
Byn = Bun — BLH(GINGMl + BinBn)

Equating (5.147)) and m one gets:
90" = B1100 + Ey0XM  and 90" = By,00" — (=)™ By 0XM

The rest of the coordinates remains unchanged.

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)

5.6.3 Defects implementing the fermionic T-duality and the Super

Poincaré line bundle

We now consider the action with defect, with target spaces related by the equations ({5.149)),

and the defect given again by the correspondence space
XN =XV, N =2...dimM
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and connection

A= 0'df? (5.153)

with curvature

F =de' Adb'. (5.154)

We will call this super line bundle by analogy with the bosonic case a Super-Poincaré bundle.

Now the defect equations of motion take the form:

EjoX? — (=) F;0X7 — 0,0 =0 (5.155)

EjNOXT — (=)%Y En;0X7 — EjnOX7 + (—)*NEyn;0X? =0, N =2...dimM (5.156)

Ej0X7 — (=) E;0X7 +0.0' =0 (5.157)
Additionally as before we have:

OXN + XN =oxXN +oxN, N=2...dimM (5.158)

Solving (5.155), (5.156), (5.157), (5.158) we obtain

OXN =aoxN, N =2...dimM (5.159)
oxXN =oxN, N =2...dimM
90" = B1100" + EpynoX™
561 - 311591 - (—)SMElMSXM
The details of the calculation can be found in [57]. The relations (5.159) coincide with the

equations ([5.151)). Therefore the defect given by the Super-Poincare bundle on the super-

correspondence space induces the fermionic T-duality.

One can check that equations (5.150) and (5.159) imply:
T =G0X'0X? =T = G;;0X'0X’ (5.160)
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and
T = G,0X'0X =T = G;0X'0X7 (5.161)
which means that the defect is topological.
All this again can be generalized to the T-dualizing of several coordinates. Suppose we

T-dualize the first n coordinates, indexed by Greek letters.

The transformed background has the form

~ ~E_; E_;Esy
E= (5.162)
EMaE;é Eun — EﬁNEMaEczﬁl

Now we should consider the defect with the worldvolume

XN =XV, N=n+1...dimM (5.163)
and connection
A= 0"db". (5.164)
a=1
It has the curvature
F=> do”Adj”. (5.165)
a=1

In the same way as above we can show that for M and M related by equations (5.162)) this

defect is topological and implies the defect equations of motion:

OXN =oxN, N=n+1...dimM (5.166)
oxXN =ax™, N=n+1...dimM
00° = Eg,00° + Epo0X™M

90 = E,300° — (=)™ Eqp0XN

We have obtained again T-duality relations for several T-dualized fermionic coordinates.

5.6.4 Super Fourier-Mukai transform
We now elaborate the Fourier-Mukai transform for fermionic T-duality. It has the form:
e PG = /dne‘BQe"ﬁ (5.167)
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with G and B as in (5.50), where we set 7 = df'. As we explained 7 is a bosonic variable, so

we have a usual integration over 7. From (5.150) one obtains:

A 1 1
B—-B= _2311”2 — 5311772 (5.168)
1 M N Binm . M M
— (GinGan + BinBan)dX W dX "™ + ——ndX"™ — BiyndX
2B11 Bll

Suppose that G does not depend on 7. Using the formula for the Gaussian integral

1 V2 2
/ dze™ 29" % = Tﬁeia (5.169)
a

we obtain that the terms in ((5.167) containing Bij; and the first quadratic term are canceled

and, we end up with

G — V2T by CinGandX Max™ (5.170)
vV Bu

Note that Giy and By have parity (—)*¥*1. Hence if dX and dXV are differentials of

the bosonic coordiantes, the product GGy contains fermionic coordinates and drops if we
consider the lowest § = 0 components, in agreement with the observation |24] that the fermionic
T-duality does not modify D-brane dimensionality. Note that the lowest § = 0 components
of coincide with the homogeneous part of the transformation of the Ramond-Ramond
forms in [24].

Using the transformations rules equation can be generalized to the case of
the T-dualization of several fermionic variables #¢. Keeping in mind that eventually we are
going to project to the § = 0 component we can set G5 = 0, since Gop = n“bEg‘Ebﬁ, and taking
into account that a and b are bosonic and « and [ are fermionic, one sees that E¢ and Ebﬁ
are odd. With this simplification the Fourier-Mukai transform for G independent on 8% can be

computed to yield:

G V2T GebBiCanCupdxMax™ (5.171)
det|[ Bag|

The lowest component of (5.171]) again coincides with the homogeneous part of the transfor-

mation of Ramond-Ramond forms in [24] for the fermionic T-dualization of the n coordinates.
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5.7 Non abelian T-duality

5.7.1 Review of non-abelian T-duality

Non-abelian T-duality was developed in early nineties [9,30453},97,,120,{121}|134].

Here we recall and collect some facts on non-abelian T-duality for isometry groups acting
without isotropy [97,[110]. Suppose we have a target space with an isometry group G, with
generators 1", structure constants f;., and coordinates 6, and in some coordinates the metric

and the NS two-form take the form
ds® = G, (Y)AY"dY" + 2G . (Y)QUdY " dO* + +G o (Y ) Q2 Qb dO™ dOF (5.172)

1 1
B = Bu(Y)dY" NdY" + Buo(Y)QdY" A d6* + 45 Bu(Y)Q,Q0d6™ 6" (5.173)

where (¢ are components of the right-invariant Maurer-Cartan forms L%:
dgg~" = LT, = Q4 T,do" (5.174)

The background fields depend on group coordinates 8 only through the Maurer-Cartan forms.
Also as it is clear from the notations they can depend on some spectator coordinates Y. Since

d(dgg™") = dgg~' Ndgg™!, L* and Q¢ satisfy the Maurer-Cartan relations
1
dL* = 3 fLLbLe (5.175)

and

0 — 0,0 = f5,Q08 (5.176)

The corresponding Lagrangian density is

L = QY dY” + QuuQedY de* + Q. Q000" aY" + Qu QLoI™He* (5.177)
where
Q,ul/ = G;w + B;w ) Q,ua = Glﬂl + BMCL (5178)

Qau = Gau + Ba,u ) Qab = Gab + Bab .
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To find the dual action one can use the Buscher method and write the Lagrangian (5.177)) in

the form
L =Qu0Y"0Y" + Qu0Y" A" + Qu, A"0Y " + (5.179)
Qup A" A’ — 2%(0A — DA — f2A"A°)
The equations of motion of the Lagrangian multiplier x® force the field strength
F{_ = 0A" — 0A" — foLAPA (5.180)
to vanish. The solution to these constraints is
A = Q100F and A® = QLO0F. (5.181)

Putting this solution into ([5.179)) yields the original action (5.177)). On the other hand inte-

grating out gauge fields A® one obtains:
M HQp0YH + 0z°) = — A" (5.182)
M 02" — Qp0Y") = A
where
Map = Qap + 2°f3 (5.183)
Inserting expressions back in (5.179) we find the dual action:
i B0y Y + B0y det + Bu,0000Y" + Fudrtdat (5.184)
where
B = Qu — QuaM ' Quy (5.185)
Eua = Qule;l

-1
ap = _QbuMab

n -1
Eug =M,

Equating (5.181]) and (5.182]), one gets the duality relations of non-abelian T-duality [30,{121]

M HQ 0V + 02°) = —QLo0* (5.186)
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M 02" — Qp,0YH) = Q106 (5.187)

Separating in ([5.185)) symmetric and antisymmetric parts we derive metric and NS form of the

dual theory:

A 1 _ _
G;w = GW - §(QuaMab1Qbu + QVaMaleb,“) (5-188)
A 1 _ _
Gua = §(Qubea1 - QbuMabl) (5-189)
A 1 -1 -1
A 1 _ _
By = By = 5(Quudly Qe — Quady Q) (5191)
. 1 B B
Bpa = §<Qﬂbea1 + QbuMabl) (5.192)
A 1 -1 -1
B, = §(Mab - M,, ) (5.193)
and for dilaton
~ 1
d=0— 5 log(det M) (5.194)

Let us recall the SU(2) Principal Chiral Model [67,68,(175]
S(9) = [ Kx(g 1099 "0) (5.195)
where g € SU(2). The metric in the Euler coordinates is
ds* = k(d0* + d¢® + dyp* + 2 cos Odpdi)) (5.196)

and there is no NS two-form. To obtain the dual background one should compute M, a_bl matrix.

Denoting the dual coordinates x%, a = 1,2, 3, one has here
Mab = kdab + €abeTec (5197)

and

Taqlp

My = o (Kbay + =27 — e (5.198)
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Separating symmetric and antisymmetric parts and denoting r? = 2%2® one derives

A 1 TqTy
w=— (ks, > 1
Can = g (Kb + =5 (5.199)
“ 1
ab — _k’2——{—7'2€abcxc (5200)
A 1
¢ =—3 log(k* + kr?) (5.201)
and hence one has
~2  dr? kr? .
dS = 7 + ]{,‘2 +T2d8 (S ) (5202)
N 7’3 2

5.7.2 Defects generating non-abelian T-duality

Consider the action (5.2) with a defect as in the situation above, where M is the target space
with the coordinates (Y#,6*) and has metric and NS 2-form given by (5.172) and (5.173)), Mo
is the space with the coordinates (Y*, %) and with metric and 2-form given by ((5.188])-(5.193)),

and @ is the correspondence space, with the coordinates (Y, 0% z%), the connection
A= —g°L* = —x°Qdo* (5.204)
and the curvature
1
F =dA= —(dz"L" + 57 fLLPL) (5.205)

To derive ([5.205)) we used the Maurer-Cartan relation ((5.175). By other words we take as L,

in the L given by , and as Lo the L given by .

The conditions (5.204) and (5.205) define a line bundle PN* over @, with the curvature
(5.205)), which can be called non-abelian Poincare line bundle. In this case the action ([5.2))

yields the following equations of motion on the defect line:

QuadY " + Qa2 00™ — Qo OV — Qup,00™ = —a° QL ££.9,0™ — 0, 2 (5.206)

Ea0Y* + Ey0a® — F,,0Y" — Egdab = —Q50.6%. (5.207)
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Quaay” + Qaaﬂzaek - Qayéy# - (5208)

Qoa2 00" — EpdY" — Eup02® + Ep0Y* + Eagdz® =0

In the first line we used the second of the Maurer-Cartan relations ([5.176]).

Solving equations ([5.206))-(5.208)) we obtain the duality relations of non-abelian T-duality

(5.186) and (5.187)

Quaayu + Mbannagm = —0x" (5209)
QupOY" + My Q0 00™ = 02" (5.210)
My, (QudY" + 92%) = —Q5,00™ (5.211)
MM (02" — Qp0YH) = Q00™ (5.212)

Using expressions (5.185]) and the duality relations ((5.209) and ((5.210)) we obtain

A~ — o

T=T and T=T (5.213)
where
T = GudY"9Y" 4 2G Q80 90" + G ;0% QL 00™ 56" (5.214)
T = G,V OY" 4 2G,, QLY FOO* + G0, QL H6™ 06" (5.215)
T = G0V dY" + 2G,,,0Y 027 + G 020" (5.216)
T = G0V "9Y" + 26,0V "0x" + Glay02°Da (5.217)

what means that the defect is topological.

5.7.3 Non-abelian T-duality Fourier-Mukai transform of the Ramond-

Ramond fields

Taking into account that the curvature of the defect generating the non-abelian T-duality is

given by the formula (5.205)), the Fourier-Mukai transform of the RR fields takes the form:
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G= [ gnebremnir i (5.218)
G

Here we apply this formula to the case of background considered in [109,/175],
namely:

ds* = ds*(My) + k(Y)ds*(S?) (5.219)

Here My is a seven-dimensional manifold, Y are coordinates on Mz, k(Y') is a function of Y.

One can have also B field on M7. The second term is actually the SU(2) principal chiral model,

considered in section Therefore, using formulae (5.202) and (5.203)) the dual model takes

the form:

~2 ) dr? kr? .,
ds =dsy, (Y)+ - T o ds*(S?) (5.220)
and
A 7’3 2
Consider the following RR forms:
_ ~(0) (1) o, 1 (2) a b (3) 1 2 3
G=G"+G,’NL +§gabAL ANL+GYNLANLPAL (5.222)
Here g<0>, Q(l), 9(2), G®) are forms on M.
Denote the forms in the exponent of ((5.218]) as
ACY =B _B (5.223)
ALY — _dgo AL (5.224)
1
A — -5 ALY A L° (5.225)

In this notations we indicate by the first number the degree of the form in dz®, and by the
second in L®. Expanding the exponent and remembering that one can have at most third degree

terms in the both kinds of 1-forms we get:
eB—B—dx“/\L“—%:c“ o LALC _ 14+ A0 4 ALY 4 (5.226)
2
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ABD A AOD L AR A 402 1

L 400 A 40D A AGD 4 4@0) A 40D A 402)
6

Using the rules of the fiberwise integration we obtain that the dual of the first term comes from

the all third order terms in L® appearing in the expansion of the exponent:
GO =GO A w® (5.227)
where
w® = /G %A(“) AAGD A AGD 1 A0 A AQD A A02) 1 402) A ABD (5 998)
One can explicitly compute that
éA(l’l) AABD A AGD = qgt A dzt A da? A vol(SU(2)) (5.229)

where we introduced vol(SU(2)) = L' A L? A L3,

AOD A AGD = gz A vol(SU(2)) = rdr A vol(SU(2)) (5.230)
(2,0) (1,1) 0,2) _ ridr 2
AN AT NAD = e A Vol(S%) Avol(SU(2)) (5.231)

To derive ((5.231)) we used the expressions (5.221)) and (5.223)) for A% Collecting all and using

that do! A do? A dx® = r2dr A vol(S?%) we obtain

_ 2]€2d
G0 = g A </:2 - 72 A vol(S?) + rdr) (5.232)

Similarly collecting all the second order terms in L% in the expansion of the exponent one

obtains the dual of the second term:

—

1
GV A Le = / ég(g” ALY A AT A AGD 4 (5.233)
G
/ G AL A ACD / GH A LEAABD A A0
G G
1
= —§eabcg(51) Adz® A dat — Gzt — ARD A g ga

Picking up the first order terms in L® gives us the dual of the third term:

—

GO ANLaALY = / GO ANLEALY A AGY 4 / GO ALEA LY A ATD A ARD (5234)
G G

r2dr
k2 +r?

