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0.1 Introduction

Two dimensional quantum field theories which are invariant under conformal transformations

are referred as two dimensional conformal field theories (CFT). The applications of two di-

mensional CFTs to various topic of physics are numerous, here we will list two of the most

important ones.

The first branch of application of CFTs is in statistical physics. Historically conformal

symmetry was introduced in quantum field theory nearly fifty years ago under the influence of

ideas of scaling and universality in the theory of second-order phase transitions. According to

the scaling postulate at the critical point the interaction of fields corresponding to the order

parameters of transitionally invariant and isotropic statistical systems become scale invariant.

The energy-momentum tensor of such theories is traceless. As a consequence this kind of

theories are also invariant with respect to a larger class of coordinate transformations under

which metric tensor gets multiplied by an arbitrary function. Such coordinate transformations

form the conformal group.

The second branch of applications of CFTs is string theory. It is well known that string

theory is the most well developed candidate which may unify all known interactions included

gravity. In this context CFT describes the world sheet dynamics of a string.

This dissertation is organized in the following way.

The dissertation consists of 6 chapters. In chapter 1 we review the material necessary to

present our findings. In chapters 2-6 we deliver our findings.

In chapter 1 we collect and review the basik stuff of two-dimensional CFT. In section 1.1

we review two-dimensional conformal field theory, in particular we show that the generators

of conformal transformations obey the Witt algebra. In section 1.2 we study: The energy-

momentum tensor, radial quantization, OPE of operators and two, three- point functions.

In section 1.3 we examine the Virasoro algebra and illustrate the construction of the Verma

module.
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The Chapter 2 is based on the paper [4].

The existence of a RG flow between two CFT’s suggests that this theories could be connected

by a non-trivial interface which encodes the map from the UV observables to the IR ones

[8, 9] In particular in [9] such an interface (RG domain wall) was constructed for the N = 2

superconformal models using matrix factorisation technique.

Later in [10] an algebraic construction of a RG domain wall for the unitary minimal CFT

models was proposed and was shown that the results agree with those of the leading order

perturbative analysis performed by A. Zamolodchikov in [11]. The leading order perturbative

calculation of the mixing coefficients for the wider class of local fields including non-primary

ones again is in an impressive agreement with the RG domain wall approach [12]. Higher order

perturbative calculations [13, 14] further confirm the validity of this construction. In the same

paper [10] Gaiotto suggests that a similar construction should be valid also for more general

coset CFT models. The N = 1 minimal superconformal CFT models [130–132], which are the

main subject of this paper, are among these cosets. The Renormalisation Group (RG) flow

between minimal N = 1 superconformal models SMp and SMp−2 initialised by the pertur-

bation with the top component of the Neveu-Schwarz superfield Φ1,3 in leading order of the

perturbation theory has been investigated in [18] (see also [19, 20]). Recently, extending the

technique developed in [13] for the minimal models to the supersymmetric case, in [21] the

analysis of this RG flow has been sharpened even further by including also the next to leading

order corrections.

In this chapter we specialise Gaiotto’s proposal to the case of the minimal N=1 SCFT models.

The method we use is based directly on the current algebra construction and, in this sense,

is more general than the one originally employed by Gaiotto for the case of minimal models.

Namely he heavily exploited the fact that the product of successive minimal models can be al-

ternatively represented as a product of N = 1 superconformal and Ising models. We explicitly

calculate the mixing coefficients for several classes of fields and compare the results with the

perturbative analysis of [18,21] finding a complete agreement.

It is organized as follows: section 2.2.2 is a brief review of the 2d N = 1 super-conformal
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filed theories. Section 2.2.3 is devoted to the description of the coset construction of N = 1

SCFT. In section 2.2.4 we formulate Gaiotto’s general proposal for a class of coset CFT models.

Section 2.2.5 is the main part of our paper. We explicitly calculate the mixing coefficients for

the several classes of local fields in the case of the super-symmetric RG flow discussed above

using RG domain wall proposal. Then we compare this with the perturbation theory results

available in the literature finding a complete agreement.

The chapter 3 is based on the paper [100]. It is organized in the following way.

In section 3.1 we analyze classical Liouville theory with defects. In subsection 3.1.1 we review

general solutions of the Liouville equation. In subsection 3.1.2 we present general solution of

the defect equations of motion. In subsection 3.1.3 we present Lagrangian of the product of the

Liouville theories on half-plane with the boundary condition specified by a permutation brane.

In section 3.2 we review defects and permutation branes in quantum Liouville theory. In section

3.3 we review heavy and light asymptotic semiclassical limits. In section 3.4 we calculate defect

two-point function in the light asymptotic limit. In section 3.5 we calculate defect two-point

function in the heavy asymptotic limit.

The chapter 4 is based on the paper [5].

During the last decades we got deep understanding of the properties of rational CFTs having

a finite number of primaries. Many important relations were obtained between basic notions

of RCFT. In particular we would like to mention the Verlinde formula [50], relating matrix

of modular transformation and fusion coefficients, Moore-Seiberg relations between elements

of fusion matrix, braiding matrix and matrix of modular transformations [51–53]. We have

formulas for boundary states [54], and defects [55,56] in rational conformal field theories.

Situation in non-rational CFTs is much more complicated. The infinite and even uncountable

number of primary fields is the main reason that progress in this direction is very slow. One

of the well studied non-rational theories is Liouville field theory. Here three-point correlation

function (DOZZ formula) [57, 95] and fusing matrix [59, 139] were found exactly. An other

important examples of the non-rational CFT is N = 1 superconformal Liouville theory. Many

data have been collected also in N = 1 superconformal Liouville theory. In particular three-
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point functions [69, 70] and the NS sector fusion matrices [71,72] have been found exactly.

In this paper we study some of the Moore-Seiberg relations for the fusion matrix of the N=1

Super Liouville field theory. Recall some basic facts on the fusion matrix. It is defined as a

matrix of transformation of conformal blocks [119] in s and t channels [53]:

F sp

 k j

i l

 =
∑
q

Fp,q

 k j

i l

F tq
 l j

i k

 . (1)

Here we write all formulas in the absence of the multiplicities i.e. for the fusion numbers

N i
jk = 0, 1. Fusion matrix plays an important role in conformal field theories, e.g. it enters in

the conformal bootstrap [53,74], and Cardy-Lewellen [?] equations.

Our task here is to study the following relations, proved in rational CFT, in N = 1 super

Liouville field theory:

F0,i

 j k

j k∗

Fi,0
 k∗ k

j j

 =
FjFk
Fi

, (2)

where

Fi ≡ F0,0

 i i∗

i i

 =
S00

S0i

. (3)

and

Cp
ij =

ηiηj
η0ηp

F0,p

 j i

j i∗

 , ηi =
√
Cii∗/Fi , (4)

which using (2) can be written also as

Cp
ij =

ξiξj
ξ0ξp

1

Fp,0

 j∗ j

i i


, ξi = ηiFi =

√
Cii∗Fi . (5)

Let us explain notations. First of all 0 denotes vacuum field and i∗ is the field conjugate to i in

a sense that N0
ii∗ = 1. Then Sij is a matrix of the modular transformations, Cp

ij are structure

constants, Cii∗ are two-point functions.
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The relation (2) is a consequence of the pentagon identity for fusion matrix [51–53]. The

expression (3) results from the two different ways of calculation of the quantum dimension [52].

The equations (4) and (5) result from the bootstrap equation combined with the pentagon

identity [54,74–76].

These relations were examined in the Liouville field theory. The eq.(2) in the Liouville

field theory was tested in [77]. The expressions (4) and (5) were examined in the Liouville

field theory in [76, 78]. In [76], (4) and (5) in the Liouville field theory were checked using the

relation of the fusion matrix with boundary three-point function. In [78], eq.(4) was checked

using the following star-triangle integral identity for the double Sine-functions Sb(x):

∫ dx

i

3∏
i=1

Sb(x+ ai)Sb(−x+ bi) =
∏
i,j=1

Sb(ai + bj) , (6)

where ∑
i

(ai + bi) = Q . (7)

Recently it was found in [81] the supersymmetric generalization of this formula (eq.(4.56) in

text).

Our first aim here is to calculate the elements of the fusion matrix in the NS sector con-

structed in [71, 72] with one of the intermediate entries set to the vacuum. For this purpose

we find convenient to define general expressions for the fusion matrix and structure constants,

composed from the supersymmetric double Gamma and double Sine-functions, which reduce

to the known elements of the NS sector fusion matrix and structure constants for the certain

choices of the types of the supersymmetric double functions. Using the supersymmetric version

of the star-triangle identity (4.56) we found constraints which should be satisfied by the types

of the supesymmetric double functions to ensure that the elements of the fusion matrix with

one of the entries set to the vacuum give rise to the corresponding structure constant according

to the pattern of the equations (4) and (5). We checked that the elements of the fusion matrix

in the NS sector indeed satisfy these constraints, and thus established equations (4) and (5) for
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the NS sector of the N=1 Super Liouville field theory.

Next we turn to the fusion matrix in the Ramond sector. Since the general expression

for fusion matrix in the Ramond sector is absent, we check the equations (4) and (5) for

the elements of the fusion matrix with a degenerate entry, computed in [79, 80]. Setting the

intermediate state to the vacuum we find that at least these particular elements of the fusion

matrix in the Ramond sector again satisfy (5). This drastically simplifies the Cardy-Lewllen

equations. It enables us easily to construct topological defects in the N=1 super Liouville field

theory. In section 4.1 we review basic facts on N = 1 super-Liouville theory. In section 4.2 we

compute the elements of an Ansatz for the fusion matrices with one of intermediate states set

to the vacuum state. In section 4.3 we specialize the formulae obtained in section 4.2 to the

fusion matrices of the NS sector found in [71]. In section 4.4 we analyze the Ramond sector.

In section 4.5 we apply formulae obtained in section 4.4 to solve the Cardy-Lewellen equations

for topological defects.

The chapter 5 is based on the paper [6].

Semiclassical limits play important role since they link quantum physics to the Lagrangian

approach. In the Liouville and Toda field theories there are three semiclassical limits: mini-

superspace [90–93], the light and heavy [93–95]. All three asymptotics are the large central

charge limits. The difference comes in the treatment of the primary fields. In the minisuper-

space limit one considers a limit where only the zero mode dynamics survives. In this limit

the Liouville and Toda field theories reduce to the corresponding quantum mechanical prob-

lems [90,91,93]. In the light asymptotic limit one keeps the conformal dimensions fixed. Then

the correlation functions are given by the finite dimensional path integral over solutions of

the equations of motion with a vanishing energy-momentum tensor. And finally in the heavy

asymptotic limit the conformal dimensions blow up, scaling as the classical action and correla-

tion functions are given by the exponential of the action evaluated over the singular solutions.

To be more specific recall that primary fields in the Liouville and Toda field theories are re-

lated to the vertex operators Vα = eiαφ. The spectrum is given by α = Q
2

+ iP . In the light

asymptotic limit we set α = ηlb and keep ηl fixed for b → 0, whereas in the heavy asymptotic
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limit we take α = ηh
b

and hold ηh fixed again for b→ 0. In the minisuperpsace limit one should

take for some of the vertex operators α = ηmb and for some P = ηmb.

The discovery of AGT correspondence [102–104, 123] relating 2d CFT conformal blocks to

the Nekrasov partition function [105, 124] in N = 2 supersymmetric gauge theory provides

powerful tools to investigate CFT correlators using gauge theory methods or alternatively to

apply advanced CFT methods in gauge theory (see e.g. [107,108]). The essential point here is the

fact that there are explicit combinatorial formulas for the Nekrasov partition function [110,127],

which now can be successfully applied in 2d CFT.

In this chapter we consider the light asymptotic limit of the U(n) Nekrasov partition func-

tions for an arbitrary n. We find that for the certain choice of fields the Nekrasov partition

functions in the light asymptotic limit are simplified drastically and given by the sum over

Young diagrams having at most n − 1 rows. We compute the corresponding W3 conformal

block using the light asymptotic integral representation and found perfect agreement with the

two-row Nekrasov partition functions. Note that in the light asymptotic limit the Wn symme-

try reduces to SL(n) group [115, 118] and this already hints on the existence of the limiting

procedure where survive only Young diagrams corresponding to the SL(n) representations.

In section 5.1 we compute the light asymptotic limit of the Nekrasov partition functions.

In subsection 5.1.1 we review the necessary facts on the Nekrasov partition functions. In

subsection 5.1.2 we review Toda conformal field theory and the AGT relation. In subsection

6.3.2 we explain the details on the light asymptotic limit and show that choosing the data as it is

specified in eq. (5.17) and (5.18) truncates the Nekrasov functions in the light asymptotic limit

to the sum over Young tableaux containing at most n−1 rows. In subsection 5.1.4 we compute

the Nekrasov partition function in the light asymptotic limit. The formula (5.33) is our main

result. In section 5.2 we compute the corresponding conformal block in A2 Toda field theory

using that in the light asymptotic limit conformal blocks admit an integral representations.

The chapter 6 is based on the paper [7].

N = 1 SLFT besides the spin two conserved currents (energy-momentum tensor) includes

also spin 3/2 currents (the super-currents). These currents generate super conformal symmetry

11



which in 2d is described by the Neveu-Schwarz-Ramond algebra [129,131,132]. If upon encircling

a field by the super-current an extra multiplier −1 is produced, one refers to this field as a

Ramond field. Those fields which are local with respect to the super current are called Neveu-

Schwarz fields.

In this chapter different N = 1 SLFT blocks in the light limit are derived by using the above

mentioned duality between super Yang-Mills theory and 2d SCFT. We obtained that in the case

of SLFT the analysis of the light limit is more subtle and complicated compare to the bosonic

Lioville theory. In particular we found that in the light limit to the conformal blocks contribute

not only one row diagrams. For instance the instanton partition functions that correspond to

the conformal blocks with four Ramond fields also get contribution from the diagrams, like

those in figures (6.3(b)) and (6.3(c)) below.

The paper is organized as follows. In section 6.1 the expression for the instanton partition

functions of N = 2 SYM on R4/Z2 [136, 137] is reviewed. In section 6.2 we bring known

facts for N = 1 SLFT and its light asymptotic limit that will be useful for us. In subsection

6.3.1 the map between N = 1 super Liouville conformal blocks and N = 2 SYM on R4/Z2 is

given. In subsection 6.3.2 the rules for the light asymptotic limit are written. In section 6.4

we present new results on various partition function in the light limit. In section 6.5 by using

these partition functions we give the corresponding conformal blocks in the light limit.
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Chapter 1

Basics of conformal field theory in two

dimensions

1.1 The two dimensional conformal group

Consider a diffeomorphism f : x 7→ x′, where x, x′ ∈ M and M is a differentiable manifold.

Suppose M is endowed with a metric gµν(x). Then one can construct another symmetric second

rank tensor g′µν(x
′) such that f∗g

′ = g, i.e.

gµν(x) = g′λρ(x
′)
∂x′λ

∂xµ
∂x′ρ

∂xν
. (1.1)

The map f is called conformal if the metric tensor satisfies

gµν(x
′) = Λ(x′)g′µν(x

′). (1.2)

Since we are interested in the two dimensional flat metric, it follows from (1.1) and (1.2) that

gλρ
∂x′λ

∂xµ
∂x′ρ

∂xν
= Λgµν . (1.3)
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Now we want to examine the consequences of definition (1.2) on the infinitesimal level:

xµ → x′µ = xµ + εµ(x) . (1.4)

The left hand side of (1.3) up to the first order in ε can be written as

gλρ
(
δλµ + ∂µε

λ
)

(δρν + ∂νε
ρ) ≈ gµν + ∂νεµ + ∂νεµ . (1.5)

Therefore the requirement that this map is conformal implies that

∂µεν + ∂νεµ = h(x)gµν , (1.6)

where h(x) is some function that can be determined by taking trace on both sides of the last

expression, which yields

h(x) =
2

d
∂ρε

ρ . (1.7)

For Euclidean metric i.e. gµν = diag(1, 1), we can rewrite (1.6) as

∂1ε1 = ∂2ε2 ; ∂1ε2 = −∂2ε1 , (1.8)

which are the Cauchy-Riemann equations. A complex function whose real and imaginary parts

satisfy the Cauchy-Riemann condition is a holomorphic function. Thus it is natural to introduce

complex coordinates

z = x+ iy ; z̄ = x− iy ,

ε(z) = ε1 + iε2 ; ε̄(z̄) = ε1 − iε2 . (1.9)
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Since ε(z) is holomorphic, the function f(z) = z + ε(z) is holomorphic too. So we can say

that complex analytic coordinate transformations give rise to two dimensional conformal trans-

formations. One could arrive to same conclusion by taking a different approach, namely by

rewriting the metric in the complex coordinates: ds2 = dzdz̄. Indeed, under a holomorphic

transformation z → f(z) this metric transforms as:

ds2 = dzdz̄ →
∣∣∣∣∣∂f∂z

∣∣∣∣∣
2

dzdz̄ . (1.10)

Let us perform a Laurent expansion of ε(z). Then the infinitesimal conformal transformation

can be written as

z′ = z + ε(z) ; ε(z) =
∑
n∈Z

cnz
n+1 , (1.11)

z̄′ = z̄ + ε̄(z̄) ; ε̄(z̄) =
∑
n∈Z

c̄nz̄
n+1 . (1.12)

The operators that generate this transformations for a particular n are

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ . (1.13)

These generators obey commutation relations:

[ln, lm] = (n−m)ln+m , [l̄n, l̄m] = (n−m)l̄n+m , [ln, l̄m] = 0 , (1.14)

the first and second commutation relations are two copies of the so called Witt algebra. As

one can see from the last commutation relation the algebras {ln} and {l̄n} can be regarded as

independent from each other provided one treats z and z̄ as independent variables. But this

is just a complexification of the initial space: C ∼= R2 7−→ C2. Nevertheless at some point we

have to identify z̄ with z∗. From now on we will discuss the holomorphic dependence only and

ignore the similar anti-holomorphic dependence.

In general, the generators ln are not well defined everywhere and do not generate invertible
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transformations. Even on the Riemann sphere S2 = C ∪∞, there are only few generators that

are globally defined. Let us find them.

The analytic conformal transformations are generated by the vector fields:

v(z) = −
∑
n

anln =
∑
n

anz
n+1∂z . (1.15)

The non-singularity of v(z) as z → 0 requires that an 6= 0 only if n ≥ −1. To understand the

behavior of v(z) as z →∞, let us perform the transformation z = − 1
ω

,

v(z) =
∑
n

an

(
− 1

ω

)n−1

∂ω . (1.16)

The non-singularity as ω → 0 implies that an 6= 0 if n ≤ 1. We conclude that only the subset

{l0, l±1} generates conformal transformations that are globally defined on the Riemann sphere

S2 = C ∪∞. These generators satisfy the commutation relation:

[l0, l−1] = l−1 ; [l0, l1] = −l1 ; [l1, l−1] = 2l0 , (1.17)

which is the sl(2,C) algebra.

Let us examine also the group structure. Note that l0 = −z∂z and l̄0 = −z̄∂z̄ and hence

introducing the polar coordinates z = reiθ we obtain

r
∂

∂r
= z

∂

∂z
+ z̄

∂

∂z̄
= −(l0 + l̄0) ,

∂

∂θ
= iz

∂

∂z
− iz̄ ∂

∂z̄
= −i(l0 − l̄0) . (1.18)

Thus (l0 + l̄0) generates dilatations and i(l0− l̄0) generates rotations. From (1.13) it is obvious

that:

• l−1 and l̄−1 are generators of translations (globally z → z + α) ;

• l0 and l̄0 are generators of dilatations (globally z → λz) ;

• l1 and l̄1 are generators of the special conformal transformations (globally z → z
1−βz ) .
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Together these transformations form a group known as the complex Möbius group:

z → az + b

cz + d
, (1.19)

where a, b, c, d ∈ C and ad− bc = 1. This is the group SL(2,C)/Z2. The quotient by Z2 is due

to the fact that (1.19) is unchanged uder simultaneous flip of signs of the parameters a, b, c, d.

1.2 The energy-momentum tensor, radial quantization,

OPE of operators and two, three- point functions

Energy-momentum tensor

Here we want to find the constraints on the energy-momentum tensor that are due to the

conformal symmetry xµ → xµ + εµ(x) of our theory. Under this coordinate transformation the

action changes in the following way:

δS =
∫
d2xT µν∂µεν =

1

2

∫
d2xT µν(∂µεν + ∂νεµ) (1.20)

where T µν is the symmetric energy-momentum tensor. The definition (1.6) of the infinitesimal

conformal mapping implies that corresponding variation of the action reads

δS =
1

2

∫
d2xT µµ ∂ρε

ρ (1.21)

The vanishing of the trace of the energy-momentum tensor thus implies the invariance of the

action under the conformal transformation. The conserved current of conformal symmetry can

be written as

jµ = Tµνε
ν(x). (1.22)

Lets go back to CFTs with Euclidean signature. The metric in the complex coordinates has
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the form (1.10). Obviously gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 1
2
. We will show that the energy-

momentum tensor has two non-vanishing components and that one of them is holomorphic

while the other is antiholomorphic. By using Tµν = ∂xλ

∂xµ
∂xρ

∂xν
Tλρ we can express the components

of the energy-momentum tensor in the complex coordinates in terms of they initial Euclidean

components:

Tzz = 1
4
(T00 − 2iT10 − T11) ; Tz̄z̄ = 1

4
(T00 + 2iT10 − T11) ; (1.23)

Tzz̄ = Tz̄z = 1
4
(T00 + T11) = 1

4
T µµ .

Therefore the tracelessness implies

Tzz̄ = Tz̄z = 0 . (1.24)

The conservation law ∂µTµν = 0 gives:

∂z̄Tzz + ∂zTz̄z = 0;

∂zTz̄z̄ + ∂z̄Tzz̄ = 0;

⇒
∂z̄Tzz = 0,

∂zTz̄z̄ = 0.

We see that the two non-vanishing components of the energy-momentum tensor

T (z) ≡ Tzz(z) and T̄ (z̄) ≡ Tz̄z̄(z̄) (1.25)

have holomorphic and anti-holomorphic dependence on their arguments respectively.

To avoid infrared divergences we compactify the space coordinate. Thus we consider our

system to live on a cylinder Σ = R × S1 = (σ0, σ1 mod 2π), where σ0 ∈ R is the Euclidean

time and σ1 is the compactified space coordinate. Then we can go back to the complex plain

by the exponential map

z = ew , w = σ0 + iσ1 . (1.26)

The infinite past and future on a cylinder, σ0 = −∞ ,∞ are mapped to points z = 0,∞ on a

plane correspondingly. The equal time surfaces σ0 = const become circles of constant radii on
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z-plane. Dilatation on the plane ea becomes time translation σ0+a on the cylinder, and rotation

on the plane eiα is space translation σ1 +α on the cylinder. Therefore the dilatation generator

on the conformal plane can be considered as the Hamiltonian, and the rotation generator as

momentum.

As we see from (1.25) the current of conformal transformations is:

Jz = T (z)ε(z) and Jz̄ = T̄ (z̄)ε̄(z̄) . (1.27)

The arguments we gave above make it reasonable to choose the radial arrays as time directions.

Then the fixed time surfaces correspond to circles around the origin. So, the conserving charge

of a conformal transformations is:

Q =
1

2πi

∮
dzT (z)ε(z) +

1

2πi

∮
dz̄T̄ (z̄)ε̄(z̄) , (1.28)

where the contour integrals are taken along circles mentioned above.

Radial ordering

In QFT correlation function are defined as a time ordered product. We know that passing from

a cylinder to a plane, Euclidean time coordinate is mapped to radial coordinate, and the time

ordering becomes the radial ordering. Thus it is reasonable to choose as the analog of time

ordering on the complex plane radial ordering

R(A(z)B(w)) =


A(z)B(w) if |z| > |w|

B(w)A(z) if |z| < |w|
.

The variation of any field generated by the conserved charge Q is given by the commutator

with this charge. Making use of (1.28), we will get

δε,ε̄Φ(w, w̄) = [Q,Φ(w, w̄)] =
1

2πi

∮
dz[ε(z)T (z),Φ(w, w̄)] +

1

2πi

∮
dz̄[ε̄(z̄)T̄ (z̄)Φ(w, w̄)].(1.29)
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We will discuss the holomorphic part, the antiholomorphic part is similar. In the expression

above the products of operators is defined in the regions where the operators are radial ordered,

thus:

1
2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = (1.30)

lim
|z|→|w|

(
1

2πi

∮
|z|>|w| dzε(z) (T (z)Φ(w, w̄))− 1

2πi

∮
|z|<|w| dzε(z) (Φ(w, w̄)T (z))

)
.

We can rewrite this as

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = lim

|z|→|w|

(
1

2πi

[∮
|z|>|w|

−
∮
|z|<|w|

]
dzε(z)R(T (z)Φ(w, w̄))

)
. (1.31)

One can deform the contours to get

1

2πi

∮
dzε(z)[T (z),Φ(w, w̄)] = lim

|z|→|w|

(
1

2πi

∮
w
dzε(z)R(T (z)Φ(w, w̄))

)
. (1.32)

Obviously this integral does not vanish only if there is a singularity at the point w. Recollecting

everything, we obtain that (1.29) is given

δε,ε̄Φ(w, w̄) = lim
|z|→|w|

(
1

2πi

∮
w
dzε(z)R(T (z)Φ(w, w̄)) +

1

2πi

∮
w
dzε̄(z̄)R(T̄ (z̄)Φ(w, w̄))

)
. (1.33)

Fields transforming under the conformal transformation z → f(z) according to

Φ(z, z̄)→
(
∂f

∂z

)h (
∂f̄

∂z̄

)h̄
Φ̃(f(z), f̄(z̄)) , (1.34)

are called primary fields with conformal dimension (h , h̄). But if (1.34) is true for global

conformal transformations only, then Φ is called a quasi-primary field.

Under infinitesimal conformal transformation z → z + ε(z) primary fields of conformal

weight (h , h̄) transform as:

δε,ε̄Φ(w, w̄) = (ε(w)∂ + h∂ε(w)) Φ(w, w̄) +
(
ε̄(w̄)∂̄ + h̄∂̄ε̄(w̄)

)
Φ(w, w̄) . (1.35)
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Comparing (1.33) and (1.35) we get OPE of the energy-momentum tensor with the primary

field of the weights (h , h̄). afterwards we will omitted the R symbol and assume that products

of operators are always radial ordered.

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w
∂wΦ(w, w̄) + . . . , (1.36)

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄
∂w̄Φ(w, w̄) + . . . . (1.37)

The operator product expansion between the energymomentum tensors and Φ(z, z̄) (1.36) and

(1.37) is equivalent to (1.34) so it can be considered as the definition of a primary field Φ(z, z̄)

with conformal dimensions (h , h̄) as well.

Asymptotic States

Let us consider the field Φ(z, z̄), with conformal dimension (h, h̄), its Laurent expansion around

z0 = z̄0 = 0 is

Φ(z, z̄) =
∑

n,m̄∈Z
z−n−hz̄−m̄−h̄Φn,m̄ . (1.38)

Since we have directed the time axis in the radial direction, the infinite past coincides with

z0 = z̄0 = 0 it is natural to define the in-states as:

|Φin〉 ≡ lim
z,z̄→0

Φ(z, z̄)|0〉 . (1.39)

It follows from (1.38) that in order to get a well defined in-state the vacuum must satisfy the

condition

Φn,m̄|0〉 = 0 for all n > −h, m̄ > −h̄ . (1.40)

On the Riemann sphere S2 = C∪∞ the parametrization near ∞ is related to the one near the

origin by the conformal map z = 1/w. Therefore, it is reasonable to introduce the out-state as
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follows:

〈Φout| = lim
w,w̄→0

〈0|Φ̃(w, w̄) , (1.41)

where Φ̃(w, w̄) is the transformed field in w coordinates. For primary fields, applying (1.34) for

the transformation w → z = 1/w, one gets a relation between Φ̃(w, w̄) ant Φ(z, z̄):

Φ̃(w, w̄) = (w)−2h(w̄)−2h̄Φ (1/w, 1/w̄) . (1.42)

Inserting this into (1.41), we will get

〈Φout| = lim
z,z̄→∞

〈0|Φ(z, z̄)z2hz̄2h̄ . (1.43)

On the other hand

〈Φout| = |Φin〉† =
[

lim
z,z̄→0

Φ(z, z̄)|0〉
]†

= lim
z,z̄→0
〈0| [Φ(z, z̄)]† . (1.44)

The consistency with (1.43) implies that

[Φ(z, z̄)]† ≡ Φ
(

1

z
,
1

z̄

)
1

z2h

1

z̄2h̄
. (1.45)

Using the expansion (1.38) we get

Φ†(z, z̄) = z−2hz̄−2h̄
∑

n,m̄∈Z
zn+hz̄m̄+h̄Φn,m̄ =

∑
n,m̄∈Z

zn−hz̄m̄−h̄Φn,m̄ . (1.46)

Comparing this result with (1.38), we will obtain:

(Φn,m̄)† = Φ−n,−m̄ , (1.47)
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By similar considerations, using (1.44) and (1.46) for the out-states we get

〈0|Φn,m̄ = 0 for all n < h, m̄ < h̄ . (1.48)

Two and three point functions

The invariance under SL(2,C)/Z2 transformations determine the two and three- point functions

of quasi-primary fields up to some constants.

For the two-point functions one gets

〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉 =
C12 δh1,h2

(z12)2h(z̄12)2h̄
, (1.49)

where zij ≡ zi−zj, h1 = h2 ≡ h and C12 are constants that can be absorbed into normalization

of the fields. And for the three-point function the result is

〈Φ1(z1, z̄1)Φ2(z2, z̄2)Φ3(z3, z̄3)〉 =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

13

.(1.50)

The numerical coefficients are important dynamical characteristics of the theory. Global con-

formal invariance does not fix the precise form of the four or higher point functions. We will

discuss such correlation functions in detail later.

1.3 Virasoro algebra

Schwarzian derivative

Dimensional analysis and closedness condition predict the following general form for the OPE

of the energy-momentum tensor with itself (cf. 1.36)

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) + . . . , (1.51)

where c is a numerical constant which is called the central charge or conformal anomaly. Its

value, in general, will depend on the particular theory under consideration. The second term
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on the rhs of (1.51) indicates that T (z) is a field with conformal weight (2, 0). According to

(1.49) the two point correlation function of energy-momentum tensors is given by

〈T (z)T (0)〉 =
c/2

z4
. (1.52)

Note that if we would not have a central extension term i.e. c = 0 then the two point correlation

function (1.52) would vanish. Thus the energy-momentum tensor of our theory would always

be zero. Thus the central extension term ensures the non triviality of our theory. According to

(1.33) the variation of T under infinitesimal conformal transformation is

δεT (w) =
1

2πi

∮
ε(z)T (z)T (w) =

1

12
c∂3

wε(w) + 2T (w)∂wε(w) + ε(w)∂wT (w) , (1.53)

where we used the OPE of two energy-momentum tensors (1.51). One can exponentiate this

and find how T transforms under a finite transformation z → w(z):

T (z)→
(
dw

dz

)2

T (w(z)) +
c

12
S(w; z) , (1.54)

where the so called Schwarzian derivative is introduced:

S(w; z) =
(d3w/dz3)

(dw/dz)
− 3

2

(
(d2w/dz2)

(dw/dz)

)2

. (1.55)

The energy-momentum tensor is an example of a field that is quasi-primary but not primary.

The Schwarzian derivative is, in fact, a unique weight two object that vanishes when restricted

to the global SL(2, C) subgroup of 2D conformal group. It satisfies the following composition

law:

S(w, z) =

(
df

dz

)2

S(w, f) + S(f, z) . (1.56)

For the exponential map w → z = ew, which maps the cylinder to the plain, one has

S(ew, w) = −1/2 , (1.57)
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therefore (1.54) will give

Tcyl(w) =

(
∂z

∂w

)2

T (z) +
c

12
S(z, w) = z2T (z)− c

24
. (1.58)

Inserting mode expansion T (z) =
∑
Lnz

−n−2, one obtains

Tcyl(w) =
∑

Lnz
−n − c

24
=
∑
n

(
Ln −

c

24
δn,0

)
e−nw . (1.59)

In particular the translation generator (L0)cyl on a cylinder is then given in terms of the gen-

erator L0 on plane as:

(L0)cyl = L0 −
c

24
. (1.60)

The central charge is seen to be proportional to the Casimir energy, the change in the vacuum

energy density due to the finite circumference of the cylinder.

Virasoro algebra

As we saw in (1.27) the current of conformal transformations is J(z) = T (z)ε(z). Since ε(z)

is an arbitrary holomorphic function, it is natural to expand it in its modes. We expect that

the current T (z)zn+1 generates the transformation z → z + cnz
n+1. According to (1.28) the

corresponding charges are:

Ln =
1

2πi

∮
dzT (z)zn+1. (1.61)

The commutator of the charges is

[Ln, Lm] =
1

(2πi)2

∮
0
dwwm+1

∮
w
dzzn+1T (z)T (w) =

1

12
cn(n2 − 1)δn+m,0 + (n−m)Lm+n . (1.62)

The classical generators of the local conformal transformations obey the Witt algebra (1.14).

The quantum generators Ln obey an identical algebra, except for a central term:

[Ln, Lm] = (n−m)Lm+n +
1

12
c n(n2 − 1)δn+m,0 ; (1.63)
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[L̄n, L̄m] = (n−m)L̄m+n +
1

12
c̄ n(n2 − 1)δn+m,0 ; (1.64)

[Ln, L̄m] = 0 . (1.65)

The central extension of the Witt algebra is known as the Virasoro algebra. One can derive

the last commutation relation (1.65) similarly by applying the fact that T (z) and T̄ (z̄) have no

singularity in their OPE. Note that for n = 0 ,±1 the central extension term vanishes and the

quantum version of the global conformal group is still SL(2,C)/Z2.

Highest weight states

The vacuum state |0〉 should be invariant under global conformal transformations. This means

that it must be annihilated by L0 and L±1 and their antiholomorphic counterparts. Combining

this with (1.40) we get

L0|0〉 = 0 and Ln|0〉 = 0 , for all n ≥ −1 . (1.66)

It is reasonable to expect that the energy of our theory is bounded from below. Since L0 + L̄0

is the Hamiltonian, we will assume that our representation contains a state with smallest value

of L0. This state is called the highest weight state. The highest weight states are related to the

primary fields. More precisely every primary filed gives rise to a highest weight state. To see

this let us consider a primary field Φ(z, z̄) of dimensions (h, h̄). From the OPE (1.36) between

T (z) and the primary field Φ(z, z̄) one finds:

[Ln, φ(w, w̄)] =
∮ dz

2πi
zn+1T (z)φ(w, w̄) = h(n+ 1)wnφ(w, w̄) + wn+1∂wφ(w, w̄) , (1.67)

Inserting (1.38) for the modes of Φ(w) we get

[Ln,Φm] = (n(h− 1)−m) Φn+m . (1.68)
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A spacial case of which is

[L0,Φm] = −mΦm . (1.69)

Thus, it seems reasonable to define

|h, h̄〉 = Φ(0, 0)|0〉 . (1.70)

Applying (1.67) to this state we see that

L0|h, h̄〉 = h|h, h̄〉 ; L̄0|h, h̄〉 = h̄|h, h̄〉 . (1.71)

Again from (1.67) we get

[Ln,Φ(0, 0)] = 0 for all n > 0 . (1.72)

Thus it is obvious that

Ln|h, h̄〉 = 0, L̄n|h, h̄〉 = 0 for all n > 0 . (1.73)

A state satisfying (1.71) and (1.73) is called a highest weight state. It follows from (1.63) that

the negative modes Ln, n < 0, can be used to generate other states with larger dimensions:

L0Ln|h, h̄〉 = ([L0, Ln] + LnL0) |h, h̄〉 = (h− n)Ln|h, h̄〉, with n < 0 . (1.74)

This means that excited states may be obtained by successive applications of these operators

on the highest weight state:

L−k1L−k2 . . . L−kn|h〉 , where
n∑
i=1

ki = N . (1.75)
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We may in fact assume that the generators are ordered as: 1 ≤ k1 ≤ . . . ≤ kn, since any

incorrectly ordered product could be reduced to the ordered ones with the help of the Virasoro

algebra commutation relations (1.63). The state (1.75) is an eigenstate of L0 with the eigenvalue

h + N . They are called descendants of the highest weight state |h〉. The collection of states

(1.75) for all n ≥ 0 could be ordered as:

level dimension state # of states

0 h |h〉 1

1 h+ 1 L−1|h〉 1

2 h+ 2 L2
−1|h〉, L−2|h〉 2

3 h+ 3 L−3|h〉, L−1L−2|h〉, L3
−1|h〉 3

...
...

...
...

N h+N . . . P (N)

The linear span of these states constitute the so called Verma module V (c, h) of |h〉. In the

table above we have denoted by P (N) the number of partitions of N into positive integer parts.

It is not difficult to see that

∞∑
n=0

P (n)qn =
1∏∞

n=1(1− qn)
, P (0) = 1 . (1.76)

In a similar manner we could construct a Verma module V̄ (c, h̄) also with the antiholomorphic

generators L̄n. In general the Hilbert space of a CFT is the direct sum of V ⊗ V̄ , over the set

of all conformal dimensions of primary states:

∑
h,h̄

V (c, h)⊗ V̄ (c, h̄) . (1.77)
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Chapter 2

RG domain wall for the N=1 minimal

superconformal models

2.1 Minimal models

The simplest of all conformal theories are the so called minimal models. In these theories the

number of conformal families is finite. A well known example of a theory described by a unitary

minimal model is the Ising model. Though in QFTs, unitarity is a fundamental requirement,

in statistical mechanical systems it does not play such a central a role. Nevertheless in what

follows we will restrict our attention to the unitary theories.

2.2 Unitary CFTs

In this section we will investigate the values of c and h for which the Virasoro algebra has

unitary representations. By definition a representation of the Virasoro algebra is said to be

unitary, if it does not contain negative-norm states.

Let us consider the norm of the state L−n|h〉:

〈h|LnL−n|h〉 = 〈h| [LnL−n] |h〉 =
(

2nh+
1

12
cn
(
n2 − 1

))
〈h|h〉 , (2.1)

29



where in the last step we applied (1.63) and (1.71). Unitarity requires (2.1) to be positive for

all n > 0. Thus:

• when n = 1, the conformal weight must be positive i.e. h > 0,

• when n > 1, the central charge must be positive i.e. c > 0.

We conclude that for unitary theories h > 0, and c > 0.

Null states and the Gram matrix

A descendant state is called a null state (or a singular vector) if it is a highest-weight state as

well. Thus |χ〉 is a null state if

L0|χ〉 = (h+N)|χ〉 , Ln|χ〉 = 0 for all n > 0 . (2.2)

Singular vectors are orthogonal to the entire Verma module (this can be seen with the help of

the Virasoro algebra relations (1.63) and the definitions of the highest weight states and the

null states). As a consequence all descendants of a singular vector have zero norm too. To find

the null states, and to find necessary and sufficient conditions for the unitarity it is helpful to

consider the so called Gram matrix (denoted by M) of inner products between all basis states.

Let us introduce some notations

|i〉 ≡ L−k1L−k2 . . . L−kn|h〉 , Mij = 〈i|j〉 . (2.3)

Note that the Gram matrix is Hermitian (M † = M) and it is block diagonal with blocks

M (l) corresponding to states of level l. Then the norm of a generic state |a〉 =
∑
i ai|i〉 is

〈a|a〉 = a†Ma . Since M is Hermitian it can be diagonalized by a unitary matrix U:

M = U †ΛU, hence 〈a|a〉 =
∑
i

Λi|bi|2 , where b ≡ Ua . (2.4)

where the eigenvalues Λi are real numbers.

Let us calculate the matrices M (l) for the cases l = 0, 1, 2:
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• l = 0, we have M (0) = 〈h|h〉 = 1 ;

• l = 1, we have M (1) = 〈h|L1L−1|h〉 = 〈h|[L1, L−1]|h〉 = 2h ;

• l = 2, we have two descendants L2
−1|h〉 and L−2|h〉, thus

M (2) =

 〈h|L2
1L

2
−1|h〉, 〈h|L2

1L−2|h〉

〈h|L2L
2
−1|h〉, 〈h|L2L−2|h〉

 =

 4h(2h+ 1), 6h

6h, 4h+ c/2

 (2.5)

We get no additional information from M (0). M (1) is a special case of (2.1) so we get no

additional information again. As we know the determinant is equal to the product of its eigen-

values, in particular if one of the eigenvalues of M (2) is negative and the remaining eigenvalues

are positive then detM (2) is negative. Thus the negativity of the determinant indicates that

the theory is not unitary. Explicitly

detM (2) = 32h3 − 20h2 + 4h2c+ 2hc = 32 (h− h1,1) (h− h1,2) (h− h2,1) , (2.6)

where

h1,1 = 0 ; (2.7)

h1,2 = 1
16

(
5− c−

√
(1− c)(25− c)

)
; h1,2 = 1

16

(
5− c+

√
(1− c)(25− c)

)

Another useful indicator is the trace of the Gram matrix which is equal to the sum of its

eigenvalues:

trM (2) = 8h(h+ 1) + c/2 . (2.8)

whenever the detM (2) or trM (2) is negative, we conclude that the representation is not unitary.
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2.2.1 Kac determinant

The generalization of (2.6) is

detM (l) = αl
∏
rs≤l

(h− hr,s(c))P (l−rs) , (2.9)

this formula is due to Kac and is called the Kac determinant. Where P (l − rs) is the number

of partitions of the integer l − rs and αl is a positive constant independent of h and c,

αl =
∏
rs≤l

((2r)ss!)m(r,s) where, m(r, s) = P (l − rs)− P (l − r(s+ 1)) . (2.10)

The products in (2.9) and (2.10) are over all positive integers r, s such that r s ≤ l. The function

hr,s(c) may be represented in various ways. Below we will give one of them that is convenient

for our purposes.

hr,s(p) =
((p+ 1)r − ps)2 − 1

4p(p+ 1)
, (2.11)

where the the central charge c is parametrized in terms of (in general complex) quantity p:

cp = 1− 6

p(p+ 1)
. (2.12)

It is easy to check that (2.9) coincides with (2.6) when l = 2. Let us point out that the values

of hr,s(p) in (2.10) do not change under replacement r → p− r, s→ p+ 1− s.

To summarize if at any given level the Kac determinant is negative then there exist are neg-

ative norm states and the representation is not unitary. Instead if the Kac determinant is

positive or equal to zero, then more subtle analysis is required to determine whether or not the

representation is unitary at that level.

It can be proven that for the region c ≤ 1 and h ≥ 0, the necessary and sufficient conditions

for a representations to be unitary are:
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a) The central charge assumes one of the following values:

cp = 1− 6

p(p+ 1)
, where p = 3, 4, . . . . (2.13)

Note that p = 2 just means c = 0.

b) To each cp there are p(p− 1)/2 primary fields, with conformal dimension:

hn,m =
((p+ 1)n− pm)2 − 1

4p(p+ 1)
, (2.14)

where two integers take values n ∈ {1, 2, · · · , p − 1}, m ∈ {1, 2, · · · , p}. The corresponding

primary fields will be denoted as φn,m.

2.2.2 N=1 minimal superconformal field theory

In any conformal field theory the energy-momentum tensor has two nonzero components: the

holomorphic field T (z) with conformal dimension (2, 0) and its anti-holomorphic counterpart

T̄ (z̄) with dimensions (0, 2). In N = 1 superconformal field theories one has in addition su-

perconformal currents G(z) and Ḡ(z̄) with dimensions (3/2, 0) and (0, 3/2) respectively. These

fields satisfy the OPE rules

T (z)T (0) =
c

2z4
+

2T (0)

z2
+
T ′(0)

z
+ · · · , (2.15)

T (z)G(0) =
3G(0)

2z2
+
G′(0)

z
+ · · · , (2.16)

G(z)G(0) =
2c

3z3
+

2T (0)

z
+ · · · . (2.17)

The corresponding expressions for the anti-chiral fields look exactly the same. One should

simply substitute z by z̄. Further on we’ll mainly concentrate on the holomorphic part assuming

similar expressions for anti-holomorphic quantities implicitly.

Due to the fermionic nature of the super current, there are two distinct possibilities for its
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behavior under the rotation of the argument around 0 by the angle 2π

G(e2πiz) = G(z) Neveu - Schwarz sector (NS) , (2.18)

G(e2πiz) = −G(z) Ramond sector (R) . (2.19)

The space of fields A of the superconformal theory decomposes into a direct sum

A = {NS} ⊕ {R} , (2.20)

where the subspaces {NS} and {R} consist of the Neveu-Shwarz and the Ramond fields re-

spectively. By definition, the monodromy of G(z) around a Neveu-Schwarz field is trivial (the

case of eq. (2.18)) and its monodromy around a Ramond field produces a minus sign (the case

of eq. (2.19)). Because of these two possibilities the Laurent expansions for the super-current

will be

G(z) =
∑

k∈Z+1/2

Gk

zk+3/2
Neveu-Schwarz sector (NS) ,

G(z) =
∑
k∈Z

Gk

zk+3/2
Ramond sector (R) .

The OPE’s (2.15), (2.16), (2.17) are equivalent to the Neveu-Schwarz-Ramond algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 ,

[Ln, Gk] =
1

2
(n− 2k)Gn+k , (2.21)

{Gk, Gl} = 2Lk+l +
c

3

(
k2 − 1/4

)
δk+l,0 ,

where {, } denotes the anticommutator. In this paper we’ll deal with minimal super-conformal

series denoted as SMp (p = 3, 4, 5 . . .) corresponding to the choice of the central charge

cp =
3

2

(
1− 8

p(p+ 2)

)
. (2.22)
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The main distinctive mark of the minimal super-conformal theories is that they have finitely

many super primary fields. These fields are numerated by two integers n ∈ {1, 2, · · · , p − 1},

m ∈ {1, 2, · · · , p+1} and will be denoted as φn,m. It is assumed that φp−n,p+2−m ≡ φn,m , hence

the number of super primaries is equal to [p2/2] ([x] is the integer part of x). φp−1,p+1 ≡ φ1,1 is

the identity operator. For even (odd) n−m the super-conformal classes [φn,m] form irreducible

representations of the Neveu-Schwarz (Ramond) algebra. The fields φn,m have dimensions

hn,m =
((p+ 2)n− pm)2 − 4

8p(p+ 2)
+

1

32
(1− (−)n−m) . (2.23)

2.2.3 Current algebra and the coset construction

We will use the coset construction [23,24] of super-minimal models in terms of ŜU(2)k WZNW

models [25, 26].

Recall that WZNW models are endowed with spin one holomorphic currents. The OPE

relations of these currents specified to the case of ŜU(2)k read:

J0(z)J0(0) =
k/2

z2
+ reg ,

J0(z)J±(0) = ±J
±(0)

z
+ reg , (2.24)

J+(z)J−(0) =
k

z2
+

2J0(0)

z
+ reg ,

where k is the level. The isotopic indices ±, 0 convenient for the later use are related to the

usual Euclidean indices as:

J0 ≡ J3 and J± ≡ J1 ± iJ2 . (2.25)

The Laurent expansion of the currents reads

Ja(z) =
∑
n∈Z

Jan
zn+1

(2.26)
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and the OPE rules (2.24) imply that the current algebra generators are subject to theKac̆−Moody

algebra commutation relations

[
J±n , J

±
m

]
= 0 ,[

J+
n , J

−
m

]
= knδn+m,0 + 2J0

n+m ,[
J0
n, J

±
m

]
= ±J±n+m , (2.27)[

J0
n, J

0
m

]
=
kn

2
δn+m,0 .

Notice that the subalgebra generated by Ja0 is simply the Lie algebra su(2).

The energy momentum tensor can be expressed through the currents with the help of the

Sugawara construction

T (z) =
1

k + 2

(
J0J0 +

1

2
J+J− +

1

2
J−J+

)
. (2.28)

As it is custom in CFT above and in what follows we assume that any product of local fields

taken at coinciding points is regularised subtracting singular parts of the respective OPE. The

central charge of the Virasoro algebra can be easily computed using (2.28). The result is:

ck =
3k

k + 2
. (2.29)

The primary fields of the theory φj,m and corresponding states |j,m〉 are labeled by the spin

of the representation j = 0, 1/2, 1, . . . , k/2 and its projection m = −j,−j + 1, . . . , j. The

corresponding conformal dimensions are given by

h =
j(j + 1)

k + 2
. (2.30)
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The zero modes of the currents act on the states |j,m〉 as ∗

J±|j,m〉 =
√
j(j + 1)−m(m± 1)|j,m± 1〉 ,

J0|j,m〉 = m|j,m〉 . (2.31)

We’ll need also the explicit form of the su(2) WZNW modular matrices

S(k)
n,m =

√
2

k + 2
sin

πnm

k + 2
. (2.32)

It is well known that the N = 1 super-minimal models can be represented as a coset [23,24]

SMk+2 =
su(2)k × su(2)2

su(2)k+2

. (2.33)

In particular the energy momentum tensor of SMk+2 is given by

T(su(2)k×su(2)2)/su(2)k+2
= Tsu(2)k + Tsu(2)2 − Tsu(2)k+2

. (2.34)

Indeed the combination of the central charges (2.29) corresponding to these three terms matches

with the central charge of the super-minimal models (2.22).

The construction of the super-current G is more subtle; it involves the primary fields φ1,m

of the level k = 2 WZNW theory (we denote the currents of this theory as Ka and summation

over the index a = ±, 0 is assumed):

G(z) = CaJ
a(z)φ1,−a(z) +DaK

a
−1φ1,−a(z) . (2.35)

The coefficients Ca, Da can be fixed requiring that the respective state be the highest weight

state of the diagonal current algebra J + K. In other words both J+
0 + K+

0 and J+
1 + K+

1

∗Note that a consistent with eq. (2.31) conjugation rule for the primary fields would be φ†j,m = (−)j−mφj,−m
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annihilate the state

CaJ
a
−1|0〉|1,−a〉+Da|0〉Ka

−1|1,−a〉 . (2.36)

Up to an overall constant κ we get

D+ =
κ√
2
, D0 = κ , D− = − κ√

2
,

C+ = −3κ
√

2

k
, C0 = −6κ

k
, C− =

3κ
√

2

k
. (2.37)

The value of κ may be determined using the normalization condition of the the super-current

fixed by the OPE (2.17)

κ =

√√√√ (k + 2)(k + 4)

(k + 6)(5k + 54)
, (2.38)

but this won’t be of importance for our goals.