— —eabcga? A dx® + ea,,cgﬁ)xc A

A vol(S?)
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And finally the dual of the last term is given by the terms not containing L% at all:
/ GONLPALPANLP N =GP + GO A (B - B) (5.235)
G

Rearranging the terms in order of dx® we can write for the non-abelian T-dual of G:

G =GO +G0 +G® 4GB (5.236)
where
GO = —Gze + g (5.237)
— 1
G =GO Ardr — Eeabcgfl? A dat (5.238)
— 1 . .
G2 = —§eabcgg” Adz? Adx® — (B — B)AGWz + G® A (B — B) (5.239)
21.2 2
— ) . Tk 9 1 @) e redr 9
g(3) — g( ) A m A VOI(S ) + Eﬁabcgab VAN 12 i 2 A VOl(S ) (5240)

As we have explained before, since the gauge invariant flux on the defect, which appears in
the exponent of (5.218]), satisfies the relation (5.52) , and the exterior differentiation commutes

with the fiberwise integration, the dual fields satisfy the relation:
(d—H)AG = / eBBda AL =5 [ L'ALE A (q — HY A G (5.241)
G

The relation (5.241]) guarantees that the hatted forms satisfy the supergravity Bianchi iden-
tity given that so do the original forms G. In the mentioned papers, the non-abelian T-duality
transformation of the RR fields was performed for backgrounds ([5.219]), using the approach

based on equation ((5.49)), with the RR fields having the form:
G=GO + GO AL ANLEAL (5.242)

The results obtained in these works are in agreement with the formulae ((5.237))-(5.240]) for this

case.
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Chapter 6

Defects in the Liouville and Toda field

theories

6.1 Liouville field theory

Let us review basic facts on the Liouville field theory (see e.g. [178]). Liouville field theory is

defined on a two-dimensional surface with metric g,, by the local Lagrangian density

1
L = —gapOatpBop + pe*? + QR@O 7 (6.1)
47 4

where R is associated curvature. This theory is conformal invariant if the coupling constant b

is related with the background charge () as
Q=b+-. (6.2)
The symmetry algebra of this conformal field theory is the Virasoro algebra

[Lin, L) = (m — 1) Ly + —=(n* —1)0p 1 (6.3)

cr
12
with the central charge
e, =1+6Q°. (6.4)
Primary fields V,, in this theory, which are associated with exponential fields e2*?, have
conformal dimensions
Ay =a(Q —a). (6.5)
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The spectrum of the Liouville theory is believed [33]34,40] to be of the following form
H:/o dP R%HP@R%HP? (6.6)

where R, is the highest weight representation with respect to Virasoro algebra. Characters of

the representations R% 4ip are
xp(T) = —, (6.7)
where
n(r)=¢"> [0 —q"). (6.8)
n=1

Modular transformation of (6.7)) is well-known:
1 . ppr
xp(~1) = V3 / o ()PP P (6.9)

Degenerate representations appear at

and have conformal dimensions
Apn = Q*/4 — (m/b+nb)*/4, (6.11)

where m,n are positive integers. At general b there is only one null-vector at the level mn.
Hence the degenerate character reads:

B q—(m/b-i-nb)2 _ q—(m/b—nb)2

Xmnl\T) = 6.12
@ - (6.12)
Modular transformation of (6.12)) is worked out in [192]
1
Xman(——) = 2\/§/XP(T) sinh(27rmP/b) sinh(27nbP)dP . (6.13)
-

Given that the identity field is specified by (m,n) = (1,1) one finds the vacuum component of

the matrix of modular transformation:

Soa = —2V2sin7b™(2a — Q) sinwh(20 — Q) . (6.14)
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To present formula (1.115)) in the Liouville field theory we need two-point function

S(a)

(21 — ZQ)QAD‘ (21 — EQ)QAO‘ '

<V0<<Zlv El)va(z27§2>> = (6.15)

Let us for this purpose recall some facts on the values of the correlation functions in the

Liouville field theory in the Coulomb gas approach.

1. The three-point functions satisfying the relation a; 4+ as + ag = Q) are set to 1. This rule

actually sets normalization of the fields, since from here we receive that

1

(Zl _ ZQ)QAQ (21 _ 22)2Aa :

(Valz1, 21)Vg-a(22, 22)) = (6.16)

The fields V, and Vj_, have the same conformal dimensions and represent the same

primary field, i.e. they are proportional to each other, and it follows from (6.15) and

ia —S « [/()_O (;.1;

2. The three-point functions C(ay, am, ag) for the values of o satisfying the relation
a1+ ag+az3=0Q —nb, (6.18)
are given by the Coulomb gas or screening integrals computed in [47]

"y (— b2
L(a1, a9, ) = (547(172)77”)" — H]fl Y(=Jb%)
v o ly(200b + kb2)y (200D + kb2)y (203D + Kkb?)]

. (6.19)

where v(x) =
The structure constants derived as the Coulomb gas integrals are denoted by C to distinguish
from their values derived from the DOZZ formula.

The structure constant are related to the three-point functions by the relation:

Cotay = Clai, oz, Q — az). (6.20)
Thus we derive:
Cn =1, (6.21)
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and

atb/2 _ mpbty (0)
“b/2a T 5 (2ab)y (b2 — 2ab + 2)

(6.22)

Now one can obtain the two-point function S(«) by the following trick [60]. Consider the

auxiliary three-point function

(Va(@1)Vaspp2(22)Vopa(2)) - (6.23)
Using the OPE
ViV = Co % [Vaasa] + €252 [Vawsa) (6.24)

one receives that in the limit z — 2 the three-point function (6.23)) takes the form:

COy2S(a+b/2), (6.25)
whereas in the limit z — xo, it is
a—b/2
CoyiS(a). (6.26)

Equating (6.25)) and (6.26) we get that the two-point function S(«) satisfies the condition:

S(CY) _ pa+b/2

m =L b2 (627)
Solving one derives:
b=1(Q—20) B B . B
S(ay = ) T = K@~ 2 — ) 028

IFb(Q —2a)T(1+b071(Q —2a))
We have all the necessary ingredients to compute classifying algebra: two-point function
S(ar) and vacuum component of the matrix of the modular transformation. Before to continue

let us recall that both of them can be conveniently written using ZZ function [192]:

294 (mpny (1) 5" m(Q — 20)

W) = =5 (@ = 20)T (L= b (@ —20)) (6.29)
It can be easily shown that
WQ-a)
W) S(a), (6.30)
and
W(Q — a)W(a) = S - (6.31)



Recalling (1.117]), F,, takes the form:

Soo

F, = . 6.32
WG~ )i () (632

Combining (6.30) and (6.32]) we obtain coefficients &, for the Liouville field theory:

S
L= Fla) = >-%. .
€& = VSR = (6.33
Eq. (1.115)) implies:
f QA W(as)

cos F, =W0)—7——_ 6.34
ai,00 3,0 ( )W(Oél)W(Oég) ( )

Qo Qo
Let us compare ((6.34])) with the calculations in literature. First of all recall the calculations
in [60] for one of the momenta taking the degenerate value a; = —%. The fusing matrix can
be computed using that conformal blocks with the degenerate primary —g satisfy the second
order differential equation, which can be solved by the hypergeometric functions. The fusion
matrix is given by the transformation properties of the hypergeometric functions. The fusion
matrix derived in this way we denote by F* to distinguish from the values of the fusion matrix
derived from the Ponsot-Teschner formula. The corresponding values of F* are [60,/180]:

* ~b/2 —=b/2 | T(2ab— b)I(—1 — 2b%) (6.35)
a—b/2,0 - T(2ab — 202 — 1)I(—b2)’ |

« (0%

—b0/2 =b/2 | T2+ — 2ab)[(~1 — 20%)

a+b/2,0 - F(]_ _ QOéb)F(—bQ) (636)
o o
Using ZZ function W («) (6.29)) one can compactly rewrite (6.35)), (6.36]) as:

. —b/2 =b/2 | W(0) W(a—1b/2) (6.57)

a—b/2,0 - b ) :

o TWEY W

. =b/2 =b/2 | W(0) W(Q—a—1b/2) (6.38)

a+b/2,0 N N - W(_g) W(Q—O[) .
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Combining (6.21), (6.27), (6.30), (6.37), (6.38) we obtain

—b/2 —b/2 b/
Ci;/bz/i a—b/2,0 / / = I/Iljzg);) W(;é/(at;/ ) ) (6.39)
a a 2
—b/2 —b)2 5
szr/bz/i atb/2,0 / / = W(DZ Wia 16/ ), (6.40)
’ 0« W(-3) W)

in agreement with (6.34)).
Next we compute the left hand side of (6.34) using DOZZ formula for structure constants

[46/[191] and the explicit expression for the fusing matrix found in [145]. It is instructive at the
beginning to repeat the steps leading from (1.111]) to (1.115)) for the Liouville theory using the
DOZZ formula. Using the relation between three-point functions and OPE structure constant

(6.20) the associativity condition of the OPE in the Liouville field theory takes the form:

(62N e %))
Cloy, as, a,)C0(Q — 05870427041>Fas,at = (6.41)
oy 7
a1 Qo
- 0(0647 Oy, OZI)C(Q — O, (3, a?)Fat,Ozs
g Q3
Consider the limit a; — 0 in (6.41)).
From the DOZZ formula:
C(Oél, g, 063) = )\(szle @) /b X (642)

Tb(b)Tb<2a1)Tb(2042>Tb(2a3)
Tolay + ag + az — Q) Vy(ay 4+ ay — o) Tolan + az — ay) Vy(as + o — ag)’

where
A = wpy(b2)b? 2 (6.43)
one can obtain [178§]
2¢eS 2
Ol €, 1) =~ eSla) + ‘ . (6.44)

(g —a1+e€)(ag —ars+e€) (Q—ar—ar+e)(ag+as—Q+¢)
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The functions Y,(c) and their properties leading to (6.44)) are described in appendix [1]

Using the reflection property
C(Ozg,ag,()él) = S(Oég)C(Q—CYg,OéQ,Oél), (645)

one receives in this limit, setting also a; = ay, as = a3

a1 Q9
FO,aS
45(0)S(ag)S(as) ap Qo
C*(ag, a1, a5) = . (6.46)
S(0) N
hmeﬁoezFas,e
a; a7
It was shown in [179] that the limit
a3 Qo ) a3 Qg
Fl, = limg 0% Fa s (6.47)
oy 0 g
exists and satisfies the equation:
Q2 Q2 Qg Qg F, F,
Fog Foa = (6.48)
a1 o oy «
Putting (6.48)) in (6.46]) one finally gets:
ar W(Q — as
Clon, a0, ) FL WO s (6.49)
ay o 1 2
and
W(Q — o) o1 o
Clon, ag, a5) =2W(Q — i) < Fh 0, (6.50)
QW) |

Here a sign factor could appear, but below we show that actually (6.49) and (6.50)) hold without
it. Recalling the relation (6.20) and (6.45) we obtain (6.34). The emergence of the factor 2

will be explained below. This derivation also explains that the double pole in the fusing matrix

a1 7
Fao is related to the simple pole in the DOZZ formula.
Qo (X9

One can compute the limit (6.47)) also directly.
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Recall that the boundary three-point function is given by [146]

030901 030201 923‘71 ﬂ2 ﬁl
CQ?’—535251 = 0633|5261 = 90302390201 0233 ) (651)
52 ﬁl 0'3 0—1
where
OO = NP I(Q)T(Q — 26)1(201)1'(2Q — 2073)
& [4(2Q — B — 01— 03)lh(01 + 03 — B)[4(Q — B+ 01— 03)[4(Q — B+ 03 — 01)
(6.52)
The function I'y(z) is described in appendix
Therefore the fusing matrix can be expressed as
Ba Bi g5 g7
ﬁ B 03020
Fout = R Ca (6.53
0'3 0'1 53

On the other side C3*?37; 5 has a pole with residue 1 if 5, + S — 3 = 0. Therefore using
the invariance of the fusing matrix w.r.t. to the inversions a; — () — «; one can write for the

corresponding residue of the fusion matrix

- B B _ Q-0 B 907,95
= Fl o _ 1B/

02,0

(6.54)

0101

o1 01 01 01 7
Using the explicit expressions (6.52)) for ¢3*”*, the DOZZ formula (6.42) for structure con-
stants and the properties of the functions I'y(x), T(z) reviewed in appendix |1} it is easy to

compute that

90'10'2 90'20'1 — 21/4 QWW(Q - Ul)W(Q - 02) 1
Q= W(B) C(o1,09, 51) '

(6.55)

Using the properties of the functions I'y(z), reviewed in appendix , one can compute the limit

) 1
hm53_>QW s (656)
9ps

and obtain that it has simple pole with the residue

274 (0)
TW(o)W(Q —0a1)

Combining (6.55) and (6.57]) we again derive ((6.49)).

Some comments are in order at this point:

(6.57)
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B B

1. This derivation shows that the fusing matrix element Fy, o indeed has double
01 01

pole: one degree comes from the pole of the three-point function C77?% 5 and the second

from the pole of the ﬁ%-
Q

2. We have shown that (6.34)) or (6.49)) indeed always holds with the understanding that in
the case of the singular behavior one should take the coefficients of the leading singulari-

ties.

3. Note that (6.49)) evidently satisfies the reflection property (6.45) since the fusing matrix

is invariant under the inversions a — ) — a.

4. Let us explain the emergence of the factor 2 in . We have seen that the formula
, derived by using the DOZZ formula for structure constant and Ponsot-Teschner
(PT) formula for the fusing matrix has additional factor 2 compared to formulas ([6.34),
, using the values of the structure constant derived as the Coulomb gas
integrals and fusing matrix computed via the differential equations for the conformal
blocks. The derivation of the formula via the limiting procedure —
indicates that the factor 2 originates from the coefficient 2 in formula (6.44]). Point is
that as the formula shows, the two-point functions, derived from the DOZZ formula
as residue of the pole in the limit a3 — 0, are twice the two-point functions and
, derived in the Coulomb gas approach. Thus the states in the theory reconstructed

from the DOZZ formula have twice the normalization of the fields used in the calculations

leading to (6.34)), (6.39)), (6.40]). This is the reason for emergence of the factor 2 in (6.49)).