2.2.4 Perturbative RG flows and domain walls

In a well known paper A. Zamolodchikov [11] has investigated the RG flow from minimal model

Mp toMp−1 initiated by the relevant field φ1,3. Using leading order perturbation theory valid

for p >> 1, for the several classes of local fields he calculated the mixing coefficients specifying

the UV - IR map.

It was shown in [18] that a similar RG trajectory connecting N = 1 super-minimal models

SMp to SMp−2 exists. In this case the RG flow is initiated by the top component of the

Neveu-Schwartz superfield Φ1,3. For us it will be important that also in this case a detailed

analysis of some classes of fields has been carried out.

As it became clear later [19,22], above two examples are just the first simplest cases of more
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general RG flows. A wide class of CFT coset models

TUV =
ĝl × ĝm
ĝl+m

, m > l (2.39)

under perturbation by the relevant field φ = φAdj1,1 [22] at the IR limit flow to the theories

TIR =
ĝl × ĝm−l

ĝm
. (2.40)

Recently in [10] Gaiotto constructed a nontrivial conformal interface between successive

minimal CFT models and made a striking proposal that this interface (RG domain wall) encodes

the UV - IR map resulting through the RG flow discussed above. It was shown that the proposal

agrees with the leading order perturbative analysis of [11].

Generalization of leading order calculations to a wider class of local fields [12] as well as

next to leading order calculations [13, 14] further confirm the validity of this construction.

Actually in [10] Gaiotto suggests also a candidate for RG domain wall for the much more

general RG flow between (2.39) and (2.40). Let us briefly recall the construction. Since a

conformal interface between two CFT models is equivalent to some conformal boundary for

the direct product of these theories (folding trick), it is natural to consider the product theory

TUV × TIR

ĝl × ĝm
ĝm+l

× ĝl × ĝm−l
ĝm

∼ ĝm−l × ĝl × ĝl
ĝl+m

. (2.41)

Notice the appearance of two identical factors ĝl so one has a natural Z2 automorphism. Es-

sentially the proposal of Gaiotto boils down to the statement that the boundary of the theory

TB =
ĝl × ĝl × ĝm−l

ĝl+m
, m > l (2.42)

acts as a Z2 twisting mirror. Explicitly the RG boundary condition is the image of the Z2
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twisted TB brane

|B̃〉 =
∑
s,t

√
S

(m−l)
1,t S

(m+l)
1,s

∑
d

|t, d, d, s;B, Z2〉〉, (2.43)

where the indices t, d, s refer to the representations of ĝm−l, ĝl, ĝl+m respectively and S
(k)
1,r are

the modular matrices of the ĝk WZNW model.

In what follows we will examine in details the case of RG flow between N = 1 super-minimal

models. The method we apply directly explores the current algebra representation in contrary

to the analysis in [10] where a specific representation applicable only for the unitary minimal

series was used.

2.2.5 RG domain walls for super minimal models

In the case of the N = 1 super-minimal models one should consider

ŝu(2)k × ŝu(2)2

ŝu(2)k+2

× ŝu(2)k−2 × ŝu(2)2

ŝu(2)k
∼ ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2

ŝu(2)k+2

, (2.44)

where the first coset on lhs corresponds to the UV super conformal model SMk+2 and the

second one to the IR theory SMk. We denote by K(z) and K̃(z) the WZNW currents of

ŝu(2)2 entering in the cosets of the IR and UV theories respectively. The current of ŝu(2)k−2

WZNW theory will be denoted as J(z). Using (2.34) and the Sugawara construction, for the

energy-momentum tensor of the IR theory (the second factor of the lhs of (2.44)) we get

Tir(z) =
1

k
J(z)J(z) +

1

4
K(z)K(z)− 1

k + 2
(K(z) + J(z))2,

which can be rewritten as

Tir(z) =
2

2k + k2
J(z)J(z)− 2

2 + k
J(z)K(z) +

k − 2

4(k + 2)
K(z)K(z). (2.45)
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Similarly the energy-momentum tensor for the UV theory is equal to

Tuv(z) =
2

(2 + k)(4 + k)
J(z)J(z) +

2

(2 + k)(4 + k)
K(z)K(z)

− 2

4 + k
K(z)K̃(z) +

k

4(k + 4)
K̃(z)K̃(z)

+
4

(2 + k)(4 + k)
J(z)K(z)− 2

4 + k
J(z)K̃(z) . (2.46)

In order to get the one-point functions of the theory SMk+2 × SMk in the presence of RG

boundary, one needs explicit expressions of the states corresponding to fields φIRφUV in terms

of the states of the coset theory

TB =
ŝu(2)k−2 × ŝu(2)2 × ŝu(2)2

ŝu(2)k+2

. (2.47)

Let us denote the highest weight representation spaces of the current algebras J(z), K(z) and

K̃(z) as V
(J)
j , V

(K)
k and V

(K̃)

k̃
respectively (the lower indices specify the spins of the highest

weight states). It is convenient to fix a unique representative of a state of the coset TB in the

space V
(J)
j ⊗V (K)

k ⊗V (K̃)

k̃
requiring that the state under consideration be a highest weight state

of the diagonal current J +K + K̃. The simplest case to analyse are the states corresponding

to φIRn,nφ
UV
n,n . Since

hirn,n =
n2 − 1

4k
− n2 − 1

4(k + 2)
,

huvn,n =
n2 − 1

4(k + 2)
− n2 − 1

4(k + 4)
,

the total dimension of the product field is

hirn,n + huvn,n =
n2 − 1

4k
− n2 − 1

4(k + 4)
, (2.48)
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so that the corresponding state is readily identified with (|j,m〉 denotes a primary state of spin

j and projection m)

|n− 1

2
,
n− 1

2
〉|0, 0〉|0, 0〉 ∈ V (J)

n−1
2

⊗ V (K)
0 ⊗ V (K̃)

0 . (2.49)

Indeed, this is a spin n−1
2

highest weight state of the combined current J + K + K̃ and its TB

dimension

h
(J)
n−1

2

+ h
(K)
0 + h

(K̃)
0 − h(J+K+K̃)

n−1
2

coincides with (2.48). Notice that Z2 action (i.e. permutation of the second and third factors)

on this state is trivial. Thus the overlap of this state with its Z2 image is equal to 1 and from

(2.43)

〈φIRn,nφUVn,n |RG〉 =

√
S

(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

. (2.50)

For large k and for n ∼ O(1) this gives 1+3/k2 +O(1/k3). We conclude that up to 1/k2 terms,

the fields φUVn,n flow to φIRn,n without mixing with other fields, in complete agreement with both

leading order [18] and next to leading order [21] perturbative calculations.

Next let us examine the more interesting case of Ramond fields φUVn,n±1 which are expected

to flow to certain combinations of the fields φIRn±1,n [18].

Consider the state corresponding to φirn−1,nφ
uv
n,n−1. From (2.23) we get

hirn−1,n =
3

16
+

(n− 1)2 − 1

4k
− n2 − 1

4(k + 2)
, (2.51)

huvn,n−1 =
3

16
− (n− 1)2 − 1

4(k + 4)
+

n2 − 1

4(k + 2)
. (2.52)

Hence the conformal dimension of this product field will be

hirn−1,n + huvn,n−1 =
3

8
+

(n− 1)2 − 1

4k
− (n− 1)2 − 1

4(k + 4)
. (2.53)
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There are three primaries in su(2)2 WZNW theory with j = 0, 1, 2 representations and

conformal dimensions 0, 3
16

and 1
2

respectively. So, to get the right dimension one should

choose a combination of states |n
2
− 1,m〉|1

2
, α〉|1

2
, β〉. In addition this combination must be the

spin n
2
− 1 highest weight state of J +K + K̃ (to match with the last, negative term of (2.53)

). Thus we are lead to

Cαβ|
n

2
− 1,

n

2
− 1− α− β〉|1

2
, α〉|1

2
, β〉, (2.54)

where a summation over the indices α, β = ±1/2 is assumed. The highest weight condition

that the operator J+
0 +K+

0 + K̃0 annihilates this state, implies

√
n− 2C++ + C−+ + C+− = 0 .

A further constraint

C++ −
√
n− 2C−+ = 0 ,

one obtains imposing the condition that this state should be an eigenstate of the Virasoro

operator LIR0 constructed from the energy-momentum tensor Tir (2.45) with eigenvalue hirn,n−1

(2.51). Thus we get

C++ =
√
n− 2C−+ , C+− = −(n− 1)C−+

(of course, the undefined overall multiplier could be fixed from the normalization condition).

Taking (normalized) scalar product of the state (2.54) with its Z2 image we find

〈φirn−1,nφ
uv
n,n−1|RG〉 = − 1

n− 1

√
S

(k−2)
1,n−1S

(k+2)
1,n−1

Sk1,n
. (2.55)
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Consideration of the product φirn+1,nφ
uv
n,n+1 fields is quite similar and leads to the state

Cαβ|
n

2
,
n

2
− α− β〉|1

2
, α〉|1

2
, β〉 ,

with the coefficients

C+− = 0 , C++ = − 1√
n
C−+ .

So, in this case

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n+ 1

√
S

(k−2)
1,n+1S

(k+2)
1,n+1

Sk1,n
. (2.56)

Constructing the states corresponding to φirn−1,nφ
uv
n,n+1 and φirn+1,nφ

uv
n,n−1 is even simpler and one

easily gets |n
2
− 1, n

2
− 1〉|1

2
, 1

2
〉|1

2
, 1

2
〉 and |n

2
, n

2
〉|1

2
,−1

2
〉|1

2
,−1

2
〉 respectively. In both cases the Z2

action is trivial, hence

〈φirn−1,nφ
uv
n,n+1|RG〉 =

√
S

(k−2)
1,n−1S

(k+2)
1,n+1

Sk1,n
, (2.57)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
S

(k−2)
1,n+1S

(k+2)
1,n−1

Sk1,n
. (2.58)

In the large k limit we get

〈φirn+1,nφ
uv
n,n+1|RG〉 =

1

n
+O(1/k2) , (2.59)

〈φirn+1,nφ
uv
n,n−1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (2.60)

〈φirn−1,nφ
uv
n,n+1|RG〉 =

√
n2 − 1

n
+O(1/k2) , (2.61)

〈φirn−1,nφ
uv
n,n−1|RG〉 = − 1

n
+O(1/k2) , (2.62)

in complete agreement with the second order perturbation theory results [21].

We have analysed also the more complicated case of mixing of the primary Neveu-Schwartz
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superfields Φn,n±2 and the descendant superfield DD̄Φn,n (here D and D̄ are the super-derivatives).

The details of calculations are presented in the appendix. Here are the final results:

〈ψirn+2,nψ
uv
n,n+2|RG〉 =

2

(n+ 1)(n+ 2)

√
S

(k−2)
1,n+2S

(k+2)
1,n+2

S
(k)
1,n

, (2.63)

〈φirn+2,nG
uv
− 1

2
φuvn,n|RG〉 =

2

n+ 1

√
S

(k−2)
1,n+2S

(k+2)
1,n

S
(k)
1,n

, (2.64)

〈ψirn+2,nψ
uv
n,n−2|RG〉 =

√
S

(k−2)
1,n+2S

(k+2)
1,n−2

S
(k)
1,n

, (2.65)

〈Gir
− 1

2
φirn,nφ

uv
n,n+2|RG〉 =

2

n+ 1

√
S

(k−2)
1,n S

(k+2)
1,n+2

S
(k)
1,n

, (2.66)

〈Gir
− 1

2
φirn,nG

uv
− 1

2
φuvn,n|RG〉 =

n2 − 5

n2 − 1

√
S

(k−2)
1,n S

(k+2)
1,n

S
(k)
1,n

, (2.67)

〈Gir
− 1

2
φirn,nφ

uv
n,n−2|RG〉 = − 2

n− 1

√
S

(k−2)
1,n S

(k+2)
1,n−2

S
(k)
1,n

, (2.68)

〈ψirn−2,nψ
uv
n,n+2|RG〉 =

√
S

(k−2)
1,n−2S

(k+2)
1,n+2

S
(k)
1,n

, (2.69)

〈φirn−2,nG
uv
− 1

2
φuvn,n|RG〉 = − 2

n− 1

√
S

(k−2)
1,n−2S

(k+2)
1,n

S
(k)
1,n

, (2.70)

〈φirn−2,nφ
uv
n,n−2|RG〉 =

2

(n− 1)(n− 2)

√
S

(k−2)
1,n−2S

(k+2)
1,n−2

Sk1,n
. (2.71)

At the large k limit we get

〈ψirn+2,nψ
uv
n,n+2|RG〉 =

2

n(n+ 1)
+O(1/k2) , (2.72)

〈φirn+2,nG
uv
− 1

2
φuvn,n|RG〉 =

2

n+ 1

√
n+ 2

n
+O(1/k2) , (2.73)

〈ψirn+2,nψ
uv
n,n−2|RG〉 =

√
n2 − 4

n
+O(1/k2) , (2.74)

〈Gir
− 1

2
φirn,nφ

uv
n,n+2|RG〉 =

2

n+ 1

√
n+ 2

n
+O(1/k2) , (2.75)

〈Gir
− 1

2
φirn,nG

uv
− 1

2
φuvn,n|RG〉 =

n2 − 5

n2 − 1
+O(1/k2) , (2.76)
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〈Gir
− 1

2
φirn,nφ

uv
n,n−2|RG〉 = − 2

n− 1

√
n− 2

n
+O(1/k2) , (2.77)

〈ψirn−2,nψ
uv
n,n+2|RG〉 =

√
n2 − 4

n
+O(1/k2) , (2.78)

〈φirn−2,nG
uv
− 1

2
φuvn,n|RG〉 = − 2

n− 1

√
n− 2

n
+O(1/k2) , (2.79)

〈φirn−2,nφ
uv
n,n−2|RG〉 =

2

n(n− 1)
+O(1/k2) . (2.80)

Again, the results are in complete agreement with the next to leading order perturbative cal-

culations of [21].

It is interesting to note that, though the mixing coefficients computed here in the large

k limit coincide with the respective cases of the φ1,3 perturbed minimal models, the exact k

dependence in supersymmetric case enters solely through the modular matrices, in contrary to

the quite complicated k dependence of the non supersymmetric case.
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Chapter 3

Classical and semiclassical properties

of the Liouville theory with defects

3.1 Classical Liouville theory with defects

3.1.1 Review of Liouville solution

Let us recall some facts on classical Liouville theory.

The action of the Liouville theory is

S =
1

2πi

∫ (
∂φ∂̄φ+ µπe2bφ

)
d2z . (3.1)

Here we use a complex coordinate z = τ + iσ, and d2z ≡ dz ∧ dz̄ is volume form.

The field φ(z, z̄) satisfies the classical Liouville equation of motion

∂∂̄φ = πµbe2bφ (3.2)

The general solution to (3.2) was given by Liouville in terms of two arbitrary functions A(z)

and B(z̄) [46]

φ =
1

2b
ln

(
1

πµb2

∂A(z)∂̄B(z̄)

(A(z) +B(z̄))2

)
(3.3)
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The solution (3.3) is invariant if one transforms A and B simultaneously by the following

constant Möbius transformations:

A→ αA+ β

γA+ δ
, B → αB − β

−γB + δ
, αδ − βγ = 1 (3.4)

Classical expressions for left and right components of the energy-momentum tensor are

T = −(∂φ)2 + b−1∂2φ (3.5)

T̄ = −(∂̄φ)2 + b−1∂̄2φ (3.6)

Substituting (3.3) in (3.5) and (3.6) we get, that components of the energy-momentum tensor

are given by the Schwarzian derivatives of A(z) and B(z̄):

T = {A; z} =
1

2b2

[
A′′′

A′
− 3

2

(A′′)2

(A′)2

]
(3.7)

T̄ = {B; z̄} =
1

2b2

[
B′′′

B′
− 3

2

(B′′)2

(B′)2

]
(3.8)

The Schwarzian derivative is invariant under arbitrary constant Möbius transformation:

{
αF + β

γF + δ
; z

}
= {F ; z}, αδ − βγ = 1 (3.9)

Solutions of the Liouville equation (3.2) can be described also via linear combination of

some holomorphic and anti-holomorphic functions. Let us introduce the function V = e−bφ.

One can write the Liouville equation (3.2) as equation for V

V ∂∂̄V − ∂V ∂̄V = −πµb2 (3.10)

Also the left and right components of the energy-momentum tensor (3.5) and (3.6) can be
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wrtitten via V

∂2V = −b2V T (3.11)

∂̄2V = −b2V T̄ (3.12)

It is straightforward to check that general solution of eq. (3.10) is given by linear combination

of two holomorphic ai(z), i = 1, 2, and two anti-holomorphic bi(z̄), i = 1, 2 functions

V =
√
πµb2

(
a1(z)b1(z̄)− a2(z)b2(z̄)

)
(3.13)

satisfying the condition

(a1a
′
2 − a′1a2)(b1b

′
2 − b′1b2) = 1 (3.14)

Usually the fields ai(z) and bi(z̄), i = 1, 2 are normalized to have the unit Wronskian:

a1a
′
2 − a′1a2 = 1 (3.15)

and

b1b
′
2 − b′1b2 = 1 (3.16)

It is easy to see that the left and right components of the energy-momentum tensor can be

expressed via ai and bi in the very simple form:

T = − 1

b2

∂2a1

a1

= − 1

b2

∂2a2

a2

(3.17)

and

T̄ = − 1

b2

∂̄2b1

b1

= − 1

b2

∂̄2b2

b2

(3.18)

The solutions (3.3) and (3.13) can be related in the following way. One can solve the unit

Wronskian conditions (3.15) and (3.16) via holomorphic A(z) and anti-holomorphic function

49



B(z̄)

a1 =
1√
∂A

and a2 =
A√
∂A

(3.19)

and

b1 =
B√
∂̄B

and b2 = − 1√
∂̄B

(3.20)

Inserting (3.19) and (3.20) in (3.13) we get (3.3). Note that Möbius transformations of A and

B (3.4) become linear SL(2, C) transformations of ai and bi:

ã1 = δa1 + γa2 (3.21)

ã2 = βa1 + αa2

and

b̃1 = αb1 + βb2 (3.22)

b̃2 = γb1 + δb2

It is straightforward to check that indeed (3.13) is invariant under (3.21) and (3.22), and

both of them keep the unit Wronskian condition.

One can also check, that both component of the energy-momentum tensor (3.17) and (3.18)

are invariant under these transformations as well.

We finish this section with a remark which will be important in the parts devoted to light

asymptotic limit. In that parts we will consider an analytic continuation µ → −µ. At this

point the solution (3.13) is convenient to write as:

V =
√
−πµb2

(
a1(z)b1(z̄) + a2(z)b2(z̄)

)
(3.23)

It is easy to check (3.23) again solves the Liouville equation given that ai and bi, i = 1, 2 obey
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the condition (3.14).

3.1.2 Lagrangian of the Liouville theory with defect

Recently in [89] the action of the Liouville theory with topological defects was suggested:

Stop−def =
1

2πi

∫
Σ1

(
∂φ1∂̄φ1 + µπe2bφ1

)
d2z +

1

2πi

∫
Σ2

(
∂φ2∂̄φ2 + µπe2bφ2

)
d2z + (3.24)∫

∂Σ1

[
− 1

2π
φ2∂τφ1 +

1

2π
Λ∂τ (φ1 − φ2) +

µ

2
e(φ1+φ2−Λ)b − 1

πb2
eΛb (cosh(φ1 − φ2)b− κ)

]
dτ

i

Here Σ1 is lower half-plane σ = Imz ≤ 0, Σ2 is upper half-plane σ = Imz ≥ 0, and the defect is

located along their common boundary, which is the real axis σ = 0 parametrized by τ = Rez.

Note that Λ(τ) here is additional field associated with the defect itself. The action (3.24) yields

the following defect equations of motion at σ = 0:

1

2π
(∂ − ∂̄)φ1 +

1

2π
∂τφ2 −

1

2π
∂τΛ +

µb

2
e(φ1+φ2−Λ)b − 1

πb
eΛb sinh(φ1 − φ2)b = 0 (3.25)

− 1

2π
(∂ − ∂̄)φ2 −

1

2π
∂τφ1 +

1

2π
∂τΛ +

µb

2
e(φ1+φ2−Λ)b +

1

πb
eΛb sinh(φ1 − φ2)b = 0 (3.26)

1

2π
∂τ (φ1 − φ2)− µb

2
e(φ1+φ2−Λ)b − 1

πb
eΛb (cosh(φ1 − φ2)b− κ) = 0 (3.27)

The last equation is derived taking variation by Λ.

Using that ∂τ = ∂ + ∂̄ and forming various linear combinations of equations (3.25)-(3.27)

we can bring them to the form:

∂̄(φ1 − φ2) = πµbeb(φ1+φ2)e−Λb (3.28)

∂(φ1 − φ2) =
2

b
eΛb (cosh(φ1 − φ2)b− κ) (3.29)

∂(φ1 + φ2)− ∂τΛ =
2

b
eΛb sinh(b(φ1 − φ2)) (3.30)
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It is shown in [89] that requiring that defect equations of motion hold for every σ brings

additionally to the condition, that Λ is restriction to the real axis of a holomorphic field

∂̄Λ = 0 (3.31)

This condition allows to rewrite (3.30) in the form

∂(φ1 + φ2 − Λ) =
2

b
eΛb sinh(b(φ1 − φ2)) (3.32)

It is checked in [89] that the system of the defect equations of motion (3.28)-(3.32) guarantees

that both components of the energy-momentum tensor are continuous across the defects and

therefore describes topological defects:

−(∂φ1)2 + b−1∂2φ1 = −(∂φ2)2 + b−1∂2φ2 (3.33)

−(∂̄φ1)2 + b−1∂̄2φ1 = −(∂̄φ2)2 + b−1∂̄2φ2 (3.34)

Another interesting consequence of the defect equations of motion found in [89] is existence

together with holomorphic field Λ(z) an anti-holomorphic field Ξ:

∂Ξ = 0 (3.35)

where

Ξ = e−b(φ1+φ2)ebΛ(cosh b(φ1 − φ2)− κ) (3.36)

or alternatively

Ξ =
b

2
e−b(φ1+φ2)∂(φ1 − φ2) (3.37)

Now we will present general solution of the defect equations of motion (3.28)-(3.32).

We will follow essentially the same strategy which was used in [47] for analyzing the bound-

ary Liouville problem. On the one hand since the defect is topological both components of the
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energy-momentum tensor are equal being computed in terms of φ1 or φ2. On the other hand

each component of the energy-momentum tensor is given by the Schwarzian derivative, which

is invariant under the Möbius transformation. This naturally leads to the following Ansatz:

φ1 =
1

2b
ln

(
1

πµb2

∂A∂̄B

(A+B)2

)
(3.38)

φ2 =
1

2b
ln

(
1

πµb2

∂C∂̄D

(C +D)2

)
(3.39)

where

C =
αA+ β

γA+ δ
and D =

α′B + β′

γ′B + δ′
(3.40)

Remembering that the φ2 is invariant under the simultaneous Möbius transformation (3.4) of

C and D, we can set B = D. Therefore without loosing generality we can consider an ansatz:

φ1 =
1

2b
ln

(
1

πµb2

∂A∂̄B

(A+B)2

)
(3.41)

φ2 =
1

2b
ln

(
1

πµb2

∂C∂̄B

(C +B)2

)
(3.42)

where

C =
αA+ β

γA+ δ
(3.43)

Substituting (3.41) and (3.42) in (3.28) we find that it is satisfied with

e−Λb =
A− C√
∂A∂C

(3.44)

Since A and C are holomorphic functions, Λ is holomorphic as well, as it is stated in (3.31).

It is straightforward to check that (3.32) is satisfied as well with φ1, φ2 and Λ given by

(3.41), (3.42) and (3.44) respectively. And finally inserting (3.41), (3.42) and (3.44) in (3.29)
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we see that it is also fulfilled with

κ =
α + δ

2
(3.45)

Inserting (3.41), (3.42) in (3.37) one can check that

Ξ =
πµb2

4

γB2 +B(α− δ)− β
∂̄B

(3.46)

Remembering that B is anti-holomorphic we see that Ξ is anti-holomorphic as well.