5. One can ask, what happens if one tries to compute the left hand side of formulae (6.39)),
(6.40) from the DOZZ and PT formulae. First of all let us recall that, as noted in [191],
when the momenta «; satisfy the relation (6.18]), the DOZZ formula has a pole with the

residue equals to the Coulomb gas integrals (/6.19)):

€S0, +as+as—0C (01, ag.a3) =1, (6.58)
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and

€S0, +as+as=0-nbC (01, ag.a3) = I, (o, g, a3) . (6.59)

But strictly speaking this is true only for the non-degenerate values of the momenta.
For the degenerate values , as we see from the DOZZ formula, it may happen that
additionally to the first vanishing term in the denominator, we have two more vanishing
terms, one in the denominator and another one in the numerator. This makes the limiting
procedure ambiguous and can bring to the values of the residue twice as the Coulomb gas

results.

Consider the values of the momenta appearing in formulae (6.39), (6.40): oy = «, ay =

—%, a3 =0Q —a+t g. For these a; the DOZZ formula develops pole, and the matrix F”

defined in 1} vanishes. If now we set ap = —% + 0 and consider the limit 6 — 0, we

obtain
. b b\ _  hath/2
11m5_>0 oC Q, —5 + 5, Q — o F 5 = 2cfb/2,a , (660)
_ 1 —b/2+0 —b/246 . —b/2 —b/2
hméﬂog (;I:tb/270 = Fa:l:b/2,0 . (6.61)
o « « «

On the other hand it was suggested in [105] a limiting procedure reproducing the Coulomb

gas values:

b b
limg 0 {hmﬁo eC (a, —5H8Q-aF o+ e)] = cfbi/’;{i . (6.62)

But this procedure brings to the factor 2 in the fusion matrix:

- —b/2+05 —b/2+36 ) —b/2 —b/2

11m5_,0 llmg_)[)g atb/24+8—¢,0 =2 atb/2,0
(0% (07 (07 (0%

(6.63)

In any case we are in agreement (|6.49)).
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Having demonstrated that holds in the Liouville field theory we can use the the
boundary bootstrap technique developed in sections [I.2.3] [1.2.5] to derive D-branes, defects
and permutation branes in the Liouville field theory in the simple and elegant way. To use
equation in non-rational theory we should take care to have a finite number of terms in
the left hand side. This can be achieved taking j = —%.

Setting j = —g, i =a, and k = o £ b/2, the equation (1.156|) takes the form:
V() (=b/2) = V(e —b/2) + ¥(a+b/2). (6.64)

The solution of the equation (6.64) is

sin(mmb™!(2a — Q)) sin(mnb(2a — Q) Smana
W n(er) = sin(rmb=1Q) sin(mnbQ) N Smno (6.65)

Using equations ([1.155]), (1.171)) and ([1.188)), and recalling (6.33]) we obtain one-point func-

tions for ordinary branes

J -0 .
Um,n(a> myn(a) W(Oé) ) (6 66)
permutation branes on N-fold product
w(o)\"
5 =V : :
UPm,n(a) m,n(OZ) (W(Oé)) (6 67)

and defect two-point functions

D () _ W (0) ?
By = ¥nel@ Gty (6:68)

Using ({1.148)) one derives boundary state coefficients for ordinary branes:

Bon(a) = ——, 6.69
o) = s (6.69)
and permutation branes on N-fold product
S,
BN _ m,na ‘
Pman(®) = 355 @)’ (6.70)
and for defects eq.(1.185]) and (6.68)) imply
Sm no
Dpn(a) = ’ 6.71
o) = e (6.71)



(6.72)

To find continuous family of the brane and defects we will use the strategy developed in [60].
Consider at the beginning ordinary branes. The idea is that the boundary one-point function

U (—%) of the degenerate field V_/» can be considered as a function A(up) of the boundary

cosmological constant up. Setting in (1.154) U (—g) = Aand U(a) = ;‘\,((z)) we obtain
W(-b/2
MAA(O{) =Ala—b/2) + Ala+1/2) (6.73)
w(0)
The solution of the eq.(6.73) is
Ag(a) = =212 cosh(2ms(20 — Q) (6.74)
with
—b/2
2 cosh 2wbs = A% (6.75)

Note that function (6.74) coincide with the matrix of the modular transformation ([6.9). This

leads to the FZZ (Fateev-Zamolodchikov-Zamolodchikov) boundary states:

Ay()

Bs(a) - W )

(6.76)

Similarly for permutation branes on N-fold product treating boundary one-point function

Uy (—g) of the degenerate field V_;/; as a function Ap of the permutation branes boundary

cosmological constant Ap and setting Up (a) = % in (|1.170) we obtain
W(=b/2)\"

Eq. (6.77) has the same solution (6.74) but with s related to Ap via

2 cosh 2wbs = Ap (%) . (6.78)

Therefore the continuous family of the permutations brane has the form

As(@)

(6.79)
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Finally considering the defect two-point function of the degenerate field V_;/5 as a function

of the defect cosmological constant s and setting D(—b/2)/D(0) = Ay and D(a) = L in

W2(a)
(1.187)) we obtain:

(%) Agh(a) = Ala —b/2) + Aa + b/2) (6.80)

The eq.(6.80) is again solved by function (6.74])) but with s and Ay related by

2 cosh 2mbs = Ay (%)2 . (6.81)

Therefore the continuous family of defects has two-point functions

212 cosh(27s(2a — Q))

P =)

(6.82)

and eigenvalues
cosh(2ws(2a — Q))

Ds(a) = 2sin b1 (2a — Q) sinwh(2a — Q)

(6.83)

6.2 Toda field theory

Recall some facts on Toda field theory [59]. The action of the si(n) conformal Toda field theory
on a two-dimensional surface with metric g,, and associated to it scalar curvature R has the

form

A= /< 9ab(OapOhp) +MZ eere) - 250 (Q 2 g >\/_d2 (6.84)

k=1

Here ¢ is the two-dimensional (n — 1) component scalar field ¢ = (p1...¢n_1):

n—1
o= i, (6.85)

where vectors ey, are the simple roots of the Lie algebra sl(n), b is the dimensionless coupling
constant, g is the scale parameter called the cosmological constant and (e, ) denotes the
scalar product.

If the background charge @ is related with the parameter b as

Q= (b + %) P, (6.86)

218



where p is the Weyl vector , then the theory is conformally invariant. The Weyl vector is

p:%Ze:Zwi, (6.87)

where w; are fundamental weights, such that (w;,e;) = d;;.
Conformal Toda field theory possesses higher-spin symmetry: there are n — 1 holomorphic
currents W*(z) with the spins k = 2,3,...n. The currents W¥(2) form closed W,, algebra,

which contains as subalgebra the Virasoro algebra with the central charge
c=n—14+12Q*=(n— 1)1 +nn+1)b+b1)?). (6.88)

Primary fields of conformal Toda field theory are the exponential field parameterized by a

(n — 1) component vector parameter o, v = 37"

i QW

V, = el@9) (6.89)

They have the simple OPE with the currents W*(2). Namely,

w® (o Z,Z
O e (6.90)

The quantum numbers w*) () possess the symmetry under the action of the Weyl group W of

the algebra si(n):

w®(a) =w®(Q+ 5(a—Q)), seW. (6.91)
In particular
w®(a) = Afa) = W (6.92)

is the conformal dimension of the field V,,. Eq. (6.91)) implies that the fields related via the

action of the Weyl group should coincide up to a multiplicative factor. Indeed we have [61]
Re(a)Votsa-@) = Va, (6.93)
where R;(«) is the reflection amplitude

Ri(a) = : , (6.94)




g\ (2=Q.p) 2by/=
Alar) = (mpy (b)) [T b= Q. ) (b (a—0.e) (6.95)

where

1
== z'”_lx/detC’W : (6.96)

and C' is the Cartan matrix. Two-point functions in Toda field theory are

R(a)

<Va(217 Zl)‘/a* (227 22)> - (Zl . 22>4Aa (21 _ 22)4Aa 9 (697)
where R(«) is the maximal reflection amplitude defined as
AQQ — )
and o is defined by
(Oé, ek) = (a*7 en—k) . (699)

The representations which appear in the spectrum of sl(n) Toda field theory have momenta

n—1
aEQ+iY puwi, (6.100)

where p; are real.

To describe degenerate representations it is useful to write o as
a=Q+v. (6.101)
Degenerate representations appear at the momentum v satisfying the condition

—(v,e) =rb+ % : (6.102)

where e is a root and r,s € Z, . Without loss of generality we can classify semi-degenerate

representations by a collection of simple roots Z for which the equation is satisfied:

—(v,e) = b+ z ieT. (6.103)

Fully degenerate representations appear when Z consists of all the simple roots. It is easy

to show that for fully degenerate representations « takes the form:

1
OéR1|R2 = —b)\l - 5)\2, (6104)
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where A\; and A\, are the highest weights correspondning to irreducible representations R; and
Ry of sl(n).

The identity representation, as in the Liouville case before, belongs to the set of the fully
degenerate representations.

To characterize generic semi-degenerate representations we need more notations. Denote
by Az subsystem of roots which are linear combinations of the simple roots in Z, and by pz
restricted Weyl vector as half sum of the positive roots in Az. For semi-degenerate representa-

tions v takes the form

Vo,ry Ry =V — (pz + M)b— (pz + A2) /b, (6.105)

where 7 is continuous component of the v in the direction orthogonal to simple roots in Z, and
A1 and Ay are the highest weights correspomding to irreducible representations R; and Ry of
the Lie algebra built from Az. The elements of the matrix of the modular transformation have

been computed in [48] and given by the following expressions:

Spa =2 Z e(w)erri@(F-Q)a=Q) (6.106)
weWw
Sralrna = Xy (€797 ) xRy (€797 Sy, (6.107)
Soa = = H4sin(7rb(oz —Q,e)) sin(—%(a —Q,e)), (6.108)
e>0
SoRi|Rae = = Z e(w)e%i(‘v(ﬂ)’o"@xm(62”17&_1((“?"‘)) X (6.109)
weW /W
(O , B LT -
X757 @) T dsin(mbler — Q.5(e))) sin(— (o — Q.5(e)).
eEAJIr

Xr(€”) are the Weyl characters:

B > e e(w)e@PtA)z)

XR(e ) - Zwew E(W)e(w(p)’x) (6110)

and = is defined by .
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Note that as in the Liouville field theory in the Toda field theory holds the relation as well
A(@)A(2Q — ) = Spq - (6.111)

Recalling (|1.117)), we are ready to compute the coefficients &, and 7, in the Toda field

theory:

T = =, 220 (6.112)

e \/A(z@ —a) S VS
“ Ale)  A(@)A2Q —a) “A(a)’

A(2Q — ) A(a)A(2Q — «) A(2Q — «)
T =¢a = €q : 6.113
"Ta A(a) Soo VS ( )
Here ¢, denotes a possible sign factor.
Therefore one has in the Toda field theory
o
€ar€ay A2Q — 1) A(2Q — an) Q1 Qy

cos = Foo . 6.114
O ey AQQ)ARQ —ag) T (6:114)

L% g

Here p and 1 label multiplicity of the representation a3 appearing in the fusion of a; and as.

Eq. (6.114) implies:
00
] o €ar€ar A(0)A(az)
ces o F, = 42 N&3 . 6.115
% ai,ag,ppt 3,0 €0€as A(a1>A(a2) alos ( )

Qg (o

Some comments are in order at this point.

1. Presently we have no closed expressions for fusing matrices and structure constants in the
Toda field theory, and cannot verify the expression (6.114]) fully as we have done in the
Liouville field theory. But in the absence of these expressions, the formula (6.114f can

help to draw many conclusions on different aspects of the Toda field theory.

2. Actually we can use equation (6.115)) only for ay, as and a3 possessing finite fusion mul-

tiplicity. This is always true for important for us case of the degenerate representations.

3. In the Toda field theory one has also analogue of the relations ((6.20)) and (6.45) in the

Liouville field theory. In the Toda field theory they read:

cos = C(Ckl, g, 2@ — Cvg) (6116)

1,02
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and

C<a§v Gz, 011) = R((]./3)C(2Q — (3, g, CY1) . (6.117)

It is easy to see that the relation ((6.114) is in agreement with (6.116)) and (6.117)), ob-

serving that:

a) the fusing matrix is invariant under the Weyl reflections of the primaries, since they do
not change the conformal dimensions, and therefore it is invariant under the replacement
af = 20) — o of any of its variables, and

b) using the definition one can prove that the function A(«) is the same for o and

*

(%

Ala) = A(a™). (6.118)
We assume that possible sign factors satisfy €, = €4+ = €20—_a-

. It was computed in [62] that for s/(3) Toda field theory

_ o« I(—2—3b%) 7p  A(a—bh)
O h Fo = — : 6.119
bwi, bh,0 _bwl _bwl F(—bZ) ’}/(—62) A(Oé) ( )

where h € H,,, and H,, = {w;,ws — w1y, —w1 }.

It is easy to show that for si(3) Toda field theory

T(-2-3%) wu  A®)
D(=b2)  y(=b?)  A(=bw)

(6.120)

Recalling that for this case there are no multiplicities we have perfect agreement with

(6.115). We also see that for this case ((6.115|) satisfied without any sign factor.

. All calculations leading to (6.114)), (6.115) and (6.119) are performed in the Coulomb

gas approach. Calculations using exact expressions for the structure constants and fusing
matrix, still unknown in the Toda field theory, may bring to the modifications similar to

what we encountered in the Liouville field theory.
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The degenerate fields have in their OPE with general primary V,, only finite number of primaries
Ve

V b/\lfl)\gv Z Cfb)\lfl)\g aVagP 3 (6121)

5P

where o, = a — bh)* — b~'h)?. h)" are weights of the representation A;:
Wy =M= ) sies (6.122)
1

where s; are some non-negative integers.
Given the relation ((6.115)) we can write down the Cardy-Lewellen equations (|1.151]) for Toda
field theory when one of the primaries, say j, taken the degenerate one, using general formalism

developed in section 2.