We can write the solution of the defect equations of motion also using solutions of the

Liouville equation in the form (3.13). Recalling that the Möbius transformation of functions

A and B becomes linear SL(2, C) transformation of functions ai and bi, which leaves the

component of the energy-momentum tensor (3.17) and (3.18) invariant, we can write the ansatz

in the form

e−bφ1 =
√
πµb2

(
a1(z)b1(z̄)− a2(z)b2(z̄)

)
(3.47)

e−bφ2 =
√
πµb2

(
c1(z)b1(z̄)− c2(z)b2(z̄)

)
(3.48)

where denoting ~a = (a1, a2), ~c = (c1, c2), and D =

 δ γ

β α

, one has

~c = D~a (3.49)

and

2κ = TrD (3.50)

3.1.3 Lagrangian of the Liouville theory with permutation branes

We can construct also folded version of the action (3.24) describing product of Liouville theories

on half-plane with boundary condition given by permutation branes:

Sperm−brane =
1

2πi

∫
Σ

(
∂φ1∂̄φ1 + µπe2bφ1 + ∂φ2∂̄φ2 + µπe2bφ2

)
d2z + (3.51)
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∫
∂Σ

[
− 1

2π
φ2∂τφ1 +

1

2π
Λ∂τ (φ1 − φ2)− µ

2
e(φ1+φ2−Λ)b +

1

πb2
eΛb (cosh(φ1 − φ2)b− κ)

]
dτ

i

Σ denotes here upper half-plane σ ≥ 0, and τ parameterizes boundary located at σ = 0. This

action gives rise to boundary equations

1

2π
(∂ − ∂̄)φ1 +

1

2π
∂τφ2 −

1

2π
∂τΛ−

µb

2
e(φ1+φ2−Λ)b +

1

πb
eΛb sinh(φ1 − φ2)b = 0 (3.52)

1

2π
(∂ − ∂̄)φ2 −

1

2π
∂τφ1 +

1

2π
∂τΛ−

µb

2
e(φ1+φ2−Λ)b − 1

πb
eΛb sinh(φ1 − φ2)b = 0 (3.53)

1

2π
∂τ (φ1 − φ2) +

µb

2
e(φ1+φ2−Λ)b +

1

πb
eΛb (cosh(φ1 − φ2)b− κ) = 0 (3.54)

Again using that ∂τ = ∂ + ∂̄ and taking various linear combinations, one can bring the

system (3.52)-(3.54) to the form

∂φ2 − ∂̄φ1 = πµbeb(φ1+φ2)e−Λb (3.55)

∂φ1 − ∂̄φ2 = −2

b
eΛb (cosh(φ1 − φ2)b− κ) (3.56)

∂φ1 + ∂̄φ2 − ∂τΛ = −2

b
eΛb sinh(b(φ1 − φ2)) (3.57)

One can check that equations (3.55)-(3.57) imply the permutation branes conditions:

T (1) = T̄ (2)|σ=0 (3.58)

T̄ (1) = T (2)|σ=0

or using (3.5) and (3.6)

−(∂φ1)2 + b−1∂2φ1 = −(∂̄φ2)2 + b−1∂̄2φ2 (3.59)
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−(∂̄φ1)2 + b−1∂̄2φ1 = −(∂φ2)2 + b−1∂2φ2 (3.60)

We can solve equations (3.55)-(3.57) using the same strategy, with only difference that now

Möbius transformation relates holomorphic and antiholomorphic functions:

φ1 =
1

2b
ln

(
1

πµb2

∂A∂̄B

(A+B)2

)
(3.61)

φ2 =
1

2b
ln

(
1

πµb2

∂B∂̄C

(C +B)2

)
(3.62)

and

C =
αA+ β

γA+ δ
(3.63)

One can check that this ansatz satisfies the equation (3.55) with the Λ given by the relation

e−Λb =
C − A√
∂A∂̄C

(3.64)

It is straightforward to see that the ansatz (3.61)-(3.63) together with the Λ given by (3.64)

solves also eq. (3.57).

And finally inserting φ1, φ2 and Λ given by (3.61), (3.62) and (3.64) respectively in eq.

(3.56) one can check that it is satisfied as well with the following κ

κ =
α + δ

2
(3.65)
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3.2 Permutation branes and defects in Quantum Liou-

ville

3.2.1 Review of quantum Liouville

Liouville field theory is conformal field theory with the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
cL
12

(n3 − n)δn,−m (3.66)

with central charge

cL = 1 + 6Q2 (3.67)

Primary fields Vα in this theory, which are associated with exponential fields e2αϕ, have

conformal dimensions

∆α = α(Q− α) (3.68)

The fields Vα and VQ−α have the same conformal dimensions and represent the same primary

field, i.e. they are proportional to each other:

Vα = S(α)VQ−α (3.69)

with the reflection function

S(α) =
(πµγ(b2))

b−1(Q−2α)

b2

Γ(1− b(Q− 2α))Γ(−b−1(Q− 2α))

Γ(b(Q− 2α))Γ(1 + b−1(Q− 2α))
(3.70)

Two-point functions of Liouville theory are given by the reflection function (3.70):

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 =
S(α)

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
(3.71)
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Introducing ZZ function [48]:

W (α) = − 23/4e3iπ/2(πµγ(b2))−
(Q−2α)

2b π(Q− 2α)

Γ(1− b(Q− 2α))Γ(1− b−1(Q− 2α))
. (3.72)

two-point function can be compactly written as

S(α) =
W (Q− α)

W (α)
, (3.73)

Another useful property of ZZ function is

W (Q− α)W (α) = −i2
√

2 sinπb−1(2α−Q) sinπb(2α−Q) . (3.74)

The spectrum of the Liouville theory has the form

H =
∫ ∞

0
dP RQ

2
+iP ⊗RQ

2
+iP (3.75)

where Rα is the highest weight representation with respect to the Virasoro algebra.

3.2.2 Permutation branes and defects in quantum Liouville

Let us recall the form of continuous family of defects and permutation branes in the Liou-

ville field theory computed in [76, 82] using appropriate generalization of the Cardy-Lewellen

equation [56].

Topological defects are intertwining operators X commuting with the Virasoro generators

[Ln, X] = [L̄n, X] = 0 (3.76)

Such operators have the form

X =
∫
Q
2

+iR
dαD(α)Pα (3.77)

58



where Pα are projectors on a subspace Rα ⊗Rα:

Pα =
∑
N,M

(|α,N〉 ⊗ |α,M〉)(〈α,N | ⊗ 〈α,M |) (3.78)

Here |α,N〉 and |α,M〉 are vectors of orthonormal bases of left and right copy of Rα respectively.

The eigenvalues D(α) can be determined via the two-point functions computed in the presence

of defect X

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 =
D(α)S(α)

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
(3.79)

It is shown in [82] that

〈Vα(z1, z̄1)XsVα(z2, z̄2)〉 = − 1

W 2(α)

21/2i cosh(2πs(2α−Q))

(z1 − z2)2∆α(z̄1 − z̄2)2∆α
(3.80)

and therefore for Ds(α) one can write using (3.73) and (3.74)

Ds(α) =
21/2 cosh(2πs(2α−Q))

S(α)W 2(α)
=

cosh(2πs(2α−Q))

2 sinπb−1(2α−Q) sinπb(2α−Q)
(3.81)

Parameter s is continuous parameter labeling a defect. Defects can be characterized also by the

value of two-point function of a degenerate field −b/2 in the presence of defect. It is a function

A(b) of b. It is shown in [82] that parameter s related to the A(b) by the equation:

2 cosh 2πbs = A(b)

(
W (−b/2)

W (0)

)2

. (3.82)

Permutation branes on product L1×L2 of two Liouville theories are given by gluing condition:

L(1)
n − L̄

(2)
−n = 0, (3.83)

L(2)
n − L̄

(1)
−n = 0.

Comparing gluing conditions (3.83) and (3.76) one can see that topological defects related to

permutation branes by folding trick, consisting of exchanging left and right components of the

59



second copy, and hence these branes are characterized by the same two-point functions (3.80)

with z2 and z̄2 exchanged

〈V (1)
α (z1, z̄1)V (2)

α (z2, z̄2)〉P = − 1

W 2(α)

21/2i cosh(2πs(2α−Q))

(z1 − z̄2)2∆α(z̄1 − z2)2∆α
(3.84)

3.3 Semiclassical limits

3.3.1 Heavy asymptotic limit

Let us consider the action (3.1) for the rescaled variable ϕ = 2bφ

S =
1

8πib2

∫ (
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z . (3.85)

where λ = πµb2.

This form shows that b2 plays in the Liuoville theory the role of the Planck constant, and

one can study semiclassical limit taking the limit b→ 0, in such a way that the value of the λ

is kept fixed.

Now consider the correlation functions in the path integral formalism:

〈
Vα1(z1, z̄1) · · ·Vαn(zn, z̄n)

〉
=
∫
Dϕ e−S

n∏
i=1

exp

(
αiϕ(zi, z̄i)

b

)
(3.86)

We would like to calculate this integral in the semiclassical limit b → 0 using the method of

steepest descent, and we should decide how αi scales with b. Since S scales b−2, for operator

to affect saddle point, we should take αi = ηi/b, with ηi fixed. The conformal weights ∆α =

η(1−η)/b2 scale like b−2 as well. This is heavy asymptotic limit. Another choice of the operator

scaling will be discussed in the next subsection.

We see from (3.86) that in the semiclasscial limit the correlation function is given by e−Scl
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where, at least naively, in a sense which will be clarified below, Scl is the action

S =
1

8πib2

∫ (
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z +

n∑
i=1

ηi
b2
ϕ(zi, z̄i) (3.87)

evaluated on the solution of its equation of motion:

∂∂̄ϕ = 2λeϕ − 4π
n∑
i=1

ηiδ
2(z − zi) (3.88)

Assuming that in the vicinity of the insertion point zi, one can ignore the exponential term we

get that in the vicinity of the point zi ϕ has the following behavior

ϕ(z, z̄) = −4ηi log |z − zi|+Xi as z → zi (3.89)

One can insert this solution back into the equation of motion to check, if indeed the expo-

nential term is subleading. We find, that this happens when

Reηi <
1

2
(3.90)

This constraint is known as Seiberg bound [94]. It is semiclassial version of the quantum

condition (3.69) stating that Vα and VQ−α represent the same quantum operator. Either α or

Q− α always obey Seiberg bound.

Remembering that in the Liouville theory we have also background charge at infinity, con-

ditions (3.89) should be complemented by the behavior at the infinity:

ϕ(z, z̄) = −2 log |z|2 as |z| → ∞ (3.91)

Since the energy-momentum tensor in the presence of the primary fields acquires quadratic
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singularity, functions ai, i = 1, 2, should solve the equation

∂2ai + b2Tai = 0 (3.92)

where

b2T =
n∑
k=1

ηk(1− ηk)
(z − zk)2

+
ck

(z − zk)
(3.93)

where ck are so called accessory parameters.

If one tries naively to evaluate the action (3.87) on a solution obeying (3.89), we find that

it diverges. Therefore we should consider a regularized action. It was constructed in [95]:

b2Sreg =
1

8πi

∫
D−∪idi

(
∂ϕ∂̄ϕ+ 4λeϕ

)
d2z +

1

2π

∮
∂D
ϕdθ + 2 logR (3.94)

−
n∑
i=1

(
ηi
2π

∮
∂di
ϕdθi + 2η2

i log εi

)

Here D is a disc of radius R, di is a disc of radius εi around zi. It was shown in [95] that the

action (3.94) satisfies the equation

∂

∂ηi
b2Sreg = −Xi (3.95)

where Xi is defined by the boundary condition (3.89).

The Polyakov’s conjecture proved in [49] states, that the action (3.94) also obeys the relation:

∂

∂zi
b2Sreg = −ci (3.96)

Let us write down regularized version of the action with defect.

First of all let us write it in the terms of λ = πµb2, ϕ1 = 2bφ1, ϕ2 = 2bφ2, and Λ̃ = 2bΛ:

b2Stop−def =
1

8πi

∫
Σ1

(
∂ϕ1∂̄ϕ1 + 4λeϕ1

)
d2z +

1

8πi

∫
Σ2

(
∂ϕ2∂̄ϕ2 + 4λeϕ2

)
d2z + (3.97)∫

∂Σ1

[
− 1

8π
ϕ2∂τϕ1 +

1

8π
Λ̃∂τ (ϕ1 − ϕ2) +

λ

2π
e(ϕ1+ϕ2−Λ̃)/2 − 1

π
eΛ̃/2

(
cosh

(
ϕ1 − ϕ2

2

)
− κ

)]
dτ

i
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Since we consider here only insertion of the bulk field, and do not consider insertion of the

defect or boundary fields, the regularized action takes the form:

b2Stop−def =
1

8πi

∫
ΣR1 −∪idi

(
∂ϕ1∂̄ϕ1 + 4λeϕ1

)
d2z + (3.98)

−
n∑
i=1

(
ηi
2π

∮
∂di
ϕ1dθi + 2η2

i log εi

)
+

1

2π

∫
sR1

ϕ1dθ + logR

+
1

8πi

∫
ΣR2 −∪jdj

(
∂ϕ2∂̄ϕ2 + 4λeϕ2

)
d2z +

−
m∑
j=1

(
ηj
2π

∮
∂dj

ϕ2dθj + 2η2
j log εj

)
+

1

2π

∫
sR2

ϕ2dθ + logR

+
∫
∂Σ1

[
− 1

8π
ϕ2∂τϕ1 +

1

8π
Λ̃∂τ (ϕ1 − ϕ2) +

λ

2π
e(ϕ1+ϕ2−Λ̃)/2 − 1

π
eΛ̃/2

(
cosh

(
ϕ1 − ϕ2

2

)
− κ

)]
dτ

i

where ΣR
i is a half-disc of the radius R and sRi is a semicircle of the radius R in the half-plane

Σi, i = 1, 2.

3.3.2 Light asymptotic limit

Another limit is so called light asymptotic limit. Here we take

α = bη (3.99)

In this limit the operator insertions have no influence and components of the energy-momentum

tensor are (anti-) holomorphic and regular functions everywhere on sphere and thus vanish. Eq.

(3.11) and (3.12) imply that V ≡ e−bφ should be at the most first degree of z and z̄, hence

leading to the solutions ∗ :

V (z, z̄;R) =
√
−λ(szz̄ + tz + uz̄ + v) , R =

 s t

u v

 (3.100)

where

detR = sv − ut = 1 (3.101)

∗It is shown in [93] that to have solution in light limit one needs to perform analytical continuation µ→ −µ.
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Thus the path integral in the light limit becomes finite-dimensional integral over parameters

(s, t, u, v) which besides constraint (3.101) may satisfy some additional constraints like reality

and defect/boundary condition. The reality of V requires the matrix R to be Hermitian. A

way to parameterize hermitian matrices R is

R =

 X0 −X1 X2 + iX3

X2 − iX3 X0 +X1

 (3.102)

where X2
0 −X2

1 −X2
2 −X2

3 = 1, makes clear that moduli space of solutions is three-dimensional

hyperboloid H+
3 . Hence, fox example in the bulk Liouville theory, correlation function in the

light asymptotic limit takes the form

〈
Vbη1(z1, z̄1) · · ·Vbηn(zn, z̄n)

〉light
=
∫
H+

3

dR
n∏
i=1

V −2ηi(zi, z̄i;R) (3.103)

3.4 Defects in light asymptotic limit

Let us now specialize the light asymptotic limit rules to the defects. We should find solutions

for φ1 and φ2 in the form (3.100) satisfying the defect equations of motion. One can check that

expressions

V1(z, z̄;R1) =
√
−λ(s1zz̄ + t1z + u1z̄ + v1) , R1 =

 s1 t1

u1 v1

 , detR1 = 1 (3.104)

V2(z, z̄;R2) =
√
−λ(s2zz̄ + t2z + u2z̄ + v2) , R2 =

 s2 t2

u2 v2

 , detR2 = 1 (3.105)

satisfy the defect equations of motion (3.28)-(3.32) with

2κ = Tr
(
R2R

−1
1

)
= s1v2 + s2v1 − u1t2 − u2t1 (3.106)

64



and

e−bΛ = z2(s1t2 − s2t1) + z(s1v2 − s2v1 + u1t2 − u2t1) + u1v2 − u2v1 (3.107)

Let us show that the relation (3.106) results from the general formula (3.50). Note that one

can write the solution (3.104) in the general form (3.23)

V1(z, z̄;R1) =
√
−λ(s1zz̄ + t1z + u1z̄ + v1) =

√
−λ[z(s1z̄ + t1) + (u1z̄ + v1)] (3.108)

with

a1 = z , a2 = 1 (3.109)

b1 = s1z̄ + t1 , b2 = u1z̄ + v1

Remember that topological defects can be obtained rotating the pair a1, a2 by a SL(2, C)

matrix D =

 α β

γ δ

, namely taking

ã1 = αz + β (3.110)

ã2 = γz + δ

and keeping the same b1 and b2 as in (3.109). Using (3.110) we obtain new solution with

R2 = DR1, Recalling that according to (3.50) 2κ = Tr D we arrive to (3.106).

We would like to mention also folded version of the defect solution, obeying the permutation

brane boundary conditions. One can see that the expressions (3.104) and (3.105) satisfy the

permutation branes boundary conditions (3.55)-(3.57) with

2κ = Tr(RT
2R
−1
1 ) = s1v2 + s2v1 − t1t2 − u1u2 (3.111)

and

e−bΛ = τ 2(s2t1 − s1u2) + τ(s2v1 − s1v2 + t1t2 − u1u2) + t2v1 − u1v2 (3.112)
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Note that equations (3.111) and (3.112) are in fact folded version of the corresponding

defect expressions (3.106) and (3.107) and derived exchanging u2 ↔ t2, as result of the z2 ↔ z̄2

exchange. The relation (3.111) can be justified again using general formalism developed in

section 2.3.

It is interesting to note that in the parameterization (3.102) for hermitian matrices R1 and

R2

R1 =

 X0 −X1 X2 + iX3

X2 − iX3 X0 +X1

 R2 =

 Y0 − Y1 Y2 + iY3

Y2 − iY3 Y0 + Y1

 (3.113)

the defect parameter κ is equal to the Minkowski inner product of the vectors Xµ and Y µ

κ = X0Y0 −X1Y1 −X2Y2 −X3Y3 (3.114)

We are in position to write two-point correlation function in the presence of a defect:

〈Vα(z1, z̄1)XVα(z2, z̄2)〉light = (3.115)∫
H+

3 ×H
+
3

dR1dR2δ
(
Tr
(
R2R

−1
1

)
− 2κ

)
V −2η

1 (z1, z̄1;R1)V −2η
2 (z2, z̄2;R2)

Here dRi, i = 1, 2 denotes integration measure on the 3D hyperboloid H+
3 . This expression

allows to establish conformal invariance of defect two-point function. Let us perform the trans-

formation

R1 → LR1L
† and R2 → LR2L

† , (3.116)

where L is a SL(2, C) matrix: L =

 m n

k l

. Recall the transformation rule of the functions

V −2η(z, z̄;R) under L:

V −2η(z, z̄;LRL†) =
1

|nz + l|4η
V −2η

(
mz + k

nz + l
, c.c;R

)
(3.117)

Performing the change of the integration variables (3.116), using that the δ-function arguments
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is invariant under (3.116) and the transformation rule (3.117) we obtain

〈Vα(z1, z̄1)XVα(z2, z̄2)〉light = (3.118)

1

|nz1 + l|4η
1

|nz2 + l|4η
〈
Vα

(
mz1 + k

nz1 + l
, c.c.

)
XVα

(
mz2 + k

nz2 + l
, c.c.

)〉light

which is the standard consequence of the conformal invariance, when we remember that in the

light asymptotic limit limb→0∆ηb = η. This calculation shows that the fact that the defect

parameter κ is invariant under (3.116) is related to the conformal invariance of the defect

two-point function.

Using conformal invariance we can set z1 to ∞ and z2 to 0 to derive:

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉light =
λ−2η

(z1 − z2)2η(z̄1 − z̄2)2η
× (3.119)∫

H+
3 ×H

+
3

dR1dR2δ
(
Tr
(
R2R

−1
1

)
− 2κ

)
(R1)−2η

11 (R2)−2η
22

To calculate this integral we express Hermitian matrices R1 and R2 as products

R1 = gg†, R2 = g̃g̃†, g, g̃ ∈ SL(2, C) (3.120)

implying that

V1 =
√
−πµb2

(
|g11z + g21|2 + |g12z + g22|2

)
(3.121)

V2 =
√
−πµb2

(
|g̃11z + g̃21|2 + |g̃12z + g̃22|2

)
(3.122)

At the next step we will parametrize g̃ as a product of matrices g and U :

g̃ = gU, (3.123)
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where U is SL(2, C) matrix

U =

 u11 u12

u21 u22

 and u11u22 − u12u21 = 1 (3.124)

Inserting (3.120) and (3.123) in (3.106) we obtain

2κ = TrUU † (3.125)

This can be understood noting that solutions (3.121) and (3.122) correspond to

ai(z) = g1iz + g2i ãi(z) = g̃1iz + g̃2i i = 1, 2 (3.126)

bi(z̄) = ḡ1iz̄ + ḡ2i b̃i(z̄) = ¯̃g1iz̄ + ¯̃g2i i = 1, 2 (3.127)

It is obvious that

ãi =
2∑
j=1

ujiaj (3.128)

b̃i =
2∑
j=1

ūjibj (3.129)

We see that passing from g to g̃ = gU brings to the simultaneous rotations of ai and bi, i = 1, 2,

by matrices U and Ū . Therefore the defect parameter κ is equal indeed to the trace of the

product UU †. In this variables the integral (3.119) simplifies and reads

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉light =
λ−2η

(z1 − z2)2η(z̄1 − z̄2)2η
× (3.130)∫

dR1dUδ(|u11|2 + |u12|2 + |u21|2 + |u22|2 − 2κ)(R1)−2η
11 (R2)−2η

22

where dR1 and dU corresponding integration measures which will be elaborated below.
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Using SU(2) freedom in the choice of g we can adopt the parameterization

g =

 ρ−1
1 a1

0 ρ1

 (3.131)

and

R1 =

 ρ−2
1 + |a1|2 ρ1a1

ρ1ā1 ρ2
1

 (3.132)

Parameterizing g̃ in the same way

g̃ =

 ρ−1
2 a2

0 ρ2

 (3.133)

we find that the elements of the matrix U = g−1g̃ satisfy the relations

u21 = 0 (3.134)

u22 = u−1
11 ≡ u u ∈ R

ρ2 = ρ1u

a2 = ρ−1
1 u12 + a1u

(3.135)

Eq. (3.134) implies

R2 =

 ρ−2
1 u−2 + |ρ−1

1 u12 + a1u|2 ρ1u(ρ−1
1 u12 + a1u)

ρ1u(ρ−1
1 ū12 + ā1u) ρ2

1u
2

 (3.136)

Using the volume form on the 3D hyperboloid H+
3 computed in appendix B (??), one obtains

for the integration measure

dR1dR2 = ρ1dρ1d
2audud2u12 (3.137)
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Now the integral (3.130) takes the form

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉light =
λ−2η

(z1 − z2)2η(z̄1 − z̄2)2η
× (3.138)∫

ρ1dρ1d
2audud2u12δ

(
u2 +

1

u2
+ |u12|2 − 2κ

)
1

(ρ−2
1 + |a1|2)2η

1

ρ4η
1 u

4η

Performing the integral over u12 and then over u we obtain

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉light = (3.139)

πλ−2η

(
(κ+

√
κ2 − 1)1−2η − (κ−

√
κ2 − 1)1−2η

)
2(1− 2η)(z1 − z2)2η(z̄1 − z̄2)2η

×∫
ρ1dρ1d

2a
1

(ρ−2
1 + |a1|2)2η

1

ρ4η
1

Performing the integral over a one gets

∫
ρ1dρ1d

2a
1

(ρ−2
1 + |a1|2)2η

1

ρ4η
1

=
1

2η − 1

∫ dρ

ρ
=

1

2η − 1
δ(0) (3.140)

This integral diverges. This divergence was analyzed in [94] and related to the infinite volume

of the dilation group. It brings in fact to the δ(0) which appears in the two-point function of

coincident fields of the continuous spectrum. We can get finite result taking the relation

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉light

〈V0(z1, z̄1)XV0(z2, z̄2)〉light
=

λ−2η sinh 2πσ(1− 2η)

(1− 2η)2(z1 − z2)2η(z̄1 − z̄2)2η sinh 2πσ
(3.141)

Here we set κ = cosh 2πσ.

Using the properties of the Γ functions collected in appendix A one can calculate the light

asymptotic limit of the ZZ function (3.72):

W−1
α=ηb

W−1
α=0

→ (πµb2)−η
1

1− 2η
(3.142)

and setting s = σ
b

and α = ηb we obtain
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cosh 2πs(2α−Q)

cosh 2πsQ
→ e−4πη|σ| (3.143)

Hence, recalling (3.80) we get in the light asymptotic limit for the defect two-point function

derived via the bootstrap program

〈Vbη(z1, z̄1)XVbη(z2, z̄2)〉
〈V0(z1, z̄1)XV0(z2, z̄2)〉

→ λ−2η

(2η − 1)2

e−4πη|σ|

(z1 − z2)2η(z̄1 − z̄2)2η
(3.144)

In the limit of the large σ we get full agreement between (3.141) and (3.144).

3.5 Defects in heavy asymptotic limit

3.5.1 Heavy asymptotic limit of the correlation functions

In this section we consider the heavy asymptotic limit of the two-point functions in the pres-

ence of defects (3.80). Now we should compute the inverse ZZ function (3.72) and the factor

cosh(2πs(2α−Q)) in the limit b→ 0, setting α = η
b
, and s = σ

b
. In the heavy asymptotic limit

we should keep only terms having the form ∼ e1/b2 .

Here we find very useful to consider in the spirit of [99] analytic continuation of the Liouville

theory with complex η and complex saddle points.

Taking the η satisfying the Seiberg bound (3.90), using properties of Γ functions collected

in appendix A, and keeping only terms important in the heavy asymptotic limit we obtain

W−1
α= η

b
∼ λ

1−2η

2b2
1

sin π
(

2η−1
b2

) exp
(

2η − 1

b2

[
ln(1− 2η)− 1

])
(3.145)

The importance of the term 1

sinπ( 2η−1

b2
)

is explained in [99]. It was shown there that this

term in the semiclassical interpretation arises as sum over some “instanton” like sectors. As a

preparation to this point we will expand this term in two ways as suggested in [99]. Denoting
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y = eiπ(2η−1)/b2 one can write

1

sin π
(

2η−1
b2

) =
2i

y − y−1
= −2i

∞∑
k=0

y−(2k+1) = 2i
∞∑
k=0

y2k+1 (3.146)

One expansion is valid for |y| > 1 and one for |y| < 1. So either way, there is a set T of integers

with

1

sin π
(

2η−1
b2

) = 2i
∑
M∈T

e2iπ(M∓1/2)(2η−1)/b2 (3.147)

T consists of nonnegative integers if Im(2η−1)/b2 > 0 and of nonpositive ones if Im(2η−1)/b2 <

0.

Setting α = η
b

and s = σ
b

we easily obtain:

cosh 2πs(2α−Q)→ e
2
b2
π|σ|(1−2η) (3.148)

Now we are position to write down the limiting form of the defects correlation functions.

Inserting (3.145), (3.148) in (3.80) we can write in the heavy asymptotic limit

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 ∼ (z1 − z2)−2η(1−η)/b2(z̄1 − z̄2)−2η(1−η)/b2 × (3.149)

λ
1−2η

b2
1

sin2 π
(

2η−1
b2

) exp
(

4η − 2

b2

[
ln(1− 2η)− 1

])
e

2
b2
π|σ|(1−2η)

Using also (3.147) we get

〈Vα(z1, z̄1)XVα(z2, z̄2)〉 ∼
∑

M1,M2∈T
exp

(
−Sdef

M1,M2

)
(3.150)

where

b2Sdef
M1,M2

= −2iπ(M1 +M2 ∓ 1)(2η − 1) + 4η(1− η) log |z1 − z2| − (3.151)

(1− 2η) log λ− (4η − 2) log(1− 2η) + (4η − 2)− 2π|σ|(1− 2η)

It is instructive to compare the heavy asymptotic limit of the defect two-point function with
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the corresponding limit of usual two-point function, computed in [99]

〈Vα(z1, z̄1)Vα(z2, z̄2)〉 ∼ |z1 − z2|−4η(1−η)/b2 × (3.152)

λ(1−2η)/b2 1

sin π(2η − 1)/b2
exp

(
4η − 2

b2
[ln(1− 2η)− 1]

)

The relation of (3.149) to (3.152) naturally gives the heavy asymptotic limit of the eigenvalues

D(α) of the defect operator:

D(α) =
〈Vα(z1, z̄1)XVα(z2, z̄2)〉
〈Vα(z1, z̄1)Vα(z2, z̄2)〉

→ e
2
b2
π|σ|(1−2η)

sinπ
(

2η−1
b2

) (3.153)

3.5.2 Evaluation of the action for classical solutions

According to general prescription of the semiclassical heavy asymptotic limit, we should find

solutions of the Liouville equation, satisfying the defect equations of motion and possessing

the logarithmic singularities (3.89) at points z1 and z2. The form of the solution of the defect

equations of motions (3.41) and (3.42) implies that we should find functions A(z), C(z) and

B(z̄) in such a way that φ1 has logarithmic singularity at point z1 and and φ2 has logarithmic

singularity at point z2. Since the energy-momentum tensor is continuous across a defect this

implies that we should find solutions possessing two singular points. Two-point solutions are

well known (see for example [99]) and we can build from them the ansatz satisfying the defect

equations of motion.

Let us take as A(z)

A(z) = e2t1(z − z1)2η−1(z − z2)1−2η (3.154)

One has also

a1 =
1√
∂A

=
e−t1√

(z1 − z2)(2η − 1)
(z − z1)1−η(z − z2)η (3.155)

a2 =
A√
∂A

=
et1√

(z1 − z2)(2η − 1)
(z − z1)η(z − z2)1−η (3.156)
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Inserting (3.155) or (3.156) in (3.17) we obtain the energy-momentum tensor

b2T =
η(1− η)

(z − z1)2
+
η(1− η)

(z − z2)2
+

2η(1− η)

z1 − z2

(
1

z − z1

− 1

z − z2

)
(3.157)

indeed possessing two singular points.

The anti-holomorphic part is essentially the same with η replaced by 1− η:

B(z̄) = (z̄ − z̄1)1−2η(z̄ − z̄2)2η−1 (3.158)

b1 =
B√
∂B

=
1√

(z̄1 − z̄2)(1− 2η)
(z̄ − z̄1)1−η(z̄ − z̄2)η (3.159)

b2 = − 1√
∂B

= − 1√
(z̄1 − z̄2)(1− 2η)

(z̄ − z̄1)η(z̄ − z̄2)1−η (3.160)

Let us take the holomorphic part for φ2 as

C(z) = e2t2(z − z1)2η−1(z − z2)1−2η = e2(t2−t1)A(z) (3.161)

and the antiholomorphic part again given by (3.158). Using (3.45) one gets

κ = cosh(t2 − t1) (3.162)

Inserting (3.154), (3.161) and (3.158) in (3.41) and (3.42) we obtain:

e−ϕ1 = − λ

(2η − 1)2|z1 − z2|2
(
et1|z − z1|2η|z − z2|2−2η + e−t1|z − z1|2−2η|z − z2|2η

)2
(3.163)

e−ϕ2 = − λ

(2η − 1)2|z1 − z2|2
(
et2|z − z1|2η|z − z2|2−2η + e−t2|z − z1|2−2η|z − z2|2η

)2
(3.164)

It is easy to see that ϕ1 and ϕ2 given by (3.163) and (3.164) have the required singularity

around z1 and z2 respectively. In fact each of the functions ϕ1 or ϕ2 given by (3.163) and

(3.164) coincides with the solution describing saddle point for two-point function considered

in [99]. But in [99] this solution was considered on a full plane with the same parameter t
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everywhere, whereas here each of them is considered on a corresponding half-plane, namely in

(3.163) z belongs to the upper half-plane Σ1, and in (3.164) z belongs to the lower half-plane

Σ2, and we should also remember that, z1 ∈ Σ1 and z2 ∈ Σ2. The defect is created by the

choice of different parameters t1 and t2, t1 6= t2.

To evaluate the action on solutions (3.163), (3.164), we will use the strategy used in [95].

Namely we will write the system of differential equations which this action should satisfy. The

first equation is (3.95) which given that η1 = η2 = η reads

b2∂S
def
cl

∂η
= −X1 −X2 (3.165)

where Xi defined in (3.89). The leading terms of ϕ1 around z1 are

ϕ1 → −4η log |z − z1|+X1 (3.166)

where

X1 = 2πi
(

2N1 +
1

2

)
− log λ+ 2 log(1− 2η)− (2− 4η) log |z1 − z2| − 2t1 (3.167)

Here N1 is an integer. The possibility to add the term 4iπN1 results from the invariance of the

action (3.98) under the transformation ϕi → ϕ+ 4πiNi, i = 1, 2. Note that the corresponding

transformation in the bulk Liouville theory reads ϕ → ϕ + 2πiN , and broken to the ϕ →

ϕ+ 4πiN due to presence of exponential terms on the defect.

The leading terms of ϕ2 around z2 similarly are

ϕ2 → −4η log |z − z2|+X2 (3.168)

where

X2 = 2πi
(

2N2 +
3

2

)
− log λ+ 2 log(1− 2η)− (2− 4η) log |z1 − z2|+ 2t2 (3.169)
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where N2 ∈ Z . Inserting (3.167) and (3.169) in (3.165) one obtains

b2∂S
def
cl

∂η
= −2πi (2N1 + 2N2 + 2)+2 log λ−4 log(1−2η)+(4−8η) log |z1−z2|+2(t1−t2) (3.170)

Here we would like to emphasize yet another difference from the two-point function calculation

in [99]. In two-point calculation the integers N1 and N2 are equal since we have one continuous

function φ. Here they can be different since we have two different functions ϕ1 and ϕ2.

The action with defect (3.98) implies also

b2∂S
def
cl

∂κ
=

1

iπ

∫
∂Σ1

eΛb (3.171)

Inserting (3.154) and (3.161) in eq. (3.44) one obtains

eΛb =
1

2 sinh(t1 − t2)

(2η − 1)(z1 − z2)

(z − z1)(z − z2)
(3.172)

Using that

1

i

∫
∂Σ1

dz

(z − z1)(z − z2)
=

2π

(z1 − z2)
(3.173)

we obtain

b2∂S
def
cl

∂κ
=

2η − 1

sinh(t1 − t2)
(3.174)

The Polyakov’s relation (3.96) additionally implies

b2∂S
def
cl

∂zi
= ±2η(1− η)

z1 − z2

i = 1, 2 (3.175)

Integrating equations (3.170), (3.174) and (3.175) we obtain:

b2Sdef
N1,N2

= −2iπ(2N1 + 2N2 + 2)η + 4η(1− η) log |z1 − z2|+ (3.176)

2η log λ− (4η − 2) log(1− 2η) + 4η − (t1 − t2)(1− 2η) + C
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where C is a constant. To derive the penultimate term we should remember the relation (3.162).

To fix the constant term we can directly compute the action (3.98) for the ansatz (3.163)-(3.164)

with η = 0

ϕ1 = iπ + 4iπN1 − log λ− 2 log

(
et1

|z1 − z2|
|z − z2|2 +

e−t1

|z1 − z2|
|z − z1|2

)
(3.177)

ϕ2 = 3iπ + 4iπN2 − log λ− 2 log

(
et2

|z1 − z2|
|z − z2|2 +

e−t2

|z1 − z2|
|z − z1|2

)
(3.178)

The solutions (3.177) and (3.178) can be derived by the SL(2, C) conformal transformation

z → z−z1
z−z2 from the solutions:

ϕ1 = iπ + 4iπN1 − log λ− 2 log
(
et1 + e−t1zz̄

)
(3.179)

ϕ2 = 3iπ + 4iπN2 − log λ− 2 log
(
et2 + e−t2zz̄

)
(3.180)

Evaluating the action (3.98) on the ansatz (3.179), (3.180) we obtain

b2S0 = 2iπ(N1 +N2 + 1)− log λ− 2− (t1 − t2) (3.181)

Comparing (3.181) with (3.176) fixes the constant C:

C = 2iπ(N1 +N2 + 1)− log λ− 2 (3.182)

Inserting this value of C in (3.176) we indeed obtain (3.151) if we set

Ni = Mi, i = 1, 2 (3.183)
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and

2πσ = t1 − t2 (3.184)

The discussion above of the difference points between calculation of two-point function with

and without defect suggests nice interpretation of the defect operator. We have seen that there

exist two sources of discontinuity giving rise to the corresponding terms in the defect operators.

The heavy asymptotic limit of D(α) (3.153) has numerator and denominator. The exponential

term in numerator as we have seen originates from the discontinuity created by the choice of

the different parameters t1 and t2. The denominator sinπ
(

2η−1
b2

)
reflects the possibility of the

choice of different logarithmic branches. The final quantum expression (3.81) results from the

quantum corrections restoring b↔ b−1 duality of the Liouville theory.

Let us analyze in the heavy asymptotic limit also the relation (3.82) between parameter s

and A(b)

2 cosh 2πbs = A(b)

(
W (−b/2)

W (0)

)2

. (3.185)

It is easy to compute that

limb→0
W(−b/2)

W(0)
= − 2√

λ
(3.186)

Setting that s = σ
b
, we get

cosh 2πσ =
2A(0)

λ
(3.187)

This implies that parameter κ is proportional to A(0):

κ =
2A(0)

λ
(3.188)

Note that as in the light asymptotic limit as well as in the heavy asymptotic limit we get the

same relation between σ and κ

κ = cosh 2πσ (3.189)
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Chapter 4

Comments on fusion matrix in N=1

super Liouville fieldtheory

4.1 N=1 Super Liouville field theory

Let us review basic facts on the N = 1 Super Liouville field theory. Liouville field theory is

defined on a two-dimensional surface with metric gab by the local Lagrangian density

L =
1

2π
gab∂aϕ∂bϕ+

1

2π
(ψ∂̄ψ + ψ̄∂ψ̄) + 2iµb2ψ̄ψebϕ + 2πµ2b2e2bϕ , (4.1)

The energy-momentum tensor and the superconformal current are

T = −1

2
(∂ϕ∂ϕ−Q∂2ϕ+ ψ∂ψ) (4.2)

G = i(ψ∂ϕ−Q∂ψ) (4.3)

The superconformal algebra is

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n (4.4)

[Lm, Gk] =
m− 2k

2
Gm+k (4.5)

{Gk, Gl} = 2Ll+k +
c

3

(
k2 − 1

4

)
δk+l (4.6)
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with the central charge

cL =
3

2
+ 3Q2 . (4.7)

where

Q = b+
1

b
. (4.8)

where k and l take integer values for the Ramond algebra and half-integer values for the

Neveu-Schwarz algebra.

NS-NS primary fields Nα(z, z̄) in this theory, Nα(z, z̄) = eαϕ(z,z̄), have conformal dimensions

∆NS
α =

1

2
α(Q− α) . (4.9)

The physical states have α = Q
2

+ iP .

Introduce also the field

Ñα(z, z̄) = G−1/2Ḡ−1/2Nα(z, z̄) (4.10)

The R-R is defined as

Rα(z, z̄) = σ(z, z̄)eαϕ(z,z̄) (4.11)

where σ is the spin field.

The dimension of the R-R operator is

∆R
α =

1

16
+

1

2
α(Q− α) (4.12)

The NS-NS and R-R operators with the same conformal dimensions are proportional to

each other, namely we have

Nα = GNS(α)NQ−α (4.13)

Rα = GR(α)RQ−α (4.14)

GNS(α) and GR(α) are called reflection functions. They also give two-point functions. The

elegant way to write the reflection functions is to introduce NS and R generalization of the ZZ
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function:

WNS(α) =
2(πµγ(bQ/2))−

Q−2α
2b π(α−Q/2)

Γ(1 + b(α−Q/2))Γ(1 + 1
b
(α−Q/2))

(4.15)

WR(α) =
2π(πµγ(bQ/2))−

Q−2α
2b

Γ(1/2 + b(α−Q/2))Γ(1/2 + 1
b
(α−Q/2))

(4.16)

The reflection functions can be written

GNS(α) =
WNS(Q− α)

WNS(α)
(4.17)

GR(α) =
WR(Q− α)

WR(α)
(4.18)

The functions (4.15) and (4.16) satisfy also the relations

WNS(α)WNS(Q− α) = −4 sinπb(α−Q/2) sinπ
1

b
(α−Q/2) (4.19)

WR(α)WR(Q− α) = 4 cos πb(α−Q/2) cosπ
1

b
(α−Q/2) (4.20)

The degenerate states are given by the momenta:

αm,n =
1

2b
(1−m) +

b

2
(1− n) (4.21)

with even m− n in the NS sector and odd m− n in the R sector.

For the super conformal theory, characters are defined for the NS sector, for the R sector

and the ÑS sector. The corresponding characters for generic P which have no null-states are

χNSP (τ) =

√√√√θ3(q)

η(q)

qP
2/2

η(τ)
, (4.22)

χÑSP (τ) =

√√√√θ4(q)

η(q)

qP
2/2

η(τ)
, (4.23)
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χRP (τ) =

√√√√ θ2(q)

2η(q)

qP
2/2

η(τ)
, (4.24)

where q = exp(2πiτ) and

η(τ) = q1/24
∞∏
n=1

(1− qn) . (4.25)

Modular transformation of characters (4.22) - (4.24) is well-known:

χNSP (τ) =
∫
χNSP ′ (−1/τ)e−2iπPP ′dP ′ . (4.26)

χÑSP (τ) =
∫
χRP ′(−1/τ)e−2iπPP ′dP ′ . (4.27)

χRP (τ) =
∫
χÑSP ′ (−1/τ)e−2iπPP ′dP ′ . (4.28)

For degenerate representations, the characters are given by those of the corresponding Verma

modules subtracted by those of null submodules:

χNSm,n = χNS1
2

(nb+mb−1) − χ
NS
1
2

(nb−mb−1) (4.29)

χÑSm,n = χÑS1
2

(nb+mb−1) − (−)rsχÑS1
2

(nb−mb−1) (4.30)

χRm,n = χR1
2

(nb+mb−1) − χ
R
1
2

(nb−mb−1) (4.31)

Modular transformations of (4.29) - 4.31) are

χNSm,n(τ) =
∫
χNSP (−1/τ)2 sinh(πmP/b) sinh(πnbP )dP . (4.32)

χÑSm,n(τ) =
∫
χRP (−1/τ)2 sinh(πmP/b) sinh(πnbP )dP , m, n even (4.33)

χÑSm,n(τ) =
∫
χRP (−1/τ)2 cosh(πmP/b) cosh(πnbP )dP . m, n odd (4.34)

Note that the vacuum component of the matrix of modular transformation specified by (m,n) =

(1, 1) in formulae (4.32) - (4.34) coincide with the right hand side of (4.19) and (4.20) similar

to the bosonic Liouville theory.
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The structure constants in N = 1 super Liouville field theory are computed in [69,70]:

〈Nα1(z1, z̄1)Nα2(z2, z̄2)Nα3(z3, z̄3)〉 = (4.35)

CNS(α1, α2, α3)

|z12|2(∆N
α1

+∆N
α2
−∆N

α3
)|z23|2(∆N

α2
+∆N

α3
−∆N

α1
)|z13|2(∆N

α1
+∆N

α3
−∆N

α2
)

〈Ñα1(z1, z̄1)Nα2(z2, z̄2)Nα3(z3, z̄3)〉 = (4.36)

C̃NS(α1, α2, α3)

|z12|2(∆N
α1

+∆N
α2
−∆N

α3
+1/2)|z23|2(∆N

α2
+∆N

α3
−∆N

α1
−1/2)|z13|2(∆N

α1
+∆N

α3
−∆N

α2
+1/2)

〈Rα1(z1, z̄1)Rα2(z2, z̄2)Nα3(z3, z̄3)〉 = (4.37)

CR(α1, α2|α3) + C̃R(α1, α2|α3)

|z12|2(∆R
α1

+∆R
α2
−∆N

α3
)|z23|2(∆R

α2
+∆N

α3
−∆R

α1
)|z13|2(∆R

α1
+∆N

α3
−∆R

α2
)

where zij = zi − zj,

and

CNS(α1, α2, α3) = λ(Q−
∑3

i=1
αi)/b × (4.38)

Υ′NS(0)ΥNS(2α1)ΥNS(2α2)ΥNS(2α3)

ΥNS(α1 + α2 + α3 −Q)ΥNS(α1 + α2 − α3)ΥNS(α2 + α3 − α1)ΥNS(α3 + α1 − α2)
,

C̃NS(α1, α2, α3) = λ(Q−
∑3

i=1
αi)/b × (4.39)

Υ′NS(0)ΥNS(2α1)ΥNS(2α2)ΥNS(2α3)

ΥR(α1 + α2 + α3 −Q)ΥR(α1 + α2 − α3)ΥR(α2 + α3 − α1)ΥR(α3 + α1 − α2)
,

CR(α1, α2|α3) = λ(Q−
∑3

i=1
αi)/b × (4.40)

Υ′NS(0)ΥR(2α1)ΥR(2α2)ΥNS(2α3)

ΥR(α1 + α2 + α3 −Q)ΥR(α1 + α2 − α3)ΥNS(α2 + α3 − α1)ΥNS(α3 + α1 − α2)
,
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C̃R(α1, α2|α3) = λ(Q−
∑3

i=1
αi)/b × (4.41)

Υ′NS(0)ΥR(2α1)ΥR(2α2)ΥNS(2α3)

ΥNS(α1 + α2 + α3 −Q)ΥNS(α1 + α2 − α3)ΥR(α2 + α3 − α1)ΥR(α3 + α1 − α2)
,

and

λ = πµγ

(
bQ

2

)
b1−b2 (4.42)

Fusion matrix in NS sector is computed in [71,72]. Let us denote

Fαs,αt

 α3 α2

α4 α1


1

1

≡ FNαs ,Nαt

 Nα3 Nα2

Nα4 Nα1

 , Fαs,αt

 α3 α2

α4 α1


2

1

≡ FNαs ,Ñαt

 Nα3 Nα2

Nα4 Nα1


(4.43)

Fαs,αt

 α3 α2

α4 α1


1

2

≡ FÑαs ,Nαt

 Nα3 Nα2

Nα4 Nα1

 , Fαs,αt

 α3 α2

α4 α1


2

2

≡ FÑαs ,Ñαt

 Nα3 Nα2

Nα4 Nα1


(4.44)

To write the fusion matrix we use the following convention. The functions Υi,Γi, Si will be

understood ΥNS,ΓNS, SNS for i = 1 mod 2, and ΥR,ΓR, SR for i = 0 mod 2. Now we can write

the fusion matrix:

Fαs,αt

 α3 α2

α4 α1


i

j

= (4.45)

Γi(2Q− αt − α2 − α3)Γi(Q− αt + α3 − α2)Γi(Q+ αt − α2 − α3)Γi(α3 + αt − α2)

Γj(2Q− α1 − αs − α2)Γj(Q− αs − α2 + α1)Γj(Q− α1 − α2 + αs)Γj(αs + α1 − α2)

× Γi(Q− αt − α1 + α4)Γi(α1 + α4 − αt)Γi(αt + α4 − α1)Γi(αt + α1 + α4 −Q)

Γj(Q− αs − α3 + α4)Γj(α3 + α4 − αs)Γj(αs + α4 − α3)Γj(αs + α3 + α4 −Q)

× ΓNS(2Q− 2αs)ΓNS(2αs)

ΓNS(Q− 2αt)ΓNS(2αt −Q)

1

i

∫ i∞

−i∞
dτJαs,αt

 α3 α2

α4 α1


i

j

Jαs,αt

 α3 α2

α4 α1


1

1

= (4.46)
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SNS(Q+ τ − α1)SNS(τ + α4 + α2 − α3)SNS(τ + α1)SNS(τ + α4 + α2 + α3 −Q)

SNS(Q+ τ + α4 − αt)SNS(τ + α4 + αt)SNS(Q+ τ + α2 − αs)SNS(τ + α2 + αs)

+
SR(Q+ τ − α1)SR(τ + α4 + α2 − α3)SR(τ + α1)SR(τ + α4 + α2 + α3 −Q)

SR(Q+ τ + α4 − αt)SR(τ + α4 + αt)SR(Q+ τ + α2 − αs)SR(τ + α2 + αs)

Jαs,αt

 α3 α2

α4 α1


1

2

= (4.47)

SNS(Q+ τ − α1)SNS(τ + α4 + α2 − α3)SNS(τ + α1)SNS(τ + α4 + α2 + α3 −Q)

SNS(Q+ τ + α4 − αt)SNS(τ + α4 + αt)SR(Q+ τ + α2 − αs)SR(τ + α2 + αs)

− SR(Q+ τ − α1)SR(τ + α4 + α2 − α3)SR(τ + α1)SR(τ + α4 + α2 + α3 −Q)

SR(Q+ τ + α4 − αt)SR(τ + α4 + αt)SNS(Q+ τ + α2 − αs)SNS(τ + α2 + αs)

Jαs,αt

 α3 α2

α4 α1


2

1

= (4.48)

SNS(Q+ τ − α1)SNS(τ + α4 + α2 − α3)SNS(τ + α1)SNS(τ + α4 + α2 + α3 −Q)

SR(Q+ τ + α4 − αt)SR(τ + α4 + αt)SNS(Q+ τ + α2 − αs)SNS(τ + α2 + αs)

− SR(Q+ τ − α1)SR(τ + α4 + α2 − α3)SR(τ + α1)SR(τ + α4 + α2 + α3 −Q)

SNS(Q+ τ + α4 − αt)SNS(τ + α4 + αt)SR(Q+ τ + α2 − αs)SR(τ + α2 + αs)

Jαs,αt

 α3 α2

α4 α1


2

2

= (4.49)

SNS(Q+ τ − α1)SNS(τ + α4 + α2 − α3)SNS(τ + α1)SNS(τ + α4 + α2 + α3 −Q)

SR(Q+ τ + α4 − αt)SR(τ + α4 + αt)SR(Q+ τ + α2 − αs)SR(τ + α2 + αs)

+
SR(Q+ τ − α1)SR(τ + α4 + α2 − α3)SR(τ + α1)SR(τ + α4 + α2 + α3 −Q)

SNS(Q+ τ + α4 − αt)SNS(τ + α4 + αt)SNS(Q+ τ + α2 − αs)SNS(τ + α2 + αs)
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4.2 Values of fusion matrix for intermediate vacuum states

4.2.1 αs → 0

Motivated by the form of structure constants (4.38)-(4.41) and fusing matrix (4.45) we define

the following general expressions for the fusion matrix:

F Iαs,αt

 α3 α2

α4 α1

 =
MI

i

∫ i∞

−i∞
dτJIαs,αt

 α3 α2

α4 α1

 (4.50)

with

MI = (4.51)

ΓA(2Q− αt − α2 − α3)ΓB(Q− αt + α3 − α2)ΓC(Q+ αt − α2 − α3)ΓD(α3 + αt − α2)

ΓE(2Q− α1 − αs − α2)ΓNS(Q− αs − α2 + α1)ΓE(Q− α1 − α2 + αs)ΓNS(αs + α1 − α2)

× ΓB(Q− αt − α1 + α4)ΓC(α1 + α4 − αt)ΓD(αt + α4 − α1)ΓA(αt + α1 + α4 −Q)

ΓNS(Q− αs − α3 + α4)ΓF (α3 + α4 − αs)ΓNS(αs + α4 − α3)ΓF (αs + α3 + α4 −Q)

× ΓNS(2Q− 2αs)ΓNS(2αs)

ΓL(Q− 2αt)ΓL(2αt −Q)

JIαs,αt

 α3 α2

α4 α1

 = (4.52)

Sν1(Q+ τ − α1)SK(τ + α4 + α2 − α3)Sν2(τ + α1)Sν3(τ + α4 + α2 + α3 −Q)

Sµ1+1(Q+ τ + α4 − αt)Sµ2+1(τ + α4 + αt)Sµ3+1(Q+ τ + α2 − αs)SK(τ + α2 + αs)

+ η
Sν1+1(Q+ τ − α1)SK+1(τ + α4 + α2 − α3)Sν2+1(τ + α1)Sν3+1(τ + α4 + α2 + α3 −Q)

Sµ1(Q+ τ + α4 − αt)Sµ2(τ + α4 + αt)Sµ3(Q+ τ + α2 − αs)SK+1(τ + α2 + αs)

where η = (−1)(1+
∑

i
(νi+µi))/2. I denotes fusion matrices of different structures, and capital

Latin letters here take values NS and R.