Eq. (1.156) in Toda field theory takes the form:

U ()W (—bwyg) = Z (o — bhe») (6.123)

The solution of the equation ((6.123)) is given as in the rational conformal field theory by the

relation of elements of the matrix of the modular transformation:

SR1 |R2,c

\I’>\1|)\2(Oé> = (6124)

SR1|R2,O .
Continuing as in the previous sections we obtain discrete family of the boundary state

coefficients for ordinary branes, permutation branes and defects:

SRi|Rs.a
By () = %ea, (6.125)
BY _ SRiRsa 6.126
PR1|R2(Q) - AN(Oé) €a s ( . )
SRRz
Dryja(a) = =g (6.127)

The continuous family of branes and defects as explained in the previous section can be

obtained via solutions of the equation;

b
Aa)a? w’“ ZA a — bher) (6.128)
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The equation (6.128)) as before can be solved by the elements of the matrix of modular trans-

formation corresponding to non-degenerate and semi-degenerate representations:
Aﬁ(O&) = Sﬁa, (6.129)

A[LRI‘RQ (Oé) = SﬂRﬂRz,a . (6130)

Dividing (6.129)) and (6.130) by A(«)/en, AV (a)/e) and Sy, we obtain ordinary branes, per-

mutation branes and defects correspondingly.

6.3 Classical Liouville theory with defects

6.3.1 Review of Liouville solution

Let us recall some facts on classical Liouville theory.

The action of the Liouville theory is

gL (090¢ + pme™) d*= . (6.131)

~ 2mi
Here we use a complex coordinate z = 7 + io, and d?z = dz A dZ is the volume form.

The field ¢(z, Z) satisfies the classical Liouville equation of motion
00¢ = mpbe®™? . (6.132)

The general solution to (6.132)), also derived below, was given by Liouville in terms of two

arbitrary functions A(z) and B(2) |119]

1

¢:%10g<

1 0A(2)0B(2) ) (6.133)

mub? (A(z) + B(z))?
The solution (6.133) is invariant if one transforms A and B simultaneously by the following

constant Mobius transformations:

CA+B  ,  (B-8

— —pBy=1. 134
S et ~mry OB (6.134)
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Classical expressions for left and right components of the energy-momentum tensor are
T =—(0¢)* +b0%, (6.135)

T=—(0¢)*+b'0%. (6.136)

Substituting (6.133)) in (6.135)) and (6.136)) we get, that components of the energy-momentum

tensor are given by the Schwarzian derivatives of A(z) and B(2):

‘ B 1 A/// 3 (A//)Q
T={4z} =5 [7 -5 (A’)Q] : (6.137)
T —{B:z} = 2%2 [%':' gg;] | (6.138)

The Schwarzian derivative is invariant under arbitrary constant Mobius transformation:

{<F+B,

m,z} ={F;z}, (0—py=1. (6.139)

Solutions of the Liouville equation (6.132)) can be described also via linear combination of
some holomorphic and anti-holomorphic functions. Let us introduce the function V = e,

One can write the Liouville equation (6.132)) as equation for V'
VAoV — VIV = —mwub*. (6.140)

Also the left and right components of the energy-momentum tensor (6.135)) and (6.136|) can be
written via V

O’V = -b*VT, (6.141)
O’V = —b’VT. (6.142)

It is straightforward to check that the general solution of eq. (6.140)) is given by linear combi-

nation of two holomorphic a;(z), i = 1,2, and two anti-holomorphic functions b;(z), i = 1, 2:

V = /mub? <a1(z)bl(2) — ag(z)bg(é)) ) (6.143)

satisfying the condition

(a1ay — ajag)(biby — bibs) = 1. (6.144)
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Usually the fields a;(z) and b;(2), i = 1,2 are normalized to have the unit Wronskian:
ajay — ajas =1 (6.145)

and

It is easy to see that the left and right components of the energy-momentum tensor can be

expressed via a; and b; in the very simple form:

1 82611 1 82a2
T _ _ 6.147
b2 aq b2 (05} ( )
and
_ 10% 1 0%
T = L= 2. (6.148)

b 0 by
The solutions and can be related in the following way. One can solve the unit
Wronskian conditions and via a holomorphic A(z) and an anti-holomorphic
function B(z)

and a9 =

— L i (6.149)
VOA VOA '
and
B 1
by = —— and by= ————. 6.150
NVEY: T VOB (6.150)

Inserting ((6.149)) and (6.150)) in (6.143) we get (6.133)). Note that the Mobius transformations

of A and B ([6.134)) become linear SL(2,C) transformations of a; and b;:

a, = day + vyas, (6.151)
as = Bay + Cas

and
by = Cby + by, (6.152)
52 = ’}/bl + 5()2 .
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It is straightforward to check that indeed is invariant under and , and
both of them keep the unit Wronskian condition.

One can also check, that both component of the energy-momentum tensor and
are invariant under these transformations as well.

We finish this section with a remark which will be important in the parts on the light
asymptotic limit. In that parts we will consider an analytic continuation p — —pu. At this

point the solution (|6.143)) is convenient to write as:

V= \/Tub?(al 7) + ay(z )bg(z)) . (6.153)

It is easy to check that (6.153|) also solves the Liouville equation, given that a; and b;, 1 = 1,2

obey the condition (6.144)).

6.3.2 Lagrangian of the Liouville theory with defect

Recently in [3] the action of the Liouville theory with topological defects was suggested:

grop-der _ L / (061061 + pre®) 2z + —— | (062065 + pme™) & (6.154)
21 Jy, 21 Jx,
+/ _i¢ 0-¢1 + L Ao (61 — ¢2) + Deloreonti et (cosh(d1 — ¢2)b — k) ar
sy | 2m 2T g TR 2¢ - wh? b i

Here ¥, is the upper half-plane ¢ = Imz > 0 and X, is the lower half-plane ¢ = Imz < 0.
The defect is located along their common boundary, which is the real axis ¢ = 0 parametrized
by 7 = Rez. Note that A(7) here is an additional field associated with the defect itself. The

action (|6.154]) yields the following defect equations of motion at ¢ = 0:

b 1
5 (6 9 + 5 0rs — A+ %e@)l*d’r“b - %e“’ sinh(¢; — )b =0, (6.155)
1 1 T R TV _
50— )2 S0t + 50 A+ e + e sinh(¢r — ¢2)b =0, (6.156)
1 O (orv-mp _ L o
37 0n(d1 = @) = e TR — — e (cosh(dy — ¢2)b — k) = 0. (6.157)

The last equation is derived calculating variation by the A.
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Using that 0, = 0+ 0 and forming various linear combinations of equations (6.155)-(6.157)

we can bring them to the form:

(p1 — o) = mpbe¥@192)g=Ab (6.158)
O — o) = %eAb (cosh(ér — )b — k) . (6.159)
D1 + d) — DA = %eAb sinh(b(é1 — éa)) (6.160)

It is shown in [3] that requiring the defect equations of motion to hold for every o brings

additionally to the condition, that A is restriction to the real axis of a holomorphic field
ON=0. (6.161)
This condition allows to rewrite (6.160)) in the form
D1+ by — A) = %e“’ sinh(b(¢ — b)) - (6.162)

It is checked in [3] that the system of the defect equations of motion (6.158))-(6.162]) guarantees
that both components of the energy-momentum tensor are continuous across the defects and

therefore describes topological defects:
—(091)* + 07101 = —(0¢p2)> + b1 by, (6.163)

—(061) + b1 0%¢, = —(Dhs)? + b0 . (6.164)

Another interesting consequence of the defect equations of motion, found in [3], is existence

together with the holomorphic field A(z) of an anti-holomorphic field =:

0= =0, (6.165)
where
= = e b0t DA (cosh b(¢y — @) — k). (6.166)
or alternatively
b
S = —e MOt g(h — ). (6.167)

2
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Now we will present the general solution for defect equations of motion —.

We will follow essentially the same strategy which was used in [92] for analyzing the bound-
ary Liouville problem. On the one hand since the defect is topological both components of the
energy-momentum tensor are equal being computed in terms of ¢; or ¢5. On the other hand
each component of the energy-momentum tensor is given by the Schwarzian derivative, which

is invariant under the Mobius transformation. This naturally leads to the following soluton:

1 1 AOB
¢1 = —log( 049 ) ; (6.168)

2b wub® (A + B)?
1 1 0CoD
Py = 2—blog (mez Cx D)z) , (6.169)
where
CA+p B+ p
— D=2>2_"_" 1
C Ao and T (6.170)

Remembering that ¢, is invariant under the simultaneous Mdébius transformation ((6.134f) of C'

and D, we can set B = D. Therefore without loosing generality we can look for a solution in

the form:
1 1 0AOB
- ] 171
1= gplo8 (mlﬂ (A+B)2> ’ (6.171)
1 1 0COB
=—1 6.172
02 = o log (wa (O+B)2> ’ (6.172)
where
CA+p
C= . 6.173
yA+ 9 ( )
Substituting (6.171)) and (6.172) in (6.158) we find that it is satisfied with
A—
e AZC (6.174)

VOAIC

Since A and C are holomorphic functions, A is holomorphic as well, as it is stated in (6.161]).

It is straightforward to check that (6.162)) is satisfied as well with ¢, ¢ and A given by

(6.171)), (6.172) and (6.174) respectively. And finally inserting (6.171)), (6.172) and (6.174]) in

(6.159) we see that it is also fulfilled with

k=21" (6.175)



Inserting (6.171)), (6.172) in (6.167) one can check that

_ mub*yB* 4+ B((—6) -
- - . (6.176)

[1]

Remembering that B is anti-holomorphic we see that = is anti-holomorphic as well.

We can write the solution of the defect equations of motion also using solution of the Liouville
equation in the form (|6.143]). Recalling that the Md&bius transformations of the functions A
and B become linear SL(2,C) transformations of the functions a; and b;, which leave the

components of the energy-momentum tensor (6.147)) and (6.148)) invariant, we can write the

solution (6.171))-(6.173) in the form:
e = \/mpb? <a1(2)b1(2) — ag(z)bg(,?)) , (6.177)

e = \/mpb? (cl(z)bl(z) — 62(2)62(2)) : (6.178)

o
where denoting @ = (ay,as), €= (c1,¢2), and D = , one has
CANG
¢= Di (6.179)
and
2k=Tr D. (6.180)

At this point we would like to make the following remark. Let us consider the identity
defect. It has A = C, and k = 1. Setting A = C in (6.174) we obtain e~** = 0. This result can
be derived also directly setting ¢; = ¢9 in (6.158). Therefore the identity defect does not belong
to the family of defects described by the action and can be derived from them only in
the limit A — oo. This can be understood recalling that defects described by have a
two-dimensional world-volume in a sense that the values of ¢;(7) and ¢5(7) at an arbitrary
point 7 on the defect line are not constrained and the point (¢;(7), ¢2(7)) can take values in
the whole plane R2. Contrary to this, the identity defect has a one-dimensional world-volume,

since the point (¢1(7), ¢2(7)) takes values on one-dimensional diagonal ¢; = ¢s.
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6.4 Heavy asymptotic limit

Let us consider the action (6.131]) for the rescaled variable ¢ = 2b¢

B 1
 8mib?

/ (090 + 4Xe?) &Pz, (6.181)

where \ = 7ub?®.
This form shows that % plays in the Liouville theory the role of the Planck constant, and
one can study semiclassical limit taking the limit b — 0, in such a way that X is kept fixed.

Let us consider correlation functions in the path integral formalism:

<Va1(21,§1)---Van(zn,zn)> - /D(p ¢S gexp <M) . (6.182)

We would like to calculate this integral in the semiclassical limit b — 0 using the method
of steepest descent, and we should decide how «; scales with b. Since S scales like b2, for
operators to affect the saddle point, we should take «; = 1;/b, with n; fixed. The conformal
weights A, = n(1 —n)/b? scale like b= as well. This is the heavy asymptotic limit. Another
choice of the operator scaling will be discussed in the next subsection.

We see from that in the semiclasscial limit the correlation function is given by e~%

where, at least naively, in a sense which will be clarified below, S, is the action

B 1
-~ 8mib?

5 - o _
/ (0pdp +4Xe?) d®2 + > i &) (6.183)
i=1
evaluated on the solution of its equation of motion:

00p = 2\e? — 4 Z n:0%(z — 2;) . (6.184)

=1

Assuming that in the vicinity of the insertion point z;, one can ignore the exponential term we

get that in the neighborhood of the point z; ¢ has the following behavior
o(z,2) = —4n;log |z — 2| + X; as 2z — 2. (6.185)

One can insert this solution back into the equation of motion to check, if indeed the expo-

nential term is subleading. We find, that this happens when

1
Ren; < 3 (6.186)
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This constraint is known as Seiberg bound [170]. It is the semiclassial version of the quantum
condition (6.17)) stating that V,, and Vj_, represent the same quantum operator. Either a or
() — a always obey the Seiberg bound.

Remembering that in the Liouville theory we have also background charge at infinity, con-

ditions (|6.185)) should be complemented by the behavior at the infinity:
0(z,2) = —2log|z]* as |z] = <. (6.187)

Since the energy-momentum tensor in the presence of primary fields acquires a quadratic sin-

gularity, functions a;, j = 1,2, should solve the equation
O%a; + b°Ta; =0, (6.188)

where

o N (i1 =) Ci
T = ( e T (Z_Zi)) (6.189)

i=1

and ¢; are the so called accessory parameters.
If one tries naively to evaluate the action (6.183]) on a solution obeying (6.185)), we find that

it diverges. Therefore we should consider a regularized action. It was constructed in [191]:

1 - 1
p2GreE — - (0pdp + 4Ne?) d*z + 5 P wdf+2logR (6.190)
D—U;d; oD
_ Z (&% @dbf; + 2n? log ei) :
= \27 Jou,

Here D is a disc of radius R, d; is a disc of radius ¢; around z;. It was shown in [191] that the

action ((6.190|) satisfies the equation

a%b"’sreg =-X; (6.191)

where X; is defined by the boundary condition (|6.185]).
The Polyakov conjecture proved in [193] states, that the action (6.190|) also obeys the

relation:

a 2 Qreg __
g5 = —ai. (6.192)

Let us write down regularized version of the action with a defect.