Define also the following general expression for structure constants:
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CI(α1, α2, α3) = λ(Q−
∑3

i=1
αi)/b × (4.53)

Υ′NS(0)ΥL(2α1)ΥE(2α2)ΥF (2α3)

ΥA(α1 + α2 + α3 −Q)ΥB(α1 + α2 − α3)ΥC(α2 + α3 − α1)ΥD(α3 + α1 − α2)
,

Now consider the limit:

αs = ε→ 0, α3 = α4, α1 = α2 . (4.54)

In this limit using formulae from appendix and the definition (4.53) we get for the factor in

front of integral:

MI → CI(αt, α1, α3)
WNS(Q)WF (α3)WL(αt)

2πWE(Q− α1)
× (4.55)

SB(Q− αt + α3 − α1)SD(α3 + αt − α1)SE(2α1)

SF(2α3)SNS(ε)

Let us now evaluate the integral part of (4.50) in the limit (4.54). For this purpose we will

use the formula [81]

∑
ν=0,1

(−1)ν(1+
∑

i
(νi+µi))/2

∫ dx

i

3∏
i=1

Sν+νi(x+ ai)S1+ν+µi(−x+ bi) = 2
∏
i,j=1

Sνi+µj(ai + bj) (4.56)

∑
i

(νi + µi) = 1 mod 2 (4.57)

and ∑
i

(ai + bi) = Q (4.58)

First note that in the limit (4.54) the arguments of SK ’s in numerator and denominator

coincide and they get canceled.

For the rest of S’s in this limit we get for ai in the argument of Sνi(τ + ai) and bi in the
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argument of Sµi+1(−τ + bi):

a1 = Q− α1 b1 = αt − α3 (4.59)

a2 = α1 b2 = Q− α3 − αt

a3 = 2α3 + α1 −Q b3 = −α1

From (4.59) we obtain

a1 + b1 = Q− α1 + αt − α3 (4.60)

a1 + b2 = 2Q− α1 − α3 − αt

a1 + b3 = Q− 2α1

a2 + b1 = α1 + αt − α3 (4.61)

a2 + b2 = Q+ α1 − α3 − αt

a2 + b3 = ε

a3 + b1 = α3 + αt + α1 −Q (4.62)

a3 + b2 = α1 + α3 − αt

a3 + b3 = 2α3 −Q

Note that

a1 + b1 = Q− (a3 + b2) (4.63)

a1 + b2 = Q− (a3 + b1)
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and ∑
i

(ai + bi) = Q (4.64)

Let us impose also

ν1 + µ1 = ν3 + µ2 mod 2 (4.65)

ν1 + µ2 = ν3 + µ1 mod 2

ν2 + µ3 = 1 mod 2

Assuming also that (4.57) is satisfied we get from (4.56) using formulas (4.60)-(4.65)

1

i

∫ i∞

−i∞
dτJIαs,αt

 α3 α2

α4 α1

→ 2Sν2+µ1(α1 + αt − α3)Sν3+µ3(2α3 −Q)SNS(ε)

Sν1+µ3(2α1)Sν2+µ2(α3 + αt − α1)
(4.66)

Requiring additionally that

ν2 + µ1 = B (4.67)

ν2 + µ2 = D

ν1 + µ3 = E

ν3 + µ3 = F

where these equalities as before understood in a sense, that odd sums identified with the NS

sector, and even sums identified with the Ramond sectors, we get

F I0,αt

 α3 α1

α3 α1

 = CI(αt, α1, α3)
WNS(Q)WL(αt)

πWE(Q− α1)WF (Q− α3)
(4.68)
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4.2.2 αt → 0 limit

Consider the same fusing matrix, but parametrized in the form

F Iαs,αt

 α3 α2

α4 α1

 =
RI

i

∫ i∞

−i∞
dτJIαs,αt

 α3 α2

α4 α1

 (4.69)

with

RI = (4.70)

ΓE(2Q− αt − α2 − α3)ΓNS(Q− αt + α3 − α2)ΓE(Q+ αt − α2 − α3)ΓNS(α3 + αt − α2)

ΓA(2Q− α1 − αs − α2)ΓB(Q− αs − α2 + α1)ΓC(Q− α1 − α2 + αs)ΓD(αs + α1 − α2)

× ΓNS(Q− αt − α1 + α4)ΓF (α1 + α4 − αt)ΓNS(αt + α4 − α1)ΓF (αt + α1 + α4 −Q)

ΓB(Q− αs − α3 + α4)ΓC(α3 + α4 − αs)ΓD(αs + α4 − α3)ΓA(αs + α3 + α4 −Q)

× ΓL(2Q− 2αs)ΓL(2αs)

ΓNS(Q− 2αt)ΓNS(2αt −Q)

JIαs,αt

 α3 α2

α4 α1

 = (4.71)

Sν1(Q+ τ − α1)SK(τ + α4 + α2 − α3)Sν2(τ + α1)Sν3(τ + α4 + α2 + α3 −Q)

Sµ1+1(Q+ τ + α4 − αt)SK(τ + α4 + αt)Sµ2+1(Q+ τ + α2 − αs)Sµ3+1(τ + α2 + αs)

+ η
Sν1+1(Q+ τ − α1)SK+1(τ + α4 + α2 − α3)Sν2+1(τ + α1)Sν3+1(τ + α4 + α2 + α3 −Q)

Sµ1(Q+ τ + α4 − αt)SK+1(τ + α4 + αt)Sµ2(Q+ τ + α2 − αs)Sµ3(τ + α2 + αs)

where η = (−1)(1+
∑

i
(νi+µi))/2.

We change here notations for the capital Latin letters denoting different spin structures.

This is done to keep parametrization for the capital Latin letters in the formula for structure

constants (4.53). Alternatively we could keep the same parametrization in formula for fusing

matrix and change the notations in formula for structure constants.

Consider the limit

αt = ε→ 0, α3 = α2, α4 = α1 (4.72)

In this limit using formulas in appendix and (4.53) we have for the factor in front of integral
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RI → 2

πε2CI(αs, α2, α1)

WNS(0)WE(Q− α2)WL(Q− αs)
WF (α1)

× (4.73)

SF(2α1)

SB(Q− αs − α2 + α1)SD(αs + α1 − α2)SE(2α2)SNS(ε)

Consider now the limit of the integrand (4.71).

In the limit (4.72) the arguments of SK ’s in numerator and denominator coincide and they

get canceled.

For the rest of S’s in this limit we get for ai in the argument of Sνi(τ + ai) and bi in the

argument of Sµi+1(−τ + bi):

a1 = Q− α1 b1 = −α1 (4.74)

a2 = α1 b2 = αs − α2

a3 = 2α2 + α1 −Q b3 = Q− α2 − αs

From (4.74) we easily obtain:

a1 + b1 = Q− 2α1 (4.75)

a1 + b2 = Q− α1 + αs − α2

a1 + b3 = 2Q− α1 − αs − α2

a2 + b1 = ε (4.76)

a2 + b2 = α1 + αs − α2

a2 + b3 = Q− α2 − αs + α1
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a3 + b1 = 2α2 −Q (4.77)

a3 + b2 = α2 + α1 + αs −Q

a3 + b3 = α2 + α1 − αs

Note that

a1 + b3 = Q− (a3 + b2) (4.78)

a1 + b2 = Q− (a3 + b3)

and ∑
i

(ai + bi) = Q (4.79)

Assume that

ν1 + µ3 = ν3 + µ2 mod 2 (4.80)

ν1 + µ2 = ν3 + µ3 mod 2

ν2 + µ1 = 1 mod 2

Under these conditions we get from the theorem (4.56) , using formulas (4.75)-(4.80)

1

i

∫ i∞

−i∞
dτJIαs,αt

 α3 α2

α4 α1

 =
2Sν2+µ2(α1 + αs − α2)Sν3+µ1(2α2 −Q)SNS(ε)

Sν1+µ1(2α1)Sν2+µ3(α2 + αs − α1)
(4.81)

Requiring additionally that

ν2 + µ3 = B (4.82)

ν2 + µ2 = D

ν3 + µ1 = E
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ν1 + µ1 = F

where these equalities as before understood in a sense, that odd sums identified with the NS

sector, and even sums identified with the Ramond sectors, we get

F̃ Iαs,ε

 α2 α2

α1 α1

 = limε→0ε
2F Iαs,ε

 α2 α2

α1 α1

 =
4

πCI(αs, α2, α1)

WNS(0)WL(Q− αs)
WF (α1)WE(α2)

(4.83)

4.3 NS sector fusion matrix

Recall that structure constants in the NS sector are given by eq. (4.38) and (4.39) and fusion

matrix by (4.45).

Remember that NS = 1, mod 2 and R = 0, mod 2. Putting A = B = C = D = L = E =

F = NS, ν1 = ν2 = ν3 = 1, µ1 = µ2 = µ3 = 0, and using (4.68), we obtain for the (i = 1, j = 1)

component of the NS sector fusing matrices in the limit (4.54)

F0,αt

 α3 α1

α3 α1


1

1

= CNS(αt, α1, α3)
WNS(Q)WNS(αt)

πWNS(Q− α1)WNS(Q− α3)
(4.84)

Putting A = B = C = D = R, L = E = F = NS, ν1 = ν2 = ν3 = 1, µ1 = µ2 = 1, µ3 = 0,

and using (4.68), we obtain for the (i = 2, j = 1) component of the NS sector fusing matrices

in the limit (4.54)

F0,αt

 α3 α1

α3 α1


2

1

= C̃NS(αt, α1, α3)
WNS(Q)WNS(αt)

πWNS(Q− α1)WNS(Q− α3)
(4.85)

It is obvious to see that both choices of the νi and µi satisfy the conditions (4.65), (4.57), (4.67).

Putting A = B = C = D = L = E = F = NS, ν1 = ν2 = ν3 = 1, µ1 = µ2 = µ3 = 0, and

using (4.83), we obtain for the (i = 1, j = 1) component of the NS fusing matrices in the limit
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(4.72)

F̃αs,0

 α2 α2

α1 α1


1

1

= limε→0ε
2Fαs,ε

 α2 α2

α1 α1


1

1

=
4

πCNS(αs, α2, α1)

WNS(0)WNS(Q− αs)
WNS(α1)WNS(α2)

(4.86)

Putting A = B = C = D = R, L = E = F = NS, ν1 = ν2 = ν3 = 1, µ1 = 0, µ2 = µ3 = 1, and

using (4.83), we obtain for the (i = 1, j = 2) component of the NS fusing matrix in the limit

(4.72)

F̃αs,0

 α2 α2

α1 α1


1

2

= limε→0ε
2Fαs,ε

 α2 α2

α1 α1


1

2

=
4

πC̃NS(αs, α2, α1)

WNS(0)WNS(Q− αs)
WNS(α1)WNS(α2)

(4.87)

It is again obvious to see that both sets of the values of νi and µi satisfy the conditions (4.57),

(4.80) and (4.82).

Note also the relations:

F0,αs

 α1 α2

α1 α2


1

1

F̃αs,0

 α2 α2

α1 α1


1

1

=
S(0)S(αs)

π2S(α1)S(α2)
(4.88)

F0,αs

 α1 α2

α1 α2


2

1

F̃αs,0

 α2 α2

α1 α1


1

2

=
S(0)S(αs)

π2S(α1)S(α2)
(4.89)

where S(α) = sinπb(α−Q/2) sinπ 1
b
(α−Q/2).

We see that the relations (4.84)-(4.89) indeed have the structure of the equations (2),(4 and

(5.

4.4 Fusion matrix in the Ramond sector

The fusion matrix in the Ramond sector unfortunately is not known in general. Although for

some attempts see [73]. But for the degenerate primaries (4.21) fusion matrix can be computed

via direct solutions of the corresponding differential equation for conformal blocks. In particular
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the necessary elements of the fusion matrix when one of the entries is the simplest degenerate

field R−b/2 are computed in [79,80]. The degenerate field R−b/2 possesses the OPE:

NαR−b/2 = C
Rα−b/2
NαR−b/2

Rα−b/2 + C
Rα+b/2

NαR−b/2
Rα+b/2 (4.90)

RαR−b/2 = C
Nα−b/2
RαR−b/2

Nα−b/2 + C
Nα+b/2

RαR−b/2
Nα+b/2 (4.91)

The corresponding structure constant can be computed in the Coulomb gas formalism using

the screening integrals:

C
Rα−b/2
NαR−b/2

= 1 (4.92)

C
Rα+b/2

NαR−b/2
= πµb2γ(bQ/2)γ(1− bα)γ(bα− bQ/2) =

GNS(α)

GR(α + b/2)
(4.93)

C
Nα−b/2
RαR−b/2

= 1 (4.94)

C
Nα+b/2

RαR−b/2
= 2iπµb2γ(bQ/2)γ(1/2− bα)γ(bα− b2/2) = 2i

GR(α)

GNS(α + b/2)
(4.95)

The fusion matrices can be computed having explicit expression of the conformal blocks with

degenerate entries:

FRα−b/2,0

 R−b/2 R−b/2

Nα Nα

 =
Γ(αb− b2/2 + 1/2)Γ(−b2)

Γ(αb− b2)Γ(1/2− b2/2)
(4.96)

FRα+b/2,0

 R−b/2 R−b/2

Nα Nα

 =
Γ(−αb+ b2/2 + 3/2)Γ(−b2)

Γ(1− αb)Γ(1/2− b2/2)
(4.97)

FNα−b/2,0

 R−b/2 R−b/2

Rα Rα

 =
Γ(αb− b2/2)Γ(−b2)

Γ(αb− b2 − 1/2)Γ(1/2− b2/2)
(4.98)

FNα+b/2,0

 R−b/2 R−b/2

Rα Rα

 =
Γ(−αb+ b2/2 + 1)Γ(−b2)

2iΓ(1/2− αb)Γ(1/2− b2/2)
(4.99)
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It is an easy exercise to check that the values of the structure constants (4.92)-(4.95) and fusion

matrices (4.96)-(4.99) satisfy the relations

C
Rα−b/2
NαR−b/2

FRα−b/2,0

 R−b/2 R−b/2

Nα Nα

 =
Γ(αb− b2/2 + 1/2)Γ(−b2)

Γ(αb− b2)Γ(1/2− b2/2)
=
WNS(0)WR(α− b/2)

WNS(α)WR(−b/2)

(4.100)

C
Rα+b/2

NαR−b/2
FRα+b/2,0

 R−b/2 R−b/2

Nα Nα

 =
πµb2γ(bQ/2)Γ(−b2)Γ(αb− b2/2− 1/2)

Γ(1/2− b2/2)Γ(αb)
=
WNS(0)WR(α + b/2)

WNS(α)WR(−b/2)

(4.101)

C
Nα−b/2
RαR−b/2

FNα−b/2,0

 R−b/2 R−b/2

Rα Rα

 =
Γ(αb− b2/2)Γ(−b2)

Γ(αb− b2 − 1/2)Γ(1/2− b2/2)
=
WNS(0)WNS(α− b/2)

WR(α)WR(−b/2)

(4.102)

C
Nα+b/2

RαR−b/2
FNα+b/2,0

 R−b/2 R−b/2

Rα Rα

 =
πµb2γ(bQ/2)Γ(αb− b2/2)Γ(−b2)

Γ(αb+ 1/2)Γ(1/2− b2/2)
=
WNS(0)WNS(α + b/2)

WR(α)WR(−b/2)

(4.103)

One expects that similar relations should hold also for general expressions of the corresponding

elements of fusion matrix in the RR sector. For example the fusions matrix with four RR

entries should satisfy the relations

limε→0FNαs ,Nε

 Rα2 Rα2

Rα1 Rα1

 =
4

πε2(CR(αs|α2, α1) + C̃R(αs|α1, α2))

WNS(0)WNS(Q− αs)
WR(α1)WR(α2)

(4.104)

F0,Nαt

 Rα3 Rα1

Rα3 Rα1

 = (CR(αt|α1, α3) + C̃R(αt|α1, α3))
WNS(Q)WNS(αt)

πWR(Q− α1)WR(Q− α3)
(4.105)
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One can hope that constraints like (4.104) and (4.105) may help to obtain the general expres-

sions for the corresponding elements of the fusion matrix.

4.5 Defects in Super-Liouville theory

Two-point functions with a defect X insertion can be written as

〈Φi(z1, z̄1)XΦi(z2, z̄2)〉 =
Di

(z1 − z2)2∆i(z̄1 − z̄2)2∆i
, (4.106)

where

Di = DiCii (4.107)

and Cii is a two-point function. They satisfy the Cardy-Lewellen equation for defects [56, 76,

82,100]

∑
k

D0Dk

Ck
ijFk0

 j j

i i




2

= DiDj . (4.108)

Denote

DNS(α) = 〈NαXNα〉 (4.109)

DR(α) = 〈RαXRα〉 (4.110)

Let us take j = R−b/2. Using (4.90), (4.91) and (4.100)-(4.103) one can obtain:

ΨNS(α)ΨR(−b/2) = ΨR(α− b/2) + ΨR(α + b/2) , (4.111)

ΨR(α)ΨR(−b/2) = ΨNS(α− b/2) + ΨNS(α + b/2) , (4.112)

where

DNS(α)

DNS(0)
= ΨNS(α)

(
WNS(0)

WNS(α)

)2

, (4.113)
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DR(α)

DNS(0)
= ΨR(α)

(
WNS(0)

WR(α)

)2

. (4.114)

The solution of the equations (4.111) and (4.112) is

ΨNS(α;m,n) =
sin(πmb−1(α−Q/2)) sin(πnb(α−Q/2))

sin(πmb
−1Q
2

) sin(πnbQ
2

)
, (4.115)

ΨR(α;m,n) =
sin(πm(1

2
+ b−1(α−Q/2))) sin(πn(1

2
+ b(α−Q/2)))

sin(πmb
−1Q
2

) sin(πnbQ
2

)
, (4.116)

with m− n is even.

Substituting (4.115) and (4.116) in (4.113) and (4.114) we obtain

DNS(α;m,n) =
sin(πmb−1(α−Q/2)) sin(πnb(α−Q/2))

WNS(α)2
(4.117)

DR(α;m,n) =
sin(πm(1

2
+ b−1(α−Q/2))) sin(πn(1

2
+ b(α−Q/2)))

WR(α)2
(4.118)

Dividing by two-point functions (4.17) and (4.18) we obtain

DNS(α;m,n) =
sin(πmb−1(α−Q/2)) sin(πnb(α−Q/2))

sin(πb−1(α−Q/2)) sin(πb(α−Q/2))
(4.119)

DR(α;m,n) =
sin(πm(1

2
+ b−1(α−Q/2))) sin(πn(1

2
+ b(α−Q/2)))

cos(πb−1(α−Q/2)) cos(πb(α−Q/2))
(4.120)

To obtain the continuous family of defects we use the strategy developed in [88, 96]. Namely

consider DR(−b/2) as a parameter characterizing a defect. More precisely we define

A =
DR(−b/2)

DNS(0)

(
WR(−b/2)

WNS(0)

)2

(4.121)

Denoting also

DNS(α) =
Ψ̃NS(α)

WNS(α)2
, (4.122)

DR(α) =
Ψ̃R(α)

WR(α)2
. (4.123)
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we obtain

AΨ̃NS(α) = Ψ̃R(α− b/2) + Ψ̃R(α + b/2) , (4.124)

AΨ̃R(α) = Ψ̃NS(α− b/2) + Ψ̃NS(α + b/2) , (4.125)

The solution of (4.124) and (4.125) is given by

Ψ̃NS(α;u) = cosh(π(2α−Q)u) (4.126)

Ψ̃R(α;u) = cosh(π(2α−Q)u) (4.127)

with a parameter u related to A by

2 cosh 2πbu = A . (4.128)

Substituting (4.126) and (4.127) in (4.122) and (4.123) we obtain

DNS(α;u) =
cosh(π(2α−Q)u)

WNS(α)2
(4.129)

DR(α;u) =
cosh(π(2α−Q)u)

WR(α)2
(4.130)

Dividing by two-point functions (4.17) and (4.18) we obtain

DNS(α;u) =
cosh(π(2α−Q)u)

sin(πb−1(α−Q/2)) sin(πb(α−Q/2))
(4.131)

DR(α;u) =
cosh(π(2α−Q)u)

cos(πb−1(α−Q/2)) cos(πb(α−Q/2))
(4.132)
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Chapter 5

The light asymptotic limit of

Conformal blocks in Toda field theory

5.1 The light asymptotic limit of the Nekrasov partition

functions

5.1.1 The Nekrasov partition functions of N = 2 SYM theory

Consider N = 2 SYM theory with gauge group U(n) and 2n fundamental (more precisely n

fundamental plus n anti-fundamental) hypermultiplets in Ω-background. The instanton part

of the partition of this theory can be represented as

Zinst =
∑
~Y

F~Y z
|~Y |, (5.1)

where ~Y is an array of n Young diagrams, |~Y | is the total number of boxes and z is the instanton

counting parameter related to the gauge coupling in a standard manner. The coefficients F~Y

are given by

F~Y =
n∏
u=1

n∏
v=1

Zbf (a
(0)
u ,∅ | a(1)

v , Yv)Zbf (a
(1)
u , Yu | a(2)

v ,∅)

Zbf (a
(1)
u , Yu | a(1)

v , Yv)
, (5.2)
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s2

s1

s3

Figure 5.1: Arm and leg length with respect to a Young diagram (pictured in gray): A(s1) = 1,
L(s1) = 2, A(s2) = −2, L(s2) = −3, A(s3) = −2, L(s3) = −4.

where

Zbf (a, λ | b, µ) = (5.3)

∏
s∈λ

(a− b− ε1Lµ(s) + ε2(1 + Aλ(s)))
∏
s∈µ

(a− b+ ε1(1 + Lλ(s))− ε2Aµ(s)) .

Here Aλ(s) and Lλ(s) are correspondingly the arm-length and leg-length of the square s towards

the Young tableau λ, defined as oriented vertical and horizontal distances of the square s to

outer boundary of the Young tableau λ (see Fig.5.1).

Let us clarify our conventions on gauge theory parameters a(0,1,2)
u , u = 1, 2, . . . , n. The

parameters a(1)
u are expectation values of the scalar field in vector multiplet. Without loss of

generality we’ll assume that the “center of mass” of these expectation values is zero

ā(1) =
1

n

n∑
u=1

a(1)
u = 0 . (5.4)

In fact this is not a loss of generality since a nonzero center of mass can be absorbed by

shifting hypermultiplet masses. Furthermore a(0)
u (a(2)

u ) are the masses of fundamental (anti-

fundamental) hypers. Finally the ε1, ε2 are the Ω-background parameters. Sometimes we will

use the notation ε = ε1 + ε2.