233



First of all let us write it in the terms of A = wub?, ©1 = 2b¢1, s = 2bg, and A = 2bA:

1 - 1 5
b? Stop—det — %/ (01001 + ANe?) Pz + — (0202 + ANe??) d*z (6.193)
P

Yo

8
ie(w-l—m—f\)/? _ 16[\/2 cosh Pr—P2 K ﬁ '
2T T 2 7

Since we consider here only insertion of the bulk field, and do not consider insertion of the

1 1 -
+/ {— =p20r01 + 8—/\57(901 —2) +
o) T

defect or boundary fields, the regularized action takes the form:

1 _
b2 Gtop—del — 5 /E . (091001 + ANeft) d*z (6.194)
1 —Yidi
- i 9 1
- Z o p1df; + 2n; log €; | + Py ¢1df + log R
i=1 m 8dz m SRl
1 _
+ — (092000 + ANe??) d*z

8mi Jopu4;

n—+m
; 1
— g ;7—]% padl; + 27]]2- loge; | + o / podf + log R +
m ad; T

j=n+1 SR2
/ ’ L oo AD-( )+
n 87T902 TP1 g o Y1 — P2

A otz _ Lae (o (Proe2) AT
2T s 2 1

where X is a half-disc of the radius R and sg; is a semicircle of the radius R in the half-plane

S i=1,2.

6.5 Defects in the heavy asymptotic limit

6.5.1 Heavy asymptotic limit of the correlation functions

In this section we consider the heavy asymptotic limit of two-point functions in the presence

of defects (6.82)):

1 2Y%icosh(2ms(2a — Q))

Valor 1) XoValzn 2a)) = CW2(a) (21 — )P (7 — 7)o

(6.195)

Now we should compute the inverse ZZ function (6.29)) and the factor cosh(27s(2a — @)) in

the limit b — 0, setting o = ¢, and s = 7. In the heavy asymptotic limit we should keep only
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terms having the form ~ e!/?.

To understand semiclassical origin of the denominator in (6.83) we find very useful to
consider in the spirit of [105] analytic continuation of the Liouville theory with complex 1 and
complex saddle points.

Taking the n satisfying the Seiberg bound Ren < %, using properties of I' functions

collected in appendix [.2, we obtain

_ 1-2y 1 2n —1
Wity = C(b,n)A =2 S (T P (”— [log(l —) — 1D . (6.196)

sin ( = b?

where

2—3/46—3i7r/2b3r(2n>
(27 —1)?

3 .
= exp (_Z log2 — % +logT'(2n) — 2log(1 — 2n) + 3log b)

C(ba 77) =

(6.197)

We see that all the terms in (6.197)) are negligible compare to terms growing like ~ e/** in

the limit b — 0, and therefore C'(b,n) can be omitted. The importance of the term ﬁ

b2

is explained in [105]. It was shown that this term in the semiclassical interpretation arises as

a sum over some “instanton” like sectors. As a preparation to this point we will expand this

im(2n—1)/b2

term in two ways as suggested in [105]. Denoting y = e one can write

1 2i > >
- =2 —@k+1) — 94 2k+1 6.198
() gy A 2 (6.19%)

One expansion is valid for |y| > 1 and one for |y| < 1. So either way, there is a set T of integers
with
1

sin 7 (2751)

= 19 Z e2im(MF1/2)(2n—1)/b° : (6.199)
MeT

where T’ consists of nonnegative integers if Im(2n — 1)/b* > 0 and of nonpositive ones if

Im(2n —1)/b* < 0.

a

7 we easily obtain:

Setting a =  and s =
cosh2ws(2a — Q) — eElol=2n) (6.200)

Now we are position to write down the limiting form of the defects correlation functions.

235



Inserting ((6.196)), (6.200) in (6.195) we can write in the heavy asymptotic limit

(Vil21, 21) X Via(22, 22)) ~ (21 — 29) 210D/ (5, — 5,)=20(=m/¥? (6.201)
1—2 1 47] — 2 2m _
X AN ——__ex —[lo 1—2 —1:|>€b2|0|(1 2n)
T (B p ( 7 g( n)

Using also ((6.199) we get

(Valz1,2)XVa(z2, 2)) ~ > exp (=S a,) (6.202)
Mq,M>€eT
where
bQSj'\‘ji% = —2im(M; + My F1)(2n — 1) + 4n(1 — 1) log |21 — 2| (6.203)

—(1=2n)log A — (4n — 2)log(1 — 27n) + (4n — 2) — 27|o|(1 — 2n).

It is instructive to compare the heavy asymptotic limit of the defect two-point function with

the corresponding limit of usual two-point function, computed in [105]

(Va(z1, 21)Va(22, 22)) ~ |21 — 2“0/ (6.204)

sin 7r(2771— 1)/b? eXp (477b2 [log(1 —2n) — 1]) .

w  \(1-20)/

The relation of (6.201)) to (6.204) naturally gives the heavy asymptotic limit of the eigenvalues

Ds(a) of the defect operator:

(Va(21,21) X Vi (20, Z2)) st lo10=20)

% .
<Va<217 Zl)‘/a(ZQ, ZQ)) sin 7 (27;)2—1)

D,(a) = (6.205)

Surely (6.205]) can be also easily derived directly from ([6.83]) in the heavy asymptotic limit.

6.5.2 Evaluation of the action for classical solutions

According to general prescription of the semiclassical heavy asymptotic limit, we should find
solutions of the Liouville equation, satisfying the defect equations of motion and possessing the
logarithmic singularities (6.185)) at points z; and z5. The form of the solution of the defect

equations of motion (6.171)) and (6.172)) implies that we should find functions A(z), C'(z) and

B(Zz) in such a way that ¢; has a logarithmic singularity at the point z; and ¢ has a logarithmic
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singularity at the point z. Since the energy-momentum tensor is continuous across a defect

this implies that we should find solutions possessing two singular points. Two-point solutions

are well known ( see for example [105]) and we can build from them the Ansatz satisfying the

defect equations of motion.

To build the solution with the required singularities one should take a function A(z) which

is smooth and holomorphic away from z; and z,. Let us take A(z) as
A(2) = e (2 — 2)*" (2 — )20

One has also

1 ¢’ I=n(y _ 29)"
"V Va—meono e
A et

(z— 21)"(z — 2)* 7.

PTVoA o=@ D)

Inserting (6.207)) or ((6.208)) in ((6.147) we obtain the energy-momentum tensor

yT_nO—n)+nﬂ—n%_%ﬂ—w)< 11 )

(z—21)2  (2—29)2 21—29 \2—21 Z2Z—2
indeed possessing two singular points ((6.189)), with accessory parameters

_2n(1—n)
21 — %9 ’

Co = —(C1

The anti-holomorphic part is:

B 1
by = —— = z—2)'"7(z - )",
VoB \/(51—52)(277—1)( e )
1 1

= VoB V(i —2)2n—-1)

Let us take the holomorphic part for ¢, as

(z—2)"(z—2z)"".

C(z) = €2 (z — 2) 2z — 20)1 72 = 227 A(2) |

and the antiholomorphic part again given by (6.211]). Using (6.175)) one gets

Kk = cosh(vy — 1) .
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Inserting (/6.206)), (6.214) and (6.211)) in (6.171)) and (6.172) we obtain:

_ A , B
S e Ve P (212 = 7]z = >~ (6.216)

2
—e "z — 2 [Pz — 22\2’7) :

_ A , B
S vy I <€ |2 — 2]z — 2 (6.217)

2
—e 72|z — 2|7z — zQ\Q") .

It is easy to see that ¢ and ¢, given by ((6.216)) and ((6.217)) have the required singularity (6.185)
around z; and z, respectively. In fact each of the functions ¢, or 4 given by (6.216]) and (6.217)

coincides with the solution describing a saddle point for a two-point function considered in [105].
But in this solution was considered on a full plane with the same parameter v everywhere,
whereas here each of them is considered on a corresponding half-plane, namely in z
belongs to the upper half-plane ¥, and in z belongs to the lower half-plane Y5, and
we should also remember that, z; € ¥; and 2o € 5. The defect is created by the choice of

different parameters vy and v, v # V5.

From (|6.216)) and ((6.217)) we obtain

1 = 4im Ny — log A + 21og(1 — 2n) (6.218)
“2log (i e i A et il |) |

|21 — 2] |21 — 2]
g = 4im Ny — log A + 2log(1 — 2n) (6.219)
N N

|21 — 2| |21 — 2|

Here N; and N are integer. The possibility to add the term 4i7N;, j = 1,2, results from the

invariance of the bulk (6.132) and defect (|6.158))-(6.162) Liouville equations of motion under
the transformation ¢; — ¢; + 2miN; /b, or multiplying by 2b, under ¢; — ¢; +4miN;, j =1,2.
Note that the bulk Liouville equation ([6.132)) is invariant under the symmetry ¢; — ¢; +2miN;,

and it is broken to the ¢; — ¢; +4miN; by the exponential terms of the defect action ((6.154).
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To evaluate the action on solutions (6.216), (6.217)), we will use the strategy used in [191].

Namely we will write the system of differential equations which this action should satisfy. The

first equation is (6.191f), which given that 1, = ny = n, reads

asdef

b2
on

X, — Xs.
where X; is defined in (6.185)). The leading terms of ¢, around z; are

©1 — —4nlog |z — 21| + X7,

where

X; =4miNy —log A + 2log(1 — 2n) — (2 — 4n) log |21 — 22| — 21, .

The leading terms of y around z; similarly are

o — —4dnlog |z — 2| + X,

where

Xy = 4miNy — log A + 21og(1 — 2n) — (2 — 4n) log |21 — 2a| + 215

Inserting (/6.222) and (6.224)) in (6.220]) one obtains

asdef

b —%L = —2mi (2N} + 2N5) +2log A —4log(1—2n) +(4—8n) log |21 — 22| +2(v1 —11) .

on

(6.220)

(6.221)

(6.222)

(6.223)

(6.224)

(6.225)

We would like to emphasize yet another difference from the calculation of the heavy asymptotic

limit of the two-point function in |105]. In the case of the usual two-point function the integers

N; and N, are equal since we have one continuous function ¢. Here they can be different since

we have two different functions p; and 5.

The action with defect (6.194)) implies also

def
o i / eMdr .
a/ﬂ? 0%,

Inserting (6.206) and ((6.214)) in eq. (6.174]) one obtains

Ab _ 1 (2n —1)(z1 — =)
2sinh(v; —1v9) (2 —21)(2 — 29)
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Using that

2
! / dz S (6.228)
i Jon, (z—2)(z—22) (21— 2)
we obtain
054t 2n — 1
b —9 = : 22
Ok sinh(v; — 1) (6:229)

Integrating equations (|6.225)) and ((6.229)) we obtain:

V2SN n, = —2im(2N1 + 2N2)n + 4n(1 — 1) log |21 — 2| (6.230)

+2nlog A — (4n — 2)log(1 —2n) +4n — (11 —e)(1 —2n) + C,

where C' is a constant. To derive the penultimate term we should remember the relation

(6.215)). To fix the constant term we can directly compute the action ((6.194) for the Ansatz

(6.218)-(6.219) with n = 0:

V1 -1 2
w1 = 4im Ny — log A — log 6—\2—22|2— 6—|,z—z1|2 : (6.231)
|21 — 2 |21 — 22
Vo -9 2
g = 4imNy — log A — log €—|z—22|2—€—|z—21|2 : (6.232)
21 — 2 |21 — 22

Evaluation of the action (6.194]) on the Ansatz (6.231)), (6.232)) is done in [144]. The result

18

b?Sy = 2im(Ny + No) —log A — 2 — (1) — 1) . (6.233)
Comparing with fixes the constant C"
C = 2im(Ny + Ny) —log A — 2. (6.234)
Inserting this value of C' in (|6.230]) we indeed obtain ((6.203)) if we set
Ny = My, (6.235)

Ny=M,F1, (6.236)
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and

2roc =1 — 1. (6.237)

Some comments are in order at this point:

1. The action (|6.230|) satisfies the Polyakov relation (6.192]) with the accessory parameters

defined in (6.210)):

cl

05§ _yn2nl=1)
b? = (—)"*! =1,2. 2
92, (=) gt i=1, (6.238)

2. In eq. M takes nonnegative integer values if Im(2n — 1)/b* > 0, and nonpositive
integer values if Im(2n—1)/b* < 0. Therefore N; also runs over nonnegative or nonpositive
integer values depending on the sign of Im(2n—1)/b%, and N, takes values {1,2, ...}, when
Im(2n —1)/b* > 0 and N, takes values {—1,—2,...}, when Im(2 — 1)/b*> < 0. The fact
that for the different values of the parameter 1 we should take contribution of the different
set of the saddle points is known as the Stokes phenomena, and was studied in detail for
two- and three-point correlation functions of the Liouville field theory in [105]. Recall
that it is caused by the fact that the sum ((6.199) converges for the different values of M
depending on the sign of Im(21—1)/b%. The values of parameters at which the jump of the
set of the contributing saddle point occurs define a (anti-) Stokes line. As we explained
in introduction the Stokes or anti-Stokes lines arise when at some values of parameters

of the system imaginary or real parts of actions evaluated at the different saddle points

coincide [105,|126}/188]. From (]6.203D or (]6.23OD we see that Re S]‘%,elﬁNQ are the same for

all Ny and N if Im(2n — 1) = 0. The line Im(2n — 1) = 0 is the anti-Stokes line at which
indeed we observe jump in the set of the contributing saddle points. The jump is caused

by the fact that at this line the magnitudes of the amplitudes of all saddle points coincide.

3. The discussion above of the differences between calculation of two-point function with
and without defect suggests nice interpretation of the defect operator. We have seen
that there exist two sources of discontinuity giving rise to the corresponding terms in

the defect operators. The heavy asymptotic limit of D(«) (6.205) has an exponential in
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the numerator and sinus in the denominator. The exponential term in the numerator
as we have seen originates from the discontinuity created by the choice of the different
parameters v; and 5. The correspondence between the N; and M; parameters makes
clear that the different logarithmic branch solutions, given by N; and N,, are responsible

for the quadratic term sin®m (27{);1) term in the (6.201). On the other hand, as we

have mentioned before, in the heavy asymptotic limit calculation of the usual two-point

function one has N; = N,, and it reflects the presence of the term sinm (27;1) in the

denominator of ((6.204) in the first degree. Therefore the denominator sin (27)_1) in

D(«) reflects the possibility of the choice of different logarithmic branches with Ny # Ny
in the solution of the defect equations of motion. The final quantum expression ((6.83)

results from the quantum corrections restoring b <+ b=! duality of the Liouville theory.

Let us analyze in the heavy asymptotic limit also the relation (6.78)) between parameter s and

A(b)

2 cosh 2mbs = A(b) (%)2 . (6.239)

It is easy to compute that
W(—b/2) 2

hmmOW =5 (6.240)

Setting that s = 7, we get

cosh2mo = — (6.241)

This implies that parameter  is proportional to A(0):
P (6.242)

Note that as in the light asymptotic limit as well as in the heavy asymptotic limit we get the

same relation between o and &

Kk = cosh 270 . (6.243)
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Chapter 7

Branes in (2,2,2,2) Gepner model

7.1 Simple current extension: brief review

Let us briefly remind the meaning of the simple current extension by simple currents of integral
conformal weight [2870H72,|169], [73]. A primary J is called a simple current if, fused with any
other primary A, it yields just a single field JA. Simple current extension means the combination

of two operations:

e Projection. We keep only fields which obey @ ;(\) = 0 where

QN =Ar+A;—Ay, (mod Z) (7.1)

e Extension. We extend the chiral algebra by including the simple current J. This means
that we organize the fields surviving the projection into orbits derived as a result of fusion

with the simple current J.

Before writing the torus partition function we should discuss the important issue of fixed
point resolution. If all the primaries form orbits of the same length, equal to the order |G| of
the full group G generated by the simple currents, or in other words have the same number of
images under the repeated fusion with the simple current, the characters could be labelled by

the primaries chosen, one from each orbit, called orbit representatives, and have the form:

=D X (7.2)

Jeaq
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The unitary matrix representing modular transformations on the extended theory is:
ga,z; = |G|Sap (7.3)

where with hatted variables we denoted the orbit representatives. However it may happen that
some of the primaries have a non-trivial stabilizer Sy, i.e. be fixed under the action of currents
of a subgroup S, € G. In this case the freely acting group is the factor G, = G/S, and the

orbit length is given by
e
|Sal

|Gl (7.4)

and therefore varies from orbit to orbit. The simple formula for the modular transforma-
tion matrix does not work anymore. It turns out that in order to construct a unitary matrix
representation of the modular transformation in this case one needs to resolve the primaries
with non-trivial stabilizer, i.e. one should consider together with the orbit a additional |S,|

orbit§ Labelling the additional orbits by i we find the characters:

. ms
=My ), X = N > X (7.5)
JEG/S) M Jea
where m; , are usually equal to 1, but we keep them explicitly so as to keep track of the different

resolved orbits.
The diagonal modular invariant torus partition function of the extended theory reads
Zea=Y_IlP= D 1Sl D xal (7.6)
i orbits Q(A)=0 JeG/Sy

where we used that

|‘Sa‘ = Z(ma,i)Q (77)

i

*Actually each primary should be resolved by the order of the subgroup U, of the stabilizer, called untwisted
stabilizer [70], on which a certain alternating U(1)-valued bihomomorphism, or discrete torsion, on the stabilizer
S, vanishes. It is well-known that discrete torsions are classified by the second U(1)-valued cohomology group
H?(S,,U(1)) [182], and since in Gepner models with diagonal (or charge conjugation) torus partition function —
the situation of our interest below — the stabilizers are all isomorphic to the Zy group, for which H?(Z3,U(1)) = 0

, one finds that the untwisted stabilizer coincides with stabilizer.
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The unitary matrix representation of the modular transformation S on the characters (7.5)),

was constructed in [169], [70]. The following ansatz was suggested

S |Gal|Gh|
S(asi),(b.g) = ma,imb,jwsa,b + Ta,0),0.9) (7.8)
where I'(q),(s,5) satisfies the equation
> Ll tpymng =0 (7.9)

J
and it is therefore different from zero only between fixed points. It was found in [169] that

unitarity requires I'(q),(s,5) to satisfy the condition:

* ma,ima,k
Z F(aai)(b,j)r(c, k),(b,j) = = ac(0i — T) . (7.10)
orbits Q(b)=0,j a
Using the matrix ([7.8)) one can compute the fusion rule coefficients using Verlinde formula

and the annulus partition functions for the Cardy states. After some algebra we arrive at the

expression:

A(a,i)v(d,e) = Z Z md(;”T’;d J‘IC Z XKc

orbits Q(c)=0 J€G KeG.

Laiy 0 j)Sc brfb ), (d,e)
205\, ] s7)s ,€ . 711
D VDS o Y e @

orbits Q(c)=0 (orbits Q(b)=0,j) ’ KeG.

Given that the resolving matrix I'(, ;) ;) are different from zero only between fixed points we
observe that formula (7.11)) simplifies if one of the states is not fixed. When a is not fixed and
d fixed ([7.11]) simplifies to

Ay = Y Zmd

orbits Q(c)=0 JeG

> Xk (7.12)

KeGe

6'/\/‘Jac
|Sdl

When neither a nor d are fixed ([7.11)) further simplifies to

A= > D N Xke (7.13)

orbits Q(c)=0 JEG KeG.

For later application to Gepner models let us discuss the matrix I'¢ ), »,5) and the second term

in ([7.11)) in the case when all the fixed points have a stabilizer isomorphic to Z,. In this case
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equations ([7.9) and (7.10)) can be satisfied by taking I'(4: ;) in the form:

G.||G
L (a0), 0 )—l |g’ b' SapthtSagiy (7.14)

where 1) is the resolving index which takes two values 4, and Sa is a unitary matrix. Plugging

(7.14) in (7.11]) for the the second term one can write:

SJa, Sc Sy
|S ’1|Sd|ww// Z ZZ Ja,bPc,bPp d (Z XKC> afébfédf (7.15)

Orbits Q(¢)=0 b JeG KeG

We also show in [162] that formulae ([7.13)) and (7.11)) are actually equivalent to the formulae

for the A-type annulus partition functions derived in [150] and [36].

7.2 Gepner models: generalities

Let us remind the basic facts about Gepner models [84]. The starting point of a Gepner model

is the tensor product theory
Crrn =C ®Chy ® -+ ®Cp, (7.16)

where C*7' is the D dimensional flat space-time part, and Cj is one of the N = 2 minimal

models, whose central charges ¢, = ;275 satisfy the relation

k+

- 3
> o, + S(D—2)=12 (7.17)
i=1

N = 2 minimal models can be described as cosets SU(2), x U(1)4/U(1)2x1+4. Accordingly
the primaries of Cj are labelled by three integers (I,m,s) with ranges [ € (0,---k) , m €
(=k—1,---k+2),s€(—1,0,1,2), subject to the selection rule [ + m + s € 2Z and the field
identification (I,m,s) = (k —I,m + k + 2, s + 2). Primaries with even values of s belong to

the NS sector, while primaries with odd values of s belong to the R sector. The conformal

dimension and charge of the primary (I, m, s) are given by:

I(1+2)—m? s

m S
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The exact dimensions and charges can be read off (7.18) and (7.19)) using field identifications

to bring (I, m, s) into the standard range
1€(0, k), Im—s<l, se(-1,0,1,2) (7.20)

The characters are given by

XoP) (2, 7) ZcmHj o(T)O2m (45— s)(k+2) 20k +2) (2, T) (7.21)
where
M
2N . SN2 o
@M,N<Z>T) =0 [ ] (Z, 2NT> _ Z€2TFZTN<7L+%) eszz(n-{-%) (722)
O nez

that obviously satisfy the identity

Oniony = Oun (7.23)
and i are the characters of the parafermionic field theory at level k, satisfying identities:
k k k=1 (k
C%k) = (m) = Cn5+)2k = Cking : (7.24)
The fusion coefficients are
N=2 I1l5l _
Nm1m27’r13?9133253 - (725)
)1 ) k—1
Mllg 36m1+m2*m3581+32733 Mllg 36m1+m2*(m3+k+2)581+82*(83+2)

The space-time part can be described in terms of the SO(D — 2); algebra. SO(2n); algebras

have four primaries A = (o, v, s, ¢), with conformal dimensions

1 n
ho =0, hy==, he=h,—~ 7.26
2 8 ( )
charges
n n
qo = Oa Qv = 1 s = 57 gec = § —1 (727)
and characters:
SO(2n) 1 n n
Xo = = %(93 +0y) (7.28)
SO(2n 1 n n
1% e = 2 (93 0 )
SO(2n) 1 (9” —ngn)
S 277” 2
1
SO(2n) or —ngn
c 277”( 2 )



O and V primaries belong to the NS sector, while S and C belong to the R sector. For future

use, let us write down also the fusion rules of the SO(2n); algebras.

nodd |o|v|s|c
0 o|lv|s|ec
v vio|c|s (7.29)
S slc|v]o
c cls|ol|v

neven |o|v|s|c
0 o|v]s|c
v vio|c|s (7.30)
S slclol|v
c cls|v]o

The primaries of the product theory (7.16) can be labelled by the following collection of

indices
()‘7l_:m7§)) - ()\a llamlasla"'vlnamnasn) (731)

The Gepner model is the simple current extension of the product Czl_tkn, with the following
simple currents:

e supersymmetry current: Sy, = (s,(0,1,1),---(0,1,1))

e alignment currents: V; = (v,---(0,0,2)---), with (0,0,2) at the ith position.

Let us summarize the results of applying the formalism reviewed in the previous section
to Gepner models [28], [36], [73]. In Gepner models the simple current projection or, in the
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original Gepner’s language, S-projection with respect to the supersymmetry current Sio; reads

Qo = o+ Y Qs =1 (mod 27) (7.32)
=1

and is nothing else than the famous GSO projection yielding space-time supersymmetryiﬂ. The
projection with respect to the alignment current selects only primaries were all constituent
primaries belong to the same sector, either NS either R and guarantees world-sheet supersym-
metry.

To analyze the length of the orbits we should consider two cases:

1. all the levels k; are odd

In this case no fixed point occurs, all the primaries have trivial stabilizer, and the length
of the Syt current is K = lem{4,2k; + 4}. All V; currents always act freely and have
length 2. But when all the k; levels are odd, it turns out that the Si,; current has an
overlap with the V; currents, and to cover all orbit it is enough to sum over only n — 1 of

the n V; currents. As a result, the orbit length in this case is 2" 1 K.

2. one has r # 0 even levels k;

Let us place the even levels in the first r positions. In this case for a generic primary the
orbit length of the supersymmetry current is again K = lem{4, 2k; + 4}. But for the primaries

ki.
5

with all [; at the first r positions equal
li=—= 1=1,...,r (7.33)

due to the previously discussed field identification, which for them reads :

k r
(517 my, S1, 57 My, Sy lT‘+17 Mypg1y Srg1 - >ln7 My, Sn) = (734)
kl kr
(3,77’1/1 +k1 +2a81 +2a"'7§7mr+kr +2a3’r‘+27l7’+17mr+17sr+1"'7ln7mn78n)
there is a non-trivial stabilizer:
Lo R Ty S
Sps = 2. (7.35)

fActually direct application of the formula (7.1) brings to shift 1 with respect to (7.32)), but as explained

in [36] and [73] the shift is absorbed by the superghost part, or alternatively by the bosonic string map.
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We see that the stabilizer depends only on the values of [;’s i = 1,...,r and one can write:
Lyl
S =14 0 O (7.36)

Therefore here we have two kinds of orbits, long orbits with length 2" K for generic primary,
and short orbits with length 2""'K for primaries of type (7.33). As we explained the short
orbits should be resolved and acquire an additional label ¢ taking two values, which we choose

to be a sign ¢ = =+.

7.3 The (2,2,2,2) Gepner model

From now on we will specialize to the case of the (2,2,2,2) Gepner model, that corresponds to
a compactification down to six dimensions. The flat part is described by an SO(4); algebra.
In order to write down the characters of the model, first of all we note that using the fusion
rules one can check that the subgroup generated by the currents S2, and V;V; has trivial

O

action on the space-time part. The length of the SZ, current is £ = 4. Using (7.32)) we find it

O

convenient to choose the primaries in the form {v, (I;,m1, sy -, (ln, Mn, 5,,) }, with prescribed

space-time part v, and neutral internal part, i.e.
4
> g =0 (mod 27) (7.37)
i=1

Now one can express the Gepner extension characters X(Gml 5 in the form

= 1
= (X, — X+ X, — X) (7.38)
S5 51
where
S0(4)
X, = v774 A(my, s1, My, S2, M3, S3, M4, S4) (7.39)
S0(4)
X. = 0774 A(m1+1’31—|—1,m2—|-1,82+1,m3+1753+17m4+1784+1)
SO(4)
Xo = 01’]4 A(ml, S1+ 27m27 52,13, 83, M4, 84)
S0(4)
X, = 5774 Ami+1,514+3,me+1,s0+1,mg+1,s3+1,my+1,s4+1)
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with

mzasz Z Z Z Z Xi;L(fJZZJO sl+1/1+l/2+1/3+21/0(21) (740)

vo= 0111 021/2 02113 02

(2) 13(2) 4(2)
Xmg-i—?l/o, so+v1+219 (’22) Xm3+21/0 s3+rvo+219 ('23) Xm4+21/0, s4+v3+219 (24)

and, as explained above,

|S7l;z,§ =1 + 5[116l215l315l41 (741)

Using (7.21]), (7.24) and for the characters of the £ = 2 minimal model one obtains the

following simple expression

z
Xﬁﬁ(z)=:cg?47)@&wd§,f) (7.42)
where g = % — %, and 0%2) are related to the Ising characters:

) L[]0 5 /94
20 _ o0 L[ [0 [0
0 2 2 ( " 77) (7.44)

1
aq® =212 (7.45)

Now let us compute A(m;,s;). Repeatedly using theta functions product formulae from

appendix [3], we have

A(mi, 8i) = Oy 1 (%; 7') B(m;, s;) (7.46)
where
Ztot = 21+ 22 + 23+ 24 (7.47)
Qtot = ¢1 + q2 + g3 + qa = even (7.48)
and
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B(m, s;) = (7.49)

§ : 011(2) 12(2) 613(2) 14(2) .
mi1—(s1+vi+ratvs) mo—(s2+v1) ma—(s3+v2) ma—(ss+vs)
v1,v2,v3=0,2

Z ®(q1—q2+qs—q4)—r/z+a,2(y17 27) ’

a=0,2

@(QI_Q2_Q3+(I4)_V3+G72(y27 27—) : @(q1+q2—q3—q4)—l/1+a,2 (937 27—)

where

21— 22t 23— 24 _21—22—Z3+Z4 _21+22—23—Z4
4 ) Yo = 4 ) Ys = 4

Note that B(m;,s;) = B(m; +1,s;+1). Using (7.46), (7-28), (1), (23), this allows us to write
for ([7.38):

Y= (7.50)

X = (7.51)

[(03(27)93 (%,%) — 05(27)05(27)05 (Ztgot’QT)) B(m;, s;)

776‘51j s
+ (032 (22, 27) — 0a(2r)0s(2r)6s (T2, 27) ) Blmi, sy +2,51)|

We see that whenever

21429+ 23+24=0 (7.52)
the Gepner extension characters are supersymmetric. This plays a role in the study of magne-
tized D-branes and in the computations of threshold connections [10].