Due to AGT duality, this partition function is directly related to specific four point conformal

block in 2d An−1 Toda field theory. Before describing this relation let us briefly recall few facts

about Toda theory.
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5.1.2 Preliminaries on An−1 Toda CFT and AGT relation

These are 2d CFT theories which besides the spin 2 holomorphic energy momentum W (2)(z) ≡

T (z) are endowed with additional higher spin s = 3, 4, . . . , n currents W (3), . . . , W (n) with

Virasoro central charge conventionally parameterised as

c = n− 1 + 12Q2 ,

where the vector “background charge”

Q = ρ(b+ 1/b)

with ρ being the Weyl vector of the algebra An−1 and b is the dimensionless coupling constant of

Toda theory. In what follows it would be convenient to represent the roots, weights and Cartan

elements of An−1 as n-component vectors with the usual Kronecker scalar product, subject to

the condition that sum of components is zero. Of course this is equivalent to more conventional

representation of these quantities as diagonal traceless n × n matrices with the pairing given

by trace. In this representation the Weyl vector is given by

ρ =
(
n− 1

2
,
n− 3

2
, . . . ,

1− n
2

)
or ρu =

n+ 1

2
− u (5.5)

and for the central charge we‘ll get

c = (n− 1)(1 + n(n+ 1)q2) ,

where for the later use we have introduced the parameter

q = b+
1

b
.
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For further reference let us quote here explicit expressions for the highest weight ω1 of the first

fundamental representation and for its complete set of weights h1, . . . , hn (h1 = ω1)

(ω1)k = δ1,k − 1/n ;

(hl)k = δl,k − 1/n . (5.6)

The primary fields Vα (here we concentrate only on left moving holomorphic parts) are pa-

rameterized by vectors α with vanishing center of mass. Their conformal weights are given

by

hα =
α(2Q− α)

2
. (5.7)

In what follows a special role is played by the fields Vλω1 with the dimensions:

hλω1 =
λ(n− 1)

2

(
q − λ

n

)
. (5.8)

A four point block:

〈Vα(4)(∞)Vλ(3)ω1
(1)Vλ(2)ω1

(q)Vα(1)(0)〉α = q
hα−hα(1)−hα(2)ω1Fα

 λ(3)ω1 λ(2)ω1

α(4) α(1)

 (q) , (5.9)

where α specifies the W-family running in s-channel, is closely related to the gauge partition

function Zinst see (5.15) (AGT relation). First of all, the instanton counting parameter q gets

identified with the cross ratio of insertion points in CFT block as it was already anticipated in

(5.9) and the Toda parameter b is related to Ω-background parameters via

b =

√
ε1
ε2
. (5.10)

The map between the gauge parameters in (5.1) and conformal block parameters in (5.9)

should be established from the following rules (see Fig.6.2). To formulate them we define the
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SU(n)

a
(1)
u

a
(0)
u a

(2)
u

⇐⇒

αu

λ(3)ω1

α
(4)
u

λ(2)ω1

α
(1)
u

∞

1 z

0

Figure 5.2: On the left: the quiver diagram for the conformal U(n) gauge theory. On the right:
the diagram of the conformal block for the dual Toda field theory.

rescaled gauge parameters

A(0)
u =

a(0)
u√
ε1ε2

; A(1)
u =

a(1)
u√
ε1ε2

; A(2)
u =

a(2)
u√
ε1ε2

. (5.11)

• The differences between the “centers of mases” of the successive rescaled gauge parameters

(6.26) give the charges of the “vertical” entries of the conformal block:

Ā(1) − Ā(0) =
λ(3)

n
; Ā(2) − Ā(1) =

λ(2)

n
. (5.12)

• The rescaled gauge parameters with the subtracted centers of masses give the momenta

of the “horizontal” entries of the conformal block:

A(0)
u − Ā(0) = Qu − α(4)

u ; (5.13)

A(1)
u − Ā(1) = Qu − αu ;

A(2)
u − Ā(2) = Qu − α(1)

u .

Using (6.2), (5.5) and (6.26)-(6.28) we obtain the relation between the gauge and conformal

parameters:

a(0)
u√
ε1ε2

= −α(4)
u −

λ(3)

n
+ q

(
n+ 1

2
− u

)
;

a(1)
u√
ε1ε2

= −αu + q
(
n+ 1

2
− u

)
;
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a(2)
u√
ε1ε2

= −α(1)
u +

λ(2)

n
+ q

(
n+ 1

2
− u

)
. (5.14)

With all these preparations one can write the AGT correspondence between the Nekrasov

function defined in (5.1) and the conformal block in (5.9) (see [102,104]):

Zinst = (1− z)
λ(3)

(
q−λ

(2)

n

)
Fα

 λ(3)ω1 λ(2)ω1

α(4) α(1)

 (z) . (5.15)

5.1.3 Light asymptotic limit

In this paper we are interested in so called ”light” asymptotic limit i.e. the central charge is

sent to infinity (i.e. b → 0) while keeping the dimensions finite. It follows from (5.7) that to

reach this limit one can simply put

α(1)
u = bη(1)

u ; α(4)
u = bη(4)

u ; αu = bηu (5.16)

keeping all the parameters η finite. As for the parameters λ of the special fields Vλω1 , there are

two inequivalent alternatives:

(i) λ = bη

or

(ii) nq − λ = bη.

Though in both cases the conformal dimension takes the same value (see eq. (5.8))

h =
η(n− 1)

2
,

these fields are not identical, which can be seen e.g. from the fact that the zero mode eigenvalues

of odd W-currents for these fields have the same absolute values but opposite signs. In fact the

fields Vλω1 and V(nq−λ)ω1 can be considered as conjugate to each other in the usual sense, since

their two point function is non-zero. It is easy to check that V(nq−λ)ω1 is equivalent to Vλωn−1
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(ωn−1 is the highest weight of the anti-fundamental representation) since the corresponding

momentum parameters Q− λω1 and Q− (nq − λ)ωn−1 are related by a Weyl transformation.

In this paper we will investigate in great detail the case when Vλ3ω1 is a light field of type

(i) while Vλ2ω1 is of type (ii). In other words we set

λ(3) = bη(3); nq − λ(2) = bη(2) . (5.17)

For such choice we will see below, that the corresponding instanton sum simplifies drastically

and leads to a simple explicit expression for the conformal block. Note that this choice is very

convenient since the prefactor in front of conformal block in (5.15) now goes to 1 in the light

asymptotic limit. The opposite case when two special fields are of the same type, has been

investigated in [115] in particular case of A2 Toda. In the case considered in [115] the above

mentioned prefactor survives.

Coming back to our case of interest using (5.17), (6.30) we can rewrite the AGT map (6.29)

as

a(0)
u = −ε1

(
η(4)
u +

η(3)

n

)
+ ε

(
n+ 1

2
− u

)
;

a(1)
u = −ε1ηu + ε

(
n+ 1

2
− u

)
;

a(2)
u = −ε1

(
η(1)
u +

η(2)

n

)
+ ε

(
n+ 3

2
− u

)
. (5.18)

In view of (6.25) the small b limit is equivalent to ε1 → 0. Hence we are interested in the ε1 → 0

limit of (6.3). We will see that the degree of ε1 (denote it by N) is non-negative for arbitrary

array of Young diagrams Yv and that the degree N = 0 (hence a finite non-zero limit exists) if

and only if each Young diagram Yv (v = 1, 2, . . . , n) has at most v − 1 rows.

From (6.3) we see that

N = n1 + n2 − n3 (5.19)
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Figure 5.3: This picture shows that there are Yv,1 boxes such that AYv = 0 (painted black) and
Yv,2 boxes with AYv = 1 (painted grey).

with n1, n2 being the ε1 degrees of the first and second factors in the numerator of (6.3)

respectively and n3 is the ε1 degree of its denominator.

Let us derive n1, using (6.4) for Zbf (a
(0)
u ,∅ | a(1)

v , Yv) and inserting (5.18) we’ll get

Zbf (a
(0)
u ,∅ | a(1)

v , Yv) = (5.20)

∏
s∈Yv (ε1(1 + L∅(s) + ηv − η(4)

u − η(3)

n
) + ε(v − u)− ε2AYv(s)).

A factor in (5.20) contributes to the degree of ε1 if its part proportional to ε2 vanishes. Evidently

this happens when AYv(s) = v − u. Since the box s ∈ Yv, AYv(s) ≥ 0, we see that when v = 1

the only admissible value for u is u = 1. It is obvious from Fig. 5.3 that there are exactly Y1,1

boxes in Y1 for which the arm-length vanishes (here and below we denote by Yv,i the number

of boxes in the i’th row of diagram Yv). When v = 2, there are two admissible values u = 1 or

u = 2. As in the previous case the number of the boxes with zero arm-length (case u = 2) is

equal Y2,1. Similarly, a simple inspection shows that the number of boxes with unit arm-lengths

(case u = 2) are equal to Y2,2. This analysis can be easily continued for other values of v with

result summarized in the table below

u=1 u=2 u=3 . . . u=n

v=1 Y1,1

v=2 Y2,2 Y2,1

v=3 Y3,3 Y3,2 Y3,1

. . . . . .

v=n Yn,n Yn,n−1 Yn,n−2 . . . Yn,1
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Obviously the degree n1 is nothing but the sum of all entries of this table.

n1 =
n∑
u=1

u∑
k=1

Yu,k . (5.21)

With almost identical arguments it is possible to show that n2 = n1. Finally, an analogous

consideration for the degree n3 gives

n3 =
n∑
u=1

u∑
k=1

Yu,k +
n∑
u=1

u−1∑
k=1

Yu,k . (5.22)

Thus for the total degree (5.19) we get

N =
n∑
u=1

Yu,u . (5.23)

Each term here is non-negative and in order to get a vanishing total degree N = 0, the array

of Young diagrams should satisfy the conditions Y1,1 = Y2,2 = · · ·Yn,n = 0, which means that

each Young diagram Yu consists of at most u− 1 rows.

5.1.4 Nekrasov partition function of N = 2 SYM theory in the light

asymptotic limit

Now our purpose is to derive F~Y explicitly in the light asymptotic limit. To do this let us study

the first factor in the numerator of (6.3) which, according to (6.4) and (5.18), is given by

Zbf (a
(0)
u ,∅ | a(1)

v , Yv) = (5.24)

∏
s∈Yv (ε1(1 + L∅(s) + ηv − η(4)

u − η(3)

n
) + ε(v − u)− ε2AYv(s)).

Let Y (1)
v be the set of such boxes s of the Young diagram Yv (with at most v− 1 rows) that the

coefficient of ε2 vanishes in the respective factor of (5.24)), i.e.

v − u− AYv(s) = 0 . (5.25)
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This can happen only when i ≡ v − u ≥ 0. Thus for the part of (5.24) under discussion we get

Zbf (a
(0)
u ,∅ | a(1)

v , Y (1)
v ) =

∏
s∈Y (1)

v
ε1(1 + L∅(s) + ηv − η(4)

u − η(3)

n
+ v − u) . (5.26)

We have already seen in previous chapter that there are exactly Yv,i+1 boxes, satisfying (5.25).

These boxes are distributed in Yv in such a way that there is a single box on j-th column

(denote it by sj) for each j = 1, . . . , Yv,i+1 (see Fig.5.3). Taking into account that L∅(sj) = −j,

we can rewrite (5.26) as

Zbf (a
(0)
u ,∅ | a(1)

v , Y (1)
v ) =

∏Yv,i+1

j=1 ε1(ηv − η(4)
v−i − η(3)

n
+ 1− j + i). (5.27)

Now let’s look on the alternative case of the set Y (2)
v of those boxes which do not satisfy (5.25)

so that in the related factors we can safely set ε1 = 0. Again from (5.20) we’ll get

Zbf (a
(0)
u ,∅ | a(1)

v , Y (2)
v ) =

∏
s∈Y (2)

v
ε2(v − u− AYv(s)). (5.28)

Carefully examining the cases v − u− AYv(s) > 0 and v − u− AYv(s) < 0 separately we get

∏n
u=1

∏n
v=1 Zbf (a

(0)
u ,∅ | a(1)

v , Y (2)
v ) = (5.29)

∏n
v=2

∏v−1
i=1 ((−)n−v−1−i(n− v − 1− i)!(v − i)!ε(n−1)

2 )Yv,i .

Combining (5.27) with (5.29) we obtain

∏n
u=1

∏n
v=1 Zbf (a

(0)
u ,∅ | a(1)

v , Yv) = (5.30)

∏n
v=2

∏v−2
i=0

∏Yv,i+1

j=1 ε1(ηv − η(4)
v−i − η(3)

n
+ 1− j + i)×

∏n
v=2

∏v−1
i=1 ((−)n−v−1−i(n− v − 1− i)!(v − i)!ε(n−1)

2 )Yv,i .
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Similar arguments for the second factor in the denominator of (6.3) lead to the expression

∏n
u=1

∏n
v=1 Zbf (a

(1)
u , Yu | a(2)

v ,∅) = (5.31)

∏n
u=2

∏u−1
i=1 (εn−1

2 (−)ii!(n− 1− i)!)Yu,u−i ×

∏n
u=2

∏u−2
i=0

∏Yu,i+1

j=1 ε1(η
(1)
u−i − ηu + η(2)

n
+ j − i− 1).

The derivation of the denominator of (6.3) though somewhat lengthier but still is quite straight-

forward and leads to

∏n
u=1

∏n
v=1 Zbf (a

(1)
u Yu | a(1)

v Yv) = (5.32)

∏n−1
l=1

∏n−l
v=1(−ε1)Yv+l,l

∏v+l−1
k=l

∏Yv+l,k

i=1+Yv+l,k+1
(ηv+l − ηv + l + Yv,k−l+1 − i)×

∏n−2
l=0

∏n
v=l+2 ε

Yv,l+1

1

∏v−1
k=l+1

∏Yv,k
i=1+Yv,k+1

(ηv − ηv−l + l + 1 + Yv−l,k−l − i)×

∏n
v=2

∏v−1
i=1 (εn−1

2 (−)i−1(i− 1)!(n− i)!)Yv,v−i((−)n−v−1−i(n− v − 1− i)!(v − i)!ε(n−1)
2 )Yv,i ,

where the products on the second (third) line comes from the terms u < v (u > v) and the last

line results in from diagonal u = v terms. Notice that, as we have already proved earlier, the

order in ε1 of the numerator and the denominator coincide safely providing a finite ε1 → 0 limit.

Also dependence of the ratio in ε2 disappears (as it should from scaling arguments). Inserting

(5.30), (5.31) and (5.32) in (6.3) for F~Y in the light asymptotic limit we finally get

F~Y =
∏n
u=2

∏u
v=2

(
u−v+1

n−u+v−1

)Yu,v−1

(5.33)∏Yu,u−v+1−1

i=0

(
−ηu+η

(4)
v + η(3)

n
−u+v+i

)(
ηu−η(1)

v − η
(2)

n
+u−v−i

)
∏u−1

k=u−v+1

∏Yu,k−1

i=Yu,k+1
(ηu−ηv−1+u−v+Yv−1,k+v−u−i)(ηu−ηv+u−v+Yv,k+v−u−i)

.

where Yv,i is the number of boxes in the i’th row of diagram Yv. As already mentioned in the

case under consideration the prefactor in (5.15) becomes 1, hence

FCFT = Zinst =
∑
~Y

F~Y z
|~Y |, (5.34)
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The sum is taken over all Young diagrams Yu, u = 2, . . . , n, with at most u− 1 rows, i.e. over

all allowed row lengths Yu,1 ≥ Yu,2 ≥ . . . ≥ Yu,u−1 ≥ 0.

Let us consider the particular cases when n = 2 (Liouville) and n = 3 separately.

When n = 2 we have a single sum

FLiouv =
∑∞
i=0

(
η

(4)
2 +η1+ η(3)

2

)
i

(
η

(1)
2 +η1+ η(2)

2

)
i

i!(2η1)i
zi

= 2F1

(
η

(1)
2 + η1 + η(2)

2
, η

(4)
2 + η1 + η(3)

2
, 2η1; z

)
, (5.35)

where 2F1(a, b; c;x) is the Gauss hyper-geometric function. This is a well known result in

Liouville theory [114–117].

When n = 3 we get

FW3 =
∑∞
i,j,l=0(−)l2j−i z2l+i+j (5.36)

×
(
η(3)

3
− η2 + η

(4)
2

)
i

(
η(3)

3
− η3 + η

(4)
2 − 1

)
l

(
η(3)

3
− η3 + η

(4)
3

)
j+l

×

(
η(2)

3
−η2+η

(1)
2

)
i

(
η(2)

3
−η3+η

(1)
2 −1

)
l

(
η(2)

3
−η3+η

(1)
3

)
j+l

i!j!l!(η1−η2)i(η1−η3−1)l(η2−η3)l(η2−η3−i−1)l(η2−η3+l−i)j
,

This formula completes the result of [115] where the light four-point function of W3-theory has

been computed in the case when both the second and the third insertions were light primaries

of the same sort:

λ(3) = bη(3); λ(2) = bη(2) , (5.37)

whereas (5.36) is obtained with the choice specified in (5.17). In the next section we present an

alternative calculation of (5.36) based on the integral representation of the conformal blocks in

the light asymptotic limit used in [115].
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5.2 Light asymptotic limit for the four point block in W3

It has been shown in [115] that the multi-point conformal blocks of the W3 theory in the light

asymptotic limit can be constructed in the terms of sl(3) three-point invariant functions. For

the details we refer the reader to the original paper. Here we’ll introduce the necessary notations

and state the relevant results.

It is well known that the sl(3) generators can be represented as operators acting on the

triple of the isospin variables Z = (w, x, y). To construct a multi-point block one should

multiply several three-point functions then identify pairs of isospin variables corresponding

to the internal states and integrate them out with an appropriate measure. At the end one

specializes the external leg variables putting

Z =
(

1

2
z2, z, z

)
, (5.38)

where z is the insertion point.

In particular the four-point block can be represented as

F =
∫
C
d3ZsE1(j2, j1, J

ω
s |Z2, Z1, Zs)E2(j3, j

ω
4 , J

∗ω
s |Z3, Z4, Zs) , (5.39)

where E1 and E2 are the appropriate three point invariants given by ∗

E1(j1, j2, j3|Z1, Z2, Z3) = χ−J123ρ
−J−r2+s3
12 ρ−J−r3+s2

13 ρJ−s223 ρJ−s332 ;

E2(j1, j2, j3|Z1, Z2, Z3) = σJ123ρ
J+r3−s2
21 ρJ+r2−s3

31 ρ−J−r323 ρ−J−r232 (5.40)

∗We have different three point invariants, since the second and third light fields are of different kinds as
specified in (5.17). The case of fields of the same kind is analysed in [115].
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with

ρij = yi (xi − xj)− (wi − wj) ;

σijk = xiwj − wixj − xiwk + wixk − wjxk + xjwk ;

χijk = yiwj − wiyj + yiyj (xi − xj)− yiwk + wiyk + yiyk (xk − xi)

−wjyk + yjwk + yjyk (xj − xk) , (5.41)

the quantities j = (r, s), j∗ = (2 − r, 2 − s), jω = (s, r) (see [115]) specify the primary fields

and are related to the charge vectors ηu introduced in section (6.3.2) as

r = η1 − η2 ; s = η2 − η3 ; η1 + η2 + η3 = 0 (5.42)

and, finally,

J = (h2, j1 + j2 + j3) =
1

3
(s1 + s2 + s3 − r1 − r2 − r3) . (5.43)

Due to (5.42) and (6.30), (5.17) for our case we have

rs = η1 − η2 ; ss = η2 − η3 ;

r1 = η
(1)
1 − η

(1)
2 ; s1 = η

(1)
2 − η

(1)
3 ;

r4 = η
(4)
1 − η

(4)
2 ; s4 = η

(4)
2 − η

(4)
3 ;

s2 = η(2) ; r2 = 0 ;

r3 = η(3) ; s3 = 0 . (5.44)

As usual, using projective invariance we can specify the insertion points as

(z4, z3, z2, z1)→ (∞, 1, x, 0), see Fig.6.2. Under this specification, after dropping out an unim-

113



portant constant (infinite ) factor, E2 gets simplified

E2(j3, j
ω
4 , J

∗ω
s |Z3, Z4, Zs) = (1− xs)

1
3

(r4+ss−rs−r3−s4) ρ
r4+ss−rs−r3−s4

3
+s4+rs−2

s,3 . (5.45)

Putting

x2 → z ; y2 → z ; w2 → z2

2
; x1 → 0 ;

y1 → 0 ; w1 → 0 ; x3 → 1 ; y3 → 1 ; w3 → 1
2
,

as instructed in (5.38) and dropping out the usual factor

z
hαs−hα(1)−hλ(2)ω1 = zrs+ss−(r1+s1)−s2 , up to an unimportant constant multiplier we get the inte-

gral

F =
∫
dxs dys dws

(
ws − ys

(
xs −

z

2

))
1
3

(r1+ss−s1−s2−rs) (5.46)

×w
1
3

(−r1−ss−2s1+s2+rs)
s (1− xs)

1
3

(−r3−s4+ss+r4−rs) (ws − xsys)
1
3

(−r1−ss+s1+s2−2rs)

×
(
ws − z

(
xs −

z

2

))
1
3

(r1−2ss+2s1−s2−rs)
(
ws − (xs − 1) ys −

1

2

)
1
3

(−r3+2s4+ss+r4+2rs)−2.

After the change of the variables

xs →
x

2w
; ws →

1

2w
; ys →

y

xy − w
(5.47)

we’ll get

F =
∫
C
dx dy dww

1
3

(r3+s4+2ss−r4+rs)−2(1− yz)
1
3

(r1+ss−s1−s2−rs) (5.48)

×
(
w − x

2

) 1
3

(−r3−s4+ss+r4−rs) (
wz2 − xz + 1

) 1
3

(r1−2ss+2s1−s2−rs)

× (xy − w)
1
3

(r3−2s4−ss−r4+rs)(−w + (x− 2)y + 1)
1
3

(−r3+2s4+ss+r4+2rs)−2.
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Here is the result of the integration (for the details of the calculation see appendix:??)

F =
∑∞
m,n,k=0

∑m
l=0(−)k+l2n−mz2k+m+n

×
(

1
3

(ss + 2rs − r3 − s4 + r4)
)
l

(
1
3

(−ss + rs − r1 + s1 + s2)
)
m

(5.49)

×( 1
3

(2ss+rs−r1−2s1+s2))
k+n

( 1
3

(2ss+rs+r3−2s4−r4))
k+n

( 1
3

(2ss+rs+r3+s4−r4−3))
k−l+m

k!l!n!(m−l)!(rs)l(ss)k−l+n(ss+rs−1)k+m
.

Though this expression looks different from (5.36) below we argue that in fact they coincide.

First we will prove this analytically up to the second order in z. It is convenient to rewrite

(5.49) and (5.36) in terms of parameters A1, A2, B1, B2 defined as

A1 =
1

3
(r − r1 − s+ s1 + s2) ; B1 =

1

3
(r − r1 + 2s− 2s1 + s2) ; (5.50)

A2 =
1

3
(r + r3 + s4 − s− r4) ; B2 =

1

3
(r + r3 − 2s4 + 2s− r4) . (5.51)

For (5.49) we will get

F =
∑∞
k,n,m=0

∑m
l=0

(−1)k+l2n−m(A1)m(rs−A2)l(B1)k+n(B2)k+n(A2+ss−1)k−l+mz
2k+m+n

k!l!n!(m−l)!(rs)l(ss)k−l+n(rs+ss−1)k+m
(5.52)

and (5.36) is given

FW3 =
∑∞
k,n,m=0

(−1)k2m−n(A1)n(A2)n(A1+ss−1)k(A2+ss−1)k(B1)k+m(B2)k+mz
2k+m+n

k!m!n!(ss)k(rs)n(−n+ss−1)k(rs+ss−1)k(k−n+ss)m
(5.53)

It is easy to see from (5.52) that the term proportional to z is

F (1) =
A1(A2 + ss − 1)

2(rs + ss − 1)
− A1(ss − 1)(rs − A2)

2rs(rs + ss − 1)
+

2B1B2

ss
(5.54)

and for (5.53) it is

F (1)
W3

=
A1A2

2rs
+

2B1B2

ss
(5.55)
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Combining the first two terms in (5.54) we will get (5.55). The details of the second order

calculations can be found in [6].

Using Mathematica code we have checked up to the 8th order in z, that (5.36) agrees with

(5.49).

Note that the expression (5.36), besides physical poles at rs ∈ Z≤0, ss ∈ Z≤0,

rs+ss−1 ∈ Z≤0, has apparent poles at positive integer values of ss. In fact explicit calculations

ensure that these apparent poles get canceled in final expressions.
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Chapter 6

The light asymptotic limit of conformal

blocks in N = 1 super Liouville field

theory

6.1 The partition functions of N = 2 SYM on R4/Z2

Let us consider N = 2 SYM theory with a U(2) gauge group on the space R4/Z2. The instanton

part of the partition function for this theory can be represented as (see [136,137])

Z
(q1,q2)
(u1,u2),(v1,v2)(~a

(0),~a(1),~a(2)|q) =
∑
{~Y ~q}

F
(q1,q2)

~Y (u1,u2),(v1,v2)

(
~a(0),~a(1),~a(2)

)
q
|~Y |
2 . (6.1)

The sum goes over the pairs of Young diagrams ~Y ~q = (Y q1
1 , Y q2

2 ) colored in chess like order. To

each diagram one ascribes a Z2 charge qi, i = 1, 2 which indicates the color of the corner and

takes values 0 or 1 (white or black correspondingly). |~Y | is the total number of boxes in Y1 and

Y2, and q is the instanton counting parameter. Let us clarify our conventions on gauge theory

parameters a
(0,1,2)
i , i = 1, 2. The parameters a

(1)
i are expectation values of the scalar field in

vector multiplet. Without loss of generality we will assume that the “center of mass” of these
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s1

s3

s2

Figure 6.1: Arm and leg length with respect to the Young diagram whose borders are outlined
by dark black: A(s1) = −2, L(s1) = −2, A(s2) = 2, L(s2) = 3, A(s3) = −3, L(s3) = −4.

expectation values is zero

ā(1) =
1

2

(
a

(1)
1 + a

(1)
2

)
= 0 , (6.2)

since a nonzero center of mass can be absorbed by shifting hypermultiplet masses. Furthermore

a
(0)
i (a

(2)
i ) are the masses of fundamental (anti-fundamental) hypers.