From now on we put all z; = 0. For this case the character ([7.51) can be equivalently

written as

GT J (B<mi,51) B(musl +275i)) (7'53)

X9 = 1S s \ 8(0,27) 6(0,27)
where J = 1(63(0,7) — 01(0,7) — 05(0,7)) is zero thanks to Jacobi aequatio identica satis

abstrusa. Using ([7.49)) and taking into account that

O,2(2,7) = nxfo(”(g, 7) (7.54)

as well as ((7.43)), (7.44)), (7.45)), we are now in a position to compute the characters for the

various orbits.
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To this end, we are going to present all the primaries of the model, or in other words to

list all the orbit representatives. Surely one can pick up orbit representatives in many different

ways. To be sure that we have not taken two primaries, belonging to the same orbit, one can

resort to some kind of “gauge fixing”. The gauge fixing chosen here, is the following.

1. We take the space-time part to be always v, as mentioned above.

2. we take s9 =53 =5,=0

3. we limit m; to the values 0 and 1.

4. to avoid taking primaries equivalent due to field identification, we always limit the values

of the [; to be 0 or 1.

The final picture is the following.

In this model we can divide primaries in 4 big groups.

The first group has [y =1, =13 =1, =0, s = so = s3 = s4 = 0 and contains 16 primaries.

We can divide them into three groups: Ki, Ky and Kj3. All primaries in the same group have

the same conformal weights and characters. The results are presented in the tables below. It

is understood that all the entries should be multiplied by 17%

K

hi,

K1 = (v)(0,0,0)(0,0,0)(0,0,0)(0,0,0)

G
XK,

04(0,7)+65(0,7) +3 62(0,7)6%(0,7)

16
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K2 hK2 = 1

Ko = (v)(0,0,0)(0,0,0)(0, —2,0)(0, 2, 0)
Ky = (v)(0,0,0)(0, —2,0)(0,0,0)(0,2,0)
Ko = (v)(0,0,0)(0,2,0)(0, —2,0)(0,0,0)
Kaa = (1)(0,0,0)(0,0,0)(0,2,0)(0, 2, 0)
Ky = (v)(0,0,0)(0, —2,0)(0,2,0)(0,0,0)
Ky = (v)(0,0,0)(0,2,0)(0,0,0)(0,—2,0) | x§, = L0007 (7.56)
Ksy = (v)(0,0,0)(0,4,0)(0,2,0)(0,2,0)
Koy, = (v)(0,0,0)(0,2,0)(0,4,0)(0,2,0)
Ko = (v)(0,0,0)(0,2,0)(0,2,0)(0, 4,0)
Ko = (1)(0,0,0)(0,4,0)(0, —2,0)(0, —2,0)
Ko = (1)(0,0,0)(0,—2,0)(0, 4,0)(0, —2,0)

Koy = (v)(0,0,0)(0,—2,0)(0,—2,0)(0, 4, 0)

Kg ]’LK3 = %

Ksq = (v)(0,0,0)(0,0,0)(0,4,0)(0,4,0) (7.57)

K, = (v)(0,0,0)(0,4,0)(0,0,0)(0,4,0) | x§, = OO _ GHODAOT

K3. = (v)(0,0,0)(0,4,0)(0,4,0)(0,0,0)

The second group has Iy =1l =13 =1, =0, sy = 2, s = s3 = s, = 0 and also contains 16
primaries, which again can be divided into 3 subgroups, in such a way that all primaries inside

each group have the same characters.
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Ll hL1 - 1

L1, = (v)(0,0,2)(0,4,0)(0,4,0)(0,4,0)
Ly, = (v)(0,0,2)(0,0,0)(0,0,0)(0,4,0) (7.58)
(

Ly = (v)(0,0,2)(0,0,0)(0,4,0)(0,0,0) | x§ = L0007

L1 = (v)(0,0,2)(0,4,0)(0,0,0)(0,0,0)

L2 hL2 = %
L = (v)(0,0,2)(0,4,0)(0,2,0)(0,—2,0)
= (0)(0,0,2)(0, —2,0)(0, 2,0)(0, 4, 0)
Loe = (v)(0,0,2)(0,—2,0)(0,4,0)(0,2,0) | x§, = BODLLON | HONKO) (7.59)
L = (v)(0,0,2)(0,4,0)(0,—2,0)(0, 2,0)
La. = (v)(0,0,2)(0,2,0)(0,—2,0)(0,4,0)
Loy = (v)(0,0,2)(0,2,0)(0,4,0)(0, —2,0)
Ls hi, =3

Ls, = (v)(0,0,2)(0,0,0)(0,2,0)(0,2,0)
L, = (v)(0,0,2)(0,2,0)(0,0,0)(0,2,0)

= (©)(0,0,2)(0,2,0)(0,2,0)(0,0,0) | x, = HOrOn _ HONEOD - (7.60)

16 8

= (v)(0,0,2)(0,0,0)(0, —2,0)(0, —2, 0)
= (v)(0,0,2)(0, —2,0)(0,—2,0)(0,0,0)

Lss = (v)(0,0,2)(0,—2,0)(0,0,0)(0, —2,0)

The third group containing 48 primaries with any two of [; equal to 1, and other two of

them to 0. This group consists of 6 subgroups:

h=lb=1 l3=1,=0 (7.61)



Lh=l3=1 lb=1l=
Lh=lL=1 lb=13=0
lo=l3=1 L=104=0
lo=lL=1 L=Il3=

ls=lL=1 L=I=

Each such a subgroup consists of 8 primaries and can be derived from, let’s say, the first of
them by permutations, so we will write down only one of them, the one with [; =l = 1 and
l3 =1y = 0. We schematically denote the primaries in this group as CI%;}"", indicating explicitly

in the superscript which [; are equal to 1.

q)l hq;l - zél

Ll = (v)(1,1,0)(1,3,0)(0,2,0)(0,2,0) (7.62)

BL = (0)(1,1,0)(1,—1,0)(0,0,0)(0,0,0) | x§, = ZODEOD O

@2 h‘bg = g
b = (v)(1,1,0)(1,3,0)(0,0,0)(0, 4,0) (7.63)
(I)éél"" _ (U)(l, 1, 0)(1’ -1, O)(O, _27 0) (O, 2’ 0) ng _ 9%(0,7’)@%(08,7')—92(0,7))

@3 h‘I’S = 1

oL = (v)(1,1,0)(1, —3,0)(0,2,0)(0,0,0) (7.64)

4 = (v) (1, 1,0)(1, =3,0)(0,0,0)(0,2,0) | x§, = Um0

D, he, = &
@yl = (v)(1,1,0)(1,1,0)(0,-2,0)(0,0,0) (7.65)
@y = (v)(1,1,0)(1,1,0)(0,0,0)(0, =2,0) | x§, = LOILAOCD
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Finally we have a small group containing only 4 elements with [y = [l = I3 = 4

=1,

$1 = Sg = s3 = 84 = 0. All primaries in this group, as we explained in section [7.2] have a

short orbit and should be resolved. After resolution we end up with 8 primaries. The + in the

notations refers to the resolution process.

Rl th =1
Riax = (v)(1,1,0)(1,—1,0)(1,1,0)(1,—1,0)+
Rups = (v)(1,1,0)(1, —1,0)(1, —1,0)(1,1,0)= | x§, = 227
Rlci = (U)(la 17 O)(L 17 O)(la _17 O)(L _1> O)i
Ry hRQ = %

Ryy = (U)<17 L, 0)<1a 1, O)(L -3, 0)(17 L, O)i X%g

_ 03(0,1)+05(0,7)

8

(7.66)

(7.67)

We see that before fixed points resolution we had 84 orbits: 31 orbits with conformal

dimension 1, 12 orbits with conformal dimension %, 12 orbits with conformal dimension %, 20

orbits with conformal dimension %, 9 orbits with conformal dimension % After the fixed points

resolution we have 88 primaries: 34 orbits with conformal dimension 1, 12 orbits with conformal

dimension %, 12 orbits with conformal dimension g, 21 orbits with conformal dimension %, 9

orbits with conformal dimension 2 [190].

Collecting all the above results, we can write down the torus amplitude:

J

2

nt2 16 8

9§(07 T) B 92(0, T)

2 ” <9§(o,7) + 640, 7) +30§(0,r)0§(0

2

16 +9

7T)>

03(0,7) +04(0,7) _ 65(0,7)63(0, 7)

16 16
03(0.7) + 63(0,7) | B3(0.7)63(0,7)

2

+6 + 18

8

05(0,7) — 04(0,7)

16 8
04(0,7) + 64(0,7)|?

03(0,7)(65(0, 7) + 63(0, 7))

8
2

12
3 +

8

Sl
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2

J

7712

5 (801 0.0 + 0.1
47 (1800, 7)685(0,7)[* + 16200, 7)0(0, 7)1+ 16300, 7)(B:(0, I
(180, 7)F + |94<o,7)|8)}
The partition function (7.68)), as first noted in [51], coincides with the partition function of
the T*/Z, orbifold at the SU(2)* point, which we review in appendix [-5]
Now we elaborate on the expression for the annulus partition function for the (2,2, 2,2, )

Gepner model.

Let us denote the first Cardy state I:
I = (So, Ly, My, Sy, - -+, Ly, My, Sy) (7.69)

and the second J:

J = (S0, Ly, My, Sy, -+, Ly, My, Sy) (7.70)

Consider first the case when neither the first boundary state nor the second are fixed.

Now using ([7.13)) and the fusion coefficients ([7.25]) we can easily derive:

N

I+l SO Gl L
ZIJ a Z Z |S ) 4|N H E J‘;l M4;M475A0751;51 54 Sy (771)

Actually the sum over J in (7.13) > ., N, . is running over the orbit of the primary
(So,ll,Ml —Ml,Sl —gl"'l4,M4—M4,S4—§4) (772)

while the sum over orbits in ([7.13]) runs over the specific representatives, for examples listed in
the tables above. It means that generically in this sum only one term will survive, the specific
representative of the orbit of the primary ([7.72]). If this primary has non-trivial stabilizer, due

to field identification the sum over J will produce the representative twice. The fusion v(Sp) in

N SO )~ is due to the bosonic string map [73|. Collecting all pieces we get ((7.71]). In practice in

order to use formula ([7.71) one needs to compute the primary (7.72)) and then use the action
of the simple current to find in the orbit which of the representatives listed in tables above it

belongs to, and substitute its character.
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Consider next the case when [ is not fixed but .J is. In this case elaborating on (7.12) we

obtain:

4
_ 1 Ly | AFSO ASU Gh iy
Zry = S, le S |Nv( H L E NIy M 30,81 — 1 +-Sa— G (7.73)
so Ui i=1

The last case is when both and I and J are fixed points. To elaborate on this case we need

the matrices S.; and gab in formula 1’

The matrix Sy, for Gepner models is the product of all the elementary S’s and reads:

80 80 L

21550 H Spr l, g s (7.74)
The matrix S, was found in [73]. For the (2,2,2,2) model it has the form
—2'55 0 H sYt Ak (7.75)

The numerical factors come from the field identification.

Plugging ([7.74) and (| - in one obtains:
1 SO(4) so
D = SIS ZZNU(SO)S'O ' (7.76)

4
SU( L+1Y i,
(HNLiii o w,(p H ST 2 ) XMI;]\;[1---M4;M4,§0,S1;5'1-"54234

7.4 DO0-branes on the T*/Z, orbifold.

7.4.1 Fixed points

Defining complex coordinates z; = x1 + ixy and 2o = x3 + ixy the Z; group action can be

described as

2imk _ 2imk

21— €1 2z z9g—e 1z (7.77)

We can consider it as generated by the Z, subgroup acting as z; — —z; and 25 = —2 and a

Zy subgroup rotating by § and —F the (z1,72) and (x3,24) planes: z; — iz, and 2y — —i2,.
The Zy group has 16 fixed points (7 Rey, mwRes, mRes, mRey), where e; = 0,1, out of which

only 4 are also fixed under Z) : D0y = (0,0,0,0), DOyy = (R, 7R, 7R, 7R), D03; =

(R, 7R,0,0), DOy = (0,0,7R, 7R).
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To begin with, let us calculate the annulus partition function for open strings having both
ends at the same fixed point.

The partition function is given by

ZDofDof = (7.78)
- ZTr (14 ( gre=2mTLo — 11“;?2 windings T 5 Z (4sin® — ZOk
where
Zwindings = (7.79)
S v gyo o) = HON OO | BO.NGOD

ni,n2,n3,n4

and Zjj can be found in , , of appendix . Collecting all the pieces, we obtain:

J (03(0,7) +04(0,7)  303(0,7)07(0,7)
Zpospo, = 2 ( 16 + 3 (7.80)
We see that ((7.80)) coincides with ((7.55]):
Zpospo; = XK, (7.81)

In order to compute the partition function for strings with ends at different fixed point, we

need to recall the partition function for a scalar X compactified at the self-dual radius R = \/Li
with Dirichlet boundary conditions placed at 2w R¢; and 27w RE,, so that
X =271R& + (2R(& — &) + 2nR) 0 + oscillators (7.82)
The partition function is easily calculated to be
Zoses = 0 4(2r(62 = 6).27) (7.83)

Using ([7.83]) we can then compute the annulus partition functions between different fixed
points:

(7.84)

J [03(0,7)+0%0,7)  02(0,7)62(0, T
lonyn, = 2 (BOLE A0 | OO
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J <e§(o,7) —01(0,7) 9%(0,7)%(0,7)) (7.85)

ZDolfDogf = W 16 1

It seems that ([7.85)) does not fall in the list of characters computed in section We think
it means that the D03 cannot be described by a Cardy state, and do not consider it any further

here.

7.4.2 Partially fixed points

Now we consider the case when the D0 branes lie at a point fixed only under Z,. We have the

following list of such branes:

DO, = Ay + AL : (0,7R,0,0) + (1R, 0,0,0) (7.86)
D0y = Ay + AL : (7R,0,0,7R) + (0, 7R, 7R, 0)

D03 = A3+ A} : (R, 7R,0,7R) + (7R, 7R, 7R, 0)

DOy = A4+ A, : (7R,0,7R,7R) + (0, 7R, 7R, 7R)

D05 = As + A% : (0,0,0,7R) + (0,0, 7R, 0)

D0 = Ag + Ay : (TR,0,7R,0) + (0,7R,0,7R)

The partition functions between branes ((7.86)) and fixed point branes are given by equation:

L+ () (146 onr
ZDOiDOf:TrAiDOf( ; ) 29 )e 2mrLo (7.87)

which taking into account simplifies to

0+ serss

y (7.88)

Zpo;po; = Tra,po,

Using ((7.83)) we can easily compute all annulus partition functions of this type. The result
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is presented in the following table:

Branes DOy DOy

DOy, 941+603 + 30202 9414%9‘41 n 0202

DO 941+69;§ 9292 941+69;§ 39292

DO, e§<e§8+ez> eswggfez)

DO, o6 i (7.89)
DOs GG GG

DO, GG GGl

DO, GG GG

where it is understood that all entries should be multiplied by % = 5.5 (03 — 0f — 63).

Using the characters in section [7.3| one can present table (7.89) in the form

Branes | DOy | D0y

DOy | Xk, | XL

DOys | X1, | XKi

D0, X, | X,

D0, XR, | XR (7.90)

D03 Xo, | Xo,

D0, Xo, | X

D05 X X &

D0g XR | XR:

Table (7.90) already gives a hint for the candidate Cardy states, describing DO branes

located at fixed and partially fixed points.
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To make things more precise we should compute also the partition functions between the

different partially fixed branes (7.86[). They have the form:

1+ (=) A+g%
2 2

1 N1 2
G_QﬂTLO‘i'TI"AiA;( +; ) )( —;g >€—27T7'L0 (791)

Zpo;po; = Tra,a;

which using simplifies to

1+ ()"
4

1 _\F
6727TTL0 + TrAiA;.( + ( ) >6727TTL0 (792)

Zpo,po; = Tra,a; 1

Again using ([7.83)) we can present the result in the following table:

Branes D01 D02 DO3 D04 D05 D06
04 9292 9292 94704 04 9202 94794 9292
D01 73 + 374 2Y3 37 Y4 73 _ 7374 3" Y4 273
4 4 4 4 4 4 4 4
DO, 0362 03-+0% 0302 0302 0362 03—0%
4 4 4 4 4 4
0503 0303 | 05 | 0303 0503 05 _ 0307 | 0303 7.93
D0s T | ¢ |2t | "1 |17 1| 1 (7.93)
9§ 9§ 02 9% 9% 9§ - 03 Gg‘ 9% 93 9§ —92 0% 9%
DO, \2-7¢ | % | = |3+t | = | 7*
94_94 9292 94 0302 94_94 94 9202 9292
D05 3 4 273 3 __ 7374 3 4 23 + 374 273
4 4 4 4 4 4 4 4
DO 0303 03—0% 0362 0363 0302 05404
6 4 4 4 4 4 4

where, as before, it is understood that all entries should be multiplied by 77% = M%(@g -
61 — o3y,

After some trial and error we can solve these conditions with the following Cardy states:

DOy = | K)o (7.94)
DOQf _ ’L2a>Cardy

DO, = @} )0

D0y = [Ryqy )

D03 = |@g")
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DOy = |y )
DO5 _ ‘Q)I;l,l)Cardy

DO()’ — |R1a_>Cardy

Using the formulae ([7.71)),(7.73),(7.76]) we obtain for the annulus partition functions between

the states ([7.94) the following table :

Branes DOl D02 D03 DO4 D05

D0, Z1 Xo, + X, 2XR, 2(XKs + XL1) 2Xr,

D0, Xo, + X | Xky T3XKs | X, + Xa Xo; + Xo, Xo; + Xo,

D0 2XR, Xao, + X, Zn 2X R, 2(Xrs + XL1)
DOy | 2(xks + X11) | Xoy + Xa, 2XR, Zn 2XR,
D05 2XR, Xo, + X, | 20xx; + X11) 2Xr, Z

D0g Xo, T Xa, X1, Xa, T X, Xa, T Xa, Xo, T Xo,

where Z11 = Xk, + Xks + 2X1,, Which coincides with table (7.93]).
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Chapter 8

Conclusion

Let us briefly summarize our findings.

1. We constructed geometrical realization of the Cardy states in coset model. We have
shown that D-branes in coset are pointwise products of the cojugacy classes. We found

geometrical meaning of the field identification and selection rules in coset models.

2. We found geometrical realization of the parafermionic D-branes in WZW model. We have

shown that they are given by the pointwise products of a conjugacy and U(1) subgroup.

3. We found non-maximally symmetric non-factorizable D-branes in product of WZW mod-

els.
4. We have found geometrical realization of permutation D-branes and defects on cosets.

5. We have shown that certain diagonal embedding of the parafermionic D-branes in product
of WZW models provides D-branes in the Nappi-Witten cosmological model as well as in

the Guadagnini-Martelini-Mintchev model.

6. We proved symplectomorphism between phase space of the WZW model with boundaries
and defects and that of 3D Chern-Simons theory with Wilson lines on a manifold of the

form ¥ x R, where X is a certain Riemann surface and R is time line.
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10.

11.

12.

13.

14.

15.

We proved symplectomorphism between phase space of the gauged WZW model with
boundaries and defects and that of 3D double Chern-Simons theory with Wilson lines on

a manifold of the form ¥ x R, where ¥ is a certain Riemann surface and R is time line.

We constructed topological defects implementing abelian, non-abelian and fermionic T-
dualities. We have shown that they are given by the Poincaré bundle and its non-abelian

and super cousins correspondingly.

We studied in detail defects implementing abelian T-duality between SU(2) WZW model
and lens space. We have paid also special attention to the Fourier-Mukai transform of

the twisted cohomology groups generated by the gauge invariant flux of this defect.

We studied in detail defects implementing T-duality between axially and vectorially

gauged WZW model.

We calculated Fourier-Mukai transform of the Ramond-Ramond fields under the non-

abelian T-duality.

We checked that the fusion matrix of the Liouville field theory with an intermediate state

set to the vacuum gives rise to the DOZZ structure constants.

We constructed topological defects in the Liouville and Toda field theories as intertwining
operators using Cardy-Lewelenn cluster equation. We have shown that in the Liouville
field theory defects are labelled by the degenerate and physical primaries. We proved that
in the Toda field theory topological defects are labelled by the physical, semi-degenerate

and degenerate primaries.

We studied Lagrangian of the Liouville theory with defects and demonstrated its agree-

ment with the operator description in the semiclassical limit.

We found geometrical realization of some Cardy states in (2,2,2,2,) Gepner model, using

its equivalence with the T/Z, orbifold.
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.1 Special functions

The function I'y(x)
The function I'y(z) is a close relative of the double Gamma function studied in [18}|172]. It

can be defined by means of the integral representation

e ot _ o= Qt/2 (Q—22) Q-2
logTy(z) = /0 r <(1 —e M) (1 —e ) 8et ¢ > : (1)

Important properties of I',(x) are

1. Functional equation: Ty(z + b) = v/2xb" 21 (b )Ty ().

2. Analyticity: T'p(x) is meromorphic, poles: x = —nb —mb~',n,m € Z=°.
3. Self-duality: I'y(z) = T'y ().

From the property 1 one can obtain the following relations:

Q) = Vet ;) )

I,(Q) = \/%Fl/b(b) (3)

_ r (215) 22-Q
Wi(x) =2 1/4b—)\ %, 4
(@) Iy(22 — Q) @
and the behaviour of the I'y(x) near x = 0:
I,(Q)
r ~ .
() ~ 19 5)

The function Y,(z)

The T, may be defined in terms of ', as follows

1
) S enQ - o

An integral representation convergent in the strip 0 < Re(z) < @ is

logTb(I):/Ow@[(Q—x>26_t—Sinh2(%—_x)% | 1)

bt o £
t 2 sinh % sinh o7
Important properties of Yp(z) are
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1. Functional equation: Yy(z + ) = bl_sz%Tb(x).

2. Analyticity: Ty(z) is entire analytic, zeros: © = —nb—mb~',n,m € Z=°, x = Q + nb +

mb~t,n,m e 7220 .
3. Self-duality: Tp(x) = T1/s(2).

4, Tb(l’) = Tb(Q — iL‘)

These properties imply:

Tb(2x) 22—Q
=S(x)\"°
Tb(295 - Q) ( )
and
Ty(x) ~ xTy(b),
when z — 0.

The function S,(x)
The function Sy(z) may be defined in terms of I'y(z) as follows

Fb(l')

G-

An integral that represents log Sy(x) is

t \2sinhbtsinhb-1t 2t

ity = [ (SQ-20) Q-
0

The most important properties are

1. Functional equation: Sy(x 4 b) = 2sin wbxSy(z) .

(10)

(11)

2. Analiticity: Sy(x) is meromorphic, poles: © = —(nb+ mb~'), n,m € Z=° | zeros x =

Q+ (nb+mb1), n,me 22" .
3. Self-duality: Sy(x) = Sip(z) .
4. Inversion relation: Sy(2)S,(Q —z) =1 .

These properties imply:

85(217)

S0 - V2W (2)W(Q — x)

268

(12)



.2 Properties of [' functions

The limiting behavior of the terms with I" functions can be calculated using the approximation

F(ZL’) ~ exlogm—x—i-O(logm) ' (13)
for x with big positive real part.
For negative x using the formula
T
[Nz)[(—x) = — 14
(@ (-2) = ~——, (14)
one can bring problem to the previous case.
We also need well-known behavior of the I'(z) function for z around zero:
D(z) ~ - (15)
)~ —.
x
.3 Theta functions identities
We start by reviewing some useful identities satisfied by Theta functions [125].
a b
0 [”] (1,n17)0 ["] (22, m27) = (16)
0 0
ni+nga—1 mptatb
ni+n2
Z 0 [ (21 + @2, (N1 + n2)T) -
©n=0 0
ninap+n2a—nib
0 [ mna{ntna) ] <n2$1 — N1T9, 711712(77/1 -+ ng)T)
0
where
a
0 (x,7) = Y _exp(im(n + a)’t + 2im(n + a)(x + b)) (17)
b nez
Using the identity
n—1 pta a
ZH [ " ] (nx,n*r) =0 [ ] (x,7) (18)
pn=0 0 0



we can exploit (16| for the case relevant to our analysis i.e. n; = rn and ny = ron

0 [ﬁ_n] (x1,rnT)0 [m_n] (9, monT) = (19)

0 0
ri+reo—1 T1H a+b
r147r2 (ri4+r2)n
E 0 (1 + g, (11 + r2)nT) -
n=0 0
1% roa—rib
r1+r2 rira(ri+ra)n
0 (rowy — rime, r17o(1ry + 12)NT)
0

Let us explicitly write this formula for the most relevant for us case: ny = ny = n, r; =

TQZ]_

>
1
3|
| I
—~
&
=
3
ﬁ
N—
<>
1
3o
|
—
S
(]
3
\‘
N~—
Il
—~
[N)
(@)
N—

0 0
Z 0 (x1 + x2,2nT)0 (r1 — x9,2nT)
n=0 0 0
.4 Other relevant identities
Recall the identities:
03(1) — 03 () = 203 (27) (21)

O5(7) + 05(r) = 205(27)
03(7)04(7) = 03(27)

02(7) = 20,(27)05(27)
From ([21)) we can derive another couple of useful identities:

03(27)05(7) = 02(27)(05(7) + 03(7)) (22)

02(27)03(7) = 03(27)(05(7) — 03(7))

©0.1(z,7) = 05(2,27) (23)
©1.1(z,7) = Os(z,27)
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Let us also mention the following formulae.

B 05(0, 7)
92(07 27) B 9§<07 T) - 92(07 T)

(28)

(29)

(30)

(33)

.5 Partition function of the 7"/Z, orbifold
1 TP <
Z - Zzlattice W + nr,s|ZT,8|2
where
1 2
Ziice = (I3 12+ a7 = 7 (1860, 7)[* + 16a(0,7)[* + 162(0. 7))
and ) ) )
a a+ g a—7
02 (0,7)6 (0,7)¢ (0,7)
g B+ L8 — %]
Zrs =D Cas 6 o T
o p n 2 T 1 2 1
’ 0 (0,7)¢ (0,7)
1 S 1 S
2 T L2~ 1
Consider the Ramond part.
rl T rl [
= + L = — L
ol Tlone|T o
zr — %0.7) :?Jri: :?_i:
R st 371
0 (0,7)0 (0,7)
1 S 1 s
L3 T L3~
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3(0, 7)03(0,7)

Zyy = 00705 (35)

Z8, =0 (36)

28, = o0, B0 (37

Z3 = 05(0, 7)% (38)

28, = a30.m) A% Zﬁ‘gm’ - (39)

78, = o0, L0 (a0

28, = o300, B0 (1)

28, = o310, BT Z O D0 (12
2t = ~a3(0,n) B0 = BO D0 ()
24, = o310, BT B0 m
24, = —o30,n) AL = SO D0 (45)
Zf1 — 00, 7)93(0, T)+ iZiES,T)GZ(O, ) (46)
2t = o310, AL = B0 0T ()
Z?i _ 03(0’7_)02‘(0,7') — Z'ZT%E(;,T)QZ(O,T) (48)
Z;fg _ 040, 7_)93‘(0, T) + ijigg,ﬂ@i((), 7) (19)

4 s

The numbers n,., are given by the following formulae: ngs = 4sin” 2, n, s = Ny gpp, Ny =

Ns4—r-

Plugging all in we get ([7.68]).
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