The expansion coefficient of the instanton partition function (6.1) is given by

F
(q1,q2)

~Y (u1,u2),(v1,v2)

(
~a(0),~a(1),~a(2)

)
= (6.3)

2∏
i=1

2∏
j=1

Zbf (ui, a
(0)
i ,∅ | qj, a(1)

j , Yj)Zbf (qi, a
(1)
i , Yi | vj, a(2)

j ,∅)

Zbf (qi, a
(1)
i , Yi | qj, a(1)

j , Yj)
,

where

Zbf (x, a, λ | y, b, µ) = (6.4)

∏
s∈λ∗

(a− b− ε1Lµ(s) + ε2(1 + Aλ(s)))
∏
s∈µ∗

(a− b+ ε1(1 + Lλ(s))− ε2Aµ(s)) .

Here ε1 and ε2 are the Ω-background parameters. We will use the notation ε = ε1 + ε2. Aλ(s)

(Lλ(s)) is the arm-length (leg-length) of the square s towards the Young diagram λ, defined as

oriented vertical (horizontal) distance of the square s to outer boundary of the Young tableau

λ (see figure 6.1). λ∗, µ∗ are subsets of boxes λ and µ respectively such that, a box of λ (µ)
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belongs to λ∗ (µ∗) if and only if the replacement

ε1, ε2 → 1; a→ x; b→ y (i = 1, 2) (6.5)

in the first (second) multiplier of (6.4) results in 0 (mod 2) (remind that ui and vi (i = 1, 2)

take values 0 or 1). For more details see [7].

According to the duality between N = 2 SYM on R4/Z2 and N = 1 SLFT these partition

functions are directly related to four point conformal blocks in N = 1 SLFT. Before describing

this relation let us briefly recall few facts about N = 1 SLFT itself.

6.2 More known facts on N = 1 SLFT and its light

asymptotic limit

In N = 1 super-Liouville field theory there are many kinds of primary fields let me list them

in slightly more details then in 4.1

NS primary fields Φα(z, z̄) in this theory, Φα(z, z̄) = eαϕ(z,z̄), have conformal dimensions

∆NS
α =

1

2
α(Q− α) . (6.6)

Introduce also the field that is the highest component of the NS superfield build from Φα

Φα̃(z, z̄) = G−1/2Ḡ−1/2Φα(z, z̄) , (6.7)

with dimension

∆̃NS
α = ∆NS

α + 1/2 , (6.8)
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and as well as the Ramond primary fields defined as

R±α (z, z̄) = σ±(z, z̄)eαϕ(z,z̄) (6.9)

where σ± is the spin field with dimension 1/16. Thus the dimension of a Ramond operator is

∆R
α =

1

16
+

1

2
α(Q− α) . (6.10)

6.3 N = 1 Super Liouville conformal blocks and their

relation to the N = 2 SYM on R4/Z2

Let us schematically denote by 〈Ψ1(∞)Ψ2(1)Ψ3(q)Ψ4(0)〉∆Ψ conformal block of Ψi, i = 1 . . . 4,

fields with intermediary field Ψ of conformal weight ∆Ψ.

Four point blocks where all four fields are bosonic primaries Φi with conformal weights ∆αi

are connected with the Zinst partition function in the following way (see [134])

♦Z
(0,0)
(0,0),(0,0) = q∆NS

1 +∆NS
2 −∆NS

(1− q)U〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉∆NS (6.11)

and for ∆̃ = ∆ + 1
2

�Z
(1,1)
(0,0),(0,0) =

q∆NS
1 +∆NS

2 −∆̃NS

2
(1− q)U〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉∆̃NS . (6.12)

The index ♦ shows that the number of black and white boxes (the number of boxes in both

diagrams together) are equal and the index � show the number differ by one. In the expressions

(6.11) and (6.12) U is given by

U = α2 (Q− α3) . (6.13)

We will see that in the light asymptotic limit U is just one. So in this limit the corresponding
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partiton function gives the four point conformal block for bosonic fields.

Let us look at the 〈RΦΦR〉 type conformal block. According to [133] this conformal blocks are

connected to the instanton partition function in the following way

♦Z
(0,1)
(0,0),(0,0) = q∆R

3 +∆NS
4 −∆R

(1− q)(U− 3
8

+∆1−∆2−∆3+∆4)〈R+
2 (∞)Φ1(1)Φ4(q)R+

3 (0)〉∆R . (6.14)

Now let us look at the 〈RRRR〉 conformal blocks [133]. For the partition functions with equal

numbers of black and white cells

♦Z
(0,0)
(1,0),(1,0)(q) = (1− q)U

(
Gsl(2)(q)H−(q) + G̃sl(2)(q)H̃−(q)

)
, (6.15)

♦Z
(0,0)
(0,1),(0,1)(q) = (1− q)U

(
Gsl(2)(q)H+(q) + G̃sl(2)(q)H̃+(q)

)
, (6.16)

♦Z
(0,0)
(1,0),(0,1)(q) = (1− q)U

(
Gsl(2)(q)F−(q) + G̃sl(2)(q)F̃−(−q)

)
, (6.17)

♦Z
(0,0)
(0,1),(1,0)(q) = (1− q)U

(
Gsl(2)(q)F+(q) + G̃sl(2)(q)F̃+(−q)

)
. (6.18)

For the partition functions whose numbers of black and white boxes differ by one

�Z
(1,1)
(1,0),(1,0)(q) = (1− q)U

(
G̃sl(2)(q)H+(q) +Gsl(2)(q)H̃+(q)

)
, (6.19)

�Z
(1,1)
(0,1),(0,1)(q) = (1− q)U

(
G̃sl(2)(q)H−(q) +Gsl(2)(q)H̃−(q)

)
, (6.20)

�Z
(1,1)
(1,0),(0,1)(q) = (1− q)U

(
G̃sl(2)(q)F+(q) +Gsl(2)(q)F̃+(−q)

)
, (6.21)

�Z
(1,1)
(0,1),(1,0)(q) = (1− q)U

(
G̃sl(2)(q)F−(q) +Gsl(2)(q)F̃−(−q)

)
. (6.22)

Here H±, F±, H̃± and F̃± are related to the conformal blocks containing four Ramond fields,

for their definition see 6.6. G(q) and G̃(q) are certain conformal blocks of the ˆsu(2)2 WZW

model, which are given by

G(q) = (1− q)− 3
8

√
1
2

(
1 +
√

1− q
)
, (6.23)

G̃(q) = (1− q)− 3
8

√
1
2

(
1−
√

1− q
)
. (6.24)
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SU(2)

a
(1)
1,2

a
(0)
1,2 a

(2)
1,2

⇐⇒

±α

±α2

±α1

±α3

±α4

∞

1 q

0

Figure 6.2: On the left: the quiver diagram for the conformal SU(2) gauge theory. On the
right: the diagram of the conformal block for the dual N = 1 SLFT .

Below is given the map that connects the gauge parameters of the instanton partition functions

for N = 2 SYM on R4/Z2 to the primary fields in the N = 1 SLFT conformal blocks.

6.3.1 The map relating partition functions to conformal blocks

First of all, the instanton counting parameter q gets identified with the cross ratio of insertion

points, as already anticipated in formulas (6.15)-(6.22), for CFT block. The Liouville parameter

b is related to the Ω-background parameters via

b =

√
ε1
ε2
. (6.25)

The map between the gauge parameters (6.1) and conformal block parameters can be estab-

lished from the following rules (see Fig.6.2). First define the rescaled gauge parameters

A
(0)
i =

a
(0)
i√
ε1ε2

; A
(1)
i =

a
(1)
i√
ε1ε2

; A
(2)
i =

a
(2)
i√
ε1ε2

, (6.26)

where i = 1, 2.

Then

• The differences between the “centers of masses” of the successive rescaled gauge param-
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eters (6.26) give the charges of the “vertical” entries of the conformal block:

Ā(1) − Ā(0) = α2 ; Ā(2) − Ā(1) = α3 . (6.27)

• The rescaled gauge parameters with the subtracted centers of masses give the momenta

of the “horizontal” entries of the conformal block:

A
(0)
i − Ā(0) = (−)i+1

(
α1 −

Q

2

)
; (6.28)

A
(1)
i − Ā(1) = (−)i+1

(
α− Q

2

)
;

A
(2)
i − Ā(2) = (−)i+1

(
α4 −

Q

2

)
.

Using (6.2) and (6.26)-(6.28) we obtain the relation between the gauge and conformal param-

eters:

a
(0)
i√
ε1ε2

= (−)i+1
(
α1 −

Q

2

)
− α2 ;

a
(1)
i√
ε1ε2

= (−)i+1
(
α− Q

2

)
; (6.29)

a
(2)
i√
ε1ε2

= (−)i+1
(
α4 −

Q

2

)
+ α3 .

6.3.2 Light asymptotic limit of the gauge parameters

In this paper we are interested in so called ”light” asymptotic limit i.e. the central charge is

sent to infinity (i.e. b→ 0) while keeping the dimensions finite. It follows from (6.6) and (6.10)

that to reach this limit one can simply put

α = bη; αl = bηl; where l = 1; 2; 4, (6.30)
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(a)

,

(b)

,

(c)

Figure 6.3: the possible nonempty Young diagrams

by keeping all the parameters η finite. If we exchange α with Q− α the conformal dimension

remains the same (see (6.6) and (6.10)), so for α3 we can take as its light asymptotic limit

Q− α3 = bη3 (6.31)

By taking the limit in this way we get rid of the U(1) factor defined in (6.13). Using (6.30),

(6.31) we can rewrite the AGT map (6.29) as

a
(0)
i = (−)i+1

(
ε1η1 −

ε

2

)
− ε1η2 (6.32)

a
(1)
i = (−)i+1

(
ε1η −

ε

2

)
; (6.33)

a
(2)
i = (−)i+1

(
ε1η4 −

ε

2

)
+ ε− ε1η3 . (6.34)

6.4 Partition function in the light asymptotic limit

It is shown in [7] that for the light asymptotic limit only a restricted set of Young diagrams

contributes to the instanton partition function. This set varies depending on the charges and

the differences of black and white cells of the related Young diagrams. Below are given all pairs

of Y1 and Y2 for which the coefficient of the instanton expansion (6.1) is non zero in the light

limit. In order to compute these coefficients for a given pair of diagrams Y1 and Y2 one makes

use of (6.3), (6.4), (6.32)-(6.34) and then goes to the light limit ε1 → 0. The results are given

below (detailed calculation for some of the coefficients can be found in [7]).
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6.4.1 Partition functions corresponding to conformal blocks with

four Neveu-Schwarz fields.

The expansion coefficient ♦F
(0,0)
(0,0),(0,0) does not vanish in the light asymptotic limit if Y2 is a

empty Young diagram and Y1 (see figure 6.3(a)) has only one row with 2k boxes, where k can

be zero or any positive integer. It is equal to

♦
LF

(0,0)
(0,0),(0,0) =

(
1
2

(η − η4 + η3)
)
k

(
1
2

(η − η1 + η2)
)
k

k! (η)k
. (6.35)

Inserting (6.35) in (6.1), we derive

♦
LZ

(0,0)
(0,0),(0,0)(q) = 2F1 (A,B; η; q) . (6.36)

Here A and B are

A =
1

2
(η − η1 + η2) andB =

1

2
(η − η4 + η3) , (6.37)

and 2F1(a, b; c;x) is the hypergeometric function. It has the series expansion

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
k!(c)k

xk ,where(u)k = u(u+ 1) . . . (u+ k − 1) . (6.38)

In the case of �F
(1,1)
(0,0),(0,0) for some set of pairs Y1, Y2 one gets large coefficients of order 1

ε1
. Thus

one should take into account these pairs and neglect those pairs whose contributions are of

order O(1) or bigger. An can show that Y2 should be an empty and Y1 must have a single row

with 2k + 1 boxes (see figure 6.3(a)).Their contribution is

�
LF

(1,1)
(0,0),(0,0) =

1

ε1ε2

(
1
2

(η − η4 + η3 + 1)
)
k

(
1
2

(η − η1 + η2 + 1)
)
k

2 k! (η)k+1

. (6.39)
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After inserting it in (6.1), we will get

�
LZ

(1,1)
(0,0),(0,0)(q) =

1

ε1ε2

√
q

2η
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (6.40)

6.4.2 Partition function corresponding to the conformal block with

two Neveu-Schwarz and two Ramond fields.

The coefficients of ♦Z
(1,0)
(0,0),(0,0) do not vanish in the light limit if Y2 is empty and Y1 (see figure

6.3(a)) is a diagram with only one row with 2k boxes. Their contributions are

♦
LF

(1,0)
(0,0),(0,0) =

(
1
2

(η − η4 + η3 + 1)
)
k

(
1
2

(η − η1 + η2 + 1)
)
k

k!
(
η + 1

2

)
k

. (6.41)

The corresponding partition function is

♦
LZ

(1,0)
(0,0),(0,0)(q) = 2F1

(
A+

1

2
, B +

1

2
; η +

1

2
; q
)
. (6.42)

The case of ♦Z
(0,1)
(0,0),(0,0) is more subtle. Its coefficient do not vanish if Y1 (see figure 6.3(a)) is

a one row diagram with 2k boxes and Y2 (see figure 6.3(b)) is a one column diagram with 2m

boxes. Here one should consider the cases m = 0 ans m 6= 0 separately:

• when m = 0

♦
LF

(0,1)
(0,0),(0,0) =

(
1
2

(
η − η(4) + η(3)

))
k

(
1
2

(
η − η(1) + η(2)

))
k

k!
(
η + 1

2

)
k

; (6.43)

• when m 6= 0

♦
LF

(0,1)
(0,0),(0,0) =

1

2m+ 1

(
1
2

(
η − η(4) + η(3)

))
k

(
1
2

(
η − η(1) + η(2)

))
k

k!
(
η − 1

2

)
k

. (6.44)
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The corresponding instanton partition function is

♦
LZ

(0,1)
(0,0),(0,0)(q) = 2F1

(
A,B; η +

1

2
; q
)

+
tanh−1

(√
q
)

√
q

2F1

(
A,B; η − 1

2
; q
)
. (6.45)

6.4.3 Partition functions corresponding to conformal blokes with

four Ramond fields.

♦F
(0,0)
(0,1),(0,1) differs from zero in the light asymptotic limit if Y2 (see figure 6.3(b)) is a single

column diagram with 2m boxes, and Y1 (see figure 6.3(a)) a single row diagram with 2k boxes,

where m and k can be zero or any positive integer. Their contribution is

♦
LF

(0,0)
(0,1),(0,1) =

(
(1/2)m
m!

)2
(

1
2

(η − η4 + η3)
)
k

(
1
2

(η − η1 + η2)
)
k

k! (η)k
. (6.46)

Its instanton partition function is

♦
LZ

(0,0)
(0,1),(0,1)(q) =

2

π
K(q) 2F1 (A,B; η; q) . (6.47)

K(x) and E(x) are complete elliptic integrals of the first and second kind correspondingly.

They can be expressed in terms of the Gauss hypergeometric function, as

K(x) =
π

2
2F1(

1

2
,
1

2
; 1;x)andE(x) =

π

2
2F1

(
1

2
,−1

2
; 1;x

)
(6.48)

In the case of ♦F
(0,0)
(1,0),(1,0) for pairs of Young diagrams Y2, Y1, with Y2 empty and Y1 (see figure

6.3(c)) possessing one column with 2m boxes and other 2k columns with only one box, one gets

large coefficients of order 1
ε1

in the light limit. In total Y1 consists of 2m + 2k boxes. These

pairs give the main contribution. These terms are

♦
LF

(0,0)
(1,0),(1,0) =

ε2
ε1

(
1
2

)
m

(
−1

2

)
m

(m− 1)!m!

(
1
2

(η − η4 + η3 + 1)
)
k

(
1
2

(η − η1 + η2 + 1)
)
k

k!η (η + 1)k
. (6.49)
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Its partition function is given by

♦
LZ

(0,0)
(1,0),(1,0)(q) =

ε2
ε1

(E(q)−K(q))

πη
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (6.50)

♦
LF

(0,0)
(0,1),(1,0) differs from zero if Y2 is empty and Y1 is a one row diagram (see figure 6.3(a))

with 2k boxes. Their contribution is

♦
LF

(0,0)
(0,1),(1,0) =

(
1
2

(η − η4 + η3 + 1)
)
k

(
1
2

(η − η1 + η2)
)
k

k! (η)k
. (6.51)

Its instanton partition function is given by

♦
LZ

(0,0)
(0,1),(1,0)(q) = 2F1

(
A,B +

1

2
; η; q

)
. (6.52)

♦
LF

(0,0)
(1,0),(0,1) is not zero if Y2 is empty and Y1 (see figure 6.3(a)) is a one row diagram with 2k

boxes. Their contribution is

♦
LF

(0,0)
(1,0),(0,1) =

(
1
2

(η − η1 + η2 + 1)
)
k

(
1
2

(η − η4 + η3)
)
k

k! (η)k
. (6.53)

Its partition function is given by

♦
LZ

(0,0)
(1,0),(0,1)(q) = 2F1

(
A+

1

2
, B; η; q

)
. (6.54)

In the case of �F
(1,1)
(0,1),(0,1) for some set of pairs Y1, Y2 one gets large coefficients of order 1

ε1
in the

light limit. These coefficients will give the main contribution in the partition function. These

terms are obtained when Y2 is empty and Y1 (see figure 6.3(c)) has one column with 2m + 1

boxes and 2k columns with only one box, the total number of boxes is equal to 2m + 2k + 1.

They are given by

�
LF

(1,1)
(0,1),(0,1) =

ε2
ε1


(

1
2

)
m

m!

2 (
1
2

(η − η4 + η3 + 1)
)
k

(
1
2

(η − η1 + η2 + 1)
)
k

−2ηk! (η + 1)k
. (6.55)
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For its partition function, we receive

�
LZ

(1,1)
(0,1),(0,1)(q) = −ε2

ε1

√
q

πη
K(q) 2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (6.56)

�
LF

(1,1)
(1,0),(1,0) differs from zero if Y2 is a one column diagram (see figure 6.3(b)) with 2m + 1

boxes and Y1 is a one row diagram (see figure 6.3(a)) with 2k boxes. Their contribution is

�
LF

(1,1)
(1,0),(1,0) =

1

(2 + 2m)(1 + 2m)


(

3
2

)
m

m!

2 (
1
2

(η − η4 + η3)
)
k

(
1
2

(η − η1 + η2)
)
k

k! (η)k
.

(6.57)

For the corresponding instanton partition function, we will get

�
LZ

(1,1)
(1,0),(1,0)(q) = −2(E(q)−K(q))

π
√
q

2F1 (A,B; η; q) . (6.58)

Both �
LF

(1,1)
(1,0),(0,1) and �

LF
(1,1)
(0,1),(1,0) do not vanish if Y2 is empty and Y1 (see figure 6.3(a)) is a

one row diagram with 2k + 1 boxes. Their contributions are

�
LF

(1,1)
(0,1),(1,0) =

(
1
2

(η − η1 + η2 + 1)
)
k

(
1
2

(η − η4 + η3)
)
k+1

k! (η)k
, (6.59)

�
LF

(1,1)
(1,0),(0,1) =

(
1
2

(η − η1 + η2)
)
k+1

(
1
2

(η − η4 + η3 + 1)
)
k

k! (η)k
. (6.60)

Their partition functions are

�
LZ

(1,1)
(0,1),(1,0)(q) =

B

η

√
q 2F1

(
A+

1

2
, B + 1; η + 1; q

)
. (6.61)

�
LZ

(1,1)
(1,0),(0,1)(q) =

A

η

√
q 2F1

(
A+ 1, B +

1

2
; η + 1; q

)
. (6.62)
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6.5 Conformal blocks for N = 1 SLFT in the light asymp-

totic limit

Applying (6.36) and (6.40) to (6.11) and (6.12) we will get the conformal blocks with all four

fields being NS in the light limit:

〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉L∆NS = q
1
2

(η−η(2)−η(1))
2F1 (A,B; η; q) , (6.63)

〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉L
∆̃NS =

q
1
2

(1+η−η(2)−η(1))

η
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (6.64)

These results are in agreement with [138].

By applying (6.45) for (6.14) we get the conformal blocks with two R fields and two NS fields

〈R+
2 (∞)Φ1(1)Φ4(q)R+

3 (0)〉L∆R = q
1
2

(η−η(3)−η(4))(1− q)−
1
2

(η(1)−η(2)−η(3)+η(4)−1)
2F1

(
A,B; η +

1

2
; q
)

+
tanh−1

(√
q
)

√
q

2F1

(
A,B; η − 1

2
; q
) , (6.65)

where the intermediate field is a Ramond field.

As it was already mentioned the conformal blocks with four R fields are expressed in terms

of H±, H̃±, F±, F̃±. Their connection to the instanton partition is given in (6.15)-(6.22).

Applying (6.47)-(6.62), we can derive them. Their expressions get slightly simplified when one

takes q = sin2(t) with t ∈
(
0 , π

2

)
.

HL
−(sin2(t)) = ε2

ε1

cos( t2)(E(sin2(t))−cos(t)K(sin2(t))) 2F1(A+ 1
2
,B+ 1

2
;η+1;sin2(t))

πη 4
√

cos(t)
, (6.66)

H̃L
−(sin2(t)) = − ε2

ε1

sin(t)(cos(t)K(sin2(t))+E(sin2(t))) 2F1(A+ 1
2
,B+ 1

2
;η+1;sin2(t))

√
2πη 4
√

cos(t)
√

cos(t)+1
, (6.67)

HL
+(sin2(t)) =

sec( t2)(cos(t)K(sin2(t))+E(sin2(t))) 2F1(A,B;η;sin2(t))
π 4
√

cos(t)
, (6.68)

H̃L
+(sin2(t)) =

csc( t2)(cos(t)K(sin2(t))−E(sin2(t))) 2F1(A,B;η;sin2(t))
π 4
√

cos(t)
, (6.69)
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FL
+(sin2(t)) =

sec( t2)(η(cos(t)+1) 2F1(A,B+ 1
2

;η;sin2(t))−A sin2(t) 2F1(A+1,B+ 1
2

;η+1;sin2(t)))
2η 4
√

cos(t)
, (6.70)

FL
−(sin2(t)) =

sec( t2)(η(cos(t)+1) 2F1(A+ 1
2
,B;η;sin2(t))−B sin2(t) 2F1(A+ 1

2
,B+1;η+1;sin2(t)))

2η 4
√

cos(t)
, (6.71)

F̃L
+(− sin2(t)) =

sin(t)(A(cos(t)+1) 2F1(A+1,B+ 1
2

;η+1;sin2(t))−η 2F1(A,B+ 1
2

;η;sin2(t)))
√

2η 4
√

cos(t)
√

cos(t)+1
, (6.72)

F̃L
−(− sin2(t)) =

sin(t)(B(cos(t)+1) 2F1(A+ 1
2
,B+1;η+1;sin2(t))−η 2F1(A+ 1

2
,B;η;sin2(t)))

√
2η 4
√

cos(t)
√

cos(t)+1
. (6.73)

6.6 Super Liouville conformal blocks of four R-fields

Here, following [133] we define the functions H±, F±, H̃± and F̃±, which are used in the main

text. The OPEs for two Ramond fields can be written as

R±1 (z)R±2 (0) = z∆−∆1−∆2

∞∑
N=0

zN |N ;±±〉 , (6.74)

R±1 (z)R∓2 (0) = z∆−∆1−∆2

∞∑
N=0

zN |N ;±∓〉 . (6.75)

In the NS sector at level zero there is only one state, namely the NS primary state of dimension

∆. Thus |N ;±±〉 states are proportional to this NS state

|0;±±〉 = γ±|0〉 . (6.76)

By definition

|N ;±〉 = |N ; ++〉 ± |N ;−−〉 ifN ∈ Z (6.77)

|N ; +−〉 ∓ i|N ;−+〉 ifN ∈ Z + 1/2 (6.78)

In this notations

|0;±〉 = Γ±|0〉 where Γ± = (γ+ ± γ−) . (6.79)

H±, F±, H̃± and F̃± are related to the conformal blocks with four Ramond fields in the following
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way (below q is the cross ratio of insertion points)

F± =
1

Γ±Γ±

∑
N=0,1,...

qN〈N ;±|N ;±〉 ; H± =
1

Γ±Γ∓

∑
N=0,1,...

qN〈N ;±|N ;∓〉 , (6.80)

F̃± =
(−i)
Γ±Γ±

∑
N= 1

2
, 3
2
,...

qN〈N ;±|N ;±〉 ; H̃± =
1

Γ±Γ∓

∑
N= 1

2
, 3
2
,...

qN〈N ;±|N ;∓〉 , (6.81)

where conformal blocks are divided by Γ± so that if one takes the normalization 〈0|0〉 = 1,

then the expansion of F± starts as 1 +F±1q+ . . .. For more details and explanation the reader

should consult [133].
